repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
girving/tensorflow
tensorflow/contrib/learn/python/learn/estimators/__init__.py
39
12688
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An estimator is a rule for calculating an estimate of a given quantity (deprecated). These classes are deprecated and replaced with `tf.estimator`. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. # Estimators * **Estimators** are used to train and evaluate TensorFlow models. They support regression and classification problems. * **Classifiers** are functions that have discrete outcomes. * **Regressors** are functions that predict continuous values. ## Choosing the correct estimator * For **Regression** problems use one of the following: * `LinearRegressor`: Uses linear model. * `DNNRegressor`: Uses DNN. * `DNNLinearCombinedRegressor`: Uses Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `Estimator`: Use when you need a custom model. * For **Classification** problems use one of the following: * `LinearClassifier`: Multiclass classifier using Linear model. * `DNNClassifier`: Multiclass classifier using DNN. * `DNNLinearCombinedClassifier`: Multiclass classifier using Wide & Deep. * `TensorForestEstimator`: Uses RandomForest. See tf.contrib.tensor_forest.client.random_forest.TensorForestEstimator. * `SVM`: Binary classifier using linear SVMs. * `LogisticRegressor`: Use when you need custom model for binary classification. * `Estimator`: Use when you need custom model for N class classification. ## Pre-canned Estimators Pre-canned estimators are machine learning estimators premade for general purpose problems. If you need more customization, you can always write your own custom estimator as described in the section below. Pre-canned estimators are tested and optimized for speed and quality. ### Define the feature columns Here are some possible types of feature columns used as inputs to a pre-canned estimator. Feature columns may vary based on the estimator used. So you can see which feature columns are fed to each estimator in the below section. ```python sparse_feature_a = sparse_column_with_keys( column_name="sparse_feature_a", keys=["AB", "CD", ...]) embedding_feature_a = embedding_column( sparse_id_column=sparse_feature_a, dimension=3, combiner="sum") sparse_feature_b = sparse_column_with_hash_bucket( column_name="sparse_feature_b", hash_bucket_size=1000) embedding_feature_b = embedding_column( sparse_id_column=sparse_feature_b, dimension=16, combiner="sum") crossed_feature_a_x_b = crossed_column( columns=[sparse_feature_a, sparse_feature_b], hash_bucket_size=10000) real_feature = real_valued_column("real_feature") real_feature_buckets = bucketized_column( source_column=real_feature, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) ``` ### Create the pre-canned estimator DNNClassifier, DNNRegressor, and DNNLinearCombinedClassifier are all pretty similar to each other in how you use them. You can easily plug in an optimizer and/or regularization to those estimators. #### DNNClassifier A classifier for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNClassifier( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNRegressor A regressor for TensorFlow DNN models. ```python my_features = [embedding_feature_a, embedding_feature_b] estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256]) # Or estimator using the ProximalAdagradOptimizer optimizer with # regularization. estimator = DNNRegressor( feature_columns=my_features, hidden_units=[1024, 512, 256], optimizer=tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### DNNLinearCombinedClassifier A classifier for TensorFlow Linear and DNN joined training models. * Wide and deep model * Multi class (2 by default) ```python my_linear_features = [crossed_feature_a_x_b] my_deep_features = [embedding_feature_a, embedding_feature_b] estimator = DNNLinearCombinedClassifier( # Common settings n_classes=n_classes, weight_column_name=weight_column_name, # Wide settings linear_feature_columns=my_linear_features, linear_optimizer=tf.train.FtrlOptimizer(...), # Deep settings dnn_feature_columns=my_deep_features, dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) ``` #### LinearClassifier Train a linear model to classify instances into one of multiple possible classes. When number of possible classes is 2, this is binary classification. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearClassifier( feature_columns=my_features, optimizer=tf.train.FtrlOptimizer( learning_rate=0.1, l1_regularization_strength=0.001 )) ``` #### LinearRegressor Train a linear regression model to predict a label value given observation of feature values. ```python my_features = [sparse_feature_b, crossed_feature_a_x_b] estimator = LinearRegressor( feature_columns=my_features) ``` ### LogisticRegressor Logistic regression estimator for binary classification. ```python # See tf.contrib.learn.Estimator(...) for details on model_fn structure def my_model_fn(...): pass estimator = LogisticRegressor(model_fn=my_model_fn) # Input builders def input_fn_train: pass estimator.fit(input_fn=input_fn_train) estimator.predict(x=x) ``` #### SVM - Support Vector Machine Support Vector Machine (SVM) model for binary classification. Currently only linear SVMs are supported. ```python my_features = [real_feature, sparse_feature_a] estimator = SVM( example_id_column='example_id', feature_columns=my_features, l2_regularization=10.0) ``` #### DynamicRnnEstimator An `Estimator` that uses a recurrent neural network with dynamic unrolling. ```python problem_type = ProblemType.CLASSIFICATION # or REGRESSION prediction_type = PredictionType.SINGLE_VALUE # or MULTIPLE_VALUE estimator = DynamicRnnEstimator(problem_type, prediction_type, my_feature_columns) ``` ### Use the estimator There are two main functions for using estimators, one of which is for training, and one of which is for evaluation. You can specify different data sources for each one in order to use different datasets for train and eval. ```python # Input builders def input_fn_train: # returns x, Y ... estimator.fit(input_fn=input_fn_train) def input_fn_eval: # returns x, Y ... estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` ## Creating Custom Estimator To create a custom `Estimator`, provide a function to `Estimator`'s constructor that builds your model (`model_fn`, below): ```python estimator = tf.contrib.learn.Estimator( model_fn=model_fn, model_dir=model_dir) # Where the model's data (e.g., checkpoints) # are saved. ``` Here is a skeleton of this function, with descriptions of its arguments and return values in the accompanying tables: ```python def model_fn(features, targets, mode, params): # Logic to do the following: # 1. Configure the model via TensorFlow operations # 2. Define the loss function for training/evaluation # 3. Define the training operation/optimizer # 4. Generate predictions return predictions, loss, train_op ``` You may use `mode` and check against `tf.contrib.learn.ModeKeys.{TRAIN, EVAL, INFER}` to parameterize `model_fn`. In the Further Reading section below, there is an end-to-end TensorFlow tutorial for building a custom estimator. ## Additional Estimators There is an additional estimators under `tensorflow.contrib.factorization.python.ops`: * Gaussian mixture model (GMM) clustering ## Further reading For further reading, there are several tutorials with relevant topics, including: * [Overview of linear models](../../../tutorials/linear/overview.md) * [Linear model tutorial](../../../tutorials/wide/index.md) * [Wide and deep learning tutorial](../../../tutorials/wide_and_deep/index.md) * [Custom estimator tutorial](../../../tutorials/estimators/index.md) * [Building input functions](../../../tutorials/input_fn/index.md) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.estimators.constants import ProblemType from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn import DNNRegressor from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedClassifier from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedEstimator from tensorflow.contrib.learn.python.learn.estimators.dnn_linear_combined import DNNLinearCombinedRegressor from tensorflow.contrib.learn.python.learn.estimators.dynamic_rnn_estimator import DynamicRnnEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import BaseEstimator from tensorflow.contrib.learn.python.learn.estimators.estimator import Estimator from tensorflow.contrib.learn.python.learn.estimators.estimator import GraphRewriteSpec from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input from tensorflow.contrib.learn.python.learn.estimators.estimator import infer_real_valued_columns_from_input_fn from tensorflow.contrib.learn.python.learn.estimators.estimator import SKCompat from tensorflow.contrib.learn.python.learn.estimators.head import binary_svm_head from tensorflow.contrib.learn.python.learn.estimators.head import Head from tensorflow.contrib.learn.python.learn.estimators.head import loss_only_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_class_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_head from tensorflow.contrib.learn.python.learn.estimators.head import multi_label_head from tensorflow.contrib.learn.python.learn.estimators.head import no_op_train_fn from tensorflow.contrib.learn.python.learn.estimators.head import poisson_regression_head from tensorflow.contrib.learn.python.learn.estimators.head import regression_head from tensorflow.contrib.learn.python.learn.estimators.kmeans import KMeansClustering from tensorflow.contrib.learn.python.learn.estimators.linear import LinearClassifier from tensorflow.contrib.learn.python.learn.estimators.linear import LinearEstimator from tensorflow.contrib.learn.python.learn.estimators.linear import LinearRegressor from tensorflow.contrib.learn.python.learn.estimators.logistic_regressor import LogisticRegressor from tensorflow.contrib.learn.python.learn.estimators.metric_key import MetricKey from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModeKeys from tensorflow.contrib.learn.python.learn.estimators.model_fn import ModelFnOps from tensorflow.contrib.learn.python.learn.estimators.prediction_key import PredictionKey from tensorflow.contrib.learn.python.learn.estimators.rnn_common import PredictionType from tensorflow.contrib.learn.python.learn.estimators.run_config import ClusterConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import Environment from tensorflow.contrib.learn.python.learn.estimators.run_config import RunConfig from tensorflow.contrib.learn.python.learn.estimators.run_config import TaskType from tensorflow.contrib.learn.python.learn.estimators.svm import SVM
apache-2.0
18padx08/PPTex
PPTexEnv_x86_64/lib/python2.7/site-packages/matplotlib/tests/test_transforms.py
9
19984
from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import unittest from nose.tools import assert_equal, assert_raises import numpy.testing as np_test from numpy.testing import assert_almost_equal from matplotlib.transforms import Affine2D, BlendedGenericTransform from matplotlib.path import Path from matplotlib.scale import LogScale from matplotlib.testing.decorators import cleanup, image_comparison import numpy as np import matplotlib.transforms as mtrans import matplotlib.pyplot as plt import matplotlib.path as mpath import matplotlib.patches as mpatches @cleanup def test_non_affine_caching(): class AssertingNonAffineTransform(mtrans.Transform): """ This transform raises an assertion error when called when it shouldn't be and self.raise_on_transform is True. """ input_dims = output_dims = 2 is_affine = False def __init__(self, *args, **kwargs): mtrans.Transform.__init__(self, *args, **kwargs) self.raise_on_transform = False self.underlying_transform = mtrans.Affine2D().scale(10, 10) def transform_path_non_affine(self, path): if self.raise_on_transform: assert False, ('Invalidated affine part of transform ' 'unnecessarily.') return self.underlying_transform.transform_path(path) transform_path = transform_path_non_affine def transform_non_affine(self, path): if self.raise_on_transform: assert False, ('Invalidated affine part of transform ' 'unnecessarily.') return self.underlying_transform.transform(path) transform = transform_non_affine my_trans = AssertingNonAffineTransform() ax = plt.axes() plt.plot(list(xrange(10)), transform=my_trans + ax.transData) plt.draw() # enable the transform to raise an exception if it's non-affine transform # method is triggered again. my_trans.raise_on_transform = True ax.transAxes.invalidate() plt.draw() @cleanup def test_external_transform_api(): class ScaledBy(object): def __init__(self, scale_factor): self._scale_factor = scale_factor def _as_mpl_transform(self, axes): return mtrans.Affine2D().scale(self._scale_factor) + axes.transData ax = plt.axes() line, = plt.plot(list(xrange(10)), transform=ScaledBy(10)) ax.set_xlim(0, 100) ax.set_ylim(0, 100) # assert that the top transform of the line is the scale transform. np.testing.assert_allclose(line.get_transform()._a.get_matrix(), mtrans.Affine2D().scale(10).get_matrix()) @image_comparison(baseline_images=['pre_transform_data']) def test_pre_transform_plotting(): # a catch-all for as many as possible plot layouts which handle pre-transforming the data # NOTE: The axis range is important in this plot. It should be x10 what the data suggests it should be ax = plt.axes() times10 = mtrans.Affine2D().scale(10) ax.contourf(np.arange(48).reshape(6, 8), transform=times10 + ax.transData) ax.pcolormesh(np.linspace(0, 4, 7), np.linspace(5.5, 8, 9), np.arange(48).reshape(8, 6), transform=times10 + ax.transData) ax.scatter(np.linspace(0, 10), np.linspace(10, 0), transform=times10 + ax.transData) x = np.linspace(8, 10, 20) y = np.linspace(1, 5, 20) u = 2*np.sin(x) + np.cos(y[:, np.newaxis]) v = np.sin(x) - np.cos(y[:, np.newaxis]) df = 25. / 30. # Compatibility factor for old test image ax.streamplot(x, y, u, v, transform=times10 + ax.transData, density=(df, df), linewidth=u**2 + v**2) # reduce the vector data down a bit for barb and quiver plotting x, y = x[::3], y[::3] u, v = u[::3, ::3], v[::3, ::3] ax.quiver(x, y + 5, u, v, transform=times10 + ax.transData) ax.barbs(x - 3, y + 5, u**2, v**2, transform=times10 + ax.transData) @cleanup def test_contour_pre_transform_limits(): ax = plt.axes() xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20)) ax.contourf(xs, ys, np.log(xs * ys), transform=mtrans.Affine2D().scale(0.1) + ax.transData) expected = np.array([[ 1.5 , 1.24], [ 2. , 1.25]]) assert_almost_equal(expected, ax.dataLim.get_points()) @cleanup def test_pcolor_pre_transform_limits(): # Based on test_contour_pre_transform_limits() ax = plt.axes() xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20)) ax.pcolor(xs, ys, np.log(xs * ys), transform=mtrans.Affine2D().scale(0.1) + ax.transData) expected = np.array([[ 1.5 , 1.24], [ 2. , 1.25]]) assert_almost_equal(expected, ax.dataLim.get_points()) @cleanup def test_pcolormesh_pre_transform_limits(): # Based on test_contour_pre_transform_limits() ax = plt.axes() xs, ys = np.meshgrid(np.linspace(15, 20, 15), np.linspace(12.4, 12.5, 20)) ax.pcolormesh(xs, ys, np.log(xs * ys), transform=mtrans.Affine2D().scale(0.1) + ax.transData) expected = np.array([[ 1.5 , 1.24], [ 2. , 1.25]]) assert_almost_equal(expected, ax.dataLim.get_points()) def test_Affine2D_from_values(): points = np.array([ [0,0], [10,20], [-1,0], ]) t = mtrans.Affine2D.from_values(1,0,0,0,0,0) actual = t.transform(points) expected = np.array( [[0,0],[10,0],[-1,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,2,0,0,0,0) actual = t.transform(points) expected = np.array( [[0,0],[0,20],[0,-2]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,3,0,0,0) actual = t.transform(points) expected = np.array( [[0,0],[60,0],[0,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,0,4,0,0) actual = t.transform(points) expected = np.array( [[0,0],[0,80],[0,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,0,0,5,0) actual = t.transform(points) expected = np.array( [[5,0],[5,0],[5,0]] ) assert_almost_equal(actual,expected) t = mtrans.Affine2D.from_values(0,0,0,0,0,6) actual = t.transform(points) expected = np.array( [[0,6],[0,6],[0,6]] ) assert_almost_equal(actual,expected) def test_clipping_of_log(): # issue 804 M,L,C = Path.MOVETO, Path.LINETO, Path.CLOSEPOLY points = [ (0.2, -99), (0.4, -99), (0.4, 20), (0.2, 20), (0.2, -99) ] codes = [ M, L, L, L, C ] path = Path(points, codes) # something like this happens in plotting logarithmic histograms trans = BlendedGenericTransform(Affine2D(), LogScale.Log10Transform('clip')) tpath = trans.transform_path_non_affine(path) result = tpath.iter_segments(trans.get_affine(), clip=(0, 0, 100, 100), simplify=False) tpoints, tcodes = list(zip(*result)) # Because y coordinate -99 is outside the clip zone, the first # line segment is effectively removed. That means that the closepoly # operation must be replaced by a move to the first point. assert np.allclose(tcodes, [ M, M, L, L, L ]) class NonAffineForTest(mtrans.Transform): """ A class which looks like a non affine transform, but does whatever the given transform does (even if it is affine). This is very useful for testing NonAffine behaviour with a simple Affine transform. """ is_affine = False output_dims = 2 input_dims = 2 def __init__(self, real_trans, *args, **kwargs): self.real_trans = real_trans r = mtrans.Transform.__init__(self, *args, **kwargs) def transform_non_affine(self, values): return self.real_trans.transform(values) def transform_path_non_affine(self, path): return self.real_trans.transform_path(path) class BasicTransformTests(unittest.TestCase): def setUp(self): self.ta1 = mtrans.Affine2D(shorthand_name='ta1').rotate(np.pi / 2) self.ta2 = mtrans.Affine2D(shorthand_name='ta2').translate(10, 0) self.ta3 = mtrans.Affine2D(shorthand_name='ta3').scale(1, 2) self.tn1 = NonAffineForTest(mtrans.Affine2D().translate(1, 2), shorthand_name='tn1') self.tn2 = NonAffineForTest(mtrans.Affine2D().translate(1, 2), shorthand_name='tn2') self.tn3 = NonAffineForTest(mtrans.Affine2D().translate(1, 2), shorthand_name='tn3') # creates a transform stack which looks like ((A, (N, A)), A) self.stack1 = (self.ta1 + (self.tn1 + self.ta2)) + self.ta3 # creates a transform stack which looks like (((A, N), A), A) self.stack2 = self.ta1 + self.tn1 + self.ta2 + self.ta3 # creates a transform stack which is a subset of stack2 self.stack2_subset = self.tn1 + self.ta2 + self.ta3 # when in debug, the transform stacks can produce dot images: # self.stack1.write_graphviz(file('stack1.dot', 'w')) # self.stack2.write_graphviz(file('stack2.dot', 'w')) # self.stack2_subset.write_graphviz(file('stack2_subset.dot', 'w')) def test_transform_depth(self): assert_equal(self.stack1.depth, 4) assert_equal(self.stack2.depth, 4) assert_equal(self.stack2_subset.depth, 3) def test_left_to_right_iteration(self): stack3 = (self.ta1 + (self.tn1 + (self.ta2 + self.tn2))) + self.ta3 # stack3.write_graphviz(file('stack3.dot', 'w')) target_transforms = [stack3, (self.tn1 + (self.ta2 + self.tn2)) + self.ta3, (self.ta2 + self.tn2) + self.ta3, self.tn2 + self.ta3, self.ta3, ] r = [rh for _, rh in stack3._iter_break_from_left_to_right()] self.assertEqual(len(r), len(target_transforms)) for target_stack, stack in zip(target_transforms, r): self.assertEqual(target_stack, stack) def test_transform_shortcuts(self): self.assertEqual(self.stack1 - self.stack2_subset, self.ta1) self.assertEqual(self.stack2 - self.stack2_subset, self.ta1) assert_equal((self.stack2_subset - self.stack2), self.ta1.inverted(), ) assert_equal((self.stack2_subset - self.stack2).depth, 1) assert_raises(ValueError, self.stack1.__sub__, self.stack2) aff1 = self.ta1 + (self.ta2 + self.ta3) aff2 = self.ta2 + self.ta3 self.assertEqual(aff1 - aff2, self.ta1) self.assertEqual(aff1 - self.ta2, aff1 + self.ta2.inverted()) self.assertEqual(self.stack1 - self.ta3, self.ta1 + (self.tn1 + self.ta2)) self.assertEqual(self.stack2 - self.ta3, self.ta1 + self.tn1 + self.ta2) self.assertEqual((self.ta2 + self.ta3) - self.ta3 + self.ta3, self.ta2 + self.ta3) def test_contains_branch(self): r1 = (self.ta2 + self.ta1) r2 = (self.ta2 + self.ta1) self.assertEqual(r1, r2) self.assertNotEqual(r1, self.ta1) self.assertTrue(r1.contains_branch(r2)) self.assertTrue(r1.contains_branch(self.ta1)) self.assertFalse(r1.contains_branch(self.ta2)) self.assertFalse(r1.contains_branch((self.ta2 + self.ta2))) self.assertEqual(r1, r2) self.assertTrue(self.stack1.contains_branch(self.ta3)) self.assertTrue(self.stack2.contains_branch(self.ta3)) self.assertTrue(self.stack1.contains_branch(self.stack2_subset)) self.assertTrue(self.stack2.contains_branch(self.stack2_subset)) self.assertFalse(self.stack2_subset.contains_branch(self.stack1)) self.assertFalse(self.stack2_subset.contains_branch(self.stack2)) self.assertTrue(self.stack1.contains_branch((self.ta2 + self.ta3))) self.assertTrue(self.stack2.contains_branch((self.ta2 + self.ta3))) self.assertFalse(self.stack1.contains_branch((self.tn1 + self.ta2))) def test_affine_simplification(self): # tests that a transform stack only calls as much is absolutely necessary # "non-affine" allowing the best possible optimization with complex # transformation stacks. points = np.array([[0, 0], [10, 20], [np.nan, 1], [-1, 0]], dtype=np.float64) na_pts = self.stack1.transform_non_affine(points) all_pts = self.stack1.transform(points) na_expected = np.array([[1., 2.], [-19., 12.], [np.nan, np.nan], [1., 1.]], dtype=np.float64) all_expected = np.array([[11., 4.], [-9., 24.], [np.nan, np.nan], [11., 2.]], dtype=np.float64) # check we have the expected results from doing the affine part only np_test.assert_array_almost_equal(na_pts, na_expected) # check we have the expected results from a full transformation np_test.assert_array_almost_equal(all_pts, all_expected) # check we have the expected results from doing the transformation in two steps np_test.assert_array_almost_equal(self.stack1.transform_affine(na_pts), all_expected) # check that getting the affine transformation first, then fully transforming using that # yields the same result as before. np_test.assert_array_almost_equal(self.stack1.get_affine().transform(na_pts), all_expected) # check that the affine part of stack1 & stack2 are equivalent (i.e. the optimization # is working) expected_result = (self.ta2 + self.ta3).get_matrix() result = self.stack1.get_affine().get_matrix() np_test.assert_array_equal(expected_result, result) result = self.stack2.get_affine().get_matrix() np_test.assert_array_equal(expected_result, result) class TestTransformPlotInterface(unittest.TestCase): def tearDown(self): plt.close() def test_line_extent_axes_coords(self): # a simple line in axes coordinates ax = plt.axes() ax.plot([0.1, 1.2, 0.8], [0.9, 0.5, 0.8], transform=ax.transAxes) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[np.inf, np.inf], [-np.inf, -np.inf]])) def test_line_extent_data_coords(self): # a simple line in data coordinates ax = plt.axes() ax.plot([0.1, 1.2, 0.8], [0.9, 0.5, 0.8], transform=ax.transData) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[ 0.1, 0.5], [ 1.2, 0.9]])) def test_line_extent_compound_coords1(self): # a simple line in data coordinates in the y component, and in axes coordinates in the x ax = plt.axes() trans = mtrans.blended_transform_factory(ax.transAxes, ax.transData) ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[ np.inf, -5.], [ -np.inf, 35.]])) plt.close() def test_line_extent_predata_transform_coords(self): # a simple line in (offset + data) coordinates ax = plt.axes() trans = mtrans.Affine2D().scale(10) + ax.transData ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[1., -50.], [12., 350.]])) plt.close() def test_line_extent_compound_coords2(self): # a simple line in (offset + data) coordinates in the y component, and in axes coordinates in the x ax = plt.axes() trans = mtrans.blended_transform_factory(ax.transAxes, mtrans.Affine2D().scale(10) + ax.transData) ax.plot([0.1, 1.2, 0.8], [35, -5, 18], transform=trans) np.testing.assert_array_equal(ax.dataLim.get_points(), np.array([[ np.inf, -50.], [ -np.inf, 350.]])) plt.close() def test_line_extents_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) plt.plot(list(xrange(10)), transform=offset + ax.transData) expeted_data_lim = np.array([[0., 0.], [9., 9.]]) + 10 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_line_extents_non_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) na_offset = NonAffineForTest(mtrans.Affine2D().translate(10, 10)) plt.plot(list(xrange(10)), transform=offset + na_offset + ax.transData) expeted_data_lim = np.array([[0., 0.], [9., 9.]]) + 20 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_pathc_extents_non_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) na_offset = NonAffineForTest(mtrans.Affine2D().translate(10, 10)) pth = mpath.Path(np.array([[0, 0], [0, 10], [10, 10], [10, 0]])) patch = mpatches.PathPatch(pth, transform=offset + na_offset + ax.transData) ax.add_patch(patch) expeted_data_lim = np.array([[0., 0.], [10., 10.]]) + 20 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_pathc_extents_affine(self): ax = plt.axes() offset = mtrans.Affine2D().translate(10, 10) pth = mpath.Path(np.array([[0, 0], [0, 10], [10, 10], [10, 0]])) patch = mpatches.PathPatch(pth, transform=offset + ax.transData) ax.add_patch(patch) expeted_data_lim = np.array([[0., 0.], [10., 10.]]) + 10 np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_line_extents_for_non_affine_transData(self): ax = plt.axes(projection='polar') # add 10 to the radius of the data offset = mtrans.Affine2D().translate(0, 10) plt.plot(list(xrange(10)), transform=offset + ax.transData) # the data lim of a polar plot is stored in coordinates # before a transData transformation, hence the data limits # are not what is being shown on the actual plot. expeted_data_lim = np.array([[0., 0.], [9., 9.]]) + [0, 10] np.testing.assert_array_almost_equal(ax.dataLim.get_points(), expeted_data_lim) def test_bbox_intersection(): bbox_from_ext = mtrans.Bbox.from_extents inter = mtrans.Bbox.intersection from numpy.testing import assert_array_equal as assert_a_equal def assert_bbox_eq(bbox1, bbox2): assert_a_equal(bbox1.bounds, bbox2.bounds) r1 = bbox_from_ext(0, 0, 1, 1) r2 = bbox_from_ext(0.5, 0.5, 1.5, 1.5) r3 = bbox_from_ext(0.5, 0, 0.75, 0.75) r4 = bbox_from_ext(0.5, 1.5, 1, 2.5) r5 = bbox_from_ext(1, 1, 2, 2) # self intersection -> no change assert_bbox_eq(inter(r1, r1), r1) # simple intersection assert_bbox_eq(inter(r1, r2), bbox_from_ext(0.5, 0.5, 1, 1)) # r3 contains r2 assert_bbox_eq(inter(r1, r3), r3) # no intersection assert_equal(inter(r1, r4), None) # single point assert_bbox_eq(inter(r1, r5), bbox_from_ext(1, 1, 1, 1)) @cleanup def test_log_transform(): # Tests that the last line runs without exception (previously the # transform would fail if one of the axes was logarithmic). fig, ax = plt.subplots() ax.set_yscale('log') ax.transData.transform((1,1)) if __name__=='__main__': import nose nose.runmodule(argv=['-s','--with-doctest'], exit=False)
mit
samuelstjean/dipy
scratch/very_scratch/diffusion_sphere_stats.py
20
18082
