repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
fedspendingtransparency/data-act-broker-backend
tests/unit/dataactbroker/test_update_historical_duns.py
1
27488
import os import pandas as pd from dataactbroker.scripts import update_historical_duns from dataactcore.config import CONFIG_BROKER from dataactcore.utils.duns import DUNS_COLUMNS, EXCLUDE_FROM_API from dataactcore.models.domainModels import DUNS, HistoricDUNS def test_remove_existing_duns(database): """ Testing the removing existing duns function""" sess = database.session # of the duns 000000001-000000009, half of them are in the database all_duns = ['00000000{}'.format(x) for x in range(0, 10)] existing_duns = all_duns[: 4] data = pd.DataFrame.from_dict({'awardee_or_recipient_uniqu': all_duns}) for duns in existing_duns: sess.add(DUNS(awardee_or_recipient_uniqu=duns)) sess.commit() # confirm that the dataframe returned only has half the duns expected_duns = list(set(existing_duns) ^ set(all_duns)) new_df = update_historical_duns.remove_existing_duns(data, sess) assert sorted(expected_duns) == sorted(new_df['awardee_or_recipient_uniqu'].tolist()) def mock_get_duns_props_from_sam(duns_list): """ Mock function for get_duns_props as we can't connect to the SAM service """ request_cols = [col for col in DUNS_COLUMNS if col not in EXCLUDE_FROM_API] columns = request_cols results = pd.DataFrame(columns=columns) duns_mappings = { '000000001': { 'awardee_or_recipient_uniqu': '000000001', 'uei': 'A1', 'legal_business_name': 'Legal Name 1', 'dba_name': 'Name 1', 'entity_structure': '1A', 'ultimate_parent_unique_ide': '999999999', 'ultimate_parent_uei': 'Z9', 'ultimate_parent_legal_enti': 'Parent Legal Name 1', 'address_line_1': 'Test address 1', 'address_line_2': 'Test address 2', 'city': 'Test city', 'state': 'Test state', 'zip': 'Test zip', 'zip4': 'Test zip4', 'country_code': 'Test country', 'congressional_district': 'Test congressional district', 'business_types_codes': [['A', 'B', 'C']], 'business_types': [['Name A', 'Name B', 'Name C']], 'high_comp_officer1_full_na': 'Test Exec 1', 'high_comp_officer1_amount': '1', 'high_comp_officer2_full_na': 'Test Exec 2', 'high_comp_officer2_amount': '2', 'high_comp_officer3_full_na': 'Test Exec 3', 'high_comp_officer3_amount': '3', 'high_comp_officer4_full_na': 'Test Exec 4', 'high_comp_officer4_amount': '4', 'high_comp_officer5_full_na': 'Test Exec 5', 'high_comp_officer5_amount': '5' }, '000000002': { 'awardee_or_recipient_uniqu': '000000002', 'uei': 'B2', 'legal_business_name': 'Legal Name 2', 'dba_name': 'Name 2', 'entity_structure': '2B', 'ultimate_parent_unique_ide': '999999998', 'ultimate_parent_uei': 'Y8', 'ultimate_parent_legal_enti': 'Parent Legal Name 2', 'address_line_1': 'Other Test address 1', 'address_line_2': 'Other Test address 2', 'city': 'Other Test city', 'state': 'Other Test state', 'zip': 'Other Test zip', 'zip4': 'Other Test zip4', 'country_code': 'Other Test country', 'congressional_district': 'Other Test congressional district', 'business_types_codes': [['D', 'E', 'F']], 'business_types': [['Name D', 'Name E', 'Name F']], 'high_comp_officer1_full_na': 'Test Other Exec 6', 'high_comp_officer1_amount': '6', 'high_comp_officer2_full_na': 'Test Other Exec 7', 'high_comp_officer2_amount': '7', 'high_comp_officer3_full_na': 'Test Other Exec 8', 'high_comp_officer3_amount': '8', 'high_comp_officer4_full_na': 'Test Other Exec 9', 'high_comp_officer4_amount': '9', 'high_comp_officer5_full_na': 'Test Other Exec 10', 'high_comp_officer5_amount': '10' } } for duns in duns_list: if duns in duns_mappings: results = results.append(pd.DataFrame(duns_mappings[duns]), sort=True) return results def test_update_duns_props(monkeypatch): """ Testing updating the duns props with both populated/blank data """ monkeypatch.setattr('dataactcore.utils.duns.get_duns_props_from_sam', mock_get_duns_props_from_sam) duns_df = pd.DataFrame.from_dict({ 'awardee_or_recipient_uniqu': ['000000001', '000000002', '000000003'] }) expected_df = pd.DataFrame.from_dict({ 'awardee_or_recipient_uniqu': ['000000001', '000000002', '000000003'], 'uei': ['A1', 'B2', None], 'address_line_1': ['Test address 1', 'Other Test address 1', None], 'address_line_2': ['Test address 2', 'Other Test address 2', None], 'city': ['Test city', 'Other Test city', None], 'state': ['Test state', 'Other Test state', None], 'zip': ['Test zip', 'Other Test zip', None], 'zip4': ['Test zip4', 'Other Test zip4', None], 'country_code': ['Test country', 'Other Test country', None], 'congressional_district': ['Test congressional district', 'Other Test congressional district', None], 'business_types_codes': [['A', 'B', 'C'], ['D', 'E', 'F'], []], 'business_types': [['Name A', 'Name B', 'Name C'], ['Name D', 'Name E', 'Name F'], []], 'entity_structure': ['1A', '2B', None], 'dba_name': ['Name 1', 'Name 2', None], 'ultimate_parent_unique_ide': ['999999999', '999999998', None], 'ultimate_parent_uei': ['Z9', 'Y8', None], 'ultimate_parent_legal_enti': ['Parent Legal Name 1', 'Parent Legal Name 2', None], 'high_comp_officer1_full_na': ['Test Exec 1', 'Test Other Exec 6', None], 'high_comp_officer1_amount': ['1', '6', None], 'high_comp_officer2_full_na': ['Test Exec 1', 'Test Other Exec 7', None], 'high_comp_officer2_amount': ['2', '7', None], 'high_comp_officer3_full_na': ['Test Exec 1', 'Test Other Exec 8', None], 'high_comp_officer3_amount': ['3', '8', None], 'high_comp_officer4_full_na': ['Test Exec 1', 'Test Other Exec 9', None], 'high_comp_officer4_amount': ['4', '9', None], 'high_comp_officer5_full_na': ['Test Exec 1', 'Test Other Exec 10', None], 'high_comp_officer5_amount': ['5', '10', None] }) assert expected_df.sort_index(inplace=True) == update_historical_duns.update_duns_props(duns_df)\ .sort_index(inplace=True) def test_update_duns_props_empty(monkeypatch): """ Special case where no data is returned """ monkeypatch.setattr('dataactcore.utils.duns.get_duns_props_from_sam', mock_get_duns_props_from_sam) duns_df = pd.DataFrame.from_dict({ 'awardee_or_recipient_uniqu': ['000000003'] }) expected_df = pd.DataFrame.from_dict({ 'awardee_or_recipient_uniqu': ['000000003'], 'uei': [None], 'address_line_1': [None], 'address_line_2': [None], 'city': [None], 'state': [None], 'zip': [None], 'zip4': [None], 'country_code': [None], 'congressional_district': [None], 'business_types_codes': [[]], 'business_types': [[]], 'dba_name': [None], 'entity_structure': [None], 'ultimate_parent_unique_ide': [None], 'ultimate_parent_uei': [None], 'ultimate_parent_legal_enti': [None], 'high_comp_officer1_full_na': [None], 'high_comp_officer1_amount': [None], 'high_comp_officer2_full_na': [None], 'high_comp_officer2_amount': [None], 'high_comp_officer3_full_na': [None], 'high_comp_officer3_amount': [None], 'high_comp_officer4_full_na': [None], 'high_comp_officer4_amount': [None], 'high_comp_officer5_full_na': [None], 'high_comp_officer5_amount': [None] }) assert expected_df.to_dict() == update_historical_duns.update_duns_props(duns_df).to_dict() def test_run_duns_batches(database, monkeypatch): """ Test run_duns_batches for the core functionality """ monkeypatch.setattr('dataactcore.utils.duns.get_duns_props_from_sam', mock_get_duns_props_from_sam) sess = database.session all_duns = ['00000000{}'.format(x) for x in range(1, 5)] existing_duns = all_duns[2:] for duns in existing_duns: sess.add(DUNS(awardee_or_recipient_uniqu=duns)) sess.commit() duns_file = os.path.join(CONFIG_BROKER['path'], 'tests', 'unit', 'data', 'historic_DUNS_export_small.csv') update_historical_duns.run_duns_batches(duns_file, sess, block_size=1) expected_results = { '000000001': { 'awardee_or_recipient_uniqu': '000000001', 'uei': 'A1', 'registration_date': '2004-04-01', 'expiration_date': '2013-01-11', 'last_sam_mod_date': '2013-01-11', 'activation_date': '2012-01-11', 'legal_business_name': 'TEST DUNS 1', 'address_line_1': 'Test address 1', 'address_line_2': 'Test address 2', 'city': 'Test city', 'state': 'Test state', 'zip': 'Test zip', 'zip4': 'Test zip4', 'country_code': 'Test country', 'congressional_district': 'Test congressional district', 'business_types_codes': ['A', 'B', 'C'], 'business_types': ['Name A', 'Name B', 'Name C'], 'dba_name': 'Name 1', 'entity_structure': '1A', 'ultimate_parent_unique_ide': '999999999', 'ultimate_parent_uei': 'Z9', 'ultimate_parent_legal_enti': 'Parent Legal Name 1', 'high_comp_officer1_full_na': 'Test Exec 1', 'high_comp_officer1_amount': '1', 'high_comp_officer2_full_na': 'Test Exec 2', 'high_comp_officer2_amount': '2', 'high_comp_officer3_full_na': 'Test Exec 3', 'high_comp_officer3_amount': '3', 'high_comp_officer4_full_na': 'Test Exec 4', 'high_comp_officer4_amount': '4', 'high_comp_officer5_full_na': 'Test Exec 5', 'high_comp_officer5_amount': '5' }, '000000002': { 'awardee_or_recipient_uniqu': '000000002', 'uei': 'B2', 'registration_date': '2004-04-02', 'expiration_date': '2013-01-12', 'last_sam_mod_date': '2013-01-12', 'activation_date': '2012-01-12', 'legal_business_name': 'TEST DUNS 2', 'address_line_1': 'Other Test address 1', 'address_line_2': 'Other Test address 2', 'city': 'Other Test city', 'state': 'Other Test state', 'zip': 'Other Test zip', 'zip4': 'Other Test zip4', 'country_code': 'Other Test country', 'congressional_district': 'Other Test congressional district', 'business_types_codes': ['D', 'E', 'F'], 'business_types': ['Name D', 'Name E', 'Name F'], 'dba_name': 'Name 2', 'entity_structure': '2B', 'ultimate_parent_unique_ide': '999999998', 'ultimate_parent_uei': 'Y8', 'ultimate_parent_legal_enti': 'Parent Legal Name 2', 'high_comp_officer1_full_na': 'Test Other Exec 6', 'high_comp_officer1_amount': '6', 'high_comp_officer2_full_na': 'Test Other Exec 7', 'high_comp_officer2_amount': '7', 'high_comp_officer3_full_na': 'Test Other Exec 8', 'high_comp_officer3_amount': '8', 'high_comp_officer4_full_na': 'Test Other Exec 9', 'high_comp_officer4_amount': '9', 'high_comp_officer5_full_na': 'Test Other Exec 10', 'high_comp_officer5_amount': '10' } } results = {} for duns_obj in sess.query(HistoricDUNS).all(): results[duns_obj.awardee_or_recipient_uniqu] = { 'awardee_or_recipient_uniqu': duns_obj.awardee_or_recipient_uniqu, 'uei': duns_obj.uei, 'registration_date': str(duns_obj.registration_date) if duns_obj.registration_date else None, 'expiration_date': str(duns_obj.expiration_date) if duns_obj.expiration_date else None, 'last_sam_mod_date': str(duns_obj.last_sam_mod_date) if duns_obj.last_sam_mod_date else None, 'activation_date': str(duns_obj.activation_date) if duns_obj.activation_date else None, 'legal_business_name': duns_obj.legal_business_name, 'address_line_1': duns_obj.address_line_1, 'address_line_2': duns_obj.address_line_2, 'city': duns_obj.city, 'state': duns_obj.state, 'zip': duns_obj.zip, 'zip4': duns_obj.zip4, 'country_code': duns_obj.country_code, 'congressional_district': duns_obj.congressional_district, 'business_types_codes': duns_obj.business_types_codes, 'business_types': duns_obj.business_types, 'dba_name': duns_obj.dba_name, 'entity_structure': duns_obj.entity_structure, 'ultimate_parent_unique_ide': duns_obj.ultimate_parent_unique_ide, 'ultimate_parent_uei': duns_obj.ultimate_parent_uei, 'ultimate_parent_legal_enti': duns_obj.ultimate_parent_legal_enti, 'high_comp_officer1_full_na': duns_obj.high_comp_officer1_full_na, 'high_comp_officer1_amount': duns_obj.high_comp_officer1_amount, 'high_comp_officer2_full_na': duns_obj.high_comp_officer2_full_na, 'high_comp_officer2_amount': duns_obj.high_comp_officer2_amount, 'high_comp_officer3_full_na': duns_obj.high_comp_officer3_full_na, 'high_comp_officer3_amount': duns_obj.high_comp_officer3_amount, 'high_comp_officer4_full_na': duns_obj.high_comp_officer4_full_na, 'high_comp_officer4_amount': duns_obj.high_comp_officer4_amount, 'high_comp_officer5_full_na': duns_obj.high_comp_officer5_full_na, 'high_comp_officer5_amount': duns_obj.high_comp_officer5_amount } assert results == expected_results def test_workflows(database, monkeypatch): """ Test both scenarios of the script, starting with a full run """ monkeypatch.setattr('dataactcore.utils.duns.get_duns_props_from_sam', mock_get_duns_props_from_sam) sess = database.session all_duns = ['00000000{}'.format(x) for x in range(1, 5)] existing_duns = all_duns[2:] for duns in existing_duns: sess.add(DUNS(awardee_or_recipient_uniqu=duns)) sess.commit() duns_file = os.path.join(CONFIG_BROKER['path'], 'tests', 'unit', 'data', 'historic_DUNS_export_small.csv') update_historical_duns.run_duns_batches(duns_file, sess, block_size=1) update_historical_duns.import_historic_duns(sess) expected_results = { '000000001': { 'awardee_or_recipient_uniqu': '000000001', 'uei': 'A1', 'registration_date': '2004-04-01', 'expiration_date': '2013-01-11', 'last_sam_mod_date': '2013-01-11', 'activation_date': '2012-01-11', 'legal_business_name': 'TEST DUNS 1', 'address_line_1': 'Test address 1', 'address_line_2': 'Test address 2', 'city': 'Test city', 'state': 'Test state', 'zip': 'Test zip', 'zip4': 'Test zip4', 'country_code': 'Test country', 'congressional_district': 'Test congressional district', 'business_types_codes': ['A', 'B', 'C'], 'business_types': ['Name A', 'Name B', 'Name C'], 'dba_name': 'Name 1', 'entity_structure': '1A', 'ultimate_parent_unique_ide': '999999999', 'ultimate_parent_uei': 'Z9', 'ultimate_parent_legal_enti': 'Parent Legal Name 1', 'high_comp_officer1_full_na': 'Test Exec 1', 'high_comp_officer1_amount': '1', 'high_comp_officer2_full_na': 'Test Exec 2', 'high_comp_officer2_amount': '2', 'high_comp_officer3_full_na': 'Test Exec 3', 'high_comp_officer3_amount': '3', 'high_comp_officer4_full_na': 'Test Exec 4', 'high_comp_officer4_amount': '4', 'high_comp_officer5_full_na': 'Test Exec 5', 'high_comp_officer5_amount': '5' }, '000000002': { 'awardee_or_recipient_uniqu': '000000002', 'uei': 'B2', 'registration_date': '2004-04-02', 'expiration_date': '2013-01-12', 'last_sam_mod_date': '2013-01-12', 'activation_date': '2012-01-12', 'legal_business_name': 'TEST DUNS 2', 'address_line_1': 'Other Test address 1', 'address_line_2': 'Other Test address 2', 'city': 'Other Test city', 'state': 'Other Test state', 'zip': 'Other Test zip', 'zip4': 'Other Test zip4', 'country_code': 'Other Test country', 'congressional_district': 'Other Test congressional district', 'business_types_codes': ['D', 'E', 'F'], 'business_types': ['Name D', 'Name E', 'Name F'], 'dba_name': 'Name 2', 'entity_structure': '2B', 'ultimate_parent_unique_ide': '999999998', 'ultimate_parent_uei': 'Y8', 'ultimate_parent_legal_enti': 'Parent Legal Name 2', 'high_comp_officer1_full_na': 'Test Other Exec 6', 'high_comp_officer1_amount': '6', 'high_comp_officer2_full_na': 'Test Other Exec 7', 'high_comp_officer2_amount': '7', 'high_comp_officer3_full_na': 'Test Other Exec 8', 'high_comp_officer3_amount': '8', 'high_comp_officer4_full_na': 'Test Other Exec 9', 'high_comp_officer4_amount': '9', 'high_comp_officer5_full_na': 'Test Other Exec 10', 'high_comp_officer5_amount': '10' }, '000000003': { 'awardee_or_recipient_uniqu': '000000003', 'uei': None, 'registration_date': None, 'expiration_date': None, 'last_sam_mod_date': None, 'activation_date': None, 'legal_business_name': None, 'address_line_1': None, 'address_line_2': None, 'city': None, 'state': None, 'zip': None, 'zip4': None, 'country_code': None, 'congressional_district': None, 'business_types_codes': None, 'business_types': None, 'dba_name': None, 'entity_structure': None, 'ultimate_parent_unique_ide': None, 'ultimate_parent_uei': None, 'ultimate_parent_legal_enti': None, 'high_comp_officer1_full_na': None, 'high_comp_officer1_amount': None, 'high_comp_officer2_full_na': None, 'high_comp_officer2_amount': None, 'high_comp_officer3_full_na': None, 'high_comp_officer3_amount': None, 'high_comp_officer4_full_na': None, 'high_comp_officer4_amount': None, 'high_comp_officer5_full_na': None, 'high_comp_officer5_amount': None }, '000000004': { 'awardee_or_recipient_uniqu': '000000004', 'uei': None, 'registration_date': None, 'expiration_date': None, 'last_sam_mod_date': None, 'activation_date': None, 'legal_business_name': None, 'address_line_1': None, 'address_line_2': None, 'city': None, 'state': None, 'zip': None, 'zip4': None, 'country_code': None, 'congressional_district': None, 'business_types_codes': None, 'business_types': None, 'dba_name': None, 'entity_structure': None, 'ultimate_parent_unique_ide': None, 'ultimate_parent_uei': None, 'ultimate_parent_legal_enti': None, 'high_comp_officer1_full_na': None, 'high_comp_officer1_amount': None, 'high_comp_officer2_full_na': None, 'high_comp_officer2_amount': None, 'high_comp_officer3_full_na': None, 'high_comp_officer3_amount': None, 'high_comp_officer4_full_na': None, 'high_comp_officer4_amount': None, 'high_comp_officer5_full_na': None, 'high_comp_officer5_amount': None } } results = {} for duns_obj in sess.query(DUNS).all(): results[duns_obj.awardee_or_recipient_uniqu] = { 'awardee_or_recipient_uniqu': duns_obj.awardee_or_recipient_uniqu, 'uei': duns_obj.uei, 'registration_date': str(duns_obj.registration_date) if duns_obj.registration_date else None, 'expiration_date': str(duns_obj.expiration_date) if duns_obj.expiration_date else None, 'last_sam_mod_date': str(duns_obj.last_sam_mod_date) if duns_obj.last_sam_mod_date else None, 'activation_date': str(duns_obj.activation_date) if duns_obj.activation_date else None, 'legal_business_name': duns_obj.legal_business_name, 'address_line_1': duns_obj.address_line_1, 'address_line_2': duns_obj.address_line_2, 'city': duns_obj.city, 'state': duns_obj.state, 'zip': duns_obj.zip, 'zip4': duns_obj.zip4, 'country_code': duns_obj.country_code, 'congressional_district': duns_obj.congressional_district, 'business_types_codes': duns_obj.business_types_codes, 'business_types': duns_obj.business_types, 'dba_name': duns_obj.dba_name, 'entity_structure': duns_obj.entity_structure, 'ultimate_parent_unique_ide': duns_obj.ultimate_parent_unique_ide, 'ultimate_parent_uei': duns_obj.ultimate_parent_uei, 'ultimate_parent_legal_enti': duns_obj.ultimate_parent_legal_enti, 'high_comp_officer1_full_na': duns_obj.high_comp_officer1_full_na, 'high_comp_officer1_amount': duns_obj.high_comp_officer1_amount, 'high_comp_officer2_full_na': duns_obj.high_comp_officer2_full_na, 'high_comp_officer2_amount': duns_obj.high_comp_officer2_amount, 'high_comp_officer3_full_na': duns_obj.high_comp_officer3_full_na, 'high_comp_officer3_amount': duns_obj.high_comp_officer3_amount, 'high_comp_officer4_full_na': duns_obj.high_comp_officer4_full_na, 'high_comp_officer4_amount': duns_obj.high_comp_officer4_amount, 'high_comp_officer5_full_na': duns_obj.high_comp_officer5_full_na, 'high_comp_officer5_amount': duns_obj.high_comp_officer5_amount } assert results == expected_results # Test to see if truncating the DUNS table while keeping the historic reuploads the historic values sess.query(DUNS).filter(DUNS.historic.is_(True)).delete(synchronize_session=False) # Make sure all the historic DUNS are removed from the DUNS table assert sess.query(DUNS).filter(DUNS.historic.is_(True)).all() == [] # Redo script but don't go through run_duns_batches update_historical_duns.clean_historic_duns(sess) update_historical_duns.import_historic_duns(sess) results = {} for duns_obj in sess.query(DUNS).all(): results[duns_obj.awardee_or_recipient_uniqu] = { 'awardee_or_recipient_uniqu': duns_obj.awardee_or_recipient_uniqu, 'uei': duns_obj.uei, 'registration_date': str(duns_obj.registration_date) if duns_obj.registration_date else None, 'expiration_date': str(duns_obj.expiration_date) if duns_obj.expiration_date else None, 'last_sam_mod_date': str(duns_obj.last_sam_mod_date) if duns_obj.last_sam_mod_date else None, 'activation_date': str(duns_obj.activation_date) if duns_obj.activation_date else None, 'legal_business_name': duns_obj.legal_business_name, 'address_line_1': duns_obj.address_line_1, 'address_line_2': duns_obj.address_line_2, 'city': duns_obj.city, 'state': duns_obj.state, 'zip': duns_obj.zip, 'zip4': duns_obj.zip4, 'country_code': duns_obj.country_code, 'congressional_district': duns_obj.congressional_district, 'business_types_codes': duns_obj.business_types_codes, 'business_types': duns_obj.business_types, 'dba_name': duns_obj.dba_name, 'entity_structure': duns_obj.entity_structure, 'ultimate_parent_unique_ide': duns_obj.ultimate_parent_unique_ide, 'ultimate_parent_uei': duns_obj.ultimate_parent_uei, 'ultimate_parent_legal_enti': duns_obj.ultimate_parent_legal_enti, 'high_comp_officer1_full_na': duns_obj.high_comp_officer1_full_na, 'high_comp_officer1_amount': duns_obj.high_comp_officer1_amount, 'high_comp_officer2_full_na': duns_obj.high_comp_officer2_full_na, 'high_comp_officer2_amount': duns_obj.high_comp_officer2_amount, 'high_comp_officer3_full_na': duns_obj.high_comp_officer3_full_na, 'high_comp_officer3_amount': duns_obj.high_comp_officer3_amount, 'high_comp_officer4_full_na': duns_obj.high_comp_officer4_full_na, 'high_comp_officer4_amount': duns_obj.high_comp_officer4_amount, 'high_comp_officer5_full_na': duns_obj.high_comp_officer5_full_na, 'high_comp_officer5_amount': duns_obj.high_comp_officer5_amount } assert results == expected_results def test_clean_historic_duns(database, monkeypatch): """ Test to make sure if a new DUNS is loaded and we reload historic DUNS (skipping the major load), we should remove the historic equivalents. """ monkeypatch.setattr('dataactcore.utils.duns.get_duns_props_from_sam', mock_get_duns_props_from_sam) sess = database.session all_duns = ['00000000{}'.format(x) for x in range(1, 5)] existing_duns = all_duns[2:] for duns in existing_duns: sess.add(DUNS(awardee_or_recipient_uniqu=duns)) sess.commit() duns_file = os.path.join(CONFIG_BROKER['path'], 'tests', 'unit', 'data', 'historic_DUNS_export_small.csv') # normal run update_historical_duns.run_duns_batches(duns_file, sess, block_size=1) update_historical_duns.import_historic_duns(sess) # update old DUNS as part of load_duns_exec_comp.py updated_duns = sess.query(DUNS).filter(DUNS.awardee_or_recipient_uniqu == '000000002').one() updated_duns.historic = False sess.commit() # rerun with a skip update_historical_duns.clean_historic_duns(sess) update_historical_duns.import_historic_duns(sess) # check to see if historic duns equivalent is removed expected_count = sess.query(HistoricDUNS).filter(HistoricDUNS.awardee_or_recipient_uniqu == '000000002').count() assert expected_count == 0
cc0-1.0
pingpan2013/sensor-box-project
sensor_project/genGraphs.py
1
4044
#!/usr/bin/python import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pandas as pd # used to convert datetime64 to datetime import csv import sys from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA class Gen_Graph: def __init__(self, _filename): self.filename = _filename self.data = [] self.dtype = [] def readData(self): '''Read the data from .csv file''' with open(self.filename, 'r') as file: reader = csv.reader(file) for row in reader: self.data.append(tuple(row)) return self.data def genDtype(self): '''Get the data type, always put DATE in the last ''' for i in xrange(len(self.data[0])): if i != len(self.data[0]) - 1: self.dtype.append((str(self.data[0][i]), '<f8')) else: self.dtype.append((self.data[0][i], '<M8[s]')) print "Data Type: " + str(self.dtype) print '==============================================================' def uniqueish_color(self): '''Randomly select a color''' return plt.cm.gist_ncar(np.random.random()) def genGraph(self): '''Generate the graph with unique y axis''' self.genDtype() x = np.array(self.data[1:], dtype=self.dtype) np.save('./graph_data/data', x) t = np.load('./graph_data/data.npy').view(np.recarray) fig, ax = plt.subplots(1) '''Drawing multiple lines in one graph''' for label in self.data[0]: if label != 'Time': dtype = t['{0}'.format(label)] ax.plot(pd.to_datetime(t.Time), dtype) ax.set_xlabel(' date ') '''Formatting the date''' fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') plt.title('Sensor Data Flow') '''Create the labels for different lines''' labels = list(self.data[0][:-1]) plt.legend(labels, loc='lower left') plt.show() def genGraph_m(self): '''Generate the graph with multiple y axises''' self.genDtype() x = np.array(self.data[1:], dtype=self.dtype) np.save('./graph_data/data', x) t = np.load('./graph_data/data.npy').view(np.recarray) fig = plt.figure() fig.subplots_adjust(right=0.75) ax = fig.add_subplot(111) '''Drawing multiple lines with different y axises in one graph''' lines = [] labels = list(self.data[0][:-1]) for num in xrange(len(self.data[0]) - 1): label = labels[num] if num == 0: dtype = t['{0}'.format(label)] line1, = ax.plot(pd.to_datetime(t.Time), dtype, color=self.uniqueish_color()) lines.append(line1) ax.set_ylabel(label) ax.set_xlabel('Date') elif label != 'Time': dtype = t['{0}'.format(label)] par = ax.twinx() line2, = par.plot(pd.to_datetime(t.Time), dtype, color=self.uniqueish_color()) lines.append(line2) par.set_ylabel(label) '''Formatting the date''' fig.autofmt_xdate() ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d') plt.title('Sensor Data Flow') '''Create the labels for different lines''' ax.legend(lines, labels, loc='lower left') plt.draw() plt.show() def main(): if len(sys.argv) != 2: print "Error with the parameters! Please specify the file path!" sys.exit(2) filename = sys.argv[1] gg = Gen_Graph(filename) data = gg.readData() print "Original Data: " for i in data: print i print '==============================================================' gg.genGraph_m() print "Finished Drawing!" if __name__ == "__main__": main()
gpl-3.0
LiaoPan/scikit-learn
sklearn/preprocessing/label.py
36
28728
# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Mathieu Blondel <mathieu@mblondel.org> # Olivier Grisel <olivier.grisel@ensta.org> # Andreas Mueller <amueller@ais.uni-bonn.de> # Joel Nothman <joel.nothman@gmail.com> # Hamzeh Alsalhi <ha258@cornell.edu> # License: BSD 3 clause from collections import defaultdict import itertools import array import warnings import numpy as np import scipy.sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils.fixes import np_version from ..utils.fixes import sparse_min_max from ..utils.fixes import astype from ..utils.fixes import in1d from ..utils import deprecated, column_or_1d from ..utils.validation import check_array from ..utils.validation import _num_samples from ..utils.multiclass import unique_labels from ..utils.multiclass import type_of_target from ..externals import six zip = six.moves.zip map = six.moves.map __all__ = [ 'label_binarize', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', ] def _check_numpy_unicode_bug(labels): """Check that user is not subject to an old numpy bug Fixed in master before 1.7.0: https://github.com/numpy/numpy/pull/243 """ if np_version[:3] < (1, 7, 0) and labels.dtype.kind == 'U': raise RuntimeError("NumPy < 1.7.0 does not implement searchsorted" " on unicode data correctly. Please upgrade" " NumPy to use LabelEncoder with unicode inputs.") class LabelEncoder(BaseEstimator, TransformerMixin): """Encode labels with value between 0 and n_classes-1. Read more in the :ref:`User Guide <preprocessing_targets>`. Attributes ---------- classes_ : array of shape (n_class,) Holds the label for each class. Examples -------- `LabelEncoder` can be used to normalize labels. >>> from sklearn import preprocessing >>> le = preprocessing.LabelEncoder() >>> le.fit([1, 2, 2, 6]) LabelEncoder() >>> le.classes_ array([1, 2, 6]) >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS array([0, 0, 1, 2]...) >>> le.inverse_transform([0, 0, 1, 2]) array([1, 1, 2, 6]) It can also be used to transform non-numerical labels (as long as they are hashable and comparable) to numerical labels. >>> le = preprocessing.LabelEncoder() >>> le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() >>> list(le.classes_) ['amsterdam', 'paris', 'tokyo'] >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS array([2, 2, 1]...) >>> list(le.inverse_transform([2, 2, 1])) ['tokyo', 'tokyo', 'paris'] """ def _check_fitted(self): if not hasattr(self, "classes_"): raise ValueError("LabelEncoder was not fitted yet.") def fit(self, y): """Fit label encoder Parameters ---------- y : array-like of shape (n_samples,) Target values. Returns ------- self : returns an instance of self. """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_ = np.unique(y) return self def fit_transform(self, y): """Fit label encoder and return encoded labels Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ y = column_or_1d(y, warn=True) _check_numpy_unicode_bug(y) self.classes_, y = np.unique(y, return_inverse=True) return y def transform(self, y): """Transform labels to normalized encoding. Parameters ---------- y : array-like of shape [n_samples] Target values. Returns ------- y : array-like of shape [n_samples] """ self._check_fitted() classes = np.unique(y) _check_numpy_unicode_bug(classes) if len(np.intersect1d(classes, self.classes_)) < len(classes): diff = np.setdiff1d(classes, self.classes_) raise ValueError("y contains new labels: %s" % str(diff)) return np.searchsorted(self.classes_, y) def inverse_transform(self, y): """Transform labels back to original encoding. Parameters ---------- y : numpy array of shape [n_samples] Target values. Returns ------- y : numpy array of shape [n_samples] """ self._check_fitted() y = np.asarray(y) return self.classes_[y] class LabelBinarizer(BaseEstimator, TransformerMixin): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method. At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method. Read more in the :ref:`User Guide <preprocessing_targets>`. Parameters ---------- neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format. Attributes ---------- classes_ : array of shape [n_class] Holds the label for each class. y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'mutliclass-multioutput', 'multilabel-sequences', 'multilabel-indicator', and 'unknown'. multilabel_ : boolean True if the transformer was fitted on a multilabel rather than a multiclass set of labels. The ``multilabel_`` attribute is deprecated and will be removed in 0.18 sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise. indicator_matrix_ : str 'sparse' when the input data to tansform is a multilable-indicator and is sparse, None otherwise. The ``indicator_matrix_`` attribute is deprecated as of version 0.16 and will be removed in 0.18 Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit([1, 2, 6, 4, 2]) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([1, 2, 4, 6]) >>> lb.transform([1, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) Binary targets transform to a column vector >>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform(['yes', 'no', 'no', 'yes']) array([[1], [0], [0], [1]]) Passing a 2D matrix for multilabel classification >>> import numpy as np >>> lb.fit(np.array([[0, 1, 1], [1, 0, 0]])) LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False) >>> lb.classes_ array([0, 1, 2]) >>> lb.transform([0, 1, 2, 1]) array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. """ def __init__(self, neg_label=0, pos_label=1, sparse_output=False): if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if sparse_output and (pos_label == 0 or neg_label != 0): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) self.neg_label = neg_label self.pos_label = pos_label self.sparse_output = sparse_output @property @deprecated("Attribute ``indicator_matrix_`` is deprecated and will be " "removed in 0.17. Use ``y_type_ == 'multilabel-indicator'`` " "instead") def indicator_matrix_(self): return self.y_type_ == 'multilabel-indicator' @property @deprecated("Attribute ``multilabel_`` is deprecated and will be removed " "in 0.17. Use ``y_type_.startswith('multilabel')`` " "instead") def multilabel_(self): return self.y_type_.startswith('multilabel') def _check_fitted(self): if not hasattr(self, "classes_"): raise ValueError("LabelBinarizer was not fitted yet.") def fit(self, y): """Fit label binarizer Parameters ---------- y : numpy array of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Returns ------- self : returns an instance of self. """ self.y_type_ = type_of_target(y) if 'multioutput' in self.y_type_: raise ValueError("Multioutput target data is not supported with " "label binarization") if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) self.sparse_input_ = sp.issparse(y) self.classes_ = unique_labels(y) return self def transform(self, y): """Transform multi-class labels to binary labels The output of transform is sometimes referred to by some authors as the 1-of-K coding scheme. Parameters ---------- y : numpy array or sparse matrix of shape (n_samples,) or (n_samples, n_classes) Target values. The 2-d matrix should only contain 0 and 1, represents multilabel classification. Sparse matrix can be CSR, CSC, COO, DOK, or LIL. Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. """ self._check_fitted() y_is_multilabel = type_of_target(y).startswith('multilabel') if y_is_multilabel and not self.y_type_.startswith('multilabel'): raise ValueError("The object was not fitted with multilabel" " input.") return label_binarize(y, self.classes_, pos_label=self.pos_label, neg_label=self.neg_label, sparse_output=self.sparse_output) def inverse_transform(self, Y, threshold=None): """Transform binary labels back to multi-class labels Parameters ---------- Y : numpy array or sparse matrix with shape [n_samples, n_classes] Target values. All sparse matrices are converted to CSR before inverse transformation. threshold : float or None Threshold used in the binary and multi-label cases. Use 0 when: - Y contains the output of decision_function (classifier) Use 0.5 when: - Y contains the output of predict_proba If None, the threshold is assumed to be half way between neg_label and pos_label. Returns ------- y : numpy array or CSR matrix of shape [n_samples] Target values. Notes ----- In the case when the binary labels are fractional (probabilistic), inverse_transform chooses the class with the greatest value. Typically, this allows to use the output of a linear model's decision_function method directly as the input of inverse_transform. """ self._check_fitted() if threshold is None: threshold = (self.pos_label + self.neg_label) / 2. if self.y_type_ == "multiclass": y_inv = _inverse_binarize_multiclass(Y, self.classes_) else: y_inv = _inverse_binarize_thresholding(Y, self.y_type_, self.classes_, threshold) if self.sparse_input_: y_inv = sp.csr_matrix(y_inv) elif sp.issparse(y_inv): y_inv = y_inv.toarray() return y_inv def label_binarize(y, classes, neg_label=0, pos_label=1, sparse_output=False, multilabel=None): """Binarize labels in a one-vs-all fashion Several regression and binary classification algorithms are available in the scikit. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme. This function makes it possible to compute this transformation for a fixed set of class labels known ahead of time. Parameters ---------- y : array-like Sequence of integer labels or multilabel data to encode. classes : array-like of shape [n_classes] Uniquely holds the label for each class. neg_label : int (default: 0) Value with which negative labels must be encoded. pos_label : int (default: 1) Value with which positive labels must be encoded. sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Returns ------- Y : numpy array or CSR matrix of shape [n_samples, n_classes] Shape will be [n_samples, 1] for binary problems. Examples -------- >>> from sklearn.preprocessing import label_binarize >>> label_binarize([1, 6], classes=[1, 2, 4, 6]) array([[1, 0, 0, 0], [0, 0, 0, 1]]) The class ordering is preserved: >>> label_binarize([1, 6], classes=[1, 6, 4, 2]) array([[1, 0, 0, 0], [0, 1, 0, 0]]) Binary targets transform to a column vector >>> label_binarize(['yes', 'no', 'no', 'yes'], classes=['no', 'yes']) array([[1], [0], [0], [1]]) See also -------- LabelBinarizer : class used to wrap the functionality of label_binarize and allow for fitting to classes independently of the transform operation """ if not isinstance(y, list): # XXX Workaround that will be removed when list of list format is # dropped y = check_array(y, accept_sparse='csr', ensure_2d=False, dtype=None) else: if _num_samples(y) == 0: raise ValueError('y has 0 samples: %r' % y) if neg_label >= pos_label: raise ValueError("neg_label={0} must be strictly less than " "pos_label={1}.".format(neg_label, pos_label)) if (sparse_output and (pos_label == 0 or neg_label != 0)): raise ValueError("Sparse binarization is only supported with non " "zero pos_label and zero neg_label, got " "pos_label={0} and neg_label={1}" "".format(pos_label, neg_label)) if multilabel is not None: warnings.warn("The multilabel parameter is deprecated as of version " "0.15 and will be removed in 0.17. The parameter is no " "longer necessary because the value is automatically " "inferred.", DeprecationWarning) # To account for pos_label == 0 in the dense case pos_switch = pos_label == 0 if pos_switch: pos_label = -neg_label y_type = type_of_target(y) if 'multioutput' in y_type: raise ValueError("Multioutput target data is not supported with label " "binarization") n_samples = y.shape[0] if sp.issparse(y) else len(y) n_classes = len(classes) classes = np.asarray(classes) if y_type == "binary": if len(classes) == 1: Y = np.zeros((len(y), 1), dtype=np.int) Y += neg_label return Y elif len(classes) >= 3: y_type = "multiclass" sorted_class = np.sort(classes) if (y_type == "multilabel-indicator" and classes.size != y.shape[1]): raise ValueError("classes {0} missmatch with the labels {1}" "found in the data".format(classes, unique_labels(y))) if y_type in ("binary", "multiclass"): y = column_or_1d(y) # pick out the known labels from y y_in_classes = in1d(y, classes) y_seen = y[y_in_classes] indices = np.searchsorted(sorted_class, y_seen) indptr = np.hstack((0, np.cumsum(y_in_classes))) data = np.empty_like(indices) data.fill(pos_label) Y = sp.csr_matrix((data, indices, indptr), shape=(n_samples, n_classes)) elif y_type == "multilabel-indicator": Y = sp.csr_matrix(y) if pos_label != 1: data = np.empty_like(Y.data) data.fill(pos_label) Y.data = data elif y_type == "multilabel-sequences": Y = MultiLabelBinarizer(classes=classes, sparse_output=sparse_output).fit_transform(y) if sp.issparse(Y): Y.data[:] = pos_label else: Y[Y == 1] = pos_label return Y if not sparse_output: Y = Y.toarray() Y = astype(Y, int, copy=False) if neg_label != 0: Y[Y == 0] = neg_label if pos_switch: Y[Y == pos_label] = 0 else: Y.data = astype(Y.data, int, copy=False) # preserve label ordering if np.any(classes != sorted_class): indices = np.searchsorted(sorted_class, classes) Y = Y[:, indices] if y_type == "binary": if sparse_output: Y = Y.getcol(-1) else: Y = Y[:, -1].reshape((-1, 1)) return Y def _inverse_binarize_multiclass(y, classes): """Inverse label binarization transformation for multiclass. Multiclass uses the maximal score instead of a threshold. """ classes = np.asarray(classes) if sp.issparse(y): # Find the argmax for each row in y where y is a CSR matrix y = y.tocsr() n_samples, n_outputs = y.shape outputs = np.arange(n_outputs) row_max = sparse_min_max(y, 1)[1] row_nnz = np.diff(y.indptr) y_data_repeated_max = np.repeat(row_max, row_nnz) # picks out all indices obtaining the maximum per row y_i_all_argmax = np.flatnonzero(y_data_repeated_max == y.data) # For corner case where last row has a max of 0 if row_max[-1] == 0: y_i_all_argmax = np.append(y_i_all_argmax, [len(y.data)]) # Gets the index of the first argmax in each row from y_i_all_argmax index_first_argmax = np.searchsorted(y_i_all_argmax, y.indptr[:-1]) # first argmax of each row y_ind_ext = np.append(y.indices, [0]) y_i_argmax = y_ind_ext[y_i_all_argmax[index_first_argmax]] # Handle rows of all 0 y_i_argmax[np.where(row_nnz == 0)[0]] = 0 # Handles rows with max of 0 that contain negative numbers samples = np.arange(n_samples)[(row_nnz > 0) & (row_max.ravel() == 0)] for i in samples: ind = y.indices[y.indptr[i]:y.indptr[i + 1]] y_i_argmax[i] = classes[np.setdiff1d(outputs, ind)][0] return classes[y_i_argmax] else: return classes.take(y.argmax(axis=1), mode="clip") def _inverse_binarize_thresholding(y, output_type, classes, threshold): """Inverse label binarization transformation using thresholding.""" if output_type == "binary" and y.ndim == 2 and y.shape[1] > 2: raise ValueError("output_type='binary', but y.shape = {0}". format(y.shape)) if output_type != "binary" and y.shape[1] != len(classes): raise ValueError("The number of class is not equal to the number of " "dimension of y.") classes = np.asarray(classes) # Perform thresholding if sp.issparse(y): if threshold > 0: if y.format not in ('csr', 'csc'): y = y.tocsr() y.data = np.array(y.data > threshold, dtype=np.int) y.eliminate_zeros() else: y = np.array(y.toarray() > threshold, dtype=np.int) else: y = np.array(y > threshold, dtype=np.int) # Inverse transform data if output_type == "binary": if sp.issparse(y): y = y.toarray() if y.ndim == 2 and y.shape[1] == 2: return classes[y[:, 1]] else: if len(classes) == 1: y = np.empty(len(y), dtype=classes.dtype) y.fill(classes[0]) return y else: return classes[y.ravel()] elif output_type == "multilabel-indicator": return y elif output_type == "multilabel-sequences": warnings.warn('Direct support for sequence of sequences multilabel ' 'representation will be unavailable from version 0.17. ' 'Use sklearn.preprocessing.MultiLabelBinarizer to ' 'convert to a label indicator representation.', DeprecationWarning) mlb = MultiLabelBinarizer(classes=classes).fit([]) return mlb.inverse_transform(y) else: raise ValueError("{0} format is not supported".format(output_type)) class MultiLabelBinarizer(BaseEstimator, TransformerMixin): """Transform between iterable of iterables and a multilabel format Although a list of sets or tuples is a very intuitive format for multilabel data, it is unwieldy to process. This transformer converts between this intuitive format and the supported multilabel format: a (samples x classes) binary matrix indicating the presence of a class label. Parameters ---------- classes : array-like of shape [n_classes] (optional) Indicates an ordering for the class labels sparse_output : boolean (default: False), Set to true if output binary array is desired in CSR sparse format Attributes ---------- classes_ : array of labels A copy of the `classes` parameter where provided, or otherwise, the sorted set of classes found when fitting. Examples -------- >>> mlb = MultiLabelBinarizer() >>> mlb.fit_transform([(1, 2), (3,)]) array([[1, 1, 0], [0, 0, 1]]) >>> mlb.classes_ array([1, 2, 3]) >>> mlb.fit_transform([set(['sci-fi', 'thriller']), set(['comedy'])]) array([[0, 1, 1], [1, 0, 0]]) >>> list(mlb.classes_) ['comedy', 'sci-fi', 'thriller'] """ def __init__(self, classes=None, sparse_output=False): self.classes = classes self.sparse_output = sparse_output def fit(self, y): """Fit the label sets binarizer, storing `classes_` Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- self : returns this MultiLabelBinarizer instance """ if self.classes is None: classes = sorted(set(itertools.chain.from_iterable(y))) else: classes = self.classes dtype = np.int if all(isinstance(c, int) for c in classes) else object self.classes_ = np.empty(len(classes), dtype=dtype) self.classes_[:] = classes return self def fit_transform(self, y): """Fit the label sets binarizer and transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ if self.classes is not None: return self.fit(y).transform(y) # Automatically increment on new class class_mapping = defaultdict(int) class_mapping.default_factory = class_mapping.__len__ yt = self._transform(y, class_mapping) # sort classes and reorder columns tmp = sorted(class_mapping, key=class_mapping.get) # (make safe for tuples) dtype = np.int if all(isinstance(c, int) for c in tmp) else object class_mapping = np.empty(len(tmp), dtype=dtype) class_mapping[:] = tmp self.classes_, inverse = np.unique(class_mapping, return_inverse=True) yt.indices = np.take(inverse, yt.indices) if not self.sparse_output: yt = yt.toarray() return yt def transform(self, y): """Transform the given label sets Parameters ---------- y : iterable of iterables A set of labels (any orderable and hashable object) for each sample. If the `classes` parameter is set, `y` will not be iterated. Returns ------- y_indicator : array or CSR matrix, shape (n_samples, n_classes) A matrix such that `y_indicator[i, j] = 1` iff `classes_[j]` is in `y[i]`, and 0 otherwise. """ class_to_index = dict(zip(self.classes_, range(len(self.classes_)))) yt = self._transform(y, class_to_index) if not self.sparse_output: yt = yt.toarray() return yt def _transform(self, y, class_mapping): """Transforms the label sets with a given mapping Parameters ---------- y : iterable of iterables class_mapping : Mapping Maps from label to column index in label indicator matrix Returns ------- y_indicator : sparse CSR matrix, shape (n_samples, n_classes) Label indicator matrix """ indices = array.array('i') indptr = array.array('i', [0]) for labels in y: indices.extend(set(class_mapping[label] for label in labels)) indptr.append(len(indices)) data = np.ones(len(indices), dtype=int) return sp.csr_matrix((data, indices, indptr), shape=(len(indptr) - 1, len(class_mapping))) def inverse_transform(self, yt): """Transform the given indicator matrix into label sets Parameters ---------- yt : array or sparse matrix of shape (n_samples, n_classes) A matrix containing only 1s ands 0s. Returns ------- y : list of tuples The set of labels for each sample such that `y[i]` consists of `classes_[j]` for each `yt[i, j] == 1`. """ if yt.shape[1] != len(self.classes_): raise ValueError('Expected indicator for {0} classes, but got {1}' .format(len(self.classes_), yt.shape[1])) if sp.issparse(yt): yt = yt.tocsr() if len(yt.data) != 0 and len(np.setdiff1d(yt.data, [0, 1])) > 0: raise ValueError('Expected only 0s and 1s in label indicator.') return [tuple(self.classes_.take(yt.indices[start:end])) for start, end in zip(yt.indptr[:-1], yt.indptr[1:])] else: unexpected = np.setdiff1d(yt, [0, 1]) if len(unexpected) > 0: raise ValueError('Expected only 0s and 1s in label indicator. ' 'Also got {0}'.format(unexpected)) return [tuple(self.classes_.compress(indicators)) for indicators in yt]
bsd-3-clause
liberatorqjw/scikit-learn
sklearn/decomposition/tests/test_pca.py
25
11108
import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() def test_pca(): """PCA on dense arrays""" pca = PCA(n_components=2) X = iris.data X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], 2) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: pca.n_components = n_components pca.fit(X) cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) def test_whitening(): """Check that PCA output has unit-variance""" rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaingin 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA) for y in (True, False)]: # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = this_PCA(n_components=n_components, whiten=True, copy=copy) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components)) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = this_PCA(n_components=n_components, whiten=False, copy=copy).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. def test_explained_variance(): """Check that PCA output has unit-variance""" rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 3) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0)) def test_pca_check_projection(): """Test that the projection of data is correct""" rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): """Test that the projection of data can be inverted""" rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components).fit, X) def test_randomized_pca_check_projection(): """Test that the projection by RandomizedPCA on dense data is correct""" rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): """Test that the projection by RandomizedPCA on list data is correct""" X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): """Test that RandomizedPCA is inversible on dense data""" rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = RandomizedPCA(n_components=2, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = RandomizedPCA(n_components=2, whiten=True, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_almost_equal(relative_max_delta, 0.11, decimal=2) def test_pca_dim(): """Check automated dimensionality setting""" rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): """TODO: explain what this is testing Or at least use explicit variable names... """ n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): """TODO: explain what this is testing Or at least use explicit variable names... """ n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): """ """ n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95) pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01) pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5).fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): """Test that probabilistic PCA scoring yields a reasonable score""" n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): """Test that probabilistic PCA correctly separated different datasets""" n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives the same scores if whiten=True pca = PCA(n_components=2, whiten=True) pca.fit(X) ll2 = pca.score(X) assert_almost_equal(ll1, ll2) def test_pca_score3(): """Check that probabilistic PCA selects the right model""" n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k) pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1) if __name__ == '__main__': import nose nose.run(argv=['', __file__])
bsd-3-clause
Open-Power-System-Data/conventional_power_plants
download_and_process_DE_functions.py
1
14757
# -*- coding: utf-8 -*- import urllib.parse import urllib.request import posixpath import datetime import os import logging import filecmp import difflib import json import sqlite3 import hashlib import yaml import matplotlib.pyplot as plt import pandas as pd import numpy as np #from bokeh.io import output_notebook # output_notebook() # Logging Setup logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%d %b %Y %H:%M:%S') logger = logging.getLogger() # create download and output folders if they do not exist os.makedirs(os.path.join('download'), exist_ok=True) os.makedirs(os.path.join('output'), exist_ok=True) os.makedirs(os.path.join('output', 'original_data'), exist_ok=True) def get_sha_hash(path, blocksize=65536): sha_hasher = hashlib.sha256() with open(path, 'rb') as f: buffer = f.read(blocksize) while len(buffer) > 0: sha_hasher.update(buffer) buffer = f.read(blocksize) return sha_hasher.hexdigest() def downloadandcache(url): """ Download a file into a folder called "downloads". The file is prefixed with the download date YYYY-M-D-. Returns the local filepath. Parameters ---------- url : str Url of a file to be downloaded """ path = urllib.parse.urlsplit(url).path filename = posixpath.basename(path) now = datetime.datetime.now() datestring = str(now.year) + "-" + str(now.month) + "-" + str(now.day) filepath = os.path.join('download', datestring + "-" + filename) filepath_original_data = os.path.join('output', 'original_data', filename) # check if file exists, otherwise download it if not os.path.exists(filepath): logger.info('Downloading file %s', filename) urllib.request.urlretrieve(url, filepath) urllib.request.urlretrieve(url, filepath_original_data) else: logger.info('Using local file from %s', filepath) foldername = 'download' return foldername, datestring, filename def decrementday(year, month, day): """ Given values for year, month, and day, the values of the previous day are returned. At the moment, the function assumes that every month has 31 days, so that it will return February 31st when given values for March 1. Parameters ---------- year : integer Integer year month : integer Integer month day : integer Integer day """ if day > 1: day = day - 1 else: day = 31 if month > 1: month = month - 1 else: month = 12 year = year - 1 return year, month, day def getolderfilenameandcleanup(foldername, datestring, filename): """ Given a set of foldername and filename as returned by the downloadandcache function, an older non-identical file with the same file structure is searched in the folder. Files identical to the one given are deleted. Parameters ---------- foldername : str folder where files are located datestring : str string of original file date YYYY-M-D filename : str filename of original file """ originalfilepath = os.path.join(foldername, datestring + "-" + filename) now = datetime.datetime.now() year = now.year month = now.month day = now.day # loop through older possible files i = 0 while i < 2000: i = i + 1 year, month, day = decrementday(year, month, day) datestring = str(year) + "-" + str(month) + "-" + str(day) filepath = os.path.join(foldername, datestring + "-" + filename) # Does the file exist? if os.path.isfile(filepath): # Check if file is identical to original file. If yes delete this # file and continue if filecmp.cmp(originalfilepath, filepath): # print('files are identical, deleting', filepath) os.remove(filepath) else: # print('files are not identical:', filepath) return filepath raise ValueError('no older file found') def getmatchinglist(): """ This function returns the matchinglist located under /input/matching_bnetza_uba.csv Parameters ---------- none """ # read matching list result = pd.read_csv( os.path.join('input/data/DE', 'matching_bnetza_uba.csv'), skiprows=0, sep=',', # CSV field separator, default is ',' thousands=',', # Thousands separator, default is ',' decimal='.', # Decimal separator, default is '.') encoding='cp1252') result['uba_id_string'] = (result['uba_match_name'] + '_' + result['uba_match_fuel']) return result def getbnetzalist(url_bnetza, previous=False): """ This function returns the dataframe of the plantlist by the Bundesnetzagentur. if previous == True, the next-oldest different plantlist in the folder is returned as determined by the function getolderfilenameandcleanup. Parameters ---------- url_bnetza : str URL of plant list previous : boolean Should previous plant list be returned? """ foldername, datestring, filename = downloadandcache(url_bnetza) if not previous: plantlist = pd.read_csv(os.path.join(foldername, datestring + "-" + filename), skiprows=9, sep=';', # CSV field separator, default is ',' thousands='.', # Thousands separator, default is ',' decimal=',', # Decimal separator, default is '.' encoding='cp1252') return plantlist elif previous: oldfilename = getolderfilenameandcleanup(foldername, datestring, filename) oldplantlist = pd.read_csv(oldfilename, skiprows=9, sep=';', # CSV field separator, default is ',' thousands='.', # Thousands separator, default is ',' decimal=',', # Decimal separator, default is '.' encoding='cp1252') return oldplantlist def getubalist(url_uba, previous=False): """ This function returns the dataframe of the plantlist by the Umweltbundesamt. if previous == True, the next-oldest different plantlist in the folder is returned as determined by the function getolderfilenameandcleanup. Parameters ---------- url_uba : str URL of plant list previous : boolean Should previous plant list be returned? """ foldername, datestring, filename = downloadandcache(url_uba) if not previous: plantlist = pd.read_excel(os.path.join(foldername, datestring + "-" + filename), skiprows=9) return plantlist elif previous: oldfilename = getolderfilenameandcleanup(foldername, datestring, filename) oldplantlist = pd.read_excel(oldfilename, skiprows=9) return oldplantlist def getlistdifferences(oldplantlist, newplantlist): """ This function returns the difference between two plantlists, and only takes into account the columns specified within the function. Parameters ---------- oldplantlist : DataFrame Old Plantlist newplantlist : DataFrame New Plantlist """ oldplantlist['source'] = 'old' newplantlist['source'] = 'new' comparisonplantlist = pd.concat([oldplantlist, newplantlist]) # Only include some columns in comparison includecolumns = ['Kraftwerksnummer Bundesnetzagentur', 'Kraftwerksname', 'Blockname', 'Kraftwerksname / Standort', 'Kraftwerksstandort', 'Primärenergieträger', ] cols = [col for col in comparisonplantlist.columns if col in includecolumns] comparisonplantlist = comparisonplantlist.drop_duplicates(keep=False, subset=cols) # Sort by first column comparisonplantlist = comparisonplantlist.sort_values(comparisonplantlist.columns[0], ascending=True) return comparisonplantlist def matchinglistcheck(url_bnetza, url_uba): """ This function checks the BNetzA and UBA plantlists against the matchinglist and prints out errors. For entries form the UBA Plantlist a suggestion for correction with the closest possible match is printed. Parameters ---------- oldplantlist : DataFrame Old Plantlist newplantlist : DataFrame New Plantlist """ logger.info('Starting Matchinglistcheck') plantlist_uba = getubalist(url_uba) plantlist_bnetza = getbnetzalist(url_bnetza) matchinglist = getmatchinglist() plantlist_uba['uba_id_string'] = (plantlist_uba['Kraftwerksname / Standort'] + '_' + plantlist_uba['Primärenergieträger']) # print(plantlist_uba.uba_id_string) matchinglist.rename(columns={'ID BNetzA': 'bnetza_id'}, inplace=True) uba_entrylist = [x for x in plantlist_uba.uba_id_string.tolist() if str(x) != 'nan'] errorfound = False for entry in matchinglist.index: # print(entry, matchinglist.loc[entry].bnetza_id, matchinglist.loc[entry].uba_id_string) bnetza_entries = plantlist_bnetza.loc[(plantlist_bnetza['Kraftwerksnummer Bundesnetzagentur'] == matchinglist.loc[entry].bnetza_id)] # print(entry, len(bnetza_entries)) if len(bnetza_entries) == 0: logger.error('Entry not in Bnetzalist:', matchinglist.loc[entry].bnetza_id, matchinglist.loc[entry].uba_id_string) errorfound = True uba_entries = plantlist_uba.loc[(plantlist_uba['uba_id_string'] == matchinglist.loc[entry].uba_id_string)] # print(entry, len(uba_entries)) if len(uba_entries) == 0: alternatives = difflib.get_close_matches(matchinglist.loc[entry].uba_id_string, uba_entrylist, n=3, cutoff=0.6) logger.error('Not in ubalist: ' + matchinglist.loc[entry].uba_id_string + ' ' + matchinglist.loc[entry].bnetza_id + ' Possible alternatives: ' + ', '.join(alternatives)) # raise ValueError('Value in Ubalist missing') errorfound = True if errorfound == False: logger.info('No obvious errors in Matchinglist check found') else: logger.error('Errors in Matchinglist exist') def potentialmatching(url_bnetza, url_uba): """ This function looks for power plants form the UBA list not contained in the matching lists. It looks up possible matches based on name similarity. It returns a list of tuples with the plants name of the UBA List, augmented with possible matches. Parameters ---------- url_bnetza : string Link to BNetzA List url_uba: string Link to UBA List """ plantlist_uba = getubalist(url_uba) plantlist_bnetza = getbnetzalist(url_bnetza) matchinglist = getmatchinglist() plantlist_bnetza.rename(columns={'Kraftwerksnummer Bundesnetzagentur':'id'}, inplace=True) plantlist_bnetza_reduced = plantlist_bnetza[plantlist_bnetza['id'].isin(matchinglist['ID BNetzA']) == False] plantlist_bnetza_reduced = plantlist_bnetza_reduced[plantlist_bnetza_reduced['Energieträger'] != 'Solare Strahlungsenergie'] plantlist_bnetza_reduced = plantlist_bnetza_reduced[plantlist_bnetza_reduced['Energieträger'] != 'Windenergie (Onshore-Anlage)'] plantlist_bnetza_reduced = plantlist_bnetza_reduced[plantlist_bnetza_reduced['Energieträger'] != 'Windenergie (Offshore-Anlage)'] plantlist_bnetza_reduced['name_and_block'] = plantlist_bnetza_reduced['Kraftwerksname'] + ' ' + plantlist_bnetza_reduced['Blockname'] + '_' + plantlist_bnetza_reduced['Energieträger'] plantlist_uba.rename(columns={'Kraftwerksname / Standort' : 'name', 'Primärenergieträger': 'fuel', 'Anlagenart': 'type'}, inplace=True) # print(plantlist_uba.columns) plantlist_uba['uba_id_string'] = (plantlist_uba['name'] + '_' + plantlist_uba['fuel']) # Reduce uba list plantlist_uba_reduced = plantlist_uba[plantlist_uba['uba_id_string'].isin(matchinglist['uba_id_string']) == False] plantlist_uba_reduced = plantlist_uba_reduced[plantlist_uba_reduced['type'] != 'WEA'] plantlist_uba_reduced = plantlist_uba_reduced[plantlist_uba_reduced['type'] != 'PV'] plantlist_uba_reduced = plantlist_uba_reduced[plantlist_uba_reduced['type'].isnull() == False] possiblematcheslist = [] for entry in plantlist_uba_reduced.index: # print(entry) moin = str(plantlist_uba_reduced.loc[entry].uba_id_string) moin2 = [x for x in plantlist_bnetza_reduced.name_and_block.tolist() if str(x) != 'nan']# plantlist_bnetza_reduced['name_and_block'].tolist() # print(moin) # print(moin2) possiblealternative = difflib.get_close_matches(moin, moin2, n=2, cutoff=0.3) # print(moin, possiblealternative) logger.info('Plant ' + moin + ' not in Matchinglist. Possible Matches from BNetzA List: ' + str(possiblealternative)) possiblematcheslist.append((moin, possiblealternative)) # return possiblematcheslist return plantlist_bnetza_reduced # Testing this file if __name__ == "__main__": # BNetzA Power plant list url_bnetza = ('http://www.bundesnetzagentur.de/SharedDocs/Downloads/DE/' 'Sachgebiete/Energie/Unternehmen_Institutionen/Versorgungssicherheit/' 'Erzeugungskapazitaeten/Kraftwerksliste/Kraftwerksliste_CSV.csv' '?__blob=publicationFile&v=10') # UBA Power plant list url_uba = ('https://www.umweltbundesamt.de/sites/default/files/medien/372/dokumente/kraftwerke-de-ab-100-mw.xls') matchinglist = getmatchinglist() plantlist_bnetza = getbnetzalist(url_bnetza, previous=False) # plantlist_bnetza_previous = getbnetzalist(url_bnetza, previous=True) # plantlist_bnetza_differences = getlistdifferences(plantlist_bnetza_previous, plantlist_bnetza) # plantlist_uba = getubalist(url_uba, previous=False) # plantlist_uba_previous = getubalist(url_uba, previous=True) # plantlist_uba_differences = getlistdifferences(plantlist_uba_previous, plantlist_uba) matchinglistcheck(url_bnetza, url_uba) res = potentialmatching(url_bnetza, url_uba)
mit
q1ang/seaborn
seaborn/tests/test_distributions.py
14
8102
import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import nose.tools as nt import numpy.testing as npt from numpy.testing.decorators import skipif from . import PlotTestCase from .. import distributions as dist try: import statsmodels.nonparametric.api assert statsmodels.nonparametric.api _no_statsmodels = False except ImportError: _no_statsmodels = True class TestKDE(PlotTestCase): rs = np.random.RandomState(0) x = rs.randn(50) y = rs.randn(50) kernel = "gau" bw = "scott" gridsize = 128 clip = (-np.inf, np.inf) cut = 3 def test_scipy_univariate_kde(self): """Test the univariate KDE estimation with scipy.""" grid, y = dist._scipy_univariate_kde(self.x, self.bw, self.gridsize, self.cut, self.clip) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) for bw in ["silverman", .2]: dist._scipy_univariate_kde(self.x, bw, self.gridsize, self.cut, self.clip) @skipif(_no_statsmodels) def test_statsmodels_univariate_kde(self): """Test the univariate KDE estimation with statsmodels.""" grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel, self.bw, self.gridsize, self.cut, self.clip) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) for bw in ["silverman", .2]: dist._statsmodels_univariate_kde(self.x, self.kernel, bw, self.gridsize, self.cut, self.clip) def test_scipy_bivariate_kde(self): """Test the bivariate KDE estimation with scipy.""" clip = [self.clip, self.clip] x, y, z = dist._scipy_bivariate_kde(self.x, self.y, self.bw, self.gridsize, self.cut, clip) nt.assert_equal(x.shape, (self.gridsize, self.gridsize)) nt.assert_equal(y.shape, (self.gridsize, self.gridsize)) nt.assert_equal(len(z), self.gridsize) # Test a specific bandwidth clip = [self.clip, self.clip] x, y, z = dist._scipy_bivariate_kde(self.x, self.y, 1, self.gridsize, self.cut, clip) # Test that we get an error with an invalid bandwidth with nt.assert_raises(ValueError): dist._scipy_bivariate_kde(self.x, self.y, (1, 2), self.gridsize, self.cut, clip) @skipif(_no_statsmodels) def test_statsmodels_bivariate_kde(self): """Test the bivariate KDE estimation with statsmodels.""" clip = [self.clip, self.clip] x, y, z = dist._statsmodels_bivariate_kde(self.x, self.y, self.bw, self.gridsize, self.cut, clip) nt.assert_equal(x.shape, (self.gridsize, self.gridsize)) nt.assert_equal(y.shape, (self.gridsize, self.gridsize)) nt.assert_equal(len(z), self.gridsize) @skipif(_no_statsmodels) def test_statsmodels_kde_cumulative(self): """Test computation of cumulative KDE.""" grid, y = dist._statsmodels_univariate_kde(self.x, self.kernel, self.bw, self.gridsize, self.cut, self.clip, cumulative=True) nt.assert_equal(len(grid), self.gridsize) nt.assert_equal(len(y), self.gridsize) # make sure y is monotonically increasing npt.assert_((np.diff(y) > 0).all()) def test_kde_cummulative_2d(self): """Check error if args indicate bivariate KDE and cumulative.""" with npt.assert_raises(TypeError): dist.kdeplot(self.x, data2=self.y, cumulative=True) def test_bivariate_kde_series(self): df = pd.DataFrame({'x': self.x, 'y': self.y}) ax_series = dist.kdeplot(df.x, df.y) ax_values = dist.kdeplot(df.x.values, df.y.values) nt.assert_equal(len(ax_series.collections), len(ax_values.collections)) nt.assert_equal(ax_series.collections[0].get_paths(), ax_values.collections[0].get_paths()) class TestJointPlot(PlotTestCase): rs = np.random.RandomState(sum(map(ord, "jointplot"))) x = rs.randn(100) y = rs.randn(100) data = pd.DataFrame(dict(x=x, y=y)) def test_scatter(self): g = dist.jointplot("x", "y", self.data) nt.assert_equal(len(g.ax_joint.collections), 1) x, y = g.ax_joint.collections[0].get_offsets().T npt.assert_array_equal(self.x, x) npt.assert_array_equal(self.y, y) x_bins = dist._freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = dist._freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) def test_reg(self): g = dist.jointplot("x", "y", self.data, kind="reg") nt.assert_equal(len(g.ax_joint.collections), 2) x, y = g.ax_joint.collections[0].get_offsets().T npt.assert_array_equal(self.x, x) npt.assert_array_equal(self.y, y) x_bins = dist._freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = dist._freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) nt.assert_equal(len(g.ax_joint.lines), 1) nt.assert_equal(len(g.ax_marg_x.lines), 1) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_resid(self): g = dist.jointplot("x", "y", self.data, kind="resid") nt.assert_equal(len(g.ax_joint.collections), 1) nt.assert_equal(len(g.ax_joint.lines), 1) nt.assert_equal(len(g.ax_marg_x.lines), 0) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_hex(self): g = dist.jointplot("x", "y", self.data, kind="hex") nt.assert_equal(len(g.ax_joint.collections), 1) x_bins = dist._freedman_diaconis_bins(self.x) nt.assert_equal(len(g.ax_marg_x.patches), x_bins) y_bins = dist._freedman_diaconis_bins(self.y) nt.assert_equal(len(g.ax_marg_y.patches), y_bins) def test_kde(self): g = dist.jointplot("x", "y", self.data, kind="kde") nt.assert_true(len(g.ax_joint.collections) > 0) nt.assert_equal(len(g.ax_marg_x.collections), 1) nt.assert_equal(len(g.ax_marg_y.collections), 1) nt.assert_equal(len(g.ax_marg_x.lines), 1) nt.assert_equal(len(g.ax_marg_y.lines), 1) def test_color(self): g = dist.jointplot("x", "y", self.data, color="purple") purple = mpl.colors.colorConverter.to_rgb("purple") scatter_color = g.ax_joint.collections[0].get_facecolor()[0, :3] nt.assert_equal(tuple(scatter_color), purple) hist_color = g.ax_marg_x.patches[0].get_facecolor()[:3] nt.assert_equal(hist_color, purple) def test_annotation(self): g = dist.jointplot("x", "y", self.data) nt.assert_equal(len(g.ax_joint.legend_.get_texts()), 1) g = dist.jointplot("x", "y", self.data, stat_func=None) nt.assert_is(g.ax_joint.legend_, None) def test_hex_customise(self): # test that default gridsize can be overridden g = dist.jointplot("x", "y", self.data, kind="hex", joint_kws=dict(gridsize=5)) nt.assert_equal(len(g.ax_joint.collections), 1) a = g.ax_joint.collections[0].get_array() nt.assert_equal(28, a.shape[0]) # 28 hexagons expected for gridsize 5 def test_bad_kind(self): with nt.assert_raises(ValueError): dist.jointplot("x", "y", self.data, kind="not_a_kind")
bsd-3-clause
tuanvu216/udacity-course
intro_to_machine_learning/lesson/lesson_4_choose_your_own_algorithm/your_algorithm.py
1
2628
#!/usr/bin/python import matplotlib.pyplot as plt from prep_terrain_data import makeTerrainData from class_vis import prettyPicture from time import time features_train, labels_train, features_test, labels_test = makeTerrainData() ### the training data (features_train, labels_train) have both "fast" and "slow" points mixed ### in together--separate them so we can give them different colors in the scatterplot, ### and visually identify them grade_fast = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==0] bumpy_fast = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==0] grade_slow = [features_train[ii][0] for ii in range(0, len(features_train)) if labels_train[ii]==1] bumpy_slow = [features_train[ii][1] for ii in range(0, len(features_train)) if labels_train[ii]==1] #### initial visualization plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) plt.scatter(bumpy_fast, grade_fast, color = "b", label="fast") plt.scatter(grade_slow, bumpy_slow, color = "r", label="slow") plt.legend() plt.xlabel("bumpiness") plt.ylabel("grade") plt.show() ################################################################################# ### your code here! name your classifier object clf if you want the ### visualization code (prettyPicture) to show you the decision boundary # K Nearest Neighbor from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score clf = KNeighborsClassifier(n_neighbors=1) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc # Random Forest from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score clf = RandomForestClassifier(n_estimators=10) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc # Addaboost from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import accuracy_score clf = AdaBoostClassifier(n_estimators=100) t0 = time() clf.fit(features_train, labels_train) print "training time:", round(time()-t0, 3), "s" t0 = time() pred = clf.predict(features_test) print "predicting time:", round(time()-t0, 3), "s" acc = accuracy_score(pred, labels_test) print acc try: prettyPicture(clf, features_test, labels_test) except NameError: pass
mit
jzt5132/scikit-learn
setup.py
76
9370
#! /usr/bin/env python # # Copyright (C) 2007-2009 Cournapeau David <cournape@gmail.com> # 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> # License: 3-clause BSD descr = """A set of python modules for machine learning and data mining""" import sys import os import shutil from distutils.command.clean import clean as Clean from pkg_resources import parse_version if sys.version_info[0] < 3: import __builtin__ as builtins else: import builtins # This is a bit (!) hackish: we are setting a global variable so that the main # sklearn __init__ can detect if it is being loaded by the setup routine, to # avoid attempting to load components that aren't built yet: # the numpy distutils extensions that are used by scikit-learn to recursively # build the compiled extensions in sub-packages is based on the Python import # machinery. builtins.__SKLEARN_SETUP__ = True DISTNAME = 'scikit-learn' DESCRIPTION = 'A set of python modules for machine learning and data mining' with open('README.rst') as f: LONG_DESCRIPTION = f.read() MAINTAINER = 'Andreas Mueller' MAINTAINER_EMAIL = 'amueller@ais.uni-bonn.de' URL = 'http://scikit-learn.org' LICENSE = 'new BSD' DOWNLOAD_URL = 'http://sourceforge.net/projects/scikit-learn/files/' # We can actually import a restricted version of sklearn that # does not need the compiled code import sklearn VERSION = sklearn.__version__ # Optional setuptools features # We need to import setuptools early, if we want setuptools features, # as it monkey-patches the 'setup' function # For some commands, use setuptools SETUPTOOLS_COMMANDS = set([ 'develop', 'release', 'bdist_egg', 'bdist_rpm', 'bdist_wininst', 'install_egg_info', 'build_sphinx', 'egg_info', 'easy_install', 'upload', 'bdist_wheel', '--single-version-externally-managed', ]) if SETUPTOOLS_COMMANDS.intersection(sys.argv): import setuptools extra_setuptools_args = dict( zip_safe=False, # the package can run out of an .egg file include_package_data=True, ) else: extra_setuptools_args = dict() # Custom clean command to remove build artifacts class CleanCommand(Clean): description = "Remove build artifacts from the source tree" def run(self): Clean.run(self) if os.path.exists('build'): shutil.rmtree('build') for dirpath, dirnames, filenames in os.walk('sklearn'): for filename in filenames: if (filename.endswith('.so') or filename.endswith('.pyd') or filename.endswith('.dll') or filename.endswith('.pyc')): os.unlink(os.path.join(dirpath, filename)) for dirname in dirnames: if dirname == '__pycache__': shutil.rmtree(os.path.join(dirpath, dirname)) cmdclass = {'clean': CleanCommand} # Optional wheelhouse-uploader features # To automate release of binary packages for scikit-learn we need a tool # to download the packages generated by travis and appveyor workers (with # version number matching the current release) and upload them all at once # to PyPI at release time. # The URL of the artifact repositories are configured in the setup.cfg file. WHEELHOUSE_UPLOADER_COMMANDS = set(['fetch_artifacts', 'upload_all']) if WHEELHOUSE_UPLOADER_COMMANDS.intersection(sys.argv): import wheelhouse_uploader.cmd cmdclass.update(vars(wheelhouse_uploader.cmd)) def configuration(parent_package='', top_path=None): if os.path.exists('MANIFEST'): os.remove('MANIFEST') from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) # Avoid non-useful msg: # "Ignoring attempt to set 'name' (from ... " config.set_options(ignore_setup_xxx_py=True, assume_default_configuration=True, delegate_options_to_subpackages=True, quiet=True) config.add_subpackage('sklearn') return config scipy_min_version = '0.9' numpy_min_version = '1.6.1' def get_scipy_status(): """ Returns a dictionary containing a boolean specifying whether SciPy is up-to-date, along with the version string (empty string if not installed). """ scipy_status = {} try: import scipy scipy_version = scipy.__version__ scipy_status['up_to_date'] = parse_version( scipy_version) >= parse_version(scipy_min_version) scipy_status['version'] = scipy_version except ImportError: scipy_status['up_to_date'] = False scipy_status['version'] = "" return scipy_status def get_numpy_status(): """ Returns a dictionary containing a boolean specifying whether NumPy is up-to-date, along with the version string (empty string if not installed). """ numpy_status = {} try: import numpy numpy_version = numpy.__version__ numpy_status['up_to_date'] = parse_version( numpy_version) >= parse_version(numpy_min_version) numpy_status['version'] = numpy_version except ImportError: numpy_status['up_to_date'] = False numpy_status['version'] = "" return numpy_status def setup_package(): metadata = dict(name=DISTNAME, maintainer=MAINTAINER, maintainer_email=MAINTAINER_EMAIL, description=DESCRIPTION, license=LICENSE, url=URL, version=VERSION, download_url=DOWNLOAD_URL, long_description=LONG_DESCRIPTION, classifiers=['Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved', 'Programming Language :: C', 'Programming Language :: Python', 'Topic :: Software Development', 'Topic :: Scientific/Engineering', 'Operating System :: Microsoft :: Windows', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], cmdclass=cmdclass, **extra_setuptools_args) if (len(sys.argv) >= 2 and ('--help' in sys.argv[1:] or sys.argv[1] in ('--help-commands', 'egg_info', '--version', 'clean'))): # For these actions, NumPy is not required. # # They are required to succeed without Numpy for example when # pip is used to install Scikit-learn when Numpy is not yet present in # the system. try: from setuptools import setup except ImportError: from distutils.core import setup metadata['version'] = VERSION else: numpy_status = get_numpy_status() numpy_req_str = "scikit-learn requires NumPy >= {0}.\n".format( numpy_min_version) scipy_status = get_scipy_status() scipy_req_str = "scikit-learn requires SciPy >= {0}.\n".format( scipy_min_version) instructions = ("Installation instructions are available on the " "scikit-learn website: " "http://scikit-learn.org/stable/install.html\n") if numpy_status['up_to_date'] is False: if numpy_status['version']: raise ImportError("Your installation of Numerical Python " "(NumPy) {0} is out-of-date.\n{1}{2}" .format(numpy_status['version'], numpy_req_str, instructions)) else: raise ImportError("Numerical Python (NumPy) is not " "installed.\n{0}{1}" .format(numpy_req_str, instructions)) if scipy_status['up_to_date'] is False: if scipy_status['version']: raise ImportError("Your installation of Scientific Python " "(SciPy) {0} is out-of-date.\n{1}{2}" .format(scipy_status['version'], scipy_req_str, instructions)) else: raise ImportError("Scientific Python (SciPy) is not " "installed.\n{0}{1}" .format(scipy_req_str, instructions)) from numpy.distutils.core import setup metadata['configuration'] = configuration setup(**metadata) if __name__ == "__main__": setup_package()
bsd-3-clause
LumPenPacK/NetworkExtractionFromImages
osx_build/nefi2_osx_amd64_xcode_2015/site-packages/numpy_1.11/numpy/lib/npyio.py
35
71412
from __future__ import division, absolute_import, print_function import sys import os import re import itertools import warnings import weakref from operator import itemgetter import numpy as np from . import format from ._datasource import DataSource from numpy.core.multiarray import packbits, unpackbits from ._iotools import ( LineSplitter, NameValidator, StringConverter, ConverterError, ConverterLockError, ConversionWarning, _is_string_like, has_nested_fields, flatten_dtype, easy_dtype, _bytes_to_name ) from numpy.compat import ( asbytes, asstr, asbytes_nested, bytes, basestring, unicode ) if sys.version_info[0] >= 3: import pickle else: import cPickle as pickle from future_builtins import map loads = pickle.loads __all__ = [ 'savetxt', 'loadtxt', 'genfromtxt', 'ndfromtxt', 'mafromtxt', 'recfromtxt', 'recfromcsv', 'load', 'loads', 'save', 'savez', 'savez_compressed', 'packbits', 'unpackbits', 'fromregex', 'DataSource' ] class BagObj(object): """ BagObj(obj) Convert attribute look-ups to getitems on the object passed in. Parameters ---------- obj : class instance Object on which attribute look-up is performed. Examples -------- >>> from numpy.lib.npyio import BagObj as BO >>> class BagDemo(object): ... def __getitem__(self, key): # An instance of BagObj(BagDemo) ... # will call this method when any ... # attribute look-up is required ... result = "Doesn't matter what you want, " ... return result + "you're gonna get this" ... >>> demo_obj = BagDemo() >>> bagobj = BO(demo_obj) >>> bagobj.hello_there "Doesn't matter what you want, you're gonna get this" >>> bagobj.I_can_be_anything "Doesn't matter what you want, you're gonna get this" """ def __init__(self, obj): # Use weakref to make NpzFile objects collectable by refcount self._obj = weakref.proxy(obj) def __getattribute__(self, key): try: return object.__getattribute__(self, '_obj')[key] except KeyError: raise AttributeError(key) def __dir__(self): """ Enables dir(bagobj) to list the files in an NpzFile. This also enables tab-completion in an interpreter or IPython. """ return object.__getattribute__(self, '_obj').keys() def zipfile_factory(*args, **kwargs): import zipfile kwargs['allowZip64'] = True return zipfile.ZipFile(*args, **kwargs) class NpzFile(object): """ NpzFile(fid) A dictionary-like object with lazy-loading of files in the zipped archive provided on construction. `NpzFile` is used to load files in the NumPy ``.npz`` data archive format. It assumes that files in the archive have a ``.npy`` extension, other files are ignored. The arrays and file strings are lazily loaded on either getitem access using ``obj['key']`` or attribute lookup using ``obj.f.key``. A list of all files (without ``.npy`` extensions) can be obtained with ``obj.files`` and the ZipFile object itself using ``obj.zip``. Attributes ---------- files : list of str List of all files in the archive with a ``.npy`` extension. zip : ZipFile instance The ZipFile object initialized with the zipped archive. f : BagObj instance An object on which attribute can be performed as an alternative to getitem access on the `NpzFile` instance itself. allow_pickle : bool, optional Allow loading pickled data. Default: True pickle_kwargs : dict, optional Additional keyword arguments to pass on to pickle.load. These are only useful when loading object arrays saved on Python 2 when using Python 3. Parameters ---------- fid : file or str The zipped archive to open. This is either a file-like object or a string containing the path to the archive. own_fid : bool, optional Whether NpzFile should close the file handle. Requires that `fid` is a file-like object. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npz = np.load(outfile) >>> isinstance(npz, np.lib.io.NpzFile) True >>> npz.files ['y', 'x'] >>> npz['x'] # getitem access array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> npz.f.x # attribute lookup array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ def __init__(self, fid, own_fid=False, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an # optional component of the so-called standard library. _zip = zipfile_factory(fid) self._files = _zip.namelist() self.files = [] self.allow_pickle = allow_pickle self.pickle_kwargs = pickle_kwargs for x in self._files: if x.endswith('.npy'): self.files.append(x[:-4]) else: self.files.append(x) self.zip = _zip self.f = BagObj(self) if own_fid: self.fid = fid else: self.fid = None def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """ Close the file. """ if self.zip is not None: self.zip.close() self.zip = None if self.fid is not None: self.fid.close() self.fid = None self.f = None # break reference cycle def __del__(self): self.close() def __getitem__(self, key): # FIXME: This seems like it will copy strings around # more than is strictly necessary. The zipfile # will read the string and then # the format.read_array will copy the string # to another place in memory. # It would be better if the zipfile could read # (or at least uncompress) the data # directly into the array memory. member = 0 if key in self._files: member = 1 elif key in self.files: member = 1 key += '.npy' if member: bytes = self.zip.open(key) magic = bytes.read(len(format.MAGIC_PREFIX)) bytes.close() if magic == format.MAGIC_PREFIX: bytes = self.zip.open(key) return format.read_array(bytes, allow_pickle=self.allow_pickle, pickle_kwargs=self.pickle_kwargs) else: return self.zip.read(key) else: raise KeyError("%s is not a file in the archive" % key) def __iter__(self): return iter(self.files) def items(self): """ Return a list of tuples, with each tuple (filename, array in file). """ return [(f, self[f]) for f in self.files] def iteritems(self): """Generator that returns tuples (filename, array in file).""" for f in self.files: yield (f, self[f]) def keys(self): """Return files in the archive with a ``.npy`` extension.""" return self.files def iterkeys(self): """Return an iterator over the files in the archive.""" return self.__iter__() def __contains__(self, key): return self.files.__contains__(key) def load(file, mmap_mode=None, allow_pickle=True, fix_imports=True, encoding='ASCII'): """ Load arrays or pickled objects from ``.npy``, ``.npz`` or pickled files. Parameters ---------- file : file-like object or string The file to read. File-like objects must support the ``seek()`` and ``read()`` methods. Pickled files require that the file-like object support the ``readline()`` method as well. mmap_mode : {None, 'r+', 'r', 'w+', 'c'}, optional If not None, then memory-map the file, using the given mode (see `numpy.memmap` for a detailed description of the modes). A memory-mapped array is kept on disk. However, it can be accessed and sliced like any ndarray. Memory mapping is especially useful for accessing small fragments of large files without reading the entire file into memory. allow_pickle : bool, optional Allow loading pickled object arrays stored in npy files. Reasons for disallowing pickles include security, as loading pickled data can execute arbitrary code. If pickles are disallowed, loading object arrays will fail. Default: True fix_imports : bool, optional Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. If `fix_imports` is True, pickle will try to map the old Python 2 names to the new names used in Python 3. encoding : str, optional What encoding to use when reading Python 2 strings. Only useful when loading Python 2 generated pickled files on Python 3, which includes npy/npz files containing object arrays. Values other than 'latin1', 'ASCII', and 'bytes' are not allowed, as they can corrupt numerical data. Default: 'ASCII' Returns ------- result : array, tuple, dict, etc. Data stored in the file. For ``.npz`` files, the returned instance of NpzFile class must be closed to avoid leaking file descriptors. Raises ------ IOError If the input file does not exist or cannot be read. ValueError The file contains an object array, but allow_pickle=False given. See Also -------- save, savez, savez_compressed, loadtxt memmap : Create a memory-map to an array stored in a file on disk. Notes ----- - If the file contains pickle data, then whatever object is stored in the pickle is returned. - If the file is a ``.npy`` file, then a single array is returned. - If the file is a ``.npz`` file, then a dictionary-like object is returned, containing ``{filename: array}`` key-value pairs, one for each file in the archive. - If the file is a ``.npz`` file, the returned value supports the context manager protocol in a similar fashion to the open function:: with load('foo.npz') as data: a = data['a'] The underlying file descriptor is closed when exiting the 'with' block. Examples -------- Store data to disk, and load it again: >>> np.save('/tmp/123', np.array([[1, 2, 3], [4, 5, 6]])) >>> np.load('/tmp/123.npy') array([[1, 2, 3], [4, 5, 6]]) Store compressed data to disk, and load it again: >>> a=np.array([[1, 2, 3], [4, 5, 6]]) >>> b=np.array([1, 2]) >>> np.savez('/tmp/123.npz', a=a, b=b) >>> data = np.load('/tmp/123.npz') >>> data['a'] array([[1, 2, 3], [4, 5, 6]]) >>> data['b'] array([1, 2]) >>> data.close() Mem-map the stored array, and then access the second row directly from disk: >>> X = np.load('/tmp/123.npy', mmap_mode='r') >>> X[1, :] memmap([4, 5, 6]) """ import gzip own_fid = False if isinstance(file, basestring): fid = open(file, "rb") own_fid = True else: fid = file if encoding not in ('ASCII', 'latin1', 'bytes'): # The 'encoding' value for pickle also affects what encoding # the serialized binary data of Numpy arrays is loaded # in. Pickle does not pass on the encoding information to # Numpy. The unpickling code in numpy.core.multiarray is # written to assume that unicode data appearing where binary # should be is in 'latin1'. 'bytes' is also safe, as is 'ASCII'. # # Other encoding values can corrupt binary data, and we # purposefully disallow them. For the same reason, the errors= # argument is not exposed, as values other than 'strict' # result can similarly silently corrupt numerical data. raise ValueError("encoding must be 'ASCII', 'latin1', or 'bytes'") if sys.version_info[0] >= 3: pickle_kwargs = dict(encoding=encoding, fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = {} try: # Code to distinguish from NumPy binary files and pickles. _ZIP_PREFIX = asbytes('PK\x03\x04') N = len(format.MAGIC_PREFIX) magic = fid.read(N) fid.seek(-N, 1) # back-up if magic.startswith(_ZIP_PREFIX): # zip-file (assume .npz) # Transfer file ownership to NpzFile tmp = own_fid own_fid = False return NpzFile(fid, own_fid=tmp, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) elif magic == format.MAGIC_PREFIX: # .npy file if mmap_mode: return format.open_memmap(file, mode=mmap_mode) else: return format.read_array(fid, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) else: # Try a pickle if not allow_pickle: raise ValueError("allow_pickle=False, but file does not contain " "non-pickled data") try: return pickle.load(fid, **pickle_kwargs) except: raise IOError( "Failed to interpret file %s as a pickle" % repr(file)) finally: if own_fid: fid.close() def save(file, arr, allow_pickle=True, fix_imports=True): """ Save an array to a binary file in NumPy ``.npy`` format. Parameters ---------- file : file or str File or filename to which the data is saved. If file is a file-object, then the filename is unchanged. If file is a string, a ``.npy`` extension will be appended to the file name if it does not already have one. allow_pickle : bool, optional Allow saving object arrays using Python pickles. Reasons for disallowing pickles include security (loading pickled data can execute arbitrary code) and portability (pickled objects may not be loadable on different Python installations, for example if the stored objects require libraries that are not available, and not all pickled data is compatible between Python 2 and Python 3). Default: True fix_imports : bool, optional Only useful in forcing objects in object arrays on Python 3 to be pickled in a Python 2 compatible way. If `fix_imports` is True, pickle will try to map the new Python 3 names to the old module names used in Python 2, so that the pickle data stream is readable with Python 2. arr : array_like Array data to be saved. See Also -------- savez : Save several arrays into a ``.npz`` archive savetxt, load Notes ----- For a description of the ``.npy`` format, see the module docstring of `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> np.save(outfile, x) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> np.load(outfile) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ own_fid = False if isinstance(file, basestring): if not file.endswith('.npy'): file = file + '.npy' fid = open(file, "wb") own_fid = True else: fid = file if sys.version_info[0] >= 3: pickle_kwargs = dict(fix_imports=fix_imports) else: # Nothing to do on Python 2 pickle_kwargs = None try: arr = np.asanyarray(arr) format.write_array(fid, arr, allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) finally: if own_fid: fid.close() def savez(file, *args, **kwds): """ Save several arrays into a single file in uncompressed ``.npz`` format. If arguments are passed in with no keywords, the corresponding variable names, in the ``.npz`` file, are 'arr_0', 'arr_1', etc. If keyword arguments are given, the corresponding variable names, in the ``.npz`` file will match the keyword names. Parameters ---------- file : str or file Either the file name (string) or an open file (file-like object) where the data will be saved. If file is a string, the ``.npz`` extension will be appended to the file name if it is not already there. args : Arguments, optional Arrays to save to the file. Since it is not possible for Python to know the names of the arrays outside `savez`, the arrays will be saved with names "arr_0", "arr_1", and so on. These arguments can be any expression. kwds : Keyword arguments, optional Arrays to save to the file. Arrays will be saved in the file with the keyword names. Returns ------- None See Also -------- save : Save a single array to a binary file in NumPy format. savetxt : Save an array to a file as plain text. savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- The ``.npz`` file format is a zipped archive of files named after the variables they contain. The archive is not compressed and each file in the archive contains one variable in ``.npy`` format. For a description of the ``.npy`` format, see `numpy.lib.format` or the Numpy Enhancement Proposal http://docs.scipy.org/doc/numpy/neps/npy-format.html When opening the saved ``.npz`` file with `load` a `NpzFile` object is returned. This is a dictionary-like object which can be queried for its list of arrays (with the ``.files`` attribute), and for the arrays themselves. Examples -------- >>> from tempfile import TemporaryFile >>> outfile = TemporaryFile() >>> x = np.arange(10) >>> y = np.sin(x) Using `savez` with \\*args, the arrays are saved with default names. >>> np.savez(outfile, x, y) >>> outfile.seek(0) # Only needed here to simulate closing & reopening file >>> npzfile = np.load(outfile) >>> npzfile.files ['arr_1', 'arr_0'] >>> npzfile['arr_0'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) Using `savez` with \\**kwds, the arrays are saved with the keyword names. >>> outfile = TemporaryFile() >>> np.savez(outfile, x=x, y=y) >>> outfile.seek(0) >>> npzfile = np.load(outfile) >>> npzfile.files ['y', 'x'] >>> npzfile['x'] array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) """ _savez(file, args, kwds, False) def savez_compressed(file, *args, **kwds): """ Save several arrays into a single file in compressed ``.npz`` format. If keyword arguments are given, then filenames are taken from the keywords. If arguments are passed in with no keywords, then stored file names are arr_0, arr_1, etc. Parameters ---------- file : str File name of ``.npz`` file. args : Arguments Function arguments. kwds : Keyword arguments Keywords. See Also -------- numpy.savez : Save several arrays into an uncompressed ``.npz`` file format numpy.load : Load the files created by savez_compressed. """ _savez(file, args, kwds, True) def _savez(file, args, kwds, compress, allow_pickle=True, pickle_kwargs=None): # Import is postponed to here since zipfile depends on gzip, an optional # component of the so-called standard library. import zipfile # Import deferred for startup time improvement import tempfile if isinstance(file, basestring): if not file.endswith('.npz'): file = file + '.npz' namedict = kwds for i, val in enumerate(args): key = 'arr_%d' % i if key in namedict.keys(): raise ValueError( "Cannot use un-named variables and keyword %s" % key) namedict[key] = val if compress: compression = zipfile.ZIP_DEFLATED else: compression = zipfile.ZIP_STORED zipf = zipfile_factory(file, mode="w", compression=compression) # Stage arrays in a temporary file on disk, before writing to zip. fd, tmpfile = tempfile.mkstemp(suffix='-numpy.npy') os.close(fd) try: for key, val in namedict.items(): fname = key + '.npy' fid = open(tmpfile, 'wb') try: format.write_array(fid, np.asanyarray(val), allow_pickle=allow_pickle, pickle_kwargs=pickle_kwargs) fid.close() fid = None zipf.write(tmpfile, arcname=fname) finally: if fid: fid.close() finally: os.remove(tmpfile) zipf.close() def _getconv(dtype): """ Find the correct dtype converter. Adapted from matplotlib """ def floatconv(x): x.lower() if b'0x' in x: return float.fromhex(asstr(x)) return float(x) typ = dtype.type if issubclass(typ, np.bool_): return lambda x: bool(int(x)) if issubclass(typ, np.uint64): return np.uint64 if issubclass(typ, np.int64): return np.int64 if issubclass(typ, np.integer): return lambda x: int(float(x)) elif issubclass(typ, np.longdouble): return np.longdouble elif issubclass(typ, np.floating): return floatconv elif issubclass(typ, np.complex): return lambda x: complex(asstr(x)) elif issubclass(typ, np.bytes_): return bytes else: return str def loadtxt(fname, dtype=float, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0): """ Load data from a text file. Each row in the text file must have the same number of values. Parameters ---------- fname : file or str File, filename, or generator to read. If the filename extension is ``.gz`` or ``.bz2``, the file is first decompressed. Note that generators should return byte strings for Python 3k. dtype : data-type, optional Data-type of the resulting array; default: float. If this is a structured data-type, the resulting array will be 1-dimensional, and each row will be interpreted as an element of the array. In this case, the number of columns used must match the number of fields in the data-type. comments : str or sequence, optional The characters or list of characters used to indicate the start of a comment; default: '#'. delimiter : str, optional The string used to separate values. By default, this is any whitespace. converters : dict, optional A dictionary mapping column number to a function that will convert that column to a float. E.g., if column 0 is a date string: ``converters = {0: datestr2num}``. Converters can also be used to provide a default value for missing data (but see also `genfromtxt`): ``converters = {3: lambda s: float(s.strip() or 0)}``. Default: None. skiprows : int, optional Skip the first `skiprows` lines; default: 0. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1,4,5)`` will extract the 2nd, 5th and 6th columns. The default, None, results in all columns being read. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)``. When used with a structured data-type, arrays are returned for each field. Default is False. ndmin : int, optional The returned array will have at least `ndmin` dimensions. Otherwise mono-dimensional axes will be squeezed. Legal values: 0 (default), 1 or 2. .. versionadded:: 1.6.0 Returns ------- out : ndarray Data read from the text file. See Also -------- load, fromstring, fromregex genfromtxt : Load data with missing values handled as specified. scipy.io.loadmat : reads MATLAB data files Notes ----- This function aims to be a fast reader for simply formatted files. The `genfromtxt` function provides more sophisticated handling of, e.g., lines with missing values. .. versionadded:: 1.10.0 The strings produced by the Python float.hex method can be used as input for floats. Examples -------- >>> from io import StringIO # StringIO behaves like a file object >>> c = StringIO("0 1\\n2 3") >>> np.loadtxt(c) array([[ 0., 1.], [ 2., 3.]]) >>> d = StringIO("M 21 72\\nF 35 58") >>> np.loadtxt(d, dtype={'names': ('gender', 'age', 'weight'), ... 'formats': ('S1', 'i4', 'f4')}) array([('M', 21, 72.0), ('F', 35, 58.0)], dtype=[('gender', '|S1'), ('age', '<i4'), ('weight', '<f4')]) >>> c = StringIO("1,0,2\\n3,0,4") >>> x, y = np.loadtxt(c, delimiter=',', usecols=(0, 2), unpack=True) >>> x array([ 1., 3.]) >>> y array([ 2., 4.]) """ # Type conversions for Py3 convenience if comments is not None: if isinstance(comments, (basestring, bytes)): comments = [asbytes(comments)] else: comments = [asbytes(comment) for comment in comments] # Compile regex for comments beforehand comments = (re.escape(comment) for comment in comments) regex_comments = re.compile(asbytes('|').join(comments)) user_converters = converters if delimiter is not None: delimiter = asbytes(delimiter) if usecols is not None: usecols = list(usecols) fown = False try: if _is_string_like(fname): fown = True if fname.endswith('.gz'): import gzip fh = iter(gzip.GzipFile(fname)) elif fname.endswith('.bz2'): import bz2 fh = iter(bz2.BZ2File(fname)) elif sys.version_info[0] == 2: fh = iter(open(fname, 'U')) else: fh = iter(open(fname)) else: fh = iter(fname) except TypeError: raise ValueError('fname must be a string, file handle, or generator') X = [] def flatten_dtype(dt): """Unpack a structured data-type, and produce re-packing info.""" if dt.names is None: # If the dtype is flattened, return. # If the dtype has a shape, the dtype occurs # in the list more than once. shape = dt.shape if len(shape) == 0: return ([dt.base], None) else: packing = [(shape[-1], list)] if len(shape) > 1: for dim in dt.shape[-2::-1]: packing = [(dim*packing[0][0], packing*dim)] return ([dt.base] * int(np.prod(dt.shape)), packing) else: types = [] packing = [] for field in dt.names: tp, bytes = dt.fields[field] flat_dt, flat_packing = flatten_dtype(tp) types.extend(flat_dt) # Avoid extra nesting for subarrays if len(tp.shape) > 0: packing.extend(flat_packing) else: packing.append((len(flat_dt), flat_packing)) return (types, packing) def pack_items(items, packing): """Pack items into nested lists based on re-packing info.""" if packing is None: return items[0] elif packing is tuple: return tuple(items) elif packing is list: return list(items) else: start = 0 ret = [] for length, subpacking in packing: ret.append(pack_items(items[start:start+length], subpacking)) start += length return tuple(ret) def split_line(line): """Chop off comments, strip, and split at delimiter. Note that although the file is opened as text, this function returns bytes. """ line = asbytes(line) if comments is not None: line = regex_comments.split(asbytes(line), maxsplit=1)[0] line = line.strip(asbytes('\r\n')) if line: return line.split(delimiter) else: return [] try: # Make sure we're dealing with a proper dtype dtype = np.dtype(dtype) defconv = _getconv(dtype) # Skip the first `skiprows` lines for i in range(skiprows): next(fh) # Read until we find a line with some values, and use # it to estimate the number of columns, N. first_vals = None try: while not first_vals: first_line = next(fh) first_vals = split_line(first_line) except StopIteration: # End of lines reached first_line = '' first_vals = [] warnings.warn('loadtxt: Empty input file: "%s"' % fname) N = len(usecols or first_vals) dtype_types, packing = flatten_dtype(dtype) if len(dtype_types) > 1: # We're dealing with a structured array, each field of # the dtype matches a column converters = [_getconv(dt) for dt in dtype_types] else: # All fields have the same dtype converters = [defconv for i in range(N)] if N > 1: packing = [(N, tuple)] # By preference, use the converters specified by the user for i, conv in (user_converters or {}).items(): if usecols: try: i = usecols.index(i) except ValueError: # Unused converter specified continue converters[i] = conv # Parse each line, including the first for i, line in enumerate(itertools.chain([first_line], fh)): vals = split_line(line) if len(vals) == 0: continue if usecols: vals = [vals[i] for i in usecols] if len(vals) != N: line_num = i + skiprows + 1 raise ValueError("Wrong number of columns at line %d" % line_num) # Convert each value according to its column and store items = [conv(val) for (conv, val) in zip(converters, vals)] # Then pack it according to the dtype's nesting items = pack_items(items, packing) X.append(items) finally: if fown: fh.close() X = np.array(X, dtype) # Multicolumn data are returned with shape (1, N, M), i.e. # (1, 1, M) for a single row - remove the singleton dimension there if X.ndim == 3 and X.shape[:2] == (1, 1): X.shape = (1, -1) # Verify that the array has at least dimensions `ndmin`. # Check correctness of the values of `ndmin` if ndmin not in [0, 1, 2]: raise ValueError('Illegal value of ndmin keyword: %s' % ndmin) # Tweak the size and shape of the arrays - remove extraneous dimensions if X.ndim > ndmin: X = np.squeeze(X) # and ensure we have the minimum number of dimensions asked for # - has to be in this order for the odd case ndmin=1, X.squeeze().ndim=0 if X.ndim < ndmin: if ndmin == 1: X = np.atleast_1d(X) elif ndmin == 2: X = np.atleast_2d(X).T if unpack: if len(dtype_types) > 1: # For structured arrays, return an array for each field. return [X[field] for field in dtype.names] else: return X.T else: return X def savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# '): """ Save an array to a text file. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. fmt : str or sequence of strs, optional A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. For complex `X`, the legal options for `fmt` are: a) a single specifier, `fmt='%.4e'`, resulting in numbers formatted like `' (%s+%sj)' % (fmt, fmt)` b) a full string specifying every real and imaginary part, e.g. `' %.4e %+.4j %.4e %+.4j %.4e %+.4j'` for 3 columns c) a list of specifiers, one per column - in this case, the real and imaginary part must have separate specifiers, e.g. `['%.3e + %.3ej', '(%.15e%+.15ej)']` for 2 columns delimiter : str, optional String or character separating columns. newline : str, optional String or character separating lines. .. versionadded:: 1.5.0 header : str, optional String that will be written at the beginning of the file. .. versionadded:: 1.7.0 footer : str, optional String that will be written at the end of the file. .. versionadded:: 1.7.0 comments : str, optional String that will be prepended to the ``header`` and ``footer`` strings, to mark them as comments. Default: '# ', as expected by e.g. ``numpy.loadtxt``. .. versionadded:: 1.7.0 See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into an uncompressed ``.npz`` archive savez_compressed : Save several arrays into a compressed ``.npz`` archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to precede result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> x = y = z = np.arange(0.0,5.0,1.0) >>> np.savetxt('test.out', x, delimiter=',') # X is an array >>> np.savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> np.savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ # Py3 conversions first if isinstance(fmt, bytes): fmt = asstr(fmt) delimiter = asstr(delimiter) own_fh = False if _is_string_like(fname): own_fh = True if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: if sys.version_info[0] >= 3: fh = open(fname, 'wb') else: fh = open(fname, 'w') elif hasattr(fname, 'write'): fh = fname else: raise ValueError('fname must be a string or file handle') try: X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X = np.atleast_2d(X).T ncol = 1 # Complex dtype -- each field indicates a separate column else: ncol = len(X.dtype.descr) else: ncol = X.shape[1] iscomplex_X = np.iscomplexobj(X) # `fmt` can be a string with multiple insertion points or a # list of formats. E.g. '%10.5f\t%10d' or ('%10.5f', '$10d') if type(fmt) in (list, tuple): if len(fmt) != ncol: raise AttributeError('fmt has wrong shape. %s' % str(fmt)) format = asstr(delimiter).join(map(asstr, fmt)) elif isinstance(fmt, str): n_fmt_chars = fmt.count('%') error = ValueError('fmt has wrong number of %% formats: %s' % fmt) if n_fmt_chars == 1: if iscomplex_X: fmt = [' (%s+%sj)' % (fmt, fmt), ] * ncol else: fmt = [fmt, ] * ncol format = delimiter.join(fmt) elif iscomplex_X and n_fmt_chars != (2 * ncol): raise error elif ((not iscomplex_X) and n_fmt_chars != ncol): raise error else: format = fmt else: raise ValueError('invalid fmt: %r' % (fmt,)) if len(header) > 0: header = header.replace('\n', '\n' + comments) fh.write(asbytes(comments + header + newline)) if iscomplex_X: for row in X: row2 = [] for number in row: row2.append(number.real) row2.append(number.imag) fh.write(asbytes(format % tuple(row2) + newline)) else: for row in X: try: fh.write(asbytes(format % tuple(row) + newline)) except TypeError: raise TypeError("Mismatch between array dtype ('%s') and " "format specifier ('%s')" % (str(X.dtype), format)) if len(footer) > 0: footer = footer.replace('\n', '\n' + comments) fh.write(asbytes(comments + footer + newline)) finally: if own_fh: fh.close() def fromregex(file, regexp, dtype): """ Construct an array from a text file, using regular expression parsing. The returned array is always a structured array, and is constructed from all matches of the regular expression in the file. Groups in the regular expression are converted to fields of the structured array. Parameters ---------- file : str or file File name or file object to read. regexp : str or regexp Regular expression used to parse the file. Groups in the regular expression correspond to fields in the dtype. dtype : dtype or list of dtypes Dtype for the structured array. Returns ------- output : ndarray The output array, containing the part of the content of `file` that was matched by `regexp`. `output` is always a structured array. Raises ------ TypeError When `dtype` is not a valid dtype for a structured array. See Also -------- fromstring, loadtxt Notes ----- Dtypes for structured arrays can be specified in several forms, but all forms specify at least the data type and field name. For details see `doc.structured_arrays`. Examples -------- >>> f = open('test.dat', 'w') >>> f.write("1312 foo\\n1534 bar\\n444 qux") >>> f.close() >>> regexp = r"(\\d+)\\s+(...)" # match [digits, whitespace, anything] >>> output = np.fromregex('test.dat', regexp, ... [('num', np.int64), ('key', 'S3')]) >>> output array([(1312L, 'foo'), (1534L, 'bar'), (444L, 'qux')], dtype=[('num', '<i8'), ('key', '|S3')]) >>> output['num'] array([1312, 1534, 444], dtype=int64) """ own_fh = False if not hasattr(file, "read"): file = open(file, 'rb') own_fh = True try: if not hasattr(regexp, 'match'): regexp = re.compile(asbytes(regexp)) if not isinstance(dtype, np.dtype): dtype = np.dtype(dtype) seq = regexp.findall(file.read()) if seq and not isinstance(seq[0], tuple): # Only one group is in the regexp. # Create the new array as a single data-type and then # re-interpret as a single-field structured array. newdtype = np.dtype(dtype[dtype.names[0]]) output = np.array(seq, dtype=newdtype) output.dtype = dtype else: output = np.array(seq, dtype=dtype) return output finally: if own_fh: file.close() #####-------------------------------------------------------------------------- #---- --- ASCII functions --- #####-------------------------------------------------------------------------- def genfromtxt(fname, dtype=float, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=None, replace_space='_', autostrip=False, case_sensitive=True, defaultfmt="f%i", unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None): """ Load data from a text file, with missing values handled as specified. Each line past the first `skip_header` lines is split at the `delimiter` character, and characters following the `comments` character are discarded. Parameters ---------- fname : file, str, list of str, generator File, filename, list, or generator to read. If the filename extension is `.gz` or `.bz2`, the file is first decompressed. Mote that generators must return byte strings in Python 3k. The strings in a list or produced by a generator are treated as lines. dtype : dtype, optional Data type of the resulting array. If None, the dtypes will be determined by the contents of each column, individually. comments : str, optional The character used to indicate the start of a comment. All the characters occurring on a line after a comment are discarded delimiter : str, int, or sequence, optional The string used to separate values. By default, any consecutive whitespaces act as delimiter. An integer or sequence of integers can also be provided as width(s) of each field. skiprows : int, optional `skiprows` was removed in numpy 1.10. Please use `skip_header` instead. skip_header : int, optional The number of lines to skip at the beginning of the file. skip_footer : int, optional The number of lines to skip at the end of the file. converters : variable, optional The set of functions that convert the data of a column to a value. The converters can also be used to provide a default value for missing data: ``converters = {3: lambda s: float(s or 0)}``. missing : variable, optional `missing` was removed in numpy 1.10. Please use `missing_values` instead. missing_values : variable, optional The set of strings corresponding to missing data. filling_values : variable, optional The set of values to be used as default when the data are missing. usecols : sequence, optional Which columns to read, with 0 being the first. For example, ``usecols = (1, 4, 5)`` will extract the 2nd, 5th and 6th columns. names : {None, True, str, sequence}, optional If `names` is True, the field names are read from the first valid line after the first `skip_header` lines. If `names` is a sequence or a single-string of comma-separated names, the names will be used to define the field names in a structured dtype. If `names` is None, the names of the dtype fields will be used, if any. excludelist : sequence, optional A list of names to exclude. This list is appended to the default list ['return','file','print']. Excluded names are appended an underscore: for example, `file` would become `file_`. deletechars : str, optional A string combining invalid characters that must be deleted from the names. defaultfmt : str, optional A format used to define default field names, such as "f%i" or "f_%02i". autostrip : bool, optional Whether to automatically strip white spaces from the variables. replace_space : char, optional Character(s) used in replacement of white spaces in the variables names. By default, use a '_'. case_sensitive : {True, False, 'upper', 'lower'}, optional If True, field names are case sensitive. If False or 'upper', field names are converted to upper case. If 'lower', field names are converted to lower case. unpack : bool, optional If True, the returned array is transposed, so that arguments may be unpacked using ``x, y, z = loadtxt(...)`` usemask : bool, optional If True, return a masked array. If False, return a regular array. loose : bool, optional If True, do not raise errors for invalid values. invalid_raise : bool, optional If True, an exception is raised if an inconsistency is detected in the number of columns. If False, a warning is emitted and the offending lines are skipped. max_rows : int, optional The maximum number of rows to read. Must not be used with skip_footer at the same time. If given, the value must be at least 1. Default is to read the entire file. .. versionadded:: 1.10.0 Returns ------- out : ndarray Data read from the text file. If `usemask` is True, this is a masked array. See Also -------- numpy.loadtxt : equivalent function when no data is missing. Notes ----- * When spaces are used as delimiters, or when no delimiter has been given as input, there should not be any missing data between two fields. * When the variables are named (either by a flexible dtype or with `names`, there must not be any header in the file (else a ValueError exception is raised). * Individual values are not stripped of spaces by default. When using a custom converter, make sure the function does remove spaces. References ---------- .. [1] Numpy User Guide, section `I/O with Numpy <http://docs.scipy.org/doc/numpy/user/basics.io.genfromtxt.html>`_. Examples --------- >>> from io import StringIO >>> import numpy as np Comma delimited file with mixed dtype >>> s = StringIO("1,1.3,abcde") >>> data = np.genfromtxt(s, dtype=[('myint','i8'),('myfloat','f8'), ... ('mystring','S5')], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Using dtype = None >>> s.seek(0) # needed for StringIO example only >>> data = np.genfromtxt(s, dtype=None, ... names = ['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) Specifying dtype and names >>> s.seek(0) >>> data = np.genfromtxt(s, dtype="i8,f8,S5", ... names=['myint','myfloat','mystring'], delimiter=",") >>> data array((1, 1.3, 'abcde'), dtype=[('myint', '<i8'), ('myfloat', '<f8'), ('mystring', '|S5')]) An example with fixed-width columns >>> s = StringIO("11.3abcde") >>> data = np.genfromtxt(s, dtype=None, names=['intvar','fltvar','strvar'], ... delimiter=[1,3,5]) >>> data array((1, 1.3, 'abcde'), dtype=[('intvar', '<i8'), ('fltvar', '<f8'), ('strvar', '|S5')]) """ if max_rows is not None: if skip_footer: raise ValueError( "The keywords 'skip_footer' and 'max_rows' can not be " "specified at the same time.") if max_rows < 1: raise ValueError("'max_rows' must be at least 1.") # Py3 data conversions to bytes, for convenience if comments is not None: comments = asbytes(comments) if isinstance(delimiter, unicode): delimiter = asbytes(delimiter) if isinstance(missing_values, (unicode, list, tuple)): missing_values = asbytes_nested(missing_values) # if usemask: from numpy.ma import MaskedArray, make_mask_descr # Check the input dictionary of converters user_converters = converters or {} if not isinstance(user_converters, dict): raise TypeError( "The input argument 'converter' should be a valid dictionary " "(got '%s' instead)" % type(user_converters)) # Initialize the filehandle, the LineSplitter and the NameValidator own_fhd = False try: if isinstance(fname, basestring): if sys.version_info[0] == 2: fhd = iter(np.lib._datasource.open(fname, 'rbU')) else: fhd = iter(np.lib._datasource.open(fname, 'rb')) own_fhd = True else: fhd = iter(fname) except TypeError: raise TypeError( "fname must be a string, filehandle, list of strings, " "or generator. Got %s instead." % type(fname)) split_line = LineSplitter(delimiter=delimiter, comments=comments, autostrip=autostrip)._handyman validate_names = NameValidator(excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Skip the first `skip_header` rows for i in range(skip_header): next(fhd) # Keep on until we find the first valid values first_values = None try: while not first_values: first_line = next(fhd) if names is True: if comments in first_line: first_line = ( asbytes('').join(first_line.split(comments)[1:])) first_values = split_line(first_line) except StopIteration: # return an empty array if the datafile is empty first_line = asbytes('') first_values = [] warnings.warn('genfromtxt: Empty input file: "%s"' % fname) # Should we take the first values as names ? if names is True: fval = first_values[0].strip() if fval in comments: del first_values[0] # Check the columns to use: make sure `usecols` is a list if usecols is not None: try: usecols = [_.strip() for _ in usecols.split(",")] except AttributeError: try: usecols = list(usecols) except TypeError: usecols = [usecols, ] nbcols = len(usecols or first_values) # Check the names and overwrite the dtype.names if needed if names is True: names = validate_names([_bytes_to_name(_.strip()) for _ in first_values]) first_line = asbytes('') elif _is_string_like(names): names = validate_names([_.strip() for _ in names.split(',')]) elif names: names = validate_names(names) # Get the dtype if dtype is not None: dtype = easy_dtype(dtype, defaultfmt=defaultfmt, names=names, excludelist=excludelist, deletechars=deletechars, case_sensitive=case_sensitive, replace_space=replace_space) # Make sure the names is a list (for 2.5) if names is not None: names = list(names) if usecols: for (i, current) in enumerate(usecols): # if usecols is a list of names, convert to a list of indices if _is_string_like(current): usecols[i] = names.index(current) elif current < 0: usecols[i] = current + len(first_values) # If the dtype is not None, make sure we update it if (dtype is not None) and (len(dtype) > nbcols): descr = dtype.descr dtype = np.dtype([descr[_] for _ in usecols]) names = list(dtype.names) # If `names` is not None, update the names elif (names is not None) and (len(names) > nbcols): names = [names[_] for _ in usecols] elif (names is not None) and (dtype is not None): names = list(dtype.names) # Process the missing values ............................... # Rename missing_values for convenience user_missing_values = missing_values or () # Define the list of missing_values (one column: one list) missing_values = [list([asbytes('')]) for _ in range(nbcols)] # We have a dictionary: process it field by field if isinstance(user_missing_values, dict): # Loop on the items for (key, val) in user_missing_values.items(): # Is the key a string ? if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped continue # Redefine the key as needed if it's a column number if usecols: try: key = usecols.index(key) except ValueError: pass # Transform the value as a list of string if isinstance(val, (list, tuple)): val = [str(_) for _ in val] else: val = [str(val), ] # Add the value(s) to the current list of missing if key is None: # None acts as default for miss in missing_values: miss.extend(val) else: missing_values[key].extend(val) # We have a sequence : each item matches a column elif isinstance(user_missing_values, (list, tuple)): for (value, entry) in zip(user_missing_values, missing_values): value = str(value) if value not in entry: entry.append(value) # We have a string : apply it to all entries elif isinstance(user_missing_values, bytes): user_value = user_missing_values.split(asbytes(",")) for entry in missing_values: entry.extend(user_value) # We have something else: apply it to all entries else: for entry in missing_values: entry.extend([str(user_missing_values)]) # Process the filling_values ............................... # Rename the input for convenience user_filling_values = filling_values if user_filling_values is None: user_filling_values = [] # Define the default filling_values = [None] * nbcols # We have a dictionary : update each entry individually if isinstance(user_filling_values, dict): for (key, val) in user_filling_values.items(): if _is_string_like(key): try: # Transform it into an integer key = names.index(key) except ValueError: # We couldn't find it: the name must have been dropped, continue # Redefine the key if it's a column number and usecols is defined if usecols: try: key = usecols.index(key) except ValueError: pass # Add the value to the list filling_values[key] = val # We have a sequence : update on a one-to-one basis elif isinstance(user_filling_values, (list, tuple)): n = len(user_filling_values) if (n <= nbcols): filling_values[:n] = user_filling_values else: filling_values = user_filling_values[:nbcols] # We have something else : use it for all entries else: filling_values = [user_filling_values] * nbcols # Initialize the converters ................................ if dtype is None: # Note: we can't use a [...]*nbcols, as we would have 3 times the same # ... converter, instead of 3 different converters. converters = [StringConverter(None, missing_values=miss, default=fill) for (miss, fill) in zip(missing_values, filling_values)] else: dtype_flat = flatten_dtype(dtype, flatten_base=True) # Initialize the converters if len(dtype_flat) > 1: # Flexible type : get a converter from each dtype zipit = zip(dtype_flat, missing_values, filling_values) converters = [StringConverter(dt, locked=True, missing_values=miss, default=fill) for (dt, miss, fill) in zipit] else: # Set to a default converter (but w/ different missing values) zipit = zip(missing_values, filling_values) converters = [StringConverter(dtype, locked=True, missing_values=miss, default=fill) for (miss, fill) in zipit] # Update the converters to use the user-defined ones uc_update = [] for (j, conv) in user_converters.items(): # If the converter is specified by column names, use the index instead if _is_string_like(j): try: j = names.index(j) i = j except ValueError: continue elif usecols: try: i = usecols.index(j) except ValueError: # Unused converter specified continue else: i = j # Find the value to test - first_line is not filtered by usecols: if len(first_line): testing_value = first_values[j] else: testing_value = None converters[i].update(conv, locked=True, testing_value=testing_value, default=filling_values[i], missing_values=missing_values[i],) uc_update.append((i, conv)) # Make sure we have the corrected keys in user_converters... user_converters.update(uc_update) # Fixme: possible error as following variable never used. #miss_chars = [_.missing_values for _ in converters] # Initialize the output lists ... # ... rows rows = [] append_to_rows = rows.append # ... masks if usemask: masks = [] append_to_masks = masks.append # ... invalid invalid = [] append_to_invalid = invalid.append # Parse each line for (i, line) in enumerate(itertools.chain([first_line, ], fhd)): values = split_line(line) nbvalues = len(values) # Skip an empty line if nbvalues == 0: continue if usecols: # Select only the columns we need try: values = [values[_] for _ in usecols] except IndexError: append_to_invalid((i + skip_header + 1, nbvalues)) continue elif nbvalues != nbcols: append_to_invalid((i + skip_header + 1, nbvalues)) continue # Store the values append_to_rows(tuple(values)) if usemask: append_to_masks(tuple([v.strip() in m for (v, m) in zip(values, missing_values)])) if len(rows) == max_rows: break if own_fhd: fhd.close() # Upgrade the converters (if needed) if dtype is None: for (i, converter) in enumerate(converters): current_column = [itemgetter(i)(_m) for _m in rows] try: converter.iterupgrade(current_column) except ConverterLockError: errmsg = "Converter #%i is locked and cannot be upgraded: " % i current_column = map(itemgetter(i), rows) for (j, value) in enumerate(current_column): try: converter.upgrade(value) except (ConverterError, ValueError): errmsg += "(occurred line #%i for value '%s')" errmsg %= (j + 1 + skip_header, value) raise ConverterError(errmsg) # Check that we don't have invalid values nbinvalid = len(invalid) if nbinvalid > 0: nbrows = len(rows) + nbinvalid - skip_footer # Construct the error message template = " Line #%%i (got %%i columns instead of %i)" % nbcols if skip_footer > 0: nbinvalid_skipped = len([_ for _ in invalid if _[0] > nbrows + skip_header]) invalid = invalid[:nbinvalid - nbinvalid_skipped] skip_footer -= nbinvalid_skipped # # nbrows -= skip_footer # errmsg = [template % (i, nb) # for (i, nb) in invalid if i < nbrows] # else: errmsg = [template % (i, nb) for (i, nb) in invalid] if len(errmsg): errmsg.insert(0, "Some errors were detected !") errmsg = "\n".join(errmsg) # Raise an exception ? if invalid_raise: raise ValueError(errmsg) # Issue a warning ? else: warnings.warn(errmsg, ConversionWarning) # Strip the last skip_footer data if skip_footer > 0: rows = rows[:-skip_footer] if usemask: masks = masks[:-skip_footer] # Convert each value according to the converter: # We want to modify the list in place to avoid creating a new one... if loose: rows = list( zip(*[[conv._loose_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) else: rows = list( zip(*[[conv._strict_call(_r) for _r in map(itemgetter(i), rows)] for (i, conv) in enumerate(converters)])) # Reset the dtype data = rows if dtype is None: # Get the dtypes from the types of the converters column_types = [conv.type for conv in converters] # Find the columns with strings... strcolidx = [i for (i, v) in enumerate(column_types) if v in (type('S'), np.string_)] # ... and take the largest number of chars. for i in strcolidx: column_types[i] = "|S%i" % max(len(row[i]) for row in data) # if names is None: # If the dtype is uniform, don't define names, else use '' base = set([c.type for c in converters if c._checked]) if len(base) == 1: (ddtype, mdtype) = (list(base)[0], np.bool) else: ddtype = [(defaultfmt % i, dt) for (i, dt) in enumerate(column_types)] if usemask: mdtype = [(defaultfmt % i, np.bool) for (i, dt) in enumerate(column_types)] else: ddtype = list(zip(names, column_types)) mdtype = list(zip(names, [np.bool] * len(column_types))) output = np.array(data, dtype=ddtype) if usemask: outputmask = np.array(masks, dtype=mdtype) else: # Overwrite the initial dtype names if needed if names and dtype.names: dtype.names = names # Case 1. We have a structured type if len(dtype_flat) > 1: # Nested dtype, eg [('a', int), ('b', [('b0', int), ('b1', 'f4')])] # First, create the array using a flattened dtype: # [('a', int), ('b1', int), ('b2', float)] # Then, view the array using the specified dtype. if 'O' in (_.char for _ in dtype_flat): if has_nested_fields(dtype): raise NotImplementedError( "Nested fields involving objects are not supported...") else: output = np.array(data, dtype=dtype) else: rows = np.array(data, dtype=[('', _) for _ in dtype_flat]) output = rows.view(dtype) # Now, process the rowmasks the same way if usemask: rowmasks = np.array( masks, dtype=np.dtype([('', np.bool) for t in dtype_flat])) # Construct the new dtype mdtype = make_mask_descr(dtype) outputmask = rowmasks.view(mdtype) # Case #2. We have a basic dtype else: # We used some user-defined converters if user_converters: ishomogeneous = True descr = [] for i, ttype in enumerate([conv.type for conv in converters]): # Keep the dtype of the current converter if i in user_converters: ishomogeneous &= (ttype == dtype.type) if ttype == np.string_: ttype = "|S%i" % max(len(row[i]) for row in data) descr.append(('', ttype)) else: descr.append(('', dtype)) # So we changed the dtype ? if not ishomogeneous: # We have more than one field if len(descr) > 1: dtype = np.dtype(descr) # We have only one field: drop the name if not needed. else: dtype = np.dtype(ttype) # output = np.array(data, dtype) if usemask: if dtype.names: mdtype = [(_, np.bool) for _ in dtype.names] else: mdtype = np.bool outputmask = np.array(masks, dtype=mdtype) # Try to take care of the missing data we missed names = output.dtype.names if usemask and names: for (name, conv) in zip(names or (), converters): missing_values = [conv(_) for _ in conv.missing_values if _ != asbytes('')] for mval in missing_values: outputmask[name] |= (output[name] == mval) # Construct the final array if usemask: output = output.view(MaskedArray) output._mask = outputmask if unpack: return output.squeeze().T return output.squeeze() def ndfromtxt(fname, **kwargs): """ Load ASCII data stored in a file and return it as a single array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function. """ kwargs['usemask'] = False return genfromtxt(fname, **kwargs) def mafromtxt(fname, **kwargs): """ Load ASCII data stored in a text file and return a masked array. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. """ kwargs['usemask'] = True return genfromtxt(fname, **kwargs) def recfromtxt(fname, **kwargs): """ Load ASCII data from a file and return it in a record array. If ``usemask=False`` a standard `recarray` is returned, if ``usemask=True`` a MaskedRecords array is returned. Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ kwargs.setdefault("dtype", None) usemask = kwargs.get('usemask', False) output = genfromtxt(fname, **kwargs) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output def recfromcsv(fname, **kwargs): """ Load ASCII data stored in a comma-separated file. The returned array is a record array (if ``usemask=False``, see `recarray`) or a masked record array (if ``usemask=True``, see `ma.mrecords.MaskedRecords`). Parameters ---------- fname, kwargs : For a description of input parameters, see `genfromtxt`. See Also -------- numpy.genfromtxt : generic function to load ASCII data. Notes ----- By default, `dtype` is None, which means that the data-type of the output array will be determined from the data. """ # Set default kwargs for genfromtxt as relevant to csv import. kwargs.setdefault("case_sensitive", "lower") kwargs.setdefault("names", True) kwargs.setdefault("delimiter", ",") kwargs.setdefault("dtype", None) output = genfromtxt(fname, **kwargs) usemask = kwargs.get("usemask", False) if usemask: from numpy.ma.mrecords import MaskedRecords output = output.view(MaskedRecords) else: output = output.view(np.recarray) return output
bsd-2-clause
seckcoder/lang-learn
python/sklearn/examples/cluster/plot_kmeans_digits.py
3
4523
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example with compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print __doc__ from time import time import numpy as np import pylab as pl from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print "n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features) print 79 * '_' print ('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print '% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % ( name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size), ) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print 79 * '_' ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will asign a color to each x_min, x_max = reduced_data[:, 0].min() + 1, reduced_data[:, 0].max() - 1 y_min, y_max = reduced_data[:, 1].min() + 1, reduced_data[:, 1].max() - 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.figure(1) pl.clf() pl.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=pl.cm.Paired, aspect='auto', origin='lower') pl.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ pl.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) pl.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') pl.xlim(x_min, x_max) pl.ylim(y_min, y_max) pl.xticks(()) pl.yticks(()) pl.show()
unlicense
amozie/amozie
studzie/keras_gym/mountain_car_v0.py
1
2577
import numpy as np import matplotlib.pyplot as plt import gym import time import copy from keras.models import Sequential, Model from keras.layers import Dense, Activation, Flatten, Lambda, Input, Reshape, concatenate, Merge from keras.optimizers import Adam, RMSprop from keras.callbacks import History from keras import backend as K import tensorflow as tf from gym import Env, Space, spaces from gym.utils import seeding from rl.agents.dqn import DQNAgent from rl.policy import BoltzmannQPolicy, EpsGreedyQPolicy from rl.memory import SequentialMemory, EpisodeParameterMemory from rl.agents.cem import CEMAgent from rl.agents import SARSAAgent from rl.callbacks import TrainEpisodeLogger, CallbackList class MountainCarEnv(Env): metadata = {'render.modes': ['human', 'rgb_array']} def __init__(self) -> None: self.env = gym.make('MountainCar-v0') self.action_space = self.env.action_space self.observation_space = self.env.observation_space def _step(self, action): step = self.env.step(action) step = list(step) step[1] = np.abs(step[0][1]) - 0.05 return tuple(step) def _reset(self): return self.env.reset() def _seed(self, seed=None): return self.env.seed(seed) def _render(self, mode='human', close=False): return self.env.render(mode, close) def _close(self): return self.env.close() env = MountainCarEnv() env.seed() nb_actions = env.action_space.n x = Input((1,) + env.observation_space.shape) y = Flatten()(x) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(16)(y) y = Activation('relu')(y) y = Dense(nb_actions)(y) y = Activation('linear')(y) model = Model(x, y) memory = SequentialMemory(limit=10000, window_length=1) # policy = BoltzmannQPolicy() policy = EpsGreedyQPolicy() dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=1000, gamma=.9, batch_size=32, enable_dueling_network=False, dueling_type='avg', target_model_update=.1, policy=policy) dqn.compile(Adam(), metrics=['mae']) hist = dqn.fit(env, nb_steps=10000, visualize=False, verbose=2, callbacks=None) state = env.reset() action = env.action_space.sample() print(action) state_list= [] for i in range(500): action = np.argmax(dqn.model.predict(np.expand_dims(np.expand_dims(state, 0), 0))[0]) state, reward, done, _ = env.step(2) state_list.append(reward) env.render() env.render(close=True) dqn.test(env, nb_episodes=5, visualize=True) env.render(close=True)
apache-2.0
depet/scikit-learn
examples/plot_digits_classification.py
7
2231
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import pylab as pl # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, # let's have a look at the first 3 images, stored in the `images` # attribute of the dataset. If we were working from image files, we # could load them using pylab.imread. For these images know which # digit they represent: it is given in the 'target' of the dataset. for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]): pl.subplot(2, 4, index + 1) pl.axis('off') pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest') pl.title('Training: %i' % label) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) for index, (image, prediction) in enumerate( zip(digits.images[n_samples / 2:], predicted)[:4]): pl.subplot(2, 4, index + 5) pl.axis('off') pl.imshow(image, cmap=pl.cm.gray_r, interpolation='nearest') pl.title('Prediction: %i' % prediction) pl.show()
bsd-3-clause
anntzer/scikit-learn
sklearn/linear_model/_least_angle.py
3
71554
""" Least Angle Regression algorithm. See the documentation on the Generalized Linear Model for a complete discussion. """ # Author: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Gael Varoquaux # # License: BSD 3 clause from math import log import sys import warnings import numpy as np from scipy import linalg, interpolate from scipy.linalg.lapack import get_lapack_funcs from joblib import Parallel from ._base import LinearModel from ..base import RegressorMixin, MultiOutputMixin # mypy error: Module 'sklearn.utils' has no attribute 'arrayfuncs' from ..utils import arrayfuncs, as_float_array # type: ignore from ..utils import check_random_state from ..model_selection import check_cv from ..exceptions import ConvergenceWarning from ..utils.validation import _deprecate_positional_args from ..utils.fixes import delayed SOLVE_TRIANGULAR_ARGS = {'check_finite': False} @_deprecate_positional_args def lars_path( X, y, Xy=None, *, Gram=None, max_iter=500, alpha_min=0, method="lar", copy_X=True, eps=np.finfo(float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False ): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- X : None or array-like of shape (n_samples, n_features) Input data. Note that if X is None then the Gram matrix must be specified, i.e., cannot be None or False. y : None or array-like of shape (n_samples,) Input targets. Xy : array-like of shape (n_samples,) or (n_samples, n_targets), \ default=None Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. Gram : None, 'auto', array-like of shape (n_features, n_features), \ default=None Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. max_iter : int, default=500 Maximum number of iterations to perform, set to infinity for no limit. alpha_min : float, default=0 Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, default='lar' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. copy_X : bool, default=True If ``False``, ``X`` is overwritten. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_Gram : bool, default=True If ``False``, ``Gram`` is overwritten. verbose : int, default=0 Controls output verbosity. return_path : bool, default=True If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, default=False Whether to return the number of iterations. positive : bool, default=False Restrict coefficients to be >= 0. This option is only allowed with method 'lasso'. Note that the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. Returns ------- alphas : array-like of shape (n_alphas + 1,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array-like of shape (n_alphas,) Indices of active variables at the end of the path. coefs : array-like of shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See Also -------- lars_path_gram lasso_path lasso_path_gram LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <https://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <https://en.wikipedia.org/wiki/Lasso_(statistics)>`_ """ if X is None and Gram is not None: raise ValueError( 'X cannot be None if Gram is not None' 'Use lars_path_gram to avoid passing X and y.' ) return _lars_path_solver( X=X, y=y, Xy=Xy, Gram=Gram, n_samples=None, max_iter=max_iter, alpha_min=alpha_min, method=method, copy_X=copy_X, eps=eps, copy_Gram=copy_Gram, verbose=verbose, return_path=return_path, return_n_iter=return_n_iter, positive=positive) @_deprecate_positional_args def lars_path_gram( Xy, Gram, *, n_samples, max_iter=500, alpha_min=0, method="lar", copy_X=True, eps=np.finfo(float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False ): """lars_path in the sufficient stats mode [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- Xy : array-like of shape (n_samples,) or (n_samples, n_targets) Xy = np.dot(X.T, y). Gram : array-like of shape (n_features, n_features) Gram = np.dot(X.T * X). n_samples : int or float Equivalent size of sample. max_iter : int, default=500 Maximum number of iterations to perform, set to infinity for no limit. alpha_min : float, default=0 Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, default='lar' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. copy_X : bool, default=True If ``False``, ``X`` is overwritten. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_Gram : bool, default=True If ``False``, ``Gram`` is overwritten. verbose : int, default=0 Controls output verbosity. return_path : bool, default=True If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, default=False Whether to return the number of iterations. positive : bool, default=False Restrict coefficients to be >= 0. This option is only allowed with method 'lasso'. Note that the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. Returns ------- alphas : array-like of shape (n_alphas + 1,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array-like of shape (n_alphas,) Indices of active variables at the end of the path. coefs : array-like of shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See Also -------- lars_path lasso_path lasso_path_gram LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <https://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <https://en.wikipedia.org/wiki/Lasso_(statistics)>`_ """ return _lars_path_solver( X=None, y=None, Xy=Xy, Gram=Gram, n_samples=n_samples, max_iter=max_iter, alpha_min=alpha_min, method=method, copy_X=copy_X, eps=eps, copy_Gram=copy_Gram, verbose=verbose, return_path=return_path, return_n_iter=return_n_iter, positive=positive) def _lars_path_solver( X, y, Xy=None, Gram=None, n_samples=None, max_iter=500, alpha_min=0, method="lar", copy_X=True, eps=np.finfo(float).eps, copy_Gram=True, verbose=0, return_path=True, return_n_iter=False, positive=False, ): """Compute Least Angle Regression or Lasso path using LARS algorithm [1] The optimization objective for the case method='lasso' is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 in the case of method='lars', the objective function is only known in the form of an implicit equation (see discussion in [1]) Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- X : None or ndarray of shape (n_samples, n_features) Input data. Note that if X is None then Gram must be specified, i.e., cannot be None or False. y : None or ndarray of shape (n_samples,) Input targets. Xy : array-like of shape (n_samples,) or (n_samples, n_targets), \ default=None `Xy = np.dot(X.T, y)` that can be precomputed. It is useful only when the Gram matrix is precomputed. Gram : None, 'auto' or array-like of shape (n_features, n_features), \ default=None Precomputed Gram matrix `(X' * X)`, if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features. n_samples : int or float, default=None Equivalent size of sample. If `None`, it will be `n_samples`. max_iter : int, default=500 Maximum number of iterations to perform, set to infinity for no limit. alpha_min : float, default=0 Minimum correlation along the path. It corresponds to the regularization parameter alpha parameter in the Lasso. method : {'lar', 'lasso'}, default='lar' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. copy_X : bool, default=True If ``False``, ``X`` is overwritten. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_Gram : bool, default=True If ``False``, ``Gram`` is overwritten. verbose : int, default=0 Controls output verbosity. return_path : bool, default=True If ``return_path==True`` returns the entire path, else returns only the last point of the path. return_n_iter : bool, default=False Whether to return the number of iterations. positive : bool, default=False Restrict coefficients to be >= 0. This option is only allowed with method 'lasso'. Note that the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent lasso_path function. Returns ------- alphas : array-like of shape (n_alphas + 1,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. active : array-like of shape (n_alphas,) Indices of active variables at the end of the path. coefs : array-like of shape (n_features, n_alphas + 1) Coefficients along the path n_iter : int Number of iterations run. Returned only if return_n_iter is set to True. See Also -------- lasso_path LassoLars Lars LassoLarsCV LarsCV sklearn.decomposition.sparse_encode References ---------- .. [1] "Least Angle Regression", Efron et al. http://statweb.stanford.edu/~tibs/ftp/lars.pdf .. [2] `Wikipedia entry on the Least-angle regression <https://en.wikipedia.org/wiki/Least-angle_regression>`_ .. [3] `Wikipedia entry on the Lasso <https://en.wikipedia.org/wiki/Lasso_(statistics)>`_ """ if method == "lar" and positive: raise ValueError( "Positive constraint not supported for 'lar' " "coding method." ) n_samples = n_samples if n_samples is not None else y.size if Xy is None: Cov = np.dot(X.T, y) else: Cov = Xy.copy() if Gram is None or Gram is False: Gram = None if X is None: raise ValueError('X and Gram cannot both be unspecified.') elif isinstance(Gram, str) and Gram == 'auto' or Gram is True: if Gram is True or X.shape[0] > X.shape[1]: Gram = np.dot(X.T, X) else: Gram = None elif copy_Gram: Gram = Gram.copy() if Gram is None: n_features = X.shape[1] else: n_features = Cov.shape[0] if Gram.shape != (n_features, n_features): raise ValueError('The shapes of the inputs Gram and Xy' ' do not match.') if copy_X and X is not None and Gram is None: # force copy. setting the array to be fortran-ordered # speeds up the calculation of the (partial) Gram matrix # and allows to easily swap columns X = X.copy('F') max_features = min(max_iter, n_features) if return_path: coefs = np.zeros((max_features + 1, n_features)) alphas = np.zeros(max_features + 1) else: coef, prev_coef = np.zeros(n_features), np.zeros(n_features) alpha, prev_alpha = np.array([0.]), np.array([0.]) # better ideas? n_iter, n_active = 0, 0 active, indices = list(), np.arange(n_features) # holds the sign of covariance sign_active = np.empty(max_features, dtype=np.int8) drop = False # will hold the cholesky factorization. Only lower part is # referenced. if Gram is None: L = np.empty((max_features, max_features), dtype=X.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (X,)) else: L = np.empty((max_features, max_features), dtype=Gram.dtype) swap, nrm2 = linalg.get_blas_funcs(('swap', 'nrm2'), (Cov,)) solve_cholesky, = get_lapack_funcs(('potrs',), (L,)) if verbose: if verbose > 1: print("Step\t\tAdded\t\tDropped\t\tActive set size\t\tC") else: sys.stdout.write('.') sys.stdout.flush() tiny32 = np.finfo(np.float32).tiny # to avoid division by 0 warning equality_tolerance = np.finfo(np.float32).eps if Gram is not None: Gram_copy = Gram.copy() Cov_copy = Cov.copy() while True: if Cov.size: if positive: C_idx = np.argmax(Cov) else: C_idx = np.argmax(np.abs(Cov)) C_ = Cov[C_idx] if positive: C = C_ else: C = np.fabs(C_) else: C = 0. if return_path: alpha = alphas[n_iter, np.newaxis] coef = coefs[n_iter] prev_alpha = alphas[n_iter - 1, np.newaxis] prev_coef = coefs[n_iter - 1] alpha[0] = C / n_samples if alpha[0] <= alpha_min + equality_tolerance: # early stopping if abs(alpha[0] - alpha_min) > equality_tolerance: # interpolation factor 0 <= ss < 1 if n_iter > 0: # In the first iteration, all alphas are zero, the formula # below would make ss a NaN ss = ((prev_alpha[0] - alpha_min) / (prev_alpha[0] - alpha[0])) coef[:] = prev_coef + ss * (coef - prev_coef) alpha[0] = alpha_min if return_path: coefs[n_iter] = coef break if n_iter >= max_iter or n_active >= n_features: break if not drop: ########################################################## # Append x_j to the Cholesky factorization of (Xa * Xa') # # # # ( L 0 ) # # L -> ( ) , where L * w = Xa' x_j # # ( w z ) and z = ||x_j|| # # # ########################################################## if positive: sign_active[n_active] = np.ones_like(C_) else: sign_active[n_active] = np.sign(C_) m, n = n_active, C_idx + n_active Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) indices[n], indices[m] = indices[m], indices[n] Cov_not_shortened = Cov Cov = Cov[1:] # remove Cov[0] if Gram is None: X.T[n], X.T[m] = swap(X.T[n], X.T[m]) c = nrm2(X.T[n_active]) ** 2 L[n_active, :n_active] = \ np.dot(X.T[n_active], X.T[:n_active].T) else: # swap does only work inplace if matrix is fortran # contiguous ... Gram[m], Gram[n] = swap(Gram[m], Gram[n]) Gram[:, m], Gram[:, n] = swap(Gram[:, m], Gram[:, n]) c = Gram[n_active, n_active] L[n_active, :n_active] = Gram[n_active, :n_active] # Update the cholesky decomposition for the Gram matrix if n_active: linalg.solve_triangular(L[:n_active, :n_active], L[n_active, :n_active], trans=0, lower=1, overwrite_b=True, **SOLVE_TRIANGULAR_ARGS) v = np.dot(L[n_active, :n_active], L[n_active, :n_active]) diag = max(np.sqrt(np.abs(c - v)), eps) L[n_active, n_active] = diag if diag < 1e-7: # The system is becoming too ill-conditioned. # We have degenerate vectors in our active set. # We'll 'drop for good' the last regressor added. # Note: this case is very rare. It is no longer triggered by # the test suite. The `equality_tolerance` margin added in 0.16 # to get early stopping to work consistently on all versions of # Python including 32 bit Python under Windows seems to make it # very difficult to trigger the 'drop for good' strategy. warnings.warn('Regressors in active set degenerate. ' 'Dropping a regressor, after %i iterations, ' 'i.e. alpha=%.3e, ' 'with an active set of %i regressors, and ' 'the smallest cholesky pivot element being %.3e.' ' Reduce max_iter or increase eps parameters.' % (n_iter, alpha, n_active, diag), ConvergenceWarning) # XXX: need to figure a 'drop for good' way Cov = Cov_not_shortened Cov[0] = 0 Cov[C_idx], Cov[0] = swap(Cov[C_idx], Cov[0]) continue active.append(indices[n_active]) n_active += 1 if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, active[-1], '', n_active, C)) if method == 'lasso' and n_iter > 0 and prev_alpha[0] < alpha[0]: # alpha is increasing. This is because the updates of Cov are # bringing in too much numerical error that is greater than # than the remaining correlation with the # regressors. Time to bail out warnings.warn('Early stopping the lars path, as the residues ' 'are small and the current value of alpha is no ' 'longer well controlled. %i iterations, alpha=%.3e, ' 'previous alpha=%.3e, with an active set of %i ' 'regressors.' % (n_iter, alpha, prev_alpha, n_active), ConvergenceWarning) break # least squares solution least_squares, _ = solve_cholesky(L[:n_active, :n_active], sign_active[:n_active], lower=True) if least_squares.size == 1 and least_squares == 0: # This happens because sign_active[:n_active] = 0 least_squares[...] = 1 AA = 1. else: # is this really needed ? AA = 1. / np.sqrt(np.sum(least_squares * sign_active[:n_active])) if not np.isfinite(AA): # L is too ill-conditioned i = 0 L_ = L[:n_active, :n_active].copy() while not np.isfinite(AA): L_.flat[::n_active + 1] += (2 ** i) * eps least_squares, _ = solve_cholesky( L_, sign_active[:n_active], lower=True) tmp = max(np.sum(least_squares * sign_active[:n_active]), eps) AA = 1. / np.sqrt(tmp) i += 1 least_squares *= AA if Gram is None: # equiangular direction of variables in the active set eq_dir = np.dot(X.T[:n_active].T, least_squares) # correlation between each unactive variables and # eqiangular vector corr_eq_dir = np.dot(X.T[n_active:], eq_dir) else: # if huge number of features, this takes 50% of time, I # think could be avoided if we just update it using an # orthogonal (QR) decomposition of X corr_eq_dir = np.dot(Gram[:n_active, n_active:].T, least_squares) g1 = arrayfuncs.min_pos((C - Cov) / (AA - corr_eq_dir + tiny32)) if positive: gamma_ = min(g1, C / AA) else: g2 = arrayfuncs.min_pos((C + Cov) / (AA + corr_eq_dir + tiny32)) gamma_ = min(g1, g2, C / AA) # TODO: better names for these variables: z drop = False z = -coef[active] / (least_squares + tiny32) z_pos = arrayfuncs.min_pos(z) if z_pos < gamma_: # some coefficients have changed sign idx = np.where(z == z_pos)[0][::-1] # update the sign, important for LAR sign_active[idx] = -sign_active[idx] if method == 'lasso': gamma_ = z_pos drop = True n_iter += 1 if return_path: if n_iter >= coefs.shape[0]: del coef, alpha, prev_alpha, prev_coef # resize the coefs and alphas array add_features = 2 * max(1, (max_features - n_active)) coefs = np.resize(coefs, (n_iter + add_features, n_features)) coefs[-add_features:] = 0 alphas = np.resize(alphas, n_iter + add_features) alphas[-add_features:] = 0 coef = coefs[n_iter] prev_coef = coefs[n_iter - 1] else: # mimic the effect of incrementing n_iter on the array references prev_coef = coef prev_alpha[0] = alpha[0] coef = np.zeros_like(coef) coef[active] = prev_coef[active] + gamma_ * least_squares # update correlations Cov -= gamma_ * corr_eq_dir # See if any coefficient has changed sign if drop and method == 'lasso': # handle the case when idx is not length of 1 for ii in idx: arrayfuncs.cholesky_delete(L[:n_active, :n_active], ii) n_active -= 1 # handle the case when idx is not length of 1 drop_idx = [active.pop(ii) for ii in idx] if Gram is None: # propagate dropped variable for ii in idx: for i in range(ii, n_active): X.T[i], X.T[i + 1] = swap(X.T[i], X.T[i + 1]) # yeah this is stupid indices[i], indices[i + 1] = indices[i + 1], indices[i] # TODO: this could be updated residual = y - np.dot(X[:, :n_active], coef[active]) temp = np.dot(X.T[n_active], residual) Cov = np.r_[temp, Cov] else: for ii in idx: for i in range(ii, n_active): indices[i], indices[i + 1] = indices[i + 1], indices[i] Gram[i], Gram[i + 1] = swap(Gram[i], Gram[i + 1]) Gram[:, i], Gram[:, i + 1] = swap(Gram[:, i], Gram[:, i + 1]) # Cov_n = Cov_j + x_j * X + increment(betas) TODO: # will this still work with multiple drops ? # recompute covariance. Probably could be done better # wrong as Xy is not swapped with the rest of variables # TODO: this could be updated temp = Cov_copy[drop_idx] - np.dot(Gram_copy[drop_idx], coef) Cov = np.r_[temp, Cov] sign_active = np.delete(sign_active, idx) sign_active = np.append(sign_active, 0.) # just to maintain size if verbose > 1: print("%s\t\t%s\t\t%s\t\t%s\t\t%s" % (n_iter, '', drop_idx, n_active, abs(temp))) if return_path: # resize coefs in case of early stop alphas = alphas[:n_iter + 1] coefs = coefs[:n_iter + 1] if return_n_iter: return alphas, active, coefs.T, n_iter else: return alphas, active, coefs.T else: if return_n_iter: return alpha, active, coef, n_iter else: return alpha, active, coef ############################################################################### # Estimator classes class Lars(MultiOutputMixin, RegressorMixin, LinearModel): """Least Angle Regression model a.k.a. LAR Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). verbose : bool or int, default=False Sets the verbosity amount. normalize : bool, default=True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : bool, 'auto' or array-like , default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. n_nonzero_coefs : int, default=500 Target number of non-zero coefficients. Use ``np.inf`` for no limit. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_X : bool, default=True If ``True``, X will be copied; else, it may be overwritten. fit_path : bool, default=True If True the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. jitter : float, default=None Upper bound on a uniform noise parameter to be added to the `y` values, to satisfy the model's assumption of one-at-a-time computations. Might help with stability. .. versionadded:: 0.23 random_state : int, RandomState instance or None, default=None Determines random number generation for jittering. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Ignored if `jitter` is None. .. versionadded:: 0.23 Attributes ---------- alphas_ : array-like of shape (n_alphas + 1,) or list of such arrays Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. If this is a list of array-like, the length of the outer list is `n_targets`. active_ : list of shape (n_alphas,) or list of such lists Indices of active variables at the end of the path. If this is a list of list, the length of the outer list is `n_targets`. coef_path_ : array-like of shape (n_features, n_alphas + 1) or list \ of such arrays The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. If this is a list of array-like, the length of the outer list is `n_targets`. coef_ : array-like of shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float or array-like of shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> reg = linear_model.Lars(n_nonzero_coefs=1) >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) Lars(n_nonzero_coefs=1) >>> print(reg.coef_) [ 0. -1.11...] See Also -------- lars_path, LarsCV sklearn.decomposition.sparse_encode """ method = "lar" positive = False @_deprecate_positional_args def __init__(self, *, fit_intercept=True, verbose=False, normalize=True, precompute='auto', n_nonzero_coefs=500, eps=np.finfo(float).eps, copy_X=True, fit_path=True, jitter=None, random_state=None): self.fit_intercept = fit_intercept self.verbose = verbose self.normalize = normalize self.precompute = precompute self.n_nonzero_coefs = n_nonzero_coefs self.eps = eps self.copy_X = copy_X self.fit_path = fit_path self.jitter = jitter self.random_state = random_state @staticmethod def _get_gram(precompute, X, y): if (not hasattr(precompute, '__array__')) and ( (precompute is True) or (precompute == 'auto' and X.shape[0] > X.shape[1]) or (precompute == 'auto' and y.shape[1] > 1)): precompute = np.dot(X.T, X) return precompute def _fit(self, X, y, max_iter, alpha, fit_path, Xy=None): """Auxiliary method to fit the model using X, y as training data""" n_features = X.shape[1] X, y, X_offset, y_offset, X_scale = self._preprocess_data( X, y, self.fit_intercept, self.normalize, self.copy_X) if y.ndim == 1: y = y[:, np.newaxis] n_targets = y.shape[1] Gram = self._get_gram(self.precompute, X, y) self.alphas_ = [] self.n_iter_ = [] self.coef_ = np.empty((n_targets, n_features)) if fit_path: self.active_ = [] self.coef_path_ = [] for k in range(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, active, coef_path, n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=True, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.active_.append(active) self.n_iter_.append(n_iter_) self.coef_path_.append(coef_path) self.coef_[k] = coef_path[:, -1] if n_targets == 1: self.alphas_, self.active_, self.coef_path_, self.coef_ = [ a[0] for a in (self.alphas_, self.active_, self.coef_path_, self.coef_)] self.n_iter_ = self.n_iter_[0] else: for k in range(n_targets): this_Xy = None if Xy is None else Xy[:, k] alphas, _, self.coef_[k], n_iter_ = lars_path( X, y[:, k], Gram=Gram, Xy=this_Xy, copy_X=self.copy_X, copy_Gram=True, alpha_min=alpha, method=self.method, verbose=max(0, self.verbose - 1), max_iter=max_iter, eps=self.eps, return_path=False, return_n_iter=True, positive=self.positive) self.alphas_.append(alphas) self.n_iter_.append(n_iter_) if n_targets == 1: self.alphas_ = self.alphas_[0] self.n_iter_ = self.n_iter_[0] self._set_intercept(X_offset, y_offset, X_scale) return self def fit(self, X, y, Xy=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Xy : array-like of shape (n_samples,) or (n_samples, n_targets), \ default=None Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. Returns ------- self : object returns an instance of self. """ X, y = self._validate_data(X, y, y_numeric=True, multi_output=True) alpha = getattr(self, 'alpha', 0.) if hasattr(self, 'n_nonzero_coefs'): alpha = 0. # n_nonzero_coefs parametrization takes priority max_iter = self.n_nonzero_coefs else: max_iter = self.max_iter if self.jitter is not None: rng = check_random_state(self.random_state) noise = rng.uniform(high=self.jitter, size=len(y)) y = y + noise self._fit(X, y, max_iter=max_iter, alpha=alpha, fit_path=self.fit_path, Xy=Xy) return self class LassoLars(Lars): """Lasso model fit with Least Angle Regression a.k.a. Lars It is a Linear Model trained with an L1 prior as regularizer. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- alpha : float, default=1.0 Constant that multiplies the penalty term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by :class:`LinearRegression`. For numerical reasons, using ``alpha = 0`` with the LassoLars object is not advised and you should prefer the LinearRegression object. fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). verbose : bool or int, default=False Sets the verbosity amount. normalize : bool, default=True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : bool, 'auto' or array-like, default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, default=500 Maximum number of iterations to perform. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. fit_path : bool, default=True If ``True`` the full path is stored in the ``coef_path_`` attribute. If you compute the solution for a large problem or many targets, setting ``fit_path`` to ``False`` will lead to a speedup, especially with a small alpha. positive : bool, default=False Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients will not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. jitter : float, default=None Upper bound on a uniform noise parameter to be added to the `y` values, to satisfy the model's assumption of one-at-a-time computations. Might help with stability. .. versionadded:: 0.23 random_state : int, RandomState instance or None, default=None Determines random number generation for jittering. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. Ignored if `jitter` is None. .. versionadded:: 0.23 Attributes ---------- alphas_ : array-like of shape (n_alphas + 1,) or list of such arrays Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. If this is a list of array-like, the length of the outer list is `n_targets`. active_ : list of length n_alphas or list of such lists Indices of active variables at the end of the path. If this is a list of list, the length of the outer list is `n_targets`. coef_path_ : array-like of shape (n_features, n_alphas + 1) or list \ of such arrays If a list is passed it's expected to be one of n_targets such arrays. The varying values of the coefficients along the path. It is not present if the ``fit_path`` parameter is ``False``. If this is a list of array-like, the length of the outer list is `n_targets`. coef_ : array-like of shape (n_features,) or (n_targets, n_features) Parameter vector (w in the formulation formula). intercept_ : float or array-like of shape (n_targets,) Independent term in decision function. n_iter_ : array-like or int The number of iterations taken by lars_path to find the grid of alphas for each target. Examples -------- >>> from sklearn import linear_model >>> reg = linear_model.LassoLars(alpha=0.01) >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1, 0, -1]) LassoLars(alpha=0.01) >>> print(reg.coef_) [ 0. -0.963257...] See Also -------- lars_path lasso_path Lasso LassoCV LassoLarsCV LassoLarsIC sklearn.decomposition.sparse_encode """ method = 'lasso' @_deprecate_positional_args def __init__(self, alpha=1.0, *, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(float).eps, copy_X=True, fit_path=True, positive=False, jitter=None, random_state=None): self.alpha = alpha self.fit_intercept = fit_intercept self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.positive = positive self.precompute = precompute self.copy_X = copy_X self.eps = eps self.fit_path = fit_path self.jitter = jitter self.random_state = random_state ############################################################################### # Cross-validated estimator classes def _check_copy_and_writeable(array, copy=False): if copy or not array.flags.writeable: return array.copy() return array def _lars_path_residues(X_train, y_train, X_test, y_test, Gram=None, copy=True, method='lars', verbose=False, fit_intercept=True, normalize=True, max_iter=500, eps=np.finfo(float).eps, positive=False): """Compute the residues on left-out data for a full LARS path Parameters ----------- X_train : array-like of shape (n_samples, n_features) The data to fit the LARS on y_train : array-like of shape (n_samples,) The target variable to fit LARS on X_test : array-like of shape (n_samples, n_features) The data to compute the residues on y_test : array-like of shape (n_samples,) The target variable to compute the residues on Gram : None, 'auto' or array-like of shape (n_features, n_features), \ default=None Precomputed Gram matrix (X' * X), if ``'auto'``, the Gram matrix is precomputed from the given X, if there are more samples than features copy : bool, default=True Whether X_train, X_test, y_train and y_test should be copied; if False, they may be overwritten. method : {'lar' , 'lasso'}, default='lar' Specifies the returned model. Select ``'lar'`` for Least Angle Regression, ``'lasso'`` for the Lasso. verbose : bool or int, default=False Sets the amount of verbosity fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). positive : bool, default=False Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. See reservations for using this option in combination with method 'lasso' for expected small values of alpha in the doc of LassoLarsCV and LassoLarsIC. normalize : bool, default=True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. max_iter : int, default=500 Maximum number of iterations to perform. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. Returns -------- alphas : array-like of shape (n_alphas,) Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter`` or ``n_features``, whichever is smaller. active : list Indices of active variables at the end of the path. coefs : array-like of shape (n_features, n_alphas) Coefficients along the path residues : array-like of shape (n_alphas, n_samples) Residues of the prediction on the test data """ X_train = _check_copy_and_writeable(X_train, copy) y_train = _check_copy_and_writeable(y_train, copy) X_test = _check_copy_and_writeable(X_test, copy) y_test = _check_copy_and_writeable(y_test, copy) if fit_intercept: X_mean = X_train.mean(axis=0) X_train -= X_mean X_test -= X_mean y_mean = y_train.mean(axis=0) y_train = as_float_array(y_train, copy=False) y_train -= y_mean y_test = as_float_array(y_test, copy=False) y_test -= y_mean if normalize: norms = np.sqrt(np.sum(X_train ** 2, axis=0)) nonzeros = np.flatnonzero(norms) X_train[:, nonzeros] /= norms[nonzeros] alphas, active, coefs = lars_path( X_train, y_train, Gram=Gram, copy_X=False, copy_Gram=False, method=method, verbose=max(0, verbose - 1), max_iter=max_iter, eps=eps, positive=positive) if normalize: coefs[nonzeros] /= norms[nonzeros][:, np.newaxis] residues = np.dot(X_test, coefs) - y_test[:, np.newaxis] return alphas, active, coefs, residues.T class LarsCV(Lars): """Cross-validated Least Angle Regression model. See glossary entry for :term:`cross-validation estimator`. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). verbose : bool or int, default=False Sets the verbosity amount. max_iter : int, default=500 Maximum number of iterations to perform. normalize : bool, default=True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : bool, 'auto' or array-like , default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix cannot be passed as argument since we will use only subsets of X. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. max_n_alphas : int, default=1000 The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : int or None, default=None Number of CPUs to use during the cross validation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_X : bool, default=True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- active_ : list of length n_alphas or list of such lists Indices of active variables at the end of the path. If this is a list of lists, the outer list length is `n_targets`. coef_ : array-like of shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function coef_path_ : array-like of shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array-like of shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array-like of shape (n_cv_alphas,) all the values of alpha along the path for the different folds mse_path_ : array-like of shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. Examples -------- >>> from sklearn.linear_model import LarsCV >>> from sklearn.datasets import make_regression >>> X, y = make_regression(n_samples=200, noise=4.0, random_state=0) >>> reg = LarsCV(cv=5).fit(X, y) >>> reg.score(X, y) 0.9996... >>> reg.alpha_ 0.0254... >>> reg.predict(X[:1,]) array([154.0842...]) See Also -------- lars_path, LassoLars, LassoLarsCV """ method = "lar" @_deprecate_positional_args def __init__(self, *, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=None, eps=np.finfo(float).eps, copy_X=True): self.max_iter = max_iter self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs super().__init__(fit_intercept=fit_intercept, verbose=verbose, normalize=normalize, precompute=precompute, n_nonzero_coefs=500, eps=eps, copy_X=copy_X, fit_path=True) def _more_tags(self): return {'multioutput': False} def fit(self, X, y): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. Returns ------- self : object returns an instance of self. """ X, y = self._validate_data(X, y, y_numeric=True) X = as_float_array(X, copy=self.copy_X) y = as_float_array(y, copy=self.copy_X) # init cross-validation generator cv = check_cv(self.cv, classifier=False) # As we use cross-validation, the Gram matrix is not precomputed here Gram = self.precompute if hasattr(Gram, '__array__'): warnings.warn('Parameter "precompute" cannot be an array in ' '%s. Automatically switch to "auto" instead.' % self.__class__.__name__) Gram = 'auto' cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)( delayed(_lars_path_residues)( X[train], y[train], X[test], y[test], Gram=Gram, copy=False, method=self.method, verbose=max(0, self.verbose - 1), normalize=self.normalize, fit_intercept=self.fit_intercept, max_iter=self.max_iter, eps=self.eps, positive=self.positive) for train, test in cv.split(X, y)) all_alphas = np.concatenate(list(zip(*cv_paths))[0]) # Unique also sorts all_alphas = np.unique(all_alphas) # Take at most max_n_alphas values stride = int(max(1, int(len(all_alphas) / float(self.max_n_alphas)))) all_alphas = all_alphas[::stride] mse_path = np.empty((len(all_alphas), len(cv_paths))) for index, (alphas, _, _, residues) in enumerate(cv_paths): alphas = alphas[::-1] residues = residues[::-1] if alphas[0] != 0: alphas = np.r_[0, alphas] residues = np.r_[residues[0, np.newaxis], residues] if alphas[-1] != all_alphas[-1]: alphas = np.r_[alphas, all_alphas[-1]] residues = np.r_[residues, residues[-1, np.newaxis]] this_residues = interpolate.interp1d(alphas, residues, axis=0)(all_alphas) this_residues **= 2 mse_path[:, index] = np.mean(this_residues, axis=-1) mask = np.all(np.isfinite(mse_path), axis=-1) all_alphas = all_alphas[mask] mse_path = mse_path[mask] # Select the alpha that minimizes left-out error i_best_alpha = np.argmin(mse_path.mean(axis=-1)) best_alpha = all_alphas[i_best_alpha] # Store our parameters self.alpha_ = best_alpha self.cv_alphas_ = all_alphas self.mse_path_ = mse_path # Now compute the full model # it will call a lasso internally when self if LassoLarsCV # as self.method == 'lasso' self._fit(X, y, max_iter=self.max_iter, alpha=best_alpha, Xy=None, fit_path=True) return self class LassoLarsCV(LarsCV): """Cross-validated Lasso, using the LARS algorithm. See glossary entry for :term:`cross-validation estimator`. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). verbose : bool or int, default=False Sets the verbosity amount. max_iter : int, default=500 Maximum number of iterations to perform. normalize : bool, default=True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : bool or 'auto' , default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix cannot be passed as argument since we will use only subsets of X. cv : int, cross-validation generator or an iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 5-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. .. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold. max_n_alphas : int, default=1000 The maximum number of points on the path used to compute the residuals in the cross-validation n_jobs : int or None, default=None Number of CPUs to use during the cross validation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. positive : bool, default=False Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsCV only makes sense for problems where a sparse solution is expected and/or reached. Attributes ---------- coef_ : array-like of shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. coef_path_ : array-like of shape (n_features, n_alphas) the varying values of the coefficients along the path alpha_ : float the estimated regularization parameter alpha alphas_ : array-like of shape (n_alphas,) the different values of alpha along the path cv_alphas_ : array-like of shape (n_cv_alphas,) all the values of alpha along the path for the different folds mse_path_ : array-like of shape (n_folds, n_cv_alphas) the mean square error on left-out for each fold along the path (alpha values given by ``cv_alphas``) n_iter_ : array-like or int the number of iterations run by Lars with the optimal alpha. active_ : list of int Indices of active variables at the end of the path. Examples -------- >>> from sklearn.linear_model import LassoLarsCV >>> from sklearn.datasets import make_regression >>> X, y = make_regression(noise=4.0, random_state=0) >>> reg = LassoLarsCV(cv=5).fit(X, y) >>> reg.score(X, y) 0.9992... >>> reg.alpha_ 0.0484... >>> reg.predict(X[:1,]) array([-77.8723...]) Notes ----- The object solves the same problem as the LassoCV object. However, unlike the LassoCV, it find the relevant alphas values by itself. In general, because of this property, it will be more stable. However, it is more fragile to heavily multicollinear datasets. It is more efficient than the LassoCV if only a small number of features are selected compared to the total number, for instance if there are very few samples compared to the number of features. See Also -------- lars_path, LassoLars, LarsCV, LassoCV """ method = 'lasso' @_deprecate_positional_args def __init__(self, *, fit_intercept=True, verbose=False, max_iter=500, normalize=True, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=None, eps=np.finfo(float).eps, copy_X=True, positive=False): self.fit_intercept = fit_intercept self.verbose = verbose self.max_iter = max_iter self.normalize = normalize self.precompute = precompute self.cv = cv self.max_n_alphas = max_n_alphas self.n_jobs = n_jobs self.eps = eps self.copy_X = copy_X self.positive = positive # XXX : we don't use super().__init__ # to avoid setting n_nonzero_coefs class LassoLarsIC(LassoLars): """Lasso model fit with Lars using BIC or AIC for model selection The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 AIC is the Akaike information criterion and BIC is the Bayes Information criterion. Such criteria are useful to select the value of the regularization parameter by making a trade-off between the goodness of fit and the complexity of the model. A good model should explain well the data while being simple. Read more in the :ref:`User Guide <least_angle_regression>`. Parameters ---------- criterion : {'bic' , 'aic'}, default='aic' The type of criterion to use. fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered). verbose : bool or int, default=False Sets the verbosity amount. normalize : bool, default=True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`~sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``. precompute : bool, 'auto' or array-like, default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, default=500 Maximum number of iterations to perform. Can be used for early stopping. eps : float, default=np.finfo(float).eps The machine-precision regularization in the computation of the Cholesky diagonal factors. Increase this for very ill-conditioned systems. Unlike the ``tol`` parameter in some iterative optimization-based algorithms, this parameter does not control the tolerance of the optimization. copy_X : bool, default=True If True, X will be copied; else, it may be overwritten. positive : bool, default=False Restrict coefficients to be >= 0. Be aware that you might want to remove fit_intercept which is set True by default. Under the positive restriction the model coefficients do not converge to the ordinary-least-squares solution for small values of alpha. Only coefficients up to the smallest alpha value (``alphas_[alphas_ > 0.].min()`` when fit_path=True) reached by the stepwise Lars-Lasso algorithm are typically in congruence with the solution of the coordinate descent Lasso estimator. As a consequence using LassoLarsIC only makes sense for problems where a sparse solution is expected and/or reached. Attributes ---------- coef_ : array-like of shape (n_features,) parameter vector (w in the formulation formula) intercept_ : float independent term in decision function. alpha_ : float the alpha parameter chosen by the information criterion alphas_ : array-like of shape (n_alphas + 1,) or list of such arrays Maximum of covariances (in absolute value) at each iteration. ``n_alphas`` is either ``max_iter``, ``n_features`` or the number of nodes in the path with ``alpha >= alpha_min``, whichever is smaller. If a list, it will be of length `n_targets`. n_iter_ : int number of iterations run by lars_path to find the grid of alphas. criterion_ : array-like of shape (n_alphas,) The value of the information criteria ('aic', 'bic') across all alphas. The alpha which has the smallest information criterion is chosen. This value is larger by a factor of ``n_samples`` compared to Eqns. 2.15 and 2.16 in (Zou et al, 2007). Examples -------- >>> from sklearn import linear_model >>> reg = linear_model.LassoLarsIC(criterion='bic') >>> reg.fit([[-1, 1], [0, 0], [1, 1]], [-1.1111, 0, -1.1111]) LassoLarsIC(criterion='bic') >>> print(reg.coef_) [ 0. -1.11...] Notes ----- The estimation of the number of degrees of freedom is given by: "On the degrees of freedom of the lasso" Hui Zou, Trevor Hastie, and Robert Tibshirani Ann. Statist. Volume 35, Number 5 (2007), 2173-2192. https://en.wikipedia.org/wiki/Akaike_information_criterion https://en.wikipedia.org/wiki/Bayesian_information_criterion See Also -------- lars_path, LassoLars, LassoLarsCV """ @_deprecate_positional_args def __init__(self, criterion='aic', *, fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=np.finfo(float).eps, copy_X=True, positive=False): self.criterion = criterion self.fit_intercept = fit_intercept self.positive = positive self.max_iter = max_iter self.verbose = verbose self.normalize = normalize self.copy_X = copy_X self.precompute = precompute self.eps = eps self.fit_path = True def _more_tags(self): return {'multioutput': False} def fit(self, X, y, copy_X=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples, n_features) training data. y : array-like of shape (n_samples,) target values. Will be cast to X's dtype if necessary copy_X : bool, default=None If provided, this parameter will override the choice of copy_X made at instance creation. If ``True``, X will be copied; else, it may be overwritten. Returns ------- self : object returns an instance of self. """ if copy_X is None: copy_X = self.copy_X X, y = self._validate_data(X, y, y_numeric=True) X, y, Xmean, ymean, Xstd = LinearModel._preprocess_data( X, y, self.fit_intercept, self.normalize, copy_X) Gram = self.precompute alphas_, _, coef_path_, self.n_iter_ = lars_path( X, y, Gram=Gram, copy_X=copy_X, copy_Gram=True, alpha_min=0.0, method='lasso', verbose=self.verbose, max_iter=self.max_iter, eps=self.eps, return_n_iter=True, positive=self.positive) n_samples = X.shape[0] if self.criterion == 'aic': K = 2 # AIC elif self.criterion == 'bic': K = log(n_samples) # BIC else: raise ValueError('criterion should be either bic or aic') R = y[:, np.newaxis] - np.dot(X, coef_path_) # residuals mean_squared_error = np.mean(R ** 2, axis=0) sigma2 = np.var(y) df = np.zeros(coef_path_.shape[1], dtype=int) # Degrees of freedom for k, coef in enumerate(coef_path_.T): mask = np.abs(coef) > np.finfo(coef.dtype).eps if not np.any(mask): continue # get the number of degrees of freedom equal to: # Xc = X[:, mask] # Trace(Xc * inv(Xc.T, Xc) * Xc.T) ie the number of non-zero coefs df[k] = np.sum(mask) self.alphas_ = alphas_ eps64 = np.finfo('float64').eps self.criterion_ = (n_samples * mean_squared_error / (sigma2 + eps64) + K * df) # Eqns. 2.15--16 in (Zou et al, 2007) n_best = np.argmin(self.criterion_) self.alpha_ = alphas_[n_best] self.coef_ = coef_path_[:, n_best] self._set_intercept(Xmean, ymean, Xstd) return self