import nibabel import os import numpy as np import dipy as dp #import dipy.core.generalized_q_sampling as dgqs import dipy.reconst.gqi as dgqs import dipy.reconst.dti as ddti import dipy.reconst.recspeed as rp import dipy.io.pickles as pkl import scipy as sp from matplotlib.mlab import find #import dipy.core.sphere_plots as splots import dipy.core.sphere_stats as sphats import dipy.core.geometry as geometry import get_vertices as gv #old SimData files ''' results_SNR030_1fibre results_SNR030_1fibre+iso results_SNR030_2fibres_15deg results_SNR030_2fibres_30deg results_SNR030_2fibres_60deg results_SNR030_2fibres_90deg results_SNR030_2fibres+iso_15deg results_SNR030_2fibres+iso_30deg results_SNR030_2fibres+iso_60deg results_SNR030_2fibres+iso_90deg results_SNR030_isotropic ''' #fname='/home/ian/Data/SimData/results_SNR030_1fibre' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 1000 * 100 is the number of all rows. The 100 conditions are given by 10 polar angles (in degrees) 0, 20, 40, 60, 80, 80, 60, 40, 20 and 0, and each of these with longitude angle 0, 40, 80, 120, 160, 200, 240, 280, 320, 360. ''' #new complete SimVoxels files simdata = ['fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_100_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_40_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_20_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_100_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_20_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_80_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_80_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_1_SNR_60_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_60_angle_30_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_60_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_80_angle_15_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_1_SNR_40_angle_00_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_100_angle_60_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00', 'fibres_2_SNR_40_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_1_diso_0.7', 'fibres_2_SNR_20_angle_90_l1_1.4_l2_0.35_l3_0.35_iso_0_diso_00'] simdir = '/home/ian/Data/SimVoxels/' def gq_tn_calc_save(): for simfile in simdata: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] gq = dgqs.GeneralizedQSampling(sim_data,bvals,gradients) gqfile = simdir+'gq/'+dataname+'.pkl' pkl.save_pickle(gqfile,gq) ''' gq.IN gq.__doc__ gq.glob_norm_param gq.QA gq.__init__ gq.odf gq.__class__ gq.__module__ gq.q2odf_params ''' tn = ddti.Tensor(sim_data,bvals,gradients) tnfile = simdir+'tn/'+dataname+'.pkl' pkl.save_pickle(tnfile,tn) ''' tn.ADC tn.__init__ tn._getevals tn.B tn.__module__ tn._getevecs tn.D tn.__new__ tn._getndim tn.FA tn.__reduce__ tn._getshape tn.IN tn.__reduce_ex__ tn._setevals tn.MD tn.__repr__ tn._setevecs tn.__class__ tn.__setattr__ tn.adc tn.__delattr__ tn.__sizeof__ tn.evals tn.__dict__ tn.__str__ tn.evecs tn.__doc__ tn.__subclasshook__ tn.fa tn.__format__ tn.__weakref__ tn.md tn.__getattribute__ tn._evals tn.ndim tn.__getitem__ tn._evecs tn.shape tn.__hash__ tn._getD ''' ''' file has one row for every voxel, every voxel is repeating 1000 times with the same noise level , then we have 100 different directions. 100 * 1000 is the number of all rows. At the moment this module is hardwired to the use of the EDS362 spherical mesh. I am assumung (needs testing) that directions 181 to 361 are the antipodal partners of directions 0 to 180. So when counting the number of different vertices that occur as maximal directions we wll map the indices modulo 181. ''' def analyze_maxima(indices, max_dirs, subsets): '''This calculates the eigenstats for each of the replicated batches of the simulation data ''' results = [] for direction in subsets: batch = max_dirs[direction,:,:] index_variety = np.array([len(set(np.remainder(indices[direction,:],181)))]) #normed_centroid, polar_centroid, centre, b1 = sphats.eigenstats(batch) centre, b1 = sphats.eigenstats(batch) # make azimuth be in range (0,360) rather than (-180,180) centre[1] += 360*(centre[1] < 0) #results.append(np.concatenate((normed_centroid, polar_centroid, centre, b1, index_variety))) results.append(np.concatenate((centre, b1, index_variety))) return results #dt_first_directions = tn.evecs[:,:,0].reshape((100,1000,3)) # these are the principal directions for the full set of simulations #gq_tn_calc_save() #eds=np.load(os.path.join(os.path.dirname(dp.__file__),'core','matrices','evenly_distributed_sphere_362.npz')) from dipy.data import get_sphere odf_vertices,odf_faces=get_sphere('symmetric362') #odf_vertices=eds['vertices'] def run_comparisons(sample_data=35): for simfile in [simdata[sample_data]]: dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) gqfile = simdir+'gq/'+dataname+'.pkl' gq = pkl.load_pickle(gqfile) tnfile = simdir+'tn/'+dataname+'.pkl' tn = pkl.load_pickle(tnfile) dt_first_directions_in=odf_vertices[tn.IN] dt_indices = tn.IN.reshape((100,1000)) dt_results = analyze_maxima(dt_indices, dt_first_directions_in.reshape((100,1000,3)),range(10,90)) gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(10,90)) #for gqi see example dicoms_2_tracks gq.IN[:,0] np.set_printoptions(precision=3, suppress=True, linewidth=200, threshold=5000) out = open('/home/ian/Data/SimVoxels/Out/'+'***_'+dataname,'w') #print np.vstack(dt_results).shape, np.vstack(gq_results).shape results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #print results.shape #results = np.vstack(dt_results) print >> out, results[:,:] out.close() #up = dt_batch[:,2]>= 0 #splots.plot_sphere(dt_batch[up], 'batch '+str(direction)) #splots.plot_lambert(dt_batch[up],'batch '+str(direction), centre) #spread = gq.q2odf_params e,v = np.linalg.eigh(np.dot(spread,spread.transpose())) effective_dimension = len(find(np.cumsum(e) > 0.05*np.sum(e))) #95% #rotated = np.dot(dt_batch,evecs) #rot_evals, rot_evecs = np.linalg.eig(np.dot(rotated.T,rotated)/rotated.shape[0]) #eval_order = np.argsort(rot_evals) #rotated = rotated[:,eval_order] #up = rotated[:,2]>= 0 #splot.plot_sphere(rotated[up],'first1000') #splot.plot_lambert(rotated[up],'batch '+str(direction)) def run_gq_sims(sample_data=[35,23,46,39,40,10,37,27,21,20]): results = [] out = open('/home/ian/Data/SimVoxels/Out/'+'npa+fa','w') for j in range(len(sample_data)): sample = sample_data[j] simfile = simdata[sample] dataname = simfile print dataname sim_data=np.loadtxt(simdir+dataname) marta_table_fname='/home/ian/Data/SimData/Dir_and_bvals_DSI_marta.txt' b_vals_dirs=np.loadtxt(marta_table_fname) bvals=b_vals_dirs[:,0]*1000 gradients=b_vals_dirs[:,1:] for j in np.vstack((np.arange(100)*1000,np.arange(100)*1000+1)).T.ravel(): # 0,1,1000,1001,2000,2001,... s = sim_data[j,:] gqs = dp.GeneralizedQSampling(s.reshape((1,102)),bvals,gradients,Lambda=3.5) tn = dp.Tensor(s.reshape((1,102)),bvals,gradients,fit_method='LS') t0, t1, t2, npa = gqs.npa(s, width = 5) print >> out, dataname, j, npa, tn.fa()[0] ''' for (i,o) in enumerate(gqs.odf(s)): print i,o for (i,o) in enumerate(gqs.odf_vertices): print i,o ''' #o = gqs.odf(s) #v = gqs.odf_vertices #pole = v[t0[0]] #eqv = dgqs.equatorial_zone_vertices(v, pole, 5) #print 'Number of equatorial vertices: ', len(eqv) #print np.max(o[eqv]),np.min(o[eqv]) #cos_e_pole = [np.dot(pole.T, v[i]) for i in eqv] #print np.min(cos1), np.max(cos1) #print 'equatorial max in equatorial vertices:', t1[0] in eqv #x = np.cross(v[t0[0]],v[t1[0]]) #x = x/np.sqrt(np.sum(x**2)) #print x #ptchv = dgqs.patch_vertices(v, x, 5) #print len(ptchv) #eqp = eqv[np.argmin([np.abs(np.dot(v[t1[0]].T,v[p])) for p in eqv])] #print (eqp, o[eqp]) #print t2[0] in ptchv, t2[0] in eqv #print np.dot(pole.T, v[t1[0]]), np.dot(pole.T, v[t2[0]]) #print ptchv[np.argmin([o[v] for v in ptchv])] #gq_indices = np.array(gq.IN[:,0],dtype='int').reshape((100,1000)) #gq_first_directions_in=odf_vertices[np.array(gq.IN[:,0],dtype='int')] #print gq_first_directions_in.shape #gq_results = analyze_maxima(gq_indices, gq_first_directions_in.reshape((100,1000,3)),range(100)) #for gqi see example dicoms_2_tracks gq.IN[:,0] #np.set_printoptions(precision=6, suppress=True, linewidth=200, threshold=5000) #out = open('/home/ian/Data/SimVoxels/Out/'+'+++_'+dataname,'w') #results = np.hstack((np.vstack(dt_results), np.vstack(gq_results))) #results = np.vstack(dt_results) #print >> out, results[:,:] out.close() def run_small_data(): #smalldir = '/home/ian/Devel/dipy/dipy/data/' smalldir = '/home/eg309/Devel/dipy/dipy/data/' # from os.path import join as opj # bvals=np.load(opj(os.path.dirname(__file__), \ # 'data','small_64D.bvals.npy')) bvals=np.load(smalldir+'small_64D.bvals.npy') # gradients=np.load(opj(os.path.dirname(__file__), \ # 'data','small_64D.gradients.npy')) gradients=np.load(smalldir+'small_64D.gradients.npy') # img =ni.load(os.path.join(os.path.dirname(__file__),\ # 'data','small_64D.nii')) img=nibabel.load(smalldir+'small_64D.nii') small_data=img.get_data() print 'real_data', small_data.shape gqsmall = dgqs.GeneralizedQSampling(small_data,bvals,gradients) tnsmall = ddti.Tensor(small_data,bvals,gradients) x,y,z,a,b=tnsmall.evecs.shape evecs=tnsmall.evecs xyz=x*y*z evecs = evecs.reshape(xyz,3,3) #vs = np.sign(evecs[:,2,:]) #print vs.shape #print np.hstack((vs,vs,vs)).reshape(1000,3,3).shape #evecs = np.hstack((vs,vs,vs)).reshape(1000,3,3) #print evecs.shape evals=tnsmall.evals evals = evals.reshape(xyz,3) #print evals.shape #print('GQS in %d' %(t2-t1)) ''' eds=np.load(opj(os.path.dirname(__file__),\ '..','matrices',\ 'evenly_distributed_sphere_362.npz')) ''' from dipy.data import get_sphere odf_vertices,odf_faces=get_sphere('symmetric362') #odf_vertices=eds['vertices'] #odf_faces=eds['faces'] #Yeh et.al, IEEE TMI, 2010 #calculate the odf using GQI scaling=np.sqrt(bvals*0.01506) # 0.01506 = 6*D where D is the free #water diffusion coefficient #l_values sqrt(6 D tau) D free water #diffusion coefficiet and tau included in the b-value tmp=np.tile(scaling,(3,1)) b_vector=gradients.T*tmp Lambda = 1.2 # smoothing parameter - diffusion sampling length q2odf_params=np.sinc(np.dot(b_vector.T, odf_vertices.T) * Lambda/np.pi) #implements equation no. 9 from Yeh et.al. S=small_data.copy() x,y,z,g=S.shape S=S.reshape(x*y*z,g) QA = np.zeros((x*y*z,5)) IN = np.zeros((x*y*z,5)) FA = tnsmall.fa().reshape(x*y*z) fwd = 0 #Calculate Quantitative Anisotropy and find the peaks and the indices #for every voxel summary = {} summary['vertices'] = odf_vertices v = odf_vertices.shape[0] summary['faces'] = odf_faces f = odf_faces.shape[0] for (i,s) in enumerate(S): #print 'Volume %d' % i istr = str(i) summary[istr] = {} t0, t1, t2, npa = gqsmall.npa(s, width = 5) summary[istr]['triple']=(t0,t1,t2) summary[istr]['npa']=npa odf = Q2odf(s,q2odf_params) peaks,inds=rp.peak_finding(odf,odf_faces) fwd=max(np.max(odf),fwd) #peaks = peaks - np.min(odf) n_peaks=min(len(peaks),5) peak_heights = [odf[i] for i in inds[:n_peaks]] #QA[i][:l] = peaks[:n_peaks] IN[i][:n_peaks] = inds[:n_peaks] summary[istr]['odf'] = odf summary[istr]['peaks'] = peaks summary[istr]['inds'] = inds summary[istr]['evecs'] = evecs[i,:,:] summary[istr]['evals'] = evals[i,:] summary[istr]['n_peaks'] = n_peaks summary[istr]['peak_heights'] = peak_heights # summary[istr]['fa'] = tnsmall.fa()[0] summary[istr]['fa'] = FA[i] ''' QA/=fwd QA=QA.reshape(x,y,z,5) IN=IN.reshape(x,y,z,5) ''' peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1] peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2] peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3] #peaks_2 = [i for i in range(1000) if len(summary[str(i)]['inds'])==2] #peaks_3 = [i for i in range(1000) if len(summary[str(i)]['inds'])==3] print '#voxels with 1, 2, 3 peaks', len(peaks_1),len(peaks_2),len(peaks_3) return FA, summary def Q2odf(s,q2odf_params): ''' construct odf for a voxel ''' odf=np.dot(s,q2odf_params) return odf #run_comparisons() #run_gq_sims() FA, summary = run_small_data() peaks_1 = [i for i in range(1000) if summary[str(i)]['n_peaks']==1] peaks_2 = [i for i in range(1000) if summary[str(i)]['n_peaks']==2] peaks_3 = [i for i in range(1000) if summary[str(i)]['n_peaks']==3] fa_npa_1 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_1] fa_npa_2 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_2] fa_npa_3 = [[summary[str(i)]['fa'], summary[str(i)]['npa'], summary[str(i)]['peak_heights']] for i in peaks_3]
bsd-3-clause
blab/antibody-response-pulse
bcell-array/code/Virus_Bcell_IgM_IgG_Landscape.py
1
11385
# coding: utf-8 # # Antibody Response Pulse # https://github.com/blab/antibody-response-pulse # # ### B-cells evolution --- cross-reactive antibody response after influenza virus infection or vaccination # ### Adaptive immune response for repeated infection # In[1]: ''' author: Alvason Zhenhua Li date: 04/09/2015 ''' get_ipython().magic(u'matplotlib inline') import numpy as np import matplotlib.pyplot as plt import os import alva_machinery_event_OAS_new as alva AlvaFontSize = 23 AlvaFigSize = (15, 5) numberingFig = 0 # equation plotting dir_path = '/Users/al/Desktop/GitHub/antibody-response-pulse/bcell-array/figure' file_name = 'Virus-Bcell-IgM-IgG' figure_name = '-equation' file_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize=(12, 5)) plt.axis('off') plt.title(r'$ Virus-Bcell-IgM-IgG \ equations \ (antibody-response \ for \ repeated-infection) $' , fontsize = AlvaFontSize) plt.text(0, 7.0/9, r'$ \frac{\partial V_n(t)}{\partial t} = +\mu_{v} V_{n}(t)(1 - \frac{V_n(t)}{V_{max}}) - \phi_{m} M_{n}(t) V_{n}(t) - \phi_{g} G_{n}(t) V_{n}(t) $' , fontsize = 1.2*AlvaFontSize) plt.text(0, 5.0/9, r'$ \frac{\partial B_n(t)}{\partial t} = +\mu_{b}V_{n}(t)(1 - \frac{V_n(t)}{V_{max}}) + (\beta_{m} + \beta_{g}) V_{n}(t) B_{n}(t) - \mu_{b} B_{n}(t) + m_b V_{n}(t)\frac{B_{i-1}(t) - 2B_i(t) + B_{i+1}(t)}{(\Delta i)^2} $' , fontsize = 1.2*AlvaFontSize) plt.text(0, 3.0/9,r'$ \frac{\partial M_n(t)}{\partial t} = +\xi_{m} B_{n}(t) - \phi_{m} M_{n}(t) V_{n}(t) - \mu_{m} M_{n}(t) $' , fontsize = 1.2*AlvaFontSize) plt.text(0, 1.0/9,r'$ \frac{\partial G_n(t)}{\partial t} = +\xi_{g} B_{n}(t) - \phi_{g} G_{n}(t) V_{n}(t) - \mu_{g} G_{n}(t) + m_a V_{n}(t)\frac{G_{i-1}(t) - 2G_i(t) + G_{i+1}(t)}{(\Delta i)^2} $' , fontsize = 1.2*AlvaFontSize) plt.savefig(save_figure, dpi = 100) plt.show() # define the V-M-G partial differential equations def dVdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dV_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form dV_dt_array[:] = +inRateV*V[:]*(1 - V[:]/maxV) - killRateVm*M[:]*V[:] - killRateVg*G[:]*V[:] return(dV_dt_array) def dBdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dB_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form Bcopy = np.copy(B) centerX = Bcopy[:] leftX = np.roll(Bcopy[:], 1) rightX = np.roll(Bcopy[:], -1) leftX[0] = centerX[0] rightX[-1] = centerX[-1] dB_dt_array[:] = +inRateB*V[:]*(1 - V[:]/maxV) + (actRateBm + alva.event_active + alva.event_OAS_B)*V[:]*B[:] - outRateB*B[:] + mutatRateB*V[:]*(leftX[:] - 2*centerX[:] + rightX[:])/(dx**2) return(dB_dt_array) def dMdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dM_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form dM_dt_array[:] = +inRateM*B[:] - consumeRateM*M[:]*V[:] - outRateM*M[:] return(dM_dt_array) def dGdt_array(VBMGxt = [], *args): # naming V = VBMGxt[0] B = VBMGxt[1] M = VBMGxt[2] G = VBMGxt[3] x_totalPoint = VBMGxt.shape[1] # there are n dSdt dG_dt_array = np.zeros(x_totalPoint) # each dSdt with the same equation form Gcopy = np.copy(G) centerX = Gcopy[:] leftX = np.roll(Gcopy[:], 1) rightX = np.roll(Gcopy[:], -1) leftX[0] = centerX[0] rightX[-1] = centerX[-1] dG_dt_array[:] = +(inRateG + alva.event_OAS)*B[:] - consumeRateG*G[:]*V[:] - outRateG*G[:] + mutatRateA*(leftX[:] - 2*centerX[:] + rightX[:])/(dx**2) return(dG_dt_array) # In[2]: # setting parameter timeUnit = 'year' if timeUnit == 'hour': hour = float(1) day = float(24) elif timeUnit == 'day': day = float(1) hour = float(1)/24 elif timeUnit == 'year': year = float(1) day = float(1)/365 hour = float(1)/24/365 maxV = float(50) # max virus/micro-liter inRateV = 0.2/hour # in-rate of virus killRateVm = 0.0003/hour # kill-rate of virus by antibody-IgM killRateVg = killRateVm # kill-rate of virus by antibody-IgG inRateB = 0.06/hour # in-rate of B-cell outRateB = inRateB/8 # out-rate of B-cell actRateBm = killRateVm # activation rate of naive B-cell inRateM = 0.16/hour # in-rate of antibody-IgM from naive B-cell outRateM = inRateM/1 # out-rate of antibody-IgM from naive B-cell consumeRateM = killRateVm # consume-rate of antibody-IgM by cleaning virus inRateG = inRateM/10 # in-rate of antibody-IgG from memory B-cell outRateG = outRateM/250 # out-rate of antibody-IgG from memory B-cell consumeRateG = killRateVg # consume-rate of antibody-IgG by cleaning virus mutatRateB = 0.00002/hour # B-cell mutation rate mutatRateA = 0.0002/hour # mutation rate # time boundary and griding condition minT = float(0) maxT = float(10*12*30*day) totalPoint_T = int(6*10**3 + 1) gT = np.linspace(minT, maxT, totalPoint_T) spacingT = np.linspace(minT, maxT, num = totalPoint_T, retstep = True) gT = spacingT[0] dt = spacingT[1] # space boundary and griding condition minX = float(0) maxX = float(9) totalPoint_X = int(maxX - minX + 1) gX = np.linspace(minX, maxX, totalPoint_X) gridingX = np.linspace(minX, maxX, num = totalPoint_X, retstep = True) gX = gridingX[0] dx = gridingX[1] gV_array = np.zeros([totalPoint_X, totalPoint_T]) gB_array = np.zeros([totalPoint_X, totalPoint_T]) gM_array = np.zeros([totalPoint_X, totalPoint_T]) gG_array = np.zeros([totalPoint_X, totalPoint_T]) # initial output condition #gV_array[1, 0] = float(2) #[pre-parameter, post-parameter, recovered-day, OAS+, OSA-, origin_virus] actRateBg_1st = 0.0002/hour # activation rate of memory B-cell at 1st time (pre-) actRateBg_2nd = actRateBg_1st*10 # activation rate of memory B-cell at 2nd time (post-) origin_virus = int(2) current_virus = int(6) event_parameter = np.array([[actRateBg_1st, actRateBg_2nd, 14*day, +5/hour, -actRateBm - actRateBg_1st + (actRateBm + actRateBg_1st)/1.3, origin_virus, current_virus]]) # [viral population, starting time] ---first infection_period = 12*30*day viral_population = np.zeros(int(maxX + 1)) viral_population[origin_virus:current_virus + 1] = 3 infection_starting_time = np.arange(int(maxX + 1))*infection_period event_1st = np.zeros([int(maxX + 1), 2]) event_1st[:, 0] = viral_population event_1st[:, 1] = infection_starting_time print ('event_1st = {:}'.format(event_1st)) # [viral population, starting time] ---2nd] viral_population = np.zeros(int(maxX + 1)) viral_population[origin_virus:current_virus + 1] = 0 infection_starting_time = np.arange(int(maxX + 1))*0 event_2nd = np.zeros([int(maxX + 1), 2]) event_2nd[:, 0] = viral_population event_2nd[:, 1] = infection_starting_time print ('event_2nd = {:}'.format(event_2nd)) event_table = np.array([event_parameter, event_1st, event_2nd]) # Runge Kutta numerical solution pde_array = np.array([dVdt_array, dBdt_array, dMdt_array, dGdt_array]) initial_Out = np.array([gV_array, gB_array, gM_array, gG_array]) gOut_array = alva.AlvaRungeKutta4XT(pde_array, initial_Out, minX, maxX, totalPoint_X, minT, maxT, totalPoint_T, event_table) # plotting gV = gOut_array[0] gB = gOut_array[1] gM = gOut_array[2] gG = gOut_array[3] numberingFig = numberingFig + 1 for i in range(totalPoint_X): figure_name = '-response-%i'%(i) figure_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) plt.figure(numberingFig, figsize = AlvaFigSize) plt.plot(gT, gV[i], color = 'red', label = r'$ V_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5) plt.plot(gT, gM[i], color = 'blue', label = r'$ IgM_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5) plt.plot(gT, gG[i], color = 'green', label = r'$ IgG_{%i}(t) $'%(i), linewidth = 3.0, alpha = 0.5) plt.plot(gT, gM[i] + gG[i], color = 'gray', linewidth = 5.0, alpha = 0.5, linestyle = 'dashed' , label = r'$ IgM_{%i}(t) + IgG_{%i}(t) $'%(i, i)) plt.grid(True, which = 'both') plt.title(r'$ Antibody \ from \ Virus-{%i} $'%(i), fontsize = AlvaFontSize) plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize) plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize) plt.xlim([minT, maxT]) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) plt.ylim([2**0, 2**12]) plt.yscale('log', basey = 2) plt.legend(loc = (1,0), fontsize = AlvaFontSize) plt.savefig(save_figure, dpi = 100, bbox_inches='tight') plt.show() # In[3]: # Normalization stacked graph numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize = AlvaFigSize) plt.stackplot(gT, gM + gG, alpha = 0.3) plt.title(r'$ Stacked-graph \ of \ Antibody $', fontsize = AlvaFontSize) plt.xlabel(r'$time \ (%s)$'%(timeUnit), fontsize = AlvaFontSize) plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize) plt.xticks(fontsize = AlvaFontSize*0.6) plt.yticks(fontsize = AlvaFontSize*0.6) plt.ylim([2**0, 2**12]) plt.yscale('log', basey = 2) plt.grid(True) plt.show() # In[4]: # expected peak of the antibody response totalColor = current_virus - origin_virus + 1 AlvaColor = [plt.get_cmap('rainbow')(float(i)/(totalColor)) for i in range(1, totalColor + 1)] sample_time = 90*day # plotting figure_name = '-landscape' figure_suffix = '.png' save_figure = os.path.join(dir_path, file_name + figure_name + file_suffix) numberingFig = numberingFig + 1 plt.figure(numberingFig, figsize = (12, 9)) for i in range(origin_virus, current_virus + 1): detect_xn = current_virus + 2 - i if detect_xn == origin_virus: virus_label = '$ origin-virus $' elif detect_xn == current_virus: virus_label = '$ current-virus $' else: virus_label = '$ {:}th-virus $'.format(detect_xn - origin_virus + 1) detect_time = int(totalPoint_T/(maxT - minT)*(detect_xn*infection_period + sample_time)) plt.plot(gX, gM[:, detect_time] + gG[:, detect_time], marker = 'o', markersize = 20 , color = AlvaColor[detect_xn - origin_virus], label = virus_label) plt.fill_between(gX, gM[:, detect_time] + gG[:, detect_time], facecolor = AlvaColor[detect_xn - origin_virus] , alpha = 0.5) plt.grid(True, which = 'both') plt.title(r'$ Antibody \ Landscape $', fontsize = AlvaFontSize) plt.xlabel(r'$ Virus \ space \ (Antigenic-distance) $', fontsize = AlvaFontSize) plt.ylabel(r'$ Neutralization \ \ titer $', fontsize = AlvaFontSize) plt.xlim([minX, maxX]) plt.xticks(fontsize = AlvaFontSize) plt.yticks(fontsize = AlvaFontSize) plt.ylim([2**0, 2**9]) plt.yscale('log', basey = 2) plt.legend(loc = (1,0), fontsize = AlvaFontSize) plt.savefig(save_figure, dpi = 100, bbox_inches='tight') plt.show() # In[ ]:
gpl-2.0
only4hj/fast-rcnn
lib/roi_data_layer/minibatch.py
1
22641
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Compute minibatch blobs for training a Fast R-CNN network.""" import numpy as np import numpy.random as npr import cv2 from fast_rcnn.config import cfg from utils.blob import prep_im_for_blob, im_list_to_blob from utils.model import last_conv_size from roi_data_layer.roidb import prepare_one_roidb_rpn, prepare_one_roidb_frcnn from roidb import clear_one_roidb def get_minibatch(roidb, num_classes, bbox_means, bbox_stds, proposal_file): """Given a roidb, construct a minibatch sampled from it.""" num_images = len(roidb) # Sample random scales to use for each image in this batch random_scale_inds = npr.randint(0, high=len(cfg.TRAIN.SCALES), size=num_images) assert(cfg.TRAIN.BATCH_SIZE % num_images == 0), \ 'num_images ({}) must divide BATCH_SIZE ({})'. \ format(num_images, cfg.TRAIN.BATCH_SIZE) rois_per_image = cfg.TRAIN.BATCH_SIZE / num_images fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image) # Get the input image blob, formatted for caffe im_blob, im_scales, processed_ims = _get_image_blob(roidb, random_scale_inds) if 'model_to_use' in roidb[0] and roidb[0]['model_to_use'] == 'rpn': conv_h, scale_h = last_conv_size(im_blob.shape[2], cfg.MODEL_NAME) conv_w, scale_w = last_conv_size(im_blob.shape[3], cfg.MODEL_NAME) # Now, build the region of interest and label blobs rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0, 9, conv_h, conv_w), dtype=np.float32) bbox_targets_blob = np.zeros((0, 36, conv_h, conv_w), dtype=np.float32) bbox_loss_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32) all_overlaps = [] for im_i in xrange(num_images): if cfg.TRAIN.LAZY_PREPARING_ROIDB: prepare_one_roidb_rpn(roidb[im_i], processed_ims[im_i].shape[0], processed_ims[im_i].shape[1], im_scales[im_i]) # Normalize bbox_targets if cfg.TRAIN.NORMALIZE_BBOX: bbox_targets = roidb[im_i]['bbox_targets'] cls_inds = np.where(bbox_targets[:, 0] > 0)[0] if cls_inds.size > 0: bbox_targets[cls_inds, 1:] -= bbox_means[0, :] bbox_targets[cls_inds, 1:] /= bbox_stds[0, :] labels, overlaps, im_rois, bbox_targets, bbox_loss \ = _sample_rois_rpn(roidb[im_i], fg_rois_per_image, rois_per_image, num_classes, conv_h, conv_w) # Add to RoIs blob if im_rois != None: batch_ind = im_i * np.ones((im_rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, im_rois)) rois_blob = np.vstack((rois_blob, rois_blob_this_image)) # Add to labels, bbox targets, and bbox loss blobs labels_blob = np.vstack((labels_blob, labels)) bbox_targets_blob = np.vstack((bbox_targets_blob, bbox_targets)) bbox_loss_blob = np.vstack((bbox_loss_blob, bbox_loss)) # For debug visualizations #_vis_minibatch_rpn(im_blob, conv_h, conv_w, rois_blob, labels_blob, roidb, bbox_targets_blob, bbox_loss_blob) blobs = {'data': im_blob, 'labels': labels_blob} else: # Now, build the region of interest and label blobs rois_blob = np.zeros((0, 5), dtype=np.float32) labels_blob = np.zeros((0), dtype=np.float32) bbox_targets_blob = np.zeros((0, 4 * num_classes), dtype=np.float32) bbox_loss_blob = np.zeros(bbox_targets_blob.shape, dtype=np.float32) all_overlaps = [] for im_i in xrange(num_images): if cfg.TRAIN.LAZY_PREPARING_ROIDB: prepare_one_roidb_frcnn(roidb[im_i], proposal_file, num_classes) # Normalize bbox_targets if cfg.TRAIN.NORMALIZE_BBOX: bbox_targets = roidb[im_i]['bbox_targets'] for cls in xrange(1, num_classes): cls_inds = np.where(bbox_targets[:, 0] == cls)[0] bbox_targets[cls_inds, 1:] -= bbox_means[cls, :] bbox_targets[cls_inds, 1:] /= bbox_stds[cls, :] labels, overlaps, im_rois, bbox_targets, bbox_loss \ = _sample_rois(roidb[im_i], fg_rois_per_image, rois_per_image, num_classes) # Add to RoIs blob rois = _project_im_rois(im_rois, im_scales[im_i]) batch_ind = im_i * np.ones((rois.shape[0], 1)) rois_blob_this_image = np.hstack((batch_ind, rois)) rois_blob = np.vstack((rois_blob, rois_blob_this_image)) # Add to labels, bbox targets, and bbox loss blobs labels_blob = np.hstack((labels_blob, labels)) bbox_targets_blob = np.vstack((bbox_targets_blob, bbox_targets)) bbox_loss_blob = np.vstack((bbox_loss_blob, bbox_loss)) #all_overlaps = np.hstack((all_overlaps, overlaps)) # For debug visualizations #_vis_minibatch(im_blob, rois_blob, labels_blob, all_overlaps) blobs = {'data': im_blob, 'rois': rois_blob, 'labels': labels_blob} if cfg.TRAIN.BBOX_REG: blobs['bbox_targets'] = bbox_targets_blob blobs['bbox_loss_weights'] = bbox_loss_blob return blobs def clear_minibatch(roidb): num_images = len(roidb) for im_i in xrange(num_images): clear_one_roidb(roidb[im_i]) def _sample_rois(roidb, fg_rois_per_image, rois_per_image, num_classes): """Generate a random sample of RoIs comprising foreground and background examples. """ # label = class RoI has max overlap with labels = roidb['max_classes'] overlaps = roidb['max_overlaps'] rois = roidb['boxes'] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = np.where(overlaps >= cfg.TRAIN.FG_THRESH)[0] # Guard against the case when an image has fewer than fg_rois_per_image # foreground RoIs fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size) # Sample foreground regions without replacement if fg_inds.size > 0: fg_inds = npr.choice(fg_inds, size=fg_rois_per_this_image, replace=False) # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where((overlaps < cfg.TRAIN.BG_THRESH_HI) & (overlaps >= cfg.TRAIN.BG_THRESH_LO))[0] # Compute number of background RoIs to take from this image (guarding # against there being fewer than desired) bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_inds.size) # Sample foreground regions without replacement if bg_inds.size > 0: bg_inds = npr.choice(bg_inds, size=bg_rois_per_this_image, replace=False) # The indices that we're selecting (both fg and bg) keep_inds = np.append(fg_inds, bg_inds) # Select sampled values from various arrays: labels = labels[keep_inds] # Clamp labels for the background RoIs to 0 labels[fg_rois_per_this_image:] = 0 overlaps = overlaps[keep_inds] rois = rois[keep_inds] bbox_targets, bbox_loss_weights = \ _get_bbox_regression_labels(roidb['bbox_targets'][keep_inds, :], num_classes) return labels, overlaps, rois, bbox_targets, bbox_loss_weights def get_img_rect(img_height, img_width, conv_height, conv_width, axis1, axis2, axis3): anchors = np.array([[128*2, 128*1], [128*1, 128*1], [128*1, 128*2], [256*2, 256*1], [256*1, 256*1], [256*1, 256*2], [512*2, 512*1], [512*1, 512*1], [512*1, 512*2]]) scale_width = img_width / conv_width scale_height = img_height / conv_height img_center_x = img_width * axis3 / conv_width + scale_width / 2 img_center_y = img_height * axis2 / conv_height + scale_height / 2 anchor_size = anchors[axis1] img_x1 = img_center_x - anchor_size[0] / 2 img_x2 = img_center_x + anchor_size[0] / 2 img_y1 = img_center_y - anchor_size[1] / 2 img_y2 = img_center_y + anchor_size[1] / 2 return [img_x1, img_y1, img_x2, img_y2] def _sample_rois_rpn(roidb, fg_rois_per_image, rois_per_image, num_classes, union_conv_height, union_conv_width): """Generate