bsd-3-clause
jeffersonfparil/GTWAS_POOL_RADseq_SIM
BACKUP_SCRIPTS_20170930/assignPheno.py
1
4355
#!/usr/bin/env python import os, subprocess, sys, math import numpy as np import matplotlib.pyplot as plt work_DIR = sys.argv[1] genoFile = sys.argv[2] nQTL = int(sys.argv[3]) heritability = float(sys.argv[4]) model = int(sys.argv[5]) os.chdir(work_DIR) if model == 1: ################################################# # MODEL 1: additive effects alone # y = Xb + e; e~N(0, Ve); Ve=Vg(1/1-h^2); Vg=sum(cor(Xq)bqbq')/4 ################################################# GEN = np.genfromtxt(genoFile, delimiter='\t', skip_header=1) nLOCI = GEN.shape[0] nIND = GEN.shape[1] QTL_locations = np.random.choice(range(0, nLOCI), replace=False, size=nQTL) QTL_locations.sort() # DEFINING THE DISTRIBUTIONS OF THE EFFECTS: mean_QTL = 100/(2*nQTL); var_QTL = 2 #normal QTL effects #QTL effects: QTL_effects = np.random.normal(mean_QTL, np.sqrt(var_QTL), size=nQTL) #for a mean QTL effect of ~5 and ~mean phenotypic value of 50 QTL_OUT = np.column_stack((QTL_locations, QTL_effects)) #for writing out ########################################## X=np.transpose(GEN) GFX=QTL_effects nFX=nQTL h2=heritability #partionning the variance taking into account the linkage among associated SNPs AssoX=X[:,QTL_locations] Rho=np.corrcoef(AssoX,rowvar=0) XtX=GFX.reshape(1,nFX)*GFX.reshape(nFX,1) #GFX * GFX' (nFXxnFX dimensions) Vg=np.sum(Rho*XtX)/4 Ve=Vg*(1/h2-1) #Generating the phenotypes based on the variance components Xb=np.matmul(AssoX, GFX) #alpha e=np.random.normal(0,Ve**(0.5),nIND) Y_model1=Xb+e #OUTPUT np.savetxt("Simulated_Lolium_perenne_QTL.out", QTL_OUT, fmt='%s' ,delimiter="\t") np.savetxt("Simulated_Lolium_perenne_PHENOTYPES.data", Y_model1, fmt='%s' ,delimiter="\t") elif model == 2: ################################################# &#### FIX ME!!!! Y_model2 is giving me the middle finger! ;-P # MODEL 2: additive genetic effects + transcript levels # y = Xg + Ba + Zt + e; e~N(0,Ve); Ve = (Vg+Vt)(1/1-h^2) ################################################# transBase = sys.argv[6] transGeno = sys.argv[7] GEN = np.genfromtxt(genoFile, delimiter='\t', skip_header=1) T_base = np.genfromtxt(transBase, delimiter='\t', dtype=int) T_geno = np.genfromtxt(transGeno, delimiter='\t', dtype=int) nLOCI = GEN.shape[0] nIND = GEN.shape[1] nTRANS = len(T_base) QTL_locations = np.random.choice(range(0, nLOCI), replace=False, size=nQTL) QTL_locations.sort() # DEFINING THE DISTRIBUTIONS OF THE EFFECTS: mean_QTL = 100/(2*nQTL); var_QTL = 2 #normal QTL effects mean_bT = (mean_QTL /4); var_bT = 1 #normal base trancript level effects mean_gT = (mean_QTL /2); var_gT = 1 #normal genotype-specific trancript level effecs #QTL effects: QTL_effects = np.random.normal(mean_QTL, np.sqrt(var_QTL), size=nQTL) #for a mean QTL effect of ~5 and ~mean phenotypic value of 50 QTL_OUT = np.column_stack((QTL_locations, QTL_effects)) #for writing out #Transcript Base-levels effects: nCausalTrans = int(np.ceil(np.random.normal(nQTL, 1, size=1))[0]) #number of transcripts that affect the phenotype locCausalTrans = np.random.choice(nTRANS, size=nCausalTrans, replace=False) # (i.)base-level effects: T_base_effects = np.random.normal(mean_bT, np.sqrt(var_bT), size=nCausalTrans) # (ii.)genotype-specific level effects: T_geno_effects = np.random.normal(mean_gT, np.sqrt(var_gT), size=nCausalTrans) ########################################## X=np.transpose(GEN) GFX=QTL_effects nFX=nQTL h2=heritability T0 = T_base T1 = T_geno t0FX = np.zeros((nTRANS,1)); t0FX[locCausalTrans,0] = T_base_effects t1FX = np.zeros((nTRANS,1)); t1FX[locCausalTrans,0] = T_geno_effects #variance partitioning adding Vg with Vt--> variation due to genotype-specific transcripts abundance AssoZ=T1[:,locCausalTrans] Rho=np.corrcoef(AssoZ,rowvar=0) ZtZ=T_geno_effects.reshape(1,nCausalTrans)*T_geno_effects.reshape(nCausalTrans,1) Vt=np.sum(Rho*ZtZ)/4 Vet=(Vg+Vt)*(1/h2-1) #generating the phenotypes using the new residual distribution et:Vet Xg = np.matmul(X[:,QTL_locations], GFX) Ba = np.sum(T0[locCausalTrans]*T_base_effects) Zt = np.matmul(T1, t1FX) et=np.random.normal(0,Vet**(0.5),nIND) Y_model2 = Xg + Ba + Zt[:,0] + et #OUTPUT np.savetxt("Simulated_Lolium_perenne_QTL.out", QTL_OUT, fmt='%s' ,delimiter="\t") np.savetxt("Simulated_Lolium_perenne_PHENOTYPES.data", Y_model1, fmt='%s' ,delimiter="\t")
gpl-3.0
suyashbire1/pyhton_scripts_mom6
plot_twapv_budget_complete.py
1
18150
import sys import readParams_moreoptions as rdp1 import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as ticker from mom_plot1 import m6plot, xdegtokm import numpy as np from netCDF4 import MFDataset as mfdset, Dataset as dset import time from plot_twamomx_budget_complete_direct_newest import extract_twamomx_terms from plot_twamomy_budget_complete_direct_newest import extract_twamomy_terms import pyximport pyximport.install() from getvaratzc import getvaratzc5, getvaratzc def getutwa(fhgeo, fh, fh2, sl): dt = fh.variables['average_DT'][:] dt = dt[:,np.newaxis,np.newaxis,np.newaxis] uh = (fh.variables['uh_masked'][sl].filled(0)*dt).sum(axis=0,keepdims=True)/np.sum(dt) h_cu = fh.variables['h_Cu'][sl].filled(0).mean(axis=0,keepdims=True) h_cu = np.ma.masked_array(h_cu,mask=(h_cu<1e-3)) dycu = fhgeo.variables['dyCu'][sl[2:]] utwa = uh/h_cu/dycu return utwa, h_cu def getvtwa(fhgeo, fh, fh2, sl): dt = fh.variables['average_DT'][:] dt = dt[:,np.newaxis,np.newaxis,np.newaxis] vh = (fh.variables['vh_masked'][sl]*dt).sum(axis=0,keepdims=True)/np.sum(dt) h_cv = fh.variables['h_Cv'][sl].mean(axis=0,keepdims=True) h_cv = np.ma.masked_array(h_cv,mask=(h_cv<1e-3)) dxcv = fhgeo.variables['dxCv'][sl[2:]] vtwa = vh/dxcv/h_cv vtwa = np.concatenate((vtwa,-vtwa[:,:,:,-1:]),axis=3) h_cv = np.concatenate((h_cv,h_cv[:,:,:,-1:]),axis=3) return vtwa, h_cv def getpv(fhgeo, fh, fh2, xs, xe, ys, ye, zs=0, ze=None): sl = np.s_[:,zs:ze,ys:ye,xs:xe] slpy = np.s_[:,zs:ze,ys:ye+1,xs:xe] utwa,h_cu = getutwa(fhgeo, fh, fh2, slpy) dybu = fhgeo.variables['dyBu'][sl[2:]] utway = np.diff(utwa,axis=2)/dybu vtwa,h_cv = getvtwa(fhgeo, fh, fh2, sl) dxbu = fhgeo.variables['dxBu'][sl[2:]] vtwax = np.diff(vtwa,axis=3)/dxbu h_q = 0.25*(h_cu[:,:,:-1,:] + h_cu[:,:,1:,:] + h_cv[:,:,:,:-1] + h_cv[:,:,:,1:]) f = fhgeo.variables['f'][sl[2:]] pvhash = (f - utway + vtwax)/h_q return pvhash, h_q def extract_twapv_terms(geofil,vgeofil,fil,fil2,xstart,xend,ystart,yend,zs,ze,meanax,fil3=None, alreadysaved=False): if not alreadysaved: keepax = () for i in range(4): if i not in meanax: keepax += (i,) fhgeo = dset(geofil) fh = mfdset(fil) fh2 = mfdset(fil2) zi = rdp1.getdims(fh)[2][0] dbl = -np.diff(zi)*9.8/1031 (xs,xe),(ys,ye),dimq = rdp1.getlatlonindx(fh,wlon=xstart,elon=xend, slat=ystart, nlat=yend,zs=zs,ze=ze,xhxq='xq',yhyq='yq') dxbu = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[2][4] dybu = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[2][5] aq = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[1][1] f = rdp1.getgeombyindx(fhgeo,xs,xe,ys,ye)[-1] nt_const = dimq[0].size pvhash,hq = getpv(fhgeo, fh, fh2, xs, xe, ys, ye) sl = np.s_[:,zs:ze,ys:ye,xs:xe] slpy = np.s_[:,zs:ze,ys:ye+1,xs:xe] dxcu = fhgeo.variables['dxCu'][slpy[2:]] dycv = fhgeo.variables['dyCv'][sl[2:]] dycv = np.concatenate((dycv,dycv[:,-1:]),axis=1) if fil3: fh3 = mfdset(fil3) sltn = np.s_[-1:,zs:ze,ys:ye,xs:xe] islayerdeep0 = fh3.variables['islayerdeep'][-1:,0,0,0] islayerdeep = (fh3.variables['islayerdeep'][sltn].filled(np.nan)) swash = (islayerdeep0 - islayerdeep)/islayerdeep0*100 fh3.close() else: swash = None xmom = extract_twamomx_terms(geofil,vgeofil,fil,fil2,xs,xe,ys,ye+1,zs,ze,(0,), alreadysaved=False,xyasindices=True,calledfrompv=True)[2] ymom = extract_twamomy_terms(geofil,vgeofil,fil,fil2,xs,xe,ys,ye,zs,ze,(0,), alreadysaved=False,xyasindices=True,calledfrompv=True)[2] xmom = xmom[np.newaxis,:,:,:,:] ymom = ymom[np.newaxis,:,:,:,:] ymom = np.concatenate((ymom,ymom[:,:,:,-1:]),axis=3) bxppvflx = np.sum(xmom[:,:,:,:,[0,1,3,4]],axis=4) pvhash1,_ = getpv(fhgeo, fh, fh2, xs, xe, ys-1, ye+1) sl1 = np.s_[:,zs:ze,ys-1:ye+1,xs:xe] vtwa1, h_cv1 = getvtwa(fhgeo,fh,fh2,sl1) vtwa1 = 0.5*(vtwa1[:,:,:,:-1] + vtwa1[:,:,:,1:]) pvhashvtwa = pvhash1*vtwa1 sl1 = np.s_[:,zs:ze,ys:ye+1,xs:xe] h_cu1 = fh.variables['h_Cu'][sl1].filled(np.nan).mean(axis=0,keepdims=True) h_cu1 = np.ma.masked_array(h_cu1,mask=(h_cu1<1e-3)) pvflxx = h_cu1*(pvhashvtwa[:,:,:-1,:]+pvhashvtwa[:,:,1:,:])/2 byppvflx = np.sum(ymom[:,:,:,:,[0,1,3,4]],axis=4) pvhash1,_ = getpv(fhgeo, fh, fh2, xs-1, xe, ys, ye) sl1 = np.s_[:,zs:ze,ys:ye+1,xs-1:xe] utwa1, h_cu1 = getutwa(fhgeo,fh,fh2,sl1) utwa1 = 0.5*(utwa1[:,:,:-1,:]+utwa1[:,:,1:,:]) pvhashutwa = pvhash1*utwa1 pvhashutwa[:,:,:,-1] = 0.0 sl1 = np.s_[:,zs:ze,ys:ye,xs:xe] h_cv1 = fh.variables['h_Cv'][sl1].mean(axis=0,keepdims=True) h_cv1 = np.ma.masked_array(h_cv1,mask=(h_cv1<1e-3)) pvflxy = h_cv1*(pvhashutwa[:,:,:,:-1]+pvhashutwa[:,:,:,1:])/2 pvflxy = np.concatenate((pvflxy,pvflxy[:,:,:,-1:]),axis=3) bx = bxppvflx - pvflxx by = byppvflx + pvflxy xmom1 = xmom[:,:,:,:,[2,5,6,7,8,9]] xmom1 = np.concatenate((+pvflxx[:,:,:,:,np.newaxis], xmom1, bx[:,:,:,:,np.newaxis]), axis = 4) ymom1 = ymom[:,:,:,:,[2,5,6,7,8,9]] ymom1 = np.concatenate((-pvflxy[:,:,:,:,np.newaxis], ymom1, by[:,:,:,:,np.newaxis]), axis = 4) #pv = (-np.diff(xmom*dxcu[:,:,np.newaxis],axis=2) + np.diff(ymom*dycv[:,:,np.newaxis],axis=3))/aq[:,:,np.newaxis] pv = -np.diff(xmom,axis=2)/dybu[:,:,np.newaxis] + np.diff(ymom,axis=3)/dxbu[:,:,np.newaxis] pv1x = -np.diff(xmom1*dxcu[:,:,np.newaxis],axis=2)/aq[:,:,np.newaxis] pv1y = np.diff(ymom1*dycv[:,:,np.newaxis],axis=3)/aq[:,:,np.newaxis] slyp = np.s_[:,:,ys:ye+1,xs:xe] ah1 = fhgeo.variables['Ah'][slyp[2:]] slxmyp = np.s_[:,:,ys:ye+1,xs-1:xe] uh = fh2.variables['uh'][slxmyp].filled(0).mean(axis=0,keepdims=True) uhx = np.diff(uh,axis=3)/ah1 uhx = np.concatenate((uhx,uhx[:,:,:,-1:]),axis=3) uhx = 0.25*(uhx[:,:,:-1,:-1] + uhx[:,:,:-1,1:] + uhx[:,:,1:,:-1] + uhx[:,:,1:,1:]) pv1y[:,:,:,:,0] += pvhash*uhx slymp = np.s_[:,:,ys-1:ye+1,xs:xe] vh = fh2.variables['vh'][slymp].mean(axis=0,keepdims=True) vhy = np.diff(vh,axis=2)/ah1 vhy = np.concatenate((vhy,vhy[:,:,:,-1:]),axis=3) vhy = 0.25*(vhy[:,:,:-1,:-1] + vhy[:,:,:-1,1:] + vhy[:,:,1:,:-1] + vhy[:,:,1:,1:]) pv1x[:,:,:,:,0] += pvhash*vhy wd = fh2.variables['wd'][slyp].mean(axis=0,keepdims=True) wdb = np.diff(wd,axis=1) wdb = np.concatenate((wdb,wdb[:,:,:,-1:]),axis=3) wdb = 0.25*(wdb[:,:,:-1,:-1] + wdb[:,:,:-1,1:] + wdb[:,:,1:,:-1] + wdb[:,:,1:,1:]) pv3 = pvhash*wdb pv3 = pv3[:,:,:,:,np.newaxis] #hq[hq<1] = np.nan pvnew = np.concatenate((pv1y[:,:,:,:,:1], pv1x[:,:,:,:,:1], pv3, pv1x[:,:,:,:,1:-1], pv1y[:,:,:,:,1:-1], pv1x[:,:,:,:,-1:]+pv1y[:,:,:,:,-1:]),axis=4)/hq[:,:,:,:,np.newaxis] pv = np.ma.filled(pv.astype(np.float64), np.nan) pvnew = np.ma.filled(pvnew.astype(np.float64), np.nan) pvhash = np.ma.filled(pvhash.astype(np.float64), np.nan) pv = np.nanmean(pv,meanax,keepdims=True) pvnew = np.nanmean(pvnew,meanax,keepdims=True) pvhash = np.nanmean(pvhash,meanax,keepdims=True) X = dimq[keepax[1]] Y = dimq[keepax[0]] if 1 in keepax: dt = fh.variables['average_DT'][:] dt = dt[:,np.newaxis,np.newaxis,np.newaxis] em = (fh2.variables['e'][0:,zs:ze,ys:ye,xs:xe]*dt).sum(axis=0,keepdims=True)/np.sum(dt) em = np.nanmean(em, meanax,keepdims=True) z = np.linspace(-3000,0,100) Y = z P = getvaratzc5(pv.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() Pnew = getvaratzc5(pvnew.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() pvhash = getvaratzc(pvhash.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() if fil3: swash = np.nanmean(swash, meanax,keepdims=True) swash = getvaratzc(swash.astype(np.float32), z.astype(np.float32), em.astype(np.float32)).squeeze() else: P = pv.squeeze() Pnew = pvnew.squeeze() pvhash = pvhash.squeeze() swash = swash.squeeze() np.savez('twapv_complete_terms', X=X,Y=Y,P=P) else: npzfile = np.load('twapv_complete_terms.npz') X = npzfile['X'] Y = npzfile['Y'] P = npzfile['P'] fhgeo.close() fh.close() fh2.close() return (X,Y,P,pvhash,Pnew,swash) def plot_twapv(geofil,vgeofil,fil,fil2,xstart,xend,ystart,yend,zs,ze,meanax, fil3=None,plotterms = [0,1,10,11,12,13], swashperc = 1, cmaxpercfactor = 1,cmaxpercfactorpvhash=15,cmaxpercfactorPnew=15, savfil=None,savfilep=None,alreadysaved=False): X,Y,P,pvhash,Pnew,swash = extract_twapv_terms(geofil,vgeofil,fil,fil2, xstart,xend,ystart,yend,zs,ze,meanax,alreadysaved=alreadysaved,fil3=fil3) cmax = np.nanpercentile(P,[cmaxpercfactor,100-cmaxpercfactor]) cmax = np.max(np.fabs(cmax)) fig,ax = plt.subplots(np.int8(np.ceil(P.shape[-1]/2)),2, sharex=True,sharey=True,figsize=(12, 9)) ti = ['(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)', '(i)','(j)','(k)','(l)','(m)','(n)','(o)','(p)','(q)','(r)'] labx = [ r'$(\hat{u}\hat{u}_{\tilde{x}})_{\tilde{y}}$', r'$(\hat{v}\hat{u}_{\tilde{y}})_{\tilde{y}}$', r'$(\hat{\varpi}\hat{u}_{\tilde{b}})_{\tilde{y}}$', r'$(-f\hat{v})_{\tilde{y}}$', r'$(\overline{m_{\tilde{x}}})_{\tilde{y}}$', r"""$(\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}u^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{x}})_{\tilde{y}}$""", r"""$(\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{y}}$""", r"""$(\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{x}}^{\prime}})_{\tilde{b}})_{\tilde{y}}$""", r'$(-\widehat{X^H})_{\tilde{y}}$', r'$(-\widehat{X^V})_{\tilde{y}}$'] laby = [ r'$(-\hat{u}\hat{v}_{\tilde{x}})_{\tilde{x}}$', r'$(-\hat{v}\hat{v}_{\tilde{y}})_{\tilde{x}}$', r'$(-\hat{\varpi}\hat{v}_{\tilde{b}})_{\tilde{x}}$', r'$(-f\hat{u})_{\tilde{x}}$', r'$(-\overline{m_{\tilde{y}}})_{\tilde{x}}$', r"""$(-\frac{1}{\overline{h}}(\overline{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{x}})_{\tilde{x}}$""", r"""$(-\frac{1}{\overline{h}}(\overline{h}\widehat{v^{\prime \prime}v^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{y}})_{\tilde{x}}$""", r"""$(-\frac{1}{\overline{h}}(\overline{h}\widehat{v^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{y}}^{\prime}})_{\tilde{b}})_{\tilde{x}}$""", r'$(\widehat{Y^H})_{\tilde{x}}$', r'$(\widehat{Y^V})_{\tilde{x}}$'] for i in range(P.shape[-1]): axc = ax.ravel()[i] im = m6plot((X,Y,P[:,:,i]),axc,vmax=cmax,vmin=-cmax,ptype='imshow', txt=labx[i]+' + '+laby[i], ylim=(-2500,0), cmap='RdBu_r', cbar=False) if fil3: cs = axc.contour(X,Y,swash,np.array([swashperc]), colors='k') if i % 2 == 0: axc.set_ylabel('z (m)') if i > np.size(ax)-3: xdegtokm(axc,0.5*(ystart+yend)) fig.tight_layout() cb = fig.colorbar(im, ax=ax.ravel().tolist()) cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() if savfil: plt.savefig(savfil+'.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() im = m6plot((X,Y,np.sum(P,axis=2)),vmax=cmax,vmin=-cmax,ptype='imshow',cmap='RdBu_r',ylim=(-2500,0)) if savfil: plt.savefig(savfil+'res.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() fig,ax = plt.subplots(np.int8(np.ceil(len(plotterms)/2)),2, sharex=True,sharey=True,figsize=(12,7)) cmaxpvhash = np.nanpercentile(pvhash, [cmaxpercfactorpvhash,100-cmaxpercfactorpvhash]) cmaxpvhash = np.max(np.fabs(cmaxpvhash)) cmax = np.nanpercentile(Pnew, [cmaxpercfactorPnew,100-cmaxpercfactorPnew]) cmax = np.max(np.fabs(cmax)) lab = [ r"$-\hat{u}\Pi^{\#}_{\tilde{x}}$", r"$-\hat{v}\Pi^{\#}_{\tilde{y}}$", r"$\Pi^{\#}(\bar{h} \hat{\varpi})_{\tilde{b}}$", r"$\frac{(\hat{\varpi}\hat{u}_{\tilde{b}})_{\tilde{y}}}{\bar{h}}$", r"""$\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}u^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{x}})_{\tilde{y}}$""", r"""$\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{y}})_{\tilde{y}}$""", r"""$\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{x}}^{\prime}})_{\tilde{b}})_{\tilde{y}}$""", r'$-\frac{1}{\bar{h}}(\widehat{X^H})_{\tilde{y}}$', r'$-\frac{1}{\bar{h}}(\widehat{X^V})_{\tilde{y}}$', r'$-\frac{(\hat{\varpi}\hat{v}_{\tilde{b}})_{\tilde{x}}}{\bar{h}}$', r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{u^{\prime \prime}v^{\prime \prime}})_{\tilde{x}})_{\tilde{x}}$""", #r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{v^{\prime \prime}v^{\prime \prime}}+\frac{1}{2}\overline{\zeta^{\prime 2}})_{\tilde{y}})_{\tilde{x}}$""", r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{v^{\prime \prime}v^{\prime \prime}})_{\tilde{y}})_{\tilde{x}}$""", #r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{h}}(\bar{h}\widehat{v^{\prime \prime}\varpi^{\prime \prime}} + \overline{\zeta^{\prime}m_{\tilde{y}}^{\prime}})_{\tilde{b}})_{\tilde{x}}$""", r"""$-\frac{1}{\bar{h}}(\frac{1}{\bar{\zeta_{\tilde{b}}}}(\overline{\zeta^{\prime}m_{\tilde{y}}^{\prime}})_{\tilde{b}})_{\tilde{x}}$""", r'$\frac{1}{\bar{h}}(\widehat{Y^H})_{\tilde{x}}$', r'$\frac{1}{\bar{h}}(\widehat{Y^V})_{\tilde{x}}$', r'$B_{\tilde{x} \tilde{y}} - B_{\tilde{y} \tilde{x}}$'] matplotlib.rcParams['contour.negative_linestyle'] = 'solid' for i,p in enumerate(plotterms): axc = ax.ravel()[i] im = m6plot((X,Y,Pnew[:,:,p]),axc,vmax=cmax,vmin=-cmax,ptype='imshow', ylim=(-1200,0), txt=lab[p], cmap='RdBu_r', cbar=False) im2 = axc.contour(X,Y,pvhash,np.logspace(-6,-5.5,5),colors='grey',linewidths=2) im2.clabel(inline=True,fmt="%.1e") if fil3: cs = axc.contour(X,Y,swash,np.array([swashperc]), colors='k') if i % 2 == 0: axc.set_ylabel('z (m)') if i > np.size(ax)-3: xdegtokm(axc,0.5*(ystart+yend)) fig.tight_layout() cb = fig.colorbar(im, ax=ax.ravel().tolist()) cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() if savfil: plt.savefig(savfil+'Pnew.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() im = m6plot((X,Y,np.sum(Pnew,axis=2)),ptype='imshow',vmax=cmax,vmin=-cmax,cmap='RdBu_r',ylim=(-2500,0)) if savfil: plt.savefig(savfil+'Pnewres.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() fig,ax = plt.subplots(1,2,sharex=True,sharey=True,figsize=(10, 3)) im = m6plot((X,Y,np.nansum(Pnew[:,:,:2],axis=2)), ax[0],vmax=cmax,vmin=-cmax,ptype='imshow', ylim=(-1200,0), txt=lab[0]+lab[1], cmap='RdBu_r', cbar=False) im = m6plot((X,Y,np.nansum(Pnew[:,:,12:13],axis=2)), ax[1],vmax=cmax,vmin=-cmax,ptype='imshow', ylim=(-1200,0), txt=lab[12], cmap='RdBu_r', cbar=False) ax[0].set_ylabel('z (m)') for axc in ax: xdegtokm(axc,0.5*(ystart+yend)) im2 = axc.contour(X,Y,pvhash,np.logspace(-6,-5.5,5),colors='grey',linewidths=2) im2.clabel(inline=True,fmt="%.1e") axc.set_ylim(-1200,0) fig.tight_layout() cb = fig.colorbar(im, ax=ax.ravel().tolist()) cb.formatter.set_powerlimits((0, 0)) cb.update_ticks() if savfil: plt.savefig(savfil+'Pnewnew.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show() cmax = np.nanpercentile(pvhash, [cmaxpercfactorpvhash,100-cmaxpercfactorpvhash]) cmax = np.max(np.fabs(cmax)) im = m6plot((X,Y,pvhash),ptype='imshow',vmax=cmax,vmin=-cmax,cmap='RdBu_r',ylim=(-2500,0)) if fil3: cs = axc.contour(X,Y,swash,np.array([swashperc]), colors='k') if savfil: plt.savefig(savfil+'pvhash.eps', dpi=300, facecolor='w', edgecolor='w', format='eps', transparent=False, bbox_inches='tight') else: plt.show()
gpl-3.0
alexeyum/scikit-learn
sklearn/manifold/setup.py
24
1279
import os from os.path import join import numpy from numpy.distutils.misc_util import Configuration from sklearn._build_utils import get_blas_info def configuration(parent_package="", top_path=None): config = Configuration("manifold", parent_package, top_path) libraries = [] if os.name == 'posix': libraries.append('m') config.add_extension("_utils", sources=["_utils.c"], include_dirs=[numpy.get_include()], libraries=libraries, extra_compile_args=["-O3"]) cblas_libs, blas_info = get_blas_info() eca = blas_info.pop('extra_compile_args', []) eca.append("-O4") config.add_extension("_barnes_hut_tsne", libraries=cblas_libs, sources=["_barnes_hut_tsne.c"], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=eca, **blas_info) config.add_subpackage('tests') return config if __name__ == "__main__": from numpy.distutils.core import setup setup(**configuration().todict())
bsd-3-clause
doutib/lobpredict
lobpredictrst/jupyter/simple_model/create_simple_model_predict.py
1
6870
# coding: utf-8 # # The best model parameters are given by # ``` # author : SHAMINDRA # data_source_dir : SC_shuffle # test_type : validation # model_type : RF # RF: # n_estimators : 100 # criterion : 'gini' # max_features : 'auto' # max_depth : 20 # n_jobs : 1 # SVM: # kernel : 'rbf' # degree : 3 # gamma : 'auto' # tol : 0.001 # NNET: # method1 : 'Tanh' # neurons1 : 24 # method2 : 'Tanh' # neurons2 : 39 # decay : 0.0001 # learning_rate : 0.001 # n_iter : 25 # random_state : 1 # ``` # In[66]: # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import imp import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import log_loss from sklearn.metrics import accuracy_score import pandas as pd # We looked at the top features from the best performing random forest. They are as below: # In[48]: # The top variables are: var_importance = [(1, 'P_1_bid', 0.020001165389254737) , (2, 'V_1_bid', 0.018358575666246449) , (3, 'P_1_ask', 0.017058479215839299) , (4, 'V_1_ask', 0.016953559068869958) , (5, 'P_2_bid', 0.016908649059514971) , (6, 'V_2_bid', 0.016219220215427665) , (7, 'P_2_ask', 0.015039647893425838) , (8, 'V_2_ask', 0.014497773408233052) , (9, 'P_3_bid', 0.014321084019596746) , (10, 'V_3_bid', 0.014158850118003859) , (11, 'P_3_ask', 0.014101386932514923) , (12, 'V_3_ask', 0.013911823640617986) , (13, 'P_4_bid', 0.013838322603744435) , (14, 'V_4_bid', 0.013668619218980316) , (15, 'P_4_ask', 0.013413471959983998)] # In[33]: # Open test and train sets df_train = pd.read_csv(train_ds_ref , compression='gzip', index_col = None) df_test = pd.read_csv(test_ds_ref , compression='gzip', index_col = None) # Drop the first columns - they are not useful df_train_clean = df_train.iloc[:,1:] df_test_clean = df_test.iloc[:,1:] # In[34]: X_train_cols = list(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']].columns.values) X_train = np.array(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_train = np.array(df_train_clean[['labels']])[:,0] X_test = np.array(df_test_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_test = np.array(df_test_clean[['labels']])[:,0] # In[38]: # Define the labels labels = np.unique(Y_train) ## # Scale Data scaler = MinMaxScaler() X_test = scaler.fit_transform(X_test) X_train = scaler.fit_transform(X_train) # Set up the data logreg = linear_model.LogisticRegression(C=1e5) # Fit logreg.fit(X_train, Y_train) # Predict Y_hat = logreg.predict(X_test) Y_probs = logreg.predict_proba(X_test) ## # Misclassification error rate miss_err = 1-accuracy_score(Y_test, Y_hat) ## # Log Loss eps = 10^(-15) logloss = log_loss(Y_test, Y_probs, eps = eps) ##confusion_matrix confusion_matrix1 = confusion_matrix(y_true=Y_test, y_pred=Y_hat , labels=labels) # classification_report classification_report1 = classification_report(y_true=Y_test, y_pred=Y_hat) # Output results in a list format result = [] result.append("confusion_matrix") result.append(confusion_matrix1) result.append("classification_report") result.append(classification_report1) result.append("logloss") result.append(logloss) result.append("miss_err") result.append(miss_err) result.append("Y_hat") result.append(Y_hat) # In[46]: print(result[3]) print(Y_hat) print(Y_probs) # #### The predicted output for our most successful RF model is as follows # ``` # classification_report # # precision recall f1-score support # # -1 0.99 0.98 0.98 18373 # 0 0.97 0.98 0.97 16950 # 1 0.99 0.98 0.98 15265 # # avg / total 0.98 0.98 0.98 50588 # ``` # In[49]: def predict_simple_linear(df_train_clean, df_test_clean): X_train_cols = list(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']].columns.values) X_train = np.array(df_train_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_train = np.array(df_train_clean[['labels']])[:,0] X_test = np.array(df_test_clean[['P_1_bid', 'V_1_bid', 'P_1_ask', 'V_1_ask', 'P_2_bid', 'V_2_bid', 'P_2_ask' , 'V_2_ask']]) Y_test = np.array(df_test_clean[['labels']])[:,0] # Define the labels labels = np.unique(Y_train) ## # Scale Data scaler = MinMaxScaler() X_test = scaler.fit_transform(X_test) X_train = scaler.fit_transform(X_train) # Set up the data logreg = linear_model.LogisticRegression(C=1e5) # Fit logreg.fit(X_train, Y_train) # Predict Y_hat = logreg.predict(X_test) Y_probs = logreg.predict_proba(X_test) ## # Misclassification error rate miss_err = 1-accuracy_score(Y_test, Y_hat) ## # Log Loss eps = 10^(-15) logloss = log_loss(Y_test, Y_probs, eps = eps) ##confusion_matrix confusion_matrix1 = confusion_matrix(y_true=Y_test, y_pred=Y_hat , labels=labels) # classification_report classification_report1 = classification_report(y_true=Y_test, y_pred=Y_hat) # Output results in a list format result = [] result.append("confusion_matrix") result.append(confusion_matrix1) result.append("classification_report") result.append(classification_report1) result.append("logloss") result.append(logloss) result.append("miss_err") result.append(miss_err) result.append("Y_hat") result.append(Y_hat) return result # In[62]: linear_simple_predict = predict_simple_linear(df_train_clean = df_train_clean , df_test_clean = df_train_clean) # In[64]: # Get the predicted outcomes linear_simple_predict_vals = linear_simple_predict[len(linear_simple_predict) -1] len(list(linear_simple_predict_vals)) # In[67]: modl = imp.load_source('execute_model', '../../execute_model.py') # In[ ]:
isc
rfoxfa/python-utils
utils/plotting.py
1
1798
""" Plotting functions. """ from __future__ import absolute_import import matplotlib.pyplot as plt import numpy as np def hhist(items, title=None, axislabel=None, color=None, height=None, width=None, reverse=False): """ Plots a horizontal histogram of values and frequencies. Arguments: items (iterable[any]) => A list of objects. title (Optional[str]) => A title for the resulting histogram. axislabel (Optional[str]) => A label for the y-axis that lists the unique items in the parameter list. color (Optional[str]) => A matplotlib color value for coloring the histogram (default: matplotlib's default plot color, a royal blue) height (Optional[int]) => A height for the plot (default: 10) width (Optional[int]) => A width for the plot (default: 20) reverse (Optional[bool]) => Whether or not the histogram should plot from top to bottom in order of decreasing frequency or the reverse of that. Returns: Void, but a matplotlib figure should be produced (type=None). """ # Parse the unique items and their counts. unique_items, item_counts = np.unique(items, return_counts=True) # Sort the items by frequency. item_counts, unique_items = zip(*sorted(zip(item_counts, unique_items), reverse=reverse)) # Plot the frequencies. pos = np.arange(len(unique_items)) + 0.5 plt.figure(figsize=((width or 20), (height or 10))) plt.barh(pos, item_counts, align='center', color=color) plt.yticks(pos, unique_items) plt.xlabel('Frequency') if axislabel: plt.ylabel(axislabel) if title: plt.title(title) plt.show()
gpl-2.0
ClimbsRocks/scikit-learn
sklearn/utils/tests/test_validation.py
8
18964
"""Tests for input validation functions""" import warnings from tempfile import NamedTemporaryFile from itertools import product import numpy as np from numpy.testing import assert_array_equal import scipy.sparse as sp from nose.tools import assert_raises, assert_true, assert_false, assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils import as_float_array, check_array, check_symmetric from sklearn.utils import check_X_y from sklearn.utils.mocking import MockDataFrame from sklearn.utils.estimator_checks import NotAnArray from sklearn.random_projection import sparse_random_matrix from sklearn.linear_model import ARDRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.datasets import make_blobs from sklearn.utils.validation import ( has_fit_parameter, check_is_fitted, check_consistent_length, ) from sklearn.exceptions import NotFittedError from sklearn.exceptions import DataConversionWarning from sklearn.utils.testing import assert_raise_message def test_as_float_array(): # Test function for as_float_array X = np.ones((3, 10), dtype=np.int32) X = X + np.arange(10, dtype=np.int32) # Checks that the return type is ok X2 = as_float_array(X, copy=False) np.testing.assert_equal(X2.dtype, np.float32) # Another test X = X.astype(np.int64) X2 = as_float_array(X, copy=True) # Checking that the array wasn't overwritten assert_true(as_float_array(X, False) is not X) # Checking that the new type is ok np.testing.assert_equal(X2.dtype, np.float64) # Here, X is of the right type, it shouldn't be modified X = np.ones((3, 2), dtype=np.float32) assert_true(as_float_array(X, copy=False) is X) # Test that if X is fortran ordered it stays X = np.asfortranarray(X) assert_true(np.isfortran(as_float_array(X, copy=True))) # Test the copy parameter with some matrices matrices = [ np.matrix(np.arange(5)), sp.csc_matrix(np.arange(5)).toarray(), sparse_random_matrix(10, 10, density=0.10).toarray() ] for M in matrices: N = as_float_array(M, copy=True) N[0, 0] = np.nan assert_false(np.isnan(M).any()) def test_np_matrix(): # Confirm that input validation code does not return np.matrix X = np.arange(12).reshape(3, 4) assert_false(isinstance(as_float_array(X), np.matrix)) assert_false(isinstance(as_float_array(np.matrix(X)), np.matrix)) assert_false(isinstance(as_float_array(sp.csc_matrix(X)), np.matrix)) def test_memmap(): # Confirm that input validation code doesn't copy memory mapped arrays asflt = lambda x: as_float_array(x, copy=False) with NamedTemporaryFile(prefix='sklearn-test') as tmp: M = np.memmap(tmp, shape=(10, 10), dtype=np.float32) M[:] = 0 for f in (check_array, np.asarray, asflt): X = f(M) X[:] = 1 assert_array_equal(X.ravel(), M.ravel()) X[:] = 0 def test_ordering(): # Check that ordering is enforced correctly by validation utilities. # We need to check each validation utility, because a 'copy' without # 'order=K' will kill the ordering. X = np.ones((10, 5)) for A in X, X.T: for copy in (True, False): B = check_array(A, order='C', copy=copy) assert_true(B.flags['C_CONTIGUOUS']) B = check_array(A, order='F', copy=copy) assert_true(B.flags['F_CONTIGUOUS']) if copy: assert_false(A is B) X = sp.csr_matrix(X) X.data = X.data[::-1] assert_false(X.data.flags['C_CONTIGUOUS']) @ignore_warnings def test_check_array(): # accept_sparse == None # raise error on sparse inputs X = [[1, 2], [3, 4]] X_csr = sp.csr_matrix(X) assert_raises(TypeError, check_array, X_csr) # ensure_2d assert_warns(DeprecationWarning, check_array, [0, 1, 2]) X_array = check_array([0, 1, 2]) assert_equal(X_array.ndim, 2) X_array = check_array([0, 1, 2], ensure_2d=False) assert_equal(X_array.ndim, 1) # don't allow ndim > 3 X_ndim = np.arange(8).reshape(2, 2, 2) assert_raises(ValueError, check_array, X_ndim) check_array(X_ndim, allow_nd=True) # doesn't raise # force_all_finite X_inf = np.arange(4).reshape(2, 2).astype(np.float) X_inf[0, 0] = np.inf assert_raises(ValueError, check_array, X_inf) check_array(X_inf, force_all_finite=False) # no raise # nan check X_nan = np.arange(4).reshape(2, 2).astype(np.float) X_nan[0, 0] = np.nan assert_raises(ValueError, check_array, X_nan) check_array(X_inf, force_all_finite=False) # no raise # dtype and order enforcement. X_C = np.arange(4).reshape(2, 2).copy("C") X_F = X_C.copy("F") X_int = X_C.astype(np.int) X_float = X_C.astype(np.float) Xs = [X_C, X_F, X_int, X_float] dtypes = [np.int32, np.int, np.float, np.float32, None, np.bool, object] orders = ['C', 'F', None] copys = [True, False] for X, dtype, order, copy in product(Xs, dtypes, orders, copys): X_checked = check_array(X, dtype=dtype, order=order, copy=copy) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if order == 'C': assert_true(X_checked.flags['C_CONTIGUOUS']) assert_false(X_checked.flags['F_CONTIGUOUS']) elif order == 'F': assert_true(X_checked.flags['F_CONTIGUOUS']) assert_false(X_checked.flags['C_CONTIGUOUS']) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X_checked.flags['C_CONTIGUOUS'] == X.flags['C_CONTIGUOUS'] and X_checked.flags['F_CONTIGUOUS'] == X.flags['F_CONTIGUOUS']): assert_true(X is X_checked) # allowed sparse != None X_csc = sp.csc_matrix(X_C) X_coo = X_csc.tocoo() X_dok = X_csc.todok() X_int = X_csc.astype(np.int) X_float = X_csc.astype(np.float) Xs = [X_csc, X_coo, X_dok, X_int, X_float] accept_sparses = [['csr', 'coo'], ['coo', 'dok']] for X, dtype, accept_sparse, copy in product(Xs, dtypes, accept_sparses, copys): with warnings.catch_warnings(record=True) as w: X_checked = check_array(X, dtype=dtype, accept_sparse=accept_sparse, copy=copy) if (dtype is object or sp.isspmatrix_dok(X)) and len(w): message = str(w[0].message) messages = ["object dtype is not supported by sparse matrices", "Can't check dok sparse matrix for nan or inf."] assert_true(message in messages) else: assert_equal(len(w), 0) if dtype is not None: assert_equal(X_checked.dtype, dtype) else: assert_equal(X_checked.dtype, X.dtype) if X.format in accept_sparse: # no change if allowed assert_equal(X.format, X_checked.format) else: # got converted assert_equal(X_checked.format, accept_sparse[0]) if copy: assert_false(X is X_checked) else: # doesn't copy if it was already good if (X.dtype == X_checked.dtype and X.format == X_checked.format): assert_true(X is X_checked) # other input formats # convert lists to arrays X_dense = check_array([[1, 2], [3, 4]]) assert_true(isinstance(X_dense, np.ndarray)) # raise on too deep lists assert_raises(ValueError, check_array, X_ndim.tolist()) check_array(X_ndim.tolist(), allow_nd=True) # doesn't raise # convert weird stuff to arrays X_no_array = NotAnArray(X_dense) result = check_array(X_no_array) assert_true(isinstance(result, np.ndarray)) def test_check_array_pandas_dtype_object_conversion(): # test that data-frame like objects with dtype object # get converted X = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.object) X_df = MockDataFrame(X) assert_equal(check_array(X_df).dtype.kind, "f") assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") # smoke-test against dataframes with column named "dtype" X_df.dtype = "Hans" assert_equal(check_array(X_df, ensure_2d=False).dtype.kind, "f") def test_check_array_on_mock_dataframe(): arr = np.array([[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]]) mock_df = MockDataFrame(arr) checked_arr = check_array(mock_df) assert_equal(checked_arr.dtype, arr.dtype) checked_arr = check_array(mock_df, dtype=np.float32) assert_equal(checked_arr.dtype, np.dtype(np.float32)) def test_check_array_dtype_stability(): # test that lists with ints don't get converted to floats X = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] assert_equal(check_array(X).dtype.kind, "i") assert_equal(check_array(X, ensure_2d=False).dtype.kind, "i") def test_check_array_dtype_warning(): X_int_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] X_float64 = np.asarray(X_int_list, dtype=np.float64) X_float32 = np.asarray(X_int_list, dtype=np.float32) X_int64 = np.asarray(X_int_list, dtype=np.int64) X_csr_float64 = sp.csr_matrix(X_float64) X_csr_float32 = sp.csr_matrix(X_float32) X_csc_float32 = sp.csc_matrix(X_float32) X_csc_int32 = sp.csc_matrix(X_int64, dtype=np.int32) y = [0, 0, 1] integer_data = [X_int64, X_csc_int32] float64_data = [X_float64, X_csr_float64] float32_data = [X_float32, X_csr_float32, X_csc_float32] for X in integer_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_warns(DataConversionWarning, check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) # Check that the warning message includes the name of the Estimator X_checked = assert_warns_message(DataConversionWarning, 'SomeEstimator', check_array, X, dtype=[np.float64, np.float32], accept_sparse=True, warn_on_dtype=True, estimator='SomeEstimator') assert_equal(X_checked.dtype, np.float64) X_checked, y_checked = assert_warns_message( DataConversionWarning, 'KNeighborsClassifier', check_X_y, X, y, dtype=np.float64, accept_sparse=True, warn_on_dtype=True, estimator=KNeighborsClassifier()) assert_equal(X_checked.dtype, np.float64) for X in float64_data: X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=True) assert_equal(X_checked.dtype, np.float64) X_checked = assert_no_warnings(check_array, X, dtype=np.float64, accept_sparse=True, warn_on_dtype=False) assert_equal(X_checked.dtype, np.float64) for X in float32_data: X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=True) assert_equal(X_checked.dtype, np.float32) assert_true(X_checked is X) X_checked = assert_no_warnings(check_array, X, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=True) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X) X_checked = assert_no_warnings(check_array, X_csc_float32, dtype=[np.float64, np.float32], accept_sparse=['csr', 'dok'], copy=False) assert_equal(X_checked.dtype, np.float32) assert_false(X_checked is X_csc_float32) assert_equal(X_checked.format, 'csr') def test_check_array_min_samples_and_features_messages(): # empty list is considered 2D by default: msg = "0 feature(s) (shape=(1, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [[]]) # If considered a 1D collection when ensure_2d=False, then the minimum # number of samples will break: msg = "0 sample(s) (shape=(0,)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_array, [], ensure_2d=False) # Invalid edge case when checking the default minimum sample of a scalar msg = "Singleton array array(42) cannot be considered a valid collection." assert_raise_message(TypeError, msg, check_array, 42, ensure_2d=False) # But this works if the input data is forced to look like a 2 array with # one sample and one feature: X_checked = assert_warns(DeprecationWarning, check_array, [42], ensure_2d=True) assert_array_equal(np.array([[42]]), X_checked) # Simulate a model that would need at least 2 samples to be well defined X = np.ones((1, 10)) y = np.ones(1) msg = "1 sample(s) (shape=(1, 10)) while a minimum of 2 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2) # The same message is raised if the data has 2 dimensions even if this is # not mandatory assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_samples=2, ensure_2d=False) # Simulate a model that would require at least 3 features (e.g. SelectKBest # with k=3) X = np.ones((10, 2)) y = np.ones(2) msg = "2 feature(s) (shape=(10, 2)) while a minimum of 3 is required." assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3) # Only the feature check is enabled whenever the number of dimensions is 2 # even if allow_nd is enabled: assert_raise_message(ValueError, msg, check_X_y, X, y, ensure_min_features=3, allow_nd=True) # Simulate a case where a pipeline stage as trimmed all the features of a # 2D dataset. X = np.empty(0).reshape(10, 0) y = np.ones(10) msg = "0 feature(s) (shape=(10, 0)) while a minimum of 1 is required." assert_raise_message(ValueError, msg, check_X_y, X, y) # nd-data is not checked for any minimum number of features by default: X = np.ones((10, 0, 28, 28)) y = np.ones(10) X_checked, y_checked = check_X_y(X, y, allow_nd=True) assert_array_equal(X, X_checked) assert_array_equal(y, y_checked) def test_has_fit_parameter(): assert_false(has_fit_parameter(KNeighborsClassifier, "sample_weight")) assert_true(has_fit_parameter(RandomForestRegressor, "sample_weight")) assert_true(has_fit_parameter(SVR, "sample_weight")) assert_true(has_fit_parameter(SVR(), "sample_weight")) def test_check_symmetric(): arr_sym = np.array([[0, 1], [1, 2]]) arr_bad = np.ones(2) arr_asym = np.array([[0, 2], [0, 2]]) test_arrays = {'dense': arr_asym, 'dok': sp.dok_matrix(arr_asym), 'csr': sp.csr_matrix(arr_asym), 'csc': sp.csc_matrix(arr_asym), 'coo': sp.coo_matrix(arr_asym), 'lil': sp.lil_matrix(arr_asym), 'bsr': sp.bsr_matrix(arr_asym)} # check error for bad inputs assert_raises(ValueError, check_symmetric, arr_bad) # check that asymmetric arrays are properly symmetrized for arr_format, arr in test_arrays.items(): # Check for warnings and errors assert_warns(UserWarning, check_symmetric, arr) assert_raises(ValueError, check_symmetric, arr, raise_exception=True) output = check_symmetric(arr, raise_warning=False) if sp.issparse(output): assert_equal(output.format, arr_format) assert_array_equal(output.toarray(), arr_sym) else: assert_array_equal(output, arr_sym) def test_check_is_fitted(): # Check is ValueError raised when non estimator instance passed assert_raises(ValueError, check_is_fitted, ARDRegression, "coef_") assert_raises(TypeError, check_is_fitted, "SVR", "support_") ard = ARDRegression() svr = SVR() try: assert_raises(NotFittedError, check_is_fitted, ard, "coef_") assert_raises(NotFittedError, check_is_fitted, svr, "support_") except ValueError: assert False, "check_is_fitted failed with ValueError" # NotFittedError is a subclass of both ValueError and AttributeError try: check_is_fitted(ard, "coef_", "Random message %(name)s, %(name)s") except ValueError as e: assert_equal(str(e), "Random message ARDRegression, ARDRegression") try: check_is_fitted(svr, "support_", "Another message %(name)s, %(name)s") except AttributeError as e: assert_equal(str(e), "Another message SVR, SVR") ard.fit(*make_blobs()) svr.fit(*make_blobs()) assert_equal(None, check_is_fitted(ard, "coef_")) assert_equal(None, check_is_fitted(svr, "support_")) def test_check_consistent_length(): check_consistent_length([1], [2], [3], [4], [5]) check_consistent_length([[1, 2], [[1, 2]]], [1, 2], ['a', 'b']) check_consistent_length([1], (2,), np.array([3]), sp.csr_matrix((1, 2))) assert_raises_regexp(ValueError, 'inconsistent numbers of samples', check_consistent_length, [1, 2], [1]) assert_raises_regexp(TypeError, 'got <\w+ \'int\'>', check_consistent_length, [1, 2], 1) assert_raises_regexp(TypeError, 'got <\w+ \'object\'>', check_consistent_length, [1, 2], object()) assert_raises(TypeError, check_consistent_length, [1, 2], np.array(1)) # Despite ensembles having __len__ they must raise TypeError assert_raises_regexp(TypeError, 'estimator', check_consistent_length, [1, 2], RandomForestRegressor()) # XXX: We should have a test with a string, but what is correct behaviour?
bsd-3-clause
rexshihaoren/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
wlamond/scikit-learn
sklearn/cluster/setup.py
79
1855
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_dbscan_inner', sources=['_dbscan_inner.pyx'], include_dirs=[numpy.get_include()], language="c++") config.add_extension('_hierarchical', sources=['_hierarchical.pyx'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('_k_means_elkan', sources=['_k_means_elkan.pyx'], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('_k_means', libraries=cblas_libs, sources=['_k_means.pyx'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop( 'extra_compile_args', []), **blas_info ) config.add_subpackage('tests') return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
levelrf/level_basestation
gr-filter/examples/fir_filter_ccc.py
13
3154
#!/usr/bin/env python from gnuradio import gr, filter from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_fir_filter_ccc(gr.top_block): def __init__(self, N, fs, bw, tw, atten, D): gr.top_block.__init__(self) self._nsamps = N self._fs = fs self._bw = bw self._tw = tw self._at = atten self._decim = D taps = filter.firdes.low_pass_2(1, self._fs, self._bw, self._tw, self._at) print "Num. Taps: ", len(taps) self.src = gr.noise_source_c(gr.GR_GAUSSIAN, 1) self.head = gr.head(gr.sizeof_gr_complex, self._nsamps) self.filt0 = filter.fir_filter_ccc(self._decim, taps) self.vsnk_src = gr.vector_sink_c() self.vsnk_out = gr.vector_sink_c() self.connect(self.src, self.head, self.vsnk_src) self.connect(self.head, self.filt0, self.vsnk_out) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=10000, help="Number of samples to process [default=%default]") parser.add_option("-s", "--samplerate", type="eng_float", default=8000, help="System sample rate [default=%default]") parser.add_option("-B", "--bandwidth", type="eng_float", default=1000, help="Filter bandwidth [default=%default]") parser.add_option("-T", "--transition", type="eng_float", default=100, help="Transition band [default=%default]") parser.add_option("-A", "--attenuation", type="eng_float", default=80, help="Stopband attenuation [default=%default]") parser.add_option("-D", "--decimation", type="int", default=1, help="Decmation factor [default=%default]") (options, args) = parser.parse_args () put = example_fir_filter_ccc(options.nsamples, options.samplerate, options.bandwidth, options.transition, options.attenuation, options.decimation) put.run() data_src = scipy.array(put.vsnk_src.data()) data_snk = scipy.array(put.vsnk_out.data()) # Plot the signals PSDs nfft = 1024 f1 = pylab.figure(1, figsize=(12,10)) s1 = f1.add_subplot(1,1,1) s1.psd(data_src, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) s1.psd(data_snk, NFFT=nfft, noverlap=nfft/4, Fs=options.samplerate) f2 = pylab.figure(2, figsize=(12,10)) s2 = f2.add_subplot(1,1,1) s2.plot(data_src) s2.plot(data_snk.real, 'g') pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
etkirsch/scikit-learn
examples/decomposition/plot_sparse_coding.py
247
3846
""" =========================================== Sparse coding with a precomputed dictionary =========================================== Transform a signal as a sparse combination of Ricker wavelets. This example visually compares different sparse coding methods using the :class:`sklearn.decomposition.SparseCoder` estimator. The Ricker (also known as Mexican hat or the second derivative of a Gaussian) is not a particularly good kernel to represent piecewise constant signals like this one. It can therefore be seen how much adding different widths of atoms matters and it therefore motivates learning the dictionary to best fit your type of signals. The richer dictionary on the right is not larger in size, heavier subsampling is performed in order to stay on the same order of magnitude. """ print(__doc__) import numpy as np import matplotlib.pylab as pl from sklearn.decomposition import SparseCoder def ricker_function(resolution, center, width): """Discrete sub-sampled Ricker (Mexican hat) wavelet""" x = np.linspace(0, resolution - 1, resolution) x = ((2 / ((np.sqrt(3 * width) * np.pi ** 1 / 4))) * (1 - ((x - center) ** 2 / width ** 2)) * np.exp((-(x - center) ** 2) / (2 * width ** 2))) return x def ricker_matrix(width, resolution, n_components): """Dictionary of Ricker (Mexican hat) wavelets""" centers = np.linspace(0, resolution - 1, n_components) D = np.empty((n_components, resolution)) for i, center in enumerate(centers): D[i] = ricker_function(resolution, center, width) D /= np.sqrt(np.sum(D ** 2, axis=1))[:, np.newaxis] return D resolution = 1024 subsampling = 3 # subsampling factor width = 100 n_components = resolution / subsampling # Compute a wavelet dictionary D_fixed = ricker_matrix(width=width, resolution=resolution, n_components=n_components) D_multi = np.r_[tuple(ricker_matrix(width=w, resolution=resolution, n_components=np.floor(n_components / 5)) for w in (10, 50, 100, 500, 1000))] # Generate a signal y = np.linspace(0, resolution - 1, resolution) first_quarter = y < resolution / 4 y[first_quarter] = 3. y[np.logical_not(first_quarter)] = -1. # List the different sparse coding methods in the following format: # (title, transform_algorithm, transform_alpha, transform_n_nozero_coefs) estimators = [('OMP', 'omp', None, 15), ('Lasso', 'lasso_cd', 2, None), ] pl.figure(figsize=(13, 6)) for subplot, (D, title) in enumerate(zip((D_fixed, D_multi), ('fixed width', 'multiple widths'))): pl.subplot(1, 2, subplot + 1) pl.title('Sparse coding against %s dictionary' % title) pl.plot(y, ls='dotted', label='Original signal') # Do a wavelet approximation for title, algo, alpha, n_nonzero in estimators: coder = SparseCoder(dictionary=D, transform_n_nonzero_coefs=n_nonzero, transform_alpha=alpha, transform_algorithm=algo) x = coder.transform(y) density = len(np.flatnonzero(x)) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='%s: %s nonzero coefs,\n%.2f error' % (title, density, squared_error)) # Soft thresholding debiasing coder = SparseCoder(dictionary=D, transform_algorithm='threshold', transform_alpha=20) x = coder.transform(y) _, idx = np.where(x != 0) x[0, idx], _, _, _ = np.linalg.lstsq(D[idx, :].T, y) x = np.ravel(np.dot(x, D)) squared_error = np.sum((y - x) ** 2) pl.plot(x, label='Thresholding w/ debiasing:\n%d nonzero coefs, %.2f error' % (len(idx), squared_error)) pl.axis('tight') pl.legend() pl.subplots_adjust(.04, .07, .97, .90, .09, .2) pl.show()
bsd-3-clause
Unidata/MetPy
v0.9/_downloads/8591910a2b42dadcf3b05658ddd9c600/isentropic_example.py
2
7222
# Copyright (c) 2017,2018 MetPy Developers. # Distributed under the terms of the BSD 3-Clause License. # SPDX-License-Identifier: BSD-3-Clause """ =================== Isentropic Analysis =================== The MetPy function `mpcalc.isentropic_interpolation` allows for isentropic analysis from model analysis data in isobaric coordinates. """ ######################################## import cartopy.crs as ccrs import cartopy.feature as cfeature import matplotlib.pyplot as plt import numpy as np import xarray as xr import metpy.calc as mpcalc from metpy.cbook import get_test_data from metpy.plots import add_metpy_logo, add_timestamp from metpy.units import units ####################################### # **Getting the data** # # In this example, NARR reanalysis data for 18 UTC 04 April 1987 from the National Centers # for Environmental Information (https://www.ncdc.noaa.gov/data-access/model-data) # will be used. data = xr.open_dataset(get_test_data('narr_example.nc', False)) ########################## print(list(data.variables)) ############################# # We will reduce the dimensionality of the data as it is pulled in to remove an empty time # dimension. # Assign data to variable names lat = data['lat'] lon = data['lon'] lev = data['isobaric'] times = data['time'] tmp = data['Temperature'][0] uwnd = data['u_wind'][0] vwnd = data['v_wind'][0] spech = data['Specific_humidity'][0] # pint doesn't understand gpm data['Geopotential_height'].attrs['units'] = 'meter' hgt = data['Geopotential_height'][0] ############################# # To properly interpolate to isentropic coordinates, the function must know the desired output # isentropic levels. An array with these levels will be created below. isentlevs = [296.] * units.kelvin #################################### # **Conversion to Isentropic Coordinates** # # Once three dimensional data in isobaric coordinates has been pulled and the desired # isentropic levels created, the conversion to isentropic coordinates can begin. Data will be # passed to the function as below. The function requires that isentropic levels, isobaric # levels, and temperature be input. Any additional inputs (in this case relative humidity, u, # and v wind components) will be linearly interpolated to isentropic space. isent_anal = mpcalc.isentropic_interpolation(isentlevs, lev, tmp, spech, uwnd, vwnd, hgt, tmpk_out=True) ##################################### # The output is a list, so now we will separate the variables to different names before # plotting. isentprs, isenttmp, isentspech, isentu, isentv, isenthgt = isent_anal isentu.ito('kt') isentv.ito('kt') ######################################## # A quick look at the shape of these variables will show that the data is now in isentropic # coordinates, with the number of vertical levels as specified above. print(isentprs.shape) print(isentspech.shape) print(isentu.shape) print(isentv.shape) print(isenttmp.shape) print(isenthgt.shape) ################################# # **Converting to Relative Humidity** # # The NARR only gives specific humidity on isobaric vertical levels, so relative humidity will # have to be calculated after the interpolation to isentropic space. isentrh = 100 * mpcalc.relative_humidity_from_specific_humidity(isentspech, isenttmp, isentprs) ####################################### # **Plotting the Isentropic Analysis** # Set up our projection crs = ccrs.LambertConformal(central_longitude=-100.0, central_latitude=45.0) # Coordinates to limit map area bounds = [(-122., -75., 25., 50.)] # Choose a level to plot, in this case 296 K level = 0 fig = plt.figure(figsize=(17., 12.)) add_metpy_logo(fig, 120, 245, size='large') ax = fig.add_subplot(1, 1, 1, projection=crs) ax.set_extent(*bounds, crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75) ax.add_feature(cfeature.STATES, linewidth=0.5) # Plot the surface clevisent = np.arange(0, 1000, 25) cs = ax.contour(lon, lat, isentprs[level, :, :], clevisent, colors='k', linewidths=1.0, linestyles='solid', transform=ccrs.PlateCarree()) ax.clabel(cs, fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True, use_clabeltext=True) # Plot RH cf = ax.contourf(lon, lat, isentrh[level, :, :], range(10, 106, 5), cmap=plt.cm.gist_earth_r, transform=ccrs.PlateCarree()) cb = fig.colorbar(cf, orientation='horizontal', extend='max', aspect=65, shrink=0.5, pad=0.05, extendrect='True') cb.set_label('Relative Humidity', size='x-large') # Plot wind barbs ax.barbs(lon.values, lat.values, isentu[level, :, :].m, isentv[level, :, :].m, length=6, regrid_shape=20, transform=ccrs.PlateCarree()) # Make some titles ax.set_title('{:.0f} K Isentropic Pressure (hPa), Wind (kt), Relative Humidity (percent)' .format(isentlevs[level].m), loc='left') add_timestamp(ax, times[0].dt, y=0.02, high_contrast=True) fig.tight_layout() ###################################### # **Montgomery Streamfunction** # # The Montgomery Streamfunction, :math:`{\psi} = gdz + CpT`, is often desired because its # gradient is proportional to the geostrophic wind in isentropic space. This can be easily # calculated with `mpcalc.montgomery_streamfunction`. # Calculate Montgomery Streamfunction and scale by 10^-2 for plotting msf = mpcalc.montgomery_streamfunction(isenthgt, isenttmp) / 100. # Choose a level to plot, in this case 296 K level = 0 fig = plt.figure(figsize=(17., 12.)) add_metpy_logo(fig, 120, 250, size='large') ax = plt.subplot(111, projection=crs) ax.set_extent(*bounds, crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidth=0.75) ax.add_feature(cfeature.STATES.with_scale('50m'), linewidth=0.5) # Plot the surface clevmsf = np.arange(0, 4000, 5) cs = ax.contour(lon, lat, msf[level, :, :], clevmsf, colors='k', linewidths=1.0, linestyles='solid', transform=ccrs.PlateCarree()) ax.clabel(cs, fontsize=10, inline=1, inline_spacing=7, fmt='%i', rightside_up=True, use_clabeltext=True) # Plot RH cf = ax.contourf(lon, lat, isentrh[level, :, :], range(10, 106, 5), cmap=plt.cm.gist_earth_r, transform=ccrs.PlateCarree()) cb = fig.colorbar(cf, orientation='horizontal', extend='max', aspect=65, shrink=0.5, pad=0.05, extendrect='True') cb.set_label('Relative Humidity', size='x-large') # Plot wind barbs. ax.barbs(lon.values, lat.values, isentu[level, :, :].m, isentv[level, :, :].m, length=6, regrid_shape=20, transform=ccrs.PlateCarree()) # Make some titles ax.set_title('{:.0f} K Montgomery Streamfunction '.format(isentlevs[level].m) + r'($10^{-2} m^2 s^{-2}$), ' + 'Wind (kt), Relative Humidity (percent)', loc='left') add_timestamp(ax, times[0].dt, y=0.02, pretext='Valid: ', high_contrast=True) fig.tight_layout() plt.show()
bsd-3-clause
del680202/MachineLearning-memo
src/tensorflow/autocoder.py
1
6809
# View more python learning tutorial on my Youtube and Youku channel!!! # My tutorial website: https://morvanzhou.github.io/tutorials/ from __future__ import division, print_function, absolute_import import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=False) # Visualize decoder setting # Parameters learning_rate = 0.01 training_epochs = 5 batch_size = 256 display_step = 1 examples_to_show = 10 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) # hidden layer settings n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 128 # 2nd layer num features weights = { 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b2': tf.Variable(tf.random_normal([n_input])), } # Building the encoder def encoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) return layer_2 # Building the decoder def decoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) return layer_2 """ # Visualize encoder setting # Parameters learning_rate = 0.01 # 0.01 this learning rate will be better! Tested training_epochs = 10 batch_size = 256 display_step = 1 # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) # hidden layer settings n_hidden_1 = 128 n_hidden_2 = 64 n_hidden_3 = 10 n_hidden_4 = 2 weights = { 'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)), 'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)), 'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)), 'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)), 'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)), 'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)), 'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)), 'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])), 'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])), 'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b4': tf.Variable(tf.random_normal([n_input])), } def encoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']), biases['encoder_b3'])) layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']), biases['encoder_b4']) return layer_4 def decoder(x): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']), biases['decoder_b3'])) layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']), biases['decoder_b4'])) return layer_4 """ # Construct model encoder_op = encoder(X) decoder_op = decoder(encoder_op) # Prediction y_pred = decoder_op # Targets (Labels) are the input data. y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph with tf.Session() as sess: # tf.initialize_all_variables() no long valid from # 2017-03-02 if using tensorflow >= 0.12 sess.run(tf.initialize_all_variables()) total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0 # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c)) print("Optimization Finished!") # # Applying encode and decode over test set encode_decode = sess.run( y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # Compare original images with their reconstructions f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(examples_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) #Raw image a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) # encode -> decode image plt.show() # encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images}) # plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels) # plt.colorbar() # plt.show()
apache-2.0
liangz0707/scikit-learn
sklearn/feature_selection/variance_threshold.py
238
2594
# Author: Lars Buitinck <L.J.Buitinck@uva.nl> # License: 3-clause BSD import numpy as np from ..base import BaseEstimator from .base import SelectorMixin from ..utils import check_array from ..utils.sparsefuncs import mean_variance_axis from ..utils.validation import check_is_fitted class VarianceThreshold(BaseEstimator, SelectorMixin): """Feature selector that removes all low-variance features. This feature selection algorithm looks only at the features (X), not the desired outputs (y), and can thus be used for unsupervised learning. Read more in the :ref:`User Guide <variance_threshold>`. Parameters ---------- threshold : float, optional Features with a training-set variance lower than this threshold will be removed. The default is to keep all features with non-zero variance, i.e. remove the features that have the same value in all samples. Attributes ---------- variances_ : array, shape (n_features,) Variances of individual features. Examples -------- The following dataset has integer features, two of which are the same in every sample. These are removed with the default setting for threshold:: >>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]] >>> selector = VarianceThreshold() >>> selector.fit_transform(X) array([[2, 0], [1, 4], [1, 1]]) """ def __init__(self, threshold=0.): self.threshold = threshold def fit(self, X, y=None): """Learn empirical variances from X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Sample vectors from which to compute variances. y : any Ignored. This parameter exists only for compatibility with sklearn.pipeline.Pipeline. Returns ------- self """ X = check_array(X, ('csr', 'csc'), dtype=np.float64) if hasattr(X, "toarray"): # sparse matrix _, self.variances_ = mean_variance_axis(X, axis=0) else: self.variances_ = np.var(X, axis=0) if np.all(self.variances_ <= self.threshold): msg = "No feature in X meets the variance threshold {0:.5f}" if X.shape[0] == 1: msg += " (X contains only one sample)" raise ValueError(msg.format(self.threshold)) return self def _get_support_mask(self): check_is_fitted(self, 'variances_') return self.variances_ > self.threshold
bsd-3-clause
Lightmatter/django-inlineformfield
.tox/py27/lib/python2.7/site-packages/IPython/html/notebookapp.py
5
34560
# coding: utf-8 """A tornado based IPython notebook server. Authors: * Brian Granger """ from __future__ import print_function #----------------------------------------------------------------------------- # Copyright (C) 2013 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # stdlib import errno import io import json import logging import os import random import re import select import signal import socket import sys import threading import time import webbrowser # Third party # check for pyzmq 2.1.11 from IPython.utils.zmqrelated import check_for_zmq check_for_zmq('2.1.11', 'IPython.html') from jinja2 import Environment, FileSystemLoader # Install the pyzmq ioloop. This has to be done before anything else from # tornado is imported. from zmq.eventloop import ioloop ioloop.install() # check for tornado 3.1.0 msg = "The IPython Notebook requires tornado >= 3.1.0" try: import tornado except ImportError: raise ImportError(msg) try: version_info = tornado.version_info except AttributeError: raise ImportError(msg + ", but you have < 1.1.0") if version_info < (3,1,0): raise ImportError(msg + ", but you have %s" % tornado.version) from tornado import httpserver from tornado import web # Our own libraries from IPython.html import DEFAULT_STATIC_FILES_PATH from .base.handlers import Template404 from .log import log_request from .services.kernels.kernelmanager import MappingKernelManager from .services.notebooks.nbmanager import NotebookManager from .services.notebooks.filenbmanager import FileNotebookManager from .services.clusters.clustermanager import ClusterManager from .services.sessions.sessionmanager import SessionManager from .base.handlers import AuthenticatedFileHandler, FileFindHandler from IPython.config import Config from IPython.config.application import catch_config_error, boolean_flag from IPython.core.application import BaseIPythonApplication from IPython.core.profiledir import ProfileDir from IPython.consoleapp import IPythonConsoleApp from IPython.kernel import swallow_argv from IPython.kernel.zmq.session import default_secure from IPython.kernel.zmq.kernelapp import ( kernel_flags, kernel_aliases, ) from IPython.nbformat.sign import NotebookNotary from IPython.utils.importstring import import_item from IPython.utils import submodule from IPython.utils.traitlets import ( Dict, Unicode, Integer, List, Bool, Bytes, DottedObjectName, TraitError, ) from IPython.utils import py3compat from IPython.utils.path import filefind, get_ipython_dir from .utils import url_path_join #----------------------------------------------------------------------------- # Module globals #----------------------------------------------------------------------------- _examples = """ ipython notebook # start the notebook ipython notebook --profile=sympy # use the sympy profile ipython notebook --certfile=mycert.pem # use SSL/TLS certificate """ #----------------------------------------------------------------------------- # Helper functions #----------------------------------------------------------------------------- def random_ports(port, n): """Generate a list of n random ports near the given port. The first 5 ports will be sequential, and the remaining n-5 will be randomly selected in the range [port-2*n, port+2*n]. """ for i in range(min(5, n)): yield port + i for i in range(n-5): yield max(1, port + random.randint(-2*n, 2*n)) def load_handlers(name): """Load the (URL pattern, handler) tuples for each component.""" name = 'IPython.html.' + name mod = __import__(name, fromlist=['default_handlers']) return mod.default_handlers #----------------------------------------------------------------------------- # The Tornado web application #----------------------------------------------------------------------------- class NotebookWebApplication(web.Application): def __init__(self, ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options): settings = self.init_settings( ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options) handlers = self.init_handlers(settings) super(NotebookWebApplication, self).__init__(handlers, **settings) def init_settings(self, ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options=None): # Python < 2.6.5 doesn't accept unicode keys in f(**kwargs), and # base_url will always be unicode, which will in turn # make the patterns unicode, and ultimately result in unicode # keys in kwargs to handler._execute(**kwargs) in tornado. # This enforces that base_url be ascii in that situation. # # Note that the URLs these patterns check against are escaped, # and thus guaranteed to be ASCII: 'héllo' is really 'h%C3%A9llo'. base_url = py3compat.unicode_to_str(base_url, 'ascii') template_path = settings_overrides.get("template_path", os.path.join(os.path.dirname(__file__), "templates")) jenv_opt = jinja_env_options if jinja_env_options else {} env = Environment(loader=FileSystemLoader(template_path),**jenv_opt ) settings = dict( # basics log_function=log_request, base_url=base_url, template_path=template_path, static_path=ipython_app.static_file_path, static_handler_class = FileFindHandler, static_url_prefix = url_path_join(base_url,'/static/'), # authentication cookie_secret=ipython_app.cookie_secret, login_url=url_path_join(base_url,'/login'), password=ipython_app.password, # managers kernel_manager=kernel_manager, notebook_manager=notebook_manager, cluster_manager=cluster_manager, session_manager=session_manager, # IPython stuff nbextensions_path = ipython_app.nbextensions_path, mathjax_url=ipython_app.mathjax_url, config=ipython_app.config, jinja2_env=env, ) # allow custom overrides for the tornado web app. settings.update(settings_overrides) return settings def init_handlers(self, settings): # Load the (URL pattern, handler) tuples for each component. handlers = [] handlers.extend(load_handlers('base.handlers')) handlers.extend(load_handlers('tree.handlers')) handlers.extend(load_handlers('auth.login')) handlers.extend(load_handlers('auth.logout')) handlers.extend(load_handlers('notebook.handlers')) handlers.extend(load_handlers('nbconvert.handlers')) handlers.extend(load_handlers('services.kernels.handlers')) handlers.extend(load_handlers('services.notebooks.handlers')) handlers.extend(load_handlers('services.clusters.handlers')) handlers.extend(load_handlers('services.sessions.handlers')) handlers.extend(load_handlers('services.nbconvert.handlers')) # FIXME: /files/ should be handled by the Contents service when it exists nbm = settings['notebook_manager'] if hasattr(nbm, 'notebook_dir'): handlers.extend([ (r"/files/(.*)", AuthenticatedFileHandler, {'path' : nbm.notebook_dir}), (r"/nbextensions/(.*)", FileFindHandler, {'path' : settings['nbextensions_path']}), ]) # prepend base_url onto the patterns that we match new_handlers = [] for handler in handlers: pattern = url_path_join(settings['base_url'], handler[0]) new_handler = tuple([pattern] + list(handler[1:])) new_handlers.append(new_handler) # add 404 on the end, which will catch everything that falls through new_handlers.append((r'(.*)', Template404)) return new_handlers class NbserverListApp(BaseIPythonApplication): description="List currently running notebook servers in this profile." flags = dict( json=({'NbserverListApp': {'json': True}}, "Produce machine-readable JSON output."), ) json = Bool(False, config=True, help="If True, each line of output will be a JSON object with the " "details from the server info file.") def start(self): if not self.json: print("Currently running servers:") for serverinfo in list_running_servers(self.profile): if self.json: print(json.dumps(serverinfo)) else: print(serverinfo['url'], "::", serverinfo['notebook_dir']) #----------------------------------------------------------------------------- # Aliases and Flags #----------------------------------------------------------------------------- flags = dict(kernel_flags) flags['no-browser']=( {'NotebookApp' : {'open_browser' : False}}, "Don't open the notebook in a browser after startup." ) flags['no-mathjax']=( {'NotebookApp' : {'enable_mathjax' : False}}, """Disable MathJax MathJax is the javascript library IPython uses to render math/LaTeX. It is very large, so you may want to disable it if you have a slow internet connection, or for offline use of the notebook. When disabled, equations etc. will appear as their untransformed TeX source. """ ) # Add notebook manager flags flags.update(boolean_flag('script', 'FileNotebookManager.save_script', 'Auto-save a .py script everytime the .ipynb notebook is saved', 'Do not auto-save .py scripts for every notebook')) # the flags that are specific to the frontend # these must be scrubbed before being passed to the kernel, # or it will raise an error on unrecognized flags notebook_flags = ['no-browser', 'no-mathjax', 'script', 'no-script'] aliases = dict(kernel_aliases) aliases.update({ 'ip': 'NotebookApp.ip', 'port': 'NotebookApp.port', 'port-retries': 'NotebookApp.port_retries', 'transport': 'KernelManager.transport', 'keyfile': 'NotebookApp.keyfile', 'certfile': 'NotebookApp.certfile', 'notebook-dir': 'NotebookApp.notebook_dir', 'browser': 'NotebookApp.browser', }) # remove ipkernel flags that are singletons, and don't make sense in # multi-kernel evironment: aliases.pop('f', None) notebook_aliases = [u'port', u'port-retries', u'ip', u'keyfile', u'certfile', u'notebook-dir', u'profile', u'profile-dir', 'browser'] #----------------------------------------------------------------------------- # NotebookApp #----------------------------------------------------------------------------- class NotebookApp(BaseIPythonApplication): name = 'ipython-notebook' description = """ The IPython HTML Notebook. This launches a Tornado based HTML Notebook Server that serves up an HTML5/Javascript Notebook client. """ examples = _examples classes = IPythonConsoleApp.classes + [MappingKernelManager, NotebookManager, FileNotebookManager, NotebookNotary] flags = Dict(flags) aliases = Dict(aliases) subcommands = dict( list=(NbserverListApp, NbserverListApp.description.splitlines()[0]), ) kernel_argv = List(Unicode) def _log_level_default(self): return logging.INFO def _log_format_default(self): """override default log format to include time""" return u"%(asctime)s.%(msecs).03d [%(name)s]%(highlevel)s %(message)s" # create requested profiles by default, if they don't exist: auto_create = Bool(True) # file to be opened in the notebook server file_to_run = Unicode('', config=True) def _file_to_run_changed(self, name, old, new): path, base = os.path.split(new) if path: self.file_to_run = base self.notebook_dir = path # Network related information allow_origin = Unicode('', config=True, help="""Set the Access-Control-Allow-Origin header Use '*' to allow any origin to access your server. Takes precedence over allow_origin_pat. """ ) allow_origin_pat = Unicode('', config=True, help="""Use a regular expression for the Access-Control-Allow-Origin header Requests from an origin matching the expression will get replies with: Access-Control-Allow-Origin: origin where `origin` is the origin of the request. Ignored if allow_origin is set. """ ) allow_credentials = Bool(False, config=True, help="Set the Access-Control-Allow-Credentials: true header" ) ip = Unicode('localhost', config=True, help="The IP address the notebook server will listen on." ) def _ip_changed(self, name, old, new): if new == u'*': self.ip = u'' port = Integer(8888, config=True, help="The port the notebook server will listen on." ) port_retries = Integer(50, config=True, help="The number of additional ports to try if the specified port is not available." ) certfile = Unicode(u'', config=True, help="""The full path to an SSL/TLS certificate file.""" ) keyfile = Unicode(u'', config=True, help="""The full path to a private key file for usage with SSL/TLS.""" ) cookie_secret = Bytes(b'', config=True, help="""The random bytes used to secure cookies. By default this is a new random number every time you start the Notebook. Set it to a value in a config file to enable logins to persist across server sessions. Note: Cookie secrets should be kept private, do not share config files with cookie_secret stored in plaintext (you can read the value from a file). """ ) def _cookie_secret_default(self): return os.urandom(1024) password = Unicode(u'', config=True, help="""Hashed password to use for web authentication. To generate, type in a python/IPython shell: from IPython.lib import passwd; passwd() The string should be of the form type:salt:hashed-password. """ ) open_browser = Bool(True, config=True, help="""Whether to open in a browser after starting. The specific browser used is platform dependent and determined by the python standard library `webbrowser` module, unless it is overridden using the --browser (NotebookApp.browser) configuration option. """) browser = Unicode(u'', config=True, help="""Specify what command to use to invoke a web browser when opening the notebook. If not specified, the default browser will be determined by the `webbrowser` standard library module, which allows setting of the BROWSER environment variable to override it. """) webapp_settings = Dict(config=True, help="Supply overrides for the tornado.web.Application that the " "IPython notebook uses.") jinja_environment_options = Dict(config=True, help="Supply extra arguments that will be passed to Jinja environment.") enable_mathjax = Bool(True, config=True, help="""Whether to enable MathJax for typesetting math/TeX MathJax is the javascript library IPython uses to render math/LaTeX. It is very large, so you may want to disable it if you have a slow internet connection, or for offline use of the notebook. When disabled, equations etc. will appear as their untransformed TeX source. """ ) def _enable_mathjax_changed(self, name, old, new): """set mathjax url to empty if mathjax is disabled""" if not new: self.mathjax_url = u'' base_url = Unicode('/', config=True, help='''The base URL for the notebook server. Leading and trailing slashes can be omitted, and will automatically be added. ''') def _base_url_changed(self, name, old, new): if not new.startswith('/'): self.base_url = '/'+new elif not new.endswith('/'): self.base_url = new+'/' base_project_url = Unicode('/', config=True, help="""DEPRECATED use base_url""") def _base_project_url_changed(self, name, old, new): self.log.warn("base_project_url is deprecated, use base_url") self.base_url = new extra_static_paths = List(Unicode, config=True, help="""Extra paths to search for serving static files. This allows adding javascript/css to be available from the notebook server machine, or overriding individual files in the IPython""" ) def _extra_static_paths_default(self): return [os.path.join(self.profile_dir.location, 'static')] @property def static_file_path(self): """return extra paths + the default location""" return self.extra_static_paths + [DEFAULT_STATIC_FILES_PATH] nbextensions_path = List(Unicode, config=True, help="""paths for Javascript extensions. By default, this is just IPYTHONDIR/nbextensions""" ) def _nbextensions_path_default(self): return [os.path.join(get_ipython_dir(), 'nbextensions')] mathjax_url = Unicode("", config=True, help="""The url for MathJax.js.""" ) def _mathjax_url_default(self): if not self.enable_mathjax: return u'' static_url_prefix = self.webapp_settings.get("static_url_prefix", url_path_join(self.base_url, "static") ) # try local mathjax, either in nbextensions/mathjax or static/mathjax for (url_prefix, search_path) in [ (url_path_join(self.base_url, "nbextensions"), self.nbextensions_path), (static_url_prefix, self.static_file_path), ]: self.log.debug("searching for local mathjax in %s", search_path) try: mathjax = filefind(os.path.join('mathjax', 'MathJax.js'), search_path) except IOError: continue else: url = url_path_join(url_prefix, u"mathjax/MathJax.js") self.log.info("Serving local MathJax from %s at %s", mathjax, url) return url # no local mathjax, serve from CDN url = u"https://cdn.mathjax.org/mathjax/latest/MathJax.js" self.log.info("Using MathJax from CDN: %s", url) return url def _mathjax_url_changed(self, name, old, new): if new and not self.enable_mathjax: # enable_mathjax=False overrides mathjax_url self.mathjax_url = u'' else: self.log.info("Using MathJax: %s", new) notebook_manager_class = DottedObjectName('IPython.html.services.notebooks.filenbmanager.FileNotebookManager', config=True, help='The notebook manager class to use.') trust_xheaders = Bool(False, config=True, help=("Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headers" "sent by the upstream reverse proxy. Necessary if the proxy handles SSL") ) info_file = Unicode() def _info_file_default(self): info_file = "nbserver-%s.json"%os.getpid() return os.path.join(self.profile_dir.security_dir, info_file) notebook_dir = Unicode(py3compat.getcwd(), config=True, help="The directory to use for notebooks and kernels." ) def _notebook_dir_changed(self, name, old, new): """Do a bit of validation of the notebook dir.""" if not os.path.isabs(new): # If we receive a non-absolute path, make it absolute. self.notebook_dir = os.path.abspath(new) return if not os.path.isdir(new): raise TraitError("No such notebook dir: %r" % new) # setting App.notebook_dir implies setting notebook and kernel dirs as well self.config.FileNotebookManager.notebook_dir = new self.config.MappingKernelManager.root_dir = new def parse_command_line(self, argv=None): super(NotebookApp, self).parse_command_line(argv) if self.extra_args: arg0 = self.extra_args[0] f = os.path.abspath(arg0) self.argv.remove(arg0) if not os.path.exists(f): self.log.critical("No such file or directory: %s", f) self.exit(1) # Use config here, to ensure that it takes higher priority than # anything that comes from the profile. c = Config() if os.path.isdir(f): c.NotebookApp.notebook_dir = f elif os.path.isfile(f): c.NotebookApp.file_to_run = f self.update_config(c) def init_kernel_argv(self): """construct the kernel arguments""" # Scrub frontend-specific flags self.kernel_argv = swallow_argv(self.argv, notebook_aliases, notebook_flags) if any(arg.startswith(u'--pylab') for arg in self.kernel_argv): self.log.warn('\n '.join([ "Starting all kernels in pylab mode is not recommended,", "and will be disabled in a future release.", "Please use the %matplotlib magic to enable matplotlib instead.", "pylab implies many imports, which can have confusing side effects", "and harm the reproducibility of your notebooks.", ])) # Kernel should inherit default config file from frontend self.kernel_argv.append("--IPKernelApp.parent_appname='%s'" % self.name) # Kernel should get *absolute* path to profile directory self.kernel_argv.extend(["--profile-dir", self.profile_dir.location]) def init_configurables(self): # force Session default to be secure default_secure(self.config) self.kernel_manager = MappingKernelManager( parent=self, log=self.log, kernel_argv=self.kernel_argv, connection_dir = self.profile_dir.security_dir, ) kls = import_item(self.notebook_manager_class) self.notebook_manager = kls(parent=self, log=self.log) self.session_manager = SessionManager(parent=self, log=self.log) self.cluster_manager = ClusterManager(parent=self, log=self.log) self.cluster_manager.update_profiles() def init_logging(self): # This prevents double log messages because tornado use a root logger that # self.log is a child of. The logging module dipatches log messages to a log # and all of its ancenstors until propagate is set to False. self.log.propagate = False # hook up tornado 3's loggers to our app handlers for name in ('access', 'application', 'general'): logger = logging.getLogger('tornado.%s' % name) logger.parent = self.log logger.setLevel(self.log.level) def init_webapp(self): """initialize tornado webapp and httpserver""" self.webapp_settings['allow_origin'] = self.allow_origin if self.allow_origin_pat: self.webapp_settings['allow_origin_pat'] = re.compile(self.allow_origin_pat) self.webapp_settings['allow_credentials'] = self.allow_credentials self.web_app = NotebookWebApplication( self, self.kernel_manager, self.notebook_manager, self.cluster_manager, self.session_manager, self.log, self.base_url, self.webapp_settings, self.jinja_environment_options ) if self.certfile: ssl_options = dict(certfile=self.certfile) if self.keyfile: ssl_options['keyfile'] = self.keyfile else: ssl_options = None self.web_app.password = self.password self.http_server = httpserver.HTTPServer(self.web_app, ssl_options=ssl_options, xheaders=self.trust_xheaders) if not self.ip: warning = "WARNING: The notebook server is listening on all IP addresses" if ssl_options is None: self.log.critical(warning + " and not using encryption. This " "is not recommended.") if not self.password: self.log.critical(warning + " and not using authentication. " "This is highly insecure and not recommended.") success = None for port in random_ports(self.port, self.port_retries+1): try: self.http_server.listen(port, self.ip) except socket.error as e: if e.errno == errno.EADDRINUSE: self.log.info('The port %i is already in use, trying another random port.' % port) continue elif e.errno in (errno.EACCES, getattr(errno, 'WSAEACCES', errno.EACCES)): self.log.warn("Permission to listen on port %i denied" % port) continue else: raise else: self.port = port success = True break if not success: self.log.critical('ERROR: the notebook server could not be started because ' 'no available port could be found.') self.exit(1) @property def display_url(self): ip = self.ip if self.ip else '[all ip addresses on your system]' return self._url(ip) @property def connection_url(self): ip = self.ip if self.ip else 'localhost' return self._url(ip) def _url(self, ip): proto = 'https' if self.certfile else 'http' return "%s://%s:%i%s" % (proto, ip, self.port, self.base_url) def init_signal(self): if not sys.platform.startswith('win'): signal.signal(signal.SIGINT, self._handle_sigint) signal.signal(signal.SIGTERM, self._signal_stop) if hasattr(signal, 'SIGUSR1'): # Windows doesn't support SIGUSR1 signal.signal(signal.SIGUSR1, self._signal_info) if hasattr(signal, 'SIGINFO'): # only on BSD-based systems signal.signal(signal.SIGINFO, self._signal_info) def _handle_sigint(self, sig, frame): """SIGINT handler spawns confirmation dialog""" # register more forceful signal handler for ^C^C case signal.signal(signal.SIGINT, self._signal_stop) # request confirmation dialog in bg thread, to avoid # blocking the App thread = threading.Thread(target=self._confirm_exit) thread.daemon = True thread.start() def _restore_sigint_handler(self): """callback for restoring original SIGINT handler""" signal.signal(signal.SIGINT, self._handle_sigint) def _confirm_exit(self): """confirm shutdown on ^C A second ^C, or answering 'y' within 5s will cause shutdown, otherwise original SIGINT handler will be restored. This doesn't work on Windows. """ # FIXME: remove this delay when pyzmq dependency is >= 2.1.11 time.sleep(0.1) info = self.log.info info('interrupted') print(self.notebook_info()) sys.stdout.write("Shutdown this notebook server (y/[n])? ") sys.stdout.flush() r,w,x = select.select([sys.stdin], [], [], 5) if r: line = sys.stdin.readline() if line.lower().startswith('y') and 'n' not in line.lower(): self.log.critical("Shutdown confirmed") ioloop.IOLoop.instance().stop() return else: print("No answer for 5s:", end=' ') print("resuming operation...") # no answer, or answer is no: # set it back to original SIGINT handler # use IOLoop.add_callback because signal.signal must be called # from main thread ioloop.IOLoop.instance().add_callback(self._restore_sigint_handler) def _signal_stop(self, sig, frame): self.log.critical("received signal %s, stopping", sig) ioloop.IOLoop.instance().stop() def _signal_info(self, sig, frame): print(self.notebook_info()) def init_components(self): """Check the components submodule, and warn if it's unclean""" status = submodule.check_submodule_status() if status == 'missing': self.log.warn("components submodule missing, running `git submodule update`") submodule.update_submodules(submodule.ipython_parent()) elif status == 'unclean': self.log.warn("components submodule unclean, you may see 404s on static/components") self.log.warn("run `setup.py submodule` or `git submodule update` to update") @catch_config_error def initialize(self, argv=None): super(NotebookApp, self).initialize(argv) self.init_logging() self.init_kernel_argv() self.init_configurables() self.init_components() self.init_webapp() self.init_signal() def cleanup_kernels(self): """Shutdown all kernels. The kernels will shutdown themselves when this process no longer exists, but explicit shutdown allows the KernelManagers to cleanup the connection files. """ self.log.info('Shutting down kernels') self.kernel_manager.shutdown_all() def notebook_info(self): "Return the current working directory and the server url information" info = self.notebook_manager.info_string() + "\n" info += "%d active kernels \n" % len(self.kernel_manager._kernels) return info + "The IPython Notebook is running at: %s" % self.display_url def server_info(self): """Return a JSONable dict of information about this server.""" return {'url': self.connection_url, 'hostname': self.ip if self.ip else 'localhost', 'port': self.port, 'secure': bool(self.certfile), 'base_url': self.base_url, 'notebook_dir': os.path.abspath(self.notebook_dir), } def write_server_info_file(self): """Write the result of server_info() to the JSON file info_file.""" with open(self.info_file, 'w') as f: json.dump(self.server_info(), f, indent=2) def remove_server_info_file(self): """Remove the nbserver-<pid>.json file created for this server. Ignores the error raised when the file has already been removed. """ try: os.unlink(self.info_file) except OSError as e: if e.errno != errno.ENOENT: raise def start(self): """ Start the IPython Notebook server app, after initialization This method takes no arguments so all configuration and initialization must be done prior to calling this method.""" if self.subapp is not None: return self.subapp.start() info = self.log.info for line in self.notebook_info().split("\n"): info(line) info("Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).") self.write_server_info_file() if self.open_browser or self.file_to_run: try: browser = webbrowser.get(self.browser or None) except webbrowser.Error as e: self.log.warn('No web browser found: %s.' % e) browser = None if self.file_to_run: fullpath = os.path.join(self.notebook_dir, self.file_to_run) if not os.path.exists(fullpath): self.log.critical("%s does not exist" % fullpath) self.exit(1) uri = url_path_join('notebooks', self.file_to_run) else: uri = 'tree' if browser: b = lambda : browser.open(url_path_join(self.connection_url, uri), new=2) threading.Thread(target=b).start() try: ioloop.IOLoop.instance().start() except KeyboardInterrupt: info("Interrupted...") finally: self.cleanup_kernels() self.remove_server_info_file() def list_running_servers(profile='default'): """Iterate over the server info files of running notebook servers. Given a profile name, find nbserver-* files in the security directory of that profile, and yield dicts of their information, each one pertaining to a currently running notebook server instance. """ pd = ProfileDir.find_profile_dir_by_name(get_ipython_dir(), name=profile) for file in os.listdir(pd.security_dir): if file.startswith('nbserver-'): with io.open(os.path.join(pd.security_dir, file), encoding='utf-8') as f: yield json.load(f) #----------------------------------------------------------------------------- # Main entry point #----------------------------------------------------------------------------- launch_new_instance = NotebookApp.launch_instance
mit
Eric89GXL/scikit-learn
doc/sphinxext/gen_rst.py
1
39133
""" Example generation for the scikit learn Generate the rst files for the examples by iterating over the python example files. Files that generate images should start with 'plot' """ from time import time import os import re import shutil import traceback import glob import sys from StringIO import StringIO import cPickle import urllib2 import gzip import posixpath try: from PIL import Image except: import Image import matplotlib matplotlib.use('Agg') import token import tokenize import numpy as np ############################################################################### # A tee object to redict streams to multiple outputs class Tee(object): def __init__(self, file1, file2): self.file1 = file1 self.file2 = file2 def write(self, data): self.file1.write(data) self.file2.write(data) def flush(self): self.file1.flush() self.file2.flush() ############################################################################### # Documentation link resolver objects def get_data(url): """Helper function to get data over http or from a local file""" if url.startswith('http://'): resp = urllib2.urlopen(url) encoding = resp.headers.dict.get('content-encoding', 'plain') data = resp.read() if encoding == 'plain': pass elif encoding == 'gzip': data = StringIO(data) data = gzip.GzipFile(fileobj=data).read() else: raise RuntimeError('unknown encoding') else: with open(url, 'r') as fid: data = fid.read() fid.close() return data def parse_sphinx_searchindex(searchindex): """Parse a Sphinx search index Parameters ---------- searchindex : str The Sphinx search index (contents of searchindex.js) Returns ------- filenames : list of str The file names parsed from the search index. objects : dict The objects parsed from the search index. """ def _select_block(str_in, start_tag, end_tag): """Select first block delimited by start_tag and end_tag""" start_pos = str_in.find(start_tag) if start_pos < 0: raise ValueError('start_tag not found') depth = 0 for pos in range(start_pos, len(str_in)): if str_in[pos] == start_tag: depth += 1 elif str_in[pos] == end_tag: depth -= 1 if depth == 0: break sel = str_in[start_pos + 1:pos] return sel def _parse_dict_recursive(dict_str): """Parse a dictionary from the search index""" dict_out = dict() pos_last = 0 pos = dict_str.find(':') while pos >= 0: key = dict_str[pos_last:pos] if dict_str[pos + 1] == '[': # value is a list pos_tmp = dict_str.find(']', pos + 1) if pos_tmp < 0: raise RuntimeError('error when parsing dict') value = dict_str[pos + 2: pos_tmp].split(',') # try to convert elements to int for i in range(len(value)): try: value[i] = int(value[i]) except ValueError: pass elif dict_str[pos + 1] == '{': # value is another dictionary subdict_str = _select_block(dict_str[pos:], '{', '}') value = _parse_dict_recursive(subdict_str) pos_tmp = pos + len(subdict_str) else: raise ValueError('error when parsing dict: unknown elem') key = key.strip('"') if len(key) > 0: dict_out[key] = value pos_last = dict_str.find(',', pos_tmp) if pos_last < 0: break pos_last += 1 pos = dict_str.find(':', pos_last) return dict_out # parse objects query = 'objects:' pos = searchindex.find(query) if pos < 0: raise ValueError('"objects:" not found in search index') sel = _select_block(searchindex[pos:], '{', '}') objects = _parse_dict_recursive(sel) # parse filenames query = 'filenames:' pos = searchindex.find(query) if pos < 0: raise ValueError('"filenames:" not found in search index') filenames = searchindex[pos + len(query) + 1:] filenames = filenames[:filenames.find(']')] filenames = [f.strip('"') for f in filenames.split(',')] return filenames, objects class SphinxDocLinkResolver(object): """ Resolve documentation links using searchindex.js generated by Sphinx Parameters ---------- doc_url : str The base URL of the project website. searchindex : str Filename of searchindex, relative to doc_url. extra_modules_test : list of str List of extra module names to test. relative : bool Return relative links (only useful for links to documentation of this package). """ def __init__(self, doc_url, searchindex='searchindex.js', extra_modules_test=None, relative=False): self.doc_url = doc_url self.relative = relative self._link_cache = {} self.extra_modules_test = extra_modules_test self._page_cache = {} if doc_url.startswith('http://'): if relative: raise ValueError('Relative links are only supported for local ' 'URLs (doc_url cannot start with "http://)"') searchindex_url = doc_url + '/' + searchindex else: searchindex_url = os.path.join(doc_url, searchindex) # detect if we are using relative links on a Windows system if os.name.lower() == 'nt' and not doc_url.startswith('http://'): if not relative: raise ValueError('You have to use relative=True for the local' ' package on a Windows system.') self._is_windows = True else: self._is_windows = False # download and initialize the search index sindex = get_data(searchindex_url) filenames, objects = parse_sphinx_searchindex(sindex) self._searchindex = dict(filenames=filenames, objects=objects) def _get_link(self, cobj): """Get a valid link, False if not found""" fname_idx = None full_name = cobj['module_short'] + '.' + cobj['name'] if full_name in self._searchindex['objects']: value = self._searchindex['objects'][full_name] if isinstance(value, dict): value = value[value.keys()[0]] fname_idx = value[0] elif cobj['module_short'] in self._searchindex['objects']: value = self._searchindex['objects'][cobj['module_short']] if cobj['name'] in value.keys(): fname_idx = value[cobj['name']][0] if fname_idx is not None: fname = self._searchindex['filenames'][fname_idx] + '.html' if self._is_windows: fname = fname.replace('/', '\\') link = os.path.join(self.doc_url, fname) else: link = posixpath.join(self.doc_url, fname) if link in self._page_cache: html = self._page_cache[link] else: html = get_data(link) self._page_cache[link] = html # test if cobj appears in page comb_names = [cobj['module_short'] + '.' + cobj['name']] if self.extra_modules_test is not None: for mod in self.extra_modules_test: comb_names.append(mod + '.' + cobj['name']) url = False for comb_name in comb_names: if html.find(comb_name) >= 0: url = link + '#' + comb_name link = url else: link = False return link def resolve(self, cobj, this_url): """Resolve the link to the documentation, returns None if not found Parameters ---------- cobj : dict Dict with information about the "code object" for which we are resolving a link. cobi['name'] : function or class name (str) cobj['module_short'] : shortened module name (str) cobj['module'] : module name (str) this_url: str URL of the current page. Needed to construct relative URLs (only used if relative=True in constructor). Returns ------- link : str | None The link (URL) to the documentation. """ full_name = cobj['module_short'] + '.' + cobj['name'] link = self._link_cache.get(full_name, None) if link is None: # we don't have it cached link = self._get_link(cobj) # cache it for the future self._link_cache[full_name] = link if link is False or link is None: # failed to resolve return None if self.relative: link = os.path.relpath(link, start=this_url) if self._is_windows: # replace '\' with '/' so it on the web link = link.replace('\\', '/') # for some reason, the relative link goes one directory too high up link = link[3:] return link ############################################################################### rst_template = """ .. _example_%(short_fname)s: %(docstring)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- """ plot_rst_template = """ .. _example_%(short_fname)s: %(docstring)s %(image_list)s %(stdout)s **Python source code:** :download:`%(fname)s <%(fname)s>` .. literalinclude:: %(fname)s :lines: %(end_row)s- **Total running time of the example:** %(time_elapsed) .2f seconds """ # The following strings are used when we have several pictures: we use # an html div tag that our CSS uses to turn the lists into horizontal # lists. HLIST_HEADER = """ .. rst-class:: horizontal """ HLIST_IMAGE_TEMPLATE = """ * .. image:: images/%s :scale: 47 """ SINGLE_IMAGE = """ .. image:: images/%s :align: center """ # The following dictionary contains the information used to create the # thumbnails for the front page of the scikit-learn home page. # key: first image in set # values: (number of plot in set, height of thumbnail) carousel_thumbs = {'plot_classifier_comparison_1.png': (1, 600), 'plot_outlier_detection_1.png': (3, 372), 'plot_gp_regression_1.png': (2, 250), 'plot_adaboost_twoclass_1.png': (1, 372), 'plot_compare_methods_1.png': (1, 349)} def extract_docstring(filename, ignore_heading=False): """ Extract a module-level docstring, if any """ lines = file(filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' tokens = tokenize.generate_tokens(iter(lines).next) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, extract # the first one: paragraphs = '\n'.join( line.rstrip() for line in docstring.split('\n')).split('\n\n') if paragraphs: if ignore_heading: if len(paragraphs) > 1: first_par = re.sub('\n', ' ', paragraphs[1]) first_par = ((first_par[:95] + '...') if len(first_par) > 95 else first_par) else: raise ValueError("Docstring not found by gallery", "Please check your example's layout", " and make sure it's correct") else: first_par = paragraphs[0] break return docstring, first_par, erow + 1 + start_row def generate_example_rst(app): """ Generate the list of examples, as well as the contents of examples. """ root_dir = os.path.join(app.builder.srcdir, 'auto_examples') example_dir = os.path.abspath(app.builder.srcdir + '/../' + 'examples') try: plot_gallery = eval(app.builder.config.plot_gallery) except TypeError: plot_gallery = bool(app.builder.config.plot_gallery) if not os.path.exists(example_dir): os.makedirs(example_dir) if not os.path.exists(root_dir): os.makedirs(root_dir) # we create an index.rst with all examples fhindex = file(os.path.join(root_dir, 'index.rst'), 'w') #Note: The sidebar button has been removed from the examples page for now # due to how it messes up the layout. Will be fixed at a later point fhindex.write("""\ .. raw:: html <style type="text/css"> div#sidebarbutton { display: none; } .figure { float: left; margin: 10px; -webkit-border-radius: 10px; /* Saf3-4, iOS 1-3.2, Android <1.6 */ -moz-border-radius: 10px; /* FF1-3.6 */ border-radius: 10px; /* Opera 10.5, IE9, Saf5, Chrome, FF4, iOS 4, Android 2.1+ */ border: 2px solid #fff; background-color: white; /* --> Thumbnail image size */ width: 150px; height: 100px; -webkit-background-size: 150px 100px; /* Saf3-4 */ -moz-background-size: 150px 100px; /* FF3.6 */ } .figure img { display: inline; } div.docstringWrapper p.caption { display: block; -webkit-box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.0); -moz-box-shadow: 0px 0px 20px rgba(0, 0, 0, .0); /* FF3.5 - 3.6 */ box-shadow: 0px 0px 20px rgba(0, 0, 0, 0.0); /* Opera 10.5, IE9, FF4+, Chrome 10+ */ padding: 0px; border: white; } div.docstringWrapper p { display: none; background-color: white; -webkit-box-shadow: 0px 0px 20px rgba(0, 0, 0, 1.00); -moz-box-shadow: 0px 0px 20px rgba(0, 0, 0, 1.00); /* FF3.5 - 3.6 */ box-shadow: 0px 0px 20px rgba(0, 0, 0, 1.00); /* Opera 10.5, IE9, FF4+, Chrome 10+ */ padding: 13px; margin-top: 0px; border-style: solid; border-width: 1px; } </style> .. raw:: html <script type="text/javascript"> function animateClone(e){ var position; position = $(this).position(); var clone = $(this).closest('.thumbnailContainer').find('.clonedItem'); var clone_fig = clone.find('.figure'); clone.css("left", position.left - 70).css("top", position.top - 70).css("position", "absolute").css("z-index", 1000).css("background-color", "white"); var cloneImg = clone_fig.find('img'); clone.show(); clone.animate({ height: "270px", width: "320px" }, 0 ); cloneImg.css({ 'max-height': "200px", 'max-width': "280px" }); cloneImg.animate({ height: "200px", width: "280px" }, 0 ); clone_fig.css({ 'margin-top': '20px', }); clone_fig.show(); clone.find('p').css("display", "block"); clone_fig.css({ height: "240", width: "305px" }); cloneP_height = clone.find('p.caption').height(); clone_fig.animate({ height: (200 + cloneP_height) }, 0 ); clone.bind("mouseleave", function(e){ clone.animate({ height: "100px", width: "150px" }, 10, function(){$(this).hide();}); clone_fig.animate({ height: "100px", width: "150px" }, 10, function(){$(this).hide();}); }); } //end animateClone() $(window).load(function () { $(".figure").css("z-index", 1); $(".docstringWrapper").each(function(i, obj){ var clone; var $obj = $(obj); clone = $obj.clone(); clone.addClass("clonedItem"); clone.appendTo($obj.closest(".thumbnailContainer")); clone.hide(); $obj.bind("mouseenter", animateClone); }); // end each }); // end </script> Examples ======== .. _examples-index: """) # Here we don't use an os.walk, but we recurse only twice: flat is # better than nested. generate_dir_rst('.', fhindex, example_dir, root_dir, plot_gallery) for dir in sorted(os.listdir(example_dir)): if os.path.isdir(os.path.join(example_dir, dir)): generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery) fhindex.flush() def extract_line_count(filename, target_dir): # Extract the line count of a file example_file = os.path.join(target_dir, filename) lines = file(example_file).readlines() start_row = 0 if lines and lines[0].startswith('#!'): lines.pop(0) start_row = 1 tokens = tokenize.generate_tokens(lines.__iter__().next) check_docstring = True erow_docstring = 0 for tok_type, _, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif ((tok_type == 'STRING') and check_docstring): erow_docstring = erow check_docstring = False return erow_docstring+1+start_row, erow+1+start_row def line_count_sort(file_list, target_dir): # Sort the list of examples by line-count new_list = filter(lambda x: x.endswith('.py'), file_list) unsorted = np.zeros(shape=(len(new_list), 2)) unsorted = unsorted.astype(np.object) for count, exmpl in enumerate(new_list): docstr_lines, total_lines = extract_line_count(exmpl, target_dir) unsorted[count][1] = total_lines - docstr_lines unsorted[count][0] = exmpl index = np.lexsort((unsorted[:, 0].astype(np.str), unsorted[:, 1].astype(np.float))) if not len(unsorted): return [] return np.array(unsorted[index][:, 0]).tolist() def generate_dir_rst(dir, fhindex, example_dir, root_dir, plot_gallery): """ Generate the rst file for an example directory. """ if not dir == '.': target_dir = os.path.join(root_dir, dir) src_dir = os.path.join(example_dir, dir) else: target_dir = root_dir src_dir = example_dir if not os.path.exists(os.path.join(src_dir, 'README.txt')): print 80 * '_' print ('Example directory %s does not have a README.txt file' % src_dir) print 'Skipping this directory' print 80 * '_' return fhindex.write(""" %s """ % file(os.path.join(src_dir, 'README.txt')).read()) if not os.path.exists(target_dir): os.makedirs(target_dir) sorted_listdir = line_count_sort(os.listdir(src_dir), src_dir) for fname in sorted_listdir: if fname.endswith('py'): generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery) new_fname = os.path.join(src_dir, fname) _, fdocstring, _ = extract_docstring(new_fname, True) thumb = os.path.join(dir, 'images', 'thumb', fname[:-3] + '.png') link_name = os.path.join(dir, fname).replace(os.path.sep, '_') fhindex.write(""" .. raw:: html <div class="thumbnailContainer"> <div class="docstringWrapper"> """) fhindex.write('.. figure:: %s\n' % thumb) if link_name.startswith('._'): link_name = link_name[2:] if dir != '.': fhindex.write(' :target: ./%s/%s.html\n\n' % (dir, fname[:-3])) else: fhindex.write(' :target: ./%s.html\n\n' % link_name[:-3]) fhindex.write(""" :ref:`example_%s` .. raw:: html <p>%s </p></div> </div> .. toctree:: :hidden: %s/%s """ % (link_name, fdocstring, dir, fname[:-3])) fhindex.write(""" .. raw:: html <div style="clear: both"></div> """) # clear at the end of the section # modules for which we embed links into example code DOCMODULES = ['sklearn', 'matplotlib', 'numpy', 'scipy'] def make_thumbnail(in_fname, out_fname, width, height): """Make a thumbnail with the same aspect ratio centered in an image with a given width and height """ img = Image.open(in_fname) width_in, height_in = img.size scale_w = width / float(width_in) scale_h = height / float(height_in) if height_in * scale_w <= height: scale = scale_w else: scale = scale_h width_sc = int(round(scale * width_in)) height_sc = int(round(scale * height_in)) # resize the image img.thumbnail((width_sc, height_sc), Image.ANTIALIAS) # insert centered thumb = Image.new('RGB', (width, height), (255, 255, 255)) pos_insert = ((width - width_sc) / 2, (height - height_sc) / 2) thumb.paste(img, pos_insert) thumb.save(out_fname) # Use optipng to perform lossless compression on the resized image if # software is installed if os.environ.get('SKLEARN_DOC_OPTIPNG', False): try: os.system("optipng -quiet -o 9 '{0}'".format(out_fname)) except Exception: warnings.warn('Install optipng to reduce the size of the generated images') def get_short_module_name(module_name, obj_name): """ Get the shortest possible module name """ parts = module_name.split('.') short_name = module_name for i in range(len(parts) - 1, 0, -1): short_name = '.'.join(parts[:i]) try: exec('from %s import %s' % (short_name, obj_name)) except ImportError: # get the last working module name short_name = '.'.join(parts[:(i + 1)]) break return short_name def generate_file_rst(fname, target_dir, src_dir, root_dir, plot_gallery): """ Generate the rst file for a given example. """ base_image_name = os.path.splitext(fname)[0] image_fname = '%s_%%s.png' % base_image_name this_template = rst_template last_dir = os.path.split(src_dir)[-1] # to avoid leading . in file names, and wrong names in links if last_dir == '.' or last_dir == 'examples': last_dir = '' else: last_dir += '_' short_fname = last_dir + fname src_file = os.path.join(src_dir, fname) example_file = os.path.join(target_dir, fname) shutil.copyfile(src_file, example_file) # The following is a list containing all the figure names figure_list = [] image_dir = os.path.join(target_dir, 'images') thumb_dir = os.path.join(image_dir, 'thumb') if not os.path.exists(image_dir): os.makedirs(image_dir) if not os.path.exists(thumb_dir): os.makedirs(thumb_dir) image_path = os.path.join(image_dir, image_fname) stdout_path = os.path.join(image_dir, 'stdout_%s.txt' % base_image_name) time_path = os.path.join(image_dir, 'time_%s.txt' % base_image_name) thumb_file = os.path.join(thumb_dir, fname[:-3] + '.png') time_elapsed = 0 if plot_gallery and fname.startswith('plot'): # generate the plot as png image if file name # starts with plot and if it is more recent than an # existing image. first_image_file = image_path % 1 if os.path.exists(stdout_path): stdout = open(stdout_path).read() else: stdout = '' if os.path.exists(time_path): time_elapsed = float(open(time_path).read()) if not os.path.exists(first_image_file) or \ os.stat(first_image_file).st_mtime <= os.stat(src_file).st_mtime: # We need to execute the code print 'plotting %s' % fname t0 = time() import matplotlib.pyplot as plt plt.close('all') cwd = os.getcwd() try: # First CD in the original example dir, so that any file # created by the example get created in this directory orig_stdout = sys.stdout os.chdir(os.path.dirname(src_file)) my_buffer = StringIO() my_stdout = Tee(sys.stdout, my_buffer) sys.stdout = my_stdout my_globals = {'pl': plt} execfile(os.path.basename(src_file), my_globals) time_elapsed = time() - t0 sys.stdout = orig_stdout my_stdout = my_buffer.getvalue() # get variables so we can later add links to the documentation example_code_obj = {} for var_name, var in my_globals.iteritems(): if not hasattr(var, '__module__'): continue if not isinstance(var.__module__, basestring): continue if var.__module__.split('.')[0] not in DOCMODULES: continue # get the type as a string with other things stripped tstr = str(type(var)) tstr = (tstr[tstr.find('\'') + 1:tstr.rfind('\'')].split('.')[-1]) # get shortened module name module_short = get_short_module_name(var.__module__, tstr) cobj = {'name': tstr, 'module': var.__module__, 'module_short': module_short, 'obj_type': 'object'} example_code_obj[var_name] = cobj # find functions so we can later add links to the documentation funregex = re.compile('[\w.]+\(') with open(src_file, 'rt') as fid: for line in fid.readlines(): if line.startswith('#'): continue for match in funregex.findall(line): fun_name = match[:-1] try: exec('this_fun = %s' % fun_name, my_globals) except Exception as err: # Here, we were not able to execute the # previous statement, either because the # fun_name was not a function but a statement # (print), or because the regexp didn't # catch the whole function name : # eg: # X = something().blah() # will work for something, but not blah. continue this_fun = my_globals['this_fun'] if not callable(this_fun): continue if not hasattr(this_fun, '__module__'): continue if not isinstance(this_fun.__module__, basestring): continue if (this_fun.__module__.split('.')[0] not in DOCMODULES): continue # get shortened module name fun_name_short = fun_name.split('.')[-1] module_short = get_short_module_name( this_fun.__module__, fun_name_short) cobj = {'name': fun_name_short, 'module': this_fun.__module__, 'module_short': module_short, 'obj_type': 'function'} example_code_obj[fun_name] = cobj fid.close() if len(example_code_obj) > 0: # save the dictionary, so we can later add hyperlinks codeobj_fname = example_file[:-3] + '_codeobj.pickle' with open(codeobj_fname, 'wb') as fid: cPickle.dump(example_code_obj, fid, cPickle.HIGHEST_PROTOCOL) fid.close() if '__doc__' in my_globals: # The __doc__ is often printed in the example, we # don't with to echo it my_stdout = my_stdout.replace( my_globals['__doc__'], '') my_stdout = my_stdout.strip() if my_stdout: stdout = '**Script output**::\n\n %s\n\n' % ( '\n '.join(my_stdout.split('\n'))) open(stdout_path, 'w').write(stdout) open(time_path, 'w').write('%f' % time_elapsed) os.chdir(cwd) # In order to save every figure we have two solutions : # * iterate from 1 to infinity and call plt.fignum_exists(n) # (this requires the figures to be numbered # incrementally: 1, 2, 3 and not 1, 2, 5) # * iterate over [fig_mngr.num for fig_mngr in # matplotlib._pylab_helpers.Gcf.get_all_fig_managers()] for fig_num in (fig_mngr.num for fig_mngr in matplotlib._pylab_helpers.Gcf.get_all_fig_managers()): # Set the fig_num figure as the current figure as we can't # save a figure that's not the current figure. plt.figure(fig_num) plt.savefig(image_path % fig_num) figure_list.append(image_fname % fig_num) except: print 80 * '_' print '%s is not compiling:' % fname traceback.print_exc() print 80 * '_' finally: os.chdir(cwd) sys.stdout = orig_stdout print " - time elapsed : %.2g sec" % time_elapsed else: figure_list = [f[len(image_dir):] for f in glob.glob(image_path % '[1-9]')] #for f in glob.glob(image_path % '*')] # generate thumb file this_template = plot_rst_template car_thumb_path = os.path.join(os.path.split(root_dir)[0], '_build/html/stable/_images/') # Note: normaly, make_thumbnail is used to write to the path contained in `thumb_file` # which is within `auto_examples/../images/thumbs` depending on the example. # Because the carousel has different dimensions than those of the examples gallery, # I did not simply reuse them all as some contained whitespace due to their default gallery # thumbnail size. Below, for a few cases, seperate thumbnails are created (the originals can't # just be overwritten with the carousel dimensions as it messes up the examples gallery layout). # The special carousel thumbnails are written directly to _build/html/stable/_images/, # as for some reason unknown to me, Sphinx refuses to copy my 'extra' thumbnails from the # auto examples gallery to the _build folder. This works fine as is, but it would be cleaner to # have it happen with the rest. Ideally the should be written to 'thumb_file' as well, and then # copied to the _images folder during the `Copying Downloadable Files` step like the rest. if not os.path.exists(car_thumb_path): os.makedirs(car_thumb_path) if os.path.exists(first_image_file): # We generate extra special thumbnails for the carousel carousel_tfile = os.path.join(car_thumb_path, fname[:-3] + '_carousel.png') first_img = image_fname % 1 if first_img in carousel_thumbs: make_thumbnail((image_path % carousel_thumbs[first_img][0]), carousel_tfile, carousel_thumbs[first_img][1], 190) make_thumbnail(first_image_file, thumb_file, 400, 280) if not os.path.exists(thumb_file): # create something to replace the thumbnail make_thumbnail('images/no_image.png', thumb_file, 200, 140) docstring, short_desc, end_row = extract_docstring(example_file) # Depending on whether we have one or more figures, we're using a # horizontal list or a single rst call to 'image'. if len(figure_list) == 1: figure_name = figure_list[0] image_list = SINGLE_IMAGE % figure_name.lstrip('/') else: image_list = HLIST_HEADER for figure_name in figure_list: image_list += HLIST_IMAGE_TEMPLATE % figure_name.lstrip('/') f = open(os.path.join(target_dir, fname[:-2] + 'rst'), 'w') f.write(this_template % locals()) f.flush() def embed_code_links(app, exception): """Embed hyperlinks to documentation into example code""" try: if exception is not None: return print 'Embedding documentation hyperlinks in examples..' # Add resolvers for the packages for which we want to show links doc_resolvers = {} doc_resolvers['sklearn'] = SphinxDocLinkResolver(app.builder.outdir, relative=True) doc_resolvers['matplotlib'] = SphinxDocLinkResolver( 'http://matplotlib.org') doc_resolvers['numpy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/numpy-1.6.0') doc_resolvers['scipy'] = SphinxDocLinkResolver( 'http://docs.scipy.org/doc/scipy-0.11.0/reference') example_dir = os.path.join(app.builder.srcdir, 'auto_examples') html_example_dir = os.path.abspath(os.path.join(app.builder.outdir, 'auto_examples')) # patterns for replacement link_pattern = '<a href="%s">%s</a>' orig_pattern = '<span class="n">%s</span>' period = '<span class="o">.</span>' for dirpath, _, filenames in os.walk(html_example_dir): for fname in filenames: print '\tprocessing: %s' % fname full_fname = os.path.join(html_example_dir, dirpath, fname) subpath = dirpath[len(html_example_dir) + 1:] pickle_fname = os.path.join(example_dir, subpath, fname[:-5] + '_codeobj.pickle') if os.path.exists(pickle_fname): # we have a pickle file with the objects to embed links for with open(pickle_fname, 'rb') as fid: example_code_obj = cPickle.load(fid) fid.close() str_repl = {} # generate replacement strings with the links for name, cobj in example_code_obj.iteritems(): this_module = cobj['module'].split('.')[0] if this_module not in doc_resolvers: continue link = doc_resolvers[this_module].resolve(cobj, full_fname) if link is not None: parts = name.split('.') name_html = orig_pattern % parts[0] for part in parts[1:]: name_html += period + orig_pattern % part str_repl[name_html] = link_pattern % (link, name_html) # do the replacement in the html file if len(str_repl) > 0: with open(full_fname, 'rb') as fid: lines_in = fid.readlines() with open(full_fname, 'wb') as fid: for line in lines_in: line = line.decode('utf-8') for name, link in str_repl.iteritems(): line = line.replace(name, link) fid.write(line.encode('utf-8')) except urllib2.HTTPError, e: print ("The following HTTP Error has occurred:\n") print e.code except urllib2.URLError, e: print ("\n...\n" "Warning: Embedding the documentation hyperlinks requires " "internet access.\nPlease check your network connection.\n" "Unable to continue embedding due to a URL Error: \n") print e.args print '[done]' def setup(app): app.connect('builder-inited', generate_example_rst) app.add_config_value('plot_gallery', True, 'html') # embed links after build is finished app.connect('build-finished', embed_code_links) # Sphinx hack: sphinx copies generated images to the build directory # each time the docs are made. If the desired image name already # exists, it appends a digit to prevent overwrites. The problem is, # the directory is never cleared. This means that each time you build # the docs, the number of images in the directory grows. # # This question has been asked on the sphinx development list, but there # was no response: http://osdir.com/ml/sphinx-dev/2011-02/msg00123.html # # The following is a hack that prevents this behavior by clearing the # image build directory each time the docs are built. If sphinx # changes their layout between versions, this will not work (though # it should probably not cause a crash). Tested successfully # on Sphinx 1.0.7 build_image_dir = '_build/html/_images' if os.path.exists(build_image_dir): filelist = os.listdir(build_image_dir) for filename in filelist: if filename.endswith('png'): os.remove(os.path.join(build_image_dir, filename))
bsd-3-clause
yunfeilu/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
57
8062
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed.size, 0) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
davidgbe/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
minhlongdo/scipy
scipy/integrate/odepack.py
62
9420
# Author: Travis Oliphant from __future__ import division, print_function, absolute_import __all__ = ['odeint'] from . import _odepack from copy import copy import warnings class ODEintWarning(Warning): pass _msgs = {2: "Integration successful.", 1: "Nothing was done; the integration time was 0.", -1: "Excess work done on this call (perhaps wrong Dfun type).", -2: "Excess accuracy requested (tolerances too small).", -3: "Illegal input detected (internal error).", -4: "Repeated error test failures (internal error).", -5: "Repeated convergence failures (perhaps bad Jacobian or tolerances).", -6: "Error weight became zero during problem.", -7: "Internal workspace insufficient to finish (internal error)." } def odeint(func, y0, t, args=(), Dfun=None, col_deriv=0, full_output=0, ml=None, mu=None, rtol=None, atol=None, tcrit=None, h0=0.0, hmax=0.0, hmin=0.0, ixpr=0, mxstep=0, mxhnil=0, mxordn=12, mxords=5, printmessg=0): """ Integrate a system of ordinary differential equations. Solve a system of ordinary differential equations using lsoda from the FORTRAN library odepack. Solves the initial value problem for stiff or non-stiff systems of first order ode-s:: dy/dt = func(y, t0, ...) where y can be a vector. *Note*: The first two arguments of ``func(y, t0, ...)`` are in the opposite order of the arguments in the system definition function used by the `scipy.integrate.ode` class. Parameters ---------- func : callable(y, t0, ...) Computes the derivative of y at t0. y0 : array Initial condition on y (can be a vector). t : array A sequence of time points for which to solve for y. The initial value point should be the first element of this sequence. args : tuple, optional Extra arguments to pass to function. Dfun : callable(y, t0, ...) Gradient (Jacobian) of `func`. col_deriv : bool, optional True if `Dfun` defines derivatives down columns (faster), otherwise `Dfun` should define derivatives across rows. full_output : bool, optional True if to return a dictionary of optional outputs as the second output printmessg : bool, optional Whether to print the convergence message Returns ------- y : array, shape (len(t), len(y0)) Array containing the value of y for each desired time in t, with the initial value `y0` in the first row. infodict : dict, only returned if full_output == True Dictionary containing additional output information ======= ============================================================ key meaning ======= ============================================================ 'hu' vector of step sizes successfully used for each time step. 'tcur' vector with the value of t reached for each time step. (will always be at least as large as the input times). 'tolsf' vector of tolerance scale factors, greater than 1.0, computed when a request for too much accuracy was detected. 'tsw' value of t at the time of the last method switch (given for each time step) 'nst' cumulative number of time steps 'nfe' cumulative number of function evaluations for each time step 'nje' cumulative number of jacobian evaluations for each time step 'nqu' a vector of method orders for each successful step. 'imxer' index of the component of largest magnitude in the weighted local error vector (e / ewt) on an error return, -1 otherwise. 'lenrw' the length of the double work array required. 'leniw' the length of integer work array required. 'mused' a vector of method indicators for each successful time step: 1: adams (nonstiff), 2: bdf (stiff) ======= ============================================================ Other Parameters ---------------- ml, mu : int, optional If either of these are not None or non-negative, then the Jacobian is assumed to be banded. These give the number of lower and upper non-zero diagonals in this banded matrix. For the banded case, `Dfun` should return a matrix whose rows contain the non-zero bands (starting with the lowest diagonal). Thus, the return matrix `jac` from `Dfun` should have shape ``(ml + mu + 1, len(y0))`` when ``ml >=0`` or ``mu >=0``. The data in `jac` must be stored such that ``jac[i - j + mu, j]`` holds the derivative of the `i`th equation with respect to the `j`th state variable. If `col_deriv` is True, the transpose of this `jac` must be returned. rtol, atol : float, optional The input parameters `rtol` and `atol` determine the error control performed by the solver. The solver will control the vector, e, of estimated local errors in y, according to an inequality of the form ``max-norm of (e / ewt) <= 1``, where ewt is a vector of positive error weights computed as ``ewt = rtol * abs(y) + atol``. rtol and atol can be either vectors the same length as y or scalars. Defaults to 1.49012e-8. tcrit : ndarray, optional Vector of critical points (e.g. singularities) where integration care should be taken. h0 : float, (0: solver-determined), optional The step size to be attempted on the first step. hmax : float, (0: solver-determined), optional The maximum absolute step size allowed. hmin : float, (0: solver-determined), optional The minimum absolute step size allowed. ixpr : bool, optional Whether to generate extra printing at method switches. mxstep : int, (0: solver-determined), optional Maximum number of (internally defined) steps allowed for each integration point in t. mxhnil : int, (0: solver-determined), optional Maximum number of messages printed. mxordn : int, (0: solver-determined), optional Maximum order to be allowed for the non-stiff (Adams) method. mxords : int, (0: solver-determined), optional Maximum order to be allowed for the stiff (BDF) method. See Also -------- ode : a more object-oriented integrator based on VODE. quad : for finding the area under a curve. Examples -------- The second order differential equation for the angle `theta` of a pendulum acted on by gravity with friction can be written:: theta''(t) + b*theta'(t) + c*sin(theta(t)) = 0 where `b` and `c` are positive constants, and a prime (') denotes a derivative. To solve this equation with `odeint`, we must first convert it to a system of first order equations. By defining the angular velocity ``omega(t) = theta'(t)``, we obtain the system:: theta'(t) = omega(t) omega'(t) = -b*omega(t) - c*sin(theta(t)) Let `y` be the vector [`theta`, `omega`]. We implement this system in python as: >>> def pend(y, t, b, c): ... theta, omega = y ... dydt = [omega, -b*omega - c*np.sin(theta)] ... return dydt ... We assume the constants are `b` = 0.25 and `c` = 5.0: >>> b = 0.25 >>> c = 5.0 For initial conditions, we assume the pendulum is nearly vertical with `theta(0)` = `pi` - 0.1, and it initially at rest, so `omega(0)` = 0. Then the vector of initial conditions is >>> y0 = [np.pi - 0.1, 0.0] We generate a solution 101 evenly spaced samples in the interval 0 <= `t` <= 10. So our array of times is: >>> t = np.linspace(0, 10, 101) Call `odeint` to generate the solution. To pass the parameters `b` and `c` to `pend`, we give them to `odeint` using the `args` argument. >>> from scipy.integrate import odeint >>> sol = odeint(pend, y0, t, args=(b, c)) The solution is an array with shape (101, 2). The first column is `theta(t)`, and the second is `omega(t)`. The following code plots both components. >>> import matplotlib.pyplot as plt >>> plt.plot(t, sol[:, 0], 'b', label='theta(t)') >>> plt.plot(t, sol[:, 1], 'g', label='omega(t)') >>> plt.legend(loc='best') >>> plt.xlabel('t') >>> plt.grid() >>> plt.show() """ if ml is None: ml = -1 # changed to zero inside function call if mu is None: mu = -1 # changed to zero inside function call t = copy(t) y0 = copy(y0) output = _odepack.odeint(func, y0, t, args, Dfun, col_deriv, ml, mu, full_output, rtol, atol, tcrit, h0, hmax, hmin, ixpr, mxstep, mxhnil, mxordn, mxords) if output[-1] < 0: warning_msg = _msgs[output[-1]] + " Run with full_output = 1 to get quantitative information." warnings.warn(warning_msg, ODEintWarning) elif printmessg: warning_msg = _msgs[output[-1]] warnings.warn(warning_msg, ODEintWarning) if full_output: output[1]['message'] = _msgs[output[-1]] output = output[:-1] if len(output) == 1: return output[0] else: return output
bsd-3-clause
lcy-seso/Paddle
python/paddle/dataset/uci_housing.py
1
3748
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UCI Housing dataset. This module will download dataset from https://archive.ics.uci.edu/ml/machine-learning-databases/housing/ and parse training set and test set into paddle reader creators. """ import numpy as np import os import paddle.dataset.common __all__ = ['train', 'test'] URL = 'https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data' MD5 = 'd4accdce7a25600298819f8e28e8d593' feature_names = [ 'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'convert' ] UCI_TRAIN_DATA = None UCI_TEST_DATA = None URL_MODEL = 'https://github.com/PaddlePaddle/book/raw/develop/01.fit_a_line/fit_a_line.tar' MD5_MODEL = '52fc3da8ef3937822fcdd87ee05c0c9b' def feature_range(maximums, minimums): import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt fig, ax = plt.subplots() feature_num = len(maximums) ax.bar(range(feature_num), maximums - minimums, color='r', align='center') ax.set_title('feature scale') plt.xticks(range(feature_num), feature_names) plt.xlim([-1, feature_num]) fig.set_figheight(6) fig.set_figwidth(10) if not os.path.exists('./image'): os.makedirs('./image') fig.savefig('image/ranges.png', dpi=48) plt.close(fig) def load_data(filename, feature_num=14, ratio=0.8): global UCI_TRAIN_DATA, UCI_TEST_DATA if UCI_TRAIN_DATA is not None and UCI_TEST_DATA is not None: return data = np.fromfile(filename, sep=' ') data = data.reshape(data.shape[0] / feature_num, feature_num) maximums, minimums, avgs = data.max(axis=0), data.min(axis=0), data.sum( axis=0) / data.shape[0] feature_range(maximums[:-1], minimums[:-1]) for i in xrange(feature_num - 1): data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i]) offset = int(data.shape[0] * ratio) UCI_TRAIN_DATA = data[:offset] UCI_TEST_DATA = data[offset:] def train(): """ UCI_HOUSING training set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Training reader creator :rtype: callable """ global UCI_TRAIN_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TRAIN_DATA: yield d[:-1], d[-1:] return reader def test(): """ UCI_HOUSING test set creator. It returns a reader creator, each sample in the reader is features after normalization and price number. :return: Test reader creator :rtype: callable """ global UCI_TEST_DATA load_data(paddle.dataset.common.download(URL, 'uci_housing', MD5)) def reader(): for d in UCI_TEST_DATA: yield d[:-1], d[-1:] return reader def fetch(): paddle.dataset.common.download(URL, 'uci_housing', MD5) def convert(path): """ Converts dataset to recordio format """ paddle.dataset.common.convert(path, train(), 1000, "uci_housing_train") paddle.dataset.common.convert(path, test(), 1000, "uci_houseing_test")
apache-2.0
mindriot101/bokeh
bokeh/document/events.py
3
28467
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2018, Anaconda, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide events that represent various changes to Bokeh Documents. These events are used internally to signal changes to Documents. For information about user-facing (e.g. UI or tool) events, see the reference for :ref:`bokeh.events`. ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import absolute_import, division, print_function, unicode_literals import logging log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports # External imports # Bokeh imports from ..util.dependencies import import_optional #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- pd = import_optional('pandas') __all__ = ( 'ColumnDataChangedEvent', 'ColumnsStreamedEvent', 'ColumnsPatchedEvent', 'DocumentChangedEvent', 'DocumentPatchedEvent', 'ModelChangedEvent', 'RootAddedEvent', 'RootRemovedEvent', 'SessionCallbackAdded', 'SessionCallbackRemoved', 'TitleChangedEvent', 'TitleChangedEvent', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- class DocumentChangedEvent(object): ''' Base class for all internal events representing a change to a Bokeh Document. ''' def __init__(self, document, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) In the context of a Bokeh server application, incoming updates to properties will be annotated with the session that is doing the updating. This value is propagated through any subsequent change notifications that the update triggers. The session can compare the event setter to itself, and suppress any updates that originate from itself. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' self.document = document self.setter = setter self.callback_invoker = callback_invoker def combine(self, event): ''' ''' return False def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._document_changed`` if it exists. ''' if hasattr(receiver, '_document_changed'): receiver._document_changed(self) class DocumentPatchedEvent(DocumentChangedEvent): ''' A Base class for events that represent updating Bokeh Models and their properties. ''' def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._document_patched`` if it exists. ''' super(DocumentPatchedEvent, self).dispatch(receiver) if hasattr(receiver, '_document_patched'): receiver._document_patched(self) def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. *Sub-classes must implement this method.* Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' raise NotImplementedError() class ModelChangedEvent(DocumentPatchedEvent): ''' A concrete event representing updating an attribute and value of a specific Bokeh Model. This is the "standard" way of updating most Bokeh model attributes. For special casing situations that can optimized (e.g. streaming, etc.), a ``hint`` may be supplied that overrides normal mechanisms. ''' def __init__(self, document, model, attr, old, new, serializable_new, hint=None, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. model (Model) : A Model to update attr (str) : The name of the attribute to update on the model. old (object) : The old value of the attribute new (object) : The new value of the attribute serializable_new (object) : A serialized (JSON) version of the new value. It may be ``None`` if a hint is supplied. hint (DocumentPatchedEvent, optional) : When appropriate, a secondary event may be supplied that modifies the normal update process. For example, in order to stream or patch data more efficiently than the standard update mechanism. setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' if setter is None and isinstance(hint, (ColumnsStreamedEvent, ColumnsPatchedEvent)): setter = hint.setter super(ModelChangedEvent, self).__init__(document, setter, callback_invoker) self.model = model self.attr = attr self.old = old self.new = new self.serializable_new = serializable_new self.hint = hint def combine(self, event): ''' ''' if not isinstance(event, ModelChangedEvent): return False # If these are not true something weird is going on, maybe updates from # Python bokeh.client, don't try to combine if self.setter != event.setter: return False if self.document != event.document: return False if self.hint: return self.hint.combine(event.hint) if (self.model == event.model) and (self.attr == event.attr): self.new = event.new self.serializable_new = event.serializable_new self.callback_invoker = event.callback_invoker return True return False def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._document_model_dhanged`` if it exists. ''' super(ModelChangedEvent, self).dispatch(receiver) if hasattr(receiver, '_document_model_changed'): receiver._document_model_changed(self) def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' from ..model import collect_models if self.hint is not None: return self.hint.generate(references, buffers) value = self.serializable_new # the new value is an object that may have # not-yet-in-the-remote-doc references, and may also # itself not be in the remote doc yet. the remote may # already have some of the references, but # unfortunately we don't have an easy way to know # unless we were to check BEFORE the attr gets changed # (we need the old _all_models before setting the # property). So we have to send all the references the # remote could need, even though it could be inefficient. # If it turns out we need to fix this we could probably # do it by adding some complexity. value_refs = set(collect_models(value)) # we know we don't want a whole new copy of the obj we're patching # unless it's also the new value if self.model != value: value_refs.discard(self.model) references.update(value_refs) return { 'kind' : 'ModelChanged', 'model' : self.model.ref, 'attr' : self.attr, 'new' : value } class ColumnDataChangedEvent(DocumentPatchedEvent): ''' A concrete event representing efficiently replacing *all* existing data for a :class:`~bokeh.models.sources.ColumnDataSource` ''' def __init__(self, document, column_source, cols=None, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. column_source (ColumnDataSource) : cols (list[str]) : optional explicit list of column names to update. If None, all columns will be updated (default: None) setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' super(ColumnDataChangedEvent, self).__init__(document, setter, callback_invoker) self.column_source = column_source self.cols = cols def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._column_data_changed`` if it exists. ''' super(ColumnDataChangedEvent, self).dispatch(receiver) if hasattr(receiver, '_column_data_changed'): receiver._column_data_changed(self) def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. .. code-block:: python { 'kind' : 'ColumnDataChanged' 'column_source' : <reference to a CDS> 'new' : <new data to steam to column_source> 'cols' : <specific columns to update> } Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' from ..util.serialization import transform_column_source_data data_dict = transform_column_source_data(self.column_source.data, buffers=buffers, cols=self.cols) return { 'kind' : 'ColumnDataChanged', 'column_source' : self.column_source.ref, 'new' : data_dict, 'cols' : self.cols} class ColumnsStreamedEvent(DocumentPatchedEvent): ''' A concrete event representing efficiently streaming new data to a :class:`~bokeh.models.sources.ColumnDataSource` ''' def __init__(self, document, column_source, data, rollover, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. column_source (ColumnDataSource) : The data source to stream new data to. data (dict or DataFrame) : New data to stream. If a DataFrame, will be stored as ``{c: df[c] for c in df.columns}`` rollover (int) : A rollover limit. If the data source columns exceed this limit, earlier values will be discarded to maintain the column length under the limit. setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' super(ColumnsStreamedEvent, self).__init__(document, setter, callback_invoker) self.column_source = column_source if pd and isinstance(data, pd.DataFrame): data = {c: data[c] for c in data.columns} self.data = data self.rollover = rollover def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._columns_streamed`` if it exists. ''' super(ColumnsStreamedEvent, self).dispatch(receiver) if hasattr(receiver, '_columns_streamed'): receiver._columns_streamed(self) def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. .. code-block:: python { 'kind' : 'ColumnsStreamed' 'column_source' : <reference to a CDS> 'data' : <new data to steam to column_source> 'rollover' : <rollover limit> } Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' return { 'kind' : 'ColumnsStreamed', 'column_source' : self.column_source.ref, 'data' : self.data, 'rollover' : self.rollover } class ColumnsPatchedEvent(DocumentPatchedEvent): ''' A concrete event representing efficiently applying data patches to a :class:`~bokeh.models.sources.ColumnDataSource` ''' def __init__(self, document, column_source, patches, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. column_source (ColumnDataSource) : The data source to apply patches to. patches (list) : setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' super(ColumnsPatchedEvent, self).__init__(document, setter, callback_invoker) self.column_source = column_source self.patches = patches def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._columns_patched`` if it exists. ''' super(ColumnsPatchedEvent, self).dispatch(receiver) if hasattr(receiver, '_columns_patched'): receiver._columns_patched(self) def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. .. code-block:: python { 'kind' : 'ColumnsPatched' 'column_source' : <reference to a CDS> 'patches' : <patches to apply to column_source> } Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' return { 'kind' : 'ColumnsPatched', 'column_source' : self.column_source.ref, 'patches' : self.patches } class TitleChangedEvent(DocumentPatchedEvent): ''' A concrete event representing a change to the title of a Bokeh Document. ''' def __init__(self, document, title, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. title (str) : The new title to set on the Document setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' super(TitleChangedEvent, self).__init__(document, setter, callback_invoker) self.title = title def combine(self, event): ''' ''' if not isinstance(event, TitleChangedEvent): return False # If these are not true something weird is going on, maybe updates from # Python bokeh.client, don't try to combine if self.setter != event.setter: return False if self.document != event.document: return False self.title = event.title self.callback_invoker = event.callback_invoker return True def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. .. code-block:: python { 'kind' : 'TitleChanged' 'title' : <new title to set> } Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' return { 'kind' : 'TitleChanged', 'title' : self.title } class RootAddedEvent(DocumentPatchedEvent): ''' A concrete event representing a change to add a new Model to a Document's collection of "root" models. ''' def __init__(self, document, model, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. model (Model) : The Bokeh Model to add as a Document root. setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' super(RootAddedEvent, self).__init__(document, setter, callback_invoker) self.model = model def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. .. code-block:: python { 'kind' : 'RootAdded' 'title' : <reference to a Model> } Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' references.update(self.model.references()) return { 'kind' : 'RootAdded', 'model' : self.model.ref } class RootRemovedEvent(DocumentPatchedEvent): ''' A concrete event representing a change to remove an existing Model from a Document's collection of "root" models. ''' def __init__(self, document, model, setter=None, callback_invoker=None): ''' Args: document (Document) : A Bokeh document that is to be updated. model (Model) : The Bokeh Model to remove as a Document root. setter (ClientSession or ServerSession or None, optional) : This is used to prevent "boomerang" updates to Bokeh apps. (default: None) See :class:`~bokeh.document.events.DocumentChangedEvent` for more details. callback_invoker (callable, optional) : A callable that will invoke any Model callbacks that should be executed in response to the change that triggered this event. (default: None) ''' super(RootRemovedEvent, self).__init__(document, setter, callback_invoker) self.model = model def generate(self, references, buffers): ''' Create a JSON representation of this event suitable for sending to clients. .. code-block:: python { 'kind' : 'RootRemoved' 'title' : <reference to a Model> } Args: references (dict[str, Model]) : If the event requires references to certain models in order to function, they may be collected here. **This is an "out" parameter**. The values it contains will be modified in-place. buffers (set) : If the event needs to supply any additional Bokeh protocol buffers, they may be added to this set. **This is an "out" parameter**. The values it contains will be modified in-place. ''' return { 'kind' : 'RootRemoved', 'model' : self.model.ref } class SessionCallbackAdded(DocumentChangedEvent): ''' A concrete event representing a change to add a new callback (e.g. periodic, timeout, or "next tick") to a Document. ''' def __init__(self, document, callback): ''' Args: document (Document) : A Bokeh document that is to be updated. callback (SessionCallback) : The callback to add ''' super(SessionCallbackAdded, self).__init__(document) self.callback = callback def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._session_callback_added`` if it exists. ''' super(SessionCallbackAdded, self).dispatch(receiver) if hasattr(receiver, '_session_callback_added'): receiver._session_callback_added(self) class SessionCallbackRemoved(DocumentChangedEvent): ''' A concrete event representing a change to remove an existing callback (e.g. periodic, timeout, or "next tick") from a Document. ''' def __init__(self, document, callback): ''' Args: document (Document) : A Bokeh document that is to be updated. callback (SessionCallback) : The callback to remove ''' super(SessionCallbackRemoved, self).__init__(document) self.callback = callback def dispatch(self, receiver): ''' Dispatch handling of this event to a receiver. This method will invoke ``receiver._session_callback_removed`` if it exists. ''' super(SessionCallbackRemoved, self).dispatch(receiver) if hasattr(receiver, '_session_callback_removed'): receiver._session_callback_removed(self) #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
bsd-3-clause
nkhuyu/blaze
blaze/server/server.py
10
11382
from __future__ import absolute_import, division, print_function import socket import functools import re import flask from flask import Blueprint, Flask, request, Response try: from bokeh.server.crossdomain import crossdomain except ImportError: def crossdomain(*args, **kwargs): def wrapper(f): @functools.wraps(f) def wrapped(*a, **k): return f(*a, **k) return wrapped return wrapper from toolz import assoc from datashape import Mono, discover from datashape.predicates import iscollection, isscalar from odo import odo import blaze from blaze import compute from blaze.expr import utils as expr_utils from blaze.compute import compute_up from .serialization import json, all_formats from ..interactive import InteractiveSymbol, coerce_scalar from ..expr import Expr, symbol __all__ = 'Server', 'to_tree', 'from_tree' # http://www.speedguide.net/port.php?port=6363 # http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers DEFAULT_PORT = 6363 api = Blueprint('api', __name__) pickle_extension_api = Blueprint('pickle_extension_api', __name__) _no_default = object() # sentinel def _get_option(option, options, default=_no_default): try: return options[option] except KeyError: if default is not _no_default: return default # Provides a more informative error message. raise TypeError( 'The blaze api must be registered with {option}'.format( option=option, ), ) def _register_api(app, options, first_registration=False): """ Register the data with the blueprint. """ _get_data.cache[app] = _get_option('data', options) _get_format.cache[app] = dict( (f.name, f) for f in _get_option('formats', options) ) _get_auth.cache[app] = ( _get_option('authorization', options, None) or (lambda a: True) ) # Call the original register function. Blueprint.register(api, app, options, first_registration) api.register = _register_api def _get_data(): """ Retrieve the current application's data for use in the blaze server endpoints. """ return _get_data.cache[flask.current_app] _get_data.cache = {} def _get_format(name): return _get_format.cache[flask.current_app][name] _get_format.cache = {} def _get_auth(): return _get_auth.cache[flask.current_app] _get_auth.cache = {} def authorization(f): @functools.wraps(f) def authorized(*args, **kwargs): if not _get_auth()(request.authorization): return Response( 'bad auth token', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'}, ) return f(*args, **kwargs) return authorized class Server(object): """ Blaze Data Server Host local data through a web API Parameters ---------- data : dict, optional A dictionary mapping dataset name to any data format that blaze understands. formats : iterable, optional An iterable of supported serialization formats. By default, the server will support JSON. A serialization format is an object that supports: name, loads, and dumps. authorization : callable, optional A callable to be used to check the auth header from the client. This callable should accept a single argument that will either be None indicating that no header was passed, or an object containing a username and password attribute. By default, all requests are allowed. Examples -------- >>> from pandas import DataFrame >>> df = DataFrame([[1, 'Alice', 100], ... [2, 'Bob', -200], ... [3, 'Alice', 300], ... [4, 'Dennis', 400], ... [5, 'Bob', -500]], ... columns=['id', 'name', 'amount']) >>> server = Server({'accounts': df}) >>> server.run() # doctest: +SKIP """ __slots__ = 'app', 'data', 'port' def __init__(self, data=None, formats=None, authorization=None): app = self.app = Flask('blaze.server.server') if data is None: data = dict() app.register_blueprint( api, data=data, formats=formats if formats is not None else (json,), authorization=authorization, ) self.data = data def run(self, *args, **kwargs): """Run the server""" port = kwargs.pop('port', DEFAULT_PORT) self.port = port try: self.app.run(*args, port=port, **kwargs) except socket.error: print("\tOops, couldn't connect on port %d. Is it busy?" % port) if kwargs.get('retry', True): # Attempt to start the server on a new port. self.run(*args, **assoc(kwargs, 'port', port + 1)) @api.route('/datashape', methods=['GET']) @crossdomain(origin='*', methods=['GET']) @authorization def shape(): return str(discover(_get_data())) def to_tree(expr, names=None): """ Represent Blaze expression with core data structures Transform a Blaze expression into a form using only strings, dicts, lists and base types (int, float, datetime, ....) This form can be useful for serialization. Parameters ---------- expr : Expr A Blaze expression Examples -------- >>> t = symbol('t', 'var * {x: int32, y: int32}') >>> to_tree(t) # doctest: +SKIP {'op': 'Symbol', 'args': ['t', 'var * { x : int32, y : int32 }', False]} >>> to_tree(t.x.sum()) # doctest: +SKIP {'op': 'sum', 'args': [ {'op': 'Column', 'args': [ { 'op': 'Symbol' 'args': ['t', 'var * { x : int32, y : int32 }', False] } 'x'] }] } Simplify expresion using explicit ``names`` dictionary. In the example below we replace the ``Symbol`` node with the string ``'t'``. >>> tree = to_tree(t.x, names={t: 't'}) >>> tree # doctest: +SKIP {'op': 'Column', 'args': ['t', 'x']} >>> from_tree(tree, namespace={'t': t}) t.x See Also -------- from_tree """ if names and expr in names: return names[expr] if isinstance(expr, tuple): return [to_tree(arg, names=names) for arg in expr] if isinstance(expr, expr_utils._slice): return to_tree(expr.as_slice(), names=names) if isinstance(expr, slice): return {'op': 'slice', 'args': [to_tree(arg, names=names) for arg in [expr.start, expr.stop, expr.step]]} elif isinstance(expr, Mono): return str(expr) elif isinstance(expr, InteractiveSymbol): return to_tree(symbol(expr._name, expr.dshape), names) elif isinstance(expr, Expr): return {'op': type(expr).__name__, 'args': [to_tree(arg, names) for arg in expr._args]} else: return expr def expression_from_name(name): """ >>> expression_from_name('By') <class 'blaze.expr.split_apply_combine.By'> >>> expression_from_name('And') <class 'blaze.expr.arithmetic.And'> """ import blaze if hasattr(blaze, name): return getattr(blaze, name) if hasattr(blaze.expr, name): return getattr(blaze.expr, name) for signature, func in compute_up.funcs.items(): try: if signature[0].__name__ == name: return signature[0] except TypeError: pass raise ValueError('%s not found in compute_up' % name) def from_tree(expr, namespace=None): """ Convert core data structures to Blaze expression Core data structure representations created by ``to_tree`` are converted back into Blaze expressions. Parameters ---------- expr : dict Examples -------- >>> t = symbol('t', 'var * {x: int32, y: int32}') >>> tree = to_tree(t) >>> tree # doctest: +SKIP {'op': 'Symbol', 'args': ['t', 'var * { x : int32, y : int32 }', False]} >>> from_tree(tree) t >>> tree = to_tree(t.x.sum()) >>> tree # doctest: +SKIP {'op': 'sum', 'args': [ {'op': 'Field', 'args': [ { 'op': 'Symbol' 'args': ['t', 'var * { x : int32, y : int32 }', False] } 'x'] }] } >>> from_tree(tree) sum(t.x) Simplify expresion using explicit ``names`` dictionary. In the example below we replace the ``Symbol`` node with the string ``'t'``. >>> tree = to_tree(t.x, names={t: 't'}) >>> tree # doctest: +SKIP {'op': 'Field', 'args': ['t', 'x']} >>> from_tree(tree, namespace={'t': t}) t.x See Also -------- to_tree """ if isinstance(expr, dict): op, args = expr['op'], expr['args'] if 'slice' == op: return expr_utils._slice(*[from_tree(arg, namespace) for arg in args]) if hasattr(blaze.expr, op): cls = getattr(blaze.expr, op) else: cls = expression_from_name(op) if 'Symbol' in op: children = [from_tree(arg) for arg in args] else: children = [from_tree(arg, namespace) for arg in args] return cls(*children) elif isinstance(expr, list): return tuple(from_tree(arg, namespace) for arg in expr) if namespace and expr in namespace: return namespace[expr] else: return expr mimetype_regex = re.compile(r'^application/vnd\.blaze\+(%s)$' % '|'.join(x.name for x in all_formats)) @api.route('/compute', methods=['POST', 'HEAD', 'OPTIONS']) @crossdomain(origin='*', methods=['POST', 'HEAD', 'OPTIONS']) @authorization def compserver(): content_type = request.headers['content-type'] matched = mimetype_regex.match(content_type) if matched is None: return 'Unsupported serialization format %s' % content_type, 415 try: serial = _get_format(matched.groups()[0]) except KeyError: return ( "Unsupported serialization format '%s'" % matched.groups()[0], 415, ) try: payload = serial.loads(request.data) except ValueError: return ("Bad data. Got %s " % request.data, 400) # 400: Bad Request ns = payload.get('namespace', dict()) dataset = _get_data() ns[':leaf'] = symbol('leaf', discover(dataset)) expr = from_tree(payload['expr'], namespace=ns) assert len(expr._leaves()) == 1 leaf = expr._leaves()[0] try: result = compute(expr, {leaf: dataset}) if iscollection(expr.dshape): result = odo(result, list) elif isscalar(expr.dshape): result = coerce_scalar(result, str(expr.dshape)) except NotImplementedError as e: # 501: Not Implemented return ("Computation not supported:\n%s" % e, 501) except Exception as e: # 500: Internal Server Error return ("Computation failed with message:\n%s" % e, 500) return serial.dumps({ 'datashape': str(expr.dshape), 'data': result, 'names': expr.fields })
bsd-3-clause
massmutual/scikit-learn
sklearn/feature_selection/tests/test_feature_select.py
103
22297
""" Todo: cross-check the F-value with stats model """ from __future__ import division import itertools import warnings import numpy as np from scipy import stats, sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_not_in from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils import safe_mask from sklearn.datasets.samples_generator import (make_classification, make_regression) from sklearn.feature_selection import (chi2, f_classif, f_oneway, f_regression, SelectPercentile, SelectKBest, SelectFpr, SelectFdr, SelectFwe, GenericUnivariateSelect) ############################################################################## # Test the score functions def test_f_oneway_vs_scipy_stats(): # Test that our f_oneway gives the same result as scipy.stats rng = np.random.RandomState(0) X1 = rng.randn(10, 3) X2 = 1 + rng.randn(10, 3) f, pv = stats.f_oneway(X1, X2) f2, pv2 = f_oneway(X1, X2) assert_true(np.allclose(f, f2)) assert_true(np.allclose(pv, pv2)) def test_f_oneway_ints(): # Smoke test f_oneway on integers: that it does raise casting errors # with recent numpys rng = np.random.RandomState(0) X = rng.randint(10, size=(10, 10)) y = np.arange(10) fint, pint = f_oneway(X, y) # test that is gives the same result as with float f, p = f_oneway(X.astype(np.float), y) assert_array_almost_equal(f, fint, decimal=4) assert_array_almost_equal(p, pint, decimal=4) def test_f_classif(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) F_sparse, pv_sparse = f_classif(sparse.csr_matrix(X), y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression(): # Test whether the F test yields meaningful results # on a simple simulated regression problem X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) F, pv = f_regression(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) # again without centering, compare with sparse F, pv = f_regression(X, y, center=False) F_sparse, pv_sparse = f_regression(sparse.csr_matrix(X), y, center=False) assert_array_almost_equal(F_sparse, F) assert_array_almost_equal(pv_sparse, pv) def test_f_regression_input_dtype(): # Test whether f_regression returns the same value # for any numeric data_type rng = np.random.RandomState(0) X = rng.rand(10, 20) y = np.arange(10).astype(np.int) F1, pv1 = f_regression(X, y) F2, pv2 = f_regression(X, y.astype(np.float)) assert_array_almost_equal(F1, F2, 5) assert_array_almost_equal(pv1, pv2, 5) def test_f_regression_center(): # Test whether f_regression preserves dof according to 'center' argument # We use two centered variates so we have a simple relationship between # F-score with variates centering and F-score without variates centering. # Create toy example X = np.arange(-5, 6).reshape(-1, 1) # X has zero mean n_samples = X.size Y = np.ones(n_samples) Y[::2] *= -1. Y[0] = 0. # have Y mean being null F1, _ = f_regression(X, Y, center=True) F2, _ = f_regression(X, Y, center=False) assert_array_almost_equal(F1 * (n_samples - 1.) / (n_samples - 2.), F2) assert_almost_equal(F2[0], 0.232558139) # value from statsmodels OLS def test_f_classif_multi_class(): # Test whether the F test yields meaningful results # on a simple simulated classification problem X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) F, pv = f_classif(X, y) assert_true((F > 0).all()) assert_true((pv > 0).all()) assert_true((pv < 1).all()) assert_true((pv[:5] < 0.05).all()) assert_true((pv[5:] > 1.e-4).all()) def test_select_percentile_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_percentile_classif_sparse(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the percentile heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) X = sparse.csr_matrix(X) univariate_filter = SelectPercentile(f_classif, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect(f_classif, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r.toarray(), X_r2.toarray()) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_r2inv = univariate_filter.inverse_transform(X_r2) assert_true(sparse.issparse(X_r2inv)) support_mask = safe_mask(X_r2inv, support) assert_equal(X_r2inv.shape, X.shape) assert_array_equal(X_r2inv[:, support_mask].toarray(), X_r.toarray()) # Check other columns are empty assert_equal(X_r2inv.getnnz(), X_r.getnnz()) ############################################################################## # Test univariate selection in classification settings def test_select_kbest_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the k best heuristic X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=5) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_classif, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_kbest_all(): # Test whether k="all" correctly returns all features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k='all') X_r = univariate_filter.fit(X, y).transform(X) assert_array_equal(X, X_r) def test_select_kbest_zero(): # Test whether k=0 correctly returns no features. X, y = make_classification(n_samples=20, n_features=10, shuffle=False, random_state=0) univariate_filter = SelectKBest(f_classif, k=0) univariate_filter.fit(X, y) support = univariate_filter.get_support() gtruth = np.zeros(10, dtype=bool) assert_array_equal(support, gtruth) X_selected = assert_warns_message(UserWarning, 'No features were selected', univariate_filter.transform, X) assert_equal(X_selected.shape, (20, 0)) def test_select_heuristics_classif(): # Test whether the relative univariate feature selection # gets the correct items in a simple classification problem # with the fdr, fwe and fpr heuristics X, y = make_classification(n_samples=200, n_features=20, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, flip_y=0.0, class_sep=10, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_classif, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_classif, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_almost_equal(support, gtruth) ############################################################################## # Test univariate selection in regression settings def assert_best_scores_kept(score_filter): scores = score_filter.scores_ support = score_filter.get_support() assert_array_equal(np.sort(scores[support]), np.sort(scores)[-support.sum():]) def test_select_percentile_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the percentile heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=25) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=25).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) X_2 = X.copy() X_2[:, np.logical_not(support)] = 0 assert_array_equal(X_2, univariate_filter.inverse_transform(X_r)) # Check inverse_transform respects dtype assert_array_equal(X_2.astype(bool), univariate_filter.inverse_transform(X_r.astype(bool))) def test_select_percentile_regression_full(): # Test whether the relative univariate feature selection # selects all features when '100%' is asked. X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectPercentile(f_regression, percentile=100) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='percentile', param=100).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.ones(20) assert_array_equal(support, gtruth) def test_invalid_percentile(): X, y = make_regression(n_samples=10, n_features=20, n_informative=2, shuffle=False, random_state=0) assert_raises(ValueError, SelectPercentile(percentile=-1).fit, X, y) assert_raises(ValueError, SelectPercentile(percentile=101).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='percentile', param=101).fit, X, y) def test_select_kbest_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the k best heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectKBest(f_regression, k=5) X_r = univariate_filter.fit(X, y).transform(X) assert_best_scores_kept(univariate_filter) X_r2 = GenericUnivariateSelect( f_regression, mode='k_best', param=5).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support, gtruth) def test_select_heuristics_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fpr, fdr or fwe heuristics X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0, noise=10) univariate_filter = SelectFpr(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) gtruth = np.zeros(20) gtruth[:5] = 1 for mode in ['fdr', 'fpr', 'fwe']: X_r2 = GenericUnivariateSelect( f_regression, mode=mode, param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 3) def test_select_fdr_regression(): # Test that fdr heuristic actually has low FDR. def single_fdr(alpha, n_informative, random_state): X, y = make_regression(n_samples=150, n_features=20, n_informative=n_informative, shuffle=False, random_state=random_state, noise=10) with warnings.catch_warnings(record=True): # Warnings can be raised when no features are selected # (low alpha or very noisy data) univariate_filter = SelectFdr(f_regression, alpha=alpha) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fdr', param=alpha).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() num_false_positives = np.sum(support[n_informative:] == 1) num_true_positives = np.sum(support[:n_informative] == 1) if num_false_positives == 0: return 0. false_discovery_rate = (num_false_positives / (num_true_positives + num_false_positives)) return false_discovery_rate for alpha in [0.001, 0.01, 0.1]: for n_informative in [1, 5, 10]: # As per Benjamini-Hochberg, the expected false discovery rate # should be lower than alpha: # FDR = E(FP / (TP + FP)) <= alpha false_discovery_rate = np.mean([single_fdr(alpha, n_informative, random_state) for random_state in range(30)]) assert_greater_equal(alpha, false_discovery_rate) # Make sure that the empirical false discovery rate increases # with alpha: if false_discovery_rate != 0: assert_greater(false_discovery_rate, alpha / 10) def test_select_fwe_regression(): # Test whether the relative univariate feature selection # gets the correct items in a simple regression problem # with the fwe heuristic X, y = make_regression(n_samples=200, n_features=20, n_informative=5, shuffle=False, random_state=0) univariate_filter = SelectFwe(f_regression, alpha=0.01) X_r = univariate_filter.fit(X, y).transform(X) X_r2 = GenericUnivariateSelect( f_regression, mode='fwe', param=0.01).fit(X, y).transform(X) assert_array_equal(X_r, X_r2) support = univariate_filter.get_support() gtruth = np.zeros(20) gtruth[:5] = 1 assert_array_equal(support[:5], np.ones((5, ), dtype=np.bool)) assert_less(np.sum(support[5:] == 1), 2) def test_selectkbest_tiebreaking(): # Test whether SelectKBest actually selects k features in case of ties. # Prior to 0.11, SelectKBest would return more features than requested. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectKBest(dummy_score, k=1) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectKBest(dummy_score, k=2) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_selectpercentile_tiebreaking(): # Test if SelectPercentile selects the right n_features in case of ties. Xs = [[0, 1, 1], [0, 0, 1], [1, 0, 0], [1, 1, 0]] y = [1] dummy_score = lambda X, y: (X[0], X[0]) for X in Xs: sel = SelectPercentile(dummy_score, percentile=34) X1 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X1.shape[1], 1) assert_best_scores_kept(sel) sel = SelectPercentile(dummy_score, percentile=67) X2 = ignore_warnings(sel.fit_transform)([X], y) assert_equal(X2.shape[1], 2) assert_best_scores_kept(sel) def test_tied_pvalues(): # Test whether k-best and percentiles work with tied pvalues from chi2. # chi2 will return the same p-values for the following features, but it # will return different scores. X0 = np.array([[10000, 9999, 9998], [1, 1, 1]]) y = [0, 1] for perm in itertools.permutations((0, 1, 2)): X = X0[:, perm] Xt = SelectKBest(chi2, k=2).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) Xt = SelectPercentile(chi2, percentile=67).fit_transform(X, y) assert_equal(Xt.shape, (2, 2)) assert_not_in(9998, Xt) def test_tied_scores(): # Test for stable sorting in k-best with tied scores. X_train = np.array([[0, 0, 0], [1, 1, 1]]) y_train = [0, 1] for n_features in [1, 2, 3]: sel = SelectKBest(chi2, k=n_features).fit(X_train, y_train) X_test = sel.transform([[0, 1, 2]]) assert_array_equal(X_test[0], np.arange(3)[-n_features:]) def test_nans(): # Assert that SelectKBest and SelectPercentile can handle NaNs. # First feature has zero variance to confuse f_classif (ANOVA) and # make it return a NaN. X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for select in (SelectKBest(f_classif, 2), SelectPercentile(f_classif, percentile=67)): ignore_warnings(select.fit)(X, y) assert_array_equal(select.get_support(indices=True), np.array([1, 2])) def test_score_func_error(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] for SelectFeatures in [SelectKBest, SelectPercentile, SelectFwe, SelectFdr, SelectFpr, GenericUnivariateSelect]: assert_raises(TypeError, SelectFeatures(score_func=10).fit, X, y) def test_invalid_k(): X = [[0, 1, 0], [0, -1, -1], [0, .5, .5]] y = [1, 0, 1] assert_raises(ValueError, SelectKBest(k=-1).fit, X, y) assert_raises(ValueError, SelectKBest(k=4).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=-1).fit, X, y) assert_raises(ValueError, GenericUnivariateSelect(mode='k_best', param=4).fit, X, y) def test_f_classif_constant_feature(): # Test that f_classif warns if a feature is constant throughout. X, y = make_classification(n_samples=10, n_features=5) X[:, 0] = 2.0 assert_warns(UserWarning, f_classif, X, y) def test_no_feature_selected(): rng = np.random.RandomState(0) # Generate random uncorrelated data: a strict univariate test should # rejects all the features X = rng.rand(40, 10) y = rng.randint(0, 4, size=40) strict_selectors = [ SelectFwe(alpha=0.01).fit(X, y), SelectFdr(alpha=0.01).fit(X, y), SelectFpr(alpha=0.01).fit(X, y), SelectPercentile(percentile=0).fit(X, y), SelectKBest(k=0).fit(X, y), ] for selector in strict_selectors: assert_array_equal(selector.get_support(), np.zeros(10)) X_selected = assert_warns_message( UserWarning, 'No features were selected', selector.transform, X) assert_equal(X_selected.shape, (40, 0))
bsd-3-clause
maximus009/kaggle-galaxies
try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_dup3.py
7
17439
import numpy as np # import pandas as pd import theano import theano.tensor as T import layers import cc_layers import custom import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle from datetime import datetime, timedelta # import matplotlib.pyplot as plt # plt.ion() # import utils BATCH_SIZE = 16 NUM_INPUT_FEATURES = 3 LEARNING_RATE_SCHEDULE = { 0: 0.04, 1800: 0.004, 2300: 0.0004, } MOMENTUM = 0.9 WEIGHT_DECAY = 0.0 CHUNK_SIZE = 10000 # 30000 # this should be a multiple of the batch size, ideally. NUM_CHUNKS = 2500 # 3000 # 1500 # 600 # 600 # 600 # 500 VALIDATE_EVERY = 20 # 12 # 6 # 6 # 6 # 5 # validate only every 5 chunks. MUST BE A DIVISOR OF NUM_CHUNKS!!! # else computing the analysis data does not work correctly, since it assumes that the validation set is still loaded. NUM_CHUNKS_NONORM = 1 # train without normalisation for this many chunks, to get the weights in the right 'zone'. # this should be only a few, just 1 hopefully suffices. GEN_BUFFER_SIZE = 1 # # need to load the full training data anyway to extract the validation set from it. # # alternatively we could create separate validation set files. # DATA_TRAIN_PATH = "data/images_train_color_cropped33_singletf.npy.gz" # DATA2_TRAIN_PATH = "data/images_train_color_8x_singletf.npy.gz" # DATA_VALIDONLY_PATH = "data/images_validonly_color_cropped33_singletf.npy.gz" # DATA2_VALIDONLY_PATH = "data/images_validonly_color_8x_singletf.npy.gz" # DATA_TEST_PATH = "data/images_test_color_cropped33_singletf.npy.gz" # DATA2_TEST_PATH = "data/images_test_color_8x_singletf.npy.gz" TARGET_PATH = "predictions/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_dup3.csv" ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_maxout2048_extradense_dup3.pkl" # FEATURES_PATTERN = "features/try_convnet_chunked_ra_b3sched.%s.npy" print "Set up data loading" # TODO: adapt this so it loads the validation data from JPEGs and does the processing realtime input_sizes = [(69, 69), (69, 69)] ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45) ] num_input_representations = len(ds_transforms) augmentation_params = { 'zoom_range': (1.0 / 1.3, 1.3), 'rotation_range': (0, 360), 'shear_range': (0, 0), 'translation_range': (-4, 4), 'do_flip': True, } augmented_data_gen = ra.realtime_augmented_data_gen(num_chunks=NUM_CHUNKS, chunk_size=CHUNK_SIZE, augmentation_params=augmentation_params, ds_transforms=ds_transforms, target_sizes=input_sizes) post_augmented_data_gen = ra.post_augment_brightness_gen(augmented_data_gen, std=0.5) train_gen = load_data.buffered_gen_mp(post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE) y_train = np.load("data/solutions_train.npy") train_ids = load_data.train_ids test_ids = load_data.test_ids # split training data into training + a small validation set num_train = len(train_ids) num_test = len(test_ids) num_valid = num_train // 10 # integer division num_train -= num_valid y_valid = y_train[num_train:] y_train = y_train[:num_train] valid_ids = train_ids[num_train:] train_ids = train_ids[:num_train] train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train + num_valid) test_indices = np.arange(num_test) def create_train_gen(): """ this generates the training data in order, for postprocessing. Do not use this for actual training. """ data_gen_train = ra.realtime_fixed_augmented_data_gen(train_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_train, buffer_size=GEN_BUFFER_SIZE) def create_valid_gen(): data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE) def create_test_gen(): data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_test, buffer_size=GEN_BUFFER_SIZE) print "Preprocess validation data upfront" start_time = time.time() xs_valid = [[] for _ in xrange(num_input_representations)] for data, length in create_valid_gen(): for x_valid_list, x_chunk in zip(xs_valid, data): x_valid_list.append(x_chunk[:length]) xs_valid = [np.vstack(x_valid) for x_valid in xs_valid] xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] # move the colour dimension up print " took %.2f seconds" % (time.time() - start_time) print "Build model" l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]) l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True) l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r) l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=6, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2) l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=5, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2) l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2) l3s = cc_layers.ShuffleC01BToBC01Layer(l3) j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4b = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape') l4c = layers.DenseLayer(l4b, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4 = layers.FeatureMaxPoolingLayer(l4c, pool_size=2, feature_dim=1, implementation='reshape') # l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity) l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity) # l6 = layers.OutputLayer(l5, error_measure='mse') l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.) train_loss_nonorm = l6.error(normalisation=False) train_loss = l6.error() # but compute and print this! valid_loss = l6.error(dropout_active=False) all_parameters = layers.all_parameters(l6) all_bias_parameters = layers.all_bias_parameters(l6) xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)] y_shared = theano.shared(np.zeros((1,1), dtype=theano.config.floatX)) learning_rate = theano.shared(np.array(LEARNING_RATE_SCHEDULE[0], dtype=theano.config.floatX)) idx = T.lscalar('idx') givens = { l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l6.target_var: y_shared[idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], } # updates = layers.gen_updates(train_loss, all_parameters, learning_rate=LEARNING_RATE, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates_nonorm = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss_nonorm, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) train_nonorm = theano.function([idx], train_loss_nonorm, givens=givens, updates=updates_nonorm) train_norm = theano.function([idx], train_loss, givens=givens, updates=updates) compute_loss = theano.function([idx], valid_loss, givens=givens) # dropout_active=False compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens, on_unused_input='ignore') # not using the labels, so theano complains compute_features = theano.function([idx], l4.output(dropout_active=False), givens=givens, on_unused_input='ignore') print "Train model" start_time = time.time() prev_time = start_time num_batches_valid = x_valid.shape[0] // BATCH_SIZE losses_train = [] losses_valid = [] param_stds = [] for e in xrange(NUM_CHUNKS): print "Chunk %d/%d" % (e + 1, NUM_CHUNKS) chunk_data, chunk_length = train_gen.next() y_chunk = chunk_data.pop() # last element is labels. xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] if e in LEARNING_RATE_SCHEDULE: current_lr = LEARNING_RATE_SCHEDULE[e] learning_rate.set_value(LEARNING_RATE_SCHEDULE[e]) print " setting learning rate to %.6f" % current_lr # train without normalisation for the first # chunks. if e >= NUM_CHUNKS_NONORM: train = train_norm else: train = train_nonorm print " load training data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) y_shared.set_value(y_chunk) num_batches_chunk = x_chunk.shape[0] // BATCH_SIZE # import pdb; pdb.set_trace() print " batch SGD" losses = [] for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) loss = train(b) losses.append(loss) # print " loss: %.6f" % loss mean_train_loss = np.sqrt(np.mean(losses)) print " mean training loss (RMSE):\t\t%.6f" % mean_train_loss losses_train.append(mean_train_loss) # store param stds during training param_stds.append([p.std() for p in layers.get_param_values(l6)]) if ((e + 1) % VALIDATE_EVERY) == 0: print print "VALIDATING" print " load validation data onto GPU" for x_shared, x_valid in zip(xs_shared, xs_valid): x_shared.set_value(x_valid) y_shared.set_value(y_valid) print " compute losses" losses = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) loss = compute_loss(b) losses.append(loss) mean_valid_loss = np.sqrt(np.mean(losses)) print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss losses_valid.append(mean_valid_loss) layers.dump_params(l6, e=e) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1)) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str) print del chunk_data, xs_chunk, x_chunk, y_chunk, xs_valid, x_valid # memory cleanup print "Compute predictions on validation set for analysis in batches" predictions_list = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write validation set predictions to %s" % ANALYSIS_PATH with open(ANALYSIS_PATH, 'w') as f: pickle.dump({ 'ids': valid_ids[:num_batches_valid * BATCH_SIZE], # note that we need to truncate the ids to a multiple of the batch size. 'predictions': all_predictions, 'targets': y_valid, 'mean_train_loss': mean_train_loss, 'mean_valid_loss': mean_valid_loss, 'time_since_start': time_since_start, 'losses_train': losses_train, 'losses_valid': losses_valid, 'param_values': layers.get_param_values(l6), 'param_stds': param_stds, }, f, pickle.HIGHEST_PROTOCOL) del predictions_list, all_predictions # memory cleanup # print "Loading test data" # x_test = load_data.load_gz(DATA_TEST_PATH) # x2_test = load_data.load_gz(DATA2_TEST_PATH) # test_ids = np.load("data/test_ids.npy") # num_test = x_test.shape[0] # x_test = x_test.transpose(0, 3, 1, 2) # move the colour dimension up. # x2_test = x2_test.transpose(0, 3, 1, 2) # create_test_gen = lambda: load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) print "Computing predictions on test data" predictions_list = [] for e, (xs_chunk, chunk_length) in enumerate(create_test_gen()): print "Chunk %d" % (e + 1) xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] # move the colour dimension up. for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # make predictions for testset, don't forget to cute off the zeros at the end for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) all_predictions = all_predictions[:num_test] # truncate back to the correct length # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write predictions to %s" % TARGET_PATH # test_ids = np.load("data/test_ids.npy") with open(TARGET_PATH, 'wb') as csvfile: writer = csv.writer(csvfile) # , delimiter=',', quoting=csv.QUOTE_MINIMAL) # write header writer.writerow(['GalaxyID', 'Class1.1', 'Class1.2', 'Class1.3', 'Class2.1', 'Class2.2', 'Class3.1', 'Class3.2', 'Class4.1', 'Class4.2', 'Class5.1', 'Class5.2', 'Class5.3', 'Class5.4', 'Class6.1', 'Class6.2', 'Class7.1', 'Class7.2', 'Class7.3', 'Class8.1', 'Class8.2', 'Class8.3', 'Class8.4', 'Class8.5', 'Class8.6', 'Class8.7', 'Class9.1', 'Class9.2', 'Class9.3', 'Class10.1', 'Class10.2', 'Class10.3', 'Class11.1', 'Class11.2', 'Class11.3', 'Class11.4', 'Class11.5', 'Class11.6']) # write data for k in xrange(test_ids.shape[0]): row = [test_ids[k]] + all_predictions[k].tolist() writer.writerow(row) print "Gzipping..." os.system("gzip -c %s > %s.gz" % (TARGET_PATH, TARGET_PATH)) del all_predictions, predictions_list, xs_chunk, x_chunk # memory cleanup # # need to reload training data because it has been split and shuffled. # # don't need to reload test data # x_train = load_data.load_gz(DATA_TRAIN_PATH) # x2_train = load_data.load_gz(DATA2_TRAIN_PATH) # x_train = x_train.transpose(0, 3, 1, 2) # move the colour dimension up # x2_train = x2_train.transpose(0, 3, 1, 2) # train_gen_features = load_data.array_chunker_gen([x_train, x2_train], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # test_gen_features = load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # for name, gen, num in zip(['train', 'test'], [train_gen_features, test_gen_features], [x_train.shape[0], x_test.shape[0]]): # print "Extracting feature representations for all galaxies: %s" % name # features_list = [] # for e, (xs_chunk, chunk_length) in enumerate(gen): # print "Chunk %d" % (e + 1) # x_chunk, x2_chunk = xs_chunk # x_shared.set_value(x_chunk) # x2_shared.set_value(x2_chunk) # num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # # compute features for set, don't forget to cute off the zeros at the end # for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) # features = compute_features(b) # features_list.append(features) # all_features = np.vstack(features_list) # all_features = all_features[:num] # truncate back to the correct length # features_path = FEATURES_PATTERN % name # print " write features to %s" % features_path # np.save(features_path, all_features) print "Done!"