a random sample of RoIs comprising foreground and background examples. """ # label = class RoI has max overlap with labels = roidb['max_classes'] new_labels = np.zeros(labels.shape, dtype=np.int16) new_labels.fill(-1) bbox_target = roidb['bbox_targets'] new_bbox_target = np.zeros(bbox_target.shape, dtype=np.float32) conv_width = roidb['conv_width'] conv_height = roidb['conv_height'] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = np.where(labels > 0)[0] # Guard against the case when an image has fewer than fg_rois_per_image # foreground RoIs fg_rois_per_this_image = np.minimum(fg_rois_per_image, fg_inds.size) # Sample foreground regions without replacement if fg_inds.size > 0: fg_inds = npr.choice(fg_inds, size=fg_rois_per_this_image, replace=False) # Select background RoIs as those within [BG_THRESH_LO, BG_THRESH_HI) bg_inds = np.where(labels == 0)[0] # Compute number of background RoIs to take from this image (guarding # against there being fewer than desired) bg_rois_per_this_image = rois_per_image - fg_rois_per_this_image bg_rois_per_this_image = np.minimum(bg_rois_per_this_image, bg_inds.size) # Sample foreground regions without replacement if bg_inds.size > 0: bg_inds = npr.choice(bg_inds, size=bg_rois_per_this_image, replace=False) new_labels[fg_inds] = 1 new_labels[bg_inds] = 0 if 'rois' in roidb: rois = roidb['rois'][fg_inds] else: rois = None """ print 'labels.shape %s' % labels.shape print 'bbox_target.shape %s' % (bbox_target.shape, ) for fg_ind in fg_inds: print 'label : %s ' % labels[fg_ind] print 'bbox_target : %s ' % bbox_target[fg_ind] axis1 = fg_ind / conv_height / conv_width axis2 = fg_ind / conv_width % conv_height axis3 = fg_ind % conv_width im = cv2.imread(roidb['image']) target_size = cfg.TRAIN.SCALES[0] im, im_scale = prep_im_for_blob(im, 0, target_size, cfg.TRAIN.MAX_SIZE, cfg.TRAIN.MIN_SIZE) img_height = im.shape[2] img_width = im.shape[3] proposal_rects = get_img_rect(img_height, img_width, conv_height, conv_width, axis1, axis2, axis3) for proposal_rect in proposal_rects: plt.imshow(im) for ground_rect in ground_rects: plt.gca().add_patch( plt.Rectangle((ground_rect[0], ground_rect[1]), ground_rect[2] - ground_rect[0], ground_rect[3] - ground_rect[1], fill=False, edgecolor='b', linewidth=3) ) plt.gca().add_patch( plt.Rectangle((proposal_rect[0], proposal_rect[1]), proposal_rect[2] - proposal_rect[0], proposal_rect[3] - proposal_rect[1], fill=False, edgecolor='g', linewidth=3) ) plt.gca().add_patch( plt.Rectangle((pred_rect[0], pred_rect[1]), pred_rect[2] - pred_rect[0], pred_rect[3] - pred_rect[1], fill=False, edgecolor='r', linewidth=3) ) plt.show(block=False) raw_input("") plt.close() """ new_bbox_target[fg_inds] = bbox_target[fg_inds] new_bbox_target, bbox_loss_weights = \ _get_bbox_regression_labels_rpn(new_bbox_target, num_classes, labels) """ print 'label no 1 : %s' % len(np.where(new_labels == 1)[0]) print 'new_bbox_target no 1 : %s' % len(np.where(new_bbox_target != 0)[0]) print 'bbox_loss_weights no 1 : %s' % len(np.where(bbox_loss_weights > 0)[0]) """ new_labels = new_labels.reshape((1, 9, conv_height, conv_width)) new_bbox_target = new_bbox_target.reshape((1, 9, conv_height, conv_width, 4)) new_bbox_target = new_bbox_target.transpose(0, 1, 4, 2, 3) new_bbox_target = new_bbox_target.reshape((1, 36, conv_height, conv_width)) bbox_loss_weights = bbox_loss_weights.reshape((1, 9, conv_height, conv_width, 4)) bbox_loss_weights = bbox_loss_weights.transpose(0, 1, 4, 2, 3) bbox_loss_weights = bbox_loss_weights.reshape((1, 36, conv_height, conv_width)) output_labels = np.zeros((1, 9, union_conv_height, union_conv_width)) output_bbox_targets = np.zeros((1, 36, union_conv_height, union_conv_width)) output_bbox_loss_weights = np.zeros((1, 36, union_conv_height, union_conv_width)) output_labels.fill(-1) output_labels[:, :, 0:conv_height, 0:conv_width] = new_labels output_bbox_targets[:, :, 0:conv_height, 0:conv_width] = new_bbox_target output_bbox_loss_weights[:, :, 0:conv_height, 0:conv_width] = bbox_loss_weights """ for fg_ind in fg_inds: if fg_ind == 6510: axis1 = fg_ind / conv_height / conv_width axis2 = fg_ind / conv_width % conv_height axis3 = fg_ind % conv_width print '' print 'conv_size : %s, %s' % (conv_height, conv_width) print 'axis : %s, %s, %s' % (axis1, axis2, axis3) print 'output_labels[%s] : %s' % (fg_ind, output_labels[0, axis1, axis2, axis3]) print 'output_bbox_targets[%s] : %s' % (fg_ind, output_bbox_targets[0, axis1*4:axis1*4+4, axis2, axis3]) print 'output_bbox_loss_weights[%s] : %s' % (fg_ind, output_bbox_loss_weights[0, axis1*4:axis1*4+4, axis2, axis3]) """ """ # Generate positive rois based on index for debugging anchors = [[128*2, 128*1], [128*1, 128*1], [128*1, 128*2], [256*2, 256*1], [256*1, 256*1], [256*1, 256*2], [512*2, 512*1], [512*1, 512*1], [512*1, 512*2]] conv_scale_width = roidb['conv_scale_width'] conv_scale_height = roidb['conv_scale_height'] rois = np.zeros((len(fg_inds), 4), dtype=np.int16) for i, fg_ind in enumerate(fg_inds): center_x = fg_ind % conv_width center_y = (fg_ind - center_x) / conv_width % conv_height anchor = fg_ind / conv_height / conv_width anchor_w = anchors[anchor][0] anchor_h = anchors[anchor][1] x1 = center_x * conv_scale_width - anchor_w / 2 y1 = center_y * conv_scale_height - anchor_h / 2 x2 = x1 + anchor_w y2 = y1 + anchor_h rois[i, :] = x1, y1, x2, y2 """ """ pos_labels = np.where(new_labels == 1) i = 0 for d0, d1, d2, d3 in zip(pos_labels[0], pos_labels[1], pos_labels[2], pos_labels[3]): print '[%s] label : %s, bbox_target : %s, bbox_loss_weights : %s' % (i, new_labels[d0, d1, d2, d3], new_bbox_target[d0, d1*4 : d1*4+4, d2, d3], bbox_loss_weights[d0, d1*4 : d1*4+4, d2, d3]) i += 1 """ """ print 'label no 2 : %s' % len(np.where(output_labels == 1)[0]) print 'new_bbox_target no 2 : %s' % len(np.where(output_bbox_targets != 0)[0]) print 'bbox_loss_weights no 2 : %s' % len(np.where(output_bbox_loss_weights > 0)[0]) """ return output_labels, None, rois, output_bbox_targets, output_bbox_loss_weights def _get_image_blob(roidb, scale_inds): """Builds an input blob from the images in the roidb at the specified scales. """ num_images = len(roidb) processed_ims = [] im_scales = [] for i in xrange(num_images): im = cv2.imread(roidb[i]['image']) if roidb[i]['flipped']: im = im[:, ::-1, :] target_size = cfg.TRAIN.SCALES[scale_inds[i]] im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE, cfg.TRAIN.MIN_SIZE) im_scales.append(im_scale) processed_ims.append(im) # Create a blob to hold the input images blob = im_list_to_blob(processed_ims) return blob, im_scales, processed_ims def _project_im_rois(im_rois, im_scale_factor): """Project image RoIs into the rescaled training image.""" rois = im_rois * im_scale_factor return rois def _get_bbox_regression_labels(bbox_target_data, num_classes): """Bounding-box regression targets are stored in a compact form in the roidb. This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). The loss weights are similarly expanded. Returns: bbox_target_data (ndarray): N x 4K blob of regression targets bbox_loss_weights (ndarray): N x 4K blob of loss weights """ clss = bbox_target_data[:, 0] bbox_targets = np.zeros((clss.size, 4 * num_classes), dtype=np.float32) bbox_loss_weights = np.zeros(bbox_targets.shape, dtype=np.float32) inds = np.where(clss > 0)[0] for ind in inds: cls = clss[ind] start = 4 * cls end = start + 4 bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] bbox_loss_weights[ind, start:end] = [1., 1., 1., 1.] return bbox_targets, bbox_loss_weights def _get_bbox_regression_labels_rpn(bbox_target_data, num_classes, labels): """Bounding-box regression targets are stored in a compact form in the roidb. This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). The loss weights are similarly expanded. Returns: bbox_target_data (ndarray): N x 4K blob of regression targets bbox_loss_weights (ndarray): N x 4K blob of loss weights """ clss = bbox_target_data[:, 0] bbox_targets = np.zeros((clss.size, 4), dtype=np.float32) bbox_loss_weights = np.zeros(bbox_targets.shape, dtype=np.float32) inds = np.where(clss > 0)[0] #print '' #print 'len(inds) : %s' % len(inds) for ind in inds: bbox_targets[ind, :] = bbox_target_data[ind, 1:] bbox_loss_weights[ind, :] = [1., 1., 1., 1.] #print 'bbox_targets[ind, :] : %s - %s ' % (bbox_target_data[ind, 0], bbox_targets[ind, :]) return bbox_targets, bbox_loss_weights def _vis_minibatch(im_blob, rois_blob, labels_blob, overlaps): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(rois_blob.shape[0]): rois = rois_blob[i, :] im_ind = rois[0] roi = rois[1:] im = im_blob[im_ind, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) cls = labels_blob[i] plt.imshow(im) print 'class: ', cls, ' overlap: ', overlaps[i] plt.gca().add_patch( plt.Rectangle((roi[0], roi[1]), roi[2] - roi[0], roi[3] - roi[1], fill=False, edgecolor='r', linewidth=3) ) plt.show() def _vis_minibatch_rpn(im_blob, conv_h, conv_w, rois_blob, labels_blob, roidb, bbox_targets_blob, bbox_loss_blob): """Visualize a mini-batch for debugging.""" import matplotlib.pyplot as plt for i in xrange(len(roidb)): # DJDJ #if roidb[i]['image'].endswith('000009.jpg') == False: # continue print 'image : %s' % roidb[i]['image'] resized_gt_boxes = roidb[int(i)]['resized_gt_boxes'] im = im_blob[i, :, :, :].transpose((1, 2, 0)).copy() im += cfg.PIXEL_MEANS im = im[:, :, (2, 1, 0)] im = im.astype(np.uint8) for j in range(9): for k in range(labels_blob.shape[2]): for l in range(labels_blob.shape[3]): label = labels_blob[i][j][k][l] if label == -1: continue elif label == 1: color = 'g' elif label == 0: #color = 'y' continue plt.imshow(im) for resized_gt_box in resized_gt_boxes: resized_gt_box = resized_gt_box.astype(np.int) plt.gca().add_patch( plt.Rectangle((resized_gt_box[0], resized_gt_box[1]), resized_gt_box[2] - resized_gt_box[0], resized_gt_box[3] - resized_gt_box[1], fill=False, edgecolor='b', linewidth=3) ) proposal_rects = get_img_rect(im.shape[0], im.shape[1], conv_h, conv_w, j, k, l) plt.gca().add_patch( plt.Rectangle((proposal_rects[0], proposal_rects[1]), proposal_rects[2] - proposal_rects[0], proposal_rects[3] - proposal_rects[1], fill=False, edgecolor=color, linewidth=3) ) plt.show(block=False) raw_input("") plt.close()
mit
rodluger/everest
docs/mcmc.py
1
2721
"""MCMC example for transit fitting.""" import matplotlib.pyplot as pl from everest import Everest, TransitModel import numpy as np import emcee from tqdm import tqdm from corner import corner def lnprior(x): """Return the log prior given parameter vector `x`.""" per, t0, b = x if b < -1 or b > 1: return -np.inf elif per < 7 or per > 10: return -np.inf elif t0 < 1978 or t0 > 1979: return -np.inf else: return 0. def lnlike(x, star): """Return the log likelihood given parameter vector `x`.""" ll = lnprior(x) if np.isinf(ll): return ll, (np.nan, np.nan) per, t0, b = x model = TransitModel('b', per=per, t0=t0, b=b, rhos=10.)(star.time) like, d, vard = star.lnlike(model, full_output=True) ll += like return ll, (d,) # Initialize the everest model star = Everest(201635569) # Set up the MCMC sampler params = ['Period (days)', r't$_0$ (BJD - 2456811)', 'Impact parameter'] blobs = ['Depth (%)'] nsteps = 1000 nburn = 300 nwalk = 10 ndim = len(params) nblobs = len(blobs) sampler = emcee.EnsembleSampler(nwalk, ndim, lnlike, args=[star]) x0 = [[8.368 + 0.01 * np.random.randn(), 1978.4513 + 0.01 * np.random.randn(), 0. + 0.1 * np.random.randn()] for k in range(nwalk)] blobs0 = [[0.] for k in range(nwalk)] # Run! for i in tqdm(sampler.sample(x0, iterations=nsteps, blobs0=blobs0), total=nsteps): pass # Add the blobs to the chain for plotting chain = np.concatenate((sampler.chain, np.array(sampler.blobs).swapaxes(0, 1)), axis=2) # Re-scale the transit time for prettier axes labels chain[:, :, 1] -= 1978. # Take the absolute value of the impact parameter for plotting chain[:, :, 2] = np.abs(chain[:, :, 2]) # Re-scale the transit depth as a percentage chain[:, :, 3] *= 100. # Plot the chains fig1, ax = pl.subplots(ndim + nblobs, figsize=(6, 7)) fig1.suptitle("K2-14b", fontsize=16, fontweight='bold') ax[-1].set_xlabel("Iteration", fontsize=14) for n in range(ndim + nblobs): for k in range(nwalk): ax[n].plot(chain[k, :, n], alpha=0.3, lw=1) ax[n].set_ylabel((params + blobs)[n], fontsize=9) ax[n].margins(0, None) ax[n].axvline(nburn, color='b', alpha=0.5, lw=1, ls='--') fig1.savefig("k2-14b_chains.png", bbox_inches='tight') # Plot the posterior distributions samples = chain[:, nburn:, :].reshape(-1, ndim + nblobs) fig2 = corner(samples, labels=params + blobs) fig2.suptitle("K2-14b", fontsize=16, fontweight='bold') fig2.set_size_inches(6, 6) for ax in fig2.axes: for tick in ax.get_xticklabels() + ax.get_yticklabels(): tick.set_fontsize(7) fig2.savefig("k2-14b_corner.png", bbox_inches='tight')
mit
cxcsds/ciao-contrib
crates_contrib/images.py
1
4630
# # Copyright (C) 2012, 2015, 2016, 2019 # Smithsonian Astrophysical Observatory # # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ Image-specific Crates routines. At present there is only one routine - imextent. """ from pytransform import LINEAR2DTransform __all__ = ('imextent', ) def imextent(img, xmin, xmax, ymin, ymax, limits='center'): """Create a linear transform for the image axes. Returns a 2D linear transform object that represents the mapping from "pixel" units (e.g. logical values) to a linearly scaled system (offset and scale change, no rotation). One use of this is to mimic the extent argument from matplotlib's imshow command, as discussed in the examples below. Parameters ---------- img : 2D NumPy array xmin, xmax, ymin, ymax : float The coordinates of the lower-left and upper-right corners of the image in the transformed (non-logical) system. limits : {'center', 'edge'} Do the coordinates (xmin, ..., ymax) refer to the center of the pixels, or their edges. In FITS convention, the bottom-left pixel is centered on 1,1 and the top-right pixel is nx,ny (for a nx by ny grid). With limits='center' xmin,xmax refers to the center of the lower-left pixel (i.e. 1,1 in FITS terminology) whereas with limits='edge' it refers to the bottom-left corner (0.5,0.5 in FITS). Returns ------- tr : pytransform.LINEAR2DTransform The transform object containing the coordinate mapping. Notes ----- The logical coordinate system follows the FITS standard, so the first pixel is (1,1) and not (0,0), and the X axis values are given first. Examples -------- The following example creates a 40 pixel wide by 20 pixel high image, zi, where the X axis goes from 40 to 60 and the Y axis 10 to 20. The imextent call creates a transform object. >>> yi, xi = np.mgrid[10:20:20j, 40:60:40j] >>> zi = 100.0 / np.sqrt((xi - 45.62) ** 2 + (yi - 14.7) ** 2) >>> tr = imextent(zi, 40, 60, 10, 20) The transform object can be used to convert between logical coordinates (where 1,1 refers to the center of the lower-left pixel) and the data coordinates: >>> print(tr.apply([[1,1], [40,20]])) [[40 10] [60 20]] and the invert method goes from data to logical coordinates: >>> print(tr.invert([[45.0, 15.0]])) [[ 10.75 10.5 ]] The following examples use a 4 pixel by 3 pixel image: >>> img = np.arange(0, 12).reshape(3, 4) The default value for the limits argument is 'center', which means that the given coordinates - in this case 10,-10 and 13,-6 - refer to the center of the bottom-left and top-right pixels: >>> tr_cen = imextent(img, 10, 13, -10, -6, limits='center') The alternative is limits='edge', where 10,-10 refers to the bottom-left corner of the image and 13,-6 refers to the top-right corner: >>> tr_edge = imextent(img, 10, 13, -10, -6, limits='edge') >>> print(tr_cen.apply([[1.0, 1.0]])) [[ 10. -10.]] >>> print(tr_edge.apply([[1.0, 1.0]])) [[ 10.375 -9.33333333]] """ try: (ny, nx) = img.shape except AttributeError: raise ValueError("First argument has no shape attribute.") dx = (xmax - xmin) * 1.0 dy = (ymax - ymin) * 1.0 if limits == 'center': dx /= (nx - 1.0) dy /= (ny - 1.0) x0 = xmin - dx y0 = ymin - dy elif limits == 'edge': dx /= nx dy /= ny x0 = xmin - dx / 2.0 y0 = ymin - dy / 2.0 else: raise ValueError("limits must be 'center' or 'edge', not '{}'".format(limits)) tr = LINEAR2DTransform() tr.get_parameter('ROTATION').set_value(0.0) tr.get_parameter('SCALE').set_value([dx, dy]) tr.get_parameter('OFFSET').set_value([x0, y0]) return tr
gpl-3.0
rasbt/python-machine-learning-book
code/optional-py-scripts/ch05.py
1
19830
# Sebastian Raschka, 2015 (http://sebastianraschka.com) # Python Machine Learning - Code Examples # # Chapter 5 - Compressing Data via Dimensionality Reduction # # S. Raschka. Python Machine Learning. Packt Publishing Ltd., 2015. # GitHub Repo: https://github.com/rasbt/python-machine-learning-book # # License: MIT # https://github.com/rasbt/python-machine-learning-book/blob/master/LICENSE.txt import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.linear_model import LogisticRegression from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.datasets import make_moons from sklearn.datasets import make_circles from sklearn.decomposition import KernelPCA from scipy.spatial.distance import pdist, squareform from scipy import exp from scipy.linalg import eigh from matplotlib.ticker import FormatStrFormatter # for sklearn 0.18's alternative syntax from distutils.version import LooseVersion as Version from sklearn import __version__ as sklearn_version if Version(sklearn_version) < '0.18': from sklearn.grid_search import train_test_split from sklearn.lda import LDA else: from sklearn.model_selection import train_test_split from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA ############################################################################# print(50 * '=') print('Section: Unsupervised dimensionality reduction' ' via principal component analysis') print(50 * '-') df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', 'Proline'] print('Wine data excerpt:\n\n:', df_wine.head()) X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, random_state=0) sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) cov_mat = np.cov(X_train_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vals) ############################################################################# print(50 * '=') print('Section: Total and explained variance') print(50 * '-') tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') # plt.tight_layout() # plt.savefig('./figures/pca1.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Feature Transformation') print(50 * '-') # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(reverse=True) w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) print('Matrix W:\n', w) X_train_pca = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train == l, 0], X_train_pca[y_train == l, 1], c=c, label=l, marker=m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') # plt.tight_layout() # plt.savefig('./figures/pca2.png', dpi=300) plt.show() print('Dot product:\n', X_train_std[0].dot(w)) ############################################################################# print(50 * '=') print('Section: Principal component analysis in scikit-learn') print(50 * '-') pca = PCA() X_train_pca = pca.fit_transform(X_train_std) print('Variance explained ratio:\n', pca.explained_variance_ratio_) plt.bar(range(1, 14), pca.explained_variance_ratio_, alpha=0.5, align='center') plt.step(range(1, 14), np.cumsum(pca.explained_variance_ratio_), where='mid') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.show() pca = PCA(n_components=2) X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1]) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.show() def plot_decision_regions(X, y, classifier, resolution=0.02): # setup marker generator and color map markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) # plot the decision surface x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) # plot class samples for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl) lr = LogisticRegression() lr = lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') # plt.tight_layout() # plt.savefig('./figures/pca3.png', dpi=300) plt.show() plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') # plt.tight_layout() # plt.savefig('./figures/pca4.png', dpi=300) plt.show() pca = PCA(n_components=None) X_train_pca = pca.fit_transform(X_train_std) print('Explaind variance ratio:\n', pca.explained_variance_ratio_) ############################################################################# print(50 * '=') print('Section: Supervised data compression via linear discriminant analysis' ' - Computing the scatter matrices') print(50 * '-') np.set_printoptions(precision=4) mean_vecs = [] for label in range(1, 4): mean_vecs.append(np.mean(X_train_std[y_train == label], axis=0)) print('MV %s: %s\n' % (label, mean_vecs[label - 1])) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.zeros((d, d)) # scatter matrix for each class for row in X_train_std[y_train == label]: row, mv = row.reshape(d, 1), mv.reshape(d, 1) # make column vectors class_scatter += (row - mv).dot((row - mv).T) S_W += class_scatter # sum class scatter matrices print('Within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) print('Class label distribution: %s' % np.bincount(y_train)[1:]) d = 13 # number of features S_W = np.zeros((d, d)) for label, mv in zip(range(1, 4), mean_vecs): class_scatter = np.cov(X_train_std[y_train == label].T) S_W += class_scatter print('Scaled within-class scatter matrix: %sx%s' % (S_W.shape[0], S_W.shape[1])) mean_overall = np.mean(X_train_std, axis=0) d = 13 # number of features S_B = np.zeros((d, d)) for i, mean_vec in enumerate(mean_vecs): n = X_train[y_train == i + 1, :].shape[0] mean_vec = mean_vec.reshape(d, 1) # make column vector mean_overall = mean_overall.reshape(d, 1) # make column vector S_B += n * (mean_vec - mean_overall).dot((mean_vec - mean_overall).T) print('Between-class scatter matrix: %sx%s' % (S_B.shape[0], S_B.shape[1])) ############################################################################# print(50 * '=') print('Section: Selecting linear discriminants for the new feature subspace') print(50 * '-') eigen_vals, eigen_vecs = np.linalg.eig(np.linalg.inv(S_W).dot(S_B)) # Make a list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs = sorted(eigen_pairs, key=lambda k: k[0], reverse=True) # Visually confirm that the list is correctly sorted by decreasing eigenvalues print('Eigenvalues in decreasing order:\n') for eigen_val in eigen_pairs: print(eigen_val[0]) tot = sum(eigen_vals.real) discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)] cum_discr = np.cumsum(discr) plt.bar(range(1, 14), discr, alpha=0.5, align='center', label='individual "discriminability"') plt.step(range(1, 14), cum_discr, where='mid', label='cumulative "discriminability"') plt.ylabel('"discriminability" ratio') plt.xlabel('Linear Discriminants') plt.ylim([-0.1, 1.1]) plt.legend(loc='best') # plt.tight_layout() # plt.savefig('./figures/lda1.png', dpi=300) plt.show() w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real, eigen_pairs[1][1][:, np.newaxis].real)) print('Matrix W:\n', w) ############################################################################# print(50 * '=') print('Section: Projecting samples onto the new feature space') print(50 * '-') X_train_lda = X_train_std.dot(w) colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l, c, m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_lda[y_train == l, 0] * (-1), X_train_lda[y_train == l, 1] * (-1), c=c, label=l, marker=m) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower right') # plt.tight_layout() # plt.savefig('./figures/lda2.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: LDA via scikit-learn') print(50 * '-') lda = LDA(n_components=2) X_train_lda = lda.fit_transform(X_train_std, y_train) lr = LogisticRegression() lr = lr.fit(X_train_lda, y_train) plot_decision_regions(X_train_lda, y_train, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') # plt.tight_layout() # plt.savefig('./images/lda3.png', dpi=300) plt.show() X_test_lda = lda.transform(X_test_std) plot_decision_regions(X_test_lda, y_test, classifier=lr) plt.xlabel('LD 1') plt.ylabel('LD 2') plt.legend(loc='lower left') # plt.tight_layout() # plt.savefig('./images/lda4.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Implementing a kernel principal component analysis in Python') print(50 * '-') def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) X_pc = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) return X_pc ############################################################################# print(50 * '=') print('Section: Example 1: Separating half-moon shapes') print(50 * '-') X, y = make_moons(n_samples=100, random_state=123) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) # plt.tight_layout() # plt.savefig('./figures/half_moon_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') # plt.tight_layout() # plt.savefig('./figures/half_moon_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((50, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((50, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') ax[0].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) ax[1].xaxis.set_major_formatter(FormatStrFormatter('%0.1f')) # plt.tight_layout() # plt.savefig('./figures/half_moon_3.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Example 2: Separating concentric circles') print(50 * '-') X, y = make_circles(n_samples=1000, random_state=123, noise=0.1, factor=0.2) plt.scatter(X[y == 0, 0], X[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X[y == 1, 0], X[y == 1, 1], color='blue', marker='o', alpha=0.5) # plt.tight_layout() # plt.savefig('./figures/circles_1.png', dpi=300) plt.show() scikit_pca = PCA(n_components=2) X_spca = scikit_pca.fit_transform(X) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_spca[y == 0, 0], X_spca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_spca[y == 1, 0], X_spca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_spca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_spca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') # plt.tight_layout() # plt.savefig('./figures/circles_2.png', dpi=300) plt.show() X_kpca = rbf_kernel_pca(X, gamma=15, n_components=2) fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(7, 3)) ax[0].scatter(X_kpca[y == 0, 0], X_kpca[y == 0, 1], color='red', marker='^', alpha=0.5) ax[0].scatter(X_kpca[y == 1, 0], X_kpca[y == 1, 1], color='blue', marker='o', alpha=0.5) ax[1].scatter(X_kpca[y == 0, 0], np.zeros((500, 1)) + 0.02, color='red', marker='^', alpha=0.5) ax[1].scatter(X_kpca[y == 1, 0], np.zeros((500, 1)) - 0.02, color='blue', marker='o', alpha=0.5) ax[0].set_xlabel('PC1') ax[0].set_ylabel('PC2') ax[1].set_ylim([-1, 1]) ax[1].set_yticks([]) ax[1].set_xlabel('PC1') # plt.tight_layout() # plt.savefig('./figures/circles_3.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Projecting new data points') print(50 * '-') def rbf_kernel_pca(X, gamma, n_components): """ RBF kernel PCA implementation. Parameters ------------ X: {NumPy ndarray}, shape = [n_samples, n_features] gamma: float Tuning parameter of the RBF kernel n_components: int Number of principal components to return Returns ------------ X_pc: {NumPy ndarray}, shape = [n_samples, k_features] Projected dataset lambdas: list Eigenvalues """ # Calculate pairwise squared Euclidean distances # in the MxN dimensional dataset. sq_dists = pdist(X, 'sqeuclidean') # Convert pairwise distances into a square matrix. mat_sq_dists = squareform(sq_dists) # Compute the symmetric kernel matrix. K = exp(-gamma * mat_sq_dists) # Center the kernel matrix. N = K.shape[0] one_n = np.ones((N, N)) / N K = K - one_n.dot(K) - K.dot(one_n) + one_n.dot(K).dot(one_n) # Obtaining eigenpairs from the centered kernel matrix # numpy.eigh returns them in sorted order eigvals, eigvecs = eigh(K) # Collect the top k eigenvectors (projected samples) alphas = np.column_stack((eigvecs[:, -i] for i in range(1, n_components + 1))) # Collect the corresponding eigenvalues lambdas = [eigvals[-i] for i in range(1, n_components + 1)] return alphas, lambdas X, y = make_moons(n_samples=100, random_state=123) alphas, lambdas = rbf_kernel_pca(X, gamma=15, n_components=1) x_new = X[25] print('New data point x_new:', x_new) x_proj = alphas[25] # original projection print('Original projection x_proj:', x_proj) def project_x(x_new, X, gamma, alphas, lambdas): pair_dist = np.array([np.sum((x_new - row)**2) for row in X]) k = np.exp(-gamma * pair_dist) return k.dot(alphas / lambdas) # projection of the "new" datapoint x_reproj = project_x(x_new, X, gamma=15, alphas=alphas, lambdas=lambdas) print('Reprojection x_reproj:', x_reproj) plt.scatter(alphas[y == 0, 0], np.zeros((50)), color='red', marker='^', alpha=0.5) plt.scatter(alphas[y == 1, 0], np.zeros((50)), color='blue', marker='o', alpha=0.5) plt.scatter(x_proj, 0, color='black', label='original projection of point X[25]', marker='^', s=100) plt.scatter(x_reproj, 0, color='green', label='remapped point X[25]', marker='x', s=500) plt.legend(scatterpoints=1) # plt.tight_layout() # plt.savefig('./figures/reproject.png', dpi=300) plt.show() ############################################################################# print(50 * '=') print('Section: Kernel principal component analysis in scikit-learn') print(50 * '-') X, y = make_moons(n_samples=100, random_state=123) scikit_kpca = KernelPCA(n_components=2, kernel='rbf', gamma=15) X_skernpca = scikit_kpca.fit_transform(X) plt.scatter(X_skernpca[y == 0, 0], X_skernpca[y == 0, 1], color='red', marker='^', alpha=0.5) plt.scatter(X_skernpca[y == 1, 0], X_skernpca[y == 1, 1], color='blue', marker='o', alpha=0.5) plt.xlabel('PC1') plt.ylabel('PC2') # plt.tight_layout() # plt.savefig('./figures/scikit_kpca.png', dpi=300) plt.show()
mit