bsd-3-clause
shusenl/scikit-learn
sklearn/utils/extmath.py
70
21951
""" Extended math utilities. """ # Authors: Gael Varoquaux # Alexandre Gramfort # Alexandre T. Passos # Olivier Grisel # Lars Buitinck # Stefan van der Walt # Kyle Kastner # License: BSD 3 clause from __future__ import division from functools import partial import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from . import check_random_state from .fixes import np_version from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .sparsefuncs_fast import csr_row_norms from .validation import check_array, NonBLASDotWarning def norm(x): """Compute the Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). More precise than sqrt(squared_norm(x)). """ x = np.asarray(x) nrm2, = linalg.get_blas_funcs(['nrm2'], [x]) return nrm2(x) # Newer NumPy has a ravel that needs less copying. if np_version < (1, 7, 1): _ravel = np.ravel else: _ravel = partial(np.ravel, order='K') def squared_norm(x): """Squared Euclidean or Frobenius norm of x. Returns the Euclidean norm when x is a vector, the Frobenius norm when x is a matrix (2-d array). Faster than norm(x) ** 2. """ x = _ravel(x) return np.dot(x, x) def row_norms(X, squared=False): """Row-wise (squared) Euclidean norm of X. Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports CSR sparse matrices and does not create an X.shape-sized temporary. Performs no input validation. """ if issparse(X): norms = csr_row_norms(X) else: norms = np.einsum('ij,ij->i', X, X) if not squared: np.sqrt(norms, norms) return norms def fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return check_array(X.T, copy=False, order='F'), True else: return check_array(X, copy=False, order='F'), False def _fast_dot(A, B): if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' raise ValueError if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) raise ValueError if min(A.shape) == 1 or min(B.shape) == 1 or A.ndim != 2 or B.ndim != 2: raise ValueError # scipy 0.9 compliant API dot = linalg.get_blas_funcs(['gemm'], (A, B))[0] A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) def _have_blas_gemm(): try: linalg.get_blas_funcs(['gemm']) return True except (AttributeError, ValueError): warnings.warn('Could not import BLAS, falling back to np.dot') return False # Only use fast_dot for older NumPy; newer ones have tackled the speed issue. if np_version < (1, 7, 2) and _have_blas_gemm(): def fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray Input arrays. Arrays are supposed to be of the same dtype and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ try: return _fast_dot(A, B) except ValueError: # Maltyped or malformed data. return np.dot(A, B) else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ if issparse(a) or issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = linalg.qr(Y, mode='economic') return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond : float or None, default None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. rcond : float or None, default None (deprecated) Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> import numpy as np >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ arrays = [np.asarray(x) for x in arrays] shape = (len(x) for x in arrays) dtype = arrays[0].dtype ix = np.indices(shape) ix = ix.reshape(len(arrays), -1).T if out is None: out = np.empty_like(ix, dtype=dtype) for n, arr in enumerate(arrays): out[:, n] = arrays[n][ix[:, n]] return out def svd_flip(u, v, u_based_decision=True): """Sign correction to ensure deterministic output from SVD. Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v : ndarray u and v are the output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. u_based_decision : boolean, (default=True) If True, use the columns of u as the basis for sign flipping. Otherwise, use the rows of v. The choice of which variable to base the decision on is generally algorithm dependent. Returns ------- u_adjusted, v_adjusted : arrays with the same dimensions as the input. """ if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[xrange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def log_logistic(X, out=None): """Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``. This implementation is numerically stable because it splits positive and negative values:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 For the ordinary logistic function, use ``sklearn.utils.fixes.expit``. Parameters ---------- X: array-like, shape (M, N) or (M, ) Argument to the logistic function out: array-like, shape: (M, N) or (M, ), optional: Preallocated output array. Returns ------- out: array, shape (M, N) or (M, ) Log of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = np.atleast_2d(X) X = check_array(X, dtype=np.float64) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) _log_logistic_sigmoid(n_samples, n_features, X, out) if is_1d: return np.squeeze(out) return out def softmax(X, copy=True): """ Calculate the softmax function. The softmax function is calculated by np.exp(X) / np.sum(np.exp(X), axis=1) This will cause overflow when large values are exponentiated. Hence the largest value in each row is subtracted from each data point to prevent this. Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function copy: bool, optional Copy X or not. Returns ------- out: array, shape (M, N) Softmax function evaluated at every point in x """ if copy: X = np.copy(X) max_prob = np.max(X, axis=1).reshape((-1, 1)) X -= max_prob np.exp(X, X) sum_prob = np.sum(X, axis=1).reshape((-1, 1)) X /= sum_prob return X def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X def _batch_mean_variance_update(X, old_mean, old_variance, old_sample_count): """Calculate an average mean update and a Youngs and Cramer variance update. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update old_mean : array-like, shape: (n_features,) old_variance : array-like, shape: (n_features,) old_sample_count : int Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) updated_sample_count : int References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 """ new_sum = X.sum(axis=0) new_variance = X.var(axis=0) * X.shape[0] old_sum = old_mean * old_sample_count n_samples = X.shape[0] updated_sample_count = old_sample_count + n_samples partial_variance = old_sample_count / (n_samples * updated_sample_count) * ( n_samples / old_sample_count * old_sum - new_sum) ** 2 unnormalized_variance = old_variance * old_sample_count + new_variance + \ partial_variance return ((old_sum + new_sum) / updated_sample_count, unnormalized_variance / updated_sample_count, updated_sample_count) def _deterministic_vector_sign_flip(u): """Modify the sign of vectors for reproducibility Flips the sign of elements of all the vectors (rows of u) such that the absolute maximum element of each vector is positive. Parameters ---------- u : ndarray Array with vectors as its rows. Returns ------- u_flipped : ndarray with same shape as u Array with the sign flipped vectors as its rows. """ max_abs_rows = np.argmax(np.abs(u), axis=1) signs = np.sign(u[range(u.shape[0]), max_abs_rows]) u *= signs[:, np.newaxis] return u
bsd-3-clause
aubreyli/hmmlearn
hmmlearn/base.py
1
23398
from __future__ import print_function import string import sys from collections import deque import numpy as np from scipy.misc import logsumexp from sklearn.base import BaseEstimator, _pprint from sklearn.utils import check_array, check_random_state from sklearn.utils.validation import check_is_fitted from . import _hmmc from .utils import normalize, log_normalize, iter_from_X_lengths, log_mask_zero #: Supported decoder algorithms. DECODER_ALGORITHMS = frozenset(("viterbi", "map")) class ConvergenceMonitor(object): """Monitors and reports convergence to :data:`sys.stderr`. Parameters ---------- tol : double Convergence threshold. EM has converged either if the maximum number of iterations is reached or the log probability improvement between the two consecutive iterations is less than threshold. n_iter : int Maximum number of iterations to perform. verbose : bool If ``True`` then per-iteration convergence reports are printed, otherwise the monitor is mute. Attributes ---------- history : deque The log probability of the data for the last two training iterations. If the values are not strictly increasing, the model did not converge. iter : int Number of iterations performed while training the model. """ _template = "{iter:>10d} {logprob:>16.4f} {delta:>+16.4f}" def __init__(self, tol, n_iter, verbose): self.tol = tol self.n_iter = n_iter self.verbose = verbose self.history = deque(maxlen=2) self.iter = 0 def __repr__(self): class_name = self.__class__.__name__ params = dict(vars(self), history=list(self.history)) return "{0}({1})".format( class_name, _pprint(params, offset=len(class_name))) def report(self, logprob): """Reports convergence to :data:`sys.stderr`. The output consists of three columns: iteration number, log probability of the data at the current iteration and convergence rate. At the first iteration convergence rate is unknown and is thus denoted by NaN. Parameters ---------- logprob : float The log probability of the data as computed by EM algorithm in the current iteration. """ if self.verbose: delta = logprob - self.history[-1] if self.history else np.nan message = self._template.format( iter=self.iter + 1, logprob=logprob, delta=delta) print(message, file=sys.stderr) self.history.append(logprob) self.iter += 1 @property def converged(self): """``True`` if the EM algorithm converged and ``False`` otherwise.""" # XXX we might want to check that ``logprob`` is non-decreasing. return (self.iter == self.n_iter or (len(self.history) == 2 and self.history[1] - self.history[0] < self.tol)) class _BaseHMM(BaseEstimator): """Base class for Hidden Markov Models. This class allows for easy evaluation of, sampling from, and maximum-likelihood estimation of the parameters of a HMM. See the instance documentation for details specific to a particular object. Parameters ---------- n_components : int Number of states in the model. startprob_prior : array, shape (n_components, ) Initial state occupation prior distribution. transmat_prior : array, shape (n_components, n_components) Matrix of prior transition probabilities between states. algorithm : string Decoder algorithm. Must be one of "viterbi" or "map". Defaults to "viterbi". random_state: RandomState or an int seed A random number generator instance. n_iter : int, optional Maximum number of iterations to perform. tol : float, optional Convergence threshold. EM will stop if the gain in log-likelihood is below this value. verbose : bool, optional When ``True`` per-iteration convergence reports are printed to :data:`sys.stderr`. You can diagnose convergence via the :attr:`monitor_` attribute. params : string, optional Controls which parameters are updated in the training process. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emission parameters. Defaults to all parameters. init_params : string, optional Controls which parameters are initialized prior to training. Can contain any combination of 's' for startprob, 't' for transmat, and other characters for subclass-specific emission parameters. Defaults to all parameters. Attributes ---------- monitor\_ : ConvergenceMonitor Monitor object used to check the convergence of EM. startprob\_ : array, shape (n_components, ) Initial state occupation distribution. transmat\_ : array, shape (n_components, n_components) Matrix of transition probabilities between states. """ def __init__(self, n_components=1, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params=string.ascii_letters, init_params=string.ascii_letters): self.n_components = n_components self.params = params self.init_params = init_params self.startprob_prior = startprob_prior self.transmat_prior = transmat_prior self.algorithm = algorithm self.random_state = random_state self.n_iter = n_iter self.tol = tol self.verbose = verbose def score_samples(self, X, lengths=None): """Compute the log probability under the model and compute posteriors. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ), optional Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. Returns ------- logprob : float Log likelihood of ``X``. posteriors : array, shape (n_samples, n_components) State-membership probabilities for each sample in ``X``. See Also -------- score : Compute the log probability under the model. decode : Find most likely state sequence corresponding to ``X``. """ check_is_fitted(self, "startprob_") self._check() X = check_array(X) n_samples = X.shape[0] logprob = 0 posteriors = np.zeros((n_samples, self.n_components)) for i, j in iter_from_X_lengths(X, lengths): framelogprob = self._compute_log_likelihood(X[i:j]) logprobij, fwdlattice = self._do_forward_pass(framelogprob) logprob += logprobij bwdlattice = self._do_backward_pass(framelogprob) posteriors[i:j] = self._compute_posteriors(fwdlattice, bwdlattice) return logprob, posteriors def score(self, X, lengths=None): """Compute the log probability under the model. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ), optional Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. Returns ------- logprob : float Log likelihood of ``X``. See Also -------- score_samples : Compute the log probability under the model and posteriors. decode : Find most likely state sequence corresponding to ``X``. """ check_is_fitted(self, "startprob_") self._check() X = check_array(X) # XXX we can unroll forward pass for speed and memory efficiency. logprob = 0 for i, j in iter_from_X_lengths(X, lengths): framelogprob = self._compute_log_likelihood(X[i:j]) logprobij, _fwdlattice = self._do_forward_pass(framelogprob) logprob += logprobij return logprob def _decode_viterbi(self, X): framelogprob = self._compute_log_likelihood(X) return self._do_viterbi_pass(framelogprob) def _decode_map(self, X): _, posteriors = self.score_samples(X) logprob = np.max(posteriors, axis=1).sum() state_sequence = np.argmax(posteriors, axis=1) return logprob, state_sequence def decode(self, X, lengths=None, algorithm=None): """Find most likely state sequence corresponding to ``X``. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ), optional Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. algorithm : string Decoder algorithm. Must be one of "viterbi" or "map". If not given, :attr:`decoder` is used. Returns ------- logprob : float Log probability of the produced state sequence. state_sequence : array, shape (n_samples, ) Labels for each sample from ``X`` obtained via a given decoder ``algorithm``. See Also -------- score_samples : Compute the log probability under the model and posteriors. score : Compute the log probability under the model. """ check_is_fitted(self, "startprob_") self._check() algorithm = algorithm or self.algorithm if algorithm not in DECODER_ALGORITHMS: raise ValueError("Unknown decoder {0!r}".format(algorithm)) decoder = { "viterbi": self._decode_viterbi, "map": self._decode_map }[algorithm] X = check_array(X) n_samples = X.shape[0] logprob = 0 state_sequence = np.empty(n_samples, dtype=int) for i, j in iter_from_X_lengths(X, lengths): # XXX decoder works on a single sample at a time! logprobij, state_sequenceij = decoder(X[i:j]) logprob += logprobij state_sequence[i:j] = state_sequenceij return logprob, state_sequence def predict(self, X, lengths=None): """Find most likely state sequence corresponding to ``X``. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ), optional Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. Returns ------- state_sequence : array, shape (n_samples, ) Labels for each sample from ``X``. """ _, state_sequence = self.decode(X, lengths) return state_sequence def predict_proba(self, X, lengths=None): """Compute the posterior probability for each state in the model. X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ), optional Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. Returns ------- posteriors : array, shape (n_samples, n_components) State-membership probabilities for each sample from ``X``. """ _, posteriors = self.score_samples(X, lengths) return posteriors def sample(self, n_samples=1, random_state=None): """Generate random samples from the model. Parameters ---------- n_samples : int Number of samples to generate. random_state : RandomState or an int seed A random number generator instance. If ``None``, the object's ``random_state`` is used. Returns ------- X : array, shape (n_samples, n_features) Feature matrix. state_sequence : array, shape (n_samples, ) State sequence produced by the model. """ check_is_fitted(self, "startprob_") if random_state is None: random_state = self.random_state random_state = check_random_state(random_state) startprob_cdf = np.cumsum(self.startprob_) transmat_cdf = np.cumsum(self.transmat_, axis=1) currstate = (startprob_cdf > random_state.rand()).argmax() state_sequence = [currstate] X = [self._generate_sample_from_state( currstate, random_state=random_state)] for t in range(n_samples - 1): currstate = (transmat_cdf[currstate] > random_state.rand()) \ .argmax() state_sequence.append(currstate) X.append(self._generate_sample_from_state( currstate, random_state=random_state)) return np.atleast_2d(X), np.array(state_sequence, dtype=int) def fit(self, X, lengths=None): """Estimate model parameters. An initialization step is performed before entering the EM algorithm. If you want to avoid this step for a subset of the parameters, pass proper ``init_params`` keyword argument to estimator's constructor. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ) Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. Returns ------- self : object Returns self. """ X = check_array(X) self._init(X, lengths=lengths) self._check() self.monitor_ = ConvergenceMonitor(self.tol, self.n_iter, self.verbose) for iter in range(self.n_iter): stats = self._initialize_sufficient_statistics() curr_logprob = 0 for i, j in iter_from_X_lengths(X, lengths): framelogprob = self._compute_log_likelihood(X[i:j]) logprob, fwdlattice = self._do_forward_pass(framelogprob) curr_logprob += logprob bwdlattice = self._do_backward_pass(framelogprob) posteriors = self._compute_posteriors(fwdlattice, bwdlattice) self._accumulate_sufficient_statistics( stats, X[i:j], framelogprob, posteriors, fwdlattice, bwdlattice) # XXX must be before convergence check, because otherwise # there won't be any updates for the case ``n_iter=1``. self._do_mstep(stats) self.monitor_.report(curr_logprob) if self.monitor_.converged: break return self def _do_viterbi_pass(self, framelogprob): n_samples, n_components = framelogprob.shape state_sequence, logprob = _hmmc._viterbi( n_samples, n_components, log_mask_zero(self.startprob_), log_mask_zero(self.transmat_), framelogprob) return logprob, state_sequence def _do_forward_pass(self, framelogprob): n_samples, n_components = framelogprob.shape fwdlattice = np.zeros((n_samples, n_components)) _hmmc._forward(n_samples, n_components, log_mask_zero(self.startprob_), log_mask_zero(self.transmat_), framelogprob, fwdlattice) return logsumexp(fwdlattice[-1]), fwdlattice def _do_backward_pass(self, framelogprob): n_samples, n_components = framelogprob.shape bwdlattice = np.zeros((n_samples, n_components)) _hmmc._backward(n_samples, n_components, log_mask_zero(self.startprob_), log_mask_zero(self.transmat_), framelogprob, bwdlattice) return bwdlattice def _compute_posteriors(self, fwdlattice, bwdlattice): # gamma is guaranteed to be correctly normalized by logprob at # all frames, unless we do approximate inference using pruning. # So, we will normalize each frame explicitly in case we # pruned too aggressively. log_gamma = fwdlattice + bwdlattice log_normalize(log_gamma, axis=1) return np.exp(log_gamma) def _init(self, X, lengths): """Initializes model parameters prior to fitting. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. lengths : array-like of integers, shape (n_sequences, ) Lengths of the individual sequences in ``X``. The sum of these should be ``n_samples``. """ init = 1. / self.n_components if 's' in self.init_params or not hasattr(self, "startprob_"): self.startprob_ = np.full(self.n_components, init) if 't' in self.init_params or not hasattr(self, "transmat_"): self.transmat_ = np.full((self.n_components, self.n_components), init) def _check(self): """Validates model parameters prior to fitting. Raises ------ ValueError If any of the parameters are invalid, e.g. if :attr:`startprob_` don't sum to 1. """ self.startprob_ = np.asarray(self.startprob_) if len(self.startprob_) != self.n_components: raise ValueError("startprob_ must have length n_components") if not np.allclose(self.startprob_.sum(), 1.0): raise ValueError("startprob_ must sum to 1.0 (got {0:.4f})" .format(self.startprob_.sum())) self.transmat_ = np.asarray(self.transmat_) if self.transmat_.shape != (self.n_components, self.n_components): raise ValueError( "transmat_ must have shape (n_components, n_components)") if not np.allclose(self.transmat_.sum(axis=1), 1.0): raise ValueError("rows of transmat_ must sum to 1.0 (got {0})" .format(self.transmat_.sum(axis=1))) def _compute_log_likelihood(self, X): """Computes per-component log probability under the model. Parameters ---------- X : array-like, shape (n_samples, n_features) Feature matrix of individual samples. Returns ------- logprob : array, shape (n_samples, n_components) Log probability of each sample in ``X`` for each of the model states. """ def _generate_sample_from_state(self, state, random_state=None): """Generates a random sample from a given component. Parameters ---------- state : int Index of the component to condition on. random_state: RandomState or an int seed A random number generator instance. If ``None``, the object's ``random_state`` is used. Returns ------- X : array, shape (n_features, ) A random sample from the emission distribution corresponding to a given component. """ # Methods used by self.fit() def _initialize_sufficient_statistics(self): """Initializes sufficient statistics required for M-step. The method is *pure*, meaning that it doesn't change the state of the instance. For extensibility computed statistics are stored in a dictionary. Returns ------- nobs : int Number of samples in the data. start : array, shape (n_components, ) An array where the i-th element corresponds to the posterior probability of the first sample being generated by the i-th state. trans : array, shape (n_components, n_components) An array where the (i, j)-th element corresponds to the posterior probability of transitioning between the i-th to j-th states. """ stats = {'nobs': 0, 'start': np.zeros(self.n_components), 'trans': np.zeros((self.n_components, self.n_components))} return stats def _accumulate_sufficient_statistics(self, stats, X, framelogprob, posteriors, fwdlattice, bwdlattice): """Updates sufficient statistics from a given sample. Parameters ---------- stats : dict Sufficient statistics as returned by :meth:`~base._BaseHMM._initialize_sufficient_statistics`. X : array, shape (n_samples, n_features) Sample sequence. framelogprob : array, shape (n_samples, n_components) Log-probabilities of each sample under each of the model states. posteriors : array, shape (n_samples, n_components) Posterior probabilities of each sample being generated by each of the model states. fwdlattice, bwdlattice : array, shape (n_samples, n_components) Log-forward and log-backward probabilities. """ stats['nobs'] += 1 if 's' in self.params: stats['start'] += posteriors[0] if 't' in self.params: n_samples, n_components = framelogprob.shape # when the sample is of length 1, it contains no transitions # so there is no reason to update our trans. matrix estimate if n_samples <= 1: return lneta = np.zeros((n_samples - 1, n_components, n_components)) _hmmc._compute_lneta(n_samples, n_components, fwdlattice, log_mask_zero(self.transmat_), bwdlattice, framelogprob, lneta) stats['trans'] += np.exp(logsumexp(lneta, axis=0)) def _do_mstep(self, stats): """Performs the M-step of EM algorithm. Parameters ---------- stats : dict Sufficient statistics updated from all available samples. """ # The ``np.where`` calls guard against updating forbidden states # or transitions in e.g. a left-right HMM. if 's' in self.params: startprob_ = self.startprob_prior - 1.0 + stats['start'] self.startprob_ = np.where(self.startprob_ == 0.0, self.startprob_, startprob_) normalize(self.startprob_) if 't' in self.params: transmat_ = self.transmat_prior - 1.0 + stats['trans'] self.transmat_ = np.where(self.transmat_ == 0.0, self.transmat_, transmat_) normalize(self.transmat_, axis=1)
bsd-3-clause
kyleam/seaborn
seaborn/miscplot.py
34
1498
from __future__ import division import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt def palplot(pal, size=1): """Plot the values in a color palette as a horizontal array. Parameters ---------- pal : sequence of matplotlib colors colors, i.e. as returned by seaborn.color_palette() size : scaling factor for size of plot """ n = len(pal) f, ax = plt.subplots(1, 1, figsize=(n * size, size)) ax.imshow(np.arange(n).reshape(1, n), cmap=mpl.colors.ListedColormap(list(pal)), interpolation="nearest", aspect="auto") ax.set_xticks(np.arange(n) - .5) ax.set_yticks([-.5, .5]) ax.set_xticklabels([]) ax.set_yticklabels([]) def puppyplot(grown_up=False): """Plot today's daily puppy. Only works in the IPython notebook.""" from .external.six.moves.urllib.request import urlopen from IPython.display import HTML try: from bs4 import BeautifulSoup url = "http://www.dailypuppy.com" if grown_up: url += "/dogs" html_doc = urlopen(url) soup = BeautifulSoup(html_doc) puppy = soup.find("div", {"class": "daily_puppy"}) return HTML(str(puppy.img)) except ImportError: html = ('<img src="http://cdn-www.dailypuppy.com/dog-images/' 'decker-the-nova-scotia-duck-tolling-retriever_' '72926_2013-11-04_w450.jpg" style="width:450px;"/>') return HTML(html)
bsd-3-clause
jas02/easybuild-easyblocks
easybuild/easyblocks/x/xmipp.py
10
8904
## # Copyright 2015-2015 Ghent University # # This file is part of EasyBuild, # originally created by the HPC team of Ghent University (http://ugent.be/hpc/en), # with support of Ghent University (http://ugent.be/hpc), # the Flemish Supercomputer Centre (VSC) (https://vscentrum.be/nl/en), # the Hercules foundation (http://www.herculesstichting.be/in_English) # and the Department of Economy, Science and Innovation (EWI) (http://www.ewi-vlaanderen.be/en). # # http://github.com/hpcugent/easybuild # # EasyBuild is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation v2. # # EasyBuild is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with EasyBuild. If not, see <http://www.gnu.org/licenses/>. ## """ EasyBuild support for building and installing Xmipp, implemented as an easyblock @author: Jens Timmerman (Ghent University) @author: Pablo Escobar (sciCORE, SIB, University of Basel) @author: Kenneth Hoste (Ghent University) """ import fileinput import os import re import stat import sys import easybuild.tools.environment as env import easybuild.tools.toolchain as toolchain from easybuild.easyblocks.generic.pythonpackage import det_pylibdir from easybuild.framework.easyblock import EasyBlock from easybuild.framework.easyconfig import CUSTOM from easybuild.tools.build_log import EasyBuildError from easybuild.tools.filetools import adjust_permissions, mkdir, write_file from easybuild.tools.modules import get_software_root, get_software_version from easybuild.tools.run import run_cmd class EB_Xmipp(EasyBlock): """ easyblock to install Xmipp """ def __init__(self, *args, **kwargs): """Easyblock constructor, enable building in installation directory.""" super(EB_Xmipp, self).__init__(*args, **kwargs) self.build_in_installdir = True self.xmipp_pythonpaths = [] def extract_step(self): """Extract Xmipp sources.""" # strip off 'xmipp' part to avoid having everything in a 'xmipp' subdirectory self.cfg.update('unpack_options', '--strip-components=1') super(EB_Xmipp, self).extract_step() def configure_step(self): """Set configure options.""" if self.toolchain.mpi_family() == toolchain.INTELMPI: mpi_bindir = os.path.join(get_software_root('impi'), 'intel64', 'bin') else: mpi_bindir = os.path.join(get_software_root(self.toolchain.MPI_MODULE_NAME[0]), 'bin') root_java = get_software_root("Java") if not get_software_root("Java"): raise EasyBuildError("Module for dependency Java not loaded.") configure_args = ' '.join([ 'profile=no fast=yes warn=no release=yes gtest=yes static=no cuda=no debug=no matlab=no', 'LINKERFORPROGRAMS=%s' % os.getenv('CXX'), 'MPI_BINDIR=%s' % mpi_bindir, 'MPI_LIB=mpi', 'JAVA_HOME=%s' % os.getenv('JAVA_HOME'), 'JAVAC=javac', 'CC=%s' % os.getenv('CC'), # pass $CXXFLAGS in Python list syntax and avoid spaces, e.g.: ['-O2','-march=native'] 'CXXFLAGS=%s' % str(os.getenv('CXXFLAGS').split(' ')).replace(' ', ''), 'CXX=%s' % os.getenv('CXX'), 'MPI_CC=%s' % os.getenv('MPICC'), # pass $CFLAGS in Python list syntax and avoid spaces, e.g.: ['-O2','-march=native'] 'CCFLAGS=%s' % str(os.getenv('CFLAGS').split(' ')).replace(' ', ''), 'MPI_CXX=%s' % os.getenv('MPICXX'), 'MPI_INCLUDE=%s' % os.getenv('MPI_INC_DIR'), 'MPI_LIBDIR=%s' % os.getenv('MPI_LIB_DIR'), 'MPI_LINKERFORPROGRAMS=%s' % os.getenv('MPICXX'), 'LIBPATH=%s' % os.getenv('LD_LIBRARY_PATH'), ]) # define list of configure options, which will be passed to Xmipp's install.sh script via --configure-args self.cfg['configopts'] = configure_args self.log.info("Configure arguments for Xmipp install.sh script: %s", self.cfg['configopts']) def build_step(self): """No custom build step (see install step).""" pass def install_step(self): """Build/install Xmipp using provided install.sh script.""" pylibdir = det_pylibdir() self.xmipp_pythonpaths = [ # location where Python packages will be installed by Xmipp installer pylibdir, 'protocols', os.path.join('libraries', 'bindings', 'python'), ] python_root = get_software_root('Python') if python_root: # extend $PYTHONPATH all_pythonpaths = [os.path.join(self.installdir, p) for p in self.xmipp_pythonpaths] # required so packages installed as extensions in Pythpn dep are picked up all_pythonpaths.append(os.path.join(python_root, pylibdir)) all_pythonpaths.append(os.environ.get('PYTHONPATH', '')) env.setvar('PYTHONPATH', os.pathsep.join(all_pythonpaths)) # location where Python packages will be installed by Xmipp installer must exist already (setuptools) mkdir(os.path.join(self.installdir, pylibdir), parents=True) # put dummy xmipp_python script in place if Python is used as a dependency bindir = os.path.join(self.installdir, 'bin') mkdir(bindir) xmipp_python = os.path.join(bindir, 'xmipp_python') xmipp_python_script_body = '\n'.join([ '#!/bin/sh', '%s/bin/python "$@"' % python_root, ]) write_file(xmipp_python, xmipp_python_script_body) adjust_permissions(xmipp_python, stat.S_IXUSR|stat.S_IXGRP|stat.S_IXOTH) pyshortver = '.'.join(get_software_version('Python').split('.')[:2]) # make sure Python.h and numpy header are found env.setvar('CPATH', os.pathsep.join([ os.path.join(python_root, 'include', 'python%s' % pyshortver), os.path.join(python_root, pylibdir, 'numpy', 'core', 'include'), os.environ.get('CPATH', ''), ])) cmd_opts = [] # disable (re)building of supplied dependencies dep_names = [dep['name'] for dep in self.cfg['dependencies']] for dep in ['FFTW', 'HDF5', ('libjpeg-turbo', 'jpeg'), ('LibTIFF', 'tiff'), 'matplotlib', 'Python', 'SQLite', 'Tcl', 'Tk']: if isinstance(dep, tuple): dep, opt = dep else: opt = dep.lower() # don't check via get_software_root, check listed dependencies directly (relevant for FFTW) if dep in dep_names: cmd_opts.append('--%s=false' % opt) # Python should also provide numpy/mpi4py if dep == 'Python': cmd_opts.extend(['--numpy=false', '--mpi4py=false']) if '--tcl=false' in cmd_opts and '--tk=false' in cmd_opts: cmd_opts.append('--tcl-tk=false') # patch install.sh script to inject configure options # setting $CONFIGURE_ARGS or using --configure-args doesn't work... for line in fileinput.input('install.sh', inplace=1, backup='.orig.eb'): line = re.sub(r"^CONFIGURE_ARGS.*$", 'CONFIGURE_ARGS="%s"' % self.cfg['configopts'], line) sys.stdout.write(line) cmd = './install.sh -j %s --unattended=true %s' % (self.cfg['parallel'], ' '.join(cmd_opts)) out, _ = run_cmd(cmd, log_all=True, simple=False) if not re.search("Xmipp has been successfully compiled", out): raise EasyBuildError("Xmipp installation did not complete successfully?") def sanity_check_step(self): """Custom sanity check for Xmipp.""" custom_paths = { # incomplete list, random picks, cfr. http://xmipp.cnb.csic.es/twiki/bin/view/Xmipp/ListOfProgramsv3 'files': ['bin/xmipp_%s' % x for x in ['compile', 'imagej', 'mpi_run', 'phantom_create', 'transform_filter', 'tomo_project', 'volume_align']], 'dirs': ['lib'], } super(EB_Xmipp, self).sanity_check_step(custom_paths=custom_paths) def make_module_extra(self): """Define Xmipp specific variables in generated module file, i.e. XMIPP_HOME.""" txt = super(EB_Xmipp, self).make_module_extra() txt += self.module_generator.set_environment('XMIPP_HOME', self.installdir) txt += self.module_generator.prepend_paths('PYTHONPATH', self.xmipp_pythonpaths) return txt
gpl-2.0
CDSFinance/zipline
zipline/utils/cli.py
10
8343
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os import argparse from copy import copy from six import print_ from six.moves import configparser import pandas as pd try: from pygments import highlight from pygments.lexers import PythonLexer from pygments.formatters import TerminalFormatter PYGMENTS = True except: PYGMENTS = False import zipline from zipline.errors import NoSourceError, PipelineDateError DEFAULTS = { 'data_frequency': 'daily', 'capital_base': '10e6', 'source': 'yahoo', 'symbols': 'AAPL', 'metadata_index': 'symbol', 'source_time_column': 'Date', } def parse_args(argv, ipython_mode=False): """Parse list of arguments. If a config file is provided (via -c), it will read in the supplied options and overwrite any global defaults. All other directly supplied arguments will overwrite the config file settings. Arguments: * argv : list of strings List of arguments, e.g. ['-c', 'my.conf'] * ipython_mode : bool <default=True> Whether to parse IPython specific arguments like --local_namespace Notes: Default settings can be found in zipline.utils.cli.DEFAULTS. """ # Parse any conf_file specification # We make this parser with add_help=False so that # it doesn't parse -h and print help. conf_parser = argparse.ArgumentParser( # Don't mess with format of description formatter_class=argparse.RawDescriptionHelpFormatter, # Turn off help, so we print all options in response to -h add_help=False ) conf_parser.add_argument("-c", "--conf_file", help="Specify config file", metavar="FILE") args, remaining_argv = conf_parser.parse_known_args(argv) defaults = copy(DEFAULTS) if args.conf_file: config = configparser.SafeConfigParser() config.read([args.conf_file]) defaults.update(dict(config.items("Defaults"))) # Parse rest of arguments # Don't suppress add_help here so it will handle -h parser = argparse.ArgumentParser( # Inherit options from config_parser description="Zipline version %s." % zipline.__version__, parents=[conf_parser] ) parser.set_defaults(**defaults) parser.add_argument('--algofile', '-f') parser.add_argument('--data-frequency', choices=('minute', 'daily')) parser.add_argument('--start', '-s') parser.add_argument('--end', '-e') parser.add_argument('--capital_base') parser.add_argument('--source', '-d', choices=('yahoo',)) parser.add_argument('--source_time_column', '-t') parser.add_argument('--symbols') parser.add_argument('--output', '-o') parser.add_argument('--metadata_path', '-m') parser.add_argument('--metadata_index', '-x') parser.add_argument('--print-algo', '-p', dest='print_algo', action='store_true') parser.add_argument('--no-print-algo', '-q', dest='print_algo', action='store_false') if ipython_mode: parser.add_argument('--local_namespace', action='store_true') args = parser.parse_args(remaining_argv) return(vars(args)) def parse_cell_magic(line, cell): """Parse IPython magic """ args_list = line.split(' ') args = parse_args(args_list, ipython_mode=True) # Remove print_algo kwarg to overwrite below. args.pop('print_algo') local_namespace = args.pop('local_namespace', False) # By default, execute inside IPython namespace if not local_namespace: args['namespace'] = get_ipython().user_ns # flake8: noqa # If we are running inside NB, do not output to file but create a # variable instead output_var_name = args.pop('output', None) perf = run_pipeline(print_algo=False, algo_text=cell, **args) if output_var_name is not None: get_ipython().user_ns[output_var_name] = perf # flake8: noqa def run_pipeline(print_algo=True, **kwargs): """Runs a full zipline pipeline given configuration keyword arguments. 1. Load data (start and end dates can be provided a strings as well as the source and symobls). 2. Instantiate algorithm (supply either algo_text or algofile kwargs containing initialize() and handle_data() functions). If algofile is supplied, will try to look for algofile_analyze.py and append it. 3. Run algorithm (supply capital_base as float). 4. Return performance dataframe. :Arguments: * print_algo : bool <default=True> Whether to print the algorithm to command line. Will use pygments syntax coloring if pygments is found. """ start = kwargs['start'] end = kwargs['end'] # Compare against None because strings/timestamps may have been given if start is not None: start = pd.Timestamp(start, tz='UTC') if end is not None: end = pd.Timestamp(end, tz='UTC') # Fail out if only one bound is provided if ((start is None) or (end is None)) and (start != end): raise PipelineDateError(start=start, end=end) # Check if start and end are provided, and if the sim_params need to read # a start and end from the DataSource if start is None: overwrite_sim_params = True else: overwrite_sim_params = False symbols = kwargs['symbols'].split(',') asset_identifier = kwargs['metadata_index'] # Pull asset metadata asset_metadata = kwargs.get('asset_metadata', None) asset_metadata_path = kwargs['metadata_path'] # Read in a CSV file, if applicable if asset_metadata_path is not None: if os.path.isfile(asset_metadata_path): asset_metadata = pd.read_csv(asset_metadata_path, index_col=asset_identifier) source_arg = kwargs['source'] source_time_column = kwargs['source_time_column'] if source_arg is None: raise NoSourceError() elif source_arg == 'yahoo': source = zipline.data.load_bars_from_yahoo( stocks=symbols, start=start, end=end) elif os.path.isfile(source_arg): source = zipline.data.load_prices_from_csv( filepath=source_arg, identifier_col=source_time_column ) elif os.path.isdir(source_arg): source = zipline.data.load_prices_from_csv_folder( folderpath=source_arg, identifier_col=source_time_column ) else: raise NotImplementedError( 'Source %s not implemented.' % kwargs['source']) algo_text = kwargs.get('algo_text', None) if algo_text is None: # Expect algofile to be set algo_fname = kwargs['algofile'] with open(algo_fname, 'r') as fd: algo_text = fd.read() if print_algo: if PYGMENTS: highlight(algo_text, PythonLexer(), TerminalFormatter(), outfile=sys.stdout) else: print_(algo_text) algo = zipline.TradingAlgorithm(script=algo_text, namespace=kwargs.get('namespace', {}), capital_base=float(kwargs['capital_base']), algo_filename=kwargs.get('algofile'), equities_metadata=asset_metadata, identifiers=symbols, start=start, end=end) perf = algo.run(source, overwrite_sim_params=overwrite_sim_params) output_fname = kwargs.get('output', None) if output_fname is not None: perf.to_pickle(output_fname) return perf
apache-2.0
liyu1990/sklearn
sklearn/svm/classes.py
7
40216
import warnings import numpy as np from .base import _fit_liblinear, BaseSVC, BaseLibSVM from ..base import BaseEstimator, RegressorMixin from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \ LinearModel from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_X_y from ..utils.validation import _num_samples from ..utils.multiclass import check_classification_targets class LinearSVC(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Linear Support Vector Classification. Similar to SVC with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input and the multiclass support is handled according to a one-vs-the-rest scheme. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. loss : string, 'hinge' or 'squared_hinge' (default='squared_hinge') Specifies the loss function. 'hinge' is the standard SVM loss (used e.g. by the SVC class) while 'squared_hinge' is the square of the hinge loss. penalty : string, 'l1' or 'l2' (default='l2') Specifies the norm used in the penalization. The 'l2' penalty is the standard used in SVC. The 'l1' leads to `coef_` vectors that are sparse. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. multi_class: string, 'ovr' or 'crammer_singer' (default='ovr') Determines the multi-class strategy if `y` contains more than two classes. `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` optimizes a joint objective over all classes. While `crammer_singer` is interesting from a theoretical perspective as it is consistent, it is seldom used in practice as it rarely leads to better accuracy and is more expensive to compute. If `crammer_singer` is chosen, the options loss, penalty and dual will be ignored. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon to have slightly different results for the same input data. If that happens, try with a smaller ``tol`` parameter. The underlying implementation (liblinear) uses a sparse internal representation for the data that will incur a memory copy. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. **References:** `LIBLINEAR: A Library for Large Linear Classification <http://www.csie.ntu.edu.tw/~cjlin/liblinear/>`__ See also -------- SVC Implementation of Support Vector Machine classifier using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. Furthermore SVC multi-class mode is implemented using one vs one scheme while LinearSVC uses one vs the rest. It is possible to implement one vs the rest with SVC by using the :class:`sklearn.multiclass.OneVsRestClassifier` wrapper. Finally SVC can fit dense data without memory copy if the input is C-contiguous. Sparse data will still incur memory copy though. sklearn.linear_model.SGDClassifier SGDClassifier can optimize the same cost function as LinearSVC by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, penalty='l2', loss='squared_hinge', dual=True, tol=1e-4, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000): self.dual = dual self.tol = tol self.C = C self.multi_class = multi_class self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.penalty = penalty self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'hinge', 'l2': 'squared_hinge'}.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") check_classification_targets(y) self.classes_ = np.unique(y) self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, self.multi_class, self.loss) if self.multi_class == "crammer_singer" and len(self.classes_) == 2: self.coef_ = (self.coef_[1] - self.coef_[0]).reshape(1, -1) if self.fit_intercept: intercept = self.intercept_[1] - self.intercept_[0] self.intercept_ = np.array([intercept]) return self class LinearSVR(LinearModel, RegressorMixin): """Linear Support Vector Regression. Similar to SVR with parameter kernel='linear', but implemented in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss functions and should scale better to large numbers of samples. This class supports both dense and sparse input. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. The penalty is a squared l2 penalty. The bigger this parameter, the less regularization is used. loss : string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive') Specifies the loss function. 'l1' is the epsilon-insensitive loss (standard SVR) while 'l2' is the squared epsilon-insensitive loss. epsilon : float, optional (default=0.1) Epsilon parameter in the epsilon-insensitive loss function. Note that the value of this parameter depends on the scale of the target variable y. If unsure, set epsilon=0. dual : bool, (default=True) Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when n_samples > n_features. tol : float, optional (default=1e-4) Tolerance for stopping criteria. fit_intercept : boolean, optional (default=True) Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be already centered). intercept_scaling : float, optional (default=1) When self.fit_intercept is True, instance vector x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. verbose : int, (default=0) Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in liblinear that, if enabled, may not work properly in a multithreaded context. random_state : int seed, RandomState instance, or None (default=None) The seed of the pseudo random number generator to use when shuffling the data. max_iter : int, (default=1000) The maximum number of iterations to be run. Attributes ---------- coef_ : array, shape = [n_features] if n_classes == 2 else [n_classes, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape = [1] if n_classes == 2 else [n_classes] Constants in decision function. See also -------- LinearSVC Implementation of Support Vector Machine classifier using the same library as this class (liblinear). SVR Implementation of Support Vector Machine regression using libsvm: the kernel can be non-linear but its SMO algorithm does not scale to large number of samples as LinearSVC does. sklearn.linear_model.SGDRegressor SGDRegressor can optimize the same cost function as LinearSVR by adjusting the penalty and loss parameters. In addition it requires less memory, allows incremental (online) learning, and implements various loss functions and regularization regimes. """ def __init__(self, epsilon=0.0, tol=1e-4, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1., dual=True, verbose=0, random_state=None, max_iter=1000): self.tol = tol self.C = C self.epsilon = epsilon self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.verbose = verbose self.random_state = random_state self.max_iter = max_iter self.dual = dual self.loss = loss def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target vector relative to X Returns ------- self : object Returns self. """ # FIXME Remove l1/l2 support in 1.0 ----------------------------------- loss_l = self.loss.lower() msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the loss='%s' will be removed in %s") # FIXME change loss_l --> self.loss after 0.18 if loss_l in ('l1', 'l2'): old_loss = self.loss self.loss = {'l1': 'epsilon_insensitive', 'l2': 'squared_epsilon_insensitive' }.get(loss_l) warnings.warn(msg % (old_loss, self.loss, old_loss, '1.0'), DeprecationWarning) # --------------------------------------------------------------------- if self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") penalty = 'l2' # SVR only accepts l2 penalty self.coef_, self.intercept_, self.n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, None, penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, loss=self.loss, epsilon=self.epsilon) self.coef_ = self.coef_.ravel() return self class SVC(BaseSVC): """C-Support Vector Classification. The implementation is based on libsvm. The fit time complexity is more than quadratic with the number of samples which makes it hard to scale to dataset with more than a couple of 10000 samples. The multiclass support is handled according to a one-vs-one scheme. For details on the precise mathematical formulation of the provided kernel functions and how `gamma`, `coef0` and `degree` affect each other, see the corresponding section in the narrative documentation: :ref:`svm_kernels`. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape ``(n_samples, n_samples)``. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'balanced'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is a readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import SVC >>> clf = SVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVR Support Vector Machine for Regression implemented using libsvm. LinearSVC Scalable Linear Support Vector Machine for classification implemented using liblinear. Check the See also section of LinearSVC for more comparison element. """ def __init__(self, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(SVC, self).__init__( impl='c_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class NuSVC(BaseSVC): """Nu-Support Vector Classification. Similar to SVC but uses a parameter to control the number of support vectors. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_classification>`. Parameters ---------- nu : float, optional (default=0.5) An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. probability : boolean, optional (default=False) Whether to enable probability estimates. This must be enabled prior to calling `fit`, and will slow down that method. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). class_weight : {dict, 'auto'}, optional Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight one. The 'auto' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies. verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. decision_function_shape : 'ovo', 'ovr' or None, default=None Whether to return a one-vs-rest ('ovr') decision function of shape (n_samples, n_classes) as all other classifiers, or the original one-vs-one ('ovo') decision function of libsvm which has shape (n_samples, n_classes * (n_classes - 1) / 2). The default of None will currently behave as 'ovo' for backward compatibility and raise a deprecation warning, but will change 'ovr' in 0.18. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [n_SV, n_features] Support vectors. n_support_ : array-like, dtype=int32, shape = [n_class] Number of support vectors for each class. dual_coef_ : array, shape = [n_class-1, n_SV] Coefficients of the support vector in the decision function. For multiclass, coefficient for all 1-vs-1 classifiers. The layout of the coefficients in the multiclass case is somewhat non-trivial. See the section about multi-class classification in the SVM section of the User Guide for details. coef_ : array, shape = [n_class-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [n_class * (n_class-1) / 2] Constants in decision function. Examples -------- >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> y = np.array([1, 1, 2, 2]) >>> from sklearn.svm import NuSVC >>> clf = NuSVC() >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVC(cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.5, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- SVC Support Vector Machine for classification using libsvm. LinearSVC Scalable linear Support Vector Machine for classification using liblinear. """ def __init__(self, nu=0.5, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, probability=False, tol=1e-3, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=None, random_state=None): super(NuSVC, self).__init__( impl='nu_svc', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=0., nu=nu, shrinking=shrinking, probability=probability, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, random_state=random_state) class SVR(BaseLibSVM, RegressorMixin): """Epsilon-Support Vector Regression. The free parameters in the model are C and epsilon. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. epsilon : float, optional (default=0.1) Epsilon in the epsilon-SVR model. It specifies the epsilon-tube within which no penalty is associated in the training loss function with points predicted within a distance epsilon from the actual value. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import SVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = SVR(C=1.0, epsilon=0.2) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.2, gamma='auto', kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVR Support Vector Machine for regression implemented using libsvm using a parameter to control the number of support vectors. LinearSVR Scalable Linear Support Vector Machine for regression implemented using liblinear. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1): super(SVR, self).__init__( 'epsilon_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=0., epsilon=epsilon, verbose=verbose, shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, max_iter=max_iter, random_state=None) class NuSVR(BaseLibSVM, RegressorMixin): """Nu Support Vector Regression. Similar to NuSVC, for regression, uses a parameter nu to control the number of support vectors. However, unlike NuSVC, where nu replaces C, here nu replaces the parameter epsilon of epsilon-SVR. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_regression>`. Parameters ---------- C : float, optional (default=1.0) Penalty parameter C of the error term. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. shrinking : boolean, optional (default=True) Whether to use the shrinking heuristic. tol : float, optional (default=1e-3) Tolerance for stopping criterion. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [1, n_SV] Coefficients of the support vector in the decision function. coef_ : array, shape = [1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_`. intercept_ : array, shape = [1] Constants in decision function. Examples -------- >>> from sklearn.svm import NuSVR >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = NuSVR(C=1.0, nu=0.1) >>> clf.fit(X, y) #doctest: +NORMALIZE_WHITESPACE NuSVR(C=1.0, cache_size=200, coef0=0.0, degree=3, gamma='auto', kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001, verbose=False) See also -------- NuSVC Support Vector Machine for classification implemented with libsvm with a parameter to control the number of support vectors. SVR epsilon Support Vector Machine for regression implemented with libsvm. """ def __init__(self, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='auto', coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, verbose=False, max_iter=-1): super(NuSVR, self).__init__( 'nu_svr', kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking, probability=False, cache_size=cache_size, class_weight=None, verbose=verbose, max_iter=max_iter, random_state=None) class OneClassSVM(BaseLibSVM): """Unsupervised Outlier Detection. Estimate the support of a high-dimensional distribution. The implementation is based on libsvm. Read more in the :ref:`User Guide <svm_outlier_detection>`. Parameters ---------- kernel : string, optional (default='rbf') Specifies the kernel type to be used in the algorithm. It must be one of 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' or a callable. If none is given, 'rbf' will be used. If a callable is given it is used to precompute the kernel matrix. nu : float, optional An upper bound on the fraction of training errors and a lower bound of the fraction of support vectors. Should be in the interval (0, 1]. By default 0.5 will be taken. degree : int, optional (default=3) Degree of the polynomial kernel function ('poly'). Ignored by all other kernels. gamma : float, optional (default='auto') Kernel coefficient for 'rbf', 'poly' and 'sigmoid'. If gamma is 'auto' then 1/n_features will be used instead. coef0 : float, optional (default=0.0) Independent term in kernel function. It is only significant in 'poly' and 'sigmoid'. tol : float, optional Tolerance for stopping criterion. shrinking : boolean, optional Whether to use the shrinking heuristic. cache_size : float, optional Specify the size of the kernel cache (in MB). verbose : bool, default: False Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that, if enabled, may not work properly in a multithreaded context. max_iter : int, optional (default=-1) Hard limit on iterations within solver, or -1 for no limit. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data for probability estimation. Attributes ---------- support_ : array-like, shape = [n_SV] Indices of support vectors. support_vectors_ : array-like, shape = [nSV, n_features] Support vectors. dual_coef_ : array, shape = [n_classes-1, n_SV] Coefficients of the support vectors in the decision function. coef_ : array, shape = [n_classes-1, n_features] Weights assigned to the features (coefficients in the primal problem). This is only available in the case of a linear kernel. `coef_` is readonly property derived from `dual_coef_` and `support_vectors_` intercept_ : array, shape = [n_classes-1] Constants in decision function. """ def __init__(self, kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=1e-3, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1, random_state=None): super(OneClassSVM, self).__init__( 'one_class', kernel, degree, gamma, coef0, tol, 0., nu, 0., shrinking, False, cache_size, None, verbose, max_iter, random_state) def fit(self, X, y=None, sample_weight=None, **params): """ Detects the soft boundary of the set of samples X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Set of samples, where n_samples is the number of samples and n_features is the number of features. sample_weight : array-like, shape (n_samples,) Per-sample weights. Rescale C per sample. Higher weights force the classifier to put more emphasis on these points. Returns ------- self : object Returns self. Notes ----- If X is not a C-ordered contiguous array it is copied. """ super(OneClassSVM, self).fit(X, np.ones(_num_samples(X)), sample_weight=sample_weight, **params) return self def decision_function(self, X): """Distance of the samples X to the separating hyperplane. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- X : array-like, shape (n_samples,) Returns the decision function of the samples. """ dec = self._decision_function(X) return dec
bsd-3-clause
alexeyum/scikit-learn
sklearn/neighbors/tests/test_neighbors.py
3
46375
from itertools import product import numpy as np from scipy.sparse import (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) from sklearn import metrics from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater from sklearn.utils.validation import check_random_state from sklearn.metrics.pairwise import pairwise_distances from sklearn import neighbors, datasets from sklearn.exceptions import DataConversionWarning rng = np.random.RandomState(0) # load and shuffle iris dataset iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # load and shuffle digits digits = datasets.load_digits() perm = rng.permutation(digits.target.size) digits.data = digits.data[perm] digits.target = digits.target[perm] SPARSE_TYPES = (bsr_matrix, coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix) SPARSE_OR_DENSE = SPARSE_TYPES + (np.asarray,) ALGORITHMS = ('ball_tree', 'brute', 'kd_tree', 'auto') P = (1, 2, 3, 4, np.inf) # Filter deprecation warnings. neighbors.kneighbors_graph = ignore_warnings(neighbors.kneighbors_graph) neighbors.radius_neighbors_graph = ignore_warnings( neighbors.radius_neighbors_graph) def _weight_func(dist): """ Weight function to replace lambda d: d ** -2. The lambda function is not valid because: if d==0 then 0^-2 is not valid. """ # Dist could be multidimensional, flatten it so all values # can be looped with np.errstate(divide='ignore'): retval = 1. / dist return retval ** 2 def test_unsupervised_kneighbors(n_samples=20, n_features=5, n_query_pts=2, n_neighbors=5): # Test unsupervised neighbors methods X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results_nodist = [] results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, p=p) neigh.fit(X) results_nodist.append(neigh.kneighbors(test, return_distance=False)) results.append(neigh.kneighbors(test, return_distance=True)) for i in range(len(results) - 1): assert_array_almost_equal(results_nodist[i], results[i][1]) assert_array_almost_equal(results[i][0], results[i + 1][0]) assert_array_almost_equal(results[i][1], results[i + 1][1]) def test_unsupervised_inputs(): # test the types of valid input into NearestNeighbors X = rng.random_sample((10, 3)) nbrs_fid = neighbors.NearestNeighbors(n_neighbors=1) nbrs_fid.fit(X) dist1, ind1 = nbrs_fid.kneighbors(X) nbrs = neighbors.NearestNeighbors(n_neighbors=1) for input in (nbrs_fid, neighbors.BallTree(X), neighbors.KDTree(X)): nbrs.fit(input) dist2, ind2 = nbrs.kneighbors(X) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2) def test_precomputed(random_state=42): """Tests unsupervised NearestNeighbors with a distance matrix.""" # Note: smaller samples may result in spurious test success rng = np.random.RandomState(random_state) X = rng.random_sample((10, 4)) Y = rng.random_sample((3, 4)) DXX = metrics.pairwise_distances(X, metric='euclidean') DYX = metrics.pairwise_distances(Y, X, metric='euclidean') for method in ['kneighbors']: # TODO: also test radius_neighbors, but requires different assertion # As a feature matrix (n_samples by n_features) nbrs_X = neighbors.NearestNeighbors(n_neighbors=3) nbrs_X.fit(X) dist_X, ind_X = getattr(nbrs_X, method)(Y) # As a dense distance matrix (n_samples by n_samples) nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='brute', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check auto works too nbrs_D = neighbors.NearestNeighbors(n_neighbors=3, algorithm='auto', metric='precomputed') nbrs_D.fit(DXX) dist_D, ind_D = getattr(nbrs_D, method)(DYX) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Check X=None in prediction dist_X, ind_X = getattr(nbrs_X, method)(None) dist_D, ind_D = getattr(nbrs_D, method)(None) assert_array_almost_equal(dist_X, dist_D) assert_array_almost_equal(ind_X, ind_D) # Must raise a ValueError if the matrix is not of correct shape assert_raises(ValueError, getattr(nbrs_D, method), X) target = np.arange(X.shape[0]) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): print(Est) est = Est(metric='euclidean') est.radius = est.n_neighbors = 1 pred_X = est.fit(X, target).predict(Y) est.metric = 'precomputed' pred_D = est.fit(DXX, target).predict(DYX) assert_array_almost_equal(pred_X, pred_D) def test_precomputed_cross_validation(): # Ensure array is split correctly rng = np.random.RandomState(0) X = rng.rand(20, 2) D = pairwise_distances(X, metric='euclidean') y = rng.randint(3, size=20) for Est in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): metric_score = cross_val_score(Est(), X, y) precomp_score = cross_val_score(Est(metric='precomputed'), D, y) assert_array_equal(metric_score, precomp_score) def test_unsupervised_radius_neighbors(n_samples=20, n_features=5, n_query_pts=2, radius=0.5, random_state=0): # Test unsupervised radius-based query rng = np.random.RandomState(random_state) X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for p in P: results = [] for algorithm in ALGORITHMS: neigh = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm, p=p) neigh.fit(X) ind1 = neigh.radius_neighbors(test, return_distance=False) # sort the results: this is not done automatically for # radius searches dist, ind = neigh.radius_neighbors(test, return_distance=True) for (d, i, i1) in zip(dist, ind, ind1): j = d.argsort() d[:] = d[j] i[:] = i[j] i1[:] = i1[j] results.append((dist, ind)) assert_array_almost_equal(np.concatenate(list(ind)), np.concatenate(list(ind1))) for i in range(len(results) - 1): assert_array_almost_equal(np.concatenate(list(results[i][0])), np.concatenate(list(results[i + 1][0]))), assert_array_almost_equal(np.concatenate(list(results[i][1])), np.concatenate(list(results[i + 1][1]))) def test_kneighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) # Test prediction with y_str knn.fit(X, y_str) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_kneighbors_classifier_float_labels(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-neighbors classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors) knn.fit(X, y.astype(np.float)) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) def test_kneighbors_classifier_predict_proba(): # Test KNeighborsClassifier.predict_proba() method X = np.array([[0, 2, 0], [0, 2, 1], [2, 0, 0], [2, 2, 0], [0, 0, 2], [0, 0, 1]]) y = np.array([4, 4, 5, 5, 1, 1]) cls = neighbors.KNeighborsClassifier(n_neighbors=3, p=1) # cityblock dist cls.fit(X, y) y_prob = cls.predict_proba(X) real_prob = np.array([[0, 2. / 3, 1. / 3], [1. / 3, 2. / 3, 0], [1. / 3, 0, 2. / 3], [0, 1. / 3, 2. / 3], [2. / 3, 1. / 3, 0], [2. / 3, 1. / 3, 0]]) assert_array_equal(real_prob, y_prob) # Check that it also works with non integer labels cls.fit(X, y.astype(str)) y_prob = cls.predict_proba(X) assert_array_equal(real_prob, y_prob) # Check that it works with weights='distance' cls = neighbors.KNeighborsClassifier( n_neighbors=2, p=1, weights='distance') cls.fit(X, y) y_prob = cls.predict_proba(np.array([[0, 2, 0], [2, 2, 2]])) real_prob = np.array([[0, 1, 0], [0, 0.4, 0.6]]) assert_array_almost_equal(real_prob, y_prob) def test_radius_neighbors_classifier(n_samples=40, n_features=5, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based classification rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) y_str = y.astype(str) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y[:n_test_pts]) neigh.fit(X, y_str) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_array_equal(y_pred, y_str[:n_test_pts]) def test_radius_neighbors_classifier_when_no_neighbors(): # Test radius-based classifier when no neighbors found. # In this case it should rise an informative exception X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier weight_func = _weight_func for outlier_label in [0, -1, None]: for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: rnc = neighbors.RadiusNeighborsClassifier clf = rnc(radius=radius, weights=weights, algorithm=algorithm, outlier_label=outlier_label) clf.fit(X, y) assert_array_equal(np.array([1, 2]), clf.predict(z1)) if outlier_label is None: assert_raises(ValueError, clf.predict, z2) elif False: assert_array_equal(np.array([1, outlier_label]), clf.predict(z2)) def test_radius_neighbors_classifier_outlier_labeling(): # Test radius-based classifier when no neighbors found and outliers # are labeled. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.01, 2.01]]) # no outliers z2 = np.array([[1.01, 1.01], [1.4, 1.4]]) # one outlier correct_labels1 = np.array([1, 2]) correct_labels2 = np.array([1, -1]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm, outlier_label=-1) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) assert_array_equal(correct_labels2, clf.predict(z2)) def test_radius_neighbors_classifier_zero_distance(): # Test radius-based classifier, when distance to a sample is zero. X = np.array([[1.0, 1.0], [2.0, 2.0]]) y = np.array([1, 2]) radius = 0.1 z1 = np.array([[1.01, 1.01], [2.0, 2.0]]) correct_labels1 = np.array([1, 2]) weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: clf = neighbors.RadiusNeighborsClassifier(radius=radius, weights=weights, algorithm=algorithm) clf.fit(X, y) assert_array_equal(correct_labels1, clf.predict(z1)) def test_neighbors_regressors_zero_distance(): # Test radius-based regressor, when distance to a sample is zero. X = np.array([[1.0, 1.0], [1.0, 1.0], [2.0, 2.0], [2.5, 2.5]]) y = np.array([1.0, 1.5, 2.0, 0.0]) radius = 0.2 z = np.array([[1.1, 1.1], [2.0, 2.0]]) rnn_correct_labels = np.array([1.25, 2.0]) knn_correct_unif = np.array([1.25, 1.0]) knn_correct_dist = np.array([1.25, 2.0]) for algorithm in ALGORITHMS: # we don't test for weights=_weight_func since user will be expected # to handle zero distances themselves in the function. for weights in ['uniform', 'distance']: rnn = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) rnn.fit(X, y) assert_array_almost_equal(rnn_correct_labels, rnn.predict(z)) for weights, corr_labels in zip(['uniform', 'distance'], [knn_correct_unif, knn_correct_dist]): knn = neighbors.KNeighborsRegressor(n_neighbors=2, weights=weights, algorithm=algorithm) knn.fit(X, y) assert_array_almost_equal(corr_labels, knn.predict(z)) def test_radius_neighbors_boundary_handling(): """Test whether points lying on boundary are handled consistently Also ensures that even with only one query point, an object array is returned rather than a 2d array. """ X = np.array([[1.5], [3.0], [3.01]]) radius = 3.0 for algorithm in ALGORITHMS: nbrs = neighbors.NearestNeighbors(radius=radius, algorithm=algorithm).fit(X) results = nbrs.radius_neighbors([[0.0]], return_distance=False) assert_equal(results.shape, (1,)) assert_equal(results.dtype, object) assert_array_equal(results[0], [0, 1]) def test_RadiusNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 2 n_samples = 40 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] for o in range(n_output): rnn = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train[:, o]) y_pred_so.append(rnn.predict(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) # Multioutput prediction rnn_mo = neighbors.RadiusNeighborsClassifier(weights=weights, algorithm=algorithm) rnn_mo.fit(X_train, y_train) y_pred_mo = rnn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) def test_kneighbors_classifier_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test k-NN classifier on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 X *= X > .2 y = ((X ** 2).sum(axis=1) < .5).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) epsilon = 1e-5 * (2 * rng.rand(1, n_features) - 1) for sparsev in SPARSE_TYPES + (np.asarray,): X_eps = sparsev(X[:n_test_pts] + epsilon) y_pred = knn.predict(X_eps) assert_array_equal(y_pred, y[:n_test_pts]) def test_KNeighborsClassifier_multioutput(): # Test k-NN classifier on multioutput data rng = check_random_state(0) n_features = 5 n_samples = 50 n_output = 3 X = rng.rand(n_samples, n_features) y = rng.randint(0, 3, (n_samples, n_output)) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) weights = [None, 'uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): # Stack single output prediction y_pred_so = [] y_pred_proba_so = [] for o in range(n_output): knn = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train[:, o]) y_pred_so.append(knn.predict(X_test)) y_pred_proba_so.append(knn.predict_proba(X_test)) y_pred_so = np.vstack(y_pred_so).T assert_equal(y_pred_so.shape, y_test.shape) assert_equal(len(y_pred_proba_so), n_output) # Multioutput prediction knn_mo = neighbors.KNeighborsClassifier(weights=weights, algorithm=algorithm) knn_mo.fit(X_train, y_train) y_pred_mo = knn_mo.predict(X_test) assert_equal(y_pred_mo.shape, y_test.shape) assert_array_almost_equal(y_pred_mo, y_pred_so) # Check proba y_pred_proba_mo = knn_mo.predict_proba(X_test) assert_equal(len(y_pred_proba_mo), n_output) for proba_mo, proba_so in zip(y_pred_proba_mo, y_pred_proba_so): assert_array_almost_equal(proba_mo, proba_so) def test_kneighbors_regressor(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < 0.3)) def test_KNeighborsRegressor_multioutput_uniform_weight(): # Test k-neighbors in multi-output regression with uniform weight rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): knn = neighbors.KNeighborsRegressor(weights=weights, algorithm=algorithm) knn.fit(X_train, y_train) neigh_idx = knn.kneighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred = knn.predict(X_test) assert_equal(y_pred.shape, y_test.shape) assert_equal(y_pred_idx.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_kneighbors_regressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) knn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = knn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_radius_neighbors_regressor(n_samples=40, n_features=3, n_test_pts=10, radius=0.5, random_state=0): # Test radius-based neighbors regression rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y_target = y[:n_test_pts] weight_func = _weight_func for algorithm in ALGORITHMS: for weights in ['uniform', 'distance', weight_func]: neigh = neighbors.RadiusNeighborsRegressor(radius=radius, weights=weights, algorithm=algorithm) neigh.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = neigh.predict(X[:n_test_pts] + epsilon) assert_true(np.all(abs(y_pred - y_target) < radius / 2)) def test_RadiusNeighborsRegressor_multioutput_with_uniform_weight(): # Test radius neighbors in multi-output regression (uniform weight) rng = check_random_state(0) n_features = 5 n_samples = 40 n_output = 4 X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_output) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for algorithm, weights in product(ALGORITHMS, [None, 'uniform']): rnn = neighbors. RadiusNeighborsRegressor(weights=weights, algorithm=algorithm) rnn.fit(X_train, y_train) neigh_idx = rnn.radius_neighbors(X_test, return_distance=False) y_pred_idx = np.array([np.mean(y_train[idx], axis=0) for idx in neigh_idx]) y_pred_idx = np.array(y_pred_idx) y_pred = rnn.predict(X_test) assert_equal(y_pred_idx.shape, y_test.shape) assert_equal(y_pred.shape, y_test.shape) assert_array_almost_equal(y_pred, y_pred_idx) def test_RadiusNeighborsRegressor_multioutput(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=3, random_state=0): # Test k-neighbors in multi-output regression with various weight rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = np.sqrt((X ** 2).sum(1)) y /= y.max() y = np.vstack([y, y]).T y_target = y[:n_test_pts] weights = ['uniform', 'distance', _weight_func] for algorithm, weights in product(ALGORITHMS, weights): rnn = neighbors.RadiusNeighborsRegressor(n_neighbors=n_neighbors, weights=weights, algorithm=algorithm) rnn.fit(X, y) epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1) y_pred = rnn.predict(X[:n_test_pts] + epsilon) assert_equal(y_pred.shape, y_target.shape) assert_true(np.all(np.abs(y_pred - y_target) < 0.3)) def test_kneighbors_regressor_sparse(n_samples=40, n_features=5, n_test_pts=10, n_neighbors=5, random_state=0): # Test radius-based regression on sparse matrices # Like the above, but with various types of sparse matrices rng = np.random.RandomState(random_state) X = 2 * rng.rand(n_samples, n_features) - 1 y = ((X ** 2).sum(axis=1) < .25).astype(np.int) for sparsemat in SPARSE_TYPES: knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors, algorithm='auto') knn.fit(sparsemat(X), y) for sparsev in SPARSE_OR_DENSE: X2 = sparsev(X) assert_true(np.mean(knn.predict(X2).round() == y) > 0.95) def test_neighbors_iris(): # Sanity checks on the iris dataset # Puts three points of each label in the plane and performs a # nearest neighbor query on points near the decision boundary. for algorithm in ALGORITHMS: clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_array_equal(clf.predict(iris.data), iris.target) clf.set_params(n_neighbors=9, algorithm=algorithm) clf.fit(iris.data, iris.target) assert_true(np.mean(clf.predict(iris.data) == iris.target) > 0.95) rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm) rgs.fit(iris.data, iris.target) assert_greater(np.mean(rgs.predict(iris.data).round() == iris.target), 0.95) def test_neighbors_digits(): # Sanity check on the digits dataset # the 'brute' algorithm has been observed to fail if the input # dtype is uint8 due to overflow in distance calculations. X = digits.data.astype('uint8') Y = digits.target (n_samples, n_features) = X.shape train_test_boundary = int(n_samples * 0.8) train = np.arange(0, train_test_boundary) test = np.arange(train_test_boundary, n_samples) (X_train, Y_train, X_test, Y_test) = X[train], Y[train], X[test], Y[test] clf = neighbors.KNeighborsClassifier(n_neighbors=1, algorithm='brute') score_uint8 = clf.fit(X_train, Y_train).score(X_test, Y_test) score_float = clf.fit(X_train.astype(float), Y_train).score( X_test.astype(float), Y_test) assert_equal(score_uint8, score_float) def test_kneighbors_graph(): # Test kneighbors_graph to build the k-Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) # n_neighbors = 1 A = neighbors.kneighbors_graph(X, 1, mode='connectivity', include_self=True) assert_array_equal(A.toarray(), np.eye(A.shape[0])) A = neighbors.kneighbors_graph(X, 1, mode='distance') assert_array_almost_equal( A.toarray(), [[0.00, 1.01, 0.], [1.01, 0., 0.], [0.00, 1.40716026, 0.]]) # n_neighbors = 2 A = neighbors.kneighbors_graph(X, 2, mode='connectivity', include_self=True) assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 0.], [0., 1., 1.]]) A = neighbors.kneighbors_graph(X, 2, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 2.23606798], [1.01, 0., 1.40716026], [2.23606798, 1.40716026, 0.]]) # n_neighbors = 3 A = neighbors.kneighbors_graph(X, 3, mode='connectivity', include_self=True) assert_array_almost_equal( A.toarray(), [[1, 1, 1], [1, 1, 1], [1, 1, 1]]) def test_kneighbors_graph_sparse(seed=36): # Test kneighbors_graph to build the k-Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.kneighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.kneighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_radius_neighbors_graph(): # Test radius_neighbors_graph to build the Nearest Neighbor graph. X = np.array([[0, 1], [1.01, 1.], [2, 0]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='connectivity', include_self=True) assert_array_equal( A.toarray(), [[1., 1., 0.], [1., 1., 1.], [0., 1., 1.]]) A = neighbors.radius_neighbors_graph(X, 1.5, mode='distance') assert_array_almost_equal( A.toarray(), [[0., 1.01, 0.], [1.01, 0., 1.40716026], [0., 1.40716026, 0.]]) def test_radius_neighbors_graph_sparse(seed=36): # Test radius_neighbors_graph to build the Nearest Neighbor graph # for sparse input. rng = np.random.RandomState(seed) X = rng.randn(10, 10) Xcsr = csr_matrix(X) for n_neighbors in [1, 2, 3]: for mode in ["connectivity", "distance"]: assert_array_almost_equal( neighbors.radius_neighbors_graph(X, n_neighbors, mode=mode).toarray(), neighbors.radius_neighbors_graph(Xcsr, n_neighbors, mode=mode).toarray()) def test_neighbors_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, neighbors.NearestNeighbors, algorithm='blah') X = rng.random_sample((10, 2)) Xsparse = csr_matrix(X) y = np.ones(10) for cls in (neighbors.KNeighborsClassifier, neighbors.RadiusNeighborsClassifier, neighbors.KNeighborsRegressor, neighbors.RadiusNeighborsRegressor): assert_raises(ValueError, cls, weights='blah') assert_raises(ValueError, cls, p=-1) assert_raises(ValueError, cls, algorithm='blah') nbrs = cls(algorithm='ball_tree', metric='haversine') assert_raises(ValueError, nbrs.predict, X) assert_raises(ValueError, ignore_warnings(nbrs.fit), Xsparse, y) nbrs = cls() assert_raises(ValueError, nbrs.fit, np.ones((0, 2)), np.ones(0)) assert_raises(ValueError, nbrs.fit, X[:, :, None], y) nbrs.fit(X, y) assert_raises(ValueError, nbrs.predict, [[]]) if (isinstance(cls, neighbors.KNeighborsClassifier) or isinstance(cls, neighbors.KNeighborsRegressor)): nbrs = cls(n_neighbors=-1) assert_raises(ValueError, nbrs.fit, X, y) nbrs = neighbors.NearestNeighbors().fit(X) assert_raises(ValueError, nbrs.kneighbors_graph, X, mode='blah') assert_raises(ValueError, nbrs.radius_neighbors_graph, X, mode='blah') def test_neighbors_metrics(n_samples=20, n_features=3, n_query_pts=2, n_neighbors=5): # Test computing the neighbors for various metrics # create a symmetric matrix V = rng.rand(n_features, n_features) VI = np.dot(V, V.T) metrics = [('euclidean', {}), ('manhattan', {}), ('minkowski', dict(p=1)), ('minkowski', dict(p=2)), ('minkowski', dict(p=3)), ('minkowski', dict(p=np.inf)), ('chebyshev', {}), ('seuclidean', dict(V=rng.rand(n_features))), ('wminkowski', dict(p=3, w=rng.rand(n_features))), ('mahalanobis', dict(VI=VI))] algorithms = ['brute', 'ball_tree', 'kd_tree'] X = rng.rand(n_samples, n_features) test = rng.rand(n_query_pts, n_features) for metric, metric_params in metrics: results = [] p = metric_params.pop('p', 2) for algorithm in algorithms: # KD tree doesn't support all metrics if (algorithm == 'kd_tree' and metric not in neighbors.KDTree.valid_metrics): assert_raises(ValueError, neighbors.NearestNeighbors, algorithm=algorithm, metric=metric, metric_params=metric_params) continue neigh = neighbors.NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, metric=metric, p=p, metric_params=metric_params) neigh.fit(X) results.append(neigh.kneighbors(test, return_distance=True)) assert_array_almost_equal(results[0][0], results[1][0]) assert_array_almost_equal(results[0][1], results[1][1]) def test_callable_metric(): def custom_metric(x1, x2): return np.sqrt(np.sum(x1 ** 2 + x2 ** 2)) X = np.random.RandomState(42).rand(20, 2) nbrs1 = neighbors.NearestNeighbors(3, algorithm='auto', metric=custom_metric) nbrs2 = neighbors.NearestNeighbors(3, algorithm='brute', metric=custom_metric) nbrs1.fit(X) nbrs2.fit(X) dist1, ind1 = nbrs1.kneighbors(X) dist2, ind2 = nbrs2.kneighbors(X) assert_array_almost_equal(dist1, dist2) def test_metric_params_interface(): assert_warns(SyntaxWarning, neighbors.KNeighborsClassifier, metric_params={'p': 3}) def test_predict_sparse_ball_kd_tree(): rng = np.random.RandomState(0) X = rng.rand(5, 5) y = rng.randint(0, 2, 5) nbrs1 = neighbors.KNeighborsClassifier(1, algorithm='kd_tree') nbrs2 = neighbors.KNeighborsRegressor(1, algorithm='ball_tree') for model in [nbrs1, nbrs2]: model.fit(X, y) assert_raises(ValueError, model.predict, csr_matrix(X)) def test_non_euclidean_kneighbors(): rng = np.random.RandomState(0) X = rng.rand(5, 5) # Find a reasonable radius. dist_array = pairwise_distances(X).flatten() np.sort(dist_array) radius = dist_array[15] # Test kneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.kneighbors_graph( X, 3, metric=metric, mode='connectivity', include_self=True).toarray() nbrs1 = neighbors.NearestNeighbors(3, metric=metric).fit(X) assert_array_equal(nbrs_graph, nbrs1.kneighbors_graph(X).toarray()) # Test radiusneighbors_graph for metric in ['manhattan', 'chebyshev']: nbrs_graph = neighbors.radius_neighbors_graph( X, radius, metric=metric, mode='connectivity', include_self=True).toarray() nbrs1 = neighbors.NearestNeighbors(metric=metric, radius=radius).fit(X) assert_array_equal(nbrs_graph, nbrs1.radius_neighbors_graph(X).A) # Raise error when wrong parameters are supplied, X_nbrs = neighbors.NearestNeighbors(3, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.kneighbors_graph, X_nbrs, 3, metric='euclidean') X_nbrs = neighbors.NearestNeighbors(radius=radius, metric='manhattan') X_nbrs.fit(X) assert_raises(ValueError, neighbors.radius_neighbors_graph, X_nbrs, radius, metric='euclidean') def check_object_arrays(nparray, list_check): for ind, ele in enumerate(nparray): assert_array_equal(ele, list_check[ind]) def test_k_and_radius_neighbors_train_is_not_query(): # Test kneighbors et.al when query is not training data for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) test_data = [[2], [1]] # Test neighbors. dist, ind = nn.kneighbors(test_data) assert_array_equal(dist, [[1], [0]]) assert_array_equal(ind, [[1], [1]]) dist, ind = nn.radius_neighbors([[2], [1]], radius=1.5) check_object_arrays(dist, [[1], [1, 0]]) check_object_arrays(ind, [[1], [0, 1]]) # Test the graph variants. assert_array_equal( nn.kneighbors_graph(test_data).A, [[0., 1.], [0., 1.]]) assert_array_equal( nn.kneighbors_graph([[2], [1]], mode='distance').A, np.array([[0., 1.], [0., 0.]])) rng = nn.radius_neighbors_graph([[2], [1]], radius=1.5) assert_array_equal(rng.A, [[0, 1], [1, 1]]) def test_k_and_radius_neighbors_X_None(): # Test kneighbors et.al when query is None for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) X = [[0], [1]] nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, [[1], [1]]) assert_array_equal(ind, [[1], [0]]) dist, ind = nn.radius_neighbors(None, radius=1.5) check_object_arrays(dist, [[1], [1]]) check_object_arrays(ind, [[1], [0]]) # Test the graph variants. rng = nn.radius_neighbors_graph(None, radius=1.5) kng = nn.kneighbors_graph(None) for graph in [rng, kng]: assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.data, [1, 1]) assert_array_equal(rng.indices, [1, 0]) X = [[0, 1], [0, 1], [1, 1]] nn = neighbors.NearestNeighbors(n_neighbors=2, algorithm=algorithm) nn.fit(X) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 1.], [1., 0., 1.], [1., 1., 0]])) def test_k_and_radius_neighbors_duplicates(): # Test behavior of kneighbors when duplicates are present in query for algorithm in ALGORITHMS: nn = neighbors.NearestNeighbors(n_neighbors=1, algorithm=algorithm) nn.fit([[0], [1]]) # Do not do anything special to duplicates. kng = nn.kneighbors_graph([[0], [1]], mode='distance') assert_array_equal( kng.A, np.array([[0., 0.], [0., 0.]])) assert_array_equal(kng.data, [0., 0.]) assert_array_equal(kng.indices, [0, 1]) dist, ind = nn.radius_neighbors([[0], [1]], radius=1.5) check_object_arrays(dist, [[0, 1], [1, 0]]) check_object_arrays(ind, [[0, 1], [0, 1]]) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5) assert_array_equal(rng.A, np.ones((2, 2))) rng = nn.radius_neighbors_graph([[0], [1]], radius=1.5, mode='distance') assert_array_equal(rng.A, [[0, 1], [1, 0]]) assert_array_equal(rng.indices, [0, 1, 0, 1]) assert_array_equal(rng.data, [0, 1, 1, 0]) # Mask the first duplicates when n_duplicates > n_neighbors. X = np.ones((3, 1)) nn = neighbors.NearestNeighbors(n_neighbors=1) nn.fit(X) dist, ind = nn.kneighbors() assert_array_equal(dist, np.zeros((3, 1))) assert_array_equal(ind, [[1], [0], [1]]) # Test that zeros are explicitly marked in kneighbors_graph. kng = nn.kneighbors_graph(mode='distance') assert_array_equal( kng.A, np.zeros((3, 3))) assert_array_equal(kng.data, np.zeros(3)) assert_array_equal(kng.indices, [1., 0., 1.]) assert_array_equal( nn.kneighbors_graph().A, np.array([[0., 1., 0.], [1., 0., 0.], [0., 1., 0.]])) def test_include_self_neighbors_graph(): # Test include_self parameter in neighbors_graph X = [[2, 3], [4, 5]] kng = neighbors.kneighbors_graph(X, 1, include_self=True).A kng_not_self = neighbors.kneighbors_graph(X, 1, include_self=False).A assert_array_equal(kng, [[1., 0.], [0., 1.]]) assert_array_equal(kng_not_self, [[0., 1.], [1., 0.]]) rng = neighbors.radius_neighbors_graph(X, 5.0, include_self=True).A rng_not_self = neighbors.radius_neighbors_graph( X, 5.0, include_self=False).A assert_array_equal(rng, [[1., 1.], [1., 1.]]) assert_array_equal(rng_not_self, [[0., 1.], [1., 0.]]) def test_same_knn_parallel(): X, y = datasets.make_classification(n_samples=30, n_features=5, n_redundant=0, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y) def check_same_knn_parallel(algorithm): clf = neighbors.KNeighborsClassifier(n_neighbors=3, algorithm=algorithm) clf.fit(X_train, y_train) y = clf.predict(X_test) dist, ind = clf.kneighbors(X_test) graph = clf.kneighbors_graph(X_test, mode='distance').toarray() clf.set_params(n_jobs=3) clf.fit(X_train, y_train) y_parallel = clf.predict(X_test) dist_parallel, ind_parallel = clf.kneighbors(X_test) graph_parallel = \ clf.kneighbors_graph(X_test, mode='distance').toarray() assert_array_equal(y, y_parallel) assert_array_almost_equal(dist, dist_parallel) assert_array_equal(ind, ind_parallel) assert_array_almost_equal(graph, graph_parallel) for algorithm in ALGORITHMS: yield check_same_knn_parallel, algorithm def test_dtype_convert(): classifier = neighbors.KNeighborsClassifier(n_neighbors=1) CLASSES = 15 X = np.eye(CLASSES) y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:CLASSES]] result = classifier.fit(X, y).predict(X) assert_array_equal(result, y) # ignore conversion to boolean in pairwise_distances @ignore_warnings(category=DataConversionWarning) def test_pairwise_boolean_distance(): # Non-regression test for #4523 # 'brute': uses scipy.spatial.distance through pairwise_distances # 'ball_tree': uses sklearn.neighbors.dist_metrics rng = np.random.RandomState(0) X = rng.uniform(size=(6, 5)) NN = neighbors.NearestNeighbors nn1 = NN(metric="jaccard", algorithm='brute').fit(X) nn2 = NN(metric="jaccard", algorithm='ball_tree').fit(X) assert_array_equal(nn1.kneighbors(X)[0], nn2.kneighbors(X)[0])
bsd-3-clause
hsiaoyi0504/scikit-learn
doc/conf.py
210
8446
# -*- coding: utf-8 -*- # # scikit-learn documentation build configuration file, created by # sphinx-quickstart on Fri Jan 8 09:13:42 2010. # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. from __future__ import print_function import sys import os from sklearn.externals.six import u # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory # is relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. sys.path.insert(0, os.path.abspath('sphinxext')) from github_link import make_linkcode_resolve # -- General configuration --------------------------------------------------- # Try to override the matplotlib configuration as early as possible try: import gen_rst except: pass # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['gen_rst', 'sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.pngmath', 'numpy_ext.numpydoc', 'sphinx.ext.linkcode', ] autosummary_generate = True autodoc_default_flags = ['members', 'inherited-members'] # Add any paths that contain templates here, relative to this directory. templates_path = ['templates'] # generate autosummary even if no references autosummary_generate = True # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8' # Generate the plots for the gallery plot_gallery = True # The master toctree document. master_doc = 'index' # General information about the project. project = u('scikit-learn') copyright = u('2010 - 2014, scikit-learn developers (BSD License)') # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import sklearn version = sklearn.__version__ # The full version, including alpha/beta/rc tags. release = sklearn.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # List of directories, relative to source directory, that shouldn't be # searched for source files. exclude_trees = ['_build', 'templates', 'includes'] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'scikit-learn' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = {'oldversion': False, 'collapsiblesidebar': True, 'google_analytics': True, 'surveybanner': False, 'sprintbanner': True} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'scikit-learn' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = 'logos/scikit-learn-logo-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'logos/favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['images'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'scikit-learndoc' # -- Options for LaTeX output ------------------------------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', 'user_guide.tex', u('scikit-learn user guide'), u('scikit-learn developers'), 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. latex_logo = "logos/scikit-learn-logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # Additional stuff for the LaTeX preamble. latex_preamble = r""" \usepackage{amsmath}\usepackage{amsfonts}\usepackage{bm}\usepackage{morefloats} \usepackage{enumitem} \setlistdepth{10} """ # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. latex_domain_indices = False trim_doctests_flags = True def generate_example_rst(app, what, name, obj, options, lines): # generate empty examples files, so that we don't get # inclusion errors if there are no examples for a class / module examples_path = os.path.join(app.srcdir, "modules", "generated", "%s.examples" % name) if not os.path.exists(examples_path): # touch file open(examples_path, 'w').close() def setup(app): # to hide/show the prompt in code examples: app.add_javascript('js/copybutton.js') app.connect('autodoc-process-docstring', generate_example_rst) # The following is used by sphinx.ext.linkcode to provide links to github linkcode_resolve = make_linkcode_resolve('sklearn', u'https://github.com/scikit-learn/' 'scikit-learn/blob/{revision}/' '{package}/{path}#L{lineno}')
bsd-3-clause
jmschrei/scikit-learn
examples/applications/svm_gui.py
287
11161
""" ========== Libsvm GUI ========== A simple graphical frontend for Libsvm mainly intended for didactic purposes. You can create data points by point and click and visualize the decision region induced by different kernels and parameter settings. To create positive examples click the left mouse button; to create negative examples click the right button. If all examples are from the same class, it uses a one-class SVM. """ from __future__ import division, print_function print(__doc__) # Author: Peter Prettenhoer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import matplotlib matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.contour import ContourSet import Tkinter as Tk import sys import numpy as np from sklearn import svm from sklearn.datasets import dump_svmlight_file from sklearn.externals.six.moves import xrange y_min, y_max = -50, 50 x_min, x_max = -50, 50 class Model(object): """The Model which hold the data. It implements the observable in the observer pattern and notifies the registered observers on change event. """ def __init__(self): self.observers = [] self.surface = None self.data = [] self.cls = None self.surface_type = 0 def changed(self, event): """Notify the observers. """ for observer in self.observers: observer.update(event, self) def add_observer(self, observer): """Register an observer. """ self.observers.append(observer) def set_surface(self, surface): self.surface = surface def dump_svmlight_file(self, file): data = np.array(self.data) X = data[:, 0:2] y = data[:, 2] dump_svmlight_file(X, y, file) class Controller(object): def __init__(self, model): self.model = model self.kernel = Tk.IntVar() self.surface_type = Tk.IntVar() # Whether or not a model has been fitted self.fitted = False def fit(self): print("fit the model") train = np.array(self.model.data) X = train[:, 0:2] y = train[:, 2] C = float(self.complexity.get()) gamma = float(self.gamma.get()) coef0 = float(self.coef0.get()) degree = int(self.degree.get()) kernel_map = {0: "linear", 1: "rbf", 2: "poly"} if len(np.unique(y)) == 1: clf = svm.OneClassSVM(kernel=kernel_map[self.kernel.get()], gamma=gamma, coef0=coef0, degree=degree) clf.fit(X) else: clf = svm.SVC(kernel=kernel_map[self.kernel.get()], C=C, gamma=gamma, coef0=coef0, degree=degree) clf.fit(X, y) if hasattr(clf, 'score'): print("Accuracy:", clf.score(X, y) * 100) X1, X2, Z = self.decision_surface(clf) self.model.clf = clf self.model.set_surface((X1, X2, Z)) self.model.surface_type = self.surface_type.get() self.fitted = True self.model.changed("surface") def decision_surface(self, cls): delta = 1 x = np.arange(x_min, x_max + delta, delta) y = np.arange(y_min, y_max + delta, delta) X1, X2 = np.meshgrid(x, y) Z = cls.decision_function(np.c_[X1.ravel(), X2.ravel()]) Z = Z.reshape(X1.shape) return X1, X2, Z def clear_data(self): self.model.data = [] self.fitted = False self.model.changed("clear") def add_example(self, x, y, label): self.model.data.append((x, y, label)) self.model.changed("example_added") # update decision surface if already fitted. self.refit() def refit(self): """Refit the model if already fitted. """ if self.fitted: self.fit() class View(object): """Test docstring. """ def __init__(self, root, controller): f = Figure() ax = f.add_subplot(111) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) canvas = FigureCanvasTkAgg(f, master=root) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) canvas.mpl_connect('button_press_event', self.onclick) toolbar = NavigationToolbar2TkAgg(canvas, root) toolbar.update() self.controllbar = ControllBar(root, controller) self.f = f self.ax = ax self.canvas = canvas self.controller = controller self.contours = [] self.c_labels = None self.plot_kernels() def plot_kernels(self): self.ax.text(-50, -60, "Linear: $u^T v$") self.ax.text(-20, -60, "RBF: $\exp (-\gamma \| u-v \|^2)$") self.ax.text(10, -60, "Poly: $(\gamma \, u^T v + r)^d$") def onclick(self, event): if event.xdata and event.ydata: if event.button == 1: self.controller.add_example(event.xdata, event.ydata, 1) elif event.button == 3: self.controller.add_example(event.xdata, event.ydata, -1) def update_example(self, model, idx): x, y, l = model.data[idx] if l == 1: color = 'w' elif l == -1: color = 'k' self.ax.plot([x], [y], "%so" % color, scalex=0.0, scaley=0.0) def update(self, event, model): if event == "examples_loaded": for i in xrange(len(model.data)): self.update_example(model, i) if event == "example_added": self.update_example(model, -1) if event == "clear": self.ax.clear() self.ax.set_xticks([]) self.ax.set_yticks([]) self.contours = [] self.c_labels = None self.plot_kernels() if event == "surface": self.remove_surface() self.plot_support_vectors(model.clf.support_vectors_) self.plot_decision_surface(model.surface, model.surface_type) self.canvas.draw() def remove_surface(self): """Remove old decision surface.""" if len(self.contours) > 0: for contour in self.contours: if isinstance(contour, ContourSet): for lineset in contour.collections: lineset.remove() else: contour.remove() self.contours = [] def plot_support_vectors(self, support_vectors): """Plot the support vectors by placing circles over the corresponding data points and adds the circle collection to the contours list.""" cs = self.ax.scatter(support_vectors[:, 0], support_vectors[:, 1], s=80, edgecolors="k", facecolors="none") self.contours.append(cs) def plot_decision_surface(self, surface, type): X1, X2, Z = surface if type == 0: levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' self.contours.append(self.ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles)) elif type == 1: self.contours.append(self.ax.contourf(X1, X2, Z, 10, cmap=matplotlib.cm.bone, origin='lower', alpha=0.85)) self.contours.append(self.ax.contour(X1, X2, Z, [0.0], colors='k', linestyles=['solid'])) else: raise ValueError("surface type unknown") class ControllBar(object): def __init__(self, root, controller): fm = Tk.Frame(root) kernel_group = Tk.Frame(fm) Tk.Radiobutton(kernel_group, text="Linear", variable=controller.kernel, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="RBF", variable=controller.kernel, value=1, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(kernel_group, text="Poly", variable=controller.kernel, value=2, command=controller.refit).pack(anchor=Tk.W) kernel_group.pack(side=Tk.LEFT) valbox = Tk.Frame(fm) controller.complexity = Tk.StringVar() controller.complexity.set("1.0") c = Tk.Frame(valbox) Tk.Label(c, text="C:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(c, width=6, textvariable=controller.complexity).pack( side=Tk.LEFT) c.pack() controller.gamma = Tk.StringVar() controller.gamma.set("0.01") g = Tk.Frame(valbox) Tk.Label(g, text="gamma:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(g, width=6, textvariable=controller.gamma).pack(side=Tk.LEFT) g.pack() controller.degree = Tk.StringVar() controller.degree.set("3") d = Tk.Frame(valbox) Tk.Label(d, text="degree:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(d, width=6, textvariable=controller.degree).pack(side=Tk.LEFT) d.pack() controller.coef0 = Tk.StringVar() controller.coef0.set("0") r = Tk.Frame(valbox) Tk.Label(r, text="coef0:", anchor="e", width=7).pack(side=Tk.LEFT) Tk.Entry(r, width=6, textvariable=controller.coef0).pack(side=Tk.LEFT) r.pack() valbox.pack(side=Tk.LEFT) cmap_group = Tk.Frame(fm) Tk.Radiobutton(cmap_group, text="Hyperplanes", variable=controller.surface_type, value=0, command=controller.refit).pack(anchor=Tk.W) Tk.Radiobutton(cmap_group, text="Surface", variable=controller.surface_type, value=1, command=controller.refit).pack(anchor=Tk.W) cmap_group.pack(side=Tk.LEFT) train_button = Tk.Button(fm, text='Fit', width=5, command=controller.fit) train_button.pack() fm.pack(side=Tk.LEFT) Tk.Button(fm, text='Clear', width=5, command=controller.clear_data).pack(side=Tk.LEFT) def get_parser(): from optparse import OptionParser op = OptionParser() op.add_option("--output", action="store", type="str", dest="output", help="Path where to dump data.") return op def main(argv): op = get_parser() opts, args = op.parse_args(argv[1:]) root = Tk.Tk() model = Model() controller = Controller(model) root.wm_title("Scikit-learn Libsvm GUI") view = View(root, controller) model.add_observer(view) Tk.mainloop() if opts.output: model.dump_svmlight_file(opts.output) if __name__ == "__main__": main(sys.argv)