LewBurton/sklearn_pycon2015
notebooks/fig_code/sgd_separator.py
54
1148
import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs def plot_sgd_separator(): # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' ax = plt.axes() ax.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) ax.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) ax.axis('tight') if __name__ == '__main__': plot_sgd_separator() plt.show()
bsd-3-clause
sodafree/backend
build/ipython/IPython/frontend/terminal/console/app.py
3
5217
""" A minimal application using the ZMQ-based terminal IPython frontend. This is not a complete console app, as subprocess will not be able to receive input, there is no real readline support, among other limitations. Authors: * Min RK * Paul Ivanov """ #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- import signal import sys import time from IPython.frontend.terminal.ipapp import TerminalIPythonApp, frontend_flags as term_flags from IPython.utils.traitlets import ( Dict, List, Unicode, Int, CaselessStrEnum, CBool, Any ) from IPython.utils.warn import warn,error from IPython.zmq.ipkernel import IPKernelApp from IPython.zmq.session import Session, default_secure from IPython.zmq.zmqshell import ZMQInteractiveShell from IPython.frontend.consoleapp import ( IPythonConsoleApp, app_aliases, app_flags, aliases, app_aliases, flags ) from IPython.frontend.terminal.console.interactiveshell import ZMQTerminalInteractiveShell #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- _examples = """ ipython console # start the ZMQ-based console ipython console --existing # connect to an existing ipython session """ #----------------------------------------------------------------------------- # Flags and Aliases #----------------------------------------------------------------------------- # copy flags from mixin: flags = dict(flags) # start with mixin frontend flags: frontend_flags = dict(app_flags) # add TerminalIPApp flags: frontend_flags.update(term_flags) # disable quick startup, as it won't propagate to the kernel anyway frontend_flags.pop('quick') # update full dict with frontend flags: flags.update(frontend_flags) # copy flags from mixin aliases = dict(aliases) # start with mixin frontend flags frontend_aliases = dict(app_aliases) # load updated frontend flags into full dict aliases.update(frontend_aliases) # get flags&aliases into sets, and remove a couple that # shouldn't be scrubbed from backend flags: frontend_aliases = set(frontend_aliases.keys()) frontend_flags = set(frontend_flags.keys()) #----------------------------------------------------------------------------- # Classes #----------------------------------------------------------------------------- class ZMQTerminalIPythonApp(TerminalIPythonApp, IPythonConsoleApp): name = "ipython-console" """Start a terminal frontend to the IPython zmq kernel.""" description = """ The IPython terminal-based Console. This launches a Console application inside a terminal. The Console supports various extra features beyond the traditional single-process Terminal IPython shell, such as connecting to an existing ipython session, via: ipython console --existing where the previous session could have been created by another ipython console, an ipython qtconsole, or by opening an ipython notebook. """ examples = _examples classes = [ZMQTerminalInteractiveShell] + IPythonConsoleApp.classes flags = Dict(flags) aliases = Dict(aliases) frontend_aliases = Any(frontend_aliases) frontend_flags = Any(frontend_flags) subcommands = Dict() def parse_command_line(self, argv=None): super(ZMQTerminalIPythonApp, self).parse_command_line(argv) self.build_kernel_argv(argv) def init_shell(self): IPythonConsoleApp.initialize(self) # relay sigint to kernel signal.signal(signal.SIGINT, self.handle_sigint) self.shell = ZMQTerminalInteractiveShell.instance(config=self.config, display_banner=False, profile_dir=self.profile_dir, ipython_dir=self.ipython_dir, kernel_manager=self.kernel_manager) def init_gui_pylab(self): # no-op, because we don't want to import matplotlib in the frontend. pass def handle_sigint(self, *args): if self.shell._executing: if self.kernel_manager.has_kernel: # interrupt already gets passed to subprocess by signal handler. # Only if we prevent that should we need to explicitly call # interrupt_kernel, until which time, this would result in a # double-interrupt: # self.kernel_manager.interrupt_kernel() pass else: self.shell.write_err('\n') error("Cannot interrupt kernels we didn't start.\n") else: # raise the KeyboardInterrupt if we aren't waiting for execution, # so that the interact loop advances, and prompt is redrawn, etc. raise KeyboardInterrupt def init_code(self): # no-op in the frontend, code gets run in the backend pass def launch_new_instance(): """Create and run a full blown IPython instance""" app = ZMQTerminalIPythonApp.instance() app.initialize() app.start() if __name__ == '__main__': launch_new_instance()
bsd-3-clause
RachitKansal/scikit-learn
sklearn/manifold/isomap.py
229
7169
"""Isomap for manifold learning""" # Author: Jake Vanderplas -- <vanderplas@astro.washington.edu> # License: BSD 3 clause (C) 2011 import numpy as np from ..base import BaseEstimator, TransformerMixin from ..neighbors import NearestNeighbors, kneighbors_graph from ..utils import check_array from ..utils.graph import graph_shortest_path from ..decomposition import KernelPCA from ..preprocessing import KernelCenterer class Isomap(BaseEstimator, TransformerMixin): """Isomap Embedding Non-linear dimensionality reduction through Isometric Mapping Read more in the :ref:`User Guide <isomap>`. Parameters ---------- n_neighbors : integer number of neighbors to consider for each point. n_components : integer number of coordinates for the manifold eigen_solver : ['auto'|'arpack'|'dense'] 'auto' : Attempt to choose the most efficient solver for the given problem. 'arpack' : Use Arnoldi decomposition to find the eigenvalues and eigenvectors. 'dense' : Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition. tol : float Convergence tolerance passed to arpack or lobpcg. not used if eigen_solver == 'dense'. max_iter : integer Maximum number of iterations for the arpack solver. not used if eigen_solver == 'dense'. path_method : string ['auto'|'FW'|'D'] Method to use in finding shortest path. 'auto' : attempt to choose the best algorithm automatically. 'FW' : Floyd-Warshall algorithm. 'D' : Dijkstra's algorithm. neighbors_algorithm : string ['auto'|'brute'|'kd_tree'|'ball_tree'] Algorithm to use for nearest neighbors search, passed to neighbors.NearestNeighbors instance. Attributes ---------- embedding_ : array-like, shape (n_samples, n_components) Stores the embedding vectors. kernel_pca_ : object `KernelPCA` object used to implement the embedding. training_data_ : array-like, shape (n_samples, n_features) Stores the training data. nbrs_ : sklearn.neighbors.NearestNeighbors instance Stores nearest neighbors instance, including BallTree or KDtree if applicable. dist_matrix_ : array-like, shape (n_samples, n_samples) Stores the geodesic distance matrix of training data. References ---------- .. [1] Tenenbaum, J.B.; De Silva, V.; & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (5500) """ def __init__(self, n_neighbors=5, n_components=2, eigen_solver='auto', tol=0, max_iter=None, path_method='auto', neighbors_algorithm='auto'): self.n_neighbors = n_neighbors self.n_components = n_components self.eigen_solver = eigen_solver self.tol = tol self.max_iter = max_iter self.path_method = path_method self.neighbors_algorithm = neighbors_algorithm self.nbrs_ = NearestNeighbors(n_neighbors=n_neighbors, algorithm=neighbors_algorithm) def _fit_transform(self, X): X = check_array(X) self.nbrs_.fit(X) self.training_data_ = self.nbrs_._fit_X self.kernel_pca_ = KernelPCA(n_components=self.n_components, kernel="precomputed", eigen_solver=self.eigen_solver, tol=self.tol, max_iter=self.max_iter) kng = kneighbors_graph(self.nbrs_, self.n_neighbors, mode='distance') self.dist_matrix_ = graph_shortest_path(kng, method=self.path_method, directed=False) G = self.dist_matrix_ ** 2 G *= -0.5 self.embedding_ = self.kernel_pca_.fit_transform(G) def reconstruction_error(self): """Compute the reconstruction error for the embedding. Returns ------- reconstruction_error : float Notes ------- The cost function of an isomap embedding is ``E = frobenius_norm[K(D) - K(D_fit)] / n_samples`` Where D is the matrix of distances for the input data X, D_fit is the matrix of distances for the output embedding X_fit, and K is the isomap kernel: ``K(D) = -0.5 * (I - 1/n_samples) * D^2 * (I - 1/n_samples)`` """ G = -0.5 * self.dist_matrix_ ** 2 G_center = KernelCenterer().fit_transform(G) evals = self.kernel_pca_.lambdas_ return np.sqrt(np.sum(G_center ** 2) - np.sum(evals ** 2)) / G.shape[0] def fit(self, X, y=None): """Compute the embedding vectors for data X Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors} Sample data, shape = (n_samples, n_features), in the form of a numpy array, precomputed tree, or NearestNeighbors object. Returns ------- self : returns an instance of self. """ self._fit_transform(X) return self def fit_transform(self, X, y=None): """Fit the model from data in X and transform X. Parameters ---------- X: {array-like, sparse matrix, BallTree, KDTree} Training vector, where n_samples in the number of samples and n_features is the number of features. Returns ------- X_new: array-like, shape (n_samples, n_components) """ self._fit_transform(X) return self.embedding_ def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X: array-like, shape (n_samples, n_features) Returns ------- X_new: array-like, shape (n_samples, n_components) """ X = check_array(X) distances, indices = self.nbrs_.kneighbors(X, return_distance=True) #Create the graph of shortest distances from X to self.training_data_ # via the nearest neighbors of X. #This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: G_X = np.zeros((X.shape[0], self.training_data_.shape[0])) for i in range(X.shape[0]): G_X[i] = np.min((self.dist_matrix_[indices[i]] + distances[i][:, None]), 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
bsd-3-clause
alekz112/xlwings
xlwings/tests/test_xlwings.py
1
33895
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import sys import shutil import pytz import nose from nose.tools import assert_equal, raises, assert_true, assert_false, assert_not_equal from datetime import datetime, date from xlwings import Application, Workbook, Sheet, Range, Chart, ChartType, RgbColor, Calculation # Mac imports if sys.platform.startswith('darwin'): from appscript import k as kw # TODO: uncomment the desired Excel installation or set to None for default installation APP_TARGET = None # APP_TARGET = '/Applications/Microsoft Office 2011/Microsoft Excel' else: APP_TARGET = None # Optional dependencies try: import numpy as np from numpy.testing import assert_array_equal except ImportError: np = None try: import pandas as pd from pandas import DataFrame, Series from pandas.util.testing import assert_frame_equal, assert_series_equal except ImportError: pd = None # Test data data = [[1, 2.222, 3.333], ['Test1', None, 'éöà'], [datetime(1962, 11, 3), datetime(2020, 12, 31, 12, 12, 20), 9.999]] test_date_1 = datetime(1962, 11, 3) test_date_2 = datetime(2020, 12, 31, 12, 12, 20) list_row_1d = [1.1, None, 3.3] list_row_2d = [[1.1, None, 3.3]] list_col = [[1.1], [None], [3.3]] chart_data = [['one', 'two'], [1.1, 2.2]] if np is not None: array_1d = np.array([1.1, 2.2, np.nan, -4.4]) array_2d = np.array([[1.1, 2.2, 3.3], [-4.4, 5.5, np.nan]]) if pd is not None: series_1 = pd.Series([1.1, 3.3, 5., np.nan, 6., 8.]) rng = pd.date_range('1/1/2012', periods=10, freq='D') timeseries_1 = pd.Series(np.arange(len(rng)) + 0.1, rng) timeseries_1[1] = np.nan df_1 = pd.DataFrame([[1, 'test1'], [2, 'test2'], [np.nan, None], [3.3, 'test3']], columns=['a', 'b']) df_2 = pd.DataFrame([1, 3, 5, np.nan, 6, 8], columns=['col1']) df_dateindex = pd.DataFrame(np.arange(50).reshape(10,5) + 0.1, index=rng) # MultiIndex (Index) tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'], ['x', 'x', 'x', 'x', 'y', 'y', 'y', 'y']])) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second', 'third']) df_multiindex = pd.DataFrame([[1.1, 2.2], [3.3, 4.4], [5.5, 6.6], [7.7, 8.8], [9.9, 10.10], [11.11, 12.12],[13.13, 14.14], [15.15, 16.16]], index=index) # MultiIndex (Header) header = [['Foo', 'Foo', 'Bar', 'Bar', 'Baz'], ['A', 'B', 'C', 'D', 'E']] df_multiheader = pd.DataFrame([[0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0], [0.0, 1.0, 2.0, 3.0, 4.0]], columns=pd.MultiIndex.from_arrays(header)) # Test skips and fixtures def _skip_if_no_numpy(): if np is None: raise nose.SkipTest('numpy missing') def _skip_if_no_pandas(): if pd is None: raise nose.SkipTest('pandas missing') def _skip_if_not_default_xl(): if APP_TARGET is not None: raise nose.SkipTest('not Excel default') def class_teardown(wb): wb.close() if sys.platform.startswith('win'): Application(wb).quit() class TestApplication: def setUp(self): # Connect to test file and make Sheet1 the active sheet xl_file1 = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_workbook_1.xlsx') self.wb = Workbook(xl_file1, app_visible=False, app_target=APP_TARGET) Sheet('Sheet1').activate() def tearDown(self): class_teardown(self.wb) def test_screen_updating(self): Application(wkb=self.wb).screen_updating = False assert_equal(Application(wkb=self.wb).screen_updating, False) Application(wkb=self.wb).screen_updating = True assert_equal(Application(wkb=self.wb).screen_updating, True) def test_calculation(self): Range('A1').value = 2 Range('B1').formula = '=A1 * 2' app = Application(wkb=self.wb) app.calculation = Calculation.xlCalculationManual Range('A1').value = 4 assert_equal(Range('B1').value, 4) app.calculation = Calculation.xlCalculationAutomatic app.calculate() # This is needed on Mac Excel 2016 but not on Mac Excel 2011 (changed behaviour) assert_equal(Range('B1').value, 8) Range('A1').value = 2 assert_equal(Range('B1').value, 4) class TestWorkbook: def setUp(self): # Connect to test file and make Sheet1 the active sheet xl_file1 = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_workbook_1.xlsx') self.wb = Workbook(xl_file1, app_visible=False, app_target=APP_TARGET) Sheet('Sheet1').activate() def tearDown(self): class_teardown(self.wb) def test_name(self): assert_equal(self.wb.name, 'test_workbook_1.xlsx') def test_active_sheet(self): assert_equal(self.wb.active_sheet.name, 'Sheet1') def test_current(self): assert_equal(self.wb.xl_workbook, Workbook.current().xl_workbook) def test_set_current(self): wb2 = Workbook(app_visible=False, app_target=APP_TARGET) assert_equal(Workbook.current().xl_workbook, wb2.xl_workbook) self.wb.set_current() assert_equal(Workbook.current().xl_workbook, self.wb.xl_workbook) wb2.close() def test_get_selection(self): Range('A1').value = 1000 assert_equal(self.wb.get_selection().value, 1000) def test_reference_two_unsaved_wb(self): """Covers GH Issue #63""" wb1 = Workbook(app_visible=False, app_target=APP_TARGET) wb2 = Workbook(app_visible=False, app_target=APP_TARGET) Range('A1').value = 2. # wb2 Range('A1', wkb=wb1).value = 1. # wb1 assert_equal(Range('A1').value, 2.) assert_equal(Range('A1', wkb=wb1).value, 1.) wb1.close() wb2.close() def test_save_naked(self): cwd = os.getcwd() wb1 = Workbook(app_visible=False, app_target=APP_TARGET) target_file_path = os.path.join(cwd, wb1.name + '.xlsx') if os.path.isfile(target_file_path): os.remove(target_file_path) wb1.save() assert_equal(os.path.isfile(target_file_path), True) wb2 = Workbook(target_file_path, app_visible=False, app_target=APP_TARGET) wb2.close() if os.path.isfile(target_file_path): os.remove(target_file_path) def test_save_path(self): cwd = os.getcwd() wb1 = Workbook(app_visible=False, app_target=APP_TARGET) target_file_path = os.path.join(cwd, 'TestFile.xlsx') if os.path.isfile(target_file_path): os.remove(target_file_path) wb1.save(target_file_path) assert_equal(os.path.isfile(target_file_path), True) wb2 = Workbook(target_file_path, app_visible=False, app_target=APP_TARGET) wb2.close() if os.path.isfile(target_file_path): os.remove(target_file_path) def test_mock_caller(self): # Can't really run this one with app_visible=False _skip_if_not_default_xl() Workbook.set_mock_caller(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_workbook_1.xlsx')) wb = Workbook.caller() Range('A1', wkb=wb).value = 333 assert_equal(Range('A1', wkb=wb).value, 333) def test_unicode_path(self): # pip3 seems to struggle with unicode filenames src = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'unicode_path.xlsx') dst = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ünicödé_päth.xlsx') shutil.move(src, dst) wb = Workbook(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'ünicödé_päth.xlsx'), app_visible=False, app_target=APP_TARGET) Range('A1').value = 1 wb.close() shutil.move(dst, src) def test_unsaved_workbook_reference(self): wb = Workbook(app_visible=False, app_target=APP_TARGET) Range('B2').value = 123 wb2 = Workbook(wb.name, app_visible=False, app_target=APP_TARGET) assert_equal(Range('B2', wkb=wb2).value, 123) wb2.close() def test_delete_named_item(self): Range('B10:C11').name = 'to_be_deleted' assert_equal(Range('to_be_deleted').name, 'to_be_deleted') del self.wb.names['to_be_deleted'] assert_not_equal(Range('B10:C11').name, 'to_be_deleted') def test_names_collection(self): Range('A1').name = 'name1' Range('A2').name = 'name2' assert_true('name1' in self.wb.names and 'name2' in self.wb.names) Range('A3').name = 'name3' assert_true('name1' in self.wb.names and 'name2' in self.wb.names and 'name3' in self.wb.names) def test_active_workbook(self): # TODO: add test over multiple Excel instances on Windows Range('A1').value = 'active_workbook' wb_active = Workbook.active(app_target=APP_TARGET) assert_equal(Range('A1', wkb=wb_active).value, 'active_workbook') def test_workbook_name(self): Range('A10').value = 'name-test' wb2 = Workbook('test_workbook_1.xlsx', app_visible=False, app_target=APP_TARGET) assert_equal(Range('A10', wkb=wb2).value, 'name-test') class TestSheet: def setUp(self): # Connect to test file and make Sheet1 the active sheet xl_file1 = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_workbook_1.xlsx') self.wb = Workbook(xl_file1, app_visible=False, app_target=APP_TARGET) Sheet('Sheet1').activate() def tearDown(self): class_teardown(self.wb) def test_activate(self): Sheet('Sheet2').activate() assert_equal(Sheet.active().name, 'Sheet2') Sheet(3).activate() assert_equal(Sheet.active().index, 3) def test_name(self): Sheet(1).name = 'NewName' assert_equal(Sheet(1).name, 'NewName') def test_index(self): assert_equal(Sheet('Sheet1').index, 1) def test_clear_content_active_sheet(self): Range('G10').value = 22 Sheet.active().clear_contents() cell = Range('G10').value assert_equal(cell, None) def test_clear_active_sheet(self): Range('G10').value = 22 Sheet.active().clear() cell = Range('G10').value assert_equal(cell, None) def test_clear_content(self): Range('Sheet2', 'G10').value = 22 Sheet('Sheet2').clear_contents() cell = Range('Sheet2', 'G10').value assert_equal(cell, None) def test_clear(self): Range('Sheet2', 'G10').value = 22 Sheet('Sheet2').clear() cell = Range('Sheet2', 'G10').value assert_equal(cell, None) def test_autofit(self): Range('Sheet1', 'A1:D4').value = 'test_string' Sheet('Sheet1').autofit() Sheet('Sheet1').autofit('r') Sheet('Sheet1').autofit('c') Sheet('Sheet1').autofit('rows') Sheet('Sheet1').autofit('columns') def test_add_before(self): new_sheet = Sheet.add(before='Sheet1') assert_equal(Sheet(1).name, new_sheet.name) def test_add_after(self): Sheet.add(after=Sheet.count()) assert_equal(Sheet(Sheet.count()).name, Sheet.active().name) Sheet.add(after=1) assert_equal(Sheet(2).name, Sheet.active().name) def test_add_default(self): # TODO: test call without args properly Sheet.add() def test_add_named(self): Sheet.add('test', before=1) assert_equal(Sheet(1).name, 'test') @raises(Exception) def test_add_name_already_taken(self): Sheet.add('Sheet1') def test_count(self): count = Sheet.count() assert_equal(count, 3) def test_all(self): all_names = [i.name for i in Sheet.all()] assert_equal(all_names, ['Sheet1', 'Sheet2', 'Sheet3']) class TestRange: def setUp(self): # Connect to test file and make Sheet1 the active sheet xl_file1 = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_range_1.xlsx') self.wb = Workbook(xl_file1, app_visible=False, app_target=APP_TARGET) Sheet('Sheet1').activate() def tearDown(self): class_teardown(self.wb) def test_cell(self): params = [('A1', 22), ((1,1), 22), ('A1', 22.2222), ((1,1), 22.2222), ('A1', 'Test String'), ((1,1), 'Test String'), ('A1', 'éöà'), ((1,1), 'éöà'), ('A2', test_date_1), ((2,1), test_date_1), ('A3', test_date_2), ((3,1), test_date_2)] for param in params: yield self.check_cell, param[0], param[1] def check_cell(self, address, value): # Active Sheet Range(address).value = value cell = Range(address).value assert_equal(cell, value) # SheetName Range('Sheet2', address).value = value cell = Range('Sheet2', address).value assert_equal(cell, value) # SheetIndex Range(3, address).value = value cell = Range(3, address).value assert_equal(cell, value) def test_range_address(self): """ Style: Range('A1:C3') """ address = 'C1:E3' # Active Sheet Range(address[:2]).value = data # assign to starting cell only cells = Range(address).value assert_equal(cells, data) # Sheetname Range('Sheet2', address).value = data cells = Range('Sheet2', address).value assert_equal(cells, data) # Sheetindex Range(3, address).value = data cells = Range(3, address).value assert_equal(cells, data) def test_range_index(self): """ Style: Range((1,1), (3,3)) """ index1 = (1,3) index2 = (3,5) # Active Sheet Range(index1, index2).value = data cells = Range(index1, index2).value assert_equal(cells, data) # Sheetname Range('Sheet2', index1, index2).value = data cells = Range('Sheet2', index1, index2).value assert_equal(cells, data) # Sheetindex Range(3, index1, index2).value = data cells = Range(3, index1, index2).value assert_equal(cells, data) def test_named_range_value(self): value = 22.222 # Active Sheet Range('cell_sheet1').value = value cells = Range('cell_sheet1').value assert_equal(cells, value) Range('range_sheet1').value = data cells = Range('range_sheet1').value assert_equal(cells, data) # Sheetname Range('Sheet2', 'cell_sheet2').value = value cells = Range('Sheet2', 'cell_sheet2').value assert_equal(cells, value) Range('Sheet2', 'range_sheet2').value = data cells = Range('Sheet2', 'range_sheet2').value assert_equal(cells, data) # Sheetindex Range(3, 'cell_sheet3').value = value cells = Range(3, 'cell_sheet3').value assert_equal(cells, value) Range(3, 'range_sheet3').value = data cells = Range(3, 'range_sheet3').value assert_equal(cells, data) def test_array(self): _skip_if_no_numpy() # 1d array Range('Sheet6', 'A1').value = array_1d cells = Range('Sheet6', 'A1:D1', asarray=True).value assert_array_equal(cells, array_1d) # 2d array Range('Sheet6', 'A4').value = array_2d cells = Range('Sheet6', 'A4', asarray=True).table.value assert_array_equal(cells, array_2d) # 1d array (atleast_2d) Range('Sheet6', 'A10').value = array_1d cells = Range('Sheet6', 'A10:D10', asarray=True, atleast_2d=True).value assert_array_equal(cells, np.atleast_2d(array_1d)) # 2d array (atleast_2d) Range('Sheet6', 'A12').value = array_2d cells = Range('Sheet6', 'A12', asarray=True, atleast_2d=True).table.value assert_array_equal(cells, array_2d) def sheet_ref(self): Range(Sheet(1), 'A20').value = 123 assert_equal(Range(1, 'A20').value, 123) Range(Sheet(1), (2,2), (4,4)).value = 321 assert_equal(Range(1, (2,2)).value, 321) def test_vertical(self): Range('Sheet4', 'A10').value = data if sys.platform.startswith('win') and self.wb.xl_app.Version == '14.0': Range('Sheet4', 'A12:B12').xl_range.NumberFormat = 'dd/mm/yyyy' # Hack for Excel 2010 bug, see GH #43 cells = Range('Sheet4', 'A10').vertical.value assert_equal(cells, [row[0] for row in data]) def test_horizontal(self): Range('Sheet4', 'A20').value = data cells = Range('Sheet4', 'A20').horizontal.value assert_equal(cells, data[0]) def test_table(self): Range('Sheet4', 'A1').value = data if sys.platform.startswith('win') and self.wb.xl_app.Version == '14.0': Range('Sheet4', 'A3:B3').xl_range.NumberFormat = 'dd/mm/yyyy' # Hack for Excel 2010 bug, see GH #43 cells = Range('Sheet4', 'A1').table.value assert_equal(cells, data) def test_list(self): # 1d List Row Range('Sheet4', 'A27').value = list_row_1d cells = Range('Sheet4', 'A27:C27').value assert_equal(list_row_1d, cells) # 2d List Row Range('Sheet4', 'A29').value = list_row_2d cells = Range('Sheet4', 'A29:C29', atleast_2d=True).value assert_equal(list_row_2d, cells) # 1d List Col Range('Sheet4', 'A31').value = list_col cells = Range('Sheet4', 'A31:A33').value assert_equal([i[0] for i in list_col], cells) # 2d List Col cells = Range('Sheet4', 'A31:A33', atleast_2d=True).value assert_equal(list_col, cells) def test_is_cell(self): assert_equal(Range('A1').is_cell(), True) assert_equal(Range('A1:B1').is_cell(), False) assert_equal(Range('A1:A2').is_cell(), False) assert_equal(Range('A1:B2').is_cell(), False) def test_is_row(self): assert_equal(Range('A1').is_row(), False) assert_equal(Range('A1:B1').is_row(), True) assert_equal(Range('A1:A2').is_row(), False) assert_equal(Range('A1:B2').is_row(), False) def test_is_column(self): assert_equal(Range('A1').is_column(), False) assert_equal(Range('A1:B1').is_column(), False) assert_equal(Range('A1:A2').is_column(), True) assert_equal(Range('A1:B2').is_column(), False) def test_is_table(self): assert_equal(Range('A1').is_table(), False) assert_equal(Range('A1:B1').is_table(), False) assert_equal(Range('A1:A2').is_table(), False) assert_equal(Range('A1:B2').is_table(), True) def test_formula(self): Range('A1').formula = '=SUM(A2:A10)' assert_equal(Range('A1').formula, '=SUM(A2:A10)') def test_current_region(self): values = [[1.,2.],[3.,4.]] Range('A20').value = values assert_equal(Range('B21').current_region.value, values) def test_clear_content(self): Range('Sheet4', 'G1').value = 22 Range('Sheet4', 'G1').clear_contents() cell = Range('Sheet4', 'G1').value assert_equal(cell, None) def test_clear(self): Range('Sheet4', 'G1').value = 22 Range('Sheet4', 'G1').clear() cell = Range('Sheet4', 'G1').value assert_equal(cell, None) def test_dataframe_1(self): _skip_if_no_pandas() df_expected = df_1 Range('Sheet5', 'A1').value = df_expected cells = Range('Sheet5', 'B1:C5').value df_result = DataFrame(cells[1:], columns=cells[0]) assert_frame_equal(df_expected, df_result) def test_dataframe_2(self): """ Covers GH Issue #31""" _skip_if_no_pandas() df_expected = df_2 Range('Sheet5', 'A9').value = df_expected cells = Range('Sheet5', 'B9:B15').value df_result = DataFrame(cells[1:], columns=[cells[0]]) assert_frame_equal(df_expected, df_result) def test_dataframe_multiindex(self): _skip_if_no_pandas() df_expected = df_multiindex Range('Sheet5', 'A20').value = df_expected cells = Range('Sheet5', 'D20').table.value multiindex = Range('Sheet5', 'A20:C28').value ix = pd.MultiIndex.from_tuples(multiindex[1:], names=multiindex[0]) df_result = DataFrame(cells[1:], columns=cells[0], index=ix) assert_frame_equal(df_expected, df_result) def test_dataframe_multiheader(self): _skip_if_no_pandas() df_expected = df_multiheader Range('Sheet5', 'A52').value = df_expected cells = Range('Sheet5', 'B52').table.value df_result = DataFrame(cells[2:], columns=pd.MultiIndex.from_arrays(cells[:2])) assert_frame_equal(df_expected, df_result) def test_dataframe_dateindex(self): _skip_if_no_pandas() df_expected = df_dateindex Range('Sheet5', 'A100').value = df_expected if sys.platform.startswith('win') and self.wb.xl_app.Version == '14.0': Range('Sheet5', 'A100').vertical.xl_range.NumberFormat = 'dd/mm/yyyy' # Hack for Excel 2010 bug, see GH #43 cells = Range('Sheet5', 'B100').table.value index = Range('Sheet5', 'A101').vertical.value df_result = DataFrame(cells[1:], index=index, columns=cells[0]) assert_frame_equal(df_expected, df_result) def test_series_1(self): _skip_if_no_pandas() series_expected = series_1 Range('Sheet5', 'A32').value = series_expected cells = Range('Sheet5', 'B32:B37').value series_result = Series(cells) assert_series_equal(series_expected, series_result) def test_timeseries_1(self): _skip_if_no_pandas() series_expected = timeseries_1 Range('Sheet5', 'A40').value = series_expected if sys.platform.startswith('win') and self.wb.xl_app.Version == '14.0': Range('Sheet5', 'A40').vertical.xl_range.NumberFormat = 'dd/mm/yyyy' # Hack for Excel 2010 bug, see GH #43 cells = Range('Sheet5', 'B40:B49').value date_index = Range('Sheet5', 'A40:A49').value series_result = Series(cells, index=date_index) assert_series_equal(series_expected, series_result) def test_none(self): """ Covers GH Issue #16""" # None Range('Sheet1', 'A7').value = None assert_equal(None, Range('Sheet1', 'A7').value) # List Range('Sheet1', 'A7').value = [None, None] assert_equal(None, Range('Sheet1', 'A7').horizontal.value) def test_scalar_nan(self): """Covers GH Issue #15""" _skip_if_no_numpy() Range('Sheet1', 'A20').value = np.nan assert_equal(None, Range('Sheet1', 'A20').value) def test_atleast_2d_scalar(self): """Covers GH Issue #53a""" Range('Sheet1', 'A50').value = 23 result = Range('Sheet1', 'A50', atleast_2d=True).value assert_equal([[23]], result) def test_atleast_2d_scalar_as_array(self): """Covers GH Issue #53b""" _skip_if_no_numpy() Range('Sheet1', 'A50').value = 23 result = Range('Sheet1', 'A50', atleast_2d=True, asarray=True).value assert_equal(np.array([[23]]), result) def test_column_width(self): Range('Sheet1', 'A1:B2').column_width = 10.0 result = Range('Sheet1', 'A1').column_width assert_equal(10.0, result) Range('Sheet1', 'A1:B2').value = 'ensure cells are used' Range('Sheet1', 'B2').column_width = 20.0 result = Range('Sheet1', 'A1:B2').column_width if sys.platform.startswith('win'): assert_equal(None, result) else: assert_equal(kw.missing_value, result) def test_row_height(self): Range('Sheet1', 'A1:B2').row_height = 15.0 result = Range('Sheet1', 'A1').row_height assert_equal(15.0, result) Range('Sheet1', 'A1:B2').value = 'ensure cells are used' Range('Sheet1', 'B2').row_height = 20.0 result = Range('Sheet1', 'A1:B2').row_height if sys.platform.startswith('win'): assert_equal(None, result) else: assert_equal(kw.missing_value, result) def test_width(self): """Width depends on default style text size, so do not test absolute widths""" Range('Sheet1', 'A1:D4').column_width = 10.0 result_before = Range('Sheet1', 'A1').width Range('Sheet1', 'A1:D4').column_width = 12.0 result_after = Range('Sheet1', 'A1').width assert_true(result_after > result_before) def test_height(self): Range('Sheet1', 'A1:D4').row_height = 60.0 result = Range('Sheet1', 'A1:D4').height assert_equal(240.0, result) def test_autofit_range(self): # TODO: compare col/row widths before/after - not implemented yet Range('Sheet1', 'A1:D4').value = 'test_string' Range('Sheet1', 'A1:D4').autofit() Range('Sheet1', 'A1:D4').autofit('r') Range('Sheet1', 'A1:D4').autofit('c') Range('Sheet1', 'A1:D4').autofit('rows') Range('Sheet1', 'A1:D4').autofit('columns') def test_autofit_col(self): # TODO: compare col/row widths before/after - not implemented yet Range('Sheet1', 'A1:D4').value = 'test_string' Range('Sheet1', 'A:D').autofit() Range('Sheet1', 'A:D').autofit('r') Range('Sheet1', 'A:D').autofit('c') Range('Sheet1', 'A:D').autofit('rows') Range('Sheet1', 'A:D').autofit('columns') def test_autofit_row(self): # TODO: compare col/row widths before/after - not implemented yet Range('Sheet1', 'A1:D4').value = 'test_string' Range('Sheet1', '1:1000000').autofit() Range('Sheet1', '1:1000000').autofit('r') Range('Sheet1', '1:1000000').autofit('c') Range('Sheet1', '1:1000000').autofit('rows') Range('Sheet1', '1:1000000').autofit('columns') def test_number_format_cell(self): format_string = "mm/dd/yy;@" Range('Sheet1', 'A1').number_format = format_string result = Range('Sheet1', 'A1').number_format assert_equal(format_string, result) def test_number_format_range(self): format_string = "mm/dd/yy;@" Range('Sheet1', 'A1:D4').number_format = format_string result = Range('Sheet1', 'A1:D4').number_format assert_equal(format_string, result) def test_get_address(self): res = Range((1,1),(3,3)).get_address() assert_equal(res, '$A$1:$C$3') res = Range((1,1),(3,3)).get_address(False) assert_equal(res, '$A1:$C3') res = Range((1,1),(3,3)).get_address(True, False) assert_equal(res, 'A$1:C$3') res = Range((1,1),(3,3)).get_address(False, False) assert_equal(res, 'A1:C3') res = Range((1,1),(3,3)).get_address(include_sheetname=True) assert_equal(res, 'Sheet1!$A$1:$C$3') res = Range('Sheet2', (1,1),(3,3)).get_address(include_sheetname=True) assert_equal(res, 'Sheet2!$A$1:$C$3') res = Range((1,1),(3,3)).get_address(external=True) assert_equal(res, '[test_range_1.xlsx]Sheet1!$A$1:$C$3') def test_hyperlink(self): address = 'www.xlwings.org' # Naked address Range('A1').add_hyperlink(address) assert_equal(Range('A1').value, address) hyperlink = Range('A1').hyperlink if not hyperlink.endswith('/'): hyperlink += '/' assert_equal(hyperlink, 'http://' + address + '/') # Address + FriendlyName Range('A2').add_hyperlink(address, 'test_link') assert_equal(Range('A2').value, 'test_link') hyperlink = Range('A2').hyperlink if not hyperlink.endswith('/'): hyperlink += '/' assert_equal(hyperlink, 'http://' + address + '/') def test_hyperlink_formula(self): Range('B10').formula = '=HYPERLINK("http://xlwings.org", "xlwings")' assert_equal(Range('B10').hyperlink, 'http://xlwings.org') def test_color(self): rgb = (30, 100, 200) Range('A1').color = rgb assert_equal(rgb, Range('A1').color) Range('A2').color = RgbColor.rgbAqua assert_equal((0, 255, 255), Range('A2').color) Range('A2').color = None assert_equal(Range('A2').color, None) Range('A1:D4').color = rgb assert_equal(rgb, Range('A1:D4').color) def test_size(self): assert_equal(Range('A1:C4').size, 12) def test_shape(self): assert_equal(Range('A1:C4').shape, (4, 3)) def test_len(self): assert_equal(len(Range('A1:C4')), 4) def test_iterator(self): Range('A20').value = [[1., 2.], [3., 4.]] l = [] for i in Range('A20:B21'): l.append(i.value) assert_equal(l, [1., 2., 3., 4.]) Range('Sheet2', 'A20').value = [[1., 2.], [3., 4.]] l = [] for i in Range('Sheet2', 'A20:B21'): l.append(i.value) assert_equal(l, [1., 2., 3., 4.]) def test_resize(self): r = Range('A1').resize(4, 5) assert_equal(r.shape, (4, 5)) r = Range('A1').resize(row_size=4) assert_equal(r.shape, (4, 1)) r = Range('A1:B4').resize(column_size=5) assert_equal(r.shape, (1, 5)) def test_offset(self): o = Range('A1:B3').offset(3, 4) assert_equal(o.get_address(), '$E$4:$F$6') o = Range('A1:B3').offset(row_offset=3) assert_equal(o.get_address(), '$A$4:$B$6') o = Range('A1:B3').offset(column_offset=4) assert_equal(o.get_address(), '$E$1:$F$3') def test_date(self): date_1 = date(2000, 12, 3) Range('X1').value = date_1 date_2 = Range('X1').value assert_equal(date_1, date(date_2.year, date_2.month, date_2.day)) def test_row(self): assert_equal(Range('B3:F5').row, 3) def test_column(self): assert_equal(Range('B3:F5').column, 2) def test_last_cell(self): assert_equal(Range('B3:F5').last_cell.row, 5) assert_equal(Range('B3:F5').last_cell.column, 6) def test_get_set_named_range(self): Range('A100').name = 'test1' assert_equal(Range('A100').name, 'test1') Range('A200:B204').name = 'test2' assert_equal(Range('A200:B204').name, 'test2') def test_integers(self): """Covers GH 227""" Range('A99').value = 2147483647 # max SInt32 assert_equal(Range('A99').value, 2147483647) Range('A100').value = 2147483648 # SInt32 < x < SInt64 assert_equal(Range('A100').value, 2147483648) Range('A101').value = 10000000000000000000 # long assert_equal(Range('A101').value, 10000000000000000000) def test_numpy_datetime(self): _skip_if_no_numpy() Range('A55').value = np.datetime64('2005-02-25T03:30Z') assert_equal(Range('A55').value, datetime(2005, 2, 25, 3, 30)) def test_dataframe_timezone(self): _skip_if_no_pandas() dt = np.datetime64(1434149887000, 'ms') ix = pd.DatetimeIndex(data=[dt], tz='GMT') df = pd.DataFrame(data=[1], index=ix, columns=['A']) Range('A1').value = df assert_equal(Range('A2').value, datetime(2015, 6, 12, 22, 58, 7)) def test_datetime_timezone(self): eastern = pytz.timezone('US/Eastern') dt_naive = datetime(2002, 10, 27, 6, 0, 0) dt_tz = eastern.localize(dt_naive) Range('F34').value = dt_tz assert_equal(Range('F34').value, dt_naive) class TestChart: def setUp(self): # Connect to test file and make Sheet1 the active sheet xl_file1 = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_chart_1.xlsx') self.wb = Workbook(xl_file1, app_visible=False, app_target=APP_TARGET) Sheet('Sheet1').activate() def tearDown(self): class_teardown(self.wb) def test_add_keywords(self): name = 'My Chart' chart_type = ChartType.xlLine Range('A1').value = chart_data chart = Chart.add(chart_type=chart_type, name=name, source_data=Range('A1').table) chart_actual = Chart(name) name_actual = chart_actual.name chart_type_actual = chart_actual.chart_type assert_equal(name, name_actual) if sys.platform.startswith('win'): assert_equal(chart_type, chart_type_actual) else: assert_equal(kw.line_chart, chart_type_actual) def test_add_properties(self): name = 'My Chart' chart_type = ChartType.xlLine Range('Sheet2', 'A1').value = chart_data chart = Chart.add('Sheet2') chart.chart_type = chart_type chart.name = name chart.set_source_data(Range('Sheet2', 'A1').table) chart_actual = Chart('Sheet2', name) name_actual = chart_actual.name chart_type_actual = chart_actual.chart_type assert_equal(name, name_actual) if sys.platform.startswith('win'): assert_equal(chart_type, chart_type_actual) else: assert_equal(kw.line_chart, chart_type_actual) if __name__ == '__main__': nose.main()
apache-2.0
vybstat/scikit-learn
sklearn/ensemble/__init__.py
217
1307
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification and regression. """ from .base import BaseEnsemble from .forest import RandomForestClassifier from .forest import RandomForestRegressor from .forest import RandomTreesEmbedding from .forest import ExtraTreesClassifier from .forest import ExtraTreesRegressor from .bagging import BaggingClassifier from .bagging import BaggingRegressor from .weight_boosting import AdaBoostClassifier from .weight_boosting import AdaBoostRegressor from .gradient_boosting import GradientBoostingClassifier from .gradient_boosting import GradientBoostingRegressor from .voting_classifier import VotingClassifier from . import bagging from . import forest from . import weight_boosting from . import gradient_boosting from . import partial_dependence __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "bagging", "forest", "gradient_boosting", "partial_dependence", "weight_boosting"]
bsd-3-clause
arahuja/scikit-learn
sklearn/calibration.py
12
18774
"""Calibration of predicted probabilities.""" # Author: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Balazs Kegl <balazs.kegl@gmail.com> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # Mathieu Blondel <mathieu@mblondel.org> # # License: BSD 3 clause from __future__ import division import inspect import warnings from math import log import numpy as np from scipy.optimize import fmin_bfgs from .base import BaseEstimator, ClassifierMixin, RegressorMixin, clone from .preprocessing import LabelBinarizer from .utils import check_X_y, check_array, indexable, column_or_1d from .utils.validation import check_is_fitted from .isotonic import IsotonicRegression from .svm import LinearSVC from .cross_validation import _check_cv from .metrics.classification import _check_binary_probabilistic_predictions class CalibratedClassifierCV(BaseEstimator, ClassifierMixin): """Probability calibration with isotonic regression or sigmoid. With this class, the base_estimator is fit on the train set of the cross-validation generator and the test set is used for calibration. The probabilities for each of the folds are then averaged for prediction. In case that cv="prefit" is passed to __init__, it is it is assumed that base_estimator has been fitted already and all data is used for calibration. Note that data for fitting the classifier and for calibrating it must be disjpint. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. If cv=prefit, the classifier must have been fit already on data. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parameteric approach. It is not advised to use isotonic calibration with too few calibration samples (<<1000) since it tends to overfit. Use sigmoids (Platt's calibration) in this case. cv : integer or cross-validation generator or "prefit", optional If an integer is passed, it is the number of folds (default 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. If "prefit" is passed, it is assumed that base_estimator has been fitted already and all data is used for calibration. Attributes ---------- classes_ : array, shape (n_classes) The class labels. calibrated_classifiers_: list (len() equal to cv or 1 if cv == "prefit") The list of calibrated classifiers, one for each crossvalidation fold, which has been fitted on all but the validation fold and calibrated on the validation fold. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator=None, method='sigmoid', cv=3): self.base_estimator = base_estimator self.method = method self.cv = cv def fit(self, X, y, sample_weight=None): """Fit the calibrated model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X, y = check_X_y(X, y, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) X, y = indexable(X, y) lb = LabelBinarizer().fit(y) self.classes_ = lb.classes_ # Check that we each cross-validation fold can have at least one # example per class n_folds = self.cv if isinstance(self.cv, int) \ else self.cv.n_folds if hasattr(self.cv, "n_folds") else None if n_folds and \ np.any([np.sum(y == class_) < n_folds for class_ in self.classes_]): raise ValueError("Requesting %d-fold cross-validation but provided" " less than %d examples for at least one class." % (n_folds, n_folds)) self.calibrated_classifiers_ = [] if self.base_estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). base_estimator = LinearSVC(random_state=0) else: base_estimator = self.base_estimator if self.cv == "prefit": calibrated_classifier = _CalibratedClassifier( base_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X, y, sample_weight) else: calibrated_classifier.fit(X, y) self.calibrated_classifiers_.append(calibrated_classifier) else: cv = _check_cv(self.cv, X, y, classifier=True) arg_names = inspect.getargspec(base_estimator.fit)[0] estimator_name = type(base_estimator).__name__ if (sample_weight is not None and "sample_weight" not in arg_names): warnings.warn("%s does not support sample_weight. Samples" " weights are only used for the calibration" " itself." % estimator_name) base_estimator_sample_weight = None else: base_estimator_sample_weight = sample_weight for train, test in cv: this_estimator = clone(base_estimator) if base_estimator_sample_weight is not None: this_estimator.fit( X[train], y[train], sample_weight=base_estimator_sample_weight[train]) else: this_estimator.fit(X[train], y[train]) calibrated_classifier = _CalibratedClassifier( this_estimator, method=self.method) if sample_weight is not None: calibrated_classifier.fit(X[test], y[test], sample_weight[test]) else: calibrated_classifier.fit(X[test], y[test]) self.calibrated_classifiers_.append(calibrated_classifier) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], force_all_finite=False) # Compute the arithmetic mean of the predictions of the calibrated # classfiers mean_proba = np.zeros((X.shape[0], len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba def predict(self, X): """Predict the target of new samples. Can be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples,) The predicted class. """ check_is_fitted(self, ["classes_", "calibrated_classifiers_"]) return self.classes_[np.argmax(self.predict_proba(X), axis=1)] class _CalibratedClassifier(object): """Probability calibration with isotonic regression or sigmoid. It assumes that base_estimator has already been fit, and trains the calibration on the input set of the fit function. Note that this class should not be used as an estimator directly. Use CalibratedClassifierCV with cv="prefit" instead. Parameters ---------- base_estimator : instance BaseEstimator The classifier whose output decision function needs to be calibrated to offer more accurate predict_proba outputs. No default value since it has to be an already fitted estimator. method : 'sigmoid' | 'isotonic' The method to use for calibration. Can be 'sigmoid' which corresponds to Platt's method or 'isotonic' which is a non-parameteric approach based on isotonic regression. References ---------- .. [1] Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001 .. [2] Transforming Classifier Scores into Accurate Multiclass Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002) .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods, J. Platt, (1999) .. [4] Predicting Good Probabilities with Supervised Learning, A. Niculescu-Mizil & R. Caruana, ICML 2005 """ def __init__(self, base_estimator, method='sigmoid'): self.base_estimator = base_estimator self.method = method def _preproc(self, X): n_classes = len(self.classes_) if hasattr(self.base_estimator, "decision_function"): df = self.base_estimator.decision_function(X) if df.ndim == 1: df = df[:, np.newaxis] elif hasattr(self.base_estimator, "predict_proba"): df = self.base_estimator.predict_proba(X) if n_classes == 2: df = df[:, 1:] else: raise RuntimeError('classifier has no decision_function or ' 'predict_proba method.') idx_pos_class = np.arange(df.shape[1]) return df, idx_pos_class def fit(self, X, y, sample_weight=None): """Calibrate the fitted model Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) Target values. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ lb = LabelBinarizer() Y = lb.fit_transform(y) self.classes_ = lb.classes_ df, idx_pos_class = self._preproc(X) self.calibrators_ = [] for k, this_df in zip(idx_pos_class, df.T): if self.method == 'isotonic': calibrator = IsotonicRegression(out_of_bounds='clip') elif self.method == 'sigmoid': calibrator = _SigmoidCalibration() else: raise ValueError('method should be "sigmoid" or ' '"isotonic". Got %s.' % self.method) calibrator.fit(this_df, Y[:, k], sample_weight) self.calibrators_.append(calibrator) return self def predict_proba(self, X): """Posterior probabilities of classification This function returns posterior probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like, shape (n_samples, n_features) The samples. Returns ------- C : array, shape (n_samples, n_classes) The predicted probas. Can be exact zeros. """ n_classes = len(self.classes_) proba = np.zeros((X.shape[0], n_classes)) df, idx_pos_class = self._preproc(X) for k, this_df, calibrator in \ zip(idx_pos_class, df.T, self.calibrators_): if n_classes == 2: k += 1 proba[:, k] = calibrator.predict(this_df) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1. - proba[:, 1] else: proba /= np.sum(proba, axis=1)[:, np.newaxis] # XXX : for some reason all probas can be 0 proba[np.isnan(proba)] = 1. / n_classes # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba def _sigmoid_calibration(df, y, sample_weight=None): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- df : ndarray, shape (n_samples,) The decision function or predict proba for the samples. y : ndarray, shape (n_samples,) The targets. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ df = column_or_1d(df) y = column_or_1d(y) F = df # F follows Platt's notations tiny = np.finfo(np.float).tiny # to avoid division by 0 warning # Bayesian priors (see Platt end of section 2.2) prior0 = float(np.sum(y <= 0)) prior1 = y.shape[0] - prior0 T = np.zeros(y.shape) T[y > 0] = (prior1 + 1.) / (prior1 + 2.) T[y <= 0] = 1. / (prior0 + 2.) T1 = 1. - T def objective(AB): # From Platt (beginning of Section 2.2) E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) l = -(T * np.log(P + tiny) + T1 * np.log(1. - P + tiny)) if sample_weight is not None: return (sample_weight * l).sum() else: return l.sum() def grad(AB): # gradient of the objective function E = np.exp(AB[0] * F + AB[1]) P = 1. / (1. + E) TEP_minus_T1P = P * (T * E - T1) if sample_weight is not None: TEP_minus_T1P *= sample_weight dA = np.dot(TEP_minus_T1P, F) dB = np.sum(TEP_minus_T1P) return np.array([dA, dB]) AB0 = np.array([0., log((prior0 + 1.) / (prior1 + 1.))]) AB_ = fmin_bfgs(objective, AB0, fprime=grad, disp=False) return AB_[0], AB_[1] class _SigmoidCalibration(BaseEstimator, RegressorMixin): """Sigmoid regression model. Attributes ---------- `a_` : float The slope. `b_` : float The intercept. """ def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like, shape (n_samples,) Training data. y : array-like, shape (n_samples,) Training target. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like, shape (n_samples,) Data to predict from. Returns ------- `T_` : array, shape (n_samples,) The predicted data. """ T = column_or_1d(T) return 1. / (1. + np.exp(self.a_ * T + self.b_)) def calibration_curve(y_true, y_prob, normalize=False, n_bins=5): """Compute true and predicted probabilities for a calibration curve. Parameters ---------- y_true : array, shape (n_samples,) True targets. y_prob : array, shape (n_samples,) Probabilities of the positive class. normalize : bool, optional, default=False Whether y_prob needs to be normalized into the bin [0, 1], i.e. is not a proper probability. If True, the smallest value in y_prob is mapped onto 0 and the largest one onto 1. n_bins : int Number of bins. A bigger number requires more data. Returns ------- prob_true : array, shape (n_bins,) The true probability in each bin (fraction of positives). prob_pred : array, shape (n_bins,) The mean predicted probability in each bin. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) if normalize: # Normalize predicted values into interval [0, 1] y_prob = (y_prob - y_prob.min()) / (y_prob.max() - y_prob.min()) elif y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1] and normalize is " "set to False.") y_true = _check_binary_probabilistic_predictions(y_true, y_prob) bins = np.linspace(0., 1. + 1e-8, n_bins + 1) binids = np.digitize(y_prob, bins) - 1 bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = (bin_true[nonzero] / bin_total[nonzero]) prob_pred = (bin_sums[nonzero] / bin_total[nonzero]) return prob_true, prob_pred
bsd-3-clause
dudulianangang/vps
EneConsTest.py
1
5969
import sdf import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl plt.style.use('seaborn-white') # plt.rcParams['font.family'] = 'sans-serif' # plt.rcParams['font.sans-serif'] = 'Tahoma' # # plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['font.size'] = 16 # plt.rcParams['axes.labelsize'] = 10 # plt.rcParams['axes.labelweight'] = 'bold' # plt.rcParams['xtick.labelsize'] = 8 # plt.rcParams['ytick.labelsize'] = 8 # plt.rcParams['legend.fontsize'] = 10 # plt.rcParams['figure.titlesize'] = 12 # constants for normalization n0 = 1.8e20 me = 9.1e-31 qe = 1.6e-19 ep = 8.9e-12 c = 3e8 wp = np.sqrt(n0*qe*qe/me/ep) ld = c/wp e0 = me*c*wp/qe b0 = e0/c tt = 1/wp ts = 50*5 te = 1500 pct = 100 en0 = me*c**2 en1 = 0.5*ep*ld**2 # simulation domain nx = 3500 ny = 3500 lx = 3500 ly = 3500 # figure domain (set by grid) grid_min_x = 0 grid_max_x = nx grid_min_y = 0 grid_max_y = ny Gx = np.linspace(0,lx,nx) Gy = np.linspace(0,ly,ny) gx = Gx[grid_min_x:grid_max_x+1] gy = Gy[grid_min_y:grid_max_y+1] # figure parameters # fs = 24 jetcmap = plt.cm.get_cmap("rainbow", 9) #generate a jet map with 10 values jet_vals = jetcmap(np.arange(9)) #extract those values as an array jet_vals[0] = [1.0, 1, 1.0, 1] #change the first value newcmap = mpl.colors.LinearSegmentedColormap.from_list("newjet", jet_vals) # define array EneBmE = np.ones(7) EneBmI = np.ones(7) EneBgE = np.ones(7) EneBgI = np.ones(7) sex = np.ones(7) sey = np.ones(7) sez = np.ones(7) sbx = np.ones(7) sby = np.ones(7) sbz = np.ones(7) TpeC1 = np.ones(7) TpeS1 = np.ones(7) TfeC1 = np.ones(7) TfeS1 = np.ones(7) TpeC2 = np.ones(7) TpeS2 = np.ones(7) TfeC2 = np.ones(7) TfeS2 = np.ones(7) TeC1 = np.ones(7) TeS1 = np.ones(7) TeC2 = np.ones(7) TeS2 = np.ones(7) time = np.ones(7) # plot function file = '/Volumes/yaowp2016/' folder = 'nj' for i in range(7): ii = i*5 time[i] = i*ts fname = file+folder+'/6'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) GamBmE = datafile.Particles_Gamma_subset_ele1_ele_bm.data GamBmI = datafile.Particles_Gamma_subset_ion1_ion_bm.data GamBgE = datafile.Particles_Gamma_subset_ele1_ele_e.data GamBgI = datafile.Particles_Gamma_subset_ion1_ion_e.data WgtBmE = datafile.Particles_Weight_subset_ele1_ele_bm.data WgtBmI = datafile.Particles_Weight_subset_ion1_ion_bm.data WgtBgE = datafile.Particles_Weight_subset_ele1_ele_e.data WgtBgI = datafile.Particles_Weight_subset_ion1_ion_e.data EneBmE[i] = np.sum((GamBmE-1)*en0*np.mean(WgtBmE))*pct EneBmI[i] = np.sum((GamBmI-1)*en0*np.mean(WgtBmI))*pct EneBgE[i] = np.sum((GamBgE-1)*en0*np.mean(WgtBgE))*pct EneBgI[i] = np.sum((GamBgI-1)*en0*np.mean(WgtBgI))*pct fname = file+folder+'/'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) Ex = datafile.Electric_Field_Ex.data Ey = datafile.Electric_Field_Ey.data Ez = datafile.Electric_Field_Ez.data Bx = datafile.Magnetic_Field_Bx.data*c By = datafile.Magnetic_Field_By.data*c Bz = datafile.Magnetic_Field_Bz.data*c sex[i] = np.sum(Ex**2)*en1 sey[i] = np.sum(Ey**2)*en1 sez[i] = np.sum(Ez**2)*en1 sbx[i] = np.sum(Bx**2)*en1 sby[i] = np.sum(By**2)*en1 sbz[i] = np.sum(Bz**2)*en1 TpeC1[i] = EneBmE[i]+EneBmI[i]+EneBgE[i]+EneBgI[i] TfeC1[i] = sex[i]+sey[i]+sez[i]+sbx[i]+sby[i]+sbz[i] TfeS1[i] = datafile.Total_Field_Energy_in_Simulation__J_.data TpeS1[i] = datafile.Total_Particle_Energy_in_Simulation__J_.data folder = 'nj_non' for i in range(7): ii = i*5 time[i] = i*ts fname = file+folder+'/6'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) GamBmE = datafile.Particles_Gamma_subset_ele1_ele_bm.data GamBmI = datafile.Particles_Gamma_subset_ion1_ion_bm.data GamBgE = datafile.Particles_Gamma_subset_ele1_ele_e.data GamBgI = datafile.Particles_Gamma_subset_ion1_ion_e.data WgtBmE = datafile.Particles_Weight_subset_ele1_ele_bm.data WgtBmI = datafile.Particles_Weight_subset_ion1_ion_bm.data WgtBgE = datafile.Particles_Weight_subset_ele1_ele_e.data WgtBgI = datafile.Particles_Weight_subset_ion1_ion_e.data EneBmE[i] = np.sum((GamBmE-1)*en0*np.mean(WgtBmE))*pct EneBmI[i] = np.sum((GamBmI-1)*en0*np.mean(WgtBmI))*pct EneBgE[i] = np.sum((GamBgE-1)*en0*np.mean(WgtBgE))*pct EneBgI[i] = np.sum((GamBgI-1)*en0*np.mean(WgtBgI))*pct fname = file+folder+'/'+str(ii).zfill(4)+'.sdf' datafile = sdf.read(fname) Ex = datafile.Electric_Field_Ex.data Ey = datafile.Electric_Field_Ey.data Ez = datafile.Electric_Field_Ez.data Bx = datafile.Magnetic_Field_Bx.data*c By = datafile.Magnetic_Field_By.data*c Bz = datafile.Magnetic_Field_Bz.data*c sex[i] = np.sum(Ex**2)*en1 sey[i] = np.sum(Ey**2)*en1 sez[i] = np.sum(Ez**2)*en1 sbx[i] = np.sum(Bx**2)*en1 sby[i] = np.sum(By**2)*en1 sbz[i] = np.sum(Bz**2)*en1 TpeC2[i] = EneBmE[i]+EneBmI[i]+EneBgE[i]+EneBgI[i] TfeC2[i] = sex[i]+sey[i]+sez[i]+sbx[i]+sby[i]+sbz[i] TfeS2[i] = datafile.Total_Field_Energy_in_Simulation__J_.data TpeS2[i] = datafile.Total_Particle_Energy_in_Simulation__J_.data TeC1 = TpeC1+TfeC1 TeS1 = TpeS1+TfeS1 TeC2 = TpeC2+TfeC2 TeS2 = TpeS2+TfeS2 np.save('tpec1.npy', TpeC1) np.save('tpes1.npy', TpeS1) np.save('tfec1.npy', TfeC1) np.save('tfes1.npy', TfeS1) np.save('tpec2.npy', TpeC2) np.save('tpes2.npy', TpeS2) np.save('tfec2.npy', TfeC2) np.save('tfes2.npy', TfeS2) np.save('tec1.npy', TeC1) np.save('tes1.npy', TeS1) np.save('tec2.npy', TeC2) np.save('tes2.npy', TeS2) # plt.figure(figsize=(8,5)) # ax = plt.subplot() # ax.plot(time, TpeC1,'r-', lw=2, label='tbc-cal') # ax.plot(time, TpeS1,'r--', lw=2, label='tbc-sys') # ax.plot(time, TpeC2,'b-', lw=2, label='pbc-cal') # ax.plot(time, TpeS2,'b--', lw=2, label='pbc-sys') # plt.xlabel('time($\omega_{pe}^{-1}$)',fontsize=24) # plt.ylabel('energy($J$)',fontsize=24) # plt.legend(loc='best', numpoints=1, fancybox=True) # plt.title('total system energy',fontsize=32,fontstyle='normal') # plt.show() # plt.savefig(file+folder+'/plots/'+'TotalEnergyComp.png',bbox_inches='tight') # n means normalized # plt.close()