bsd-3-clause
xiaoxiamii/scikit-learn
examples/feature_selection/plot_rfe_with_cross_validation.py
226
1384
""" =================================================== Recursive feature elimination with cross-validation =================================================== A recursive feature elimination example with automatic tuning of the number of features selected with cross-validation. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.cross_validation import StratifiedKFold from sklearn.feature_selection import RFECV from sklearn.datasets import make_classification # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=25, n_informative=3, n_redundant=2, n_repeated=0, n_classes=8, n_clusters_per_class=1, random_state=0) # Create the RFE object and compute a cross-validated score. svc = SVC(kernel="linear") # The "accuracy" scoring is proportional to the number of correct # classifications rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2), scoring='accuracy') rfecv.fit(X, y) print("Optimal number of features : %d" % rfecv.n_features_) # Plot number of features VS. cross-validation scores plt.figure() plt.xlabel("Number of features selected") plt.ylabel("Cross validation score (nb of correct classifications)") plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_) plt.show()
bsd-3-clause
00krishna-research/py_university_gender_dynamics_pkg
tests/test_pyugend.py
1
8479
import pytest from models.Models import Base_model from models.Basic_stochastic_model import Basic_stochastic_model from models.Stochastic_model_with_promotion import Stochastic_model_with_promotion from models.Replication_model import Replication_model from models.Stochastic_model_with_promotion_and_first_hiring import Stochastic_model_with_promotion_and_first_hiring from comparisons.Comparison import Comparison from models.Basic_stochastic_model_fixed_promotion import Basic_stochastic_model_fixed_promotion import numpy as np import pandas as pd @pytest.fixture def mock_data(): return ({'number_of_females_1': 14, 'number_of_females_2': 3, 'number_of_females_3': 19, 'number_of_males_1': 37, 'number_of_males_2': 28, 'number_of_males_3': 239, 'number_of_initial_vacancies_1': 5.303, 'number_of_initial_vacancies_2': 5.9, 'number_of_initial_vacancies_3': 8.31, 'hiring_rate_women_1': 0.310, 'hiring_rate_women_2': 0.222, 'hiring_rate_women_3': 0, 'attrition_rate_women_1': 0, 'attrition_rate_women_2': 0, 'attrition_rate_women_3': 0.017, 'attrition_rate_men_1': 0.009, 'attrition_rate_men_2': 0.017, 'attrition_rate_men_3': 0.033, 'probablity_of_outside_hire_1': 1, 'probability_of_outside_hire_2': 0.158, 'probability_of_outside_hire_3': 0.339, 'female_promotion_probability_1': 0.122, 'female_promotion_probability_2': 0.188, 'male_promotion_probability_1': 0.19, 'male_promotion_probability_2': 0.19, 'max_threshold': 0.1, 'prob_random_growth': 0.1, 'duration': 40}) def test_Base_model(mock_data): assert isinstance(Base_model(**mock_data), Base_model) def test_base_model_run(mock_data): t = Base_model(**mock_data) t.run_model() assert (isinstance(t.res, np.ndarray)) def test_base_model_persistence(mock_data): t = Base_model(**mock_data) assert (t.nf1 == 14) def test_base_model_multiple_runs(mock_data): t = Basic_stochastic_model(**mock_data) assert (isinstance(t.run_multiple(10), int)) def test_base_model_multiple_runs_persistent_state(mock_data): t = Basic_stochastic_model(**mock_data) t.run_multiple(10) assert (isinstance(t.mean_matrix, np.ndarray)) def test_base_model_parameter_sweep(mock_data): t = Stochastic_model_with_promotion(**mock_data) v = t.run_parameter_sweep(12, 'female_pp_1', 0.1, 0.3, 2) assert (isinstance(v, int)) def test_base_model_plot_multiple_runs(mock_data): t = Basic_stochastic_model(**mock_data) t.run_multiple(10) t.plot_multiple_runs_detail() # # def test_base_model_multiple_runs_gender_prop(mock_data): # t = Basic_stochastic_model(**mock_data) # t.run_multiple(10) # t.plot_multiple_runs_gender_prop() def test_basic_stochastic_model(mock_data): assert (isinstance(Basic_stochastic_model(**mock_data), Basic_stochastic_model)) def test_basic_stochastic_model_run(mock_data): t = Basic_stochastic_model(**mock_data).run_model() assert isinstance(t, np.recarray) def test_basic_stochastic_model_run_with_saved_data(mock_data): t = Basic_stochastic_model(**mock_data) t.run_model() assert isinstance(t.run, np.recarray) def test_basic_stochastic_model_promotion_probability_recovery(mock_data): t = Basic_stochastic_model(**mock_data) assert (t.female_promotion_probability_2 == 0.188) def test_replication_model(mock_data): t = Replication_model(**mock_data) t.run_model() assert (isinstance(t.run, np.ndarray)) # def test_base_model_multiple_runs_gender_prop(mock_data): # t = Replication_model(**mock_data) # t.run_multiple(10) # t.plot_multiple_runs_gender_prop() # def test_excel_export(mock_data): # t = Basic_stochastic_model(**mock_data) # t.export_model_run() # assert(isinstance(t,Basic_stochastic_model)) def test_stochastic_model_with_hiring_first(mock_data): t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) t.run_model() assert (isinstance(t.run, np.ndarray)) def test_stochastic_model_with_hiring_first_multiple(mock_data): t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) t.run_multiple(10) assert (isinstance(t.mean_matrix, np.ndarray)) def test_comparison_model_plot_detail(mock_data): modlist = list([Replication_model(**mock_data), Basic_stochastic_model(**mock_data), Stochastic_model_with_promotion_and_first_hiring(**mock_data)]) c = Comparison(modlist) c.plot_comparison_detail(10) def test_comparison_model_param_sweep(mock_data): modlist = list([Replication_model(**mock_data), Basic_stochastic_model(**mock_data), Stochastic_model_with_promotion_and_first_hiring(**mock_data)]) c = Comparison(modlist) c.plot_parameter_sweep_gender_proportion(10, 'female_promotion_probability_2', 0.1, 0.5, 8) def test_comparison_model_param_sweep_detail(mock_data): modlist = list([Replication_model(**mock_data), Basic_stochastic_model(**mock_data), Stochastic_model_with_promotion_and_first_hiring(**mock_data)]) c = Comparison(modlist) c.plot_parameter_sweep_detail(10, 'female_promotion_probability_2', 0.1, 0.5, 8) def test_base_model_probability_calc_detail_array(mock_data): t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) res = t.run_probability_analysis_parameter_sweep_gender_detail(10, 'female_promotion_probability_2', 'm2', 0.1, 0.8, 8, 150) print(res) assert (isinstance(res, pd.DataFrame)) # def test_base_model_probability_calc_plot(mock_data): # t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) # t.plot_empirical_probability_group_detail(10, # 'female_promotion_probability_2', # 'm2', 0.1, 0.8, 8, 150) # # def test_comparison_empirical_probability_detail_plot(mock_data): # modlist = list([Replication_model(**mock_data), # Basic_stochastic_model(**mock_data), # Stochastic_model_with_promotion_and_first_hiring(**mock_data)]) # c = Comparison(modlist) # c.plot_comparison_empirical_probability_detail(10, # 'female_promotion_probability_2', # 'm2', 0.1, 0.8, 20, 150) # def test_plot_dept_size_over_time(mock_data): # t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) # t.plot_department_size_over_time_multiple_runs(10) # def test_plot_comparision_department_size(mock_data): # modlist = list([Basic_stochastic_model_fixed_promotion(**mock_data), # Basic_stochastic_model(**mock_data), # Stochastic_model_with_promotion_and_first_hiring(**mock_data)]) # c = Comparison(modlist) # c.plot_comparison_department_size() def test_multiple_runs_created_res_array(mock_data): t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) t.run_multiple(10) assert hasattr(t, 'probability_matrix') # # def test_plot_empirical_probability_gender_proportion(mock_data): # t = Stochastic_model_with_promotion_and_first_hiring(**mock_data) # t.plot_empirical_probability_gender_proportion(100, 0.19) def test_plot_comparision_empirical_probability_gender_proportion(mock_data): modlist = list([Basic_stochastic_model(**mock_data), Basic_stochastic_model_fixed_promotion(**mock_data), Stochastic_model_with_promotion_and_first_hiring(**mock_data)]) c = Comparison(modlist) c.plot_comparison_empirical_probability_gender_proportion(100, 0.19) def test_basic_stochastic_with_random_dept_growth(mock_data): t = Basic_stochastic_model(**mock_data) assert (t.max_threshold, 0.1) def test_basic_stochastic_with_random_dept_growth(mock_data): t = Basic_stochastic_model(**mock_data) assert (t.max_threshold, 0.1)
mit
thomasaarholt/hyperspy
hyperspy/drawing/signal.py
4
4534
# -*- coding: utf-8 -*- # Copyright 2007-2020 The HyperSpy developers # # This file is part of HyperSpy. # # HyperSpy is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # HyperSpy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with HyperSpy. If not, see <http://www.gnu.org/licenses/>. # This file contains plotting code generic to the BaseSignal class. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from traits.api import Undefined from hyperspy.drawing.utils import set_axes_decor def _plot_1D_component(factors, idx, axes_manager, ax=None, calibrate=True, comp_label=None, same_window=False): if ax is None: ax = plt.gca() axis = axes_manager.signal_axes[0] if calibrate: x = axis.axis plt.xlabel(axis.units) else: x = np.arange(axis.size) plt.xlabel('Channel index') ax.plot(x, factors[:, idx], label='%i' % idx) if comp_label and not same_window: plt.title('%s' % comp_label) return ax def _plot_2D_component(factors, idx, axes_manager, calibrate=True, ax=None, comp_label=None, cmap=plt.cm.gray, axes_decor='all' ): if ax is None: ax = plt.gca() axes = axes_manager.signal_axes[::-1] shape = axes_manager._signal_shape_in_array extent = None if calibrate: extent = (axes[1].low_value, axes[1].high_value, axes[0].high_value, axes[0].low_value) if comp_label: plt.title('%s' % idx) im = ax.imshow(factors[:, idx].reshape(shape), cmap=cmap, interpolation='nearest', extent=extent) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) return ax def _plot_loading(loadings, idx, axes_manager, ax=None, comp_label=None, no_nans=True, calibrate=True, cmap=plt.cm.gray, same_window=False, axes_decor='all'): if ax is None: ax = plt.gca() if no_nans: loadings = np.nan_to_num(loadings) axes = axes_manager.navigation_axes if axes_manager.navigation_dimension == 2: extent = None # get calibration from a passed axes_manager shape = axes_manager._navigation_shape_in_array if calibrate: extent = (axes[0].low_value, axes[0].high_value, axes[1].high_value, axes[1].low_value) im = ax.imshow(loadings[idx].reshape(shape), cmap=cmap, extent=extent, interpolation='nearest') if calibrate: plt.xlabel(axes[0].units) plt.ylabel(axes[1].units) else: plt.xlabel('pixels') plt.ylabel('pixels') if comp_label: if same_window: plt.title('%s' % idx) else: plt.title('%s #%s' % (comp_label, idx)) # Set axes decorations based on user input set_axes_decor(ax, axes_decor) div = make_axes_locatable(ax) cax = div.append_axes("right", size="5%", pad=0.05) plt.colorbar(im, cax=cax) elif axes_manager.navigation_dimension == 1: if calibrate: x = axes[0].axis else: x = np.arange(axes[0].size) ax.step(x, loadings[idx], label='%s' % idx) if comp_label and not same_window: plt.title('%s #%s' % (comp_label, idx)) plt.ylabel('Score (a. u.)') if calibrate: if axes[0].units is not Undefined: plt.xlabel(axes[0].units) else: plt.xlabel('depth') else: plt.xlabel('depth') else: raise ValueError('View not supported')
gpl-3.0
NunoEdgarGub1/scikit-learn
sklearn/kernel_ridge.py
155
6545
"""Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression.""" # Authors: Mathieu Blondel <mathieu@mblondel.org> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause import numpy as np from .base import BaseEstimator, RegressorMixin from .metrics.pairwise import pairwise_kernels from .linear_model.ridge import _solve_cholesky_kernel from .utils import check_X_y from .utils.validation import check_is_fitted class KernelRidge(BaseEstimator, RegressorMixin): """Kernel ridge regression. Kernel ridge regression (KRR) combines ridge regression (linear least squares with l2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space. The form of the model learned by KRR is identical to support vector regression (SVR). However, different loss functions are used: KRR uses squared error loss while support vector regression uses epsilon-insensitive loss, both combined with l2 regularization. In contrast to SVR, fitting a KRR model can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR, which learns a sparse model for epsilon > 0, at prediction-time. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_targets]). Read more in the :ref:`User Guide <kernel_ridge>`. Parameters ---------- alpha : {float, array-like}, shape = [n_targets] Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. If an array is passed, penalties are assumed to be specific to the targets. Hence they must correspond in number. kernel : string or callable, default="linear" Kernel mapping used internally. A callable should accept two arguments and the keyword arguments passed to this object as kernel_params, and should return a floating point number. gamma : float, default=None Gamma parameter for the RBF, polynomial, exponential chi2 and sigmoid kernels. Interpretation of the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other kernels. degree : float, default=3 Degree of the polynomial kernel. Ignored by other kernels. coef0 : float, default=1 Zero coefficient for polynomial and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of string to any, optional Additional parameters (keyword arguments) for kernel function passed as callable object. Attributes ---------- dual_coef_ : array, shape = [n_features] or [n_targets, n_features] Weight vector(s) in kernel space X_fit_ : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data, which is also required for prediction References ---------- * Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press chapter 14.4.3, pp. 492-493 See also -------- Ridge Linear ridge regression. SVR Support Vector Regression implemented using libsvm. Examples -------- >>> from sklearn.kernel_ridge import KernelRidge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> clf = KernelRidge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE KernelRidge(alpha=1.0, coef0=1, degree=3, gamma=None, kernel='linear', kernel_params=None) """ def __init__(self, alpha=1, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None): self.alpha = alpha self.kernel = kernel self.gamma = gamma self.degree = degree self.coef0 = coef0 self.kernel_params = kernel_params def _get_kernel(self, X, Y=None): if callable(self.kernel): params = self.kernel_params or {} else: params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0} return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params) @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, sample_weight=None): """Fit Kernel Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_targets] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample, ignored if None is passed. Returns ------- self : returns an instance of self. """ # Convert data X, y = check_X_y(X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True) K = self._get_kernel(X) alpha = np.atleast_1d(self.alpha) ravel = False if len(y.shape) == 1: y = y.reshape(-1, 1) ravel = True copy = self.kernel == "precomputed" self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy) if ravel: self.dual_coef_ = self.dual_coef_.ravel() self.X_fit_ = X return self def predict(self, X): """Predict using the the kernel ridge model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Samples. Returns ------- C : array, shape = [n_samples] or [n_samples, n_targets] Returns predicted values. """ check_is_fitted(self, ["X_fit_", "dual_coef_"]) K = self._get_kernel(X, self.X_fit_) return np.dot(K, self.dual_coef_)
bsd-3-clause
iemejia/incubator-beam
sdks/python/apache_beam/dataframe/convert_test.py
1
2180
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import import unittest import pandas as pd import apache_beam as beam from apache_beam.dataframe import convert from apache_beam.testing.util import assert_that class ConverTest(unittest.TestCase): def test_convert(self): def equal_to_unordered_series(expected): def check(actual): actual = pd.concat(actual) if sorted(expected) != sorted(actual): raise AssertionError( 'Series not equal: \n%s\n%s\n' % (expected, actual)) return check with beam.Pipeline() as p: a = pd.Series([1, 2, 3]) b = pd.Series([100, 200, 300]) pc_a = p | 'A' >> beam.Create([a]) pc_b = p | 'B' >> beam.Create([b]) df_a = convert.to_dataframe(pc_a, proxy=a[:0]) df_b = convert.to_dataframe(pc_b, proxy=b[:0]) df_2a = 2 * df_a df_3a = 3 * df_a df_ab = df_a * df_b # Converting multiple results at a time can be more efficient. pc_2a, pc_ab = convert.to_pcollection(df_2a, df_ab) # But separate conversions can be done as well. pc_3a = convert.to_pcollection(df_3a) assert_that(pc_2a, equal_to_unordered_series(2 * a), label='Check2a') assert_that(pc_3a, equal_to_unordered_series(3 * a), label='Check3a') assert_that(pc_ab, equal_to_unordered_series(a * b), label='Checkab') if __name__ == '__main__': unittest.main()
apache-2.0
gotomypc/scikit-learn
sklearn/neighbors/base.py
115
29783
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <vanderplas@astro.washington.edu> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Sparseness support by Lars Buitinck <L.J.Buitinck@uva.nl> # Multi-output support by Arnaud Joly <a.joly@ulg.ac.be> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array from ..utils.fixes import argpartition from ..utils.validation import DataConversionWarning from ..utils.validation import NotFittedError from ..externals import six VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) class NeighborsWarning(UserWarning): pass # Make sure that NeighborsWarning are displayed more than once warnings.simplefilter("always", NeighborsWarning) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 if dist.dtype is np.dtype(object): for point_dist_i, point_dist in enumerate(dist): # check if point_dist is iterable # (ex: RadiusNeighborClassifier.predict may set an element of # dist to 1e-6 to represent an 'outlier') if hasattr(point_dist, '__contains__') and 0. in point_dist: dist[point_dist_i] = point_dist == 0. else: dist[point_dist_i] = 1. / point_dist else: with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, **kwargs): if kwargs: warnings.warn("Passing additional arguments to the metric " "function as **kwargs is deprecated " "and will no longer be supported in 0.18. " "Use metric_params instead.", DeprecationWarning, stacklevel=3) if metric_params is None: metric_params = {} metric_params.update(kwargs) self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if (self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) return self class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X=None, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns distance Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([1., 1., 1.])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if n_neighbors is None: n_neighbors = self.n_neighbors if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_neighbors += 1 train_size = self._fit_X.shape[0] if n_neighbors > train_size: raise ValueError( "Expected n_neighbors <= n_samples, " " but n_samples = %d, n_neighbors = %d" % (train_size, n_neighbors) ) n_samples, _ = X.shape sample_range = np.arange(n_samples)[:, None] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again neigh_ind = neigh_ind[ sample_range, np.argsort(dist[sample_range, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind else: result = dist[sample_range, neigh_ind], neigh_ind else: result = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = self._tree.query(X, n_neighbors, return_distance=return_distance) else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return result else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = result else: neigh_ind = result sample_mask = neigh_ind != sample_range # Corner case: When the number of duplicates are more # than the number of neighbors, the first NN will not # be the sample, but a duplicate. # In that case mask the first duplicate. dup_gr_nbrs = np.all(sample_mask, axis=1) sample_mask[:, 0][dup_gr_nbrs] = False neigh_ind = np.reshape( neigh_ind[sample_mask], (n_samples, n_neighbors - 1)) if return_distance: dist = np.reshape( dist[sample_mask], (n_samples, n_neighbors - 1)) return dist, neigh_ind return neigh_ind def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, last dimension same as that of fit data, optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ if n_neighbors is None: n_neighbors = self.n_neighbors # kneighbors does the None handling. if X is not None: X = check_array(X, accept_sparse='csr') n_samples1 = X.shape[0] else: n_samples1 = self._fit_X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones(n_samples1 * n_neighbors) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': A_data, A_ind = self.kneighbors( X, n_neighbors, return_distance=True) A_data = np.ravel(A_data) else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) return kneighbors_graph class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([1., 1., 1.]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X if radius is None: radius = self.radius n_samples = X.shape[0] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind_list = [np.where(d <= radius)[0] for d in dist] # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list if return_distance: dist_array = np.empty(n_samples, dtype='object') if self.effective_metric_ == 'euclidean': dist_list = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)] else: dist_list = [d[neigh_ind[i]] for i, d in enumerate(dist)] dist_array[:] = dist_list results = dist_array, neigh_ind else: results = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: results = results[::-1] else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return results else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = results else: neigh_ind = results for ind, ind_neighbor in enumerate(neigh_ind): mask = ind_neighbor != ind neigh_ind[ind] = ind_neighbor[mask] if return_distance: dist[ind] = dist[ind][mask] if return_distance: return dist, neigh_ind return neigh_ind def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if X is not None: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) n_samples2 = self._fit_X.shape[0] if radius is None: radius = self.radius # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape = [n_samples, n_features] """ return self._fit(X)
bsd-3-clause
RegulatoryGenomicsUPF/pyicoteo
pyicoteolib/enrichment.py
1
40209
""" Pyicoteo is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import sys, os import math import random from core import Cluster, Region, InvalidLine, InsufficientData, ConversionNotSupported from defaults import * import utils import bam from regions import AnnotationGene, AnnotationTranscript, AnnotationExon, RegionWriter, read_gff_file, get_exons, get_introns, gene_slide import warnings try: from shutil import move except: from os import rename as move """ Differential expression and MA plot visualization module. """ def _region_from_dual(self, line): try: self.cluster_aux.clear() self.cluster_aux.read_line(line) strand = None if self.stranded_analysis: strand = self.cluster_aux.strand ret = Region(self.cluster_aux.name, self.cluster_aux.start, self.cluster_aux.end, name2=self.cluster_aux.name2, strand=strand) self.cluster_aux.clear() return ret except ValueError: pass #discarding header def __calc_reg_write(self, region_file, count, calculated_region): if count > self.region_mintags: region_file.write(calculated_region.write()) def calculate_region(self): """ Calculate a region file using the reads present in the both main files to analyze. """ self.logger.info('Generating regions...') self.sorted_region_path = '%s/calcregion_%s.bed'%(self._output_dir(), os.path.basename(self.current_output_path)) region_file = open(self.sorted_region_path, 'wb') if self.region_magic: regwriter = RegionWriter(self.gff_file, region_file, self.region_magic, no_sort=self.no_sort, logger=self.logger, write_as=BED, galaxy_workarounds=self.galaxy_workarounds) regwriter.write_regions() dual_reader = utils.DualSortedReader(self.current_experiment_path, self.current_control_path, self.experiment_format, self.logger) if self.stranded_analysis: calculate_region_stranded(self, dual_reader, region_file) else: calculate_region_notstranded(self, dual_reader, region_file) region_file.flush() def __cr_append(self, regions, region): regions.append(region) def calculate_region_notstranded(self, dual_reader, region_file): calculated_region = Region() readcount = 1 for line in dual_reader: if not calculated_region: #first region only calculated_region = _region_from_dual(self, line) calculated_region.end += self.proximity else: new_region = _region_from_dual(self, line) new_region.end += self.proximity if calculated_region.overlap(new_region): calculated_region.join(new_region) readcount += 1 else: calculated_region.end -= self.proximity __calc_reg_write(self, region_file, readcount, calculated_region) calculated_region = new_region.copy() readcount = 1 if calculated_region: calculated_region.end -= self.proximity __calc_reg_write(self, region_file, readcount, calculated_region) def calculate_region_stranded(self, dual_reader, region_file): temp_region_file = open(self.sorted_region_path, 'wb') region_plus = Region() region_minus = Region() regions = [] numreads_plus = 1 numreads_minus = 1 dual_reader = utils.DualSortedReader(self.current_experiment_path, self.current_control_path, self.experiment_format, self.logger) for line in dual_reader: new_region = _region_from_dual(self, line) new_region.end += self.proximity if not (region_plus and new_region.strand == PLUS_STRAND): region_plus = _region_from_dual(self, line) elif not (region_plus and new_region.strand == PLUS_STRAND): region_minus = _region_from_dual(self, line) else: if region_plus.overlap(new_region) and region_plus.strand == new_region.strand: region_plus.join(new_region) numreads_plus += 1 elif region_minus.overlap(new_region) and region_minus.strand == new_region.strand: region_minus.join(new_region) numreads_minus += 1 else: if new_region.strand == region_plus.strand: region_plus.end -= self.proximity self.__calc_reg_write(region_file, numreads_plus, region_plus) region_plus = new_region.copy() numreads_plus = 1 else: region_minus.end -= self.proximity self.__calc_reg_write(region_file, numreads_minus, region_minus) region_minus = new_region.copy() numreads_minus = 1 if region_plus: region_plus.end -= self.proximity regions.append(region_plus) if region_minus: region_minus.end -= self.proximity regions.append(region_minus) regions.sort(key=lambda x:(x.name, x.start, x.end, x.strand)) for region in regions: region_file.write(region.write()) def get_zscore(x, mean, sd): if sd > 0: return float(x-mean)/sd else: return 0 #This points are weird anyway def read_interesting_regions(self, file_path): regs = [] try: regs_file = open(file_path, 'r') for line in regs_file: regs.append(line.strip()) except IOError as ioerror: self.logger.warning("Interesting regions file not found") return regs # memory inefficient if there's a large number of interesting regions def plot_enrichment(self, file_path): with warnings.catch_warnings(): warnings.simplefilter("ignore") try: if self.postscript: import matplotlib matplotlib.use("PS") from matplotlib.pyplot import * from matplotlib import rcParams rcParams.update({'font.size': 22}) rcParams['legend.fontsize'] = 14 #decide labels if self.label1: label_main = self.label1 else: if self.real_control_path and self.real_experiment_path: label_main = '%s VS %s'%(os.path.basename(self.real_experiment_path), os.path.basename(self.real_control_path)) else: label_main = "A VS B" if self.label2: label_control = self.label2 else: if self.replica_path: label_control = '%s(A) VS %s(A)'%(os.path.basename(self.real_experiment_path), os.path.basename(self.replica_path)) else: label_control = 'Background distribution' #self.logger.info("Interesting regions path: %s" % (self.interesting_regions)) interesting_regs = [] if self.interesting_regions: self.logger.info("Reading interesting regions...") interesting_regs = read_interesting_regions(self, self.interesting_regions) #self.logger.info("Interesting regions: %s" % (interesting_regs)) #self.logger.info("Plot path: %s" % (file_path)) interesting_A = [] interesting_M = [] #self.logger.info("disable_significant: %s" % (self.disable_significant_color)) A = [] A_prime = [] M = [] M_significant = [] A_significant = [] M_prime = [] A_medians = [] points = [] minus_points = [] all_points = [] figure(figsize=(14,22)) biggest_A = -sys.maxint #for drawing smallest_A = sys.maxint #for drawing biggest_M = 0 #for drawing self.logger.info("Loading table...") for line in open(file_path): sline = line.split() try: enrich = dict(zip(enrichment_keys, sline)) # WARNING: for slide inter and slide intra: name2 = 'start:end' (no gene_id, FIXME?) name2 = enrich['name2'].split(':') gene_id = name2[0] if len(name2) >= 2: transcript_id = name2[1] # consider transcript_id? (exons) else: transcript_id = None if gene_id in interesting_regs or transcript_id in interesting_regs: interesting_M.append(float(enrich["M"])) interesting_A.append(float(enrich["A"])) biggest_A = max(biggest_A, float(enrich["A"])) smallest_A = min(smallest_A, float(enrich["A"])) biggest_M = max(biggest_M, abs(float(enrich["M"]))) biggest_A = max(biggest_A, float(enrich["A_prime"])) smallest_A = min(smallest_A, float(enrich["A_prime"])) biggest_M = max(biggest_M, abs(float(enrich["M_prime"]))) positive_point = self.zscore*float(enrich["sd"])+float(enrich["mean"]) negative_point = -self.zscore*float(enrich["sd"])+float(enrich["mean"]) A_median = float(enrich["A_median"]) all_points.append((A_median, positive_point, negative_point)) if abs(float(enrich["zscore"])) < self.zscore: M.append(float(enrich["M"])) A.append(float(enrich["A"])) else: M_significant.append(float(enrich["M"])) A_significant.append(float(enrich["A"])) M_prime.append(float(enrich["M_prime"])) A_prime.append(float(enrich["A_prime"])) except ValueError: pass #to skip the header all_points.sort(key= lambda x:x[0]) for t in all_points: (A_medians.append(t[0]), points.append(t[1]), minus_points.append(t[2])) if points: margin = 1.1 A_medians.append(biggest_A*margin) points.append(points[-1]) minus_points.append(minus_points[-1]) A_medians.insert(0, smallest_A) points.insert(0, points[0]) minus_points.insert(0, minus_points[0]) self.logger.info("Plotting points...") #Background plot subplot(211, axisbg="lightyellow") xlabel('Average', fontsize=30) ylabel('Log2 ratio', fontsize=30) axis([smallest_A*margin, biggest_A*margin, -biggest_M*margin, biggest_M*margin]) plot(A_prime, M_prime, '.', label=label_control, color = '#666666') plot(A_medians, points, 'r--', label="Z-score (%s)"%self.zscore) plot(A_medians, minus_points, 'r--') axhline(0, linestyle='--', color="grey", alpha=0.75) leg = legend(fancybox=True, scatterpoints=1, numpoints=1, loc=2, ncol=4, mode="expand") leg.get_frame().set_alpha(0.5) #Experiment plot subplot(212, axisbg="lightyellow") axis([smallest_A*margin, biggest_A*margin, -biggest_M*margin, biggest_M*margin]) plot(A, M, 'k.', label=label_main) if self.disable_significant_color: significant_marker = 'ko' else: significant_marker = 'ro' plot(A_significant, M_significant, significant_marker, label="%s (significant)"%label_main) plot(A_medians, points, 'r--', label="Z-score (%s)"%self.zscore) plot(A_medians, minus_points, 'r--') if self.interesting_regions: interesting_label = label_main + ' (interesting)' plot(interesting_A, interesting_M, 'H', label=interesting_label, color='#00EE00') # plotting "interesting" regions axhline(0, linestyle='--', color="grey", alpha=0.75) xlabel('Average', fontsize=30) ylabel('Log2 ratio', fontsize=30) leg2 = legend(fancybox=True, scatterpoints=1, numpoints=1, loc=2, ncol=4) leg2.get_frame().set_alpha(0.7) self._save_figure("enrichment_MA", width=500, height=2800) else: self.logger.warning("Nothing to plot.") except ImportError: if self.debug: raise __matplotlibwarn(self) def __matplotlibwarn(self): #FIXME move to utils.py or plotting module self.logger.warning('Pyicos can not find an installation of matplotlib, so no plot will be drawn. If you want to get a plot with the correlation values, install the matplotlib library.') def __calc_M(signal_a, signal_b): return math.log(float(signal_a)/float(signal_b), 2) def __calc_A(signal_a, signal_b): return (math.log(float(signal_a), 2)+math.log(float(signal_b), 2))/2 def _calculate_MA(self, region_path, read_counts, factor = 1, replica_factor = 1, file_a_reader=None, file_b_reader=None, replica_reader=None): tags_a = [] tags_b = [] numreads_background_1 = 0 numreads_background_2 = 0 total_reads_background_1 = 0 total_reads_background_2 = 0 self.logger.debug("Inside _calculate_MA") self.regions_analyzed_count = 0 enrichment_result = [] #This will hold the name, start and end of the region, plus the A, M, 'A and 'M if NOWRITE not in self.operations: out_file = open(self.current_output_path, 'wb') for region_line in open(region_path): sline = region_line.split() region_of_interest = self._region_from_sline(sline) if region_of_interest: region_a = None replica = None replica_tags = None signal_a = -1 signal_b = -1 signal_background_1 = -1 signal_background_2 = -1 swap1 = Region() swap2 = Region() if read_counts: signal_a = float(sline[6]) signal_b = float(sline[7])*factor signal_background_1 = float(sline[8]) signal_background_2 = float(sline[9])*replica_factor if CHECK_REPLICAS in self.operations: self.experiment_values.append(signal_background_1) self.replica_values.append(signal_background_2) else: self.logger.debug("Reading tags for %s ..."%region_of_interest) if self.experiment_format == BAM: tags_a = len(file_a_reader.get_overlaping_clusters(region_of_interest, overlap=self.overlap)) tags_b = len(file_b_reader.get_overlaping_clusters(region_of_interest, overlap=self.overlap)) else: tags_a = file_a_reader.get_overlaping_counts(region_of_interest, overlap=self.overlap) tags_b = file_b_reader.get_overlaping_counts(region_of_interest, overlap=self.overlap) if self.use_replica: if self.experiment_format == BAM: replica_tags = len(replica_reader.get_overlaping_clusters(region_of_interest, overlap=self.overlap)) else: replica_tags = replica_reader.get_overlaping_counts(region_of_interest, overlap=self.overlap) self.logger.debug("... done. tags_a: %s tags_b: %s"%(tags_a, tags_b)) #if we are using pseudocounts, use the union, use the intersection otherwise if (self.pseudocount and (tags_a or tags_b)) or (not self.pseudocount and tags_a and tags_b): signal_a = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, factor, self.total_reads_a, tags_a) signal_b = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, factor, self.total_reads_b, tags_b) self.already_norm = True if not self.counts_file: if (self.pseudocount and (tags_a or tags_b)) or (not self.pseudocount and tags_a and tags_b): if self.use_replica: replica = region_of_interest.copy() #replica.add_tags(replica_tags) numreads_background_1 = tags_a numreads_background_2 = replica_tags total_reads_background_1 = self.total_reads_a total_reads_background_2 = self.total_reads_replica signal_background_1 = signal_a signal_background_2 = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, replica_factor, self.total_reads_replica, replica_tags) else: numreads_background_1 = 0 numreads_background_2 = 0 for i in range(0, tags_a+tags_b): if random.uniform(0,2) > 1: numreads_background_1 += 1 else: numreads_background_2 += 1 total_reads_background_1 = total_reads_background_2 = self.average_total_reads signal_background_1 = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, replica_factor, self.average_total_reads, numreads_background_1) signal_background_2 = region_of_interest.normalized_counts(self.len_norm, self.n_norm, self.total_regions, self.pseudocount, replica_factor, self.average_total_reads, numreads_background_2) #if there is no data in the replica or in the swap and we are not using pseudocounts, dont write the data if signal_a > 0 and signal_b > 0 and signal_background_1 > 0 and signal_background_2 > 0 or self.use_MA: if self.use_MA and not self.already_norm: A = float(sline[10]) M = float(sline[11]) A_prime = float(sline[16]) M_prime = float(sline[17]) else: if not self.already_norm: #TODO refractor if self.len_norm: #read per kilobase in region signal_a = 1e3*(float(signal_a)/len(region_of_interest)) signal_b = 1e3*(float(signal_b)/len(region_of_interest)) signal_background_1 = 1e3*(float(signal_background_1)/len(region_of_interest)) signal_background_2 = 1e3*(float(signal_background_2)/len(region_of_interest)) if self.n_norm: #per million reads in the sample signal_a = 1e6*(float(signal_a)/self.total_reads_a) signal_b = 1e6*(float(signal_b)/self.total_reads_b) if self.use_replica: signal_background_1 = signal_a signal_background_2 = 1e6*(float(signal_background_2)/self.total_reads_replica) else: signal_background_1 = 1e6*(float(signal_background_1)/self.average_total_reads) signal_background_2 = 1e6*(float(signal_background_2)/self.average_total_reads) A = __calc_A(signal_a, signal_b) M = __calc_M(signal_a, signal_b) A_prime = __calc_A(signal_background_1, signal_background_2) M_prime = __calc_M(signal_background_1, signal_background_2) if CHECK_REPLICAS in self.operations: self.experiment_values.append(signal_background_1) self.replica_values.append(signal_background_2) if NOWRITE not in self.operations: out_file.write("%s\n"%("\t".join([region_of_interest.write().rstrip("\n"), str(signal_a), str(signal_b), str(signal_background_1), str(signal_background_2), str(A), str(M), str(self.total_reads_a), str(self.total_reads_b), str(tags_a), str(tags_b), str(A_prime), str(M_prime), str(total_reads_background_1), str(total_reads_background_2), str(numreads_background_1), str(numreads_background_2)]))) self.regions_analyzed_count += 1 self.logger.debug("LEAVING _calculate_MA") if NOWRITE in self.operations: return "" else: out_file.flush() out_file.close() # Outputting to HTML (if specified) if self.html_output is not None: self.logger.info("Generating HTML") try: from jinja2 import Environment, PackageLoader, Markup except: self.logger.error("Could not find the jinja2 library") return out_file.name loadr = PackageLoader('pyicoteolib', 'templates') env = Environment(loader=loadr) template = env.get_template('enrich_html.html') def jinja_read_file(filename): f = open(filename, 'r') #for line in f: # print line txt = ''.join(f.readlines()) f.close() return txt env.globals['jinja_read_file'] = jinja_read_file if self.galaxy_workarounds: # Galaxy changes the working directory when outputting multiple files parent_dir = "./" else: parent_dir = os.sep.join(out_file.name.split(os.sep)[0:-1]) + "/" plot_path = parent_dir + "enrichment_MA_" + out_file.name.split(os.sep)[-1] + ".png" bed_path = parent_dir + out_file.name.split(os.sep)[-1] html_file = open(self.html_output, 'w') html_file.write(template.render({'page_title': 'Enrichment results', 'results_output': jinja_read_file(out_file.name), 'plot_path': plot_path, 'bed_path': bed_path})) html_file.flush() html_file.close() return out_file.name def _calculate_total_lengths(self): msg = "Calculating enrichment in regions" if self.counts_file: self.sorted_region_path = self.counts_file if (not self.total_reads_a or not self.total_reads_b or (not self.total_reads_replica and self.use_replica)) and not self.use_MA: self.logger.info("... counting from counts file...") self.total_reads_a = 0 self.total_reads_b = 0 if self.total_reads_replica: self.total_reads_replica = 0 else: self.total_reads_replica = 1 for line in open(self.counts_file): try: enrich = dict(zip(enrichment_keys, line.split())) self.total_reads_a += float(enrich["signal_a"]) self.total_reads_b += float(enrich["signal_b"]) if self.use_replica: self.total_reads_replica += float(enrich["signal_prime_2"]) except ValueError: self.logger.debug("(Counting) skip header...") else: self.logger.info("... counting number of lines in files...") if not self.total_reads_a: if self.experiment_format == BAM: self.total_reads_a = bam.size(self.current_experiment_path) else: self.total_reads_a = sum(1 for line in utils.open_file(self.current_experiment_path, self.experiment_format, logger=self.logger)) if not self.total_reads_b: if self.experiment_format == BAM: self.total_reads_b = bam.size(self.current_control_path) else: self.total_reads_b = sum(1 for line in utils.open_file(self.current_control_path, self.control_format, logger=self.logger)) if self.use_replica and not self.total_reads_replica: if self.experiment_format == BAM: self.total_reads_replica = bam.size(self.replica_path) else: self.total_reads_replica = sum(1 for line in utils.open_file(self.replica_path, self.experiment_format, logger=self.logger)) self.logger.debug("Number lines in experiment A: %s Experiment B: %s"%(self.total_reads_a, self.total_reads_b)) if self.use_replica: msg = "%s using replicas..."%msg else: msg = "%s using swap..."%msg self.logger.info(msg) self.average_total_reads = (self.total_reads_a+self.total_reads_b)/2 def enrichment(self): file_a_reader = file_b_reader = replica_reader = None self.use_replica = (bool(self.replica_path) or (bool(self.counts_file) and self.use_replica_flag)) self.logger.debug("Use replica: %s"%self.use_replica) if not USE_MA in self.operations: _calculate_total_lengths(self) if not self.counts_file: file_a_reader = utils.read_fetcher(self.current_experiment_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential, only_counts=True) file_b_reader = utils.read_fetcher(self.current_control_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential, only_counts=True) if self.use_replica: replica_reader = utils.read_fetcher(self.current_replica_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential, only_counts=True) if self.sorted_region_path: self.logger.info('Using region file %s (%s)'%(self.region_path, self.region_format)) else: calculate_region(self) #create region file semi automatically self.total_regions = sum(1 for line in open(self.sorted_region_path)) self.logger.info("... analyzing regions, calculating normalized counts, A / M and replica or swap...") self.already_norm = False if self.use_MA: ma_path = self.counts_file else: ma_path = self.sorted_region_path out_path = _calculate_MA(self, ma_path, bool(self.counts_file), 1, 1, file_a_reader, file_b_reader, replica_reader) self.already_norm = True self.logger.debug("Already normalized: %s"%self.already_norm) if self.tmm_norm: if CHECK_REPLICAS in self.operations: self.experiment_values = [] self.replica_values = [] self.logger.info("TMM Normalizing...") tmm_factor = calc_tmm_factor(self, out_path, self.regions_analyzed_count, False) replica_tmm_factor = 1 if self.use_replica: replica_tmm_factor = calc_tmm_factor(self, out_path, self.regions_analyzed_count, True) #move output file to old output #use as input old_output = '%s/notnormalized_%s'%(self._current_directory(), os.path.basename(self.current_output_path)) move(os.path.abspath(self.current_output_path), old_output) out_path = _calculate_MA(self, old_output, True, tmm_factor, replica_tmm_factor, True) #recalculate with the new factor, using the counts again if self.quant_norm: self.logger.info("Full quantile normalization...") signal_a = [] signal_prime_1 = [] enrich = [] for line in open(out_path): sline = line.split() enrich_line = dict(zip(enrichment_keys, sline)) enrich.append(enrich_line) signal_a.append(float(enrich_line['signal_a'])) signal_prime_1.append(float(enrich_line['signal_prime_1'])) #full quantile normalization signal_a.sort() enrich.sort(key=lambda x:float(x['signal_b'])) quant_counts = open('%s/quantcounts_%s'%(self._current_directory(), os.path.basename(self.current_output_path)), 'w') for i in range(len(enrich)): enrich[i]['signal_b'] = signal_a[i] self.logger.info("Full quantile normalization replica...") #full quantile normalization of the replica signal_prime_1.sort() enrich.sort(key=lambda x:float(x['signal_prime_2'])) for i in range(len(enrich)): enrich[i]['signal_prime_2'] = signal_prime_1[i] quant_counts.write("%s\n"%"\t".join(str(enrich[i][key]) for key in enrichment_keys[:20])) #write the lines quant_counts.flush() out_path = _calculate_MA(self, quant_counts.name, True, 1, 1, True) #recalculate with the new factor, using the counts again self._manage_temp_file(quant_counts.name) self.logger.info("%s regions analyzed."%self.regions_analyzed_count) if not NOWRITE in self.operations: self.logger.info("Enrichment result saved to %s"%self.current_output_path) if CHECK_REPLICAS in self.operations: check_replica(self) return out_path def _sub_tmm(counts_a, counts_b, reads_a, reads_b): return (counts_a-reads_a)/(counts_a*reads_a) + (counts_b-reads_b)/(counts_b*reads_b) def calc_tmm_factor(self, file_counts, total_regions, replica): if replica: signal_1 = "signal_prime_1" signal_2 = "signal_prime_2" M = "M_prime" reads_2 = self.total_reads_replica else: signal_1 = "signal_a" signal_2 = "signal_b" M = "M" reads_2 = self.total_reads_b values_list = [] #read the file inside the values_list for line in open(file_counts): sline = line.split() values_list.append(dict(zip(enrichment_keys, sline))) a_trim_number = int(round(total_regions*self.a_trim)) #discard the bad A self.logger.debug("Removing the worst A (%s regions, %s percent)"%(a_trim_number, self.a_trim*100)) values_list.sort(key=lambda x:float(x["A"])) #sort by A for i in range (0, a_trim_number): values_list.pop(0) values_list.sort(key=lambda x:float(x[M])) #sort by M m_trim_number = int(round(total_regions*(self.m_trim/2))) #this number is half the value of the flag, because we will trim half below, and half over #remove on the left for i in range(0, m_trim_number): values_list.pop(0) #remove on the right for i in range(0, m_trim_number): values_list.pop(-1) #now calculate the normalization factor arriba = 0 abajo = 0 for value in values_list: w = _sub_tmm(float(value[signal_1]), float(value[signal_2]), self.total_reads_a, reads_2) arriba += w*float(value[M]) abajo += w try: factor = 2**(arriba/abajo) except ZeroDivisionError: self.logger.warning("Division by zero, TMM factor could not be calculated.") factor = 1 if replica: self.logger.info("Replica TMM Normalization Factor: %s"%factor) else: self.logger.info("TMM Normalization Factor: %s"%factor) return factor def __load_enrichment_result(values_path): ret = [] for line in open(values_path): sline = line.split() try: float(sline[1]) ret.append(dict(zip(enrichment_keys, sline))) except ValueError: pass return ret def calculate_zscore(self, values_path): num_regions = sum(1 for line in open(values_path)) bin_size = int(self.binsize*num_regions) if bin_size < 50: self.logger.warning("The bin size results in a sliding window smaller than 50, adjusting window to 50 in order to get statistically meaningful results.") bin_size = 50 bin_step = max(1, int(round(self.bin_step*bin_size))) self.logger.info("Enrichment window calculation using a sliding window size of %s, sliding with a step of %s"%(bin_size, bin_step)) self.logger.info("... calculating zscore...") enrichment_result = __load_enrichment_result(values_path) enrichment_result.sort(key= lambda x:(float(x["A_prime"]))) self.logger.debug("Number of loaded counts: %s"%len(enrichment_result)) self.points = [] #get the standard deviations for i in range(0, num_regions-bin_size+bin_step, bin_step): #get the slice if i+bin_size < num_regions: result_chunk = enrichment_result[i:i+bin_size] else: result_chunk = enrichment_result[i:] #last chunk #retrieve the values mean_acum = 0 a_acum = 0 Ms_replica = [] for entry in result_chunk: mean_acum += float(entry["M_prime"]) a_acum += float(entry["A_prime"]) Ms_replica.append(float(entry["M_prime"])) #add them to the points of mean and sd mean = mean_acum/len(result_chunk) sd = math.sqrt((sum((x - mean)**2 for x in Ms_replica))/len(Ms_replica)) #the A median A_median = a_acum / len(result_chunk) self.points.append([A_median, mean, sd]) #The A asigned to the window, the mean and the standard deviation #self.logger.debug("Window of %s length, with A median: %s mean: %s sd: %s"%(len(result_chunk), self.points[-1][0], self.points[-1][1], self.points[-1][2], len(self.points))) #update z scores for entry in enrichment_result: entry["A_median"] = 0 entry["mean"] = 0 entry["sd"] = 0 entry["zscore"] = 0 closest_A = sys.maxint sd_position = 0 for i in range(0, len(self.points)): new_A = self.points[i][0] if new_A != closest_A: #skip repeated points if abs(closest_A - float(entry["A"])) >= abs(new_A - float(entry["A"])): closest_A = new_A sd_position = i else: break #already found, no need to go further since the points are ordered entry["A_median"] = closest_A if self.points: #only calculate if there where windows... __sub_zscore(self.sdfold, entry, self.points[sd_position]) if not self.points: # ... otherwise give a warning self.logger.warning("Insufficient number of regions analyzed (%s), z-score values could not be calculated"%num_regions) enrichment_result.sort(key=lambda x:(x["name"], int(x["start"]), int(x["end"]))) old_file_path = '%s/before_zscore_%s'%(self._current_directory(), os.path.basename(values_path)) #create path for the outdated file move(os.path.abspath(values_path), old_file_path) #move the file new_file = file(values_path, 'w') #open a new file in the now empty file space if not self.skip_header: new_file.write('\t'.join(enrichment_keys)) new_file.write('\n') for entry in enrichment_result: new_file.write("\t".join(str(entry[key]) for key in enrichment_keys)+"\n") self._manage_temp_file(old_file_path) return values_path def __sub_zscore(sdfold, entry, point): entry["mean"] = str(point[1]) entry["sd"] = str(point[2]) entry["zscore"] = str(get_zscore(float(entry["M"]), float(entry["mean"]), sdfold*float(entry["sd"]))) def check_replica(self): #discard everything below the flag new_experiment = [] new_replica = [] min_value = sys.maxint max_value = -sys.maxint for i in range(len(self.replica_values)): if self.experiment_values[i] > self.count_filter and self.replica_values[i] > self.count_filter: new_experiment.append(math.log(self.experiment_values[i], 2)) new_replica.append(math.log(self.replica_values[i], 2)) min_value = min(min_value, math.log(self.experiment_values[i], 2), math.log(self.replica_values[i], 2)) max_value = max(max_value, math.log(self.experiment_values[i], 2), math.log(self.replica_values[i], 2)) #print self.replica_values self.experiment_values = new_experiment self.replica_values = new_replica try: if self.postscript: import matplotlib matplotlib.use("PS") from matplotlib.pyplot import plot, show, xlabel, ylabel, axhline, axis, clf, text, title, xlim, ylim except: __matplotlibwarn(self) return 0 clf() r_squared = utils.pearson(self.experiment_values, self.replica_values)**2 text(min_value+abs(max_value)*0.1, max_value-abs(max_value)*0.2, r'Pearson $R^2$= %s'%round(r_squared, 3), fontsize=18, bbox={'facecolor':'yellow', 'alpha':0.5, 'pad':10}) xlabel("log2(%s)"%self.experiment_label, fontsize=18) ylabel("log2(%s)"%self.replica_label, fontsize=18) xlim(min_value, max_value) ylim(min_value, max_value) title(self.title_label, fontsize=24) plot(self.experiment_values, self.replica_values, '.') self._save_figure("check_replica") def check_replica_correlation(self): "No usado, de momento" min_tags = 20 experiment_reader = utils.read_fetcher(self.current_experiment_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential) replica_reader = utils.read_fetcher(self.current_replica_path, self.experiment_format, cached=self.cached, logger=self.logger, use_samtools=self.use_samtools, access_sequential=self.access_sequential) correlations_acum = 0 num_correlations = 0 for region_line in open(self.region_path): sline = region_line.split() region_experiment = self._region_from_sline(sline) region_replica = region_experiment.copy() tags_experiment = experiment_reader.get_overlaping_clusters(region_experiment, overlap=1) tags_replica = replica_reader.get_overlaping_clusters(region_experiment, overlap=1) count_experiment = len(tags_experiment) count_replica = len(tags_replica) correlations = [] if count_experiment+count_replica > min_tags: region_experiment.add_tags(tags_experiment, clusterize=True) region_replica.add_tags(tags_replica, clusterize=True) num_correlations += 1 correlation = utils.pearson(region_experiment.get_array(), region_replica.get_array()) correlations_acum += max(0, correlation) correlations.append(correlation) print correlations_acum/num_correlations try: if self.postscript: import matplotlib matplotlib.use("PS") from matplotlib.pyplot import plot, boxplot, show, legend, figure, xlabel, ylabel, subplot, axhline, axis except: __matplotlibwarn(self) return 0 print correlations boxplot(correlations) self._save_figure("check_replica")
gpl-3.0
tardis-sn/tardis
tardis/plasma/properties/nlte.py
1
10502
import logging import os import numpy as np import pandas as pd from tardis.plasma.properties.base import ( PreviousIterationProperty, ProcessingPlasmaProperty, ) from tardis.plasma.properties.ion_population import PhiSahaNebular __all__ = [ "PreviousElectronDensities", "PreviousBetaSobolev", "HeliumNLTE", "HeliumNumericalNLTE", ] logger = logging.getLogger(__name__) class PreviousElectronDensities(PreviousIterationProperty): """ Attributes ---------- previous_electron_densities : The values for the electron densities converged upon in the previous iteration. """ outputs = ("previous_electron_densities",) def set_initial_value(self, kwargs): initial_value = pd.Series( 1000000.0, index=kwargs["abundance"].columns, ) self._set_initial_value(initial_value) class PreviousBetaSobolev(PreviousIterationProperty): """ Attributes ---------- previous_beta_sobolev : The beta sobolev values converged upon in the previous iteration. """ outputs = ("previous_beta_sobolev",) def set_initial_value(self, kwargs): initial_value = pd.DataFrame( 1.0, index=kwargs["atomic_data"].lines.index, columns=kwargs["abundance"].columns, ) self._set_initial_value(initial_value) class HeliumNLTE(ProcessingPlasmaProperty): outputs = ("helium_population",) @staticmethod def calculate( level_boltzmann_factor, ionization_data, beta_rad, g, g_electron, w, t_rad, t_electrons, delta, zeta_data, number_density, partition_function, ): """ Updates all of the helium level populations according to the helium NLTE recomb approximation. """ helium_population = level_boltzmann_factor.loc[2].copy() # He I excited states he_one_population = HeliumNLTE.calculate_helium_one( g_electron, beta_rad, ionization_data, level_boltzmann_factor, g, w ) helium_population.loc[0].update(he_one_population) # He I ground state helium_population.loc[0, 0] = 0.0 # He II excited states he_two_population = level_boltzmann_factor.loc[2, 1].mul( (g.loc[2, 1, 0] ** (-1.0)) ) helium_population.loc[1].update(he_two_population) # He II ground state helium_population.loc[1, 0] = 1.0 # He III states helium_population.loc[2, 0] = HeliumNLTE.calculate_helium_three( t_rad, w, zeta_data, t_electrons, delta, g_electron, beta_rad, ionization_data, g, ) # unnormalised = helium_population.sum() # normalised = helium_population.mul(number_density.ix[2] / unnormalised) # helium_population.update(normalised) return helium_population @staticmethod def calculate_helium_one( g_electron, beta_rad, ionization_data, level_boltzmann_factor, g, w ): """ Calculates the He I level population values, in equilibrium with the He II ground state. """ return ( level_boltzmann_factor.loc[2, 0] * (1.0 / (2 * g.loc[2, 1, 0])) * (1 / g_electron) * (1 / (w ** 2.0)) * np.exp(ionization_data.loc[2, 1] * beta_rad) ) @staticmethod def calculate_helium_three( t_rad, w, zeta_data, t_electrons, delta, g_electron, beta_rad, ionization_data, g, ): """ Calculates the He III level population values. """ zeta = PhiSahaNebular.get_zeta_values(zeta_data, 2, t_rad)[1] he_three_population = ( 2 * (float(g.loc[2, 2, 0]) / g.loc[2, 1, 0]) * g_electron * np.exp(-ionization_data.loc[2, 2] * beta_rad) * w * (delta.loc[2, 2] * zeta + w * (1.0 - zeta)) * (t_electrons / t_rad) ** 0.5 ) return he_three_population class HeliumNumericalNLTE(ProcessingPlasmaProperty): """ IMPORTANT: This particular property requires a specific numerical NLTE solver and a specific atomic dataset (neither of which are distributed with Tardis) to work. """ outputs = ("helium_population",) def __init__(self, plasma_parent, heating_rate_data_file): super(HeliumNumericalNLTE, self).__init__(plasma_parent) self._g_upper = None self._g_lower = None self.heating_rate_data = np.loadtxt(heating_rate_data_file, unpack=True) def calculate( self, ion_number_density, electron_densities, t_electrons, w, lines, j_blues, levels, level_boltzmann_factor, t_rad, zeta_data, g_electron, delta, partition_function, ionization_data, beta_rad, g, time_explosion, ): logger.info("Performing numerical NLTE He calculations.") if len(j_blues) == 0: return None # Outputting data required by SH module for zone, _ in enumerate(electron_densities): with open( f"He_NLTE_Files/shellconditions_{zone}.txt", "w" ) as output_file: output_file.write(ion_number_density.loc[2].sum()[zone]) output_file.write(electron_densities[zone]) output_file.write(t_electrons[zone]) output_file.write(self.heating_rate_data[zone]) output_file.write(w[zone]) output_file.write(time_explosion) output_file.write(t_rad[zone]) output_file.write(self.plasma_parent.v_inner[zone]) output_file.write(self.plasma_parent.v_outer[zone]) for zone, _ in enumerate(electron_densities): with open( f"He_NLTE_Files/abundances_{zone}.txt", "w" ) as output_file: for element in range(1, 31): try: number_density = ( ion_number_density[zone].loc[element].sum() ) except: number_density = 0.0 output_file.write(number_density) helium_lines = lines[lines["atomic_number"] == 2] helium_lines = helium_lines[helium_lines["ion_number"] == 0] for zone, _ in enumerate(electron_densities): with open( f"He_NLTE_Files/discradfield_{zone}.txt", "w" ) as output_file: j_blues = pd.DataFrame(j_blues, index=lines.index) helium_j_blues = j_blues[zone].loc[helium_lines.index] for value in helium_lines.index: if helium_lines.level_number_lower.loc[value] < 35: output_file.write( int(helium_lines.level_number_lower.loc[value] + 1), int(helium_lines.level_number_upper.loc[value] + 1), j_blues[zone].loc[value], ) # Running numerical simulations for zone, _ in enumerate(electron_densities): os.rename( f"He_NLTE_Files/abundances{zone}.txt", "He_NLTE_Files/abundances_current.txt", ) os.rename( f"He_NLTE_Files/shellconditions{zone}.txt", "He_NLTE_Files/shellconditions_current.txt", ) os.rename( f"He_NLTE_Files/discradfield{zone}.txt", "He_NLTE_Files/discradfield_current.txt", ) os.system("nlte-solver-module/bin/nlte_solvertest >/dev/null") os.rename( "He_NLTE_Files/abundances_current.txt", f"He_NLTE_Files/abundances{zone}.txt", ) os.rename( "He_NLTE_Files/shellconditions_current.txt", f"He_NLTE_Files/shellconditions{zone}.txt", ) os.rename( "He_NLTE_Files/discradfield_current.txt", f"He_NLTE_Files/discradfield{zone}.txt", ) os.rename("debug_occs.dat", f"He_NLTE_Files/occs{zone}.txt") # Reading in populations from files helium_population = level_boltzmann_factor.loc[2].copy() for zone, _ in enumerate(electron_densities): with open( f"He_NLTE_Files/discradfield{zone}.txt", "r" ) as read_file: for level in range(0, 35): level_population = read_file.readline() level_population = float(level_population) helium_population[zone].loc[0, level] = level_population helium_population[zone].loc[1, 0] = float(read_file.readline()) # Performing He LTE level populations (upper two energy levels, # He II excited states, He III) he_one_population = HeliumNLTE.calculate_helium_one( g_electron, beta_rad, partition_function, ionization_data, level_boltzmann_factor, electron_densities, g, w, t_rad, t_electrons, ) helium_population.loc[0, 35].update(he_one_population.loc[35]) helium_population.loc[0, 36].update(he_one_population.loc[36]) he_two_population = level_boltzmann_factor.loc[2, 1, 1:].mul( (g.loc[2, 1, 0] ** (-1)) * helium_population.loc[s1, 0] ) helium_population.loc[1, 1:].update(he_two_population) helium_population.loc[2, 0] = HeliumNLTE.calculate_helium_three( t_rad, w, zeta_data, t_electrons, delta, g_electron, beta_rad, partition_function, ionization_data, electron_densities, ) unnormalised = helium_population.sum() normalised = helium_population.mul( ion_number_density.loc[2].sum() / unnormalised ) helium_population.update(normalised) return helium_population
bsd-3-clause
bionet/ted.python
demos/iaf_delay_demo.py
1
3443
#!/usr/bin/env python """ Demos of MIMO time encoding and decoding algorithms that use IAF neurons with delays. """ # Copyright (c) 2009-2015, Lev Givon # All rights reserved. # Distributed under the terms of the BSD license: # http://www.opensource.org/licenses/bsd-license import numpy as np # Set matplotlib backend so that plots can be generated without a # display: import matplotlib matplotlib.use('AGG') from bionet.utils.misc import func_timer import bionet.utils.band_limited as bl import bionet.utils.plotting as pl import bionet.ted.iaf as iaf # For determining output plot file names: output_name = 'iaf_delay_demo_' output_count = 0 output_ext = '.png' # Define input signal generation parameters: T = 0.05 dur = 2*T dt = 1e-6 f = 100 bw = 2*np.pi*f np.random.seed(0) noise_power = None comps = 8 if noise_power == None: fig_title = 'IAF Input Signal with No Noise' else: fig_title = 'IAF Input Signal with %d dB of Noise' % noise_power M = 3 # number of input signals N = 9 # number of neurons # Starting and ending points of interval that is encoded: t_start = 0.02 t_end = t_start+T if t_end > dur: raise ValueError('t_start is too large') k_start = int(np.round(t_start/dt)) k_end = int(np.round(t_end/dt)) t_enc = np.arange(k_start, k_end, dtype=np.float)*dt u_list = [] for i in xrange(M): fig_title_in = fig_title + ' (Signal #' + str(i+1) + ')' print fig_title_in u = func_timer(bl.gen_band_limited)(dur, dt, f, noise_power, comps) u /= max(u) u *= 1.5 pl.plot_signal(t_enc, u[k_start:k_end], fig_title_in, output_name + str(output_count) + output_ext) u_list.append(u) output_count += 1 t = np.arange(len(u_list[0]), dtype=np.float)*dt # Define neuron parameters: def randu(a, b, *d): """Create an array of the given shape and propagate it with random samples from a uniform distribution over ``[a, b)``.""" if a >= b: raise ValueError('b must exceed a') return a+(b-a)*np.random.rand(*d) b_list = list(randu(2.3, 3.3, N)) d_list = list(randu(0.15, 0.25, N)) k_list = list(0.01*np.ones(N)) a_list = map(list, np.reshape(np.random.exponential(0.003, N*M), (N, M))) w_list = map(list, np.reshape(randu(0.5, 1.0, N*M), (N, M))) fig_title = 'Signal Encoded Using Delayed IAF Encoder' print fig_title s_list = func_timer(iaf.iaf_encode_delay)(u_list, t_start, dt, b_list, d_list, k_list, a_list, w_list) for i in xrange(M): for j in xrange(N): fig_title_out = fig_title + '\n(Signal #' + str(i+1) + \ ', Neuron #' + str(j+1) + ')' pl.plot_encoded(t_enc, u_list[i][k_start:k_end], s_list[j][np.cumsum(s_list[j])<T], fig_title_out, output_name + str(output_count) + output_ext) output_count += 1 fig_title = 'Signal Decoded Using Delayed IAF Decoder' print fig_title u_rec_list = func_timer(iaf.iaf_decode_delay)(s_list, T, dt, b_list, d_list, k_list, a_list, w_list) for i in xrange(M): fig_title_out = fig_title + ' (Signal #' + str(i+1) + ')' pl.plot_compare(t_enc, u_list[i][k_start:k_end], u_rec_list[i][0:k_end-k_start], fig_title_out, output_name + str(output_count) + output_ext) output_count += 1
bsd-3-clause
rahuldhote/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Static_Normal_Contact/Normal_Behviour/SoftContact_NonLinHardSoftShear/plot.py
1
1585
#!/usr/bin/python import h5py import matplotlib.pylab as plt import sys import numpy as np; ################ Node # 2 Displacement ############################# ####################################### ## Analytical Solution ####################################### finput = h5py.File('Analytical_Solution.feioutput') plt.figure() # Read the time and displacement times = finput["time"][:] normal_strain = finput["/Model/Elements/Element_Outputs"][6,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; # plt.plot(normal_strain,normal_stress,'-r',Linewidth=4,label='Analytical Solution') plt.hold(True) ####################################### ## Current Solution ####################################### # Go over each feioutput and plot each one. thefile = "Monotonic_Contact_Behaviour_Adding_Normal_Load.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] normal_strain = finput["/Model/Elements/Element_Outputs"][6,:] normal_stress = -finput["/Model/Elements/Element_Outputs"][9,:]; # Configure the figure filename, according to the input filename. outfig=thefile.replace("_","-") outfigname=outfig.replace("h5.feioutput","pdf") # Plot the figure. Add labels and titles. plt.plot(normal_strain,normal_stress,'-k',Linewidth=4,label='Numerical Solution') plt.xlabel(r"Normal Strain $\epsilon$") plt.ylabel(r"Normal Stress $\sigma$") plt.legend() plt.savefig("Contact_Normal_Interface_Behavour.pdf", bbox_inches='tight') # plt.show() # #####################################################################
cc0-1.0
CVML/scikit-learn
sklearn/feature_extraction/tests/test_image.py
205
10378
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org> # Gael Varoquaux <gael.varoquaux@normalesup.org> # License: BSD 3 clause import numpy as np import scipy as sp from scipy import ndimage from nose.tools import assert_equal, assert_true from numpy.testing import assert_raises from sklearn.feature_extraction.image import ( img_to_graph, grid_to_graph, extract_patches_2d, reconstruct_from_patches_2d, PatchExtractor, extract_patches) from sklearn.utils.graph import connected_components def test_img_to_graph(): x, y = np.mgrid[:4, :4] - 10 grad_x = img_to_graph(x) grad_y = img_to_graph(y) assert_equal(grad_x.nnz, grad_y.nnz) # Negative elements are the diagonal: the elements of the original # image. Positive elements are the values of the gradient, they # should all be equal on grad_x and grad_y np.testing.assert_array_equal(grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]) def test_grid_to_graph(): #Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert_true(connected_components(A)[0] == 2) # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert_true(connected_components(A)[0] == 1) # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert_true(A.dtype == np.bool) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert_true(A.dtype == np.int) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float) assert_true(A.dtype == np.float) def test_connect_regions(): lena = sp.misc.lena() for thr in (50, 150): mask = lena > thr graph = img_to_graph(lena, mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def test_connect_regions_with_grid(): lena = sp.misc.lena() mask = lena > 50 graph = grid_to_graph(*lena.shape, mask=mask) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) mask = lena > 150 graph = grid_to_graph(*lena.shape, mask=mask, dtype=None) assert_equal(ndimage.label(mask)[1], connected_components(graph)[0]) def _downsampled_lena(): lena = sp.misc.lena().astype(np.float32) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = (lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]) lena = lena.astype(np.float) lena /= 16.0 return lena def _orange_lena(lena=None): lena = _downsampled_lena() if lena is None else lena lena_color = np.zeros(lena.shape + (3,)) lena_color[:, :, 0] = 256 - lena lena_color[:, :, 1] = 256 - lena / 2 lena_color[:, :, 2] = 256 - lena / 4 return lena_color def _make_images(lena=None): lena = _downsampled_lena() if lena is None else lena # make a collection of lenas images = np.zeros((3,) + lena.shape) images[0] = lena images[1] = lena + 1 images[2] = lena + 2 return images downsampled_lena = _downsampled_lena() orange_lena = _orange_lena(downsampled_lena) lena_collection = _make_images(downsampled_lena) def test_extract_patches_all(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_all_color(): lena = orange_lena i_h, i_w = lena.shape[:2] p_h, p_w = 16, 16 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_all_rect(): lena = downsampled_lena lena = lena[:, 32:97] i_h, i_w = lena.shape p_h, p_w = 16, 12 expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1) patches = extract_patches_2d(lena, (p_h, p_w)) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) def test_extract_patches_max_patches(): lena = downsampled_lena i_h, i_w = lena.shape p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w), max_patches=100) assert_equal(patches.shape, (100, p_h, p_w)) expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1)) patches = extract_patches_2d(lena, (p_h, p_w), max_patches=0.5) assert_equal(patches.shape, (expected_n_patches, p_h, p_w)) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=2.0) assert_raises(ValueError, extract_patches_2d, lena, (p_h, p_w), max_patches=-1.0) def test_reconstruct_patches_perfect(): lena = downsampled_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_reconstruct_patches_perfect_color(): lena = orange_lena p_h, p_w = 16, 16 patches = extract_patches_2d(lena, (p_h, p_w)) lena_reconstructed = reconstruct_from_patches_2d(patches, lena.shape) np.testing.assert_array_equal(lena, lena_reconstructed) def test_patch_extractor_fit(): lenas = lena_collection extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0) assert_true(extr == extr.fit(lenas)) def test_patch_extractor_max_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 max_patches = 100 expected_n_patches = len(lenas) * max_patches extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) max_patches = 0.5 expected_n_patches = len(lenas) * int((i_h - p_h + 1) * (i_w - p_w + 1) * max_patches) extr = PatchExtractor(patch_size=(p_h, p_w), max_patches=max_patches, random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_max_patches_default(): lenas = lena_collection extr = PatchExtractor(max_patches=100, random_state=0) patches = extr.transform(lenas) assert_equal(patches.shape, (len(lenas) * 100, 12, 12)) def test_patch_extractor_all_patches(): lenas = lena_collection i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w)) def test_patch_extractor_color(): lenas = _make_images(orange_lena) i_h, i_w = lenas.shape[1:3] p_h, p_w = 8, 8 expected_n_patches = len(lenas) * (i_h - p_h + 1) * (i_w - p_w + 1) extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0) patches = extr.transform(lenas) assert_true(patches.shape == (expected_n_patches, p_h, p_w, 3)) def test_extract_patches_strided(): image_shapes_1D = [(10,), (10,), (11,), (10,)] patch_sizes_1D = [(1,), (2,), (3,), (8,)] patch_steps_1D = [(1,), (1,), (4,), (2,)] expected_views_1D = [(10,), (9,), (3,), (2,)] last_patch_1D = [(10,), (8,), (8,), (2,)] image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)] patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)] patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)] expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)] last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)] image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)] patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)] patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)] expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)] last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)] image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D expected_views = expected_views_1D + expected_views_2D + expected_views_3D last_patches = last_patch_1D + last_patch_2D + last_patch_3D for (image_shape, patch_size, patch_step, expected_view, last_patch) in zip(image_shapes, patch_sizes, patch_steps, expected_views, last_patches): image = np.arange(np.prod(image_shape)).reshape(image_shape) patches = extract_patches(image, patch_shape=patch_size, extraction_step=patch_step) ndim = len(image_shape) assert_true(patches.shape[:ndim] == expected_view) last_patch_slices = [slice(i, i + j, None) for i, j in zip(last_patch, patch_size)] assert_true((patches[[slice(-1, None, None)] * ndim] == image[last_patch_slices].squeeze()).all()) def test_extract_patches_square(): # test same patch size for all dimensions lena = downsampled_lena i_h, i_w = lena.shape p = 8 expected_n_patches = ((i_h - p + 1), (i_w - p + 1)) patches = extract_patches(lena, patch_shape=p) assert_true(patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)) def test_width_patch(): # width and height of the patch should be less than the image x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert_raises(ValueError, extract_patches_2d, x, (4, 1)) assert_raises(ValueError, extract_patches_2d, x, (1, 4))
bsd-3-clause
hakujyo/chessplaying_robot
matchpicture.py
1
1381
import cv2 import numpy as np import time from matplotlib import pyplot as plt x = 0 y = 0 def makematchpicture(Grayurl): img = cv2.imread(Grayurl, 0) img2 = img.copy() template = cv2.imread('test.png', 0) w, h = template.shape[::-1] methods = ['cv2.TM_SQDIFF'] for meth in methods: img = img2.copy() method = eval(meth) # Apply template Matching res = cv2.matchTemplate(img, template, method) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) # If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc bottom_right = (top_left[0] + w, top_left[1] + h) print("模板匹配:",int(top_left[0] + w / 2), int(top_left[1] + h / 2)) cv2.rectangle(img, top_left, bottom_right, 255, 2) plt.figure() plt.subplot(121), plt.imshow(res, cmap='gray') plt.title('Matching Result'), plt.xticks([]), plt.yticks([]) plt.subplot(122), plt.imshow(img, cmap='gray') plt.title('Detected Point'), plt.xticks([]), plt.yticks([]) plt.suptitle(meth) global x global y x = int(top_left[0] + w / 2) y = int(top_left[1] + h / 2)
gpl-3.0
GoogleCloudPlatform/ml-on-gcp
tutorials/sklearn/hpsearch/gke_parallel.py
1
16248
# Copyright 2017, Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np from helpers.gke_helper import get_cluster from helpers.gcs_helper import pickle_and_upload, get_uri_blob, download_uri_and_unpickle from helpers.kubernetes_helper import create_job, delete_jobs_pods from copy import deepcopy from itertools import product from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from skopt import BayesSearchCV from skopt.space import Categorical, Integer, Real class GKEParallel(object): SUPPORTED_SEARCH = [ GridSearchCV, RandomizedSearchCV, BayesSearchCV ] def __init__(self, search, project_id, zone, cluster_id, bucket_name, image_name, task_name=None): """Wraps around a SearchCV object and handles deploying `fit` jobs to a GKE cluster. """ if type(search) not in self.SUPPORTED_SEARCH: raise TypeError('Search type {} not supported. Only supporting {}.'.format(type(search), [s.__name__ for s in self.SUPPORTED_SEARCH])) self.search = search self.project_id = project_id self.cluster_id = cluster_id self.bucket_name = bucket_name self.image_name = image_name self.task_name = task_name self.gcs_uri = None self.cluster = get_cluster(project_id, zone, cluster_id) self.n_nodes = self.cluster['currentNodeCount'] self.task_name = None # For GridSearchCV self.param_grids = {} # For RandomizedSearchCV self.param_distributions = None self.n_iter = None # For BayesSearchCV self.search_spaces = {} self.job_names = {} self.output_uris = {} self.output_without_estimator_uris = {} self.dones = {} self.results = {} self.best_estimator_ = None self.best_params_ = None self.best_score_ = None self.best_search_ = None self._cancelled = False self._done = False def _make_job_name(self, worker_id): return '{}.worker.{}'.format(self.task_name, worker_id) def _make_job_body(self, worker_id, X_uri, y_uri): body = { 'apiVersion': 'batch/v1', 'kind': 'Job', 'metadata': { 'name': self._make_job_name(worker_id) }, 'spec': { 'template': { 'spec': { 'containers': [ { 'image': 'gcr.io/{}/{}'.format(self.project_id, self.image_name), 'command': ['python'], 'args': ['worker.py', self.bucket_name, self.task_name, worker_id, X_uri, y_uri], 'name': 'worker' } ], 'restartPolicy': 'OnFailure'} } } } return body def _deploy_job(self, worker_id, X_uri, y_uri): job_body = self._make_job_body(worker_id, X_uri, y_uri) print('Deploying worker {}'.format(worker_id)) create_job(job_body) def _partition_grid(self, param_grid_dict, partition_keys): _param_grid_dict = deepcopy(param_grid_dict) partition_lists = [_param_grid_dict.pop(key) for key in partition_keys] partitioned = [] for prod in product(*partition_lists): lists = [[element] for element in prod] singleton = dict(zip(partition_keys, lists)) singleton.update(_param_grid_dict) partitioned.append(singleton) return partitioned def _partition_param_grid(self, param_grid, target_n_partition=5): """Returns a list of param_grids whose union is the input param_grid. If param_grid is a dict: The implemented strategy attempts to partition the param_grid into at least target_n_partition smaller param_grids. NOTE: The naive strategy implemented here does not distinguish between different types of parameters nor their impact on the running time. The user of this module is encouraged to implement their own paritioning strategy based on their needs. """ if type(param_grid) == list: # If the input is already a list of param_grids then just # use it as is. return param_grid else: # The strategy is to simply expand the grid fully with # respect to a parameter: # [1, 2, 3]x[4, 5] --> [1]x[4, 5], [2]x[4, 5], [3]x[4, 5] # until the target number of partitions is reached. partition_keys = [] n_partition = 1 for key, lst in param_grid.items(): partition_keys.append(key) n_partition *= len(lst) if n_partition >= target_n_partition: break partitioned = self._partition_grid(param_grid, partition_keys) return partitioned def _handle_grid_search(self, X_uri, y_uri): param_grids = self._partition_param_grid(self.search.param_grid, self.n_nodes) for i, param_grid in enumerate(param_grids): worker_id = str(i) self.param_grids[worker_id] = param_grid self.job_names[worker_id] = self._make_job_name(worker_id) self.output_uris[worker_id] = 'gs://{}/{}/{}/fitted_search.pkl'.format(self.bucket_name, self.task_name, worker_id) self.output_without_estimator_uris[worker_id] = 'gs://{}/{}/{}/fitted_search_without_estimator.pkl'.format(self.bucket_name, self.task_name, worker_id) self.dones[worker_id] = False pickle_and_upload(param_grid, self.bucket_name, '{}/{}/param_grid.pkl'.format(self.task_name, worker_id)) self._deploy_job(worker_id, X_uri, y_uri) def _handle_randomized_search(self, X_uri, y_uri): self.param_distributions = self.search.param_distributions self.n_iter = self.search.n_iter n_iter = self.n_iter / self.n_nodes + 1 for i in xrange(self.n_nodes): worker_id = str(i) self.job_names[worker_id] = self._make_job_name(worker_id) self.output_uris[worker_id] = 'gs://{}/{}/{}/fitted_search.pkl'.format(self.bucket_name, self.task_name, worker_id) self.output_without_estimator_uris[worker_id] = 'gs://{}/{}/{}/fitted_search_without_estimator.pkl'.format(self.bucket_name, self.task_name, worker_id) self.dones[worker_id] = False pickle_and_upload(self.param_distributions, self.bucket_name, '{}/{}/param_distributions.pkl'.format(self.task_name, worker_id)) pickle_and_upload(n_iter, self.bucket_name, '{}/{}/n_iter.pkl'.format(self.task_name, worker_id)) self._deploy_job(worker_id, X_uri, y_uri) def _partition_space(self, space): """Partitions the space into two subspaces. In the case of Real and Integer, the subspaces are not disjoint, but overlapping at an endpoint. The argument `space` should be a dict whose values are skopt.space's Categorical, Integer, or Real. """ partition_key = np.random.choice(space.keys()) dimension = space[partition_key] if type(dimension) == Categorical: categories = dimension.categories prior = dimension.prior transform = dimension.transform_ if len(categories) >= 2: mid_index = len(categories) / 2 left_categories = categories[:mid_index] right_categories = categories[mid_index:] if prior is not None: left_prior = prior[:mid_index] left_weight = sum(left_prior) left_prior = [p/left_weight for p in left_prior] right_prior = prior[mid_index:] right_weight = sum(right_prior) right_prior = [p/right_weight for p in right_prior] else: left_prior = None right_prior = None left = Categorical(left_categories, prior=left_prior, transform=transform) right = Categorical(right_categories, prior=right_prior, transform=transform) else: return [space] elif type(dimension) == Integer: low = dimension.low high = dimension.high transform = dimension.transform_ if low < high: mid = int((high - low) / 2) left = Integer(low, mid, transform=transform) right = Integer(mid, high, transform=transform) else: return [space] elif type(dimension) == Real: low = dimension.low high = dimension.high prior = dimension.prior transform = dimension.transform_ if low < high: mid = (high - low) / 2 left = Real(low, mid, prior=prior, transform=transform) right = Real(mid, high, prior=prior, transform=transform) else: return [space] left_space = deepcopy(space) left_space[partition_key] = left right_space = deepcopy(space) right_space[partition_key] = right return [left_space, right_space] def _partition_search_spaces(self, search_spaces, target_n_partition=5): """Returns a list of search_spaces whose union is the input search_spaces. If search_spaces is a dict: The implemented strategy attempts to partition the search_spaces into at least target_n_partition smaller search_spaces. NOTE: The naive strategy implemented here does not distinguish between different types of parameters nor their impact on the running time. The user of this module is encouraged to implement their own paritioning strategy based on their needs. """ if type(search_spaces[0]) == tuple: # If the input is already a list of search_spaces then just # use it as is. return search_spaces.values() else: result = search_spaces.values() while len(result) < target_n_partition: space = result.pop() partitioned = self._partition_space(space) result.extend(partitioned) return result def _handle_bayes_search(self, X_uri, y_uri): partitioned_search_spaces = self._partition_search_spaces(self.search.search_spaces_, self.n_nodes) for i, search_spaces in enumerate(partitioned_search_spaces): worker_id = str(i) self.search_spaces[worker_id] = search_spaces self.job_names[worker_id] = self._make_job_name(worker_id) self.output_uris[worker_id] = 'gs://{}/{}/{}/fitted_search.pkl'.format(self.bucket_name, self.task_name, worker_id) self.output_without_estimator_uris[worker_id] = 'gs://{}/{}/{}/fitted_search_without_estimator.pkl'.format(self.bucket_name, self.task_name, worker_id) self.dones[worker_id] = False pickle_and_upload(search_spaces, self.bucket_name, '{}/{}/search_spaces.pkl'.format(self.task_name, worker_id)) self._deploy_job(worker_id, X_uri, y_uri) def _upload_data(self, X, y): if type(X) == str and X.startswith('gs://'): X_uri = X else: X_uri = pickle_and_upload(X, self.bucket_name, '{}/X.pkl'.format(self.task_name)) if type(y) == str and y.startswith('gs://'): y_uri = y else: y_uri = pickle_and_upload(y, self.bucket_name, '{}/y.pkl'.format(self.task_name)) search_uri = pickle_and_upload(self.search, self.bucket_name, '{}/search.pkl'.format(self.task_name)) return X_uri, y_uri, search_uri def fit(self, X, y): """Deploys `fit` jobs to each worker in the cluster. """ timestamp = str(int(time.time())) self.task_name = self.task_name or '{}.{}.{}'.format(self.cluster_id, self.image_name, timestamp) self._done = False self._cancelled = False X_uri, y_uri, _ = self._upload_data(X, y) if type(self.search) == GridSearchCV: handler = self._handle_grid_search elif type(self.search) == RandomizedSearchCV: handler = self._handle_randomized_search elif type(self.search) == BayesSearchCV: handler = self._handle_bayes_search print('Fitting {}'.format(type(self.search))) handler(X_uri, y_uri) self.persist() def persist(self): """Pickle and upload self to GCS, allowing recovering of parallel search objects across experiments. """ self.gcs_uri = pickle_and_upload(self, self.bucket_name, '{}/gke_search.pkl'.format(self.task_name)) print('Persisted the GKEParallel instance: {}'.format(self.gcs_uri)) # Implement part of the concurrent.future.Future interface. def done(self): if not self._done: for worker_id, output_uri in self.output_uris.items(): print('Checking if worker {} is done'.format(worker_id)) self.dones[worker_id] = get_uri_blob(output_uri).exists() self._done = all(self.dones.values()) return self._done def cancel(self): """Deletes the kubernetes jobs. Persisted data and the cluster will not be deleted.""" if not self._cancelled: delete_jobs_pods(self.job_names.values()) self._cancelled = True def cancelled(self): return self._cancelled def result(self, download=False): if not self.done(): n_done = len(d for d in self.dones.values() if d) print('Not done: {} out of {} workers completed.'.format(n_done, len(self.dones))) return None if not self.results or download: for worker_id, output_uri in self.output_without_estimator_uris.items(): print('Getting result from worker {}'.format(worker_id)) self.results[worker_id] = download_uri_and_unpickle(output_uri) self._aggregate_results(download) self.persist() return self.results def _aggregate_results(self, download): best_id = None for worker_id, result in self.results.items(): if self.best_score_ is None or result.best_score_ > self.best_score_ or download: self.best_score_ = result.best_score_ self.best_params_ = result.best_params_ best_id = worker_id if download and self.best_estimator_ is None: # Download only the best estimator among the workers. print('Downloading the best estimator (worker {}).'.format(best_id)) output_uri = self.output_uris[best_id] self.best_search_ = download_uri_and_unpickle(output_uri) self.best_estimator_ = self.best_search_.best_estimator_ # Implement part of SearchCV interface by delegation. def predict(self, *args, **kwargs): return self.best_estimator_.predict(*args, **kwargs) def predict_proba(self, *args, **kwargs): return self.best_estimator_.predict_proba(*args, **kwargs) def predict_log_proba(self, *args, **kwargs): return self.best_estimator_.predict_log_proba(*args, **kwargs)
apache-2.0
jjx02230808/project0223
examples/decomposition/plot_ica_vs_pca.py
306
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
ishank08/scikit-learn
sklearn/metrics/cluster/tests/test_bicluster.py
394
1770
"""Testing for bicluster metrics module""" import numpy as np from sklearn.utils.testing import assert_equal, assert_almost_equal from sklearn.metrics.cluster.bicluster import _jaccard from sklearn.metrics import consensus_score def test_jaccard(): a1 = np.array([True, True, False, False]) a2 = np.array([True, True, True, True]) a3 = np.array([False, True, True, False]) a4 = np.array([False, False, True, True]) assert_equal(_jaccard(a1, a1, a1, a1), 1) assert_equal(_jaccard(a1, a1, a2, a2), 0.25) assert_equal(_jaccard(a1, a1, a3, a3), 1.0 / 7) assert_equal(_jaccard(a1, a1, a4, a4), 0) def test_consensus_score(): a = [[True, True, False, False], [False, False, True, True]] b = a[::-1] assert_equal(consensus_score((a, a), (a, a)), 1) assert_equal(consensus_score((a, a), (b, b)), 1) assert_equal(consensus_score((a, b), (a, b)), 1) assert_equal(consensus_score((a, b), (b, a)), 1) assert_equal(consensus_score((a, a), (b, a)), 0) assert_equal(consensus_score((a, a), (a, b)), 0) assert_equal(consensus_score((b, b), (a, b)), 0) assert_equal(consensus_score((b, b), (b, a)), 0) def test_consensus_score_issue2445(): ''' Different number of biclusters in A and B''' a_rows = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) a_cols = np.array([[True, True, False, False], [False, False, True, True], [False, False, False, True]]) idx = [0, 2] s = consensus_score((a_rows, a_cols), (a_rows[idx], a_cols[idx])) # B contains 2 of the 3 biclusters in A, so score should be 2/3 assert_almost_equal(s, 2.0/3.0)
bsd-3-clause
phobson/seaborn
seaborn/algorithms.py
3
4233
"""Algorithms to support fitting routines in seaborn plotting functions.""" from __future__ import division import numpy as np from scipy import stats import warnings from .external.six import string_types from .external.six.moves import range def bootstrap(*args, **kwargs): """Resample one or more arrays with replacement and store aggregate values. Positional arguments are a sequence of arrays to bootstrap along the first axis and pass to a summary function. Keyword arguments: n_boot : int, default 10000 Number of iterations axis : int, default None Will pass axis to ``func`` as a keyword argument. units : array, default None Array of sampling unit IDs. When used the bootstrap resamples units and then observations within units instead of individual datapoints. smooth : bool, default False If True, performs a smoothed bootstrap (draws samples from a kernel destiny estimate); only works for one-dimensional inputs and cannot be used `units` is present. func : string or callable, default np.mean Function to call on the args that are passed in. If string, tries to use as named method on numpy array. random_seed : int | None, default None Seed for the random number generator; useful if you want reproducible resamples. Returns ------- boot_dist: array array of bootstrapped statistic values """ # Ensure list of arrays are same length if len(np.unique(list(map(len, args)))) > 1: raise ValueError("All input arrays must have the same length") n = len(args[0]) # Default keyword arguments n_boot = kwargs.get("n_boot", 10000) func = kwargs.get("func", np.mean) axis = kwargs.get("axis", None) units = kwargs.get("units", None) smooth = kwargs.get("smooth", False) random_seed = kwargs.get("random_seed", None) if axis is None: func_kwargs = dict() else: func_kwargs = dict(axis=axis) # Initialize the resampler rs = np.random.RandomState(random_seed) # Coerce to arrays args = list(map(np.asarray, args)) if units is not None: units = np.asarray(units) # Allow for a function that is the name of a method on an array if isinstance(func, string_types): def f(x): return getattr(x, func)() else: f = func # Do the bootstrap if smooth: msg = "Smooth bootstraps are deprecated and will be removed." warnings.warn(msg) return _smooth_bootstrap(args, n_boot, f, func_kwargs) if units is not None: return _structured_bootstrap(args, n_boot, units, f, func_kwargs, rs) boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n, n) sample = [a.take(resampler, axis=0) for a in args] boot_dist.append(f(*sample, **func_kwargs)) return np.array(boot_dist) def _structured_bootstrap(args, n_boot, units, func, func_kwargs, rs): """Resample units instead of datapoints.""" unique_units = np.unique(units) n_units = len(unique_units) args = [[a[units == unit] for unit in unique_units] for a in args] boot_dist = [] for i in range(int(n_boot)): resampler = rs.randint(0, n_units, n_units) sample = [np.take(a, resampler, axis=0) for a in args] lengths = map(len, sample[0]) resampler = [rs.randint(0, n, n) for n in lengths] sample = [[c.take(r, axis=0) for c, r in zip(a, resampler)] for a in sample] sample = list(map(np.concatenate, sample)) boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist) def _smooth_bootstrap(args, n_boot, func, func_kwargs): """Bootstrap by resampling from a kernel density estimate.""" n = len(args[0]) boot_dist = [] kde = [stats.gaussian_kde(np.transpose(a)) for a in args] for i in range(int(n_boot)): sample = [a.resample(n).T for a in kde] boot_dist.append(func(*sample, **func_kwargs)) return np.array(boot_dist)
bsd-3-clause
emdodds/LCAversions
timing.py
1
3230
#This file will time various versions of LCA from __future__ import division import numpy as np import sklearn.preprocessing as skp from timeit import default_timer as timer from LCAnumpy import lca as lcan from LCAfortran import lca as lcaf from LCAnumbaprog import lca as lcag def main(): """Profiles various versions of LCA.""" nshort = 6 tshort = 2 nmed = 3 tmed = 6 nlong = 1 #Setup variables for inference numDict = int(2048) numBatch = int(128) dataSize = int(256) dictsIn = np.random.randn(numDict,dataSize) # LCA requires that dictionary be unit norm dictsIn = skp.normalize(dictsIn, axis=1) stimuli = np.random.randn(numBatch,dataSize) batchCoeffs = np.random.randn(numBatch,numDict) coeffs = np.zeros((numBatch, numDict)) eta = .01 lamb = .05 nIter = 300 adapt = .99 softThresh = 0 thresh = np.random.randn(numBatch) #LCA params = """Parameters: numDict: """+str(numDict)+""" numBatch: """+str(numBatch)+""" dataSize: """+str(dataSize)+""" nIter: """+str(nIter)+"""\n""" print params start = timer() lcan.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = timer()-start if dt < tshort: n_times = nshort elif dt < tmed: n_times = nmed else: n_times = nlong for ii in xrange(n_times-1): start = timer() lcan.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = dt+timer()-start dt = dt/(n_times) print '---------------Numpy based LCA----------------' print 'Average time over '+str(n_times)+' trials:' print '%f s' % dt dictsIn = np.array(dictsIn,order='F') stimuli = np.array(stimuli,order='F') coeffs = np.array(coeffs,order='F') batchCoeffs = np.array(batchCoeffs,order='F') thresh = np.array(thresh,order='F') start = timer() lcaf.lca(dictsIn,stimuli,eta,lamb,nIter,softThresh,adapt,coeffs,batchCoeffs,thresh,numDict,numBatch,dataSize) dt = timer()-start if dt < tshort: n_times = nshort elif dt < tmed: n_times = nmed else: n_times = nlong for ii in xrange(n_times-1): start = timer() lcaf.lca(dictsIn,stimuli,eta,lamb,nIter,softThresh,adapt,coeffs,batchCoeffs,thresh,numDict,numBatch,dataSize) dt = dt+timer()-start dt = dt/(n_times) print '---------------Fortran based LCA--------------' print 'Average time over '+str(n_times)+' trials:' print '%f s' % dt dictsIn = np.array(dictsIn,dtype=np.float32,order='F') stimuli = np.array(stimuli,dtype=np.float32,order='F') start = timer() lcag.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = timer()-start if dt < tshort: n_times = nshort elif dt < tmed: n_times = nmed else: n_times = nlong for ii in xrange(n_times-1): start = timer() lcag.infer(dictsIn,stimuli,eta,lamb,nIter,adapt) dt = dt+timer()-start dt = dt/(n_times) print '----------------GPU based LCA-----------------' print 'Average time over '+str(n_times)+' trials:' print '%f s' % dt if __name__ == '__main__': main()