apache-2.0
taknevski/tensorflow-xsmm
tensorflow/contrib/learn/python/learn/dataframe/tensorflow_dataframe.py
75
29377
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlowDataFrame implements convenience functions using TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import numpy as np from tensorflow.contrib.learn.python.learn.dataframe import dataframe as df from tensorflow.contrib.learn.python.learn.dataframe.transforms import batch from tensorflow.contrib.learn.python.learn.dataframe.transforms import csv_parser from tensorflow.contrib.learn.python.learn.dataframe.transforms import example_parser from tensorflow.contrib.learn.python.learn.dataframe.transforms import in_memory_source from tensorflow.contrib.learn.python.learn.dataframe.transforms import reader_source from tensorflow.contrib.learn.python.learn.dataframe.transforms import sparsify from tensorflow.contrib.learn.python.learn.dataframe.transforms import split_mask from tensorflow.python.client import session as sess from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner as qr def _expand_file_names(filepatterns): """Takes a list of file patterns and returns a list of resolved file names.""" if not isinstance(filepatterns, (list, tuple, set)): filepatterns = [filepatterns] filenames = set() for filepattern in filepatterns: names = set(gfile.Glob(filepattern)) filenames |= names return list(filenames) def _dtype_to_nan(dtype): if dtype is dtypes.string: return b"" elif dtype.is_integer: return np.nan elif dtype.is_floating: return np.nan elif dtype is dtypes.bool: return np.nan else: raise ValueError("Can't parse type without NaN into sparse tensor: %s" % dtype) def _get_default_value(feature_spec): if isinstance(feature_spec, parsing_ops.FixedLenFeature): return feature_spec.default_value else: return _dtype_to_nan(feature_spec.dtype) class TensorFlowDataFrame(df.DataFrame): """TensorFlowDataFrame implements convenience functions using TensorFlow.""" def run(self, num_batches=None, graph=None, session=None, start_queues=True, initialize_variables=True, **kwargs): """Builds and runs the columns of the `DataFrame` and yields batches. This is a generator that yields a dictionary mapping column names to evaluated columns. Args: num_batches: the maximum number of batches to produce. If none specified, the returned value will iterate through infinite batches. graph: the `Graph` in which the `DataFrame` should be built. session: the `Session` in which to run the columns of the `DataFrame`. start_queues: if true, queues will be started before running and halted after producting `n` batches. initialize_variables: if true, variables will be initialized. **kwargs: Additional keyword arguments e.g. `num_epochs`. Yields: A dictionary, mapping column names to the values resulting from running each column for a single batch. """ if graph is None: graph = ops.get_default_graph() with graph.as_default(): if session is None: session = sess.Session() self_built = self.build(**kwargs) keys = list(self_built.keys()) cols = list(self_built.values()) if initialize_variables: if variables.local_variables(): session.run(variables.local_variables_initializer()) if variables.global_variables(): session.run(variables.global_variables_initializer()) if start_queues: coord = coordinator.Coordinator() threads = qr.start_queue_runners(sess=session, coord=coord) i = 0 while num_batches is None or i < num_batches: i += 1 try: values = session.run(cols) yield collections.OrderedDict(zip(keys, values)) except errors.OutOfRangeError: break if start_queues: coord.request_stop() coord.join(threads) def select_rows(self, boolean_series): """Returns a `DataFrame` with only the rows indicated by `boolean_series`. Note that batches may no longer have consistent size after calling `select_rows`, so the new `DataFrame` may need to be rebatched. For example: ''' filtered_df = df.select_rows(df["country"] == "jp").batch(64) ''' Args: boolean_series: a `Series` that evaluates to a boolean `Tensor`. Returns: A new `DataFrame` with the same columns as `self`, but selecting only the rows where `boolean_series` evaluated to `True`. """ result = type(self)() for key, col in self._columns.items(): try: result[key] = col.select_rows(boolean_series) except AttributeError as e: raise NotImplementedError(( "The select_rows method is not implemented for Series type {}. " "Original error: {}").format(type(col), e)) return result def split(self, index_series, proportion, batch_size=None): """Deterministically split a `DataFrame` into two `DataFrame`s. Note this split is only as deterministic as the underlying hash function; see `tf.string_to_hash_bucket_fast`. The hash function is deterministic for a given binary, but may change occasionally. The only way to achieve an absolute guarantee that the split `DataFrame`s do not change across runs is to materialize them. Note too that the allocation of a row to one partition or the other is evaluated independently for each row, so the exact number of rows in each partition is binomially distributed. Args: index_series: a `Series` of unique strings, whose hash will determine the partitioning; or the name in this `DataFrame` of such a `Series`. (This `Series` must contain strings because TensorFlow provides hash ops only for strings, and there are no number-to-string converter ops.) proportion: The proportion of the rows to select for the 'left' partition; the remaining (1 - proportion) rows form the 'right' partition. batch_size: the batch size to use when rebatching the left and right `DataFrame`s. If None (default), the `DataFrame`s are not rebatched; thus their batches will have variable sizes, according to which rows are selected from each batch of the original `DataFrame`. Returns: Two `DataFrame`s containing the partitioned rows. """ if isinstance(index_series, str): index_series = self[index_series] left_mask, = split_mask.SplitMask(proportion)(index_series) right_mask = ~left_mask left_rows = self.select_rows(left_mask) right_rows = self.select_rows(right_mask) if batch_size: left_rows = left_rows.batch(batch_size=batch_size, shuffle=False) right_rows = right_rows.batch(batch_size=batch_size, shuffle=False) return left_rows, right_rows def split_fast(self, index_series, proportion, batch_size, base_batch_size=1000): """Deterministically split a `DataFrame` into two `DataFrame`s. Note this split is only as deterministic as the underlying hash function; see `tf.string_to_hash_bucket_fast`. The hash function is deterministic for a given binary, but may change occasionally. The only way to achieve an absolute guarantee that the split `DataFrame`s do not change across runs is to materialize them. Note too that the allocation of a row to one partition or the other is evaluated independently for each row, so the exact number of rows in each partition is binomially distributed. Args: index_series: a `Series` of unique strings, whose hash will determine the partitioning; or the name in this `DataFrame` of such a `Series`. (This `Series` must contain strings because TensorFlow provides hash ops only for strings, and there are no number-to-string converter ops.) proportion: The proportion of the rows to select for the 'left' partition; the remaining (1 - proportion) rows form the 'right' partition. batch_size: the batch size to use when rebatching the left and right `DataFrame`s. If None (default), the `DataFrame`s are not rebatched; thus their batches will have variable sizes, according to which rows are selected from each batch of the original `DataFrame`. base_batch_size: the batch size to use for materialized data, prior to the split. Returns: Two `DataFrame`s containing the partitioned rows. """ if isinstance(index_series, str): index_series = self[index_series] left_mask, = split_mask.SplitMask(proportion)(index_series) right_mask = ~left_mask self["left_mask__"] = left_mask self["right_mask__"] = right_mask # TODO(soergel): instead of base_batch_size can we just do one big batch? # avoid computing the hashes twice m = self.materialize_to_memory(batch_size=base_batch_size) left_rows_df = m.select_rows(m["left_mask__"]) right_rows_df = m.select_rows(m["right_mask__"]) del left_rows_df[["left_mask__", "right_mask__"]] del right_rows_df[["left_mask__", "right_mask__"]] # avoid recomputing the split repeatedly left_rows_df = left_rows_df.materialize_to_memory(batch_size=batch_size) right_rows_df = right_rows_df.materialize_to_memory(batch_size=batch_size) return left_rows_df, right_rows_df def run_one_batch(self): """Creates a new 'Graph` and `Session` and runs a single batch. Returns: A dictionary mapping column names to numpy arrays that contain a single batch of the `DataFrame`. """ return list(self.run(num_batches=1))[0] def run_one_epoch(self): """Creates a new 'Graph` and `Session` and runs a single epoch. Naturally this makes sense only for DataFrames that fit in memory. Returns: A dictionary mapping column names to numpy arrays that contain a single epoch of the `DataFrame`. """ # batches is a list of dicts of numpy arrays batches = [b for b in self.run(num_epochs=1)] # first invert that to make a dict of lists of numpy arrays pivoted_batches = {} for k in batches[0].keys(): pivoted_batches[k] = [] for b in batches: for k, v in b.items(): pivoted_batches[k].append(v) # then concat the arrays in each column result = {k: np.concatenate(column_batches) for k, column_batches in pivoted_batches.items()} return result def materialize_to_memory(self, batch_size): unordered_dict_of_arrays = self.run_one_epoch() # there may already be an 'index' column, in which case from_ordereddict) # below will complain because it wants to generate a new one. # for now, just remove it. # TODO(soergel): preserve index history, potentially many levels deep del unordered_dict_of_arrays["index"] # the order of the columns in this dict is arbitrary; we just need it to # remain consistent. ordered_dict_of_arrays = collections.OrderedDict(unordered_dict_of_arrays) return TensorFlowDataFrame.from_ordereddict(ordered_dict_of_arrays, batch_size=batch_size) def batch(self, batch_size, shuffle=False, num_threads=1, queue_capacity=None, min_after_dequeue=None, seed=None): """Resize the batches in the `DataFrame` to the given `batch_size`. Args: batch_size: desired batch size. shuffle: whether records should be shuffled. Defaults to true. num_threads: the number of enqueueing threads. queue_capacity: capacity of the queue that will hold new batches. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` with `batch_size` rows. """ column_names = list(self._columns.keys()) if shuffle: batcher = batch.ShuffleBatch(batch_size, output_names=column_names, num_threads=num_threads, queue_capacity=queue_capacity, min_after_dequeue=min_after_dequeue, seed=seed) else: batcher = batch.Batch(batch_size, output_names=column_names, num_threads=num_threads, queue_capacity=queue_capacity) batched_series = batcher(list(self._columns.values())) dataframe = type(self)() dataframe.assign(**(dict(zip(column_names, batched_series)))) return dataframe @classmethod def _from_csv_base(cls, filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed): """Create a `DataFrame` from CSV files. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. get_default_values: a function that produces a list of default values for each column, given the column names. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ filenames = _expand_file_names(filepatterns) if not filenames: raise ValueError("No matching file names.") if column_names is None: if not has_header: raise ValueError("If column_names is None, has_header must be true.") with gfile.GFile(filenames[0]) as f: column_names = csv.DictReader(f).fieldnames if "index" in column_names: raise ValueError( "'index' is reserved and can not be used for a column name.") default_values = get_default_values(column_names) reader_kwargs = {"skip_header_lines": (1 if has_header else 0)} index, value = reader_source.TextFileSource( filenames, reader_kwargs=reader_kwargs, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, num_threads=num_threads, seed=seed)() parser = csv_parser.CSVParser(column_names, default_values) parsed = parser(value) column_dict = parsed._asdict() column_dict["index"] = index dataframe = cls() dataframe.assign(**column_dict) return dataframe @classmethod def from_csv(cls, filepatterns, default_values, has_header=True, column_names=None, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from CSV files. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. default_values: a list of default values for each column. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ def get_default_values(column_names): # pylint: disable=unused-argument return default_values return cls._from_csv_base(filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed) @classmethod def from_csv_with_feature_spec(cls, filepatterns, feature_spec, has_header=True, column_names=None, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from CSV files, given a feature_spec. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. feature_spec: a dict mapping column names to `FixedLenFeature` or `VarLenFeature`. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ def get_default_values(column_names): return [_get_default_value(feature_spec[name]) for name in column_names] dataframe = cls._from_csv_base(filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed) # replace the dense columns with sparse ones in place in the dataframe for name in dataframe.columns(): if name != "index" and isinstance(feature_spec[name], parsing_ops.VarLenFeature): strip_value = _get_default_value(feature_spec[name]) (dataframe[name],) = sparsify.Sparsify(strip_value)(dataframe[name]) return dataframe @classmethod def from_examples(cls, filepatterns, features, reader_cls=io_ops.TFRecordReader, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from `tensorflow.Example`s. Args: filepatterns: a list of file patterns containing `tensorflow.Example`s. features: a dict mapping feature names to `VarLenFeature` or `FixedLenFeature`. reader_cls: a subclass of `tensorflow.ReaderBase` that will be used to read the `Example`s. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with `Example`s from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ filenames = _expand_file_names(filepatterns) if not filenames: raise ValueError("No matching file names.") if "index" in features: raise ValueError( "'index' is reserved and can not be used for a feature name.") index, record = reader_source.ReaderSource( reader_cls, filenames, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, num_threads=num_threads, seed=seed)() parser = example_parser.ExampleParser(features) parsed = parser(record) column_dict = parsed._asdict() column_dict["index"] = index dataframe = cls() dataframe.assign(**column_dict) return dataframe @classmethod def from_pandas(cls, pandas_dataframe, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="pandas_data"): """Create a `tf.learn.DataFrame` from a `pandas.DataFrame`. Args: pandas_dataframe: `pandas.DataFrame` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given `pandas_dataframe`. """ pandas_source = in_memory_source.PandasSource( pandas_dataframe, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(pandas_source()._asdict())) return dataframe @classmethod def from_numpy(cls, numpy_array, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="numpy_data"): """Creates a `tf.learn.DataFrame` from a `numpy.ndarray`. The returned `DataFrame` contains two columns: 'index' and 'value'. The 'value' column contains a row from the array. The 'index' column contains the corresponding row number. Args: numpy_array: `numpy.ndarray` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given array. """ numpy_source = in_memory_source.NumpySource( numpy_array, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(numpy_source()._asdict())) return dataframe @classmethod def from_ordereddict(cls, ordered_dict_of_arrays, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="numpy_data"): """Creates a `tf.learn.DataFrame` from an `OrderedDict` of `numpy.ndarray`. The returned `DataFrame` contains a column for each key of the dict plus an extra 'index' column. The 'index' column contains the row number. Each of the other columns contains a row from the corresponding array. Args: ordered_dict_of_arrays: `OrderedDict` of `numpy.ndarray` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given arrays. Raises: ValueError: `ordered_dict_of_arrays` contains the reserved name 'index'. """ numpy_source = in_memory_source.OrderedDictNumpySource( ordered_dict_of_arrays, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(numpy_source()._asdict())) return dataframe
apache-2.0
pleoni/game-of-life
plot/old/test_perf_mpi/life_perf_compilers.py
1
1863
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from numpy import * import sys import datetime datafile1="life_host_icc.out" datafile2="life_host_gnu.out" datafile3="life_host_pgi.out" if len(sys.argv) > 1: datafile=sys.argv[1] plotfile="compilers_perf_eurora.png" data1 = loadtxt(datafile1) data2 = loadtxt(datafile2) data3 = loadtxt(datafile3) today = datetime.date.today() fig = plt.figure() # apre una nuova figura top = fig.add_subplot(211) bottom = fig.add_subplot(212) ############# TOP ICC_C1000 = data1[where((data1[:,0]==1) & (data1[:,5]==1000) ),:][0] # mpi 1 - Comp 1000 ICC_C0 = data1[where((data1[:,0]==1) & (data1[:,5]==0) ),:][0] # mpi 1 - comp 0 GNU_C1000 = data2[where((data2[:,0]==1) & (data2[:,5]==1000) ),:][0] # mpi 1 - Comp 1000 GNU_C0 = data2[where((data2[:,0]==1) & (data2[:,5]==0) ),:][0] # mpi 1 - comp 0 PGI_C1000 = data3[where((data3[:,0]==1) & (data3[:,5]==1000) ),:][0] # mpi 1 - Comp 1000 PGI_C0 = data3[where((data3[:,0]==1) & (data3[:,5]==0) ),:][0] # mpi 1 - comp 0 top.set_title(str(today) + ' life_hpc2 on eurora - NCOMP=1000') top.grid() top.set_xlabel('Lattice Size') top.set_ylabel('time') #top.set_yscale('log') #top.legend() top.plot(ICC_C1000[:,3],ICC_C1000[:,8],'-xr',GNU_C1000[:,3],GNU_C1000[:,8],'-xg',PGI_C1000[:,3],PGI_C1000[:,8],'-xc'); top.legend(('icc','gnu','pgi'), loc = 'upper left', shadow = False, prop={'size':9}) ############# BOTTOM bottom.set_title(str(today) + ' life_hpc2 on eurora - NCOMP=0') bottom.grid() bottom.set_xlabel('Lattice size') bottom.set_ylabel('time') bottom.plot(ICC_C0[:,3],ICC_C0[:,8],'-xr',GNU_C0[:,3],GNU_C0[:,8],'-xg',PGI_C0[:,3],PGI_C0[:,8],'-xc'); bottom.legend(('icc','gnu','pgi'), loc = 'upper left', shadow = False, prop={'size':9}) plt.subplots_adjust(hspace=0.5) plt.savefig(plotfile) #plt.show()
gpl-2.0
DistrictDataLabs/yellowbrick
yellowbrick/classifier/rocauc.py
1
29053
# yellowbrick.classifier.rocauc # Implements visual ROC/AUC curves for classification evaluation. # # Author: Rebecca Bilbro # Author: Benjamin Bengfort # Author: Neal Humphrey # Created: Tue May 03 18:15:42 2017 -0400 # # Copyright (C) 2016 The scikit-yb developers # For license information, see LICENSE.txt # # ID: rocauc.py [5388065] neal@nhumphrey.com $ """ Implements visual ROC/AUC curves for classification evaluation. """ ########################################################################## ## Imports ########################################################################## import numpy as np from sklearn.metrics import auc, roc_curve from sklearn.preprocessing import label_binarize from sklearn.utils.multiclass import type_of_target from yellowbrick.exceptions import ModelError from yellowbrick.style.palettes import LINE_COLOR from yellowbrick.exceptions import YellowbrickValueError from yellowbrick.classifier.base import ClassificationScoreVisualizer # Dictionary keys for ROCAUC MACRO = "macro" MICRO = "micro" # Target Type Constants BINARY = "binary" MULTICLASS = "multiclass" ########################################################################## ## ROCAUC Visualizer ########################################################################## class ROCAUC(ClassificationScoreVisualizer): """ Receiver Operating Characteristic (ROC) curves are a measure of a classifier's predictive quality that compares and visualizes the tradeoff between the models' sensitivity and specificity. The ROC curve displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one. This leads to another metric, area under the curve (AUC), a computation of the relationship between false positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to inspect the "steepness" of the curve, as this describes the maximization of the true positive rate while minimizing the false positive rate. Generalizing "steepness" usually leads to discussions about convexity, which we do not get into here. Parameters ---------- estimator : estimator A scikit-learn estimator that should be a classifier. If the model is not a classifier, an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted, unless otherwise specified by ``is_fitted``. ax : matplotlib Axes, default: None The axes to plot the figure on. If not specified the current axes will be used (or generated if required). micro : bool, default: True Plot the micro-averages ROC curve, computed from the sum of all true positives and false positives across all classes. Micro is not defined for binary classification problems with estimators with only a decision_function method. macro : bool, default: True Plot the macro-averages ROC curve, which simply takes the average of curves across all classes. Macro is not defined for binary classification problems with estimators with only a decision_function method. per_class : bool, default: True Plot the ROC curves for each individual class. This should be set to false if only the macro or micro average curves are required. For true binary classifiers, setting per_class=False will plot the positive class ROC curve, and per_class=True will use ``1-P(1)`` to compute the curve of the negative class if only a decision_function method exists on the estimator. binary : bool, default: False This argument quickly resets the visualizer for true binary classification by updating the micro, macro, and per_class arguments to False (do not use in conjunction with those other arguments). Note that this is not a true hyperparameter to the visualizer, it just collects other parameters into a single, simpler argument. classes : list of str, defult: None The class labels to use for the legend ordered by the index of the sorted classes discovered in the ``fit()`` method. Specifying classes in this manner is used to change the class names to a more specific format or to label encoded integer classes. Some visualizers may also use this field to filter the visualization for specific classes. For more advanced usage specify an encoder rather than class labels. encoder : dict or LabelEncoder, default: None A mapping of classes to human readable labels. Often there is a mismatch between desired class labels and those contained in the target variable passed to ``fit()`` or ``score()``. The encoder disambiguates this mismatch ensuring that classes are labeled correctly in the visualization. is_fitted : bool or str, default="auto" Specify if the wrapped estimator is already fitted. If False, the estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified. If "auto" (default), a helper method will check if the estimator is fitted before fitting it again. force_model : bool, default: False Do not check to ensure that the underlying estimator is a classifier. This will prevent an exception when the visualizer is initialized but may result in unexpected or unintended behavior. kwargs : dict Keyword arguments passed to the visualizer base classes. Attributes ---------- classes_ : ndarray of shape (n_classes,) The class labels observed while fitting. class_count_ : ndarray of shape (n_classes,) Number of samples encountered for each class during fitting. score_ : float An evaluation metric of the classifier on test data produced when ``score()`` is called. This metric is between 0 and 1 -- higher scores are generally better. For classifiers, this score is usually accuracy, but if micro or macro is specified this returns an F1 score. target_type_ : string Specifies if the detected classification target was binary or multiclass. Notes ----- ROC curves are typically used in binary classification, and in fact the Scikit-Learn ``roc_curve`` metric is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions can arise from unexpected models or outputs. Another important point is the relationship of class labels specified on initialization to those drawn on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique values specified in the target vector to the ``score`` method. To ensure the best quality visualization, do not use a LabelEncoder for this and do not pass in class labels. .. seealso:: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html .. todo:: Allow the class list to filter the curves on the visualization. Examples -------- >>> from yellowbrick.classifier import ROCAUC >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.model_selection import train_test_split >>> data = load_data("occupancy") >>> features = ["temp", "relative humidity", "light", "C02", "humidity"] >>> X_train, X_test, y_train, y_test = train_test_split(X, y) >>> oz = ROCAUC(LogisticRegression()) >>> oz.fit(X_train, y_train) >>> oz.score(X_test, y_test) >>> oz.show() """ def __init__( self, estimator, ax=None, micro=True, macro=True, per_class=True, binary=False, classes=None, encoder=None, is_fitted="auto", force_model=False, **kwargs ): super(ROCAUC, self).__init__( estimator, ax=ax, classes=classes, encoder=encoder, is_fitted=is_fitted, force_model=force_model, **kwargs ) # Set the visual parameters for ROCAUC # NOTE: the binary flag breaks our API since it's really just a meta parameter # for micro, macro, and per_class. We knew this going in, but did it anyway. self.binary = binary if self.binary: self.micro = False self.macro = False self.per_class = False else: self.micro = micro self.macro = macro self.per_class = per_class def fit(self, X, y=None): """ Fit the classification model. """ # The target determines what kind of estimator is fit ttype = type_of_target(y) if ttype.startswith(MULTICLASS): self.target_type_ = MULTICLASS elif ttype.startswith(BINARY): self.target_type_ = BINARY else: raise YellowbrickValueError( ( "{} does not support target type '{}', " "please provide a binary or multiclass single-output target" ).format(self.__class__.__name__, ttype) ) # Fit the model and return self return super(ROCAUC, self).fit(X, y) def score(self, X, y=None): """ Generates the predicted target values using the Scikit-Learn estimator. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features y : ndarray or Series of length n An array or series of target or class values Returns ------- score_ : float Global accuracy unless micro or macro scores are requested. """ # Call super to check if fitted and to compute self.score_ # NOTE: this sets score to the base score if neither macro nor micro super(ROCAUC, self).score(X, y) # Compute the predictions for the test data y_pred = self._get_y_scores(X) if self.target_type_ == BINARY: # For binary, per_class must be True to draw micro/macro curves if (self.micro or self.macro) and not self.per_class: raise ModelError( "no curves will be drawn; ", "set per_class=True or micro=False and macro=False.", ) # For binary, if predictions are returned in shape (n,), micro and macro # curves are not defined if (self.micro or self.macro) and len(y_pred.shape) == 1: raise ModelError( "no curves will be drawn; set binary=True.", ) if self.target_type_ == MULTICLASS: # If it's multiclass classification, at least one of micro, macro, or # per_class must be True if not self.micro and not self.macro and not self.per_class: raise YellowbrickValueError( "no curves will be drawn; specify micro, macro, or per_class" ) # Classes may be label encoded so only use what's in y to compute. # The self.classes_ attribute will be used as names for labels. classes = np.unique(y) n_classes = len(classes) # Store the false positive rate, true positive rate and curve info. self.fpr = dict() self.tpr = dict() self.roc_auc = dict() # If the decision is binary draw only ROC curve for the positive class if self.target_type_ is BINARY and not self.per_class: # In this case predict_proba returns an array of shape (n, 2) which # specifies the probabilities of both the negative and positive classes. if len(y_pred.shape) == 2 and y_pred.shape[1] == 2: self.fpr[BINARY], self.tpr[BINARY], _ = roc_curve(y, y_pred[:, 1]) else: # decision_function returns array of shape (n,), so plot it directly self.fpr[BINARY], self.tpr[BINARY], _ = roc_curve(y, y_pred) self.roc_auc[BINARY] = auc(self.fpr[BINARY], self.tpr[BINARY]) # Per-class binary decisions may have to have the negative class curve computed elif self.target_type_ is BINARY and self.per_class: # draw a curve for class 1 (the positive class) if len(y_pred.shape) == 2 and y_pred.shape[1] == 2: # predict_proba returns array of shape (n, 2), so use # probability of class 1 to compute ROC self.fpr[1], self.tpr[1], _ = roc_curve(y, y_pred[:, 1]) else: # decision_function returns array of shape (n,) self.fpr[1], self.tpr[1], _ = roc_curve(y, y_pred) self.roc_auc[1] = auc(self.fpr[1], self.tpr[1]) # draw a curve for class 0 (the negative class) if len(y_pred.shape) == 2 and y_pred.shape[1] == 2: # predict_proba returns array of shape (n, 2), so use # probability of class 0 to compute ROC self.fpr[0], self.tpr[0], _ = roc_curve(1 - y, y_pred[:, 0]) else: # decision_function returns array of shape (n,). # To draw a ROC curve for class 0 we swap the classes 0 and 1 in y # and reverse classifiers predictions y_pred. self.fpr[0], self.tpr[0], _ = roc_curve(1 - y, -y_pred) self.roc_auc[0] = auc(self.fpr[0], self.tpr[0]) else: # Otherwise compute the ROC curve and ROC area for each class for i, c in enumerate(classes): self.fpr[i], self.tpr[i], _ = roc_curve(y, y_pred[:, i], pos_label=c) self.roc_auc[i] = auc(self.fpr[i], self.tpr[i]) # Compute micro average if self.micro: self._score_micro_average(y, y_pred, classes, n_classes) # Compute macro average if self.macro: self._score_macro_average(n_classes) # Draw the Curves self.draw() # Set score to micro average if specified if self.micro: self.score_ = self.roc_auc[MICRO] # Set score to macro average if not micro if self.macro: self.score_ = self.roc_auc[MACRO] return self.score_ def draw(self): """ Renders ROC-AUC plot. Called internally by score, possibly more than once Returns ------- ax : the axis with the plotted figure """ colors = self.class_colors_[0 : len(self.classes_)] n_classes = len(colors) # If it's a binary decision, plot the single ROC curve if self.target_type_ == BINARY and not self.per_class: self.ax.plot( self.fpr[BINARY], self.tpr[BINARY], label="ROC for binary decision, AUC = {:0.2f}".format( self.roc_auc[BINARY] ), ) # If per-class plotting is requested, plot ROC curves for each class if self.per_class: for i, color in zip(range(n_classes), colors): self.ax.plot( self.fpr[i], self.tpr[i], color=color, label="ROC of class {}, AUC = {:0.2f}".format( self.classes_[i], self.roc_auc[i] ), ) # If requested, plot the ROC curve for the micro average if self.micro: self.ax.plot( self.fpr[MICRO], self.tpr[MICRO], linestyle="--", color=self.class_colors_[len(self.classes_) - 1], label="micro-average ROC curve, AUC = {:0.2f}".format( self.roc_auc["micro"] ), ) # If requested, plot the ROC curve for the macro average if self.macro: self.ax.plot( self.fpr[MACRO], self.tpr[MACRO], linestyle="--", color=self.class_colors_[len(self.classes_) - 1], label="macro-average ROC curve, AUC = {:0.2f}".format( self.roc_auc["macro"] ), ) # Plot the line of no discrimination to compare the curve to. self.ax.plot([0, 1], [0, 1], linestyle=":", c=LINE_COLOR) return self.ax def finalize(self, **kwargs): """ Sets a title and axis labels of the figures and ensures the axis limits are scaled between the valid ROCAUC score values. Parameters ---------- kwargs: generic keyword arguments. Notes ----- Generally this method is called from show and not directly by the user. """ # Set the title and add the legend self.set_title("ROC Curves for {}".format(self.name)) self.ax.legend(loc="lower right", frameon=True) # Set the limits for the ROC/AUC (always between 0 and 1) self.ax.set_xlim([0.0, 1.0]) self.ax.set_ylim([0.0, 1.0]) # Set x and y axis labels self.ax.set_ylabel("True Positive Rate") self.ax.set_xlabel("False Positive Rate") def _get_y_scores(self, X): """ The ``roc_curve`` metric requires target scores that can either be the probability estimates of the positive class, confidence values or non- thresholded measure of decisions (as returned by "decision_function"). This method computes the scores by resolving the estimator methods that retreive these values. .. todo:: implement confidence values metric. Parameters ---------- X : ndarray or DataFrame of shape n x m A matrix of n instances with m features -- generally the test data that is associated with y_true values. """ # The resolution order of scoring functions attrs = ("predict_proba", "decision_function") # Return the first resolved function for attr in attrs: try: method = getattr(self.estimator, attr, None) if method: return method(X) except AttributeError: # Some Scikit-Learn estimators have both probability and # decision functions but override __getattr__ and raise an # AttributeError on access. # Note that because of the ordering of our attrs above, # estimators with both will *only* ever use probability. continue # If we've gotten this far, raise an error raise ModelError( "ROCAUC requires estimators with predict_proba or " "decision_function methods." ) def _score_micro_average(self, y, y_pred, classes, n_classes): """ Compute the micro average scores for the ROCAUC curves. """ # Convert y to binarized array for micro and macro scores y = label_binarize(y, classes=classes) if n_classes == 2: y = np.hstack((1 - y, y)) # Compute micro-average self.fpr[MICRO], self.tpr[MICRO], _ = roc_curve(y.ravel(), y_pred.ravel()) self.roc_auc[MICRO] = auc(self.fpr[MICRO], self.tpr[MICRO]) def _score_macro_average(self, n_classes): """ Compute the macro average scores for the ROCAUC curves. """ # Gather all FPRs all_fpr = np.unique(np.concatenate([self.fpr[i] for i in range(n_classes)])) avg_tpr = np.zeros_like(all_fpr) # Compute the averages per class for i in range(n_classes): avg_tpr += np.interp(all_fpr, self.fpr[i], self.tpr[i]) # Finalize the average avg_tpr /= n_classes # Store the macro averages self.fpr[MACRO] = all_fpr self.tpr[MACRO] = avg_tpr self.roc_auc[MACRO] = auc(self.fpr[MACRO], self.tpr[MACRO]) ########################################################################## ## Quick method for ROCAUC ########################################################################## def roc_auc( estimator, X_train, y_train, X_test=None, y_test=None, ax=None, micro=True, macro=True, per_class=True, binary=False, classes=None, encoder=None, is_fitted="auto", force_model=False, show=True, **kwargs ): """ROCAUC Receiver Operating Characteristic (ROC) curves are a measure of a classifier's predictive quality that compares and visualizes the tradeoff between the models' sensitivity and specificity. The ROC curve displays the true positive rate on the Y axis and the false positive rate on the X axis on both a global average and per-class basis. The ideal point is therefore the top-left corner of the plot: false positives are zero and true positives are one. This leads to another metric, area under the curve (AUC), a computation of the relationship between false positives and true positives. The higher the AUC, the better the model generally is. However, it is also important to inspect the "steepness" of the curve, as this describes the maximization of the true positive rate while minimizing the false positive rate. Generalizing "steepness" usually leads to discussions about convexity, which we do not get into here. Parameters ---------- estimator : estimator A scikit-learn estimator that should be a classifier. If the model is not a classifier, an exception is raised. If the internal model is not fitted, it is fit when the visualizer is fitted, unless otherwise specified by ``is_fitted``. X_train : array-like, 2D The table of instance data or independent variables that describe the outcome of the dependent variable, y. Used to fit the visualizer and also to score the visualizer if test splits are not specified. y_train : array-like, 2D The vector of target data or the dependent variable predicted by X. Used to fit the visualizer and also to score the visualizer if test splits not specified. X_test: array-like, 2D, default: None The table of instance data or independent variables that describe the outcome of the dependent variable, y. Used to score the visualizer if specified. y_test: array-like, 1D, default: None The vector of target data or the dependent variable predicted by X. Used to score the visualizer if specified. ax : matplotlib Axes, default: None The axes to plot the figure on. If not specified the current axes will be used (or generated if required). test_size : float, default=0.2 The percentage of the data to reserve as test data. random_state : int or None, default=None The value to seed the random number generator for shuffling data. micro : bool, default: True Plot the micro-averages ROC curve, computed from the sum of all true positives and false positives across all classes. Micro is not defined for binary classification problems with estimators with only a decision_function method. macro : bool, default: True Plot the macro-averages ROC curve, which simply takes the average of curves across all classes. Macro is not defined for binary classification problems with estimators with only a decision_function method. per_class : bool, default: True Plot the ROC curves for each individual class. This should be set to false if only the macro or micro average curves are required. For true binary classifiers, setting per_class=False will plot the positive class ROC curve, and per_class=True will use ``1-P(1)`` to compute the curve of the negative class if only a decision_function method exists on the estimator. binary : bool, default: False This argument quickly resets the visualizer for true binary classification by updating the micro, macro, and per_class arguments to False (do not use in conjunction with those other arguments). Note that this is not a true hyperparameter to the visualizer, it just collects other parameters into a single, simpler argument. classes : list of str, defult: None The class labels to use for the legend ordered by the index of the sorted classes discovered in the ``fit()`` method. Specifying classes in this manner is used to change the class names to a more specific format or to label encoded integer classes. Some visualizers may also use this field to filter the visualization for specific classes. For more advanced usage specify an encoder rather than class labels. encoder : dict or LabelEncoder, default: None A mapping of classes to human readable labels. Often there is a mismatch between desired class labels and those contained in the target variable passed to ``fit()`` or ``score()``. The encoder disambiguates this mismatch ensuring that classes are labeled correctly in the visualization. is_fitted : bool or str, default="auto" Specify if the wrapped estimator is already fitted. If False, the estimator will be fit when the visualizer is fit, otherwise, the estimator will not be modified. If "auto" (default), a helper method will check if the estimator is fitted before fitting it again. force_model : bool, default: False Do not check to ensure that the underlying estimator is a classifier. This will prevent an exception when the visualizer is initialized but may result in unexpected or unintended behavior. show: bool, default: True If True, calls ``show()``, which in turn calls ``plt.show()`` however you cannot call ``plt.savefig`` from this signature, nor ``clear_figure``. If False, simply calls ``finalize()`` kwargs : dict Keyword arguments passed to the visualizer base classes. Notes ----- ROC curves are typically used in binary classification, and in fact the Scikit-Learn ``roc_curve`` metric is only able to perform metrics for binary classifiers. As a result it is necessary to binarize the output or to use one-vs-rest or one-vs-all strategies of classification. The visualizer does its best to handle multiple situations, but exceptions can arise from unexpected models or outputs. Another important point is the relationship of class labels specified on initialization to those drawn on the curves. The classes are not used to constrain ordering or filter curves; the ROC computation happens on the unique values specified in the target vector to the ``score`` method. To ensure the best quality visualization, do not use a LabelEncoder for this and do not pass in class labels. .. seealso:: https://bit.ly/2IORWO2 .. todo:: Allow the class list to filter the curves on the visualization. Examples -------- >>> from yellowbrick.classifier import ROCAUC >>> from sklearn.linear_model import LogisticRegression >>> data = load_data("occupancy") >>> features = ["temp", "relative humidity", "light", "C02", "humidity"] >>> X = data[features].values >>> y = data.occupancy.values >>> roc_auc(LogisticRegression(), X, y) Returns ------- viz : ROCAUC Returns the fitted, finalized visualizer object """ # Instantiate the visualizer visualizer = ROCAUC( estimator=estimator, ax=ax, micro=micro, macro=macro, per_class=per_class, binary=binary, classes=classes, encoder=encoder, is_fitted=is_fitted, force_model=force_model, **kwargs ) # Fit and transform the visualizer (calls draw) visualizer.fit(X_train, y_train, **kwargs) # Scores the visualizer with X_test and y_test if provided, # X_train, y_train if not provided if X_test is not None and y_test is not None: visualizer.score(X_test, y_test) else: visualizer.score(X_train, y_train) if show: visualizer.show() else: visualizer.finalize() # Return the visualizer return visualizer
apache-2.0
Wonjuseo/Project101
others/sine_RNN.py
1
4425
import tensorflow as tf import numpy as np from sklearn.model_selection import train_test_split from sklearn.utils import shuffle def sin(x, T=100): return np.sin(2.0*np.pi*x/T) def problem(T=100,ampl=0.05): x = np.arange(0,2*T+1) noise = ampl*np.random.uniform(low=-1.0,high=1.0,size=len(x)) return sin(x) + noise class EarlyStopping(): def __init__(self,patience=0,verbose=0): self._step = 0 self._loss = float('inf') self.patience = patience self.verbose = verbose def validate(self,loss): if self._loss <loss: self._step+=1 if self._step>self.patience: if self.verbose: print('early stopping') return True else: self._step = 0 self._loss = loss return False def inference(x,n_batch,maxlen=None,n_hidden=None,n_out=None): def weight_variable(shape): initial = tf.truncated_normal(shape,stddev=0.01) return tf.Variable(initial) def bias_variable(shape): initial = tf.zeros(shape,dtype=tf.float32) return tf.Variable(initial) cell = tf.contrib.rnn.GRUCell(n_hidden) initial_state = cell.zero_state(n_batch,tf.float32) state = initial_state outputs= [] with tf.variable_scope('RNN'): for t in range(maxlen): if t>0: tf.get_variable_scope().reuse_variables() (cell_output,state) = cell(x[:,t,:],state) outputs.append(cell_output) output = outputs[-1] V = weight_variable([n_hidden,n_out]) c = bias_variable([n_out]) y = tf.matmul(output,V)+c return y def loss(y,t): mse = tf.reduce_mean(tf.square(y-t)) return mse def training(loss): optimizer = tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.9,beta2=0.999) train_step = optimizer.minimize(loss) return train_step T=100 sine_data = problem(T) length = 2*T maxlen = 25 data = [] target = [] for i in range(0,length-maxlen+1): data.append(sine_data[i:i+maxlen]) target.append(sine_data[i+maxlen]) X = np.array(data).reshape(len(data),maxlen,1) # 1 dimension Y = np.array(target).reshape(len(data),1) X = np.zeros((len(data),maxlen,1),dtype=float) Y = np.zeros((len(data),1),dtype=float) for i, seq in enumerate(data): for t, value in enumerate(seq): X[i,t,0] = value Y[i,0] = target[i] train_data = int(len(data)*0.9) test_data = len(data)-train_data X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=test_data) n_in = len(X[0][0]) n_hidden = 20 n_out = len(Y[0]) x = tf.placeholder(tf.float32,shape=[None,maxlen,n_in]) t = tf.placeholder(tf.float32,shape=[None,n_out]) n_batch = tf.placeholder(tf.int32) y = inference(x,n_batch,maxlen=maxlen,n_hidden=n_hidden,n_out=n_out) loss_fun = loss(y,t) train_step = training(loss_fun) epochs = 500 batch_size = 10 init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) n_batches = train_data//batch_size early_stopping = EarlyStopping(patience=10,verbose=1) history = {'val_loss':[],'val_acc':[]} for epoch in range(epochs): X_, Y_ = shuffle(X_train,Y_train) for i in range(n_batches): start = i*batch_size end = start + batch_size sess.run(train_step,feed_dict={x:X_[start:end],t:Y_[start:end],n_batch:batch_size}) val_loss = loss_fun.eval(session=sess,feed_dict={x:X_test,t:Y_test,n_batch:test_data}) history['val_loss'].append(val_loss) print('epochs:',epoch,'validation_loss:',val_loss) #if early_stopping.validate(val_loss): # break truncate = maxlen Z = X[:1] original = [sine_data[i] for i in range(maxlen)] predicted = [None for i in range(maxlen)] for i in range(length-maxlen+1): z_=Z[-1:] y_=y.eval(session=sess,feed_dict={x:Z[-1:],n_batch:1}) sequence_ = np.concatenate((z_.reshape(maxlen,n_in)[1:],y_),axis=0).reshape(1,maxlen,n_in) Z = np.append(Z,sequence_,axis=0) predicted.append(y_.reshape(-1)) import matplotlib.pyplot as plt plt.rc('font',family='serif') plt.figure() plt.plot(problem(T,ampl=0),linestyle='dotted',color='#aaaaaa') plt.plot(original,linestyle='dashed',color='black') plt.plot(predicted,color='black') plt.show()
apache-2.0
Srisai85/scikit-learn
examples/linear_model/plot_iris_logistic.py
283
1678
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logistic Regression 3-class Classifier ========================================================= Show below is a logistic-regression classifiers decision boundaries on the `iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The datapoints are colored according to their labels. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, datasets # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target h = .02 # step size in the mesh logreg = linear_model.LogisticRegression(C=1e5) # we create an instance of Neighbours Classifier and fit the data. logreg.fit(X, Y) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1, figsize=(4, 3)) plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
mjudsp/Tsallis
sklearn/tests/test_random_projection.py
141
14040
from __future__ import division import numpy as np import scipy.sparse as sp from sklearn.metrics import euclidean_distances from sklearn.random_projection import johnson_lindenstrauss_min_dim from sklearn.random_projection import gaussian_random_matrix from sklearn.random_projection import sparse_random_matrix from sklearn.random_projection import SparseRandomProjection from sklearn.random_projection import GaussianRandomProjection from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.exceptions import DataDimensionalityWarning all_sparse_random_matrix = [sparse_random_matrix] all_dense_random_matrix = [gaussian_random_matrix] all_random_matrix = set(all_sparse_random_matrix + all_dense_random_matrix) all_SparseRandomProjection = [SparseRandomProjection] all_DenseRandomProjection = [GaussianRandomProjection] all_RandomProjection = set(all_SparseRandomProjection + all_DenseRandomProjection) # Make some random data with uniformly located non zero entries with # Gaussian distributed values def make_sparse_random_data(n_samples, n_features, n_nonzeros): rng = np.random.RandomState(0) data_coo = sp.coo_matrix( (rng.randn(n_nonzeros), (rng.randint(n_samples, size=n_nonzeros), rng.randint(n_features, size=n_nonzeros))), shape=(n_samples, n_features)) return data_coo.toarray(), data_coo.tocsr() def densify(matrix): if not sp.issparse(matrix): return matrix else: return matrix.toarray() n_samples, n_features = (10, 1000) n_nonzeros = int(n_samples * n_features / 100.) data, data_csr = make_sparse_random_data(n_samples, n_features, n_nonzeros) ############################################################################### # test on JL lemma ############################################################################### def test_invalid_jl_domain(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 1.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, 0.0) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 100, -0.1) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 0, 0.5) def test_input_size_jl_min_dim(): assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) assert_raises(ValueError, johnson_lindenstrauss_min_dim, 3 * [100], 2 * [0.9]) johnson_lindenstrauss_min_dim(np.random.randint(1, 10, size=(10, 10)), 0.5 * np.ones((10, 10))) ############################################################################### # tests random matrix generation ############################################################################### def check_input_size_random_matrix(random_matrix): assert_raises(ValueError, random_matrix, 0, 0) assert_raises(ValueError, random_matrix, -1, 1) assert_raises(ValueError, random_matrix, 1, -1) assert_raises(ValueError, random_matrix, 1, 0) assert_raises(ValueError, random_matrix, -1, 0) def check_size_generated(random_matrix): assert_equal(random_matrix(1, 5).shape, (1, 5)) assert_equal(random_matrix(5, 1).shape, (5, 1)) assert_equal(random_matrix(5, 5).shape, (5, 5)) assert_equal(random_matrix(1, 1).shape, (1, 1)) def check_zero_mean_and_unit_norm(random_matrix): # All random matrix should produce a transformation matrix # with zero mean and unit norm for each columns A = densify(random_matrix(10000, 1, random_state=0)) assert_array_almost_equal(0, np.mean(A), 3) assert_array_almost_equal(1.0, np.linalg.norm(A), 1) def check_input_with_sparse_random_matrix(random_matrix): n_components, n_features = 5, 10 for density in [-1., 0.0, 1.1]: assert_raises(ValueError, random_matrix, n_components, n_features, density=density) def test_basic_property_of_random_matrix(): # Check basic properties of random matrix generation for random_matrix in all_random_matrix: yield check_input_size_random_matrix, random_matrix yield check_size_generated, random_matrix yield check_zero_mean_and_unit_norm, random_matrix for random_matrix in all_sparse_random_matrix: yield check_input_with_sparse_random_matrix, random_matrix random_matrix_dense = \ lambda n_components, n_features, random_state: random_matrix( n_components, n_features, random_state=random_state, density=1.0) yield check_zero_mean_and_unit_norm, random_matrix_dense def test_gaussian_random_matrix(): # Check some statical properties of Gaussian random matrix # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # a_ij ~ N(0.0, 1 / n_components). # n_components = 100 n_features = 1000 A = gaussian_random_matrix(n_components, n_features, random_state=0) assert_array_almost_equal(0.0, np.mean(A), 2) assert_array_almost_equal(np.var(A, ddof=1), 1 / n_components, 1) def test_sparse_random_matrix(): # Check some statical properties of sparse random matrix n_components = 100 n_features = 500 for density in [0.3, 1.]: s = 1 / density A = sparse_random_matrix(n_components, n_features, density=density, random_state=0) A = densify(A) # Check possible values values = np.unique(A) assert_in(np.sqrt(s) / np.sqrt(n_components), values) assert_in(- np.sqrt(s) / np.sqrt(n_components), values) if density == 1.0: assert_equal(np.size(values), 2) else: assert_in(0., values) assert_equal(np.size(values), 3) # Check that the random matrix follow the proper distribution. # Let's say that each element of a_{ij} of A is taken from # # - -sqrt(s) / sqrt(n_components) with probability 1 / 2s # - 0 with probability 1 - 1 / s # - +sqrt(s) / sqrt(n_components) with probability 1 / 2s # assert_almost_equal(np.mean(A == 0.0), 1 - 1 / s, decimal=2) assert_almost_equal(np.mean(A == np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.mean(A == - np.sqrt(s) / np.sqrt(n_components)), 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == 0.0, ddof=1), (1 - 1 / s) * 1 / s, decimal=2) assert_almost_equal(np.var(A == np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) assert_almost_equal(np.var(A == - np.sqrt(s) / np.sqrt(n_components), ddof=1), (1 - 1 / (2 * s)) * 1 / (2 * s), decimal=2) ############################################################################### # tests on random projection transformer ############################################################################### def test_sparse_random_projection_transformer_invalid_density(): for RandomProjection in all_SparseRandomProjection: assert_raises(ValueError, RandomProjection(density=1.1).fit, data) assert_raises(ValueError, RandomProjection(density=0).fit, data) assert_raises(ValueError, RandomProjection(density=-0.1).fit, data) def test_random_projection_transformer_invalid_input(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').fit, [[0, 1, 2]]) assert_raises(ValueError, RandomProjection(n_components=-10).fit, data) def test_try_to_transform_before_fit(): for RandomProjection in all_RandomProjection: assert_raises(ValueError, RandomProjection(n_components='auto').transform, data) def test_too_many_samples_to_find_a_safe_embedding(): data, _ = make_sparse_random_data(1000, 100, 1000) for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=0.1) expected_msg = ( 'eps=0.100000 and n_samples=1000 lead to a target dimension' ' of 5920 which is larger than the original space with' ' n_features=100') assert_raise_message(ValueError, expected_msg, rp.fit, data) def test_random_projection_embedding_quality(): data, _ = make_sparse_random_data(8, 5000, 15000) eps = 0.2 original_distances = euclidean_distances(data, squared=True) original_distances = original_distances.ravel() non_identical = original_distances != 0.0 # remove 0 distances to avoid division by 0 original_distances = original_distances[non_identical] for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', eps=eps, random_state=0) projected = rp.fit_transform(data) projected_distances = euclidean_distances(projected, squared=True) projected_distances = projected_distances.ravel() # remove 0 distances to avoid division by 0 projected_distances = projected_distances[non_identical] distances_ratio = projected_distances / original_distances # check that the automatically tuned values for the density respect the # contract for eps: pairwise distances are preserved according to the # Johnson-Lindenstrauss lemma assert_less(distances_ratio.max(), 1 + eps) assert_less(1 - eps, distances_ratio.min()) def test_SparseRandomProjection_output_representation(): for SparseRandomProjection in all_SparseRandomProjection: # when using sparse input, the projected data can be forced to be a # dense numpy array rp = SparseRandomProjection(n_components=10, dense_output=True, random_state=0) rp.fit(data) assert isinstance(rp.transform(data), np.ndarray) sparse_data = sp.csr_matrix(data) assert isinstance(rp.transform(sparse_data), np.ndarray) # the output can be left to a sparse matrix instead rp = SparseRandomProjection(n_components=10, dense_output=False, random_state=0) rp = rp.fit(data) # output for dense input will stay dense: assert isinstance(rp.transform(data), np.ndarray) # output for sparse output will be sparse: assert sp.issparse(rp.transform(sparse_data)) def test_correct_RandomProjection_dimensions_embedding(): for RandomProjection in all_RandomProjection: rp = RandomProjection(n_components='auto', random_state=0, eps=0.5).fit(data) # the number of components is adjusted from the shape of the training # set assert_equal(rp.n_components, 'auto') assert_equal(rp.n_components_, 110) if RandomProjection in all_SparseRandomProjection: assert_equal(rp.density, 'auto') assert_almost_equal(rp.density_, 0.03, 2) assert_equal(rp.components_.shape, (110, n_features)) projected_1 = rp.transform(data) assert_equal(projected_1.shape, (n_samples, 110)) # once the RP is 'fitted' the projection is always the same projected_2 = rp.transform(data) assert_array_equal(projected_1, projected_2) # fit transform with same random seed will lead to the same results rp2 = RandomProjection(random_state=0, eps=0.5) projected_3 = rp2.fit_transform(data) assert_array_equal(projected_1, projected_3) # Try to transform with an input X of size different from fitted. assert_raises(ValueError, rp.transform, data[:, 1:5]) # it is also possible to fix the number of components and the density # level if RandomProjection in all_SparseRandomProjection: rp = RandomProjection(n_components=100, density=0.001, random_state=0) projected = rp.fit_transform(data) assert_equal(projected.shape, (n_samples, 100)) assert_equal(rp.components_.shape, (100, n_features)) assert_less(rp.components_.nnz, 115) # close to 1% density assert_less(85, rp.components_.nnz) # close to 1% density def test_warning_n_components_greater_than_n_features(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: assert_warns(DataDimensionalityWarning, RandomProjection(n_components=n_features + 1).fit, data) def test_works_with_sparse_data(): n_features = 20 data, _ = make_sparse_random_data(5, n_features, int(n_features / 4)) for RandomProjection in all_RandomProjection: rp_dense = RandomProjection(n_components=3, random_state=1).fit(data) rp_sparse = RandomProjection(n_components=3, random_state=1).fit(sp.csr_matrix(data)) assert_array_almost_equal(densify(rp_dense.components_), densify(rp_sparse.components_))