mit
simon-pepin/scikit-learn
sklearn/mixture/tests/test_gmm.py
200
17427
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout
bsd-3-clause
bikong2/scikit-learn
examples/ensemble/plot_ensemble_oob.py
259
3265
""" ============================= OOB Errors for Random Forests ============================= The ``RandomForestClassifier`` is trained using *bootstrap aggregation*, where each new tree is fit from a bootstrap sample of the training observations :math:`z_i = (x_i, y_i)`. The *out-of-bag* (OOB) error is the average error for each :math:`z_i` calculated using predictions from the trees that do not contain :math:`z_i` in their respective bootstrap sample. This allows the ``RandomForestClassifier`` to be fit and validated whilst being trained [1]. The example below demonstrates how the OOB error can be measured at the addition of each new tree during training. The resulting plot allows a practitioner to approximate a suitable value of ``n_estimators`` at which the error stabilizes. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", p592-593, Springer, 2009. """ import matplotlib.pyplot as plt from collections import OrderedDict from sklearn.datasets import make_classification from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Author: Kian Ho <hui.kian.ho@gmail.com> # Gilles Louppe <g.louppe@gmail.com> # Andreas Mueller <amueller@ais.uni-bonn.de> # # License: BSD 3 Clause print(__doc__) RANDOM_STATE = 123 # Generate a binary classification dataset. X, y = make_classification(n_samples=500, n_features=25, n_clusters_per_class=1, n_informative=15, random_state=RANDOM_STATE) # NOTE: Setting the `warm_start` construction parameter to `True` disables # support for paralellised ensembles but is necessary for tracking the OOB # error trajectory during training. ensemble_clfs = [ ("RandomForestClassifier, max_features='sqrt'", RandomForestClassifier(warm_start=True, oob_score=True, max_features="sqrt", random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features='log2'", RandomForestClassifier(warm_start=True, max_features='log2', oob_score=True, random_state=RANDOM_STATE)), ("RandomForestClassifier, max_features=None", RandomForestClassifier(warm_start=True, max_features=None, oob_score=True, random_state=RANDOM_STATE)) ] # Map a classifier name to a list of (<n_estimators>, <error rate>) pairs. error_rate = OrderedDict((label, []) for label, _ in ensemble_clfs) # Range of `n_estimators` values to explore. min_estimators = 15 max_estimators = 175 for label, clf in ensemble_clfs: for i in range(min_estimators, max_estimators + 1): clf.set_params(n_estimators=i) clf.fit(X, y) # Record the OOB error for each `n_estimators=i` setting. oob_error = 1 - clf.oob_score_ error_rate[label].append((i, oob_error)) # Generate the "OOB error rate" vs. "n_estimators" plot. for label, clf_err in error_rate.items(): xs, ys = zip(*clf_err) plt.plot(xs, ys, label=label) plt.xlim(min_estimators, max_estimators) plt.xlabel("n_estimators") plt.ylabel("OOB error rate") plt.legend(loc="upper right") plt.show()
bsd-3-clause
wathen/PhD
MHD/FEniCS/MHD/Stabilised/Precond/MHDstabtest.py
1
11477
#!/usr/bin/python # interpolate scalar gradient onto nedelec space from dolfin import * import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc Print = PETSc.Sys.Print # from MatrixOperations import * import numpy as np #import matplotlib.pylab as plt import PETScIO as IO import common import scipy import scipy.io import time import BiLinear as forms import IterOperations as Iter import MatrixOperations as MO import CheckPetsc4py as CP import ExactSol import Solver as S import MHDmatrixPrecondSetup as PrecondSetup import NSprecondSetup m = 7 errL2u =np.zeros((m-1,1)) errH1u =np.zeros((m-1,1)) errL2p =np.zeros((m-1,1)) errL2b =np.zeros((m-1,1)) errCurlb =np.zeros((m-1,1)) errL2r =np.zeros((m-1,1)) errH1r =np.zeros((m-1,1)) l2uorder = np.zeros((m-1,1)) H1uorder =np.zeros((m-1,1)) l2porder = np.zeros((m-1,1)) l2border = np.zeros((m-1,1)) Curlborder =np.zeros((m-1,1)) l2rorder = np.zeros((m-1,1)) H1rorder = np.zeros((m-1,1)) NN = np.zeros((m-1,1)) DoF = np.zeros((m-1,1)) Velocitydim = np.zeros((m-1,1)) Magneticdim = np.zeros((m-1,1)) Pressuredim = np.zeros((m-1,1)) Lagrangedim = np.zeros((m-1,1)) Wdim = np.zeros((m-1,1)) iterations = np.zeros((m-1,1)) SolTime = np.zeros((m-1,1)) udiv = np.zeros((m-1,1)) MU = np.zeros((m-1,1)) level = np.zeros((m-1,1)) NSave = np.zeros((m-1,1)) Mave = np.zeros((m-1,1)) TotalTime = np.zeros((m-1,1)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0]= 1e0 for xx in xrange(1,m): print xx level[xx-1] = xx nn = 2**(level[xx-1]) # Create mesh and define function space nn = int(nn) NN[xx-1] = nn/2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitSquareMesh(nn,nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order) Pressure = FunctionSpace(mesh, "DG", order-1) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity,Pressure,Magnetic,Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx-1] = Velocity.dim() Pressuredim[xx-1] = Pressure.dim() Magneticdim[xx-1] = Magnetic.dim() Lagrangedim[xx-1] = Lagrange.dim() Wdim[xx-1] = W.dim() print "\n\nW: ",Wdim[xx-1],"Velocity: ",Velocitydim[xx-1],"Pressure: ",Pressuredim[xx-1],"Magnetic: ",Magneticdim[xx-1],"Lagrange: ",Lagrangedim[xx-1],"\n\n" dim = [Velocity.dim(), Pressure.dim(), Magnetic.dim(), Lagrange.dim()] def boundary(x, on_boundary): return on_boundary u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD2D(4,1) bcu = DirichletBC(W.sub(0),u0, boundary) bcb = DirichletBC(W.sub(2),b0, boundary) bcr = DirichletBC(W.sub(3),r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu,bcb,bcr] FSpaces = [Velocity,Pressure,Magnetic,Lagrange] (u, p, b, r) = TrialFunctions(W) (v, q, c,s ) = TestFunctions(W) kappa = 1.0 Mu_m =1e1 MU = 1.0 IterType = 'Full' F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple if kappa == 0: F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple else: F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n") HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, 1e-6) MO.PrintStr("Setting up MHD initial guess",5,"+","\n\n","\n\n") u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-6,Neumann=Expression(("0","0")),options ="New", FS = "DG") ones = Function(Pressure) ones.vector()[:]=(0*ones.vector().array()+1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx) x = Iter.u_prev(u_k,p_k,b_k,r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) # plot(b_k) ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType,"DG") RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,"DG") bcu = DirichletBC(W.sub(0),Expression(("0.0","0.0")), boundary) bcb = DirichletBC(W.sub(2),Expression(("0.0","0.0")), boundary) bcr = DirichletBC(W.sub(3),Expression(("0.0")), boundary) bcs = [bcu,bcb,bcr] eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 40 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' if IterType == "CD": AA, bb = assemble_system(maxwell+ns, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) # u = b.duplicate() # P = CP.Assemble(PP) u_is = PETSc.IS().createGeneral(range(FSpaces[0].dim())) b_is = PETSc.IS().createGeneral(range(FSpaces[0].dim()+FSpaces[1].dim(),FSpaces[0].dim()+FSpaces[1].dim()+FSpaces[2].dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim())) M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim())) OuterTol = 1e-5 InnerTol = 1e-3 NSits =0 Mits =0 TotalStart =time.time() SolutionTime = 0 while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n") tic() if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) A,b = CP.Assemble(AA,bb) # if iter == 1 if iter == 1: u = b.duplicate() F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) # if iter == 1: if iter == 1: u = b.duplicate() print ("{:40}").format("MHD assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() stime = time.time() # ksp.solve(b, u) u,it1,it2 = S.solve(A,b,u,[NS_is,M_is],FSpaces,IterType,OuterTol,InnerTol,HiptmairMatrices,KSPlinearfluids,kspF,Fp,MatrixLinearFluids,kspFp) Soltime = time.time()- stime NSits += it1 Mits +=it2 SolutionTime = SolutionTime +Soltime u1, p1, b1, r1, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"2",iter) p1.vector()[:] += - assemble(p1*dx)/assemble(ones*dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) # if eps > 100 and iter > 3: # print 22222 # break uOld= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) # iter = 10000 # u_k,b_k,epsu,epsb=Iter.PicardTolerance(x,u_k,b_k,FSpaces,dim,"inf",iter) SolTime[xx-1] = SolutionTime/iter NSave[xx-1] = (float(NSits)/iter) Mave[xx-1] = (float(Mits)/iter) iterations[xx-1] = iter TotalTime[xx-1] = time.time() - TotalStart ue =u0 pe = p0 be = b0 re = r0 # ExactSolution = [ue,pe,be,re] # errL2u[xx-1], errH1u[xx-1], errL2p[xx-1], errL2b[xx-1], errCurlb[xx-1], errL2r[xx-1], errH1r[xx-1] = Iter.Errors(x,mesh,FSpaces,ExactSolution,order,dim, "DG") # if xx > 1: # l2uorder[xx-1] = np.abs(np.log2(errL2u[xx-2]/errL2u[xx-1])) # H1uorder[xx-1] = np.abs(np.log2(errH1u[xx-2]/errH1u[xx-1])) # l2porder[xx-1] = np.abs(np.log2(errL2p[xx-2]/errL2p[xx-1])) # l2border[xx-1] = np.abs(np.log2(errL2b[xx-2]/errL2b[xx-1])) # Curlborder[xx-1] = np.abs(np.log2(errCurlb[xx-2]/errCurlb[xx-1])) # l2rorder[xx-1] = np.abs(np.log2(errL2r[xx-2]/errL2r[xx-1])) # H1rorder[xx-1] = np.abs(np.log2(errH1r[xx-2]/errH1r[xx-1])) import pandas as pd # LatexTitles = ["l","DoFu","Dofp","V-L2","L2-order","V-H1","H1-order","P-L2","PL2-order"] # LatexValues = np.concatenate((level,Velocitydim,Pressuredim,errL2u,l2uorder,errH1u,H1uorder,errL2p,l2porder), axis=1) # LatexTable = pd.DataFrame(LatexValues, columns = LatexTitles) # pd.set_option('precision',3) # LatexTable = MO.PandasFormat(LatexTable,"V-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'V-H1',"%2.4e") # LatexTable = MO.PandasFormat(LatexTable,"H1-order","%1.2f") # LatexTable = MO.PandasFormat(LatexTable,'L2-order',"%1.2f") # LatexTable = MO.PandasFormat(LatexTable,"P-L2","%2.4e") # LatexTable = MO.PandasFormat(LatexTable,'PL2-order',"%1.2f") # print LatexTable # print "\n\n Magnetic convergence" # MagneticTitles = ["l","B DoF","R DoF","B-L2","L2-order","B-Curl","HCurl-order"] # MagneticValues = np.concatenate((level,Magneticdim,Lagrangedim,errL2b,l2border,errCurlb,Curlborder),axis=1) # MagneticTable= pd.DataFrame(MagneticValues, columns = MagneticTitles) # pd.set_option('precision',3) # MagneticTable = MO.PandasFormat(MagneticTable,"B-Curl","%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,'B-L2',"%2.4e") # MagneticTable = MO.PandasFormat(MagneticTable,"L2-order","%1.2f") # MagneticTable = MO.PandasFormat(MagneticTable,'HCurl-order',"%1.2f") # print MagneticTable # print "\n\n Lagrange convergence" # LagrangeTitles = ["l","SolTime","B DoF","R DoF","R-L2","L2-order","R-H1","H1-order"] # LagrangeValues = np.concatenate((level,SolTime,Magneticdim,Lagrangedim,errL2r,l2rorder,errH1r,H1rorder),axis=1) # LagrangeTable= pd.DataFrame(LagrangeValues, columns = LagrangeTitles) # pd.set_option('precision',3) # LagrangeTable = MO.PandasFormat(LagrangeTable,"R-L2","%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,'R-H1',"%2.4e") # LagrangeTable = MO.PandasFormat(LagrangeTable,"H1-order","%1.2f") # LagrangeTable = MO.PandasFormat(LagrangeTable,'L2-order',"%1.2f") # print LagrangeTable print "\n\n Iteration table" if IterType == "Full": IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av Outer its","Av Inner its",] else: IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av NS iters","Av M iters"] IterValues = np.concatenate((level,Wdim,SolTime,TotalTime,iterations,NSave,Mave),axis=1) IterTable= pd.DataFrame(IterValues, columns = IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable,'Av Outer its',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av Inner its',"%2.1f") else: IterTable = MO.PandasFormat(IterTable,'Av NS iters',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av M iters',"%2.1f") print IterTable.to_latex() print " \n Outer Tol: ",OuterTol, "Inner Tol: ", InnerTol # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(ue,Velocity)) # plot(p_k) # plot(interpolate(pe,Pressure)) # plot(b_k) # plot(interpolate(be,Magnetic)) # plot(r_k) # plot(interpolate(re,Lagrange)) # interactive() interactive()
mit
anmolshkl/oppia-ml
decision_tree.py
1
1354
from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn import metrics from sklearn import tree import numpy as np import os import random import timeit import yaml import load_data import utilities def main(): # Load data X_train, y_train, X_test, y_test = load_data.load_data() # Transform data into a vector of TF-IDF values count_vect = CountVectorizer(ngram_range=(1, 2)) X_train_counts = count_vect.fit_transform(X_train) tfidf_transformer = TfidfTransformer(use_idf=True) X_train_dtm = tfidf_transformer.fit_transform(X_train_counts) # Transform test data X_test_counts = count_vect.transform(X_test) X_test_dtm = tfidf_transformer.fit_transform(X_test_counts) # using default params, criterion=gini, max_depth=None ... clf = tree.DecisionTreeClassifier() clf.fit(X_train_dtm, y_train) y_pred_class = clf.predict(X_test_dtm) # utilities.print_misclassified_samples(X_test, y_pred_class, y_test) utilities.print_stats(y_pred_class, y_test) if __name__ == '__main__': # probably not the best way to measure time, but, we only want a ballpark figure execution_time = timeit.timeit("main()", setup="from __main__ import main", number=1) print "Execution time={0} sec".format(execution_time)
apache-2.0
jadhavhninad/-CSE_515_MWD_Analytics-
Phase 3/Phase3_code/matrix_factorization_recommender.py
2
3728
from mysqlConn import DbConnect import argparse from numpy import * import operator import pandas as pd #DB connector and curosor db = DbConnect() db_conn = db.get_connection() cur2 = db_conn.cursor(); #Argument parser parser = argparse.ArgumentParser() parser.add_argument("USER") args = parser.parse_args() #===================================================================== #Task:7 - Generate a rating of all movies for a user and sort them #===================================================================== #After reconstruction, we loose the column and row header names. so we need to do #some mapping. with open("R_final.csv") as f: ncols = len(f.readline().split('\t')) R_final = pd.DataFrame(loadtxt('R_final.csv',delimiter='\t', skiprows=1, usecols=range(1,ncols))) #Get user_ids and movie_ids with open("user_ids.csv") as f: ncols_u = len(f.readline().split('\t')) with open("movie_ids.csv") as f: ncols_m = len(f.readline().split('\t')) user_list = list(loadtxt('user_ids.csv',delimiter='\t', skiprows=1, usecols=range(1,ncols_u))) movie_list = list(loadtxt('movie_ids.csv',delimiter='\t', skiprows=1, usecols=range(1,ncols_m))) #print user_list #print movie_list user_id = args.USER user_index = user_list.index(float(user_id)) #print R_final.columns[user_index] movie_itr = 0 movie_recommendations={} for index, row in R_final.iterrows(): #print row[user_index] #Map the generated rating values for a user to a given movie. Get a ceiling rating. #print movie_list[movie_itr] movie_recommendations[movie_list[movie_itr]] = abs(ceil(row[user_index])) if movie_recommendations[movie_list[movie_itr]] <= 0: movie_recommendations[movie_list[movie_itr]] = 0.5 # Such movies will be recommended below the 1 rating movie #print movie_recommendations[movie_list[movie_itr]] movie_itr+=1 #print "--------Generated movie recommendations---------" #print movie_recommendations #============================================================ #Get a list of user watched movies #============================================================ userWatchedMovies = [] cur2.execute("SELECT movieid FROM `mlratings` where userid = %s",[args.USER]) result0 = cur2.fetchall() for data in result0: #print type(data[0]) userWatchedMovies.append(data[0]) cur2.execute("SELECT movieid FROM `mltags` where userid = %s",[args.USER]) result0 = cur2.fetchall() for data in result0: userWatchedMovies.append(data[0]) print "-----Watched movies-------" for watched_ids in userWatchedMovies: cur2.execute("SELECT moviename,genres FROM `mlmovies` where movieid = %s", {watched_ids, }) print cur2.fetchone() #print "----Watched movies-------" #print userWatchedMovies #======================================================= #Filter out ratings of watched movies #======================================================= userNotWatched={} for mv_id in movie_recommendations: mid = str(int(mv_id)) #print type(mid) if mid in userWatchedMovies: #print "watched found" continue else: userNotWatched[mid] = movie_recommendations[mv_id] #print "---- movies not watched---" #print userNotWatched #print "----Sorted movie recommendations-----" movie_recommendations_sorted = sorted(userNotWatched.items(), key=operator.itemgetter(1), reverse=True) #print movie_recommendations_sorted #Return top 5 unwatched movies in the generated recommendations print "-------Top 5 Recommended movies------" for i in range(0,5,1): print movie_recommendations_sorted[i] cur2.execute("SELECT moviename,genres FROM `mlmovies` where movieid like %s", {movie_recommendations_sorted[i][0], }) print cur2.fetchone()
gpl-3.0
ml31415/numpy-groupies
numpy_groupies/benchmarks/simple.py
1
4248
#!/usr/bin/python -B # -*- coding: utf-8 -*- from __future__ import print_function import timeit import numpy as np from numpy_groupies.utils import aliasing from numpy_groupies import aggregate_py, aggregate_np, aggregate_ufunc from numpy_groupies.aggregate_pandas import aggregate as aggregate_pd def aggregate_group_loop(*args, **kwargs): """wraps func in lambda which prevents aggregate_numpy from recognising and optimising it. Instead it groups and loops.""" func = kwargs['func'] del kwargs['func'] return aggregate_np(*args, func=lambda x: func(x), **kwargs) print("TODO: use more extensive tests") print("") print("-----simple examples----------") test_a = np.array([12.0, 3.2, -15, 88, 12.9]) test_group_idx = np.array([1, 0, 1, 4, 1 ]) print("test_a: ", test_a) print("test_group_idx: ", test_group_idx) print("aggregate(test_group_idx, test_a):") print(aggregate_np(test_group_idx, test_a)) # group vals by idx and sum # array([3.2, 9.9, 0., 0., 88.]) print("aggregate(test_group_idx, test_a, sz=8, func='min', fill_value=np.nan):") print(aggregate_np(test_group_idx, test_a, size=8, func='min', fill_value=np.nan)) # array([3.2, -15., nan, 88., nan, nan, nan, nan]) print("aggregate(test_group_idx, test_a, sz=5, func=lambda x: ' + '.join(str(xx) for xx in x),fill_value='')") print(aggregate_np(test_group_idx, test_a, size=5, func=lambda x: ' + '.join(str(xx) for xx in x), fill_value='')) print("") print("---------testing--------------") print("compare against group-and-loop with numpy") testable_funcs = {aliasing[f]: f for f in (np.sum, np.prod, np.any, np.all, np.min, np.max, np.std, np.var, np.mean)} test_group_idx = np.random.randint(0, int(1e3), int(1e5)) test_a = np.random.rand(int(1e5)) * 100 - 50 test_a[test_a > 25] = 0 # for use with bool functions for name, f in testable_funcs.items(): numpy_loop_group = aggregate_group_loop(test_group_idx, test_a, func=f) for acc_func, acc_name in [(aggregate_np, 'np-optimised'), (aggregate_ufunc, 'np-ufunc-at'), (aggregate_py, 'purepy'), (aggregate_pd, 'pandas')]: try: test_out = acc_func(test_group_idx, test_a, func=name) test_out = np.asarray(test_out) if not np.allclose(test_out, numpy_loop_group.astype(test_out.dtype)): print(name, acc_name, "FAILED test, output: [" + acc_name + "; correct]...") print(np.vstack((test_out, numpy_loop_group))) else: print(name, acc_name, "PASSED test") except NotImplementedError: print(name, acc_name, "NOT IMPLEMENTED") print("") print("----------benchmarking-------------") print("Note that the actual observed speedup depends on a variety of properties of the input.") print("Here we are using 100,000 indices uniformly picked from [0, 1000).") print("Specifically, about 25% of the values are 0 (for use with bool operations),") print("the remainder are uniformly distribuited on [-50,25).") print("Times are scaled to 10 repetitions (actual number of reps used may not be 10).") print(''.join(['function'.rjust(8), 'pure-py'.rjust(14), 'np-grouploop'.rjust(14), 'np-ufuncat'.rjust(14), 'np-optimised'.rjust(14), 'pandas'.rjust(14), 'ratio'.rjust(15)])) for name, f in testable_funcs.items(): print(name.rjust(8), end='') times = [None] * 5 for ii, acc_func in enumerate([aggregate_py, aggregate_group_loop, aggregate_ufunc, aggregate_np, aggregate_pd]): try: func = f if acc_func is aggregate_group_loop else name reps = 3 if acc_func is aggregate_py else 20 times[ii] = timeit.Timer(lambda: acc_func(test_group_idx, test_a, func=func)).timeit(number=reps) / reps * 10 print(("%.1fms" % ((times[ii] * 1000))).rjust(13), end='') except NotImplementedError: print("no-impl".rjust(13), end='') denom = min(t for t in times if t is not None) ratios = [("-".center(4) if t is None else str(round(t / denom, 1))).center(5) for t in times] print(" ", (":".join(ratios)))
bsd-2-clause
NunoEdgarGub1/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/finance.py
69
20558
""" A collection of modules for collecting, analyzing and plotting financial data. User contributions welcome! """ #from __future__ import division import os, time, warnings from urllib import urlopen try: from hashlib import md5 except ImportError: from md5 import md5 #Deprecated in 2.5 try: import datetime except ImportError: raise ImportError('The finance module requires datetime support (python2.3)') import numpy as np from matplotlib import verbose, get_configdir from dates import date2num from matplotlib.cbook import Bunch from matplotlib.collections import LineCollection, PolyCollection from matplotlib.colors import colorConverter from lines import Line2D, TICKLEFT, TICKRIGHT from patches import Rectangle from matplotlib.transforms import Affine2D configdir = get_configdir() cachedir = os.path.join(configdir, 'finance.cache') def parse_yahoo_historical(fh, asobject=False, adjusted=True): """ Parse the historical data in file handle fh from yahoo finance and return results as a list of d, open, close, high, low, volume where d is a floating poing representation of date, as returned by date2num if adjust=True, use adjusted prices """ results = [] lines = fh.readlines() datefmt = None for line in lines[1:]: vals = line.split(',') if len(vals)!=7: continue datestr = vals[0] if datefmt is None: try: datefmt = '%Y-%m-%d' dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) except ValueError: datefmt = '%d-%b-%y' # Old Yahoo--cached file? dt = datetime.date(*time.strptime(datestr, datefmt)[:3]) d = date2num(dt) open, high, low, close = [float(val) for val in vals[1:5]] volume = int(vals[5]) if adjusted: aclose = float(vals[6]) m = aclose/close open *= m high *= m low *= m close = aclose results.append((d, open, close, high, low, volume)) results.reverse() if asobject: if len(results)==0: return None else: date, open, close, high, low, volume = map(np.asarray, zip(*results)) return Bunch(date=date, open=open, close=close, high=high, low=low, volume=volume) else: return results def fetch_historical_yahoo(ticker, date1, date2, cachename=None): """ Fetch historical data for ticker between date1 and date2. date1 and date2 are datetime instances Ex: fh = fetch_historical_yahoo('^GSPC', d1, d2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) a file handle is returned """ ticker = ticker.upper() d1 = (date1.month-1, date1.day, date1.year) d2 = (date2.month-1, date2.day, date2.year) urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=d&ignore=.csv' url = urlFmt % (d1[0], d1[1], d1[2], d2[0], d2[1], d2[2], ticker) if cachename is None: cachename = os.path.join(cachedir, md5(url).hexdigest()) if os.path.exists(cachename): fh = file(cachename) verbose.report('Using cachefile %s for %s'%(cachename, ticker)) else: if not os.path.isdir(cachedir): os.mkdir(cachedir) fh = file(cachename, 'w') fh.write(urlopen(url).read()) fh.close() verbose.report('Saved %s data to cache file %s'%(ticker, cachename)) fh = file(cachename, 'r') return fh def quotes_historical_yahoo(ticker, date1, date2, asobject=False, adjusted=True, cachename=None): """ Get historical data for ticker between date1 and date2. date1 and date2 are datetime instances results are a list of tuples (d, open, close, high, low, volume) where d is a floating poing representation of date, as returned by date2num if asobject is True, the return val is an object with attrs date, open, close, high, low, volume, which are equal length arrays if adjust=True, use adjusted prices Ex: sp = f.quotes_historical_yahoo('^GSPC', d1, d2, asobject=True, adjusted=True) returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:] [n,bins,patches] = hist(returns, 100) mu = mean(returns) sigma = std(returns) x = normpdf(bins, mu, sigma) plot(bins, x, color='red', lw=2) cachename is the name of the local file cache. If None, will default to the md5 hash or the url (which incorporates the ticker and date range) """ fh = fetch_historical_yahoo(ticker, date1, date2, cachename) try: ret = parse_yahoo_historical(fh, asobject, adjusted) except IOError, exc: warnings.warn('urlopen() failure\n' + url + '\n' + exc.strerror[1]) return None return ret def plot_day_summary(ax, quotes, ticksize=3, colorup='k', colordown='r', ): """ quotes is a list of (time, open, close, high, low, ...) tuples Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. time must be in float date format - see date2num ax : an Axes instance to plot to ticksize : open/close tick marker in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ lines = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup else : color = colordown vline = Line2D( xdata=(t, t), ydata=(low, high), color=color, antialiased=False, # no need to antialias vert lines ) oline = Line2D( xdata=(t, t), ydata=(open, open), color=color, antialiased=False, marker=TICKLEFT, markersize=ticksize, ) cline = Line2D( xdata=(t, t), ydata=(close, close), color=color, antialiased=False, markersize=ticksize, marker=TICKRIGHT) lines.extend((vline, oline, cline)) ax.add_line(vline) ax.add_line(oline) ax.add_line(cline) ax.autoscale_view() return lines def candlestick(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0): """ quotes is a list of (time, open, close, high, low, ...) tuples. As long as the first 5 elements of the tuples are these values, the tuple can be as long as you want (eg it may store volume). time must be in float days format - see date2num Plot the time, open, close, high, low as a vertical line ranging from low to high. Use a rectangular bar to represent the open-close span. If close >= open, use colorup to color the bar, otherwise use colordown ax : an Axes instance to plot to width : fraction of a day for the rectangle width colorup : the color of the rectangle where close >= open colordown : the color of the rectangle where close < open alpha : the rectangle alpha level return value is lines, patches where lines is a list of lines added and patches is a list of the rectangle patches added """ OFFSET = width/2.0 lines = [] patches = [] for q in quotes: t, open, close, high, low = q[:5] if close>=open : color = colorup lower = open height = close-open else : color = colordown lower = close height = open-close vline = Line2D( xdata=(t, t), ydata=(low, high), color='k', linewidth=0.5, antialiased=True, ) rect = Rectangle( xy = (t-OFFSET, lower), width = width, height = height, facecolor = color, edgecolor = color, ) rect.set_alpha(alpha) lines.append(vline) patches.append(rect) ax.add_line(vline) ax.add_patch(rect) ax.autoscale_view() return lines, patches def plot_day_summary2(ax, opens, closes, highs, lows, ticksize=4, colorup='k', colordown='r', ): """ Represent the time, open, close, high, low as a vertical line ranging from low to high. The left tick is the open and the right tick is the close. ax : an Axes instance to plot to ticksize : size of open and close ticks in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open return value is a list of lines added """ # note this code assumes if any value open, close, low, high is # missing they all are missing rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] # the ticks will be from ticksize to 0 in points at the origin and # we'll translate these to the i, close location openSegments = [ ((-ticksize, 0), (0, 0)) ] # the ticks will be from 0 to ticksize in points at the origin and # we'll translate these to the i, close location closeSegments = [ ((0, 0), (ticksize, 0)) ] offsetsOpen = [ (i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1 ] offsetsClose = [ (i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1 ] scale = ax.figure.dpi * (1.0/72.0) tickTransform = Affine2D().scale(scale, 0.0) r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,1 r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,1 colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(rangeSegments)==len(offsetsOpen)) assert(len(offsetsOpen)==len(offsetsClose)) assert(len(offsetsClose)==len(colors)) useAA = 0, # use tuple here lw = 1, # and here rangeCollection = LineCollection(rangeSegments, colors = colors, linewidths = lw, antialiaseds = useAA, ) openCollection = LineCollection(openSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsOpen, transOffset = ax.transData, ) openCollection.set_transform(tickTransform) closeCollection = LineCollection(closeSegments, colors = colors, antialiaseds = useAA, linewidths = lw, offsets = offsetsClose, transOffset = ax.transData, ) closeCollection.set_transform(tickTransform) minpy, maxx = (0, len(rangeSegments)) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(rangeCollection) ax.add_collection(openCollection) ax.add_collection(closeCollection) return rangeCollection, openCollection, closeCollection def candlestick2(ax, opens, closes, highs, lows, width=4, colorup='k', colordown='r', alpha=0.75, ): """ Represent the open, close as a bar line and high low range as a vertical line. ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency return value is lineCollection, barCollection """ # note this code assumes if any value open, close, low, high is # missing they all are missing delta = width/2. barVerts = [ ( (i-delta, open), (i-delta, close), (i+delta, close), (i+delta, open) ) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close!=-1 ] rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ] r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] assert(len(barVerts)==len(rangeSegments)) useAA = 0, # use tuple here lw = 0.5, # and here rangeCollection = LineCollection(rangeSegments, colors = ( (0,0,0,1), ), linewidths = lw, antialiaseds = useAA, ) barCollection = PolyCollection(barVerts, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, ) minx, maxx = 0, len(rangeSegments) miny = min([low for low in lows if low !=-1]) maxy = max([high for high in highs if high != -1]) corners = (minx, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) ax.add_collection(rangeCollection) return rangeCollection, barCollection def volume_overlay(ax, opens, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The opens and closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1] delta = width/2. bars = [ ( (i-delta, 0), (i-delta, v), (i+delta, v), (i+delta, 0)) for i, v in enumerate(volumes) if v != -1 ] barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = (0,), linewidths = (0.5,), ) corners = (0, 0), (len(bars), max(volumes)) ax.update_datalim(corners) ax.autoscale_view() # add these last return barCollection def volume_overlay2(ax, closes, volumes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. The closes are used to determine the color of the bar. -1 is missing. If a value is missing on one it must be missing on all ax : an Axes instance to plot to width : the bar width in points colorup : the color of the lines where close >= open colordown : the color of the lines where close < open alpha : bar transparency nb: first point is not displayed - it is used only for choosing the right color """ return volume_overlay(ax,closes[:-1],closes[1:],volumes[1:],colorup,colordown,width,alpha) def volume_overlay3(ax, quotes, colorup='k', colordown='r', width=4, alpha=1.0): """ Add a volume overlay to the current axes. quotes is a list of (d, open, close, high, low, volume) and close-open is used to determine the color of the bar kwarg width : the bar width in points colorup : the color of the lines where close1 >= close0 colordown : the color of the lines where close1 < close0 alpha : bar transparency """ r,g,b = colorConverter.to_rgb(colorup) colorup = r,g,b,alpha r,g,b = colorConverter.to_rgb(colordown) colordown = r,g,b,alpha colord = { True : colorup, False : colordown, } dates, opens, closes, highs, lows, volumes = zip(*quotes) colors = [colord[close1>=close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0!=-1 and close1 !=-1] colors.insert(0,colord[closes[0]>=opens[0]]) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, volume), (right, volume), (right, 0)) for d, open, close, high, low, volume in quotes] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) dates = [d for d, open, close, high, low, volume in quotes] offsetsBars = [(d, 0) for d in dates] useAA = 0, # use tuple here lw = 0.5, # and here barCollection = PolyCollection(bars, facecolors = colors, edgecolors = ( (0,0,0,1), ), antialiaseds = useAA, linewidths = lw, offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (min(dates), max(dates)) miny = 0 maxy = max([volume for d, open, close, high, low, volume in quotes]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) #print 'datalim', ax.dataLim.get_bounds() #print 'viewlim', ax.viewLim.get_bounds() ax.add_collection(barCollection) ax.autoscale_view() return barCollection def index_bar(ax, vals, facecolor='b', edgecolor='l', width=4, alpha=1.0, ): """ Add a bar collection graph with height vals (-1 is missing). ax : an Axes instance to plot to width : the bar width in points alpha : bar transparency """ facecolors = (colorConverter.to_rgba(facecolor, alpha),) edgecolors = (colorConverter.to_rgba(edgecolor, alpha),) right = width/2.0 left = -width/2.0 bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ] sx = ax.figure.dpi * (1.0/72.0) # scale for points sy = ax.bbox.height / ax.viewLim.height barTransform = Affine2D().scale(sx,sy) offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ] barCollection = PolyCollection(bars, facecolors = facecolors, edgecolors = edgecolors, antialiaseds = (0,), linewidths = (0.5,), offsets = offsetsBars, transOffset = ax.transData, ) barCollection.set_transform(barTransform) minpy, maxx = (0, len(offsetsBars)) miny = 0 maxy = max([v for v in vals if v!=-1]) corners = (minpy, miny), (maxx, maxy) ax.update_datalim(corners) ax.autoscale_view() # add these last ax.add_collection(barCollection) return barCollection
gpl-3.0
IndraVikas/scikit-learn
examples/ensemble/plot_partial_dependence.py
249
4456
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [1]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [HTF2009]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the training data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [HTF2009] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [1] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.cross_validation import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing # fetch California housing dataset cal_housing = fetch_california_housing() # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = plt.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle('Partial dependence of house value on median age and ' 'average occupancy') plt.subplots_adjust(top=0.9) plt.show()
bsd-3-clause
aavanian/bokeh
sphinx/source/docs/user_guide/examples/categorical_heatmap_unemployment.py
11
1638
import pandas as pd from bokeh.io import output_file, show from bokeh.models import BasicTicker, ColorBar, ColumnDataSource, LinearColorMapper, PrintfTickFormatter from bokeh.plotting import figure from bokeh.sampledata.unemployment1948 import data from bokeh.transform import transform output_file("unemploymemt.html") data.Year = data.Year.astype(str) data = data.set_index('Year') data.drop('Annual', axis=1, inplace=True) data.columns.name = 'Month' # reshape to 1D array or rates with a month and year for each row. df = pd.DataFrame(data.stack(), columns=['rate']).reset_index() source = ColumnDataSource(df) # this is the colormap from the original NYTimes plot colors = ["#75968f", "#a5bab7", "#c9d9d3", "#e2e2e2", "#dfccce", "#ddb7b1", "#cc7878", "#933b41", "#550b1d"] mapper = LinearColorMapper(palette=colors, low=df.rate.min(), high=df.rate.max()) p = figure(plot_width=800, plot_height=300, title="US Unemployment 1948—2016", x_range=list(data.index), y_range=list(reversed(data.columns)), toolbar_location=None, tools="", x_axis_location="above") p.rect(x="Year", y="Month", width=1, height=1, source=source, line_color=None, fill_color=transform('rate', mapper)) color_bar = ColorBar(color_mapper=mapper, location=(0, 0), ticker=BasicTicker(desired_num_ticks=len(colors)), formatter=PrintfTickFormatter(format="%d%%")) p.add_layout(color_bar, 'right') p.axis.axis_line_color = None p.axis.major_tick_line_color = None p.axis.major_label_text_font_size = "5pt" p.axis.major_label_standoff = 0 p.xaxis.major_label_orientation = 1.0 show(p)
bsd-3-clause
aarora79/sb_study
common/utils.py
1
12780
# -*- coding: utf-8 -*- import os import string import json import pandas as pd import numpy as np from scipy.stats.stats import pearsonr from dateutil.parser import parse from common import globals as glob SPECIAL_CHARS = string.punctuation.replace("_", "") SPECIAL_CHARS = string.punctuation.replace("-", "") SPECIAL_CHARS = set(SPECIAL_CHARS) def get_quality_summary(qual): summary = {} #we are only intrested in the dqs (data quality score) under each category for q in qual.keys(): summary[q] = {} summary[q]['dqs'] = qual[q]['dqs'] return summary def contains_special_chars(word): #glob.log.info(word) if any(char in SPECIAL_CHARS for char in word): return True else: return False def encode_str_in_csv(line, s): line += '\"' + s + '\"' + ',' return line def store_in_dict(d, k, key1, val1, key2, val2): d[k] = {} d[k][key1] = val1 d[k][key2] = val2 def check_date(qual, category, df, field): glob.log.info('checking %s ...' %(field)) #just a simple check to validate date num_invalid = 0 for i in range(len(df)): store = df.ix[i] try: parse(store[field]) except Exception as e: num_invalid += 1 glob.log.error('found an invalid %s -> %s for store id %s' % (field, str(store[field]), str(store['store_id']))) glob.log.error(str(e)) qual[category][field] = {} qual[category][field]['count'] = num_invalid qual[category][field]['percent'] = round(100*(float(num_invalid)/len(df)), glob.PRECISION) return num_invalid def check_as_string_wo_special_chars(qual, category, df, field, prim_key_field): glob.log.info('checking %s ...' %(field)) #just a simple check to say should not contain any special characters num_invalid = 0 for i in range(len(df)): store = df.ix[i] if contains_special_chars(str(store[field])) == True: num_invalid += 1 glob.log.error('found an invalid %s -> %s for store id %s' % (field, str(store[field]), str(store[prim_key_field]))) qual[category][field] = {} qual[category][field]['count'] = num_invalid qual[category][field]['percent'] = round(100*(float(num_invalid)/len(df)), glob.PRECISION) return num_invalid def check_as_numeric(qual, category, df, field): glob.log.info('checking %s ...' %(field)) #just a simple check to say field should be numeric num_invalid = 0 for i in range(len(df)): row = df.ix[i] val = str(row[field]) try: float(val) except Exception as e: num_invalid += 1 glob.log.error('found an invalid %s -> %s' % (field, str(row[field]))) qual[category][field] = {} qual[category][field]['count'] = num_invalid qual[category][field]['percent'] = round(100*(float(num_invalid)/len(df)), glob.PRECISION) return num_invalid def check_missing(qual, df, mf = []): glob.log.info('checking missing data...') qual['missing_data'] = {} #check missing fraction of missing rows in each column and also overall total_cell_count = df.shape[0] * df.shape[1] #rows x columns total_empty_cells = 0 mandatory_cells_empty_count = 0 #count of empty cells in mandatory columns mandatory_feature_list_provided = (True if len(mf) != 0 else False) for col in df.columns: #find out the number of columns that are empty, the idea is that #we would end up with a TRUE/FALSE array and then summing it up #gives the count of FALSE or empty cells empty_cells = df[col].isnull() num_empty_cells = sum(empty_cells) total_empty_cells += num_empty_cells total_cells = len(empty_cells) #if mandatory feature list provided then check if this feature is mandatory #if no specific list is provided then consider all features as mandatory if mandatory_feature_list_provided == True: if col in mf: mandatory_cells_empty_count += num_empty_cells else: mandatory_cells_empty_count += num_empty_cells fraction_empty = 100*(float(num_empty_cells)/(total_cells)) #store this info in the dict if there were any empty cells if num_empty_cells != 0: store_in_dict(qual['missing_data'], col, 'percent', round(fraction_empty, glob.PRECISION), 'count', num_empty_cells) #overall empty cell fraction fraction_empty = 100*(float(total_empty_cells)/(total_cell_count)) store_in_dict(qual['missing_data'], 'overall', 'percent', round(fraction_empty, glob.PRECISION), 'count', total_empty_cells) #calculate two data quality scores; a raw score calculated simply as # 1 - (total missing values/total values) and an adjusted score which #is calculated based on missing values that really matter i.e. which would #cause the entire row to get discarded. raw_score = round(100 - fraction_empty, glob.PRECISION) if mandatory_feature_list_provided == True: adjusted_raw_score = round(100 - ((float(mandatory_cells_empty_count)/total_cell_count))) else: #in case no mandatory features were provided then adjusted score is same as raw score adjusted_raw_score = raw_score qual['missing_data']['dqs'] = {} qual['missing_data']['dqs']['raw_score'] = raw_score qual['missing_data']['dqs']['adjusted_score'] = adjusted_raw_score return qual def write_dict_to_csv(data_dict, fname): fname = os.path.join(glob.OUTPUT_DIR_NAME, fname) glob.log.info('going to write dictionary to ' + fname) #glob.log.info(json.dumps(data_dict, indent=glob.INDENT_LEVEL)) with open(fname, 'w') as csv_file: #write the header row line = '\"country_code\",' #first column is country code #now the indicators #get all the keys from the first dictionary, they are the same for all dictionaries #this is a python3 thing because we would get a dict_keys, we convert it into a list #and then the first element of the list we access and then get the keys from there #this is specific to the WB data dictionary so this function shouldnt technically be #in utils.py, but ok.. key_list = data_dict[list(data_dict.keys())[0]].keys() for k in key_list: line = encode_str_in_csv(line, k) #remove the last ',' from the end line = line[:-1] line += '\n' #read to write header row csv_file.write(line) #access dictionary by dictionary or rather country by country for k in data_dict.keys(): #start with an empty line to write line = '' d = data_dict[k] #this dictionary represents one country line = encode_str_in_csv(line, k) #country code key_count = 0 for k2 in d.keys(): #indicators within a country val = d[k2] if k2 != 'name': #name key already holds a string val = str(val) #if there is single quote in the name then rmeove it, caused problem #when reading the file back val = val.replace('’', '') #put the key in quotes, as some keys/values could have spaces line = encode_str_in_csv(line, val) #value of individual indicators key_count += 1 glob.log.info('country %s, indicators %d' %(k, key_count)) #write to csv #remove the last ',' from the end line = line[:-1] line += '\n' #glob.log.info(line) #ignore any non-ascii characters, this is needed because certain country names #have non utf-8 characters..they were causing an exception.. #line = line.encode('ascii', 'ignore') csv_file.write(str(line)) def do_eda(df, filename, ds_name, categorial_feature_list, excluded_list): glob.log.info('about to do some EDA (exploratory data analysis) on %s data...' %(ds_name)) eda_dict = { 'feature': [], 'mean': [], 'mode':[], 'median':[], 'stddev':[]} #except for country code all fields are numeric and we can calculate #mean, median and sd for col in df.columns: if col in excluded_list: continue eda_dict['feature'].append(col) if col in categorial_feature_list: #calc mode by first storing in a categorical series s = pd.Categorical(df[col], categories=df[col].unique()) cc = s.value_counts() pd.Series.sort(cc, inplace=True, ascending=False) #what if there are two modes...just handle one case..doesnt happen in our dataset anyway #if cc.ix[cc.index[0]] == cc.ix[cc.index[1]]: # mode = cc.index[0] + ',' + cc.index[1] # glob.log.info('there are more than 1 modes for %s[%s]' %(ds_name, col)) #else: # mode = cc.index[0] mode_str = str(cc.index[0]) + ':' + str(cc.ix[cc.index[0]]) eda_dict['mode'].append(mode_str) eda_dict['mean'].append(0) eda_dict['median'].append(0) eda_dict['stddev'].append(0) else: #calc other descriptive stats eda_dict['mode'].append(0) eda_dict['mean'].append(df[col].mean()) eda_dict['median'].append(df[col].median()) eda_dict['stddev'].append(np.sqrt(df[col].var())) eda_df = pd.DataFrame(eda_dict) eda_df.to_csv(filename, index=False, encoding='utf-8') try: glob.log.info(eda_df) except Exception as e: glob.log.error('Exception while logging eda_df: ' + str(e)) def detect_outliers(df, ds_name, excluded_col_list, key_col_name): glob.log.info('Detecting outliers for %s dataset' %(ds_name)) fname = os.path.join(glob.OUTPUT_DIR_NAME, glob.EDA_DIR, ds_name + '_' + glob.OUTLIERS_CSV) f = open(fname, 'w') f.write('dataset,entry,field,value,3rdStdDev\n') for col in df.columns: if col in excluded_col_list: continue #refer to the column as a series, just for ease of understanding S = df[col] # we want to say anything outside of the 3rd standard deviation is an outlier... outliers = S[((S-S.mean()).abs()>3*S.std())] if len(outliers) > 0: #print out the outliers sigma = S.std() for i in outliers.index: entry = df.iloc[i] glob.log.error('[%s] for entry %s, field %s has value %f which is outside the 3rd stddev(%f)' %(ds_name, entry[key_col_name], col, entry[col], 3*sigma)) f.write('"%s","%s","%s","%f","%f"\n' %(ds_name, entry[key_col_name], col, entry[col], 3*sigma)) f.close() def calc_r(ds_name, fname, df, feature_list): glob.log.info('Calculating r for %s dataset' %(ds_name)) f = open(fname, 'w') f.write('Dataset,feature1,feature2,r\n') #remove all NA values as pearsons needs to have both series of the same size df2 = df[feature_list].dropna() #calculate perason coefficient for all possible combinations for i in range(len(feature_list)-1): for j in range(i+1, len(feature_list)): r = pearsonr(df2[feature_list[i]], df2[feature_list[j]])[0] glob.log.info('Pearson coeff(r) for %s and %s is %f' %(feature_list[i], feature_list[j], r)) f.write('%s,%s,%s,%f\n' %(ds_name,feature_list[i], feature_list[j], r)) f.close() def calc_dqs(df): df_temp = pd.isnull(df) num_cells = df_temp.shape[0]*df_temp.shape[1] empty_cells = 0 for c in df_temp.columns: empty_cells += sum(df_temp[c]) dqs = ((num_cells-empty_cells)*100)/num_cells glob.log.info('data quality score for dataset is %f' %(dqs)) return dqs def get_numeric_feature_list(df, excluded_feature_list): numeric_features = [] for col in df.columns: try: x=df[col].iloc[0] float(x)#typecast the data to float to test if it is numeric except: glob.log.info('%s is not a numeric feature, ignoring' %(col)) else: if col not in excluded_feature_list: numeric_features.append(col) return numeric_features
mit
Merinorus/adaisawesome
Homework/02 - Data from the Web/Question 2.py
1
14839
# coding: utf-8 # Obtain all the data for the Master students, starting from 2007. Compute how many months it took each master student to complete their master, for those that completed it. Partition the data between male and female students, and compute the average -- is the difference in average statistically significant? # # Notice that master students' data is more tricky than the bachelors' one, as there are many missing records in the IS-Academia database. Therefore, try to guess how much time a master student spent at EPFL by at least checking the distance in months between Master semestre 1 and Master semestre 2. If the Mineur field is not empty, the student should also appear registered in Master semestre 3. Last but not the least, don't forget to check if the student has an entry also in the Projet Master tables. Once you can handle well this data, compute the "average stay at EPFL" for master students. Now extract all the students with a Spécialisation and compute the "average stay" per each category of that attribute -- compared to the general average, can you find any specialization for which the difference in average is statistically significant? # In[1]: # Requests : make http requests to websites import requests # BeautifulSoup : parser to manipulate easily html content from bs4 import BeautifulSoup # Regular expressions import re # Aren't pandas awesome ? import pandas as pd # Let's get the first page in which we will be able to extract some interesting content ! # In[2]: # Ask for the first page on IS Academia. To see it, just type it on your browser address bar : http://isa.epfl.ch/imoniteur_ISAP/!GEDPUBLICREPORTS.filter?ww_i_reportModel=133685247 r = requests.get('http://isa.epfl.ch/imoniteur_ISAP/!GEDPUBLICREPORTS.filter?ww_i_reportModel=133685247') htmlContent = BeautifulSoup(r.content, 'html.parser') # In[3]: print(htmlContent.prettify()) # Now we need to make other requests to IS Academia, which specify every parameter : computer science students, all the years, and all bachelor semester (which are a couple of two values : pedagogic period and semester type). Thus, we're going to get all the parameters we need to make the next request : # In[4]: # We first get the "Computer science" value computerScienceField = htmlContent.find('option', text='Informatique') computerScienceField # In[5]: computerScienceValue = computerScienceField.get('value') computerScienceValue # In[6]: # Then, we're going to need all the academic years values. academicYearsField = htmlContent.find('select', attrs={'name':'ww_x_PERIODE_ACAD'}) academicYearsSet = academicYearsField.findAll('option') # Since there are several years to remember, we're storing all of them in a table to use them later academicYearValues = [] # We'll put the textual content in a table aswell ("Master semestre 1", "Master semestre 2"...) academicYearContent = [] for option in academicYearsSet: value = option.get('value') # However, we don't want any "null" value if value != 'null': academicYearValues.append(value) academicYearContent.append(option.text) # In[7]: # Now, we have all the academic years that might interest us. We wrangle them a little bit so be able to make request more easily later. academicYearValues_series = pd.Series(academicYearValues) academicYearContent_series = pd.Series(academicYearContent) academicYear_df = pd.concat([academicYearContent_series, academicYearValues_series], axis = 1) academicYear_df.columns= ['Academic_year', 'Value'] academicYear_df = academicYear_df.sort_values(['Academic_year', 'Value'], ascending=[1, 0]) academicYear_df # In[8]: # Then, let's get all the pedagogic periods we need. It's a little bit more complicated here because we need to link the pedagogic period with a season (eg : Bachelor 1 is autumn, Bachelor 2 is spring etc.) # Thus, we need more than the pedagogic values. For doing some tests to associate them with the right season, we need the actual textual value ("Bachelor semestre 1", "Bachelor semestre 2" etc.) pedagogicPeriodsField = htmlContent.find('select', attrs={'name':'ww_x_PERIODE_PEDAGO'}) pedagogicPeriodsSet = pedagogicPeriodsField.findAll('option') # Same as above, we'll store the values in a table pedagogicPeriodValues = [] # We'll put the textual content in a table aswell ("Master semestre 1", "Master semestre 2"...) pedagogicPeriodContent = [] for option in pedagogicPeriodsSet: value = option.get('value') if value != 'null': pedagogicPeriodValues.append(value) pedagogicPeriodContent.append(option.text) # In[9]: # Let's make the values and content meet each other pedagogicPeriodContent_series = pd.Series(pedagogicPeriodContent) pedagogicPeriodValues_series = pd.Series(pedagogicPeriodValues) pedagogicPeriod_df = pd.concat([pedagogicPeriodContent_series, pedagogicPeriodValues_series], axis = 1); pedagogicPeriod_df.columns = ['Pedagogic_period', 'Value'] # In[10]: # We keep all semesters related to master students pedagogicPeriod_df_master = pedagogicPeriod_df[[period.startswith('Master') for period in pedagogicPeriod_df.Pedagogic_period]] pedagogicPeriod_df_minor = pedagogicPeriod_df[[period.startswith('Mineur') for period in pedagogicPeriod_df.Pedagogic_period]] pedagogicPeriod_df_project = pedagogicPeriod_df[[period.startswith('Projet Master') for period in pedagogicPeriod_df.Pedagogic_period]] pedagogicPeriod_df = pd.concat([pedagogicPeriod_df_master, pedagogicPeriod_df_minor, pedagogicPeriod_df_project]) pedagogicPeriod_df # In[11]: # Lastly, we need to extract the values associated with autumn and spring semesters. semesterTypeField = htmlContent.find('select', attrs={'name':'ww_x_HIVERETE'}) semesterTypeSet = semesterTypeField.findAll('option') # Again, we need to store the values in a table semesterTypeValues = [] # We'll put the textual content in a table aswell semesterTypeContent = [] for option in semesterTypeSet: value = option.get('value') if value != 'null': semesterTypeValues.append(value) semesterTypeContent.append(option.text) # In[12]: # Here are the values for autumn and spring semester : semesterTypeValues_series = pd.Series(semesterTypeValues) semesterTypeContent_series = pd.Series(semesterTypeContent) semesterType_df = pd.concat([semesterTypeContent_series, semesterTypeValues_series], axis = 1) semesterType_df.columns = ['Semester_type', 'Value'] semesterType_df # Now, we got all the information to get all the master students ! # Let's make all the requests we need to build our data. # We will try to do requests such as : # - Get students from master semester 1 of 2007-2008 # - ... # - Get students from master semester 4 of 2007-2008 # - Get students from mineur semester 1 of 2007-2008 # - Get students from mineur semester 2 of 2007-2008 # - Get students from master project semester 1 of 2007-2008 # - Get students from master project semester 2 of 2007-2008 # # ... and so on for each academic year until 2015-2016, the last complete year. # We can even take the first semester of 2016-2017 into account, to check if some students we though they finished last year are actually still studying. This can be for different reasons : doing a mineur, a project, repeating a semester... # We can ask for a list of student in two formats : HTML or CSV. # We choosed to get them in a HTML format because this is the first time that we wrangle data in HTML format, and that may be really useful to learn in order to work with most of the websites in the future ! # The request sent by the browser to IS Academia, to get a list of student in a HTML format, looks like this : # http://isa.epfl.ch/imoniteur_ISAP/!GEDPUBLICREPORTS.html?arg1=xxx&arg2=yyy # With "xxx" the value associated with the argument named "arg1", "yyy" the value associated with the argument named "arg2" etc. It uses to have a lot more arguments. # For instance, we tried to send a request as a "human" through our browser and intercepted it with Postman interceptor. # We found that the folowing arguments have to be sent : # ww_x_GPS = -1 # ww_i_reportModel = 133685247 # ww_i_reportModelXsl = 133685270 # ww_x_UNITE_ACAD = 249847 (which is the value of computer science !) # ww_x_PERIODE_ACAD = X (eg : the value corresponding to 2007-2008 would be 978181) # ww_x_PERIODE_PEDAGO = Y (eg : 2230106 for Master semestre 1) # ww_x_HIVERETE = Z (eg : 2936286 for autumn semester) # # The last three values X, Y and Z must be replaced with the ones we extracted previously. For instance, if we want to get students from Master, semester 1 (which is necessarily autumn semester) of 2007-2008, the "GET Request" would be the following : # # http://isa.epfl.ch/imoniteur_ISAP/!GEDPUBLICREPORTS.html?ww_x_GPS=-1&ww_i_reportModel=133685247&ww_i_reportModelXsl=133685270&ww_x_UNITE_ACAD=249847&ww_x_PERIODE_ACAD=978181&ww_x_PERIODE_PEDAGO=2230106&ww_x_HIVERETE=2936286 # # So let's cook all the requests we're going to send ! # In[13]: # Let's put the semester types aside, because we're going to need them autumn_semester_value = semesterType_df.loc[semesterType_df['Semester_type'] == 'Semestre d\'automne', 'Value'] autumn_semester_value = autumn_semester_value.iloc[0] spring_semester_value = semesterType_df.loc[semesterType_df['Semester_type'] == 'Semestre de printemps', 'Value'] spring_semester_value = spring_semester_value.iloc[0] # In[14]: # Here is the list of the GET requests we will sent to IS Academia requestsToISAcademia = [] # We'll need to associate all the information associated with the requests to help wrangling data later : academicYearRequests = [] pedagogicPeriodRequests = [] semesterTypeRequests = [] # Go all over the years ('2007-2008', '2008-2009' and so on) for academicYear_row in academicYear_df.itertuples(index=True, name='Academic_year'): # The year (eg: '2007-2008') academicYear = academicYear_row.Academic_year # The associated value (eg: '978181') academicYear_value = academicYear_row.Value # We get all the pedagogic periods associated with this academic year for pegagogicPeriod_row in pedagogicPeriod_df.itertuples(index=True, name='Pedagogic_period'): # The period (eg: 'Master semestre 1') pedagogicPeriod = pegagogicPeriod_row.Pedagogic_period # The associated value (eg: '2230106') pegagogicPeriod_Value = pegagogicPeriod_row.Value # We need to associate the corresponding semester type (eg: Master semester 1 is autumn, but Master semester 2 will be spring) if (pedagogicPeriod.endswith('1') or pedagogicPeriod.endswith('3') or pedagogicPeriod.endswith('automne')): semester_Value = autumn_semester_value semester = 'Autumn' else: semester_Value = spring_semester_value semester = 'Spring' # This print line is only for debugging if you want to check something # print("academic year = " + academicYear_value + ", pedagogic value = " + pegagogicPeriod_Value + ", pedagogic period is " + pedagogicPeriod + " (semester type value = " + semester_Value + ")") # We're ready to cook the request ! request = 'http://isa.epfl.ch/imoniteur_ISAP/!GEDPUBLICREPORTS.html?ww_x_GPS=-1&ww_i_reportModel=133685247&ww_i_reportModelXsl=133685270&ww_x_UNITE_ACAD=' + computerScienceValue request = request + '&ww_x_PERIODE_ACAD=' + academicYear_value request = request + '&ww_x_PERIODE_PEDAGO=' + pegagogicPeriod_Value request = request + '&ww_x_HIVERETE=' + semester_Value # Add the newly created request to our wish list... requestsToISAcademia.append(request) # And we save the corresponding information for each request pedagogicPeriodRequests.append(pedagogicPeriod) academicYearRequests.append(academicYear) semesterTypeRequests.append(semester) # In[15]: # Here is the list of all the requests we have to send ! # requestsToISAcademia # In[16]: # Here are the corresponding years for each request # academicYearRequests # In[17]: # Same for associated pedagogic periods # pedagogicPeriodRequests # In[18]: # Last but not the least, the semester types # semesterTypeRequests # In[19]: academicYearRequests_series = pd.Series(academicYearRequests) pedagogicPeriodRequests_series = pd.Series(pedagogicPeriodRequests) requestsToISAcademia_series = pd.Series(requestsToISAcademia) # Let's summarize everything in a dataframe... requests_df = pd.concat([academicYearRequests_series, pedagogicPeriodRequests_series, requestsToISAcademia_series], axis = 1) requests_df.columns = ['Academic_year', 'Pedagogic_period', 'Request'] requests_df # In[ ]: # The requests are now ready to be sent to IS Academia. Let's try it out ! # TIME OUT : We stopped right here for our homework. What is below should look like the beginning of a loop that gets students lists from IS Academia. It's not finished at all :( # In[20]: # WARNING : NEXT LINE IS COMMENTED FOR DEBGUGGING THE FIRST REQUEST ONLY. UNCOMMENT IT AND INDENT THE CODE CORRECTLY TO MAKE ALL THE REQUESTS #for request in requestsToISAcademia: # LINE TO UNCOMMENT TO SEND ALL REQUESTS request = requestsToISAcademia[0] # LINE TO COMMENT TO SEND ALL REQUESTS print(request) # Send the request to IS Academia r = requests.get(request) # Here is the HTML content of IS Academia's response htmlContent = BeautifulSoup(r.content, 'html.parser') # Let's extract some data... computerScienceField = htmlContent.find('option', text='Informatique') # In[21]: # Getting the table of students # Let's make the columns columns = [] table = htmlContent.find('table') th = table.find('th', text='Civilité') columns.append(th.text) # Go through the table until the last column while th.findNext('').name == 'th': th = th.findNext('') columns.append(th.text) # This array will contain all the students studentsTable = [] # DON'T RUN THE NEXT CELL OR IT WILL CRASH ! :x # In[22]: # Getting the information about the student we're "looping on" currentStudent = [] tr = th.findNext('tr') children = tr.children for child in children: currentStudent.append(child.text) # Add the student to the array studentsTable.append(currentStudent) # In[23]: a = tr.findNext('tr') a # In[ ]: while tr.findNext('tr') is not None: tr = th.findNext('tr') children = tr.children for child in children: currentStudent.append(child.text) studentsTable.append(currentStudent) studentsTable # In[ ]: #tr = th.parent #td = th.findNext('td') #td.text #th.findNext('th') #th.findNext('th') #tr = tr.findNext('tr') #tr # In[ ]: print(htmlContent.prettify())
gpl-3.0
cowlicks/odo
odo/backends/tests/test_ssh.py
5
5764
from __future__ import absolute_import, division, print_function import pytest paramiko = pytest.importorskip('paramiko') import pandas as pd import numpy as np import re import os import sys from odo.utils import tmpfile, filetext from odo.directory import _Directory, Directory from odo.backends.ssh import SSH, resource, ssh_pattern, sftp, drop, connect from odo.backends.csv import CSV from odo import into, discover, CSV, JSONLines, JSON, convert from odo.temp import _Temp, Temp from odo.compatibility import ON_TRAVIS_CI import socket skipif = pytest.mark.skipif try: ssh = connect(hostname='localhost') ssh.close() except socket.error: pytest.skip('Could not connect') except paramiko.PasswordRequiredException as e: pytest.skip(str(e)) except paramiko.SSHException as e: pytest.skip(str(e)) def test_resource(): r = resource('ssh://joe@localhost:/path/to/myfile.csv') assert isinstance(r, SSH(CSV)) assert r.path == '/path/to/myfile.csv' assert r.auth['hostname'] == 'localhost' assert r.auth['username'] == 'joe' def test_connect(): a = connect(hostname='localhost') b = connect(hostname='localhost') assert a is b a.close() c = connect(hostname='localhost') assert a is c assert c.get_transport() and c.get_transport().is_active() def test_resource_directory(): r = resource('ssh://joe@localhost:/path/to/') assert issubclass(r.subtype, _Directory) r = resource('ssh://joe@localhost:/path/to/*.csv') assert r.subtype == Directory(CSV) assert r.path == '/path/to/' def test_discover(): with filetext('name,balance\nAlice,100\nBob,200') as fn: local = CSV(fn) remote = SSH(CSV)(fn, hostname='localhost') assert discover(local) == discover(remote) def test_discover_from_resource(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: local = CSV(fn) remote = resource('ssh://localhost:' + fn) assert discover(local) == discover(remote) def test_ssh_pattern(): uris = ['localhost:myfile.csv', '127.0.0.1:/myfile.csv', 'user@127.0.0.1:/myfile.csv', 'user@127.0.0.1:/*.csv', 'user@127.0.0.1:/my-dir/my-file3.csv'] for uri in uris: assert re.match(ssh_pattern, uri) def test_copy_remote_csv(): with tmpfile('csv') as target: with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: csv = resource(fn) uri = 'ssh://localhost:%s.csv' % target scsv = into(uri, csv) assert isinstance(scsv, SSH(CSV)) assert discover(scsv) == discover(csv) # Round trip csv2 = into(target, scsv) assert into(list, csv) == into(list, csv2) def test_drop(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: with tmpfile('csv') as target: scsv = SSH(CSV)(target, hostname='localhost') assert not os.path.exists(target) conn = sftp(**scsv.auth) conn.put(fn, target) assert os.path.exists(target) drop(scsv) drop(scsv) assert not os.path.exists(target) def test_drop_of_csv_json_lines_use_ssh_version(): from odo.backends.ssh import drop_ssh for typ in [CSV, JSON, JSONLines]: assert drop.dispatch(SSH(typ)) == drop_ssh def test_convert_local_file_to_temp_ssh_file(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: csv = CSV(fn) scsv = convert(Temp(SSH(CSV)), csv, hostname='localhost') assert into(list, csv) == into(list, scsv) @skipif(ON_TRAVIS_CI, reason="Don't know") def test_temp_ssh_files(): with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: csv = CSV(fn) scsv = into(Temp(SSH(CSV)), csv, hostname='localhost') assert discover(csv) == discover(scsv) assert isinstance(scsv, _Temp) @skipif(ON_TRAVIS_CI, reason="Don't know") def test_convert_through_temporary_local_storage(): with filetext('name,quantity\nAlice,100\nBob,200', extension='csv') as fn: csv = CSV(fn) df = into(pd.DataFrame, csv) scsv = into(Temp(SSH(CSV)), csv, hostname='localhost') assert into(list, csv) == into(list, scsv) scsv2 = into(Temp(SSH(CSV)), df, hostname='localhost') assert into(list, scsv2) == into(list, df) sjson = into(Temp(SSH(JSONLines)), df, hostname='localhost') assert (into(np.ndarray, sjson) == into(np.ndarray, df)).all() @skipif(ON_TRAVIS_CI and sys.version_info[0] == 3, reason='Strange hanging on travis for python33 and python34') def test_ssh_csv_to_s3_csv(): # for some reason this can only be run in the same file as other ssh tests # and must be a Temp(SSH(CSV)) otherwise tests above this one fail s3_bucket = pytest.importorskip('odo.backends.tests.test_aws').s3_bucket with filetext('name,balance\nAlice,100\nBob,200', extension='csv') as fn: remote = into(Temp(SSH(CSV)), CSV(fn), hostname='localhost') with s3_bucket('.csv') as b: result = into(b, remote) assert discover(result) == discover(resource(b)) @skipif(ON_TRAVIS_CI and sys.version_info[0] == 3, reason='Strange hanging on travis for python33 and python34') def test_s3_to_ssh(): pytest.importorskip('boto') tips_uri = 's3://nyqpug/tips.csv' with tmpfile('.csv') as fn: result = into(Temp(SSH(CSV))(fn, hostname='localhost'), tips_uri) assert into(list, result) == into(list, tips_uri) assert discover(result) == discover(resource(tips_uri))
bsd-3-clause
shyamalschandra/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
Erotemic/hotspotter
_scripts/k_reciprocal_nearest_neighbors.py
2
4308
import sys import os import pyflann import params import numpy as np import draw_func2 as df2 import helpers np.random.seed(5) # Parameters tdim = 2; # Target viewing dimensions dim = 2; # Calculation dimension if len(sys.argv) == 2: tdim = int(sys.argv[1]) dim = int(sys.argv[1]) K = 4; checks = 128; nQuery = 8; nData = 1024; # Script def quick_flann_index(data): data_flann = pyflann.FLANN() flann_params = params.VSMANY_FLANN_PARAMS checks = flann_params['checks'] data_flann.build_index(data, **flann_params) return data_flann def reciprocal_nearest_neighbors(query, data, data_flann, checks): nQuery, dim = query.shape # Assign query features to K nearest database features (qfx2_dx, qfx2_dists) = data_flann.nn_index(query, K, checks=checks) # Assign those nearest neighbors to K nearest database features qx2_nn = data[qfx2_dx] qx2_nn.shape = (nQuery*K, dim) (_nn2_dx, nn2_dists) = data_flann.nn_index(qx2_nn, K, checks=checks) # Get the maximum distance of the reciprocal neighbors nn2_dists.shape = (nQuery, K, K) qfx2_maxdist = nn2_dists.max(2) # Test if nearest neighbor distance is less than reciprocal distance isReciprocal = qfx2_dists < qfx2_maxdist return qfx2_dx, qfx2_dists, isReciprocal data = np.random.rand(nData, dim) query = np.random.rand(nQuery, dim) nQuery = len(query) # Find query's Nearest Neighbors in data data_flann = quick_flann_index(data) (qfx2_dx, qfx2_dists) = data_flann.nn_index(query, K, checks=checks) qx2_nn = data[qfx2_dx] # get k-reciprocal nearest neighbors max distance qx2_nn.shape = (nQuery*K, dim) (nn2_dx, nn2_dists) = data_flann.nn_index(qx2_nn, K, checks=checks) nn2_data = data[nn2_dx] # data's nearest neighbors nn2_dists.shape = (nQuery, K, K) qx2_nn.shape = (nQuery, K, dim) qfx2_maxdist = nn2_dists.max(2) # A neighbor is a K reciprocal if you are within the # max distance of the assigned points K nearest neighbors isReciprocal = qfx2_dists < qfx2_maxdist krx2_nn = qx2_nn[isReciprocal] krx2_qfx = helpers.tiled_range(nQuery, K)[isReciprocal] krx2_query = query[krx2_qfx] # Enforce viewable dimensionality if dim != tdim: import sklearn.decomposition print('Plotting pca.transform dimensionality') pca = sklearn.decomposition.PCA(copy=True, n_components=tdim, whiten=False) pca.fit(data) query_ = pca.transform(query) data_ = pca.transform(data) nn2_data_ = pca.transform(nn2_data) qx2_nn_ = pca.transform(qx2_nn) krx2_query_ = pca.transform(krx2_query) krx2_nn_ = pca.transform(krx2_nn) else: print('Plotting full dimensionality') query_ = (query) data_ = (data) qx2_nn_ = (qx2_nn) krx2_query_ = (krx2_query) krx2_nn_ = (krx2_nn) # Figure and Axis plt = df2.plt df2.reset() fig = plt.figure(1) if tdim == 2: ax = fig.add_subplot(111) elif tdim > 2: from mpl_toolkits.mplot3d import Axes3D ax = fig.add_subplot(111, projection='3d') def plot_points(data, color, marker): dataT = data.T if len(dataT) == 2: ax.plot(dataT[0], dataT[1], color=color, marker=marker, linestyle='None') elif len(dataT) == 3: ax.scatter(dataT[0], dataT[1], dataT[2], color=color, marker=marker) def plot_lines(point_pairs, color): for pair in point_pairs: dataT = pair.T if len(dataT) == 2: ax.plot(dataT[0], dataT[1], color=color) elif len(dataT) == 3: ax.plot(dataT[0], dataT[1], dataT[2], color=color) #plt.scatter(dataT[0], dataT[1], dataT[2], s=20, color=color) # Plot query / data plot_points(data_, 'b', 'x') plot_points(query_,'b', 'o') # Plot KNN qx2_nn_.shape = (nQuery, K, tdim) point_pairs = [np.vstack((query_[qx], qx2_nn_[qx,k])) for qx in xrange(nQuery) for k in xrange(K)] plot_lines(point_pairs, (1, 0, 0, .8)) # Plot NN's KNN qx2_nn_.shape = (nQuery*K, tdim) nRes = len(qx2_nn_) point_pairs3 = [np.vstack((qx2_nn_[nnx], nn2_data_[nnx,k])) for nnx in xrange(nRes) for k in xrange(K)] plot_lines(point_pairs3, (1, .8, .8, .5)) # Plot KRNN point_pairs2 = map(np.vstack, zip(krx2_query_, krx2_nn_)) plot_lines(point_pairs2, (0, 1, 0, .9)) df2.update() # Show df2.set_figtitle('KRNN=(Green), NN=(Red), NNR=(Pink), dims=%r, K=%r' % (dim, K)) exec(df2.present())
apache-2.0
krez13/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
DougFirErickson/neon
examples/conv_autoencoder.py
3
2945
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright 2015 Nervana Systems Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- """ Convolutional autoencoder example network for MNIST data set """ import numpy as np from neon.data import ArrayIterator, load_mnist from neon.initializers import Uniform from neon.layers import Conv, Pooling, GeneralizedCost, Deconv from neon.models import Model from neon.optimizers import GradientDescentMomentum from neon.transforms import Rectlin, SumSquared from neon.callbacks.callbacks import Callbacks from neon.util.argparser import NeonArgparser # parse the command line arguments parser = NeonArgparser(__doc__) args = parser.parse_args() # Load dataset (X_train, y_train), (X_test, y_test), nclass = load_mnist(path=args.data_dir) # Set input and target to X_train train = ArrayIterator(X_train, lshape=(1, 28, 28)) # Initialize the weights and the learning rule init_uni = Uniform(low=-0.1, high=0.1) opt_gdm = GradientDescentMomentum(learning_rate=0.001, momentum_coef=0.9) # Define the layers layers = [Conv((4, 4, 8), init=init_uni, activation=Rectlin()), Pooling(2), Conv((4, 4, 32), init=init_uni, activation=Rectlin()), Pooling(2), Deconv(fshape=(4, 4, 8), init=init_uni, activation=Rectlin()), Deconv(fshape=(3, 3, 8), init=init_uni, activation=Rectlin(), strides=2), Deconv(fshape=(2, 2, 1), init=init_uni, strides=2, padding=1)] # Define the cost cost = GeneralizedCost(costfunc=SumSquared()) model = Model(layers=layers) # configure callbacks callbacks = Callbacks(model, **args.callback_args) # Fit the model model.fit(train, optimizer=opt_gdm, num_epochs=args.epochs, cost=cost, callbacks=callbacks) # Plot the reconstructed digits try: from matplotlib import pyplot, cm fi = 0 nrows = 10 ncols = 12 test = np.zeros((28*nrows, 28*ncols)) idxs = [(row, col) for row in range(nrows) for col in range(ncols)] for row, col in idxs: im = model.layers.layers[-1].outputs.get()[:, fi].reshape((28, 28)) test[28*row:28*(row+1):, 28*col:28*(col+1)] = im fi = fi + 1 pyplot.matshow(test, cmap=cm.gray) pyplot.savefig('Reconstructed.png') except ImportError: print 'matplotlib needs to be manually installed to generate plots'
apache-2.0
neutrons/Licorne-Py
UI-playground/layerplot.py
1
2806
from __future__ import (absolute_import, division, print_function) from PyQt5 import QtCore, QtWidgets import sys import numpy as np from layer import Layer, MSLD from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.figure import Figure import matplotlib.pyplot as plt import matplotlib.cm from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection class layerplot(QtWidgets.QWidget): def __init__(self, *args): QtWidgets.QWidget.__init__(self, *args) sample=[Layer(nsld=5),Layer(thickness=2.,nsld=3),Layer(nsld=5),Layer(nsld=4.,thickness=np.inf)] self.m = PlotCanvas(sample, self) self.m.move(0,0) def resizeEvent(self, event): self.m.setGeometry(self.rect()) class PlotCanvas(FigureCanvas): def __init__(self, layers, parent=None): self.fig = Figure() self.axes = self.fig.add_subplot(111) FigureCanvas.__init__(self, self.fig) self.setParent(parent) FigureCanvas.setSizePolicy(self, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) FigureCanvas.updateGeometry(self) self.data=layers self.variable='nsld' self.plot() self.fig.canvas.mpl_connect('pick_event', self.onpick) def onpick(self,event): ind=event.ind[0] if ind==len(self.data)-1: ind='substrate' print('picked layer {0}'.format(ind)) return True def plot(self): layer_thick_array=np.array([l.thickness for l in self.data]) layer_nsld_array =np.array([l.nsld for l in self.data]) depth=np.zeros(len(layer_thick_array)) depth[1:]=layer_thick_array.cumsum()[:-1] patches=[] N=len(self.data) for i in range(N-1): polygon=Polygon([[depth[i],0.],[depth[i],layer_nsld_array[i]],[depth[i+1],layer_nsld_array[i]],[depth[i+1],0]],True) patches.append(polygon) polygon=Polygon([[depth[N-1],0.],[depth[N-1],layer_nsld_array[N-1]],[depth[N-1]+1,layer_nsld_array[N-1]],[depth[N-1]+1,0]],True) patches.append(polygon) p = PatchCollection(patches, cmap=matplotlib.cm.jet, alpha=0.4, picker=True) colors = 100*np.random.rand(len(patches)) p.set_array(np.array(colors)) ax = self.figure.add_subplot(111) ax.add_collection(p) ax.set_title('NSLD') ax.set_xlim(np.array([0,depth[-1]])*1.2) ax.set_ylim(np.array([0,layer_nsld_array.max()])*1.2) #TODO allow negative ax.set_xlabel('Thickness') ax.set_ylabel('NSLD') self.draw() if __name__=='__main__': app=QtWidgets.QApplication(sys.argv) mainForm=layerplot() mainForm.show() sys.exit(app.exec_())
gpl-3.0
gameduell/dask
dask/utils.py
1
30745
from __future__ import absolute_import, division, print_function import codecs import functools import inspect import io import math import os import re import shutil import struct import sys import tempfile from errno import ENOENT from collections import Iterator from contextlib import contextmanager from importlib import import_module from threading import Lock import multiprocessing as mp from .import multiprocessing import uuid from weakref import WeakValueDictionary from .compatibility import (long, getargspec, BZ2File, GzipFile, LZMAFile, PY3, urlsplit, unicode) from .core import get_deps from .context import _globals system_encoding = sys.getdefaultencoding() if system_encoding == 'ascii': system_encoding = 'utf-8' def deepmap(func, *seqs): """ Apply function inside nested lists >>> inc = lambda x: x + 1 >>> deepmap(inc, [[1, 2], [3, 4]]) [[2, 3], [4, 5]] >>> add = lambda x, y: x + y >>> deepmap(add, [[1, 2], [3, 4]], [[10, 20], [30, 40]]) [[11, 22], [33, 44]] """ if isinstance(seqs[0], (list, Iterator)): return [deepmap(func, *items) for items in zip(*seqs)] else: return func(*seqs) @contextmanager def ignoring(*exceptions): try: yield except exceptions: pass def import_required(mod_name, error_msg): """Attempt to import a required dependency. Raises a RuntimeError if the requested module is not available. """ try: return import_module(mod_name) except ImportError: raise RuntimeError(error_msg) @contextmanager def tmpfile(extension='', dir=None): extension = '.' + extension.lstrip('.') handle, filename = tempfile.mkstemp(extension, dir=dir) os.close(handle) os.remove(filename) try: yield filename finally: if os.path.exists(filename): if os.path.isdir(filename): shutil.rmtree(filename) else: with ignoring(OSError): os.remove(filename) @contextmanager def tmpdir(dir=None): dirname = tempfile.mkdtemp(dir=dir) try: yield dirname finally: if os.path.exists(dirname): if os.path.isdir(dirname): with ignoring(OSError): shutil.rmtree(dirname) else: with ignoring(OSError): os.remove(dirname) @contextmanager def filetext(text, extension='', open=open, mode='w'): with tmpfile(extension=extension) as filename: f = open(filename, mode=mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield filename @contextmanager def changed_cwd(new_cwd): old_cwd = os.getcwd() os.chdir(new_cwd) try: yield finally: os.chdir(old_cwd) @contextmanager def tmp_cwd(dir=None): with tmpdir(dir) as dirname: with changed_cwd(dirname): yield dirname @contextmanager def noop_context(): yield def repr_long_list(seq): """ >>> repr_long_list(list(range(100))) '[0, 1, 2, ..., 98, 99]' """ if len(seq) < 8: return repr(seq) else: return repr(seq[:3])[:-1] + ', ..., ' + repr(seq[-2:])[1:] class IndexCallable(object): """ Provide getitem syntax for functions >>> def inc(x): ... return x + 1 >>> I = IndexCallable(inc) >>> I[3] 4 """ __slots__ = 'fn', def __init__(self, fn): self.fn = fn def __getitem__(self, key): return self.fn(key) @contextmanager def filetexts(d, open=open, mode='t', use_tmpdir=True): """ Dumps a number of textfiles to disk d - dict a mapping from filename to text like {'a.csv': '1,1\n2,2'} Since this is meant for use in tests, this context manager will automatically switch to a temporary current directory, to avoid race conditions when running tests in parallel. """ with (tmp_cwd() if use_tmpdir else noop_context()): for filename, text in d.items(): f = open(filename, 'w' + mode) try: f.write(text) finally: try: f.close() except AttributeError: pass yield list(d) for filename in d: if os.path.exists(filename): with ignoring(OSError): os.remove(filename) compressions = {'gz': 'gzip', 'bz2': 'bz2', 'xz': 'xz'} def infer_compression(filename): extension = os.path.splitext(filename)[-1].strip('.') return compressions.get(extension, None) opens = {'gzip': GzipFile, 'bz2': BZ2File, 'xz': LZMAFile} def open(filename, mode='rb', compression=None, **kwargs): if compression == 'infer': compression = infer_compression(filename) return opens.get(compression, io.open)(filename, mode, **kwargs) def get_bom(fn, compression=None): """ Get the Byte Order Mark (BOM) if it exists. """ boms = set((codecs.BOM_UTF16, codecs.BOM_UTF16_BE, codecs.BOM_UTF16_LE)) with open(fn, mode='rb', compression=compression) as f: f.seek(0) bom = f.read(2) f.seek(0) if bom in boms: return bom else: return b'' def get_bin_linesep(encoding, linesep): """ Simply doing `linesep.encode(encoding)` does not always give you *just* the linesep bytes, for some encodings this prefix's the linesep bytes with the BOM. This function ensures we just get the linesep bytes. """ if encoding == 'utf-16': return linesep.encode('utf-16')[2:] # [2:] strips bom else: return linesep.encode(encoding) def textblock(filename, start, end, compression=None, encoding=system_encoding, linesep=os.linesep, buffersize=4096): """Pull out a block of text from a file given start and stop bytes. This gets data starting/ending from the next linesep delimiter. Each block consists of bytes in the range [start,end[, i.e. the stop byte is excluded. If `start` is 0, then `start` corresponds to the true start byte. If `start` is greater than 0 and does not point to the beginning of a new line, then `start` is incremented until it corresponds to the start byte of the next line. If `end` does not point to the beginning of a new line, then the line that begins before `end` is included in the block although its last byte exceeds `end`. Examples -------- >> with open('myfile.txt', 'wb') as f: .. f.write('123\n456\n789\nabc') In the example below, 1 and 10 don't line up with endlines. >> u''.join(textblock('myfile.txt', 1, 10)) '456\n789\n' """ # Make sure `linesep` is not a byte string because # `io.TextIOWrapper` in Python versions other than 2.7 dislike byte # strings for the `newline` argument. linesep = str(linesep) # Get byte representation of the line separator. bin_linesep = get_bin_linesep(encoding, linesep) bin_linesep_len = len(bin_linesep) if buffersize < bin_linesep_len: error = ('`buffersize` ({0:d}) must be at least as large as the ' 'number of line separator bytes ({1:d}).') raise ValueError(error.format(buffersize, bin_linesep_len)) chunksize = end - start with open(filename, 'rb', compression) as f: with io.BufferedReader(f) as fb: # If `start` does not correspond to the beginning of the file, we # need to move the file pointer to `start - len(bin_linesep)`, # search for the position of the next a line separator, and set # `start` to the position after that line separator. if start > 0: # `start` is decremented by `len(bin_linesep)` to detect the # case where the original `start` value corresponds to the # beginning of a line. start = max(0, start - bin_linesep_len) # Set the file pointer to `start`. fb.seek(start) # Number of bytes to shift the file pointer before reading a # new chunk to make sure that a multi-byte line separator, that # is split by the chunk reader, is still detected. shift = 1 - bin_linesep_len while True: buf = f.read(buffersize) if len(buf) < bin_linesep_len: raise StopIteration try: # Find the position of the next line separator and add # `len(bin_linesep)` which yields the position of the # first byte of the next line. start += buf.index(bin_linesep) start += bin_linesep_len except ValueError: # No line separator was found in the current chunk. # Before reading the next chunk, we move the file # pointer back `len(bin_linesep) - 1` bytes to make # sure that a multi-byte line separator, that may have # been split by the chunk reader, is still detected. start += len(buf) start += shift fb.seek(shift, os.SEEK_CUR) else: # We have found the next line separator, so we need to # set the file pointer to the first byte of the next # line. fb.seek(start) break with io.TextIOWrapper(fb, encoding, newline=linesep) as fbw: # Retrieve and yield lines until the file pointer reaches # `end`. while start < end: line = next(fbw) # We need to encode the line again to get the byte length # in order to correctly update `start`. bin_line_len = len(line.encode(encoding)) if chunksize < bin_line_len: error = ('`chunksize` ({0:d}) is less than the line ' 'length ({1:d}). This may cause duplicate ' 'processing of this line. It is advised to ' 'increase `chunksize`.') raise IOError(error.format(chunksize, bin_line_len)) yield line start += bin_line_len def concrete(seq): """ Make nested iterators concrete lists >>> data = [[1, 2], [3, 4]] >>> seq = iter(map(iter, data)) >>> concrete(seq) [[1, 2], [3, 4]] """ if isinstance(seq, Iterator): seq = list(seq) if isinstance(seq, (tuple, list)): seq = list(map(concrete, seq)) return seq def skip(func): pass def pseudorandom(n, p, random_state=None): """ Pseudorandom array of integer indexes >>> pseudorandom(5, [0.5, 0.5], random_state=123) array([1, 0, 0, 1, 1], dtype=int8) >>> pseudorandom(10, [0.5, 0.2, 0.2, 0.1], random_state=5) array([0, 2, 0, 3, 0, 1, 2, 1, 0, 0], dtype=int8) """ import numpy as np p = list(p) cp = np.cumsum([0] + p) assert np.allclose(1, cp[-1]) assert len(p) < 256 if not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) x = random_state.random_sample(n) out = np.empty(n, dtype='i1') for i, (low, high) in enumerate(zip(cp[:-1], cp[1:])): out[(x >= low) & (x < high)] = i return out def random_state_data(n, random_state=None): """Return a list of arrays that can initialize ``np.random.RandomState``. Parameters ---------- n : int Number of tuples to return. random_state : int or np.random.RandomState, optional If an int, is used to seed a new ``RandomState``. """ import numpy as np if not isinstance(random_state, np.random.RandomState): random_state = np.random.RandomState(random_state) maxuint32 = np.iinfo(np.uint32).max return [(random_state.rand(624) * maxuint32).astype('uint32') for i in range(n)] def is_integer(i): """ >>> is_integer(6) True >>> is_integer(42.0) True >>> is_integer('abc') False """ import numpy as np if isinstance(i, (int, long)): return True if isinstance(i, float): return (i).is_integer() if issubclass(type(i), np.integer): return i else: return False def file_size(fn, compression=None): """ Size of a file on disk If compressed then return the uncompressed file size """ if compression == 'gzip': with open(fn, 'rb') as f: f.seek(-4, 2) result = struct.unpack('I', f.read(4))[0] elif compression: # depending on the implementation, this may be inefficient with open(fn, 'rb', compression) as f: result = f.seek(0, 2) else: result = os.stat(fn).st_size return result ONE_ARITY_BUILTINS = set([abs, all, any, bool, bytearray, bytes, callable, chr, classmethod, complex, dict, dir, enumerate, eval, float, format, frozenset, hash, hex, id, int, iter, len, list, max, min, next, oct, open, ord, range, repr, reversed, round, set, slice, sorted, staticmethod, str, sum, tuple, type, vars, zip, memoryview]) if PY3: ONE_ARITY_BUILTINS.add(ascii) # noqa: F821 MULTI_ARITY_BUILTINS = set([compile, delattr, divmod, filter, getattr, hasattr, isinstance, issubclass, map, pow, setattr]) def takes_multiple_arguments(func): """ Does this function take multiple arguments? >>> def f(x, y): pass >>> takes_multiple_arguments(f) True >>> def f(x): pass >>> takes_multiple_arguments(f) False >>> def f(x, y=None): pass >>> takes_multiple_arguments(f) False >>> def f(*args): pass >>> takes_multiple_arguments(f) True >>> class Thing(object): ... def __init__(self, a): pass >>> takes_multiple_arguments(Thing) False """ if func in ONE_ARITY_BUILTINS: return False elif func in MULTI_ARITY_BUILTINS: return True try: spec = getargspec(func) except: return False try: is_constructor = spec.args[0] == 'self' and isinstance(func, type) except: is_constructor = False if spec.varargs: return True if spec.defaults is None: return len(spec.args) - is_constructor != 1 return len(spec.args) - len(spec.defaults) - is_constructor > 1 class Dispatch(object): """Simple single dispatch.""" def __init__(self): self._lookup = {} self._lazy = {} def register(self, type, func=None): """Register dispatch of `func` on arguments of type `type`""" def wrapper(func): if isinstance(type, tuple): for t in type: self.register(t, func) else: self._lookup[type] = func return func return wrapper(func) if func is not None else wrapper def register_lazy(self, toplevel, func=None): """ Register a registration function which will be called if the *toplevel* module (e.g. 'pandas') is ever loaded. """ def wrapper(func): self._lazy[toplevel] = func return func return wrapper(func) if func is not None else wrapper def __call__(self, arg): # Fast path with direct lookup on type lk = self._lookup typ = type(arg) try: impl = lk[typ] except KeyError: pass else: return impl(arg) # Is a lazy registration function present? toplevel, _, _ = typ.__module__.partition('.') try: register = self._lazy.pop(toplevel) except KeyError: pass else: register() return self(arg) # recurse # Walk the MRO and cache the lookup result for cls in inspect.getmro(typ)[1:]: if cls in lk: lk[typ] = lk[cls] return lk[cls](arg) raise TypeError("No dispatch for {0} type".format(typ)) def ensure_not_exists(filename): """ Ensure that a file does not exist. """ try: os.unlink(filename) except OSError as e: if e.errno != ENOENT: raise def _skip_doctest(line): # NumPy docstring contains cursor and comment only example stripped = line.strip() if stripped == '>>>' or stripped.startswith('>>> #'): return stripped elif '>>>' in stripped: return line + ' # doctest: +SKIP' else: return line def skip_doctest(doc): if doc is None: return '' return '\n'.join([_skip_doctest(line) for line in doc.split('\n')]) def derived_from(original_klass, version=None, ua_args=[]): """Decorator to attach original class's docstring to the wrapped method. Parameters ---------- original_klass: type Original class which the method is derived from version : str Original package version which supports the wrapped method ua_args : list List of keywords which Dask doesn't support. Keywords existing in original but not in Dask will automatically be added. """ def wrapper(method): method_name = method.__name__ try: # do not use wraps here, as it hides keyword arguments displayed # in the doc original_method = getattr(original_klass, method_name) doc = original_method.__doc__ if doc is None: doc = '' try: method_args = getargspec(method).args original_args = getargspec(original_method).args not_supported = [m for m in original_args if m not in method_args] except TypeError: not_supported = [] if len(ua_args) > 0: not_supported.extend(ua_args) if len(not_supported) > 0: note = ("\n Notes\n -----\n" " Dask doesn't supports following argument(s).\n\n") args = ''.join([' * {0}\n'.format(a) for a in not_supported]) doc = doc + note + args doc = skip_doctest(doc) method.__doc__ = doc return method except AttributeError: module_name = original_klass.__module__.split('.')[0] @functools.wraps(method) def wrapped(*args, **kwargs): msg = "Base package doesn't support '{0}'.".format(method_name) if version is not None: msg2 = " Use {0} {1} or later to use this method." msg += msg2.format(module_name, version) raise NotImplementedError(msg) return wrapped return wrapper def funcname(func): """Get the name of a function.""" # functools.partial if isinstance(func, functools.partial): return funcname(func.func) # methodcaller if isinstance(func, methodcaller): return func.method module_name = getattr(func, '__module__', None) or '' type_name = getattr(type(func), '__name__', None) or '' # toolz.curry if 'toolz' in module_name and 'curry' == type_name: return func.func_name # multipledispatch objects if 'multipledispatch' in module_name and 'Dispatcher' == type_name: return func.name # All other callables try: name = func.__name__ if name == '<lambda>': return 'lambda' return name except: return str(func) def ensure_bytes(s): """ Turn string or bytes to bytes >>> ensure_bytes(u'123') '123' >>> ensure_bytes('123') '123' >>> ensure_bytes(b'123') '123' """ if isinstance(s, bytes): return s if hasattr(s, 'encode'): return s.encode() msg = "Object %s is neither a bytes object nor has an encode method" raise TypeError(msg % s) def ensure_unicode(s): """ Turn string or bytes to bytes >>> ensure_unicode(u'123') u'123' >>> ensure_unicode('123') u'123' >>> ensure_unicode(b'123') u'123' """ if isinstance(s, unicode): return s if hasattr(s, 'decode'): return s.decode() msg = "Object %s is neither a bytes object nor has an encode method" raise TypeError(msg % s) def digit(n, k, base): """ >>> digit(1234, 0, 10) 4 >>> digit(1234, 1, 10) 3 >>> digit(1234, 2, 10) 2 >>> digit(1234, 3, 10) 1 """ return n // base**k % base def insert(tup, loc, val): """ >>> insert(('a', 'b', 'c'), 0, 'x') ('x', 'b', 'c') """ L = list(tup) L[loc] = val return tuple(L) def build_name_function(max_int): """ Returns a function that receives a single integer and returns it as a string padded by enough zero characters to align with maximum possible integer >>> name_f = build_name_function(57) >>> name_f(7) '07' >>> name_f(31) '31' >>> build_name_function(1000)(42) '0042' >>> build_name_function(999)(42) '042' >>> build_name_function(0)(0) '0' """ # handle corner cases max_int is 0 or exact power of 10 max_int += 1e-8 pad_length = int(math.ceil(math.log10(max_int))) def name_function(i): return str(i).zfill(pad_length) return name_function def infer_storage_options(urlpath, inherit_storage_options=None): """ Infer storage options from URL path and merge it with existing storage options. Parameters ---------- urlpath: str or unicode Either local absolute file path or URL (hdfs://namenode:8020/file.csv) storage_options: dict (optional) Its contents will get merged with the inferred information from the given path Returns ------- Storage options dict. Examples -------- >>> infer_storage_options('/mnt/datasets/test.csv') # doctest: +SKIP {"protocol": "file", "path", "/mnt/datasets/test.csv"} >>> infer_storage_options( ... 'hdfs://username:pwd@node:123/mnt/datasets/test.csv?q=1', ... inherit_storage_options={'extra': 'value'}) # doctest: +SKIP {"protocol": "hdfs", "username": "username", "password": "pwd", "host": "node", "port": 123, "path": "/mnt/datasets/test.csv", "url_query": "q=1", "extra": "value"} """ # Handle Windows paths including disk name in this special case if re.match(r'^[a-zA-Z]:[\\/]', urlpath): return {'protocol': 'file', 'path': urlpath} parsed_path = urlsplit(urlpath) protocol = parsed_path.scheme or 'file' path = parsed_path.path if protocol == 'file': # Special case parsing file protocol URL on Windows according to: # https://msdn.microsoft.com/en-us/library/jj710207.aspx windows_path = re.match(r'^/([a-zA-Z])[:|]([\\/].*)$', path) if windows_path: path = '%s:%s' % windows_path.groups() inferred_storage_options = { 'protocol': protocol, 'path': path, } if parsed_path.netloc: # Parse `hostname` from netloc manually because `parsed_path.hostname` # lowercases the hostname which is not always desirable (e.g. in S3): # https://github.com/dask/dask/issues/1417 inferred_storage_options['host'] = parsed_path.netloc.rsplit('@', 1)[-1].rsplit(':', 1)[0] if parsed_path.port: inferred_storage_options['port'] = parsed_path.port if parsed_path.username: inferred_storage_options['username'] = parsed_path.username if parsed_path.password: inferred_storage_options['password'] = parsed_path.password if parsed_path.query: inferred_storage_options['url_query'] = parsed_path.query if parsed_path.fragment: inferred_storage_options['url_fragment'] = parsed_path.fragment if inherit_storage_options: if set(inherit_storage_options) & set(inferred_storage_options): raise KeyError("storage options (%r) and path url options (%r) " "collision is detected" % (inherit_storage_options, inferred_storage_options)) inferred_storage_options.update(inherit_storage_options) return inferred_storage_options def dependency_depth(dsk): import toolz deps, _ = get_deps(dsk) @toolz.memoize def max_depth_by_deps(key): if not deps[key]: return 1 d = 1 + max(max_depth_by_deps(dep_key) for dep_key in deps[key]) return d return max(max_depth_by_deps(dep_key) for dep_key in deps.keys()) def eq_strict(a, b): """Returns True if both values have the same type and are equal.""" if type(a) is type(b): return a == b return False def memory_repr(num): for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return "%3.1f %s" % (num, x) num /= 1024.0 def put_lines(buf, lines): if any(not isinstance(x, unicode) for x in lines): lines = [unicode(x) for x in lines] buf.write('\n'.join(lines)) hex_pattern = re.compile('[a-f]+') def key_split(s): """ >>> key_split('x') u'x' >>> key_split('x-1') u'x' >>> key_split('x-1-2-3') u'x' >>> key_split(('x-2', 1)) 'x' >>> key_split("('x-2', 1)") u'x' >>> key_split('hello-world-1') u'hello-world' >>> key_split(b'hello-world-1') u'hello-world' >>> key_split('ae05086432ca935f6eba409a8ecd4896') 'data' >>> key_split('<module.submodule.myclass object at 0xdaf372') u'myclass' >>> key_split(None) 'Other' >>> key_split('x-abcdefab') # ignores hex u'x' """ if type(s) is bytes: s = s.decode() if type(s) is tuple: s = s[0] try: words = s.split('-') result = words[0].lstrip("'(\"") for word in words[1:]: if word.isalpha() and not (len(word) == 8 and hex_pattern.match(word) is not None): result += '-' + word else: break if len(result) == 32 and re.match(r'[a-f0-9]{32}', result): return 'data' else: if result[0] == '<': result = result.strip('<>').split()[0].split('.')[-1] return result except Exception: return 'Other' _method_cache = {} class methodcaller(object): """Return a callable object that calls the given method on its operand. Unlike the builtin `methodcaller`, this class is serializable""" __slots__ = ('method',) func = property(lambda self: self.method) # For `funcname` to work def __new__(cls, method): if method in _method_cache: return _method_cache[method] self = object.__new__(cls) self.method = method _method_cache[method] = self return self def __call__(self, obj, *args, **kwargs): return getattr(obj, self.method)(*args, **kwargs) def __reduce__(self): return (methodcaller, (self.method,)) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.method) __repr__ = __str__ class MethodCache(object): """Attribute access on this object returns a methodcaller for that attribute. Examples -------- >>> a = [1, 3, 3] >>> M.count(a, 3) == a.count(3) True """ __getattr__ = staticmethod(methodcaller) __dir__ = lambda self: list(_method_cache) M = MethodCache() class SerializableLock(object): _locks = WeakValueDictionary() """ A Serializable per-process Lock This wraps a normal ``threading.Lock`` object and satisfies the same interface. However, this lock can also be serialized and sent to different processes. It will not block concurrent operations between processes (for this you should look at ``multiprocessing.Lock`` or ``locket.lock_file`` but will consistently deserialize into the same lock. So if we make a lock in one process:: lock = SerializableLock() And then send it over to another process multiple times:: bytes = pickle.dumps(lock) a = pickle.loads(bytes) b = pickle.loads(bytes) Then the deserialized objects will operate as though they were the same lock, and collide as appropriate. This is useful for consistently protecting resources on a per-process level. The creation of locks is itself not threadsafe. """ def __init__(self, token=None): self.token = token or str(uuid.uuid4()) if self.token in SerializableLock._locks: self.lock = SerializableLock._locks[self.token] else: self.lock = Lock() SerializableLock._locks[self.token] = self.lock def acquire(self, *args): return self.lock.acquire(*args) def release(self, *args): return self.lock.release(*args) def __enter__(self): self.lock.__enter__() def __exit__(self, *args): self.lock.__exit__(*args) @property def locked(self): return self.locked def __getstate__(self): return self.token def __setstate__(self, token): self.__init__(token) def __str__(self): return "<%s: %s>" % (self.__class__.__name__, self.token) __repr__ = __str__ def effective_get(get=None, collection=None): """Get the effective get method used in a given situation""" collection_get = collection._default_get if collection else None return get or _globals.get('get') or collection_get def get_scheduler_lock(get=None, collection=None): """Get an instance of the appropriate lock for a certain situation based on scheduler used.""" actual_get = effective_get(get, collection) if actual_get == multiprocessing.get: return mp.Manager().Lock() return SerializableLock()