bsd-3-clause
mugizico/scikit-learn
sklearn/externals/joblib/__init__.py
36
4795
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.0b2' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
nagordon/mechpy
mechpy/composites.py
1
71681
# coding: utf-8 ''' Module for composite material analysis Hyer-Stress Analysis of Fiber-Reinforced Composite Materials Herakovich-Mechanics of Fibrous Composites Daniel-Engineering Mechanics of Composite Materials Kollar-Mechanics of COmposite Structures NASA- Basic Mechancis of Lamianted Composites https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950009349.pdf TODO: * transverse shear stress reddy pg 136 or daniel pg 139 * include line loads (Qx,Qy) for combined loading * calculate capability of panel based on margin ''' #============================================================================== # Import Modules #============================================================================== from __future__ import print_function, division __author__ = 'Neal Gordon <nealagordon@gmail.com>' __date__ = '2016-12-02' __version__ = 0.1 from copy import copy from numpy import pi, zeros, ones, linspace, arange, array, sin, cos, sqrt, pi from numpy.linalg import solve, inv #from scipy import linalg import numpy as np #np.set_printoptions(suppress=False,precision=2) # suppress scientific notation np.set_printoptions(precision=3, linewidth=200)#, threshold=np.inf) import scipy from scipy.spatial import ConvexHull #np.set_printoptions(formatter={'float': lambda x: "{:.2f}".format(x)}) import pandas as pd import sympy as sp from sympy import Function, dsolve, Eq, Derivative, symbols, pprint from sympy.plotting import plot3d #from sympy import cos, sin #sp.init_printing(use_latex='mathjax') #sp.init_printing(wrap_line=False, pretty_print=True) import matplotlib as mpl mpl.rcParams['figure.figsize'] = (8,5) mpl.rcParams['font.size'] = 12 mpl.rcParams['legend.fontsize'] = 14 import matplotlib.pyplot as plt from matplotlib.pyplot import plot,figure,xlim,ylim,title,legend, \ grid, show, xlabel,ylabel, tight_layout from mpl_toolkits.mplot3d import axes3d # if using ipython console, turn off inline plotting #mpl.use('Qt5Agg') # inline plotting from IPython import get_ipython #get_ipython().magic('matplotlib inline') ###disable inline plotting try: get_ipython().magic('matplotlib') except: pass from IPython.display import display import os plt.close('all') #============================================================================== # Functions #============================================================================== def import_matprops(mymaterial=['T300_5208','AL_7075']): ''' import material properties ''' matprops = pd.read_csv(os.path.join(os.path.dirname(__file__), "compositematerials.csv"), index_col=0) if mymaterial==[] or mymaterial=='': print(matprops.columns.tolist()) mat = matprops[mymaterial] #mat.applymap(lambda x:np.float(x)) mat = mat.applymap(lambda x:pd.to_numeric(x, errors='ignore')) return mat def Sf(E1,E2,nu12,G12): '''transversely isptropic compliance matrix. pg 58 herakovich''' nu21 = E2*nu12/E1 S = array([[1/E1, -nu21/E2, 0], [-nu12/E1, 1/E2, 0], [0, 0, 1/G12]]) return S def S6f(E1,E2,E3,nu12,nu13,nu23,G12,G13,G23): ''' daniel pg 74 transversely isotropic compliance matrix. For transversly isotropic E2=E3, nu12=nu13,G12=G13,G23=E2/(2(1+nu23)) ''' S6 = array( [[ 1/E1, -nu12/E1, -nu12/E1, 0, 0, 0], [-nu12/E1, 1/E2, -nu23/E2, 0, 0, 0], [-nu12/E1, -nu23/E2, 1/E2, 0, 0, 0], [ 0, 0, 0, 1/G23, 0, 0], [ 0, 0, 0, 0, 1/G13, 0], [ 0, 0, 0, 0, 0, 1/G12]]) return S6 def C6f(E1,E2,E3,nu12,nu13,nu23,G12,G13,G23): ''' daniel pg 74 transversely isotropic stiffness matrix. ''' C6 = inv(S6f(E1,E2,E3,nu12,nu13,nu23,G12,G13,G23)) return C6 def Qf(E1,E2,nu12,G12): '''transversly isptropic compliance matrix. pg 58 herakovich G12 = E1/(2*(1+nu12)) if isotropic''' nu21 = E2*nu12/E1 Q = array([[E1/(1-nu12*nu21), E2*nu12/(1-nu12*nu21), 0], [ E2*nu12/(1-nu12*nu21), E2/(1-nu12*nu21), 0], [0, 0, G12]]) return Q def T61(th): '''Stress th=ply angle in degrees voight notation for stress tranform. sigma1 = T1 @ sigmax reddy pg 91''' n = sin(th*pi/180) m = cos(th*pi/180) T1 = array( [[m**2, n**2, 0, 0, 0, 2*m*n], [n**2, m**2, 0, 0, 0,-2*m*n], [0, 0, 1, 0, 0, 0], [0, 0, 0, m,-n, 0], [0, 0, 0, n, m, 0], [-m*n, m*n, 0, 0, 0,(m**2-n**2)]]) return T1 def T62(th): '''Strain voight notation for strain transform. epsilon1 = T2 @ epsilonx th=ply angle in degrees reddy pg 91 ''' n = sin(th*pi/180) m = cos(th*pi/180) T2 = array( [[m**2, n**2, 0, 0, 0, m*n], [n**2, m**2, 0, 0, 0,-m*n], [0, 0, 1, 0, 0, 0], [0, 0, 0, m,-n, 0], [0, 0, 0, n, m, 0], [-2*m*n, 2*m*n, 0, 0, 0,(m**2-n**2)]]) return T2 def T1(th): '''Stress Transform for Plane Stress th=ply angle in degrees voight notation for stress tranform. sigma1 = T1 @ sigmax recall T1(th)**-1 == T1(-th)''' n = sin(th*pi/180) m = cos(th*pi/180) T1 = array( [[m**2, n**2, 2*m*n], [n**2, m**2,-2*m*n], [-m*n, m*n,(m**2-n**2)]]) return T1 def T2(th): '''Strain Transform for Plane Stress th=ply angle in degrees voight notation for strain transform. epsilon1 = T2 @ epsilonx''' n = sin(th*pi/180) m = cos(th*pi/180) T2 = array( [[m**2, n**2, m*n], [n**2, m**2,-m*n], [-2*m*n, 2*m*n, (m**2-n**2)]]) return T2 def T1s(th): '''Symbolic Stress Transform for Plane Stress th=ply angle in degrees voight notation for stress tranform. sigma1 = T1 @ sigmax recall T1(th)**-1 == T1(-th)''' n = sp.sin(th*sp.pi/180) m = sp.cos(th*sp.pi/180) T1 = sp.Matrix( [[m**2, n**2, 2*m*n], [n**2, m**2,-2*m*n], [-m*n, m*n,(m**2-n**2)]]) return T1 def T2s(th): '''Symbolic Strain Transform for Plane Stress th=ply angle in degrees voight notation for strain transform. epsilon1 = T2 @ epsilonx''' n = sp.sin(th*sp.pi/180) m = sp.cos(th*sp.pi/180) T2 = sp.Matrix( [[m**2, n**2, m*n], [n**2, m**2,-m*n], [-2*m*n, 2*m*n, (m**2-n**2)]]) return T2 def failure_envelope(): # failure envelopes # max stress criteria # 1 direction in first row # 2 direction in second row # failure strength in compression #Fc = matrix([[-1250.0, -600.0], # [-200.0, -120.0]]) # ksi # ##failure strength in tension #Ft = matrix([[1500, 1000] # [50, 30]]) # ksi # ##Failure strength in shear #Fs = matrix( [100, 70] ) # Shear Fc1 = [-1250, -600] # Compression 1 direction Fc2 = [-200, -120] # Compression 2 direction Ft1 = [1500, 1000] # Tension 1 direction Ft2 = [50, 30] # Tension 2 direction Fs = [100, 70] # Shear # F1 = Ft(1); # F2 = Ft(1); # F6 = Fs(1); for c in range(2):# mattype factor = 1.25 # right plot( [Ft1[c], Ft1[c]], [Fc2[c], Ft2[c]]) # left plot( [Fc1[c], Fc1[c]] , [Fc2[c], Ft2[c]]) # top plot( [Fc1[c], Ft1[c]] , [Ft2[c], Ft2[c]]) # bottom plot( [Fc1[c], Ft1[c]] , [Fc2[c], Fc2[c]]) # center horizontal plot( [Fc1[c], Ft1[c]] , [0, 0]) # center vertical plot( [0, 0] , [Fc2[c], Ft2[c]]) #xlim([min(Fc1) max(Ft1)]*factor) #ylim([min(Fc2) max(Ft2)]*factor) xlabel('$\sigma_1,ksi$') ylabel('$\sigma_2,ksi$') title('failure envelope with Max-Stress Criteria') def material_plots(materials = ['Carbon_cloth_AGP3705H']): ''' plotting composite properties Sf(E1,E2,nu12,G12) ''' # plt.rcParams['figure.figsize'] = (10, 8) # plt.rcParams['font.size'] = 14 # plt.rcParams['legend.fontsize'] = 14 plyangle = arange(-45, 45.1, 0.1) h = 1 # lamina thickness layupname='[0]' mat = import_matprops(materials) Ex = mat[materials[0]].E1 Ey = mat[materials[0]].E2 nuxy = mat[materials[0]].nu12 Gxy = mat[materials[0]].G12 # layupname = '[0, 45, 45, 0]' # Ex= 2890983.38 # Ey= 2844063.06 # nuxy= 0.27 # Gxy= 1129326.25 # h = 0.0600 plt.close('all') S = Sf(Ex,Ey,nuxy,Gxy) C = inv(S) C11 = [(inv(T1(th)) @ C @ T2(th))[0,0] for th in plyangle] C22 = [(inv(T1(th)) @ C @ T2(th))[1,1] for th in plyangle] C33 = [(inv(T1(th)) @ C @ T2(th))[2,2] for th in plyangle] C12 = [(inv(T1(th)) @ C @ T2(th))[0,1] for th in plyangle] Exbar = zeros(len(plyangle)) Eybar = zeros(len(plyangle)) Gxybar = zeros(len(plyangle)) Q = Qf(Ex,Ey,nuxy,Gxy) Qbar = zeros((len(plyangle),3,3)) for i,th in enumerate(plyangle): Qbar[i] = solve(T1(th), Q) @ T2(th) #Qbar = [solve(T1(th),Q) @ T2(th) for th in plyangle] Qbar11 = Qbar[:,0,0] Qbar22 = Qbar[:,1,1] Qbar66 = Qbar[:,2,2] Qbar12 = Qbar[:,0,1] Qbar16 = Qbar[:,0,2] Qbar26 = Qbar[:,1,2] Aij = Qbar*h # laminate Stiffness # | Exbar Eybar Gxybar | # A = | vxybar vyxbar etasxbar | # | etaxsbar etaysbar etasybar | # laminate Comnpliance aij = zeros((len(plyangle),3,3)) for i, _Aij in enumerate(Aij): aij[i] = inv(_Aij) # material properties for whole laminate (Daniel, pg183) Exbar = [1/(h*_aij[0,0]) for _aij in aij] Eybar = [1/(h*_aij[1,1]) for _aij in aij] Gxybar = [1/(h*_aij[2,2]) for _aij in aij] # Global Stress s_xy = array([[100], [10], [5]]) # local ply stress s_12 = np.zeros((3,len(plyangle))) for i,th in enumerate(plyangle): #s_12[:,i] = np.transpose(T1(th) @ s_xy)[0] # local stresses s_12[:,[i]] = T1(th) @ s_xy # Plotting figure()#, figsize=(10,8)) plot(plyangle, C11, plyangle, C22, plyangle, C33, plyangle, C12) legend(['$\overline{C}_{11}$','$\overline{C}_{22}$', '$\overline{C}_{44}$', '$\overline{C}_{66}$']) title('Transversly Isotropic Stiffness properties of carbon fiber T300_5208') xlabel("$\Theta$") ylabel('$\overline{C}_{ii}$, ksi') grid() figure()#, figsize=(10,8)) plot(plyangle, Exbar, label = r"Modulus: $E_x$") plot(plyangle, Eybar, label = r"Modulus: $E_y$") plot(plyangle, Gxybar, label = r"Modulus: $G_{xy}$") title("Constitutive Properties in various angles") xlabel("$\Theta$") ylabel("modulus, psi") legend() grid() figure()#,figsize=(10,8)) plot(plyangle, s_12[0,:], label = '$\sigma_{11},ksi$' ) plot(plyangle, s_12[1,:], label = '$\sigma_{22},ksi$' ) plot(plyangle, s_12[2,:], label = '$\sigma_{12},ksi$' ) legend(loc='lower left') xlabel("$\Theta$") ylabel("Stress, ksi") grid() # plot plyangle as a function of time figure()#,figsize=(10,8)) plot(plyangle,Qbar11, label = "Qbar11") plot(plyangle,Qbar22, label = "Qbar22") plot(plyangle,Qbar66, label = "Qbar66") legend(loc='lower left') xlabel("$\Theta$") ylabel('Q') grid() # plot plyangle as a function of time figure()#,figsize=(10,8)) plot(plyangle,Qbar12, label = "Qbar12") plot(plyangle,Qbar16, label = "Qbar16") plot(plyangle,Qbar26, label = "Qbar26") legend(loc='lower left') xlabel("$\Theta$") ylabel('Q') grid() titlename = 'Laminate Properties varying angle for {} {}'.format(materials[0], layupname) #df = pd.DataFrame({'plyangle':plyangle, 'Exbar':Exbar, 'Eybar':Eybar,'Gxybar':Gxybar}) #print(df) #df.to_csv(titlename+'.csv') plt.figure(figsize=(9,6)) plot(plyangle, Exbar, label = r"Modulus: $E_x$") plot(plyangle, Eybar, label = r"Modulus: $E_y$") plot(plyangle, Gxybar, label = r"Modulus: $G_{xy}$") title(titlename) xlabel("$\Theta$") ylabel("modulus, psi") legend(loc='best') grid() #plt.savefig(titlename+'.png') show() def laminate_gen(lamthk=1.5, symang=[45,0,90], plyratio=2.0, matrixlayers=False, balancedsymmetric=True): ''' ## function created to quickly create laminates based on given parameters lamthk=1.5 # total #thickness of laminate symang = [45,0,90, 30] #symmertic ply angle plyratio=2.0 # lamina/matrix ratio matrixlayers=False # add matrix layers between lamina plys nonsym=False # symmetric mat = material type, as in different plies, matrix layer, uni tapes, etc #ply ratio can be used to vary the ratio of thickness between a matrix ply and lamina ply. if the same thickness is desired, plyratio = 1, if lamina is 2x as thick as matrix plyratio = 2 ''' if matrixlayers: nply = (len(symang)*2+1)*2 nm = nply-len(symang)*2 nf = len(symang)*2 tm = lamthk / (plyratio*nf + nm) tf = tm*plyratio plyangle = zeros(nply//2) mat = 2*ones(nply//2) # orthotropic fiber and matrix = 1, isotropic matrix=2, mat[1:-1:2] = 1 # [2 if x%2 else 1 for x in range(nply//2) ] plyangle[1:-1:2] = symang[:] # make a copy thk = tm*ones(nply//2) thk[2:2:-1] = tf lamang = list(symang) + list(symang[::-1]) plyangle = list(plyangle) + list(plyangle[::-1]) mat = list(mat) + list(mat[::-1]) thk = list(thk) + list(thk[::-1]) else: # no matrix layers, ignore ratio if balancedsymmetric: nply = len(symang)*2 mat = list(3*np.ones(nply)) thk = list(lamthk/nply*np.ones(nply)) lamang = list(symang) + list(symang[::-1]) plyangle = list(symang) + list(symang[::-1]) else: nply = len(symang) mat =[1]*nply thk = list(lamthk/nply*np.ones(nply)) lamang = symang[:] plyangle = symang[:] return thk,plyangle,mat,lamang def make_quasi(n0=4,n45=4): #n0 = 4 #n45 = 13 # #ply0 = [0]*n0 #ply45 = [45]*n45 #plyangle = [] #from itertools import zip_longest #for x,y in zip_longest(ply0,ply45): # if len(plyangle)<min(len(ply0),len(ply45))*2: # plyangle.append(x) # plyangle.append(y) # else: # plyangle.append(x) # plyangle.reverse() # plyangle.append(y) #plyangle = [x for x in plyangle if x is not None] #plyangle ntot = n45+n0 plyangle = [45]*int(n45) for p in [0]*int(n0): plyangle.append(p) plyangle.reverse() return plyangle #@xw.func def laminate_calcs(NM,ek,q0,plyangle,plymatindex,materials,platedim, zoffset,SF,plots,prints): ''' code to compute composite properties, applied mechanical and thermal loads and stress and strain inputs NM # force/moments lbs/in ek # strain, curvature in/in q0 = pressure plyangle # angle for each ply plymatindex # material for each ply materials # list materials used, general outline for computing elastic properties of composites 1) Determine engineering properties of unidirectional laminate. E1, E2, nu12, G12 2) Calculate ply stiffnesses Q11, Q22, Q12, Q66 in the principal/local coordinate system 3) Determine Fiber orientation of each ply 4) Calculate the transformed stiffness Qxy in the global coordinate system 5) Determine the through-thicknesses of each ply 6) Determine the laminate stiffness Matrix (ABD) 7) Calculate the laminate compliance matrix by inverting the ABD matrix 8) Calculate the laminate engineering properties # Stress Strain Relationship for a laminate, with Q=reduced stiffness matrix |sx | |Qbar11 Qbar12 Qbar16| |ex +z*kx | |sy |=|Qbar12 Qbar22 Qbar26|=|ey +z*ky | |sxy| |Qbar16 Qbar26 Qbar66| |exy+z*kxy| # Herakovich pg 84 Qbar = inv(T1) @ Q @ T2 == solve(T1, Q) @ T2 transformation reminders - see Herakovich for details sig1 = T1*sigx sigx = inv(T1)*sig1 eps1 = T2*epsx epsx = inv(T2)*epsx sigx = inv(T1)*Q*T2*epsx Qbar = inv(T1)*Q*T2 Sbar = inv(T2)*inv(Q)*T2 Notes, core transverse direction is G13, ribbon direction is G23 a_width = 50 # plate width (inches or meters) b_length = 50 # laminate length, inches or meters ''' #========================================================================== # Initialize python settings #========================================================================== #get_ipython().magic('matplotlib') plt.close('all') plt.rcParams['figure.figsize'] = (12, 8) plt.rcParams['font.size'] = 13 #plt.rcParams['legend.fontsize'] = 14 #========================================================================== # Define composite properties #========================================================================== assert(len(plyangle)==len(plymatindex)) a_width, b_length = platedim # either apply strains or loads , lb/in Nx_, Ny_, Nxy_, Mx_, My_, Mxy_ = NM NMbarapp = array([[Nx_],[Ny_],[Nxy_],[Mx_],[My_],[Mxy_]]) ex_, ey_, exy_, kx_, ky_, kxy_ = ek epsilonbarapp = array([[ex_],[ey_],[exy_],[kx_],[ky_],[kxy_]]) Ti = 0 # initial temperature (C) Tf = 0 # final temperature (C) #SF = 1.0 # safety factor #========================================================================== # Import Material Properties #========================================================================== mat = import_matprops(materials) #mat = import_matprops(['E-Glass Epoxy cloth','rohacell2lb']) # Herakovich alphaf = lambda mat: array([[mat.alpha1], [mat.alpha2], [0]]) ''' to get ply material info, use as follows alpha = alphaf(mat[materials[plymatindex[i]]]) mat[materials[1]].E2 ''' laminatethk = array([mat[materials[i]].plythk for i in plymatindex ]) nply = len(laminatethk) # number of plies H = np.sum(laminatethk) # plate thickness # area = a_width*H z = zeros(nply+1) zmid = zeros(nply) z[0] = -H/2 for i in range(nply): z[i+1] = z[i] + laminatethk[i] zmid[i] = z[i] + laminatethk[i]/2 #========================================================================== # ABD Matrix Compute #========================================================================== # Reduced stiffness matrix for a plane stress ply in principal coordinates # calcluating Q from the Compliance matrix may cause cancE1ation errors A = zeros((3,3)); B = zeros((3,3)); D = zeros((3,3)) for i in range(nply): # = nply Q = Qf(mat[materials[plymatindex[i]]].E1, mat[materials[plymatindex[i]]].E2, mat[materials[plymatindex[i]]].nu12, mat[materials[plymatindex[i]]].G12 ) Qbar = solve(T1(plyangle[i]), Q) @ T2(plyangle[i]) # inv(T1(plyangle[i])) @ Q @ T2(plyangle[i]) A += Qbar*(z[i+1]-z[i]) # coupling stiffness B += (1/2)*Qbar*(z[i+1]**2-z[i]**2) # bending or flexural laminate stiffness relating moments to curvatures D += (1/3)*Qbar*(z[i+1]**3-z[i]**3) #Cbar6 = T61 @ C6 @ np.transpose(T61) # laminate stiffness matrix ABD = zeros((6,6)) ABD[0:3,0:3] = A ABD[0:3,3:6] = B + zoffset*A ABD[3:6,0:3] = B + zoffset*A ABD[3:6,3:6] = D + 2*zoffset*B + zoffset**2*A # laminatee compliance abcd = inv(ABD) a = abcd[0:3,0:3] #========================================================================== # Laminate Properties #========================================================================== # effective laminate shear coupling coefficients etasxbar = a[0,2]/a[2,2] etasybar = a[1,2]/a[2,2] etaxsbar = a[2,0]/a[0,0] etaysbar = a[2,1]/a[1,1] # laminate engineer properties Exbar = 1 / (H*a[0,0]) Eybar = 1 / (H*a[1,1]) Gxybar = 1 / (H*a[2,2]) nuxybar = -a[0,1]/a[0,0] nuyxbar = -a[0,1]/a[1,1] # TODO: validate results, does not appear to be correct # strain centers, pg 72, NASA-Basic mechanics of lamianted composites # added divide by zero epsilon z_eps0_x = -B[0,0] / (D[0,0] + 1e-16) z_eps0_y = -B[0,1] / (D[0,1] + 1e-16) z_eps0_xy = -B[0,2] / (D[0,2] + 1e-16) z_sc = -B[2,2] / (D[2,2] +1e-16) # shear center # --------------------- Double Check --------------------- # # Laminate compliance matrix # LamComp = array([ [1/Exbar, -nuyxbar/Eybar, etasxbar/Gxybar], # [-nuxybar/Exbar, 1/Eybar , etasybar/Gxybar], # [etaxsbar/Exbar, etaysbar/Eybar, 1/Gxybar]] ) # # Daniel pg 183 # # combines applied loads and applied strains # strain_laminate = LamComp @ Nxyzapplied[:3]/H + strainxyzapplied[:3] # Nxyz = A @ strain_laminate # stress_laminate = Nxyz/H # -------------------------------------------------------- #========================================================================== # Pressure Load #========================================================================== #========================================================================== # pressure displacement and moments #========================================================================== D11,D12,D22,D66 = D[0,0], D[0,1], D[1,1], D[2,2] B11 = B[0,0] A11, A12 = A[0,0], A[0,1] # reddy pg 247 Navier displacement solution for a simply supported plate s = b_length/a_width x = a_width/2 y = b_length/2 # 5.2.8, reddy, or hyer 13.123 terms = 5 w0 = 0 for m in range(1,terms,2): for n in range(1,terms,2): dmn = pi**4/b_length**4 * (D11*m**4*s**4 + 2*(D12 + 2*D66)*m**2*n**2*s**2 + D22*n**4) alpha = m*pi/a_width beta = n*pi/b_length # for uniformly distributed loads, m,n = 1,3,5,... Qmn = 16*q0/(pi**2*m*n) Wmn = Qmn/dmn w0 += Wmn * sin(alpha*x) * sin(beta*y) w0_simplesupport = w0 # 5.2.12a, reddy # mid span moments Mxq=Myq=Mxyq=0 for m in range(1,terms,2): for n in range(1,terms,2): dmn = pi**4/b_length**4 * (D11*m**4*s**4 + 2*(D12 + 2*D66)*m**2*n**2*s**2 + D22*n**4) alpha = m*pi/a_width beta = n*pi/b_length # for uniformly distributed loads, m,n = 1,3,5,... Qmn = 16*q0/(pi**2*m*n) Wmn = Qmn/dmn Mxq += (D11*alpha**2 + D12*beta**2 ) * Wmn * sin(m*pi*x/a_width) * sin(n*pi*y/b_length) Myq += (D12*alpha**2 + D22*beta**2 ) * Wmn * sin(m*pi*x/a_width) * sin(n*pi*y/b_length) Mxyq += alpha*beta*D66 * Wmn * cos(m*pi*x/a_width) * cos(n*pi*y/b_length) Mxyq = -2*Mxyq NMq = [[0],[0],[0],[Mxq],[Myq],[Mxyq]] # hyer, x-pin-pin, y-free-free plate reaction forces, pg 619 # Forces and Moments across the width of the plate A11R = A11*(1-B11**2/(A11*D11)) D11R = D11*(1-B11**2/(A11*D11)) Nxq0 = lambda x: B11/D11 * q0 * a_width**2 /12 Nyq0 = lambda x: B11 * A12*q0 * a_width**2 / (D11*A11R*12) * (6*(x/a_width)**2-1/2) Nxyq0 = lambda x: 0 Mxq0 = lambda x: q0 * a_width**2/8 * (1-4*(x/a_width)**2) Myq0 = lambda x: D12 * q0 * a_width**2 / (D11R*8) * ((1-2*B11**2/(3*A11*D11))-(4*(x/a_width)**2)) Mxyq0 = lambda x: 0 # clamped plate 5.4.11, reddy #w0_clamped = ( 49 * q0*a_width**4 * (x/a_width - (x/a_width)**2 )**2 * (y/b_length - (y/b_length)**2)**2) / (8 * (7*D11+4*(D12 + 2*D66)*s**2 + 7*D22*s**4) ) # reddy, 5.4.12 w0_clamped = 0.00342 * (q0*a_width**4) / (D11+0.5714*(D12+2*D66)*s**2+D22*s**4) # reddy, 5.4.15 #w0_clamped = 0.00348 * (q0*a_width**4) / (D11*b_length**4+0.6047*(D12+2*D66)*s**2+D22*s**4) # reddy 5.4.15, for isotropic D11=D w0_clamped_isotropic = 0.00134*q0*a_width**4/D11 #========================================================================== # Applied Loads and pressure loads #========================================================================== NMbarapptotal = NMbarapp + NMq + ABD @ epsilonbarapp #========================================================================== # Thermal Loads #========================================================================== ''' if the material is isotropic and unconstrained, then no thermal stresses will be experienced. If there are constraints, then the material will experience thermally induced stresses. As with orthotropic materials, various directions will have different stresses, and when stacked in various orientations, stresses can be unintuitive and complicated. Global Thermal strains are subtracted from applied strains # 1) determine the free unrestrained thermal strains in each layer, alphabar ''' dT = Tf-Ti Nhatth= zeros((3,1)) # unit thermal force in global CS Mhatth = zeros((3,1)) # unit thermal moment in global CS alphabar = zeros((3,nply)) # global ply CTE for i in range(nply): # = nply Q = Qf(mat[materials[plymatindex[i]]].E1, mat[materials[plymatindex[i]]].E2, mat[materials[plymatindex[i]]].nu12, mat[materials[plymatindex[i]]].G12 ) alpha = alphaf(mat[materials[plymatindex[i]]]) Qbar = inv(T1(plyangle[i])) @ Q @ T2(plyangle[i]) alphabar[:,[i]] = solve(T2(plyangle[i]), alpha) #alphabar[:,[i]] = inv(T2(plyangle[i])) @ alpha # Convert to global CS Nhatth += Qbar @ (alphabar[:,[i]])*(z[i+1] - z[i]) # Hyer method for calculating thermal unit loads Mhatth += 0.5*Qbar@(alphabar[:,[i]])*(z[i+1]**2-z[i]**2) NMhatth = np.vstack((Nhatth,Mhatth)) NMbarth = NMhatth*dT # resultant thermal loads # Laminate CTE epsilonhatth = abcd@NMhatth # laminate CTE # applied loads and thermal loads epsilonbarapp = abcd @ NMbarapptotal epsilonbarth = abcd @ NMbarth # resultant thermal strains epsilonbartotal = epsilonbarapp + epsilonbarth # Composite respone from applied mechanical loads and strains. Average # properties only. Used to compare results from tensile test. #epsilon_laminate = abcd@NMbarapptotal #sigma_laminate = ABD@epsilon_laminate/H epsilon_laminate = epsilonbartotal[:] sigma_laminate = ABD@epsilonbartotal/H alpha_laminate = a@Nhatth # determine thermal load and applied loads or strains Hyer pg 435,452 Nx = NMbarapptotal[0,0]*a_width # units kiloNewtons, total load as would be applied in a tensile test Ny = NMbarapptotal[1,0]*b_length # units kN #========================================================================== # Thermal and mechanical local and global stresses at the ply interface #========================================================================== # Declare variables for plotting epsilon_app = zeros((3,2*nply)) sigma_app = zeros((3,2*nply)) epsilonbar_app = zeros((3,2*nply)) sigmabar_app = zeros((3,2*nply)) epsilon_th = zeros((3,2*nply)) sigma_th = zeros((3,2*nply)) epsilonbar_th = zeros((3,2*nply)) sigmabar_th = zeros((3,2*nply)) epsilon = zeros((3,2*nply)) epsilonbar = zeros((3,2*nply)) sigma = zeros((3,2*nply)) sigmabar = zeros((3,2*nply)) for i,k in enumerate(range(0,2*nply,2)): # stress is calcuated at top and bottom of each ply Q = Qf(mat[materials[plymatindex[i]]].E1, mat[materials[plymatindex[i]]].E2, mat[materials[plymatindex[i]]].nu12, mat[materials[plymatindex[i]]].G12 ) Qbar = inv(T1(plyangle[i])) @ Q @ T2(plyangle[i]) ### transverse shear, herakovich pg 254 #Q44 = mat[materials[plymatindex[i]]].G23 #Q55 = mat[materials[plymatindex[i]]].G13 #Qbar44 = Q44*cos(plyangle[i])**2+Q55*sin(plyangle[i])**2 #Qbar55 = Q55*cos(plyangle[i])**2 + Q44*sin(plyangle[i])**2 #Qbar45 = (Q55-Q44)*cos(plyangle[i])*sin(plyangle[i]) #epsilontransverse = array([[gammayz],[gammaxz]]) #sigmatransverse = array([[Qbar44, Qbar45],[Qbar45, Qbar55]]) @ epsilontransverse # Global stresses and strains, applied load only epsbarapp1 = epsilonbarapp[0:3] + z[i]*epsilonbarapp[3:7] epsbarapp2 = epsilonbarapp[0:3] + z[i+1]*epsilonbarapp[3:7] sigbarapp1 = Qbar @ epsbarapp1 sigbarapp2 = Qbar @ epsbarapp2 # Local stresses and strains, appplied load only epsapp1 = T2(plyangle[i]) @ epsbarapp1 epsapp2 = T2(plyangle[i]) @ epsbarapp2 sigapp1 = Q @ epsapp1 sigapp2 = Q @ epsapp2 # Interface Stresses and Strains epsilon_app[:,k:k+2] = np.column_stack((epsapp1,epsapp2)) epsilonbar_app[:,k:k+2] = np.column_stack((epsbarapp1,epsbarapp2)) sigma_app[:,k:k+2] = np.column_stack((sigapp1,sigapp2)) sigmabar_app[:,k:k+2] = np.column_stack((sigbarapp1,sigbarapp2)) # Global stress and strains, thermal loading only epsbarth1 = epsilonbarth[0:3] + z[i]*epsilonbarth[3:7] - dT*alphabar[:,[i]] epsbarth2 = epsilonbarth[0:3] + z[i+1]*epsilonbarth