bsd-3-clause
benoitsteiner/tensorflow
tensorflow/examples/learn/text_classification.py
39
5106
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of Estimator for DNN-based text classification with DBpedia data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import sys import numpy as np import pandas from sklearn import metrics import tensorflow as tf from tensorflow.contrib.layers.python.layers import encoders learn = tf.contrib.learn FLAGS = None MAX_DOCUMENT_LENGTH = 10 EMBEDDING_SIZE = 50 n_words = 0 def bag_of_words_model(features, target): """A bag-of-words model. Note it disregards the word order in the text.""" target = tf.one_hot(target, 15, 1, 0) features = encoders.bow_encoder( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE) logits = tf.contrib.layers.fully_connected(features, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def rnn_model(features, target): """RNN model to predict from sequence of words to a class.""" # Convert indexes of words into embeddings. # This creates embeddings matrix of [n_words, EMBEDDING_SIZE] and then # maps word indexes of the sequence into [batch_size, sequence_length, # EMBEDDING_SIZE]. word_vectors = tf.contrib.layers.embed_sequence( features, vocab_size=n_words, embed_dim=EMBEDDING_SIZE, scope='words') # Split into list of embedding per word, while removing doc length dim. # word_list results to be a list of tensors [batch_size, EMBEDDING_SIZE]. word_list = tf.unstack(word_vectors, axis=1) # Create a Gated Recurrent Unit cell with hidden size of EMBEDDING_SIZE. cell = tf.contrib.rnn.GRUCell(EMBEDDING_SIZE) # Create an unrolled Recurrent Neural Networks to length of # MAX_DOCUMENT_LENGTH and passes word_list as inputs for each unit. _, encoding = tf.contrib.rnn.static_rnn(cell, word_list, dtype=tf.float32) # Given encoding of RNN, take encoding of last step (e.g hidden size of the # neural network of last step) and pass it as features for logistic # regression over output classes. target = tf.one_hot(target, 15, 1, 0) logits = tf.contrib.layers.fully_connected(encoding, 15, activation_fn=None) loss = tf.contrib.losses.softmax_cross_entropy(logits, target) # Create a training op. train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adam', learning_rate=0.01) return ({ 'class': tf.argmax(logits, 1), 'prob': tf.nn.softmax(logits) }, loss, train_op) def main(unused_argv): global n_words # Prepare training and testing data dbpedia = learn.datasets.load_dataset( 'dbpedia', test_with_fake_data=FLAGS.test_with_fake_data) x_train = pandas.DataFrame(dbpedia.train.data)[1] y_train = pandas.Series(dbpedia.train.target) x_test = pandas.DataFrame(dbpedia.test.data)[1] y_test = pandas.Series(dbpedia.test.target) # Process vocabulary vocab_processor = learn.preprocessing.VocabularyProcessor(MAX_DOCUMENT_LENGTH) x_transform_train = vocab_processor.fit_transform(x_train) x_transform_test = vocab_processor.transform(x_test) x_train = np.array(list(x_transform_train)) x_test = np.array(list(x_transform_test)) n_words = len(vocab_processor.vocabulary_) print('Total words: %d' % n_words) # Build model # Switch between rnn_model and bag_of_words_model to test different models. model_fn = rnn_model if FLAGS.bow_model: model_fn = bag_of_words_model classifier = learn.Estimator(model_fn=model_fn) # Train and predict classifier.fit(x_train, y_train, steps=100) y_predicted = [ p['class'] for p in classifier.predict( x_test, as_iterable=True) ] score = metrics.accuracy_score(y_test, y_predicted) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--test_with_fake_data', default=False, help='Test the example code with fake data.', action='store_true') parser.add_argument( '--bow_model', default=False, help='Run with BOW model instead of RNN.', action='store_true') FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
ashhher3/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
aetilley/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
andyh616/mne-python
mne/viz/tests/test_ica.py
7
6812
# Authors: Denis Engemann <denis.engemann@gmail.com> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: Simplified BSD import os.path as op import warnings from numpy.testing import assert_raises from mne import io, read_events, Epochs, read_cov from mne import pick_types from mne.utils import run_tests_if_main, requires_sklearn from mne.viz.utils import _fake_click from mne.preprocessing import ICA, create_ecg_epochs, create_eog_epochs # Set our plotters to test mode import matplotlib matplotlib.use('Agg') # for testing don't use X server warnings.simplefilter('always') # enable b/c these tests throw warnings base_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') evoked_fname = op.join(base_dir, 'test-ave.fif') raw_fname = op.join(base_dir, 'test_raw.fif') cov_fname = op.join(base_dir, 'test-cov.fif') event_name = op.join(base_dir, 'test-eve.fif') event_id, tmin, tmax = 1, -0.1, 0.2 def _get_raw(preload=False): return io.Raw(raw_fname, preload=preload) def _get_events(): return read_events(event_name) def _get_picks(raw): return [0, 1, 2, 6, 7, 8, 12, 13, 14] # take a only few channels def _get_epochs(): raw = _get_raw() events = _get_events() picks = _get_picks(raw) epochs = Epochs(raw, events[:10], event_id, tmin, tmax, picks=picks, baseline=(None, 0)) return epochs @requires_sklearn def test_plot_ica_components(): """Test plotting of ICA solutions """ import matplotlib.pyplot as plt raw = _get_raw() ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica_picks = _get_picks(raw) ica.fit(raw, picks=ica_picks) warnings.simplefilter('always', UserWarning) with warnings.catch_warnings(record=True): for components in [0, [0], [0, 1], [0, 1] * 2, None]: ica.plot_components(components, image_interp='bilinear', res=16) ica.info = None assert_raises(RuntimeError, ica.plot_components, 1) plt.close('all') @requires_sklearn def test_plot_ica_sources(): """Test plotting of ICA panel """ import matplotlib.pyplot as plt raw = io.Raw(raw_fname, preload=False) raw.crop(0, 1, copy=False) raw.preload_data() picks = _get_picks(raw) epochs = _get_epochs() raw.pick_channels([raw.ch_names[k] for k in picks]) ica_picks = pick_types(raw.info, meg=True, eeg=False, stim=False, ecg=False, eog=False, exclude='bads') ica = ICA(n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=ica_picks) raw.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=raw) ica.plot_sources(epochs) epochs.info['bads'] = ['MEG 0113'] assert_raises(RuntimeError, ica.plot_sources, inst=epochs) epochs.info['bads'] = [] with warnings.catch_warnings(record=True): # no labeled objects mpl ica.plot_sources(epochs.average()) evoked = epochs.average() fig = ica.plot_sources(evoked) # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [ax.get_xlim()[0], ax.get_ylim()[1]], 'data') # plot with bad channels excluded ica.plot_sources(evoked, exclude=[0]) ica.exclude = [0] ica.plot_sources(evoked) # does the same thing assert_raises(ValueError, ica.plot_sources, 'meeow') plt.close('all') @requires_sklearn def test_plot_ica_overlay(): """Test plotting of ICA cleaning """ import matplotlib.pyplot as plt raw = _get_raw(preload=True) picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) # don't test raw, needs preload ... ecg_epochs = create_ecg_epochs(raw, picks=picks) ica.plot_overlay(ecg_epochs.average()) eog_epochs = create_eog_epochs(raw, picks=picks) ica.plot_overlay(eog_epochs.average()) assert_raises(ValueError, ica.plot_overlay, raw[:2, :3][0]) ica.plot_overlay(raw) plt.close('all') @requires_sklearn def test_plot_ica_scores(): """Test plotting of ICA scores """ import matplotlib.pyplot as plt raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) ica.plot_scores([0.3, 0.2], axhline=[0.1, -0.1]) assert_raises(ValueError, ica.plot_scores, [0.2]) plt.close('all') @requires_sklearn def test_plot_instance_components(): """Test plotting of components as instances of raw and epochs.""" import matplotlib.pyplot as plt raw = _get_raw() picks = _get_picks(raw) ica = ICA(noise_cov=read_cov(cov_fname), n_components=2, max_pca_components=3, n_pca_components=3) ica.fit(raw, picks=picks) fig = ica.plot_sources(raw, exclude=[0], title='Components') fig.canvas.key_press_event('down') fig.canvas.key_press_event('up') fig.canvas.key_press_event('right') fig.canvas.key_press_event('left') fig.canvas.key_press_event('o') fig.canvas.key_press_event('-') fig.canvas.key_press_event('+') fig.canvas.key_press_event('=') fig.canvas.key_press_event('pageup') fig.canvas.key_press_event('pagedown') fig.canvas.key_press_event('home') fig.canvas.key_press_event('end') fig.canvas.key_press_event('f11') ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') epochs = _get_epochs() fig = ica.plot_sources(epochs, exclude=[0], title='Components') fig.canvas.key_press_event('down') fig.canvas.key_press_event('up') fig.canvas.key_press_event('right') fig.canvas.key_press_event('left') fig.canvas.key_press_event('o') fig.canvas.key_press_event('-') fig.canvas.key_press_event('+') fig.canvas.key_press_event('=') fig.canvas.key_press_event('pageup') fig.canvas.key_press_event('pagedown') fig.canvas.key_press_event('home') fig.canvas.key_press_event('end') fig.canvas.key_press_event('f11') # Test a click ax = fig.get_axes()[0] line = ax.lines[0] _fake_click(fig, ax, [line.get_xdata()[0], line.get_ydata()[0]], 'data') _fake_click(fig, ax, [-0.1, 0.9]) # click on y-label fig.canvas.key_press_event('escape') plt.close('all') run_tests_if_main()
bsd-3-clause
mattilyra/scikit-learn
sklearn/tests/test_pipeline.py
23
15392
""" Test the pipeline module. """ import numpy as np from scipy import sparse from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raises_regex from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns_message from sklearn.base import clone from sklearn.pipeline import Pipeline, FeatureUnion, make_pipeline, make_union from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LinearRegression from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest, f_classif from sklearn.decomposition import PCA, TruncatedSVD from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.feature_extraction.text import CountVectorizer JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) class IncorrectT(object): """Small class to test parameter dispatching. """ def __init__(self, a=None, b=None): self.a = a self.b = b class T(IncorrectT): def fit(self, X, y): return self def get_params(self, deep=False): return {'a': self.a, 'b': self.b} def set_params(self, **params): self.a = params['a'] return self class TransfT(T): def transform(self, X, y=None): return X def inverse_transform(self, X): return X class FitParamT(object): """Mock classifier """ def __init__(self): self.successful = False def fit(self, X, y, should_succeed=False): self.successful = should_succeed def predict(self, X): return self.successful def test_pipeline_init(): # Test the various init parameters of the pipeline. assert_raises(TypeError, Pipeline) # Check that we can't instantiate pipelines with objects without fit # method pipe = assert_raises(TypeError, Pipeline, [('svc', IncorrectT)]) # Smoke test with only an estimator clf = T() pipe = Pipeline([('svc', clf)]) assert_equal(pipe.get_params(deep=True), dict(svc__a=None, svc__b=None, svc=clf, **pipe.get_params(deep=False))) # Check that params are set pipe.set_params(svc__a=0.1) assert_equal(clf.a, 0.1) assert_equal(clf.b, None) # Smoke test the repr: repr(pipe) # Test with two objects clf = SVC() filter1 = SelectKBest(f_classif) pipe = Pipeline([('anova', filter1), ('svc', clf)]) # Check that we can't use the same stage name twice assert_raises(ValueError, Pipeline, [('svc', SVC()), ('svc', SVC())]) # Check that params are set pipe.set_params(svc__C=0.1) assert_equal(clf.C, 0.1) # Smoke test the repr: repr(pipe) # Check that params are not set when naming them wrong assert_raises(ValueError, pipe.set_params, anova__C=0.1) # Test clone pipe2 = clone(pipe) assert_false(pipe.named_steps['svc'] is pipe2.named_steps['svc']) # Check that apart from estimators, the parameters are the same params = pipe.get_params(deep=True) params2 = pipe2.get_params(deep=True) for x in pipe.get_params(deep=False): params.pop(x) for x in pipe2.get_params(deep=False): params2.pop(x) # Remove estimators that where copied params.pop('svc') params.pop('anova') params2.pop('svc') params2.pop('anova') assert_equal(params, params2) def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', TransfT()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert_true(pipe.predict(None)) # and transformer params should not be changed assert_true(pipe.named_steps['transf'].a is None) assert_true(pipe.named_steps['transf'].b is None) def test_pipeline_raise_set_params_error(): # Test pipeline raises set params error message for nested models. pipe = Pipeline([('cls', LinearRegression())]) # expected error message error_msg = ('Invalid parameter %s for estimator %s. ' 'Check the list of available parameters ' 'with `estimator.get_params().keys()`.') assert_raise_message(ValueError, error_msg % ('fake', 'Pipeline'), pipe.set_params, fake='nope') # nested model check assert_raise_message(ValueError, error_msg % ("fake", pipe), pipe.set_params, fake__estimator='nope') def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(svd_solver='full', n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y) def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = PCA(n_components=2, svd_solver='randomized', whiten=True) clf = SVC(probability=True, random_state=0, decision_function_shape='ovr') for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert_equal(predict.shape, (n_samples,)) proba = pipe.predict_proba(X) assert_equal(proba.shape, (n_samples, n_classes)) log_proba = pipe.predict_log_proba(X) assert_equal(log_proba.shape, (n_samples, n_classes)) decision_function = pipe.decision_function(X) assert_equal(decision_function.shape, (n_samples, n_classes)) pipe.score(X, y) def test_fit_predict_on_pipeline(): # test that the fit_predict method is implemented on a pipeline # test that the fit_predict on pipeline yields same results as applying # transform and clustering steps separately iris = load_iris() scaler = StandardScaler() km = KMeans(random_state=0) # first compute the transform and clustering step separately scaled = scaler.fit_transform(iris.data) separate_pred = km.fit_predict(scaled) # use a pipeline to do the transform and clustering in one step pipe = Pipeline([('scaler', scaler), ('Kmeans', km)]) pipeline_pred = pipe.fit_predict(iris.data) assert_array_almost_equal(pipeline_pred, separate_pred) def test_fit_predict_on_pipeline_without_fit_predict(): # tests that a pipeline does not have fit_predict method when final # step of pipeline does not have fit_predict defined scaler = StandardScaler() pca = PCA(svd_solver='full') pipe = Pipeline([('scaler', scaler), ('pca', pca)]) assert_raises_regex(AttributeError, "'PCA' object has no attribute 'fit_predict'", getattr, pipe, 'fit_predict') def test_feature_union(): # basic sanity check for feature union iris = load_iris() X = iris.data X -= X.mean(axis=0) y = iris.target svd = TruncatedSVD(n_components=2, random_state=0) select = SelectKBest(k=1) fs = FeatureUnion([("svd", svd), ("select", select)]) fs.fit(X, y) X_transformed = fs.transform(X) assert_equal(X_transformed.shape, (X.shape[0], 3)) # check if it does the expected thing assert_array_almost_equal(X_transformed[:, :-1], svd.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) # test if it also works for sparse input # We use a different svd object to control the random_state stream fs = FeatureUnion([("svd", svd), ("select", select)]) X_sp = sparse.csr_matrix(X) X_sp_transformed = fs.fit_transform(X_sp, y) assert_array_almost_equal(X_transformed, X_sp_transformed.toarray()) # test setting parameters fs.set_params(select__k=2) assert_equal(fs.fit_transform(X, y).shape, (X.shape[0], 4)) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("svd", svd), ("select", select)]) X_transformed = fs.fit_transform(X, y) assert_equal(X_transformed.shape, (X.shape[0], 8)) def test_make_union(): pca = PCA(svd_solver='full') mock = TransfT() fu = make_union(pca, mock) names, transformers = zip(*fu.transformer_list) assert_equal(names, ("pca", "transft")) assert_equal(transformers, (pca, mock)) def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2, svd_solver='full') pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2) def test_pipeline_fit_transform(): # Test whether pipeline works with a transformer missing fit_transform iris = load_iris() X = iris.data y = iris.target transft = TransfT() pipeline = Pipeline([('mock', transft)]) # test fit_transform: X_trans = pipeline.fit_transform(X, y) X_trans2 = transft.fit(X, y).transform(X) assert_array_almost_equal(X_trans, X_trans2) def test_make_pipeline(): t1 = TransfT() t2 = TransfT() pipe = make_pipeline(t1, t2) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") pipe = make_pipeline(t1, t2, FitParamT()) assert_true(isinstance(pipe, Pipeline)) assert_equal(pipe.steps[0][0], "transft-1") assert_equal(pipe.steps[1][0], "transft-2") assert_equal(pipe.steps[2][0], "fitparamt") def test_feature_union_weights(): # test feature union with transformer weights iris = load_iris() X = iris.data y = iris.target pca = PCA(n_components=2, svd_solver='randomized', random_state=0) select = SelectKBest(k=1) # test using fit followed by transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) fs.fit(X, y) X_transformed = fs.transform(X) # test using fit_transform fs = FeatureUnion([("pca", pca), ("select", select)], transformer_weights={"pca": 10}) X_fit_transformed = fs.fit_transform(X, y) # test it works with transformers missing fit_transform fs = FeatureUnion([("mock", TransfT()), ("pca", pca), ("select", select)], transformer_weights={"mock": 10}) X_fit_transformed_wo_method = fs.fit_transform(X, y) # check against expected result # We use a different pca object to control the random_state stream assert_array_almost_equal(X_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_array_almost_equal(X_fit_transformed[:, :-1], 10 * pca.fit_transform(X)) assert_array_equal(X_fit_transformed[:, -1], select.fit_transform(X, y).ravel()) assert_equal(X_fit_transformed_wo_method.shape, (X.shape[0], 7)) def test_feature_union_parallel(): # test that n_jobs work for FeatureUnion X = JUNK_FOOD_DOCS fs = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ]) fs_parallel = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs_parallel2 = FeatureUnion([ ("words", CountVectorizer(analyzer='word')), ("chars", CountVectorizer(analyzer='char')), ], n_jobs=2) fs.fit(X) X_transformed = fs.transform(X) assert_equal(X_transformed.shape[0], len(X)) fs_parallel.fit(X) X_transformed_parallel = fs_parallel.transform(X) assert_equal(X_transformed.shape, X_transformed_parallel.shape) assert_array_equal( X_transformed.toarray(), X_transformed_parallel.toarray() ) # fit_transform should behave the same X_transformed_parallel2 = fs_parallel2.fit_transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) # transformers should stay fit after fit_transform X_transformed_parallel2 = fs_parallel2.transform(X) assert_array_equal( X_transformed.toarray(), X_transformed_parallel2.toarray() ) def test_feature_union_feature_names(): word_vect = CountVectorizer(analyzer="word") char_vect = CountVectorizer(analyzer="char_wb", ngram_range=(3, 3)) ft = FeatureUnion([("chars", char_vect), ("words", word_vect)]) ft.fit(JUNK_FOOD_DOCS) feature_names = ft.get_feature_names() for feat in feature_names: assert_true("chars__" in feat or "words__" in feat) assert_equal(len(feature_names), 35) def test_classes_property(): iris = load_iris() X = iris.data y = iris.target reg = make_pipeline(SelectKBest(k=1), LinearRegression()) reg.fit(X, y) assert_raises(AttributeError, getattr, reg, "classes_") clf = make_pipeline(SelectKBest(k=1), LogisticRegression(random_state=0)) assert_raises(AttributeError, getattr, clf, "classes_") clf.fit(X, y) assert_array_equal(clf.classes_, np.unique(y)) def test_X1d_inverse_transform(): transformer = TransfT() pipeline = make_pipeline(transformer) X = np.ones(10) msg = "1d X will not be reshaped in pipeline.inverse_transform" assert_warns_message(FutureWarning, msg, pipeline.inverse_transform, X)
bsd-3-clause
mcdeaton13/dynamic
Data/Calibration/Firm Calibration/parameters/depreciation/processing/read_inventories.py
4
4135
''' ------------------------------------------------------------------------------- Last updated 5/26/2015 ------------------------------------------------------------------------------- ------------------------------------------------------------------------------- Packages ------------------------------------------------------------------------------- ''' import os.path import numpy as np import pandas as pd import xlrd # import naics_processing as naics ''' ''' def read_inventories(output_tree, data_folder): # The directory with inventory data: inv_folder = os.path.abspath(data_folder + "\\Inventories") # Opening BEA's excel file on depreciable assets by industry: inv_book = xlrd.open_workbook(os.path.abspath( inv_folder + "\\Inventories.xls")) sht0 = inv_book.sheet_by_index(0) num_rows = sht0.nrows num_cols = sht0.ncols #Find the starting index in worksheet. cur_index = naics.search_ws(sht0, 1, 25, True, [0,0], True) check_index = naics.search_ws(sht0, "line", 20) if(cur_index[1] != check_index[1]): print "ERROR" # Breaking down by corporate tax status: corp_types = ["C Corporations", "Corporate general partners", "Corporate limited partners"] non_corp_types = ["S Corporations", "Individual general partners", "Individual limited partners", "Partnership general partners", "Partnership limited partners", "Tax-exempt organization general partners", "Tax-exempt organization limited partners", "Nominee and other general partners", "Nominee and other limited partners", "Sole Proprietors"] # Reading in the crosswalk: inv_cross = pd.read_csv(os.path.abspath( inv_folder + "\\Inventories_Crosswalk.csv")) # Creating a tree for the inventory data: inv_tree = naics.load_naics(data_folder + "\\2012_NAICS_Codes.csv") # data_cols = ["All", "Corp", "Non-Corp"] for i in inv_tree.enum_inds: i.data.append(("Inventories", pd.DataFrame(np.zeros((1, len(data_cols))), columns = data_cols))) # inv_data = np.zeros(inv_cross.shape[0]) # cross_index = 0 for i in xrange(cur_index[0], num_rows): if(cross_index >= inv_cross.shape[0]): break cur_list = str(sht0.cell_value(i, cur_index[1])).strip() cur_name = str(sht0.cell_value(i, cur_index[1]+1)).strip() checks = ((str(cur_list) == str(inv_cross["List"][cross_index])) and (str(cur_name) == str(inv_cross["Industry"][cross_index]))) if(checks): cross_index += 1 try: cur_value = float(sht0.cell_value(i, num_cols-1)) except ValueError: continue inv_data[cross_index-1] = cur_value # Data is in billions: inv_data[cross_index-1] = (10**9) * inv_data[cross_index-1] # for i in xrange(0, inv_cross.shape[0]): cur_codes = inv_cross["NAICS"][i].strip().split(".") proportions = naics.get_proportions(cur_codes, output_tree, "INV") for j in xrange(0, proportions.shape[1]): cur_ind = inv_tree.enum_inds[int(proportions.iloc[0,j])] prev_ind = output_tree.enum_inds[int(proportions.iloc[0,j])] prev_df = prev_ind.data.dfs["INV"] if(sum(prev_df.iloc[0, :]) != 0): cur_dfs = ((prev_df/sum(prev_df.iloc[0,:])) * (inv_data[i] * proportions.iloc[1,j])) inv_df = cur_ind.data.dfs["Inventories"] inv_df["All"] += sum(cur_dfs.iloc[0,:]) for k in corp_types: inv_df["Corp"] += cur_dfs[k][0] for k in non_corp_types: inv_df["Non-Corp"] += cur_dfs[k][0] # return inv_tree
mit
niketanpansare/systemml
scripts/perftest/python/google_docs/stats.py
15
3540
#!/usr/bin/env python3 # ------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ------------------------------------------------------------- import argparse import os import pprint from os.path import join import matplotlib.pyplot as plt from gdocs_utils import auth # Dict # {algo_name : [algo_1.0': t1, 'algo_2.0': t2]} def get_formatted_data(sheet_data): """ Read all the data from google sheets and transforms it into a dictionary that can be use for plotting later """ algo_dict = {} for i in sheet_data: inn_count = 0 data = [] for key, val in i.items(): inn_count += 1 if inn_count < 3: data.append(key) data.append(val) if inn_count == 2: t1, v1, _, v2 = data if len(str(v2)) > 0: if v1 not in algo_dict: algo_dict[v1] = [{t1: v2}] else: algo_dict[v1].append({t1: v2}) inn_count = 0 data = [] return algo_dict def plot(x, y, xlab, ylab, title): """ Save plots to the current folder based on the arguments """ CWD = os.getcwd() PATH = join(CWD, title) width = .35 plt.bar(x, y, color="red", width=width) plt.xticks(x) plt.xlabel(xlab) plt.ylabel(ylab) plt.title(title) plt.savefig(PATH + '.png') print('Plot {} generated'.format(title)) return plt # Example Usage # ./stats.py --auth ../key/client_json.json --exec-mode singlenode if __name__ == '__main__': execution_mode = ['hybrid_spark', 'singlenode'] cparser = argparse.ArgumentParser(description='System-ML Statistics Script') cparser.add_argument('--auth', help='Location to read auth file', required=True, metavar='') cparser.add_argument('--exec-type', help='Execution mode', choices=execution_mode, required=True, metavar='') cparser.add_argument('--plot', help='Algorithm to plot', metavar='') args = cparser.parse_args() sheet = auth(args.auth, args.exec_type) all_data = sheet.get_all_records() plot_data = get_formatted_data(all_data) if args.plot is not None: print(plot_data[args.plot]) title = args.plot ylab = 'Time in sec' xlab = 'Version' x = [] y = [] for i in plot_data[args.plot]: version = list(i.keys())[0] time = list(i.values())[0] y.append(time) x.append(version) x = list(map(lambda x: float(x.split('_')[1]), x)) plot(x, y, xlab, ylab, title) else: pprint.pprint(plot_data, width=1)
apache-2.0
cuttlefishh/emp
code/01-metadata/metadata_template_generator.py
1
4911
#!/usr/bin/env python import click import pandas as pd import re # Hard-coded variables investigation_type = 'metagenome' # Function: return dataframe of environmental package-specific metadata items # A single environmental package (soil) or list can be provided (soil,water). def show_items_of_env_pkg(df_env_pkg, list_of_env_pkg): """Return dataframe of environmental package-specific metadata items""" df_items = df_env_pkg[df_env_pkg['Environmental package'].isin(list_of_env_pkg)] return df_items # Function: return dataframe of metadata template def create_template_for_env_pkg(df_QiitaEBI, df_MIMS, df_env_pkg, list_of_env_pkg, number_of_samples, sample_prefix): """Return dataframe of metadata template""" # get headers/requirement/example of Qiita-EBI/MIMS/env_pkg columns pkg_items = show_items_of_env_pkg(df_env_pkg, list_of_env_pkg) headers_env_pkg = pkg_items['Structured comment name'].values require_env_pkg = pkg_items['Requirement'] example_env_pkg = pkg_items['Value syntax'] headers_all = list(df_QiitaEBI.iloc[0]) + list(df_MIMS.iloc[0]) + list(headers_env_pkg) require_all = pd.concat([df_QiitaEBI.iloc[1], df_MIMS.iloc[1], require_env_pkg]) example_all = pd.concat([df_QiitaEBI.iloc[2], df_MIMS.iloc[2], example_env_pkg]) # populate template dataframe df_template = pd.DataFrame(columns=headers_all, dtype=object) df_template.loc['Requirement'] = require_all.values df_template.loc['Format'] = example_all.values string_of_env_pkg = re.sub(r'\W', '.', '.'.join(list_of_env_pkg)) for i in range(0, number_of_samples): df_template.loc[i+1] = ['' for x in range(len(df_template.columns))] df_template.loc[i+1]['sample_name'] = '%s.%s.%s' % (sample_prefix, string_of_env_pkg, i+1) df_template.loc[i+1]['investigation_type'] = investigation_type df_template.loc[i+1]['env_package'] = ' or '.join(list_of_env_pkg) return df_template @click.command() @click.option('--qiita_ebi_mims_path', required=True, type=click.Path(resolve_path=True, readable=True, exists=True), help='Excel file with Qiita/EBI and MIMS required fields. Example: Qiita_EBI_MIMS_v1.xlsx') @click.option('--migs_mims_path', required=True, type=click.Path(resolve_path=True, readable=True, exists=True), help='Excel file with MIxS standards. Example: MIGS_MIMS_v4.xls') @click.option('--list_of_env_pkg', required=True, type=click.STRING, help="One (recommended) or more (separated by commas) environmental package. Choose from: air, built environment, host-associated, human-associated, human-skin, human-oral, human-gut, human-vaginal, microbial mat/biofilm, misc environment, plant-associated, sediment, soil, wastewater/sludge, water") @click.option('--number_of_samples', required=True, type=click.INT, help='Number of samples (per environmental package) to create rows for in the template') @click.option('--sample_prefix', required=True, type=click.STRING, help='Prefix string to prepend to sample numbers in row indexes. Example: Metcalf40 (EMP500 PI and study number)') # Main function: generate metadata template and readme csv files def generate_metadata_template(qiita_ebi_mims_path, migs_mims_path, list_of_env_pkg, number_of_samples, sample_prefix): """Generate metadata template and readme csv files""" # Qiita/EBI/MIMS Excel file to DataFrames df_QiitaEBI = pd.read_excel(qiita_ebi_mims_path, sheetname='QiitaEBI', header=None) df_MIMS = pd.read_excel(qiita_ebi_mims_path, sheetname='MIMS', header=None) list_of_env_pkg = list_of_env_pkg.split(",") # MIGS/MIMS Excel file to DataFrames df_README = pd.read_excel(migs_mims_path, sheetname='README', header=None) df_MIGS_MIMS = pd.read_excel(migs_mims_path, sheetname='MIGS_MIMS', header=0, index_col=0) df_env_pkg = pd.read_excel(migs_mims_path, sheetname='environmental_packages', header=0) # generate template file df_template = create_template_for_env_pkg(df_QiitaEBI, df_MIMS, df_env_pkg, list_of_env_pkg, number_of_samples, sample_prefix) string_of_env_pkg = re.sub(r'\W', '_', '_'.join(list_of_env_pkg)) df_template.to_csv('%s_%s_%s_samples.csv' % (sample_prefix, string_of_env_pkg, number_of_samples), index_label='index') # generate info file df_MIMS_select = df_MIGS_MIMS[df_MIGS_MIMS.Section.isin(['investigation', 'environment', 'migs/mims/mimarks extension'])] df_MIMS_select.to_csv('README_MIMS_metadata.csv') df_env_pkg_select = show_items_of_env_pkg(df_env_pkg, list_of_env_pkg) del df_env_pkg_select['Environmental package'] df_env_pkg_select.set_index('Structured comment name', inplace=True) string_of_env_pkg = re.sub(r'\W', '_', '_'.join(list_of_env_pkg)) df_env_pkg_select.to_csv('README_%s_metadata.csv' % string_of_env_pkg) # Execute main function if __name__ == '__main__': generate_metadata_template()
bsd-3-clause
srinathv/vispy
examples/basics/plotting/mpl_plot.py
14
1579
# -*- coding: utf-8 -*- # vispy: testskip # ----------------------------------------------------------------------------- # Copyright (c) 2015, Vispy Development Team. # Distributed under the (new) BSD License. See LICENSE.txt for more info. # ----------------------------------------------------------------------------- """ Example demonstrating how to use vispy.pyplot, which uses mplexporter to convert matplotlib commands to vispy draw commands. Requires matplotlib. """ import numpy as np # You can use either matplotlib or vispy to render this example: # import matplotlib.pyplot as plt import vispy.mpl_plot as plt from vispy.io import read_png, load_data_file n = 200 freq = 10 fs = 100. t = np.arange(n) / fs tone = np.sin(2*np.pi*freq*t) noise = np.random.RandomState(0).randn(n) signal = tone + noise magnitude = np.abs(np.fft.fft(signal)) freqs = np.fft.fftfreq(n, 1. / fs) flim = n // 2 # Signal fig = plt.figure() ax = plt.subplot(311) ax.imshow(read_png(load_data_file('pyplot/logo.png'))) ax = plt.subplot(312) ax.plot(t, signal, 'k-') # Frequency content ax = plt.subplot(313) idx = np.argmax(magnitude[:flim]) ax.text(freqs[idx], magnitude[idx], 'Max: %s Hz' % freqs[idx], verticalalignment='top') ax.plot(freqs[:flim], magnitude[:flim], 'k-o') plt.draw() # NOTE: show() has currently been overwritten to convert to vispy format, so: # 1. It must be called to show the results, and # 2. Any plotting commands executed after this will not take effect. # We are working to remove this limitation. if __name__ == '__main__': plt.show(True)
bsd-3-clause
ChinaQuants/bokeh
bokeh/compat/bokeh_renderer.py
2
17762
"Supporting objects and functions to convert Matplotlib objects into Bokeh." #----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import import itertools import warnings import matplotlib as mpl import numpy as np import pandas as pd from six import string_types from ..models import (ColumnDataSource, FactorRange, DataRange1d, DatetimeAxis, GlyphRenderer, Grid, GridPlot, LinearAxis, Plot, CategoricalAxis, Legend) from ..models.glyphs import (Asterisk, Circle, Cross, Diamond, InvertedTriangle, Line, MultiLine, Patches, Square, Text, Triangle, X) from ..plotting import DEFAULT_TOOLS from ..plotting_helpers import _process_tools_arg from .mplexporter.renderers import Renderer from .mpl_helpers import convert_dashes, get_props_cycled, is_ax_end, xkcd_line #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class BokehRenderer(Renderer): def __init__(self, pd_obj, xkcd): "Initial setup." self.fig = None self.pd_obj = pd_obj self.xkcd = xkcd self.zorder = {} self.handles = {} def open_figure(self, fig, props): "Get the main plot properties and create the plot." self.width = int(props['figwidth'] * props['dpi']) self.height = int(props['figheight'] * props['dpi']) self.plot = Plot(x_range=DataRange1d(), y_range=DataRange1d(), plot_width=self.width, plot_height=self.height) def close_figure(self, fig): "Complete the plot: add tools." # Add tools tool_objs = _process_tools_arg(self.plot, DEFAULT_TOOLS) self.plot.add_tools(*tool_objs) # Simple or Grid plot setup if len(fig.axes) <= 1: self.fig = self.plot self.plot.renderers.sort(key=lambda x: self.zorder.get(x._id, 0)) else: # This list comprehension splits the plot.renderers list at the "marker" # points returning small sublists corresponding with each subplot. subrends = [list(x[1]) for x in itertools.groupby( self.plot.renderers, lambda x: is_ax_end(x)) if not x[0]] plots = [] for i, axes in enumerate(fig.axes): # create a new plot for each subplot _plot = Plot(x_range=self.plot.x_range, y_range=self.plot.y_range, plot_width=self.width, plot_height=self.height) _plot.title = "" # and add new tools _tool_objs = _process_tools_arg(_plot, DEFAULT_TOOLS) _plot.add_tools(*_tool_objs) # clean the plot ref from axis and grids _plot_rends = subrends[i] for r in _plot_rends: if not isinstance(r, GlyphRenderer): r.plot = None # add all the renderers into the new subplot for r in _plot_rends: if isinstance(r, GlyphRenderer): _plot.renderers.append(r) elif isinstance(r, Grid): _plot.add_layout(r) else: if r in self.plot.below: _plot.add_layout(r, 'below') elif r in self.plot.above: _plot.add_layout(r, 'above') elif r in self.plot.left: _plot.add_layout(r, 'left') elif r in self.plot.right: _plot.add_layout(r, 'right') _plot.renderers.sort(key=lambda x: self.zorder.get(x._id, 0)) plots.append(_plot) (a, b, c) = fig.axes[0].get_geometry() p = np.array(plots) n = np.resize(p, (a, b)) grid = GridPlot(children=n.tolist()) self.fig = grid def open_axes(self, ax, props): "Get axes data and create the axes and grids" # Get axes, title and grid into class attributes. self.ax = ax self.plot.title = ax.get_title() # to avoid title conversion by draw_text later #Make sure that all information about the axes are passed to the properties if props.get('xscale', False): props['axes'][0]['scale'] = props['xscale'] if props.get('yscale', False): props['axes'][1]['scale'] = props['yscale'] # Add axis for props in props['axes']: if props['position'] == "bottom" : location, dim, thing = "below", 0, ax.xaxis elif props['position'] == "top" : location, dim, thing = "above", 0, ax.xaxis else: location, dim, thing = props['position'], 1, ax.yaxis baxis = self.make_axis(thing, location, props) if dim==0: gridlines = ax.get_xgridlines() else: gridlines = ax.get_ygridlines() if gridlines: self.make_grid(baxis, dim, gridlines[0]) def close_axes(self, ax): "Complete the axes adding axes-dependent plot props" background_fill = ax.get_axis_bgcolor() if background_fill == 'w': background_fill = 'white' self.plot.background_fill = background_fill if self.xkcd: self.plot.title_text_font = "Comic Sans MS, Textile, cursive" self.plot.title_text_font_style = "bold" self.plot.title_text_color = "black" # Add a "marker" Glyph to help the plot.renderers splitting in the GridPlot build dummy_source = ColumnDataSource(data=dict(name="ax_end")) self.plot.renderers.append(GlyphRenderer(data_source=dummy_source, glyph=X())) def open_legend(self, legend, props): lgnd = Legend(orientation="top_right") try: for label, obj in zip(props['labels'], props['handles']): lgnd.legends.append((label, [self.handles[id(obj)]])) self.plot.add_layout(lgnd) except KeyError: pass def close_legend(self, legend): pass def draw_line(self, data, coordinates, style, label, mplobj=None): "Given a mpl line2d instance create a Bokeh Line glyph." _x = data[:, 0] if self.pd_obj is True: try: x = [pd.Period(ordinal=int(i), freq=self.ax.xaxis.freq).to_timestamp() for i in _x] except AttributeError: # we probably can make this one more intelligent later x = _x else: x = _x y = data[:, 1] if self.xkcd: x, y = xkcd_line(x, y) line = Line() source = ColumnDataSource() line.x = source.add(x) line.y = source.add(y) line.line_color = style['color'] line.line_width = style['linewidth'] line.line_alpha = style['alpha'] line.line_dash = [] if style['dasharray'] is "none" else [int(i) for i in style['dasharray'].split(",")] # str2list(int) # line.line_join = line2d.get_solid_joinstyle() # not in mplexporter # line.line_cap = cap_style_map[line2d.get_solid_capstyle()] # not in mplexporter if self.xkcd: line.line_width = 3 r = self.plot.add_glyph(source, line) self.zorder[r._id] = style['zorder'] self.handles[id(mplobj)] = r def draw_markers(self, data, coordinates, style, label, mplobj=None): "Given a mpl line2d instance create a Bokeh Marker glyph." x = data[:, 0] y = data[:, 1] marker_map = { "o": Circle, "s": Square, "+": Cross, "^": Triangle, "v": InvertedTriangle, "x": X, "d": Diamond, "D": Diamond, "*": Asterisk, } # Not all matplotlib markers are currently handled; fall back to Circle if we encounter an # unhandled marker. See http://matplotlib.org/api/markers_api.html for a list of markers. try: marker = marker_map[style['marker']]() except KeyError: warnings.warn("Unable to handle marker: %s; defaulting to Circle" % style['marker']) marker = Circle() source = ColumnDataSource() marker.x = source.add(x) marker.y = source.add(y) marker.line_color = style['edgecolor'] marker.fill_color = style['facecolor'] marker.line_width = style['edgewidth'] marker.size = style['markersize'] marker.fill_alpha = marker.line_alpha = style['alpha'] r = self.plot.add_glyph(source, marker) self.zorder[r._id] = style['zorder'] self.handles[id(mplobj)] = r def draw_path(self, data, coordinates, pathcodes, style, offset=None, offset_coordinates="data", mplobj=None): pass def draw_text(self, text, position, coordinates, style, text_type=None, mplobj=None): "Given a mpl text instance create a Bokeh Text glyph." # mpl give you the title and axes names as a text object (with specific locations) # inside the plot itself. That does not make sense inside Bokeh, so we # just skip the title and axes names from the conversion and covert any other text. if text_type in ['xlabel', 'ylabel', 'title']: return if coordinates != 'data': return x, y = position text = Text(x=x, y=y, text=[text]) alignment_map = {"center": "middle", "top": "top", "bottom": "bottom", "baseline": "bottom"} # baseline not implemented in Bokeh, deafulting to bottom. text.text_alpha = style['alpha'] text.text_font_size = "%dpx" % style['fontsize'] text.text_color = style['color'] text.text_align = style['halign'] text.text_baseline = alignment_map[style['valign']] text.angle = style['rotation'] ## Using get_fontname() works, but it's oftentimes not available in the browser, ## so it's better to just use the font family here. #text.text_font = mplText.get_fontname()) not in mplexporter #text.text_font = mplText.get_fontfamily()[0] # not in mplexporter #text.text_font_style = fontstyle_map[mplText.get_fontstyle()] # not in mplexporter ## we don't really have the full range of font weights, but at least handle bold #if mplText.get_weight() in ("bold", "heavy"): #text.text_font_style = bold source = ColumnDataSource() r = self.plot.add_glyph(source, text) self.zorder[r._id] = style['zorder'] self.handles[id(mplobj)] = r def draw_image(self, imdata, extent, coordinates, style, mplobj=None): pass def make_axis(self, ax, location, props): "Given a mpl axes instance, returns a Bokeh LinearAxis object." # TODO: # * handle log scaling # * map `labelpad` to `major_label_standoff` # * deal with minor ticks once BokehJS supports them # * handle custom tick locations once that is added to bokehJS tf = props['tickformat'] if tf and any(isinstance(x, string_types) for x in tf): laxis = CategoricalAxis(axis_label=ax.get_label_text()) rng = FactorRange(factors=[str(x) for x in tf], offset=-1.0) if location in ["above", "below"]: self.plot.x_range = rng else: self.plot.y_range = rng else: if props['scale'] == "linear": laxis = LinearAxis(axis_label=ax.get_label_text()) elif props['scale'] == "date": laxis = DatetimeAxis(axis_label=ax.get_label_text()) self.plot.add_layout(laxis, location) # First get the label properties by getting an mpl.Text object label = ax.get_label() self.text_props(label, laxis, prefix="axis_label_") # Set the tick properties (for now just turn off if necessary) # TODO: mirror tick properties if props['nticks'] == 0: laxis.major_tick_line_color = None laxis.minor_tick_line_color = None laxis.major_label_text_color = None # To get the tick label format, we look at the first of the tick labels # and assume the rest are formatted similarly. ticklabels = ax.get_ticklabels() if ticklabels: self.text_props(ticklabels[0], laxis, prefix="major_label_") #newaxis.bounds = axis.get_data_interval() # I think this is the right func... if self.xkcd: laxis.axis_line_width = 3 laxis.axis_label_text_font = "Comic Sans MS, Textile, cursive" laxis.axis_label_text_font_style = "bold" laxis.axis_label_text_color = "black" laxis.major_label_text_font = "Comic Sans MS, Textile, cursive" laxis.major_label_text_font_style = "bold" laxis.major_label_text_color = "black" return laxis def make_grid(self, baxis, dimension, gridline): "Given a mpl axes instance, returns a Bokeh Grid object." lgrid = Grid(dimension=dimension, ticker=baxis.ticker, grid_line_color=gridline.get_color(), grid_line_width=gridline.get_linewidth()) self.plot.add_layout(lgrid) def make_line_collection(self, col): "Given a mpl collection instance create a Bokeh MultiLine glyph." xydata = col.get_segments() t_xydata = [np.transpose(seg) for seg in xydata] xs = [t_xydata[x][0] for x in range(len(t_xydata))] ys = [t_xydata[x][1] for x in range(len(t_xydata))] if self.xkcd: xkcd_xs = [xkcd_line(xs[i], ys[i])[0] for i in range(len(xs))] xkcd_ys = [xkcd_line(xs[i], ys[i])[1] for i in range(len(ys))] xs = xkcd_xs ys = xkcd_ys multiline = MultiLine() source = ColumnDataSource() multiline.xs = source.add(xs) multiline.ys = source.add(ys) self.multiline_props(source, multiline, col) r = self.plot.add_glyph(source, multiline) self.zorder[r._id] = col.zorder self.handles[id(col)] = r def make_poly_collection(self, col): "Given a mpl collection instance create a Bokeh Patches glyph." xs = [] ys = [] for path in col.get_paths(): for sub_poly in path.to_polygons(): xx, yy = sub_poly.transpose() xs.append(xx) ys.append(yy) patches = Patches() source = ColumnDataSource() patches.xs = source.add(xs) patches.ys = source.add(ys) self.patches_props(source, patches, col) r = self.plot.add_glyph(source, patches) self.zorder[r._id] = col.zorder self.handles[id(col)] = r def multiline_props(self, source, multiline, col): "Takes a mpl collection object to extract and set up some Bokeh multiline properties." colors = get_props_cycled(col, col.get_colors(), fx=lambda x: mpl.colors.rgb2hex(x)) widths = get_props_cycled(col, col.get_linewidth()) multiline.line_color = source.add(colors) multiline.line_width = source.add(widths) multiline.line_alpha = col.get_alpha() offset = col.get_linestyle()[0][0] if not col.get_linestyle()[0][1]: on_off = [] else: on_off = map(int,col.get_linestyle()[0][1]) multiline.line_dash_offset = convert_dashes(offset) multiline.line_dash = list(convert_dashes(tuple(on_off))) def patches_props(self, source, patches, col): "Takes a mpl collection object to extract and set up some Bokeh patches properties." face_colors = get_props_cycled(col, col.get_facecolors(), fx=lambda x: mpl.colors.rgb2hex(x)) patches.fill_color = source.add(face_colors) edge_colors = get_props_cycled(col, col.get_edgecolors(), fx=lambda x: mpl.colors.rgb2hex(x)) patches.line_color = source.add(edge_colors) widths = get_props_cycled(col, col.get_linewidth()) patches.line_width = source.add(widths) patches.line_alpha = col.get_alpha() patches.fill_alpha = col.get_alpha() offset = col.get_linestyle()[0][0] if not col.get_linestyle()[0][1]: on_off = [] else: on_off = map(int,col.get_linestyle()[0][1]) patches.line_dash_offset = convert_dashes(offset) patches.line_dash = list(convert_dashes(tuple(on_off))) def text_props(self, text, obj, prefix=""): fp = text.get_font_properties() setattr(obj, prefix+"text_font", fp.get_family()[0]) setattr(obj, prefix+"text_font_size", "%fpt" % fp.get_size_in_points()) setattr(obj, prefix+"text_font_style", fp.get_style())
bsd-3-clause
stganser/polyite
src/polyite/fitness/scikit_learn/init.py
1
2788
from enum import Enum import csv import math from sklearn import tree from sklearn.ensemble import RandomForestClassifier class LearningAlgorithms(Enum): cart = 0, random_forest = 1 class RandomForestsConfig: def __init__(self, n_tree, max_features): self.n_tree = n_tree self.max_features = max_features def learn(feature_fields, learning_sets_file_names, rescale, min_samples_leaf, learning_algorithm, random_forest_config): features_learn = [] classes_learn = [] for path in learning_sets_file_names: (curr_features, curr_classes) = load_data(path, feature_fields, rescale) features_learn = features_learn + curr_features classes_learn = classes_learn + curr_classes if learning_algorithm is LearningAlgorithms.cart: clf = tree.DecisionTreeClassifier(min_samples_leaf=min_samples_leaf, criterion="gini") else: clf = RandomForestClassifier(n_estimators=random_forest_config.n_tree, max_features=random_forest_config.max_features, criterion="gini", bootstrap=True, min_samples_leaf=min_samples_leaf) clf = clf.fit(features_learn, classes_learn) return clf def rescale_feature_values(features, n_features): maxima = list(map(lambda col: max(map(lambda row: row[col], features)), range(0, n_features))) minima = list(map(lambda col: min(map(lambda row: row[col], features)), range(0, n_features))) return list(map( lambda row: list(map(lambda col: (row[col] - minima[col]) / (maxima[col] - minima[col]), range(0, n_features))), features)) # result is sorted, starting from smallest speedup to largest def load_data(csv_file_name, feature_fields, rescale): result = [] with open(csv_file_name, newline='') as csvFile: content = csv.reader(csvFile, delimiter="\t", quotechar="\"") head = next(content) fields = {} for i in range(0, len(head)): fields[head[i]] = i for row in content: curr_result = [] if row[fields["class"]] != "-": curr_feature_vals = [] for field in feature_fields: curr_feature_vals.append(float(row[fields[field]])) curr_result = curr_result + [float(row[fields["class"]])] curr_result = curr_result + curr_feature_vals result.append(curr_result) result = sorted(result, key=lambda r : r[1]) features = list(map(lambda row : row[1:] , result)) classes = list(map(lambda row : row[0] , result)) if rescale: return rescale_feature_values(features, len(feature_fields)), classes return features, classes
mit
gfyoung/pandas
pandas/tests/io/test_clipboard.py
2
8079
from textwrap import dedent import numpy as np import pytest import pandas as pd from pandas import DataFrame, get_option, read_clipboard import pandas._testing as tm from pandas.io.clipboard import clipboard_get, clipboard_set def build_kwargs(sep, excel): kwargs = {} if excel != "default": kwargs["excel"] = excel if sep != "default": kwargs["sep"] = sep return kwargs @pytest.fixture( params=[ "delims", "utf8", "utf16", "string", "long", "nonascii", "colwidth", "mixed", "float", "int", ] ) def df(request): data_type = request.param if data_type == "delims": return DataFrame({"a": ['"a,\t"b|c', "d\tef´"], "b": ["hi'j", "k''lm"]}) elif data_type == "utf8": return DataFrame({"a": ["µasd", "Ωœ∑´"], "b": ["øπ∆˚¬", "œ∑´®"]}) elif data_type == "utf16": return DataFrame( {"a": ["\U0001f44d\U0001f44d", "\U0001f44d\U0001f44d"], "b": ["abc", "def"]} ) elif data_type == "string": return tm.makeCustomDataframe( 5, 3, c_idx_type="s", r_idx_type="i", c_idx_names=[None], r_idx_names=[None] ) elif data_type == "long": max_rows = get_option("display.max_rows") return tm.makeCustomDataframe( max_rows + 1, 3, data_gen_f=lambda *args: np.random.randint(2), c_idx_type="s", r_idx_type="i", c_idx_names=[None], r_idx_names=[None], ) elif data_type == "nonascii": return DataFrame({"en": "in English".split(), "es": "en español".split()}) elif data_type == "colwidth": _cw = get_option("display.max_colwidth") + 1 return tm.makeCustomDataframe( 5, 3, data_gen_f=lambda *args: "x" * _cw, c_idx_type="s", r_idx_type="i", c_idx_names=[None], r_idx_names=[None], ) elif data_type == "mixed": return DataFrame( { "a": np.arange(1.0, 6.0) + 0.01, "b": np.arange(1, 6).astype(np.int64), "c": list("abcde"), } ) elif data_type == "float": return tm.makeCustomDataframe( 5, 3, data_gen_f=lambda r, c: float(r) + 0.01, c_idx_type="s", r_idx_type="i", c_idx_names=[None], r_idx_names=[None], ) elif data_type == "int": return tm.makeCustomDataframe( 5, 3, data_gen_f=lambda *args: np.random.randint(2), c_idx_type="s", r_idx_type="i", c_idx_names=[None], r_idx_names=[None], ) else: raise ValueError @pytest.fixture def mock_clipboard(monkeypatch, request): """Fixture mocking clipboard IO. This mocks pandas.io.clipboard.clipboard_get and pandas.io.clipboard.clipboard_set. This uses a local dict for storing data. The dictionary key used is the test ID, available with ``request.node.name``. This returns the local dictionary, for direct manipulation by tests. """ # our local clipboard for tests _mock_data = {} def _mock_set(data): _mock_data[request.node.name] = data def _mock_get(): return _mock_data[request.node.name] monkeypatch.setattr("pandas.io.clipboard.clipboard_set", _mock_set) monkeypatch.setattr("pandas.io.clipboard.clipboard_get", _mock_get) yield _mock_data @pytest.mark.clipboard def test_mock_clipboard(mock_clipboard): import pandas.io.clipboard pandas.io.clipboard.clipboard_set("abc") assert "abc" in set(mock_clipboard.values()) result = pandas.io.clipboard.clipboard_get() assert result == "abc" @pytest.mark.single @pytest.mark.clipboard @pytest.mark.usefixtures("mock_clipboard") class TestClipboard: def check_round_trip_frame(self, data, excel=None, sep=None, encoding=None): data.to_clipboard(excel=excel, sep=sep, encoding=encoding) result = read_clipboard(sep=sep or "\t", index_col=0, encoding=encoding) tm.assert_frame_equal(data, result) # Test that default arguments copy as tab delimited def test_round_trip_frame(self, df): self.check_round_trip_frame(df) # Test that explicit delimiters are respected @pytest.mark.parametrize("sep", ["\t", ",", "|"]) def test_round_trip_frame_sep(self, df, sep): self.check_round_trip_frame(df, sep=sep) # Test white space separator def test_round_trip_frame_string(self, df): df.to_clipboard(excel=False, sep=None) result = read_clipboard() assert df.to_string() == result.to_string() assert df.shape == result.shape # Two character separator is not supported in to_clipboard # Test that multi-character separators are not silently passed def test_excel_sep_warning(self, df): with tm.assert_produces_warning(): df.to_clipboard(excel=True, sep=r"\t") # Separator is ignored when excel=False and should produce a warning def test_copy_delim_warning(self, df): with tm.assert_produces_warning(): df.to_clipboard(excel=False, sep="\t") # Tests that the default behavior of to_clipboard is tab # delimited and excel="True" @pytest.mark.parametrize("sep", ["\t", None, "default"]) @pytest.mark.parametrize("excel", [True, None, "default"]) def test_clipboard_copy_tabs_default(self, sep, excel, df, request, mock_clipboard): kwargs = build_kwargs(sep, excel) df.to_clipboard(**kwargs) assert mock_clipboard[request.node.name] == df.to_csv(sep="\t") # Tests reading of white space separated tables @pytest.mark.parametrize("sep", [None, "default"]) @pytest.mark.parametrize("excel", [False]) def test_clipboard_copy_strings(self, sep, excel, df): kwargs = build_kwargs(sep, excel) df.to_clipboard(**kwargs) result = read_clipboard(sep=r"\s+") assert result.to_string() == df.to_string() assert df.shape == result.shape def test_read_clipboard_infer_excel(self, request, mock_clipboard): # gh-19010: avoid warnings clip_kwargs = {"engine": "python"} text = dedent( """ John James Charlie Mingus 1 2 4 Harry Carney """.strip() ) mock_clipboard[request.node.name] = text df = pd.read_clipboard(**clip_kwargs) # excel data is parsed correctly assert df.iloc[1][1] == "Harry Carney" # having diff tab counts doesn't trigger it text = dedent( """ a\t b 1 2 3 4 """.strip() ) mock_clipboard[request.node.name] = text res = pd.read_clipboard(**clip_kwargs) text = dedent( """ a b 1 2 3 4 """.strip() ) mock_clipboard[request.node.name] = text exp = pd.read_clipboard(**clip_kwargs) tm.assert_frame_equal(res, exp) def test_invalid_encoding(self, df): msg = "clipboard only supports utf-8 encoding" # test case for testing invalid encoding with pytest.raises(ValueError, match=msg): df.to_clipboard(encoding="ascii") with pytest.raises(NotImplementedError, match=msg): pd.read_clipboard(encoding="ascii") @pytest.mark.parametrize("enc", ["UTF-8", "utf-8", "utf8"]) def test_round_trip_valid_encodings(self, enc, df): self.check_round_trip_frame(df, encoding=enc) @pytest.mark.single @pytest.mark.clipboard @pytest.mark.parametrize("data", ["\U0001f44d...", "Ωœ∑´...", "abcd..."]) def test_raw_roundtrip(data): # PR #25040 wide unicode wasn't copied correctly on PY3 on windows clipboard_set(data) assert data == clipboard_get()
bsd-3-clause
hurdlea/SimpleCV
SimpleCV/Shell/Shell.py
10
7838
#!/usr/bin/python #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # SimpleCV # a kinder, gentler machine vision python library #----------------------------------------------------------------------- # SimpleCV is an interface for Open Source machine # vision libraries in Python. # It provides a concise, readable interface for cameras, # image manipulation, feature extraction, and format conversion. # Our mission is to give casual users a comprehensive interface # for basic machine vision functions and an # elegant programming interface for advanced users. # # more info: # http://www.simplecv.org #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #load system libraries from subprocess import call import platform import webbrowser import sys from SimpleCV.__init__ import * #Load simpleCV libraries from SimpleCV.Shell.Tutorial import * from SimpleCV.Shell.Example import * try: from SimpleCV import __version__ as SIMPLECV_VERSION except ImportError: SIMPLECV_VERSION = '' #Command to clear the shell screen def shellclear(): if platform.system() == "Windows": return call("clear") #method to get magic_* methods working in bpython def make_magic(method): def wrapper(*args, **kwargs): if not args: return method('', '') return method('', *args, **kwargs) return wrapper def plot(arg): try: import matplotlib.pyplot as plt except ImportError: logger.warning("Matplotlib is not installed and required") return print "args", arg print "type", type(arg) plt.plot(arg) plt.show() def hist(arg): try: import pylab except ImportError: logger.warning("pylab is not installed and required") return plot(pylab.hist(arg)[1]) def magic_clear(self, arg): shellclear() def magic_forums(self, arg): webbrowser.open('http://help.simplecv.org/questions/') def magic_walkthrough(self, arg): webbrowser.open('http://examples.simplecv.org/en/latest/') def magic_docs(self, arg): webbrowser.open('http://www.simplecv.org/docs/') banner = '+-----------------------------------------------------------+\n' banner += ' SimpleCV ' banner += SIMPLECV_VERSION banner += ' [interactive shell] - http://simplecv.org\n' banner += '+-----------------------------------------------------------+\n' banner += '\n' banner += 'Commands: \n' banner += '\t"exit()" or press "Ctrl+ D" to exit the shell\n' banner += '\t"clear()" to clear the shell screen\n' banner += '\t"tutorial()" to begin the SimpleCV interactive tutorial\n' banner += '\t"example()" gives a list of examples you can run\n' banner += '\t"forums()" will launch a web browser for the help forums\n' banner += '\t"walkthrough()" will launch a web browser with a walkthrough\n' banner += '\n' banner += 'Usage:\n' banner += '\tdot complete works to show library\n' banner += '\tfor example: Image().save("/tmp/test.jpg") will dot complete\n' banner += '\tjust by touching TAB after typing Image().\n' banner += '\n' banner += 'Documentation:\n' banner += '\thelp(Image), ?Image, Image?, or Image()? all do the same\n' banner += '\t"docs()" will launch webbrowser showing documentation' banner += '\n' exit_msg = '\n... [Exiting the SimpleCV interactive shell] ...\n' def setup_ipython(): try: import IPython from IPython.config.loader import Config from IPython.frontend.terminal.embed import InteractiveShellEmbed cfg = Config() cfg.PromptManager.in_template = "SimpleCV:\\#> " cfg.PromptManager.out_template = "SimpleCV:\\#: " #~ cfg.InteractiveShellEmbed.prompt_in1 = "SimpleCV:\\#> " #~ cfg.InteractiveShellEmbed.prompt_out="SimpleCV:\\#: " scvShell = InteractiveShellEmbed(config=cfg, banner1=banner, exit_msg=exit_msg) scvShell.define_magic("tutorial", magic_tutorial) scvShell.define_magic("clear", magic_clear) scvShell.define_magic("example", magic_examples) scvShell.define_magic("forums", magic_forums) scvShell.define_magic("walkthrough", magic_walkthrough) scvShell.define_magic("docs", magic_docs) except ImportError: try: from IPython.Shell import IPShellEmbed argsv = ['-pi1', 'SimpleCV:\\#>', '-pi2', ' .\\D.:', '-po', 'SimpleCV:\\#>', '-nosep'] scvShell = IPShellEmbed(argsv) scvShell.set_banner(banner) scvShell.set_exit_msg(exit_msg) scvShell.IP.api.expose_magic("tutorial", magic_tutorial) scvShell.IP.api.expose_magic("clear", magic_clear) scvShell.IP.api.expose_magic("example", magic_examples) scvShell.IP.api.expose_magic("forums", magic_forums) scvShell.IP.api.expose_magic("walkthrough", magic_walkthrough) scvShell.IP.api.expose_magic("docs", magic_docs) except ImportError: raise return scvShell() def setup_bpython(): import bpython example = make_magic(magic_examples) clear = make_magic(magic_clear) docs = make_magic(magic_docs) tutorial = make_magic(magic_tutorial) walkthrough = make_magic(magic_walkthrough) forums = make_magic(magic_forums) temp = locals().copy() temp.update(globals()) return bpython.embed(locals_=temp, banner=banner) def setup_plain(): import code return code.interact(banner=banner, local=globals()) def run_notebook(mainArgs): if IPython.__version__.startswith('1.'): """Run the ipython notebook server""" from IPython.html import notebookapp from IPython.html.services.kernels import kernelmanager else: from IPython.frontend.html.notebook import notebookapp from IPython.frontend.html.notebook import kernelmanager code = "" code += "from SimpleCV import *;" code += "init_options_handler.enable_notebook();" kernelmanager.MappingKernelManager.first_beat = 30.0 app = notebookapp.NotebookApp.instance() mainArgs += [ '--port', '5050', '--c', code, ] app.initialize(mainArgs) app.start() sys.exit() def self_update(): URL = "https://github.com/sightmachine/SimpleCV/zipball/master" command = "pip install -U %s" % URL if os.getuid() == 0: command = "sudo " + command returncode = call(command, shell=True) sys.exit() def run_shell(shell=None): shells = ['setup_ipython', 'setup_bpython', 'setup_plain'] available_shells = [shell] if shell else shells for shell in available_shells: try: return globals()[shell]() except ImportError: pass raise ImportError def main(*args): log_level = logging.WARNING interface = None if len(sys.argv) > 1 and len(sys.argv[1]) > 1: flag = sys.argv[1] if flag == 'notebook': run_notebook(sys.argv[1:]) sys.exit() elif flag == 'update': print "Updating SimpleCV....." self_update() if flag in ['--headless', 'headless']: # set SDL to use the dummy NULL video driver, # so it doesn't need a windowing system. os.environ["SDL_VIDEODRIVER"] = "dummy" elif flag in ['--nowarnings', 'nowarnings']: log_level = logging.INFO elif flag in ['--debug', 'debug']: log_level = logging.DEBUG if flag in ['--ipython', 'ipython']: interface = 'setup_ipython' elif flag in ['--bpython', 'bpython']: interface = 'setup_bpython' else: interface = 'setup_plain' init_logging(log_level) shellclear() scvShell = run_shell(interface)
bsd-3-clause
huobaowangxi/scikit-learn
examples/svm/plot_weighted_samples.py
188
1943
""" ===================== SVM: Weighted samples ===================== Plot decision function of a weighted dataset, where the size of points is proportional to its weight. The sample weighting rescales the C parameter, which means that the classifier puts more emphasis on getting these points right. The effect might often be subtle. To emphasize the effect here, we particularly weight outliers, making the deformation of the decision boundary very visible. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm def plot_decision_function(classifier, sample_weight, axis, title): # plot the decision function xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) Z = classifier.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # plot the line, the points, and the nearest vectors to the plane axis.contourf(xx, yy, Z, alpha=0.75, cmap=plt.cm.bone) axis.scatter(X[:, 0], X[:, 1], c=Y, s=100 * sample_weight, alpha=0.9, cmap=plt.cm.bone) axis.axis('off') axis.set_title(title) # we create 20 points np.random.seed(0) X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)] Y = [1] * 10 + [-1] * 10 sample_weight_last_ten = abs(np.random.randn(len(X))) sample_weight_constant = np.ones(len(X)) # and bigger weights to some outliers sample_weight_last_ten[15:] *= 5 sample_weight_last_ten[9] *= 15 # for reference, first fit without class weights # fit the model clf_weights = svm.SVC() clf_weights.fit(X, Y, sample_weight=sample_weight_last_ten) clf_no_weights = svm.SVC() clf_no_weights.fit(X, Y) fig, axes = plt.subplots(1, 2, figsize=(14, 6)) plot_decision_function(clf_no_weights, sample_weight_constant, axes[0], "Constant weights") plot_decision_function(clf_weights, sample_weight_last_ten, axes[1], "Modified weights") plt.show()
bsd-3-clause
datalyze-solutions/pandas-qt
doc/source/conf.py
4
9477
# -*- coding: utf-8 -*- # # pandas-qt documentation build configuration file, created by # sphinx-quickstart on Fri Nov 14 15:32:14 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../../pandasqt')) sys.path.insert(0, os.path.abspath('../../examples')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.napoleon', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pandas-qt' copyright = u'2014, Matthias Ludwig - Datalyze Solutions' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1.0' # The full version, including alpha/beta/rc tags. release = '0.1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'pandas-qtdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'pandas-qt.tex', u'pandas-qt Documentation', u'Matthias Ludwig - Datalyze Solutions', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'pandas-qt', u'pandas-qt Documentation', [u'Matthias Ludwig - Datalyze Solutions'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'pandas-qt', u'pandas-qt Documentation', u'Matthias Ludwig - Datalyze Solutions', 'pandas-qt', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None}
mit
SANDAG/pandana
pandana/loaders/tests/test_osm.py
3
6664
import numpy.testing as npt import pandas.util.testing as pdt import pytest import pandana from pandana.loaders import osm from pandana.testing import skipiftravis @pytest.fixture(scope='module') def bbox1(): # Intersection of Telegraph and Haste in Berkeley # Sample query: http://overpass-turbo.eu/s/6AK return 37.8659303546, -122.2588003879, 37.8661598571, -122.2585062512 @pytest.fixture(scope='module') def bbox2(): # Telegraph Channing to Durant in Berkeley # Sample query: http://overpass-turbo.eu/s/6B0 return 37.8668405874, -122.2590948685, 37.8679028054, -122.2586363885 @pytest.fixture(scope='module') def bbox3(): # West Berkeley including highway 80, frontage roads, and foot paths # Sample query: http://overpass-turbo.eu/s/6VE return ( 37.85225504880375, -122.30295896530151, 37.85776128099243, - 122.2954273223877) @pytest.fixture(scope='module') def query_data1(bbox1): return osm.make_osm_query(osm.build_network_osm_query(*bbox1)) @pytest.fixture(scope='module') def query_data2(bbox2): return osm.make_osm_query(osm.build_network_osm_query(*bbox2)) @pytest.fixture(scope='module') def dataframes1(query_data1): return osm.parse_network_osm_query(query_data1) @pytest.fixture(scope='module') def dataframes2(query_data2): return osm.parse_network_osm_query(query_data2) def test_make_osm_query(query_data1): assert isinstance(query_data1, dict) assert len(query_data1['elements']) == 24 assert len( [e for e in query_data1['elements'] if e['type'] == 'node']) == 22 assert len([e for e in query_data1['elements'] if e['type'] == 'way']) == 2 def test_process_node(): test_node = { 'id': 'id', 'lat': 'lat', 'lon': 'lon', 'extra': 'extra' } expected = { 'id': 'id', 'lat': 'lat', 'lon': 'lon' } assert osm.process_node(test_node) == expected test_node['tags'] = {'highway': 'highway', 'source': 'source'} expected['highway'] = 'highway' assert osm.process_node(test_node) == expected def test_process_way(): test_way = { "type": "way", "id": 188434143, "timestamp": "2014-01-04T22:18:14Z", "version": 2, "changeset": 19814115, "user": "dchiles", "uid": 153669, "nodes": [ 53020977, 53041093, ], "tags": { 'source': 'source', "addr:city": "Berkeley", "highway": "secondary", "name": "Telegraph Avenue", } } expected_way = { 'id': test_way['id'], 'addr:city': test_way['tags']['addr:city'], 'highway': test_way['tags']['highway'], 'name': test_way['tags']['name'] } expected_waynodes = [ {'way_id': test_way['id'], 'node_id': test_way['nodes'][0]}, {'way_id': test_way['id'], 'node_id': test_way['nodes'][1]} ] way, waynodes = osm.process_way(test_way) assert way == expected_way assert waynodes == expected_waynodes def test_parse_network_osm_query(dataframes1): nodes, ways, waynodes = dataframes1 assert len(nodes) == 22 assert len(ways) == 2 assert len(waynodes.index.unique()) == 2 def test_parse_network_osm_query_raises(): data = osm.make_osm_query(osm.build_network_osm_query( 37.8, -122.252, 37.8, -122.252)) with pytest.raises(RuntimeError): osm.parse_network_osm_query(data) def test_ways_in_bbox(bbox1, dataframes1): nodes, ways, waynodes = osm.ways_in_bbox(*bbox1) exp_nodes, exp_ways, exp_waynodes = dataframes1 pdt.assert_frame_equal(nodes, exp_nodes) pdt.assert_frame_equal(ways, exp_ways) pdt.assert_frame_equal(waynodes, exp_waynodes) @pytest.mark.parametrize( 'network_type, noset', [('walk', {'motorway', 'motorway_link'}), ('drive', {'footway', 'cycleway'})]) def test_ways_in_bbox_walk_network(bbox3, network_type, noset): nodes, ways, waynodes = osm.ways_in_bbox(*bbox3, network_type=network_type) for _, way in ways.iterrows(): assert way['highway'] not in noset def test_intersection_nodes1(dataframes1): _, _, waynodes = dataframes1 intersections = osm.intersection_nodes(waynodes) assert intersections == {53041093} def test_intersection_nodes2(dataframes2): _, _, waynodes = dataframes2 intersections = osm.intersection_nodes(waynodes) assert intersections == {53099275, 53063555} def test_node_pairs_two_way(dataframes2): nodes, ways, waynodes = dataframes2 pairs = osm.node_pairs(nodes, ways, waynodes) assert len(pairs) == 1 fn = 53063555 tn = 53099275 pair = pairs.loc[(fn, tn)] assert pair.from_id == fn assert pair.to_id == tn npt.assert_allclose(pair.distance, 101.20535797547758) def test_node_pairs_one_way(dataframes2): nodes, ways, waynodes = dataframes2 pairs = osm.node_pairs(nodes, ways, waynodes, two_way=False) assert len(pairs) == 2 n1 = 53063555 n2 = 53099275 for p1, p2 in [(n1, n2), (n2, n1)]: pair = pairs.loc[(p1, p2)] assert pair.from_id == p1 assert pair.to_id == p2 npt.assert_allclose(pair.distance, 101.20535797547758) @skipiftravis def test_network_from_bbox(bbox2): net = osm.network_from_bbox(*bbox2) assert isinstance(net, pandana.Network) def test_build_node_query_no_tags(bbox1): query = osm.build_node_query(*bbox1) assert query == ( '[out:json];' '(' ' node' ' ' ' ({},{},{},{});' ');' 'out;').format(*bbox1) def test_build_node_query_str_tag(bbox1): tag = '"tag"' query = osm.build_node_query(*bbox1, tags=tag) assert query == ( '[out:json];' '(' ' node' ' ["tag"]' ' ({},{},{},{});' ');' 'out;').format(*bbox1) def test_build_node_query_tag_list(bbox1): tags = ['"tag1"="tag1"', '"tag2"!~"tag2|tag2"'] query = osm.build_node_query(*bbox1, tags=tags) assert query == ( '[out:json];' '(' ' node' ' ["tag1"="tag1"]["tag2"!~"tag2|tag2"]' ' ({},{},{},{});' ');' 'out;').format(*bbox1) def test_node_query(bbox2): tags = '"amenity"="restaurant"' cafes = osm.node_query(*bbox2, tags=tags) assert len(cafes) == 4 assert 'lat' in cafes.columns assert 'lon' in cafes.columns assert cafes['name'][2965338413] == 'Koja Kitchen' def test_node_query_raises(): with pytest.raises(RuntimeError): osm.node_query(37.8, -122.282, 37.8, -122.252)
agpl-3.0
jandom/rdkit
rdkit/Chem/Draw/UnitTestSimilarityMaps.py
1
7019
# $Id$ # # Copyright (c) 2013, Novartis Institutes for BioMedical Research Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Novartis Institutes for BioMedical Research Inc. # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Created by Sereina Riniker, Aug 2013 """ unit testing code for molecule drawing """ from __future__ import print_function from rdkit import RDConfig import unittest, os, tempfile from rdkit import Chem from rdkit.Chem import Draw import platform if platform.system() == "Linux": import os, sys if not os.environ.get("DISPLAY", None): try: # Force matplotlib to not use any Xwindows backend. import matplotlib print("Forcing use of Agg renderer", file=sys.stderr) matplotlib.use('Agg') except ImportError: pass try: from rdkit.Chem.Draw import SimilarityMaps as sm except ImportError: sm = None from rdkit.RDLogger import logger logger = logger() class TestCase(unittest.TestCase): def setUp(self): self.mol1 = Chem.MolFromSmiles('c1ccccc1') self.mol2 = Chem.MolFromSmiles('c1ccncc1') def testSimilarityMap(self): # Morgan2 BV refWeights = [0.5, 0.5, 0.5, -0.5, 0.5, 0.5] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, radius=2, fpType='bv')) for w, r in zip(weights, refWeights): self.assertEqual(w, r) fig, maxWeight = sm.GetSimilarityMapForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, radius=2, fpType='bv')) self.assertEqual(maxWeight, 0.5) weights, maxWeight = sm.GetStandardizedWeights(weights) self.assertEqual(maxWeight, 0.5) refWeights = [1.0, 1.0, 1.0, -1.0, 1.0, 1.0] for w, r in zip(weights, refWeights): self.assertEqual(w, r) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, fpType='count')) self.assertTrue(weights[3] < 0) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetMorganFingerprint(m, i, fpType='bv', useFeatures=True)) self.assertTrue(weights[3] < 0) # hashed AP BV refWeights = [0.09523, 0.17366, 0.17366, -0.23809, 0.17366, 0.17366] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetAPFingerprint(m, i, fpType='bv', nBits=1024)) for w, r in zip(weights, refWeights): self.assertAlmostEqual(w, r, 4) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetAPFingerprint(m, i, fpType='normal')) self.assertTrue(weights[3] < 0) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetAPFingerprint(m, i, fpType='hashed')) self.assertTrue(weights[3] < 0) # hashed TT BV refWeights = [0.5, 0.5, -0.16666, -0.5, -0.16666, 0.5] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetTTFingerprint(m, i, fpType='bv', nBits=1024, nBitsPerEntry=1)) for w, r in zip(weights, refWeights): self.assertAlmostEqual(w, r, 4) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetTTFingerprint(m, i, fpType='normal')) self.assertTrue(weights[3] < 0) weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetTTFingerprint(m, i, fpType='hashed')) self.assertTrue(weights[3] < 0) # RDK fingerprint BV refWeights = [0.42105, 0.42105, 0.42105, -0.32895, 0.42105, 0.42105] weights = sm.GetAtomicWeightsForFingerprint( self.mol1, self.mol2, lambda m, i: sm.GetRDKFingerprint(m, i, nBits=1024, nBitsPerHash=1)) for w, r in zip(weights, refWeights): self.assertAlmostEqual(w, r, 4) def testSimilarityMapKWArgs(self): # Morgan2 BV m1 = Chem.MolFromSmiles('CC[C@](F)(Cl)c1ccccc1') m2 = Chem.MolFromSmiles('CC[C@@](F)(Cl)c1ccccc1') weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetAPFingerprint(m, atomId=i, includeChirality=False)) for w in weights: self.assertAlmostEqual(w, 0.100, 4) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetAPFingerprint(m, atomId=i, includeChirality=True)) for i, w in enumerate(weights): if i != 2: self.assertAlmostEqual(w, 0.098, 3) else: self.assertAlmostEqual(w, -0.082, 3) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetTTFingerprint(m, atomId=i, includeChirality=False)) for w in weights: self.assertTrue(w > 0.0) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetTTFingerprint(m, atomId=i, includeChirality=True)) for i, w in enumerate(weights): if i > 4: self.assertTrue(w > 0.0) else: self.assertTrue(w < 0.0) weights = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetMorganFingerprint(m, radius=1, atomId=i, useChirality=False)) weights2 = sm.GetAtomicWeightsForFingerprint( m1, m2, lambda m, i: sm.GetMorganFingerprint(m, radius=1, atomId=i, useChirality=True)) # testing explicit values here seems silly, just check that the contribution of the # chiral center drops: self.assertTrue(weights[2] > weights2[2]) if __name__ == '__main__': try: import matplotlib from rdkit.Chem.Draw.mplCanvas import Canvas except ImportError: pass except RuntimeError: # happens with GTK can't initialize pass else: unittest.main()
bsd-3-clause
fengzhe29888/gnuradio-old
gr-digital/examples/example_costas.py
49
5316
#!/usr/bin/env python # # Copyright 2011-2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, digital, filter from gnuradio import blocks from gnuradio import channels from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser import sys try: import scipy except ImportError: print "Error: could not import scipy (http://www.scipy.org/)" sys.exit(1) try: import pylab except ImportError: print "Error: could not import pylab (http://matplotlib.sourceforge.net/)" sys.exit(1) class example_costas(gr.top_block): def __init__(self, N, sps, rolloff, ntaps, bw, noise, foffset, toffset, poffset): gr.top_block.__init__(self) rrc_taps = filter.firdes.root_raised_cosine( sps, sps, 1.0, rolloff, ntaps) data = 2.0*scipy.random.randint(0, 2, N) - 1.0 data = scipy.exp(1j*poffset) * data self.src = blocks.vector_source_c(data.tolist(), False) self.rrc = filter.interp_fir_filter_ccf(sps, rrc_taps) self.chn = channels.channel_model(noise, foffset, toffset) self.cst = digital.costas_loop_cc(bw, 2) self.vsnk_src = blocks.vector_sink_c() self.vsnk_cst = blocks.vector_sink_c() self.vsnk_frq = blocks.vector_sink_f() self.connect(self.src, self.rrc, self.chn, self.cst, self.vsnk_cst) self.connect(self.rrc, self.vsnk_src) self.connect((self.cst,1), self.vsnk_frq) def main(): parser = OptionParser(option_class=eng_option, conflict_handler="resolve") parser.add_option("-N", "--nsamples", type="int", default=2000, help="Set the number of samples to process [default=%default]") parser.add_option("-S", "--sps", type="int", default=4, help="Set the samples per symbol [default=%default]") parser.add_option("-r", "--rolloff", type="eng_float", default=0.35, help="Set the rolloff factor [default=%default]") parser.add_option("-W", "--bandwidth", type="eng_float", default=2*scipy.pi/100.0, help="Set the loop bandwidth [default=%default]") parser.add_option("-n", "--ntaps", type="int", default=45, help="Set the number of taps in the filters [default=%default]") parser.add_option("", "--noise", type="eng_float", default=0.0, help="Set the simulation noise voltage [default=%default]") parser.add_option("-f", "--foffset", type="eng_float", default=0.0, help="Set the simulation's normalized frequency offset (in Hz) [default=%default]") parser.add_option("-t", "--toffset", type="eng_float", default=1.0, help="Set the simulation's timing offset [default=%default]") parser.add_option("-p", "--poffset", type="eng_float", default=0.707, help="Set the simulation's phase offset [default=%default]") (options, args) = parser.parse_args () # Adjust N for the interpolation by sps options.nsamples = options.nsamples // options.sps # Set up the program-under-test put = example_costas(options.nsamples, options.sps, options.rolloff, options.ntaps, options.bandwidth, options.noise, options.foffset, options.toffset, options.poffset) put.run() data_src = scipy.array(put.vsnk_src.data()) # Convert the FLL's LO frequency from rads/sec to Hz data_frq = scipy.array(put.vsnk_frq.data()) / (2.0*scipy.pi) # adjust this to align with the data. data_cst = scipy.array(3*[0,]+list(put.vsnk_cst.data())) # Plot the Costas loop's LO frequency f1 = pylab.figure(1, figsize=(12,10), facecolor='w') s1 = f1.add_subplot(2,2,1) s1.plot(data_frq) s1.set_title("Costas LO") s1.set_xlabel("Samples") s1.set_ylabel("Frequency (normalized Hz)") # Plot the IQ symbols s3 = f1.add_subplot(2,2,2) s3.plot(data_src.real, data_src.imag, "o") s3.plot(data_cst.real, data_cst.imag, "rx") s3.set_title("IQ") s3.set_xlabel("Real part") s3.set_ylabel("Imag part") s3.set_xlim([-2, 2]) s3.set_ylim([-2, 2]) # Plot the symbols in time s4 = f1.add_subplot(2,2,3) s4.set_position([0.125, 0.05, 0.775, 0.4]) s4.plot(data_src.real, "o-") s4.plot(data_cst.real, "rx-") s4.set_title("Symbols") s4.set_xlabel("Samples") s4.set_ylabel("Real Part of Signals") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
bnaul/scikit-learn
examples/preprocessing/plot_all_scaling.py
14
13721
#!/usr/bin/env python # -*- coding: utf-8 -*- """ ============================================================= Compare the effect of different scalers on data with outliers ============================================================= Feature 0 (median income in a block) and feature 5 (number of households) of the :ref:`california_housing_dataset` have very different scales and contain some very large outliers. These two characteristics lead to difficulties to visualize the data and, more importantly, they can degrade the predictive performance of many machine learning algorithms. Unscaled data can also slow down or even prevent the convergence of many gradient-based estimators. Indeed many estimators are designed with the assumption that each feature takes values close to zero or more importantly that all features vary on comparable scales. In particular, metric-based and gradient-based estimators often assume approximately standardized data (centered features with unit variances). A notable exception are decision tree-based estimators that are robust to arbitrary scaling of the data. This example uses different scalers, transformers, and normalizers to bring the data within a pre-defined range. Scalers are linear (or more precisely affine) transformers and differ from each other in the way they estimate the parameters used to shift and scale each feature. :class:`~sklearn.preprocessing.QuantileTransformer` provides non-linear transformations in which distances between marginal outliers and inliers are shrunk. :class:`~sklearn.preprocessing.PowerTransformer` provides non-linear transformations in which data is mapped to a normal distribution to stabilize variance and minimize skewness. Unlike the previous transformations, normalization refers to a per sample transformation instead of a per feature transformation. The following code is a bit verbose, feel free to jump directly to the analysis of the results_. """ # Author: Raghav RV <rvraghav93@gmail.com> # Guillaume Lemaitre <g.lemaitre58@gmail.com> # Thomas Unterthiner # License: BSD 3 clause import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib import cm from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import minmax_scale from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import Normalizer from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import PowerTransformer from sklearn.datasets import fetch_california_housing print(__doc__) dataset = fetch_california_housing() X_full, y_full = dataset.data, dataset.target # Take only 2 features to make visualization easier # Feature of 0 has a long tail distribution. # Feature 5 has a few but very large outliers. X = X_full[:, [0, 5]] distributions = [ ('Unscaled data', X), ('Data after standard scaling', StandardScaler().fit_transform(X)), ('Data after min-max scaling', MinMaxScaler().fit_transform(X)), ('Data after max-abs scaling', MaxAbsScaler().fit_transform(X)), ('Data after robust scaling', RobustScaler(quantile_range=(25, 75)).fit_transform(X)), ('Data after power transformation (Yeo-Johnson)', PowerTransformer(method='yeo-johnson').fit_transform(X)), ('Data after power transformation (Box-Cox)', PowerTransformer(method='box-cox').fit_transform(X)), ('Data after quantile transformation (uniform pdf)', QuantileTransformer(output_distribution='uniform') .fit_transform(X)), ('Data after quantile transformation (gaussian pdf)', QuantileTransformer(output_distribution='normal') .fit_transform(X)), ('Data after sample-wise L2 normalizing', Normalizer().fit_transform(X)), ] # scale the output between 0 and 1 for the colorbar y = minmax_scale(y_full) # plasma does not exist in matplotlib < 1.5 cmap = getattr(cm, 'plasma_r', cm.hot_r) def create_axes(title, figsize=(16, 6)): fig = plt.figure(figsize=figsize) fig.suptitle(title) # define the axis for the first plot left, width = 0.1, 0.22 bottom, height = 0.1, 0.7 bottom_h = height + 0.15 left_h = left + width + 0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.1] rect_histy = [left_h, bottom, 0.05, height] ax_scatter = plt.axes(rect_scatter) ax_histx = plt.axes(rect_histx) ax_histy = plt.axes(rect_histy) # define the axis for the zoomed-in plot left = width + left + 0.2 left_h = left + width + 0.02 rect_scatter = [left, bottom, width, height] rect_histx = [left, bottom_h, width, 0.1] rect_histy = [left_h, bottom, 0.05, height] ax_scatter_zoom = plt.axes(rect_scatter) ax_histx_zoom = plt.axes(rect_histx) ax_histy_zoom = plt.axes(rect_histy) # define the axis for the colorbar left, width = width + left + 0.13, 0.01 rect_colorbar = [left, bottom, width, height] ax_colorbar = plt.axes(rect_colorbar) return ((ax_scatter, ax_histy, ax_histx), (ax_scatter_zoom, ax_histy_zoom, ax_histx_zoom), ax_colorbar) def plot_distribution(axes, X, y, hist_nbins=50, title="", x0_label="", x1_label=""): ax, hist_X1, hist_X0 = axes ax.set_title(title) ax.set_xlabel(x0_label) ax.set_ylabel(x1_label) # The scatter plot colors = cmap(y) ax.scatter(X[:, 0], X[:, 1], alpha=0.5, marker='o', s=5, lw=0, c=colors) # Removing the top and the right spine for aesthetics # make nice axis layout ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.spines['left'].set_position(('outward', 10)) ax.spines['bottom'].set_position(('outward', 10)) # Histogram for axis X1 (feature 5) hist_X1.set_ylim(ax.get_ylim()) hist_X1.hist(X[:, 1], bins=hist_nbins, orientation='horizontal', color='grey', ec='grey') hist_X1.axis('off') # Histogram for axis X0 (feature 0) hist_X0.set_xlim(ax.get_xlim()) hist_X0.hist(X[:, 0], bins=hist_nbins, orientation='vertical', color='grey', ec='grey') hist_X0.axis('off') # %% # Two plots will be shown for each scaler/normalizer/transformer. The left # figure will show a scatter plot of the full data set while the right figure # will exclude the extreme values considering only 99 % of the data set, # excluding marginal outliers. In addition, the marginal distributions for each # feature will be shown on the sides of the scatter plot. def make_plot(item_idx): title, X = distributions[item_idx] ax_zoom_out, ax_zoom_in, ax_colorbar = create_axes(title) axarr = (ax_zoom_out, ax_zoom_in) plot_distribution(axarr[0], X, y, hist_nbins=200, x0_label="Median Income", x1_label="Number of households", title="Full data") # zoom-in zoom_in_percentile_range = (0, 99) cutoffs_X0 = np.percentile(X[:, 0], zoom_in_percentile_range) cutoffs_X1 = np.percentile(X[:, 1], zoom_in_percentile_range) non_outliers_mask = ( np.all(X > [cutoffs_X0[0], cutoffs_X1[0]], axis=1) & np.all(X < [cutoffs_X0[1], cutoffs_X1[1]], axis=1)) plot_distribution(axarr[1], X[non_outliers_mask], y[non_outliers_mask], hist_nbins=50, x0_label="Median Income", x1_label="Number of households", title="Zoom-in") norm = mpl.colors.Normalize(y_full.min(), y_full.max()) mpl.colorbar.ColorbarBase(ax_colorbar, cmap=cmap, norm=norm, orientation='vertical', label='Color mapping for values of y') # %% # .. _results: # # Original data # ------------- # # Each transformation is plotted showing two transformed features, with the # left plot showing the entire dataset, and the right zoomed-in to show the # dataset without the marginal outliers. A large majority of the samples are # compacted to a specific range, [0, 10] for the median income and [0, 6] for # the number of households. Note that there are some marginal outliers (some # blocks have more than 1200 households). Therefore, a specific pre-processing # can be very beneficial depending of the application. In the following, we # present some insights and behaviors of those pre-processing methods in the # presence of marginal outliers. make_plot(0) # %% # StandardScaler # -------------- # # :class:`~sklearn.preprocessing.StandardScaler` removes the mean and scales # the data to unit variance. The scaling shrinks the range of the feature # values as shown in the left figure below. # However, the outliers have an influence when computing the empirical mean and # standard deviation. Note in particular that because the outliers on each # feature have different magnitudes, the spread of the transformed data on # each feature is very different: most of the data lie in the [-2, 4] range for # the transformed median income feature while the same data is squeezed in the # smaller [-0.2, 0.2] range for the transformed number of households. # # :class:`~sklearn.preprocessing.StandardScaler` therefore cannot guarantee # balanced feature scales in the # presence of outliers. make_plot(1) # %% # MinMaxScaler # ------------ # # :class:`~sklearn.preprocessing.MinMaxScaler` rescales the data set such that # all feature values are in # the range [0, 1] as shown in the right panel below. However, this scaling # compresses all inliers into the narrow range [0, 0.005] for the transformed # number of households. # # Both :class:`~sklearn.preprocessing.StandardScaler` and # :class:`~sklearn.preprocessing.MinMaxScaler` are very sensitive to the # presence of outliers. make_plot(2) # %% # MaxAbsScaler # ------------ # # :class:`~sklearn.preprocessing.MaxAbsScaler` is similar to # :class:`~sklearn.preprocessing.MinMaxScaler` except that the # values are mapped in the range [0, 1]. On positive only data, both scalers # behave similarly. # :class:`~sklearn.preprocessing.MaxAbsScaler` therefore also suffers from # the presence of large outliers. make_plot(3) # %% # RobustScaler # ------------ # # Unlike the previous scalers, the centering and scaling statistics of # :class:`~sklearn.preprocessing.RobustScaler` # is based on percentiles and are therefore not influenced by a few # number of very large marginal outliers. Consequently, the resulting range of # the transformed feature values is larger than for the previous scalers and, # more importantly, are approximately similar: for both features most of the # transformed values lie in a [-2, 3] range as seen in the zoomed-in figure. # Note that the outliers themselves are still present in the transformed data. # If a separate outlier clipping is desirable, a non-linear transformation is # required (see below). make_plot(4) # %% # PowerTransformer # ---------------- # # :class:`~sklearn.preprocessing.PowerTransformer` applies a power # transformation to each feature to make the data more Gaussian-like in order # to stabilize variance and minimize skewness. Currently the Yeo-Johnson # and Box-Cox transforms are supported and the optimal # scaling factor is determined via maximum likelihood estimation in both # methods. By default, :class:`~sklearn.preprocessing.PowerTransformer` applies # zero-mean, unit variance normalization. Note that # Box-Cox can only be applied to strictly positive data. Income and number of # households happen to be strictly positive, but if negative values are present # the Yeo-Johnson transformed is preferred. make_plot(5) make_plot(6) # %% # QuantileTransformer (uniform output) # ------------------------------------ # # :class:`~sklearn.preprocessing.QuantileTransformer` applies a non-linear # transformation such that the # probability density function of each feature will be mapped to a uniform # or Gaussian distribution. In this case, all the data, including outliers, # will be mapped to a uniform distribution with the range [0, 1], making # outliers indistinguishable from inliers. # # :class:`~sklearn.preprocessing.RobustScaler` and # :class:`~sklearn.preprocessing.QuantileTransformer` are robust to outliers in # the sense that adding or removing outliers in the training set will yield # approximately the same transformation. But contrary to # :class:`~sklearn.preprocessing.RobustScaler`, # :class:`~sklearn.preprocessing.QuantileTransformer` will also automatically # collapse any outlier by setting them to the a priori defined range boundaries # (0 and 1). This can result in saturation artifacts for extreme values. make_plot(7) ############################################################################## # QuantileTransformer (Gaussian output) # ------------------------------------- # # To map to a Gaussian distribution, set the parameter # ``output_distribution='normal'``. make_plot(8) # %% # Normalizer # ---------- # # The :class:`~sklearn.preprocessing.Normalizer` rescales the vector for each # sample to have unit norm, # independently of the distribution of the samples. It can be seen on both # figures below where all samples are mapped onto the unit circle. In our # example the two selected features have only positive values; therefore the # transformed data only lie in the positive quadrant. This would not be the # case if some original features had a mix of positive and negative values. make_plot(9) plt.show()
bsd-3-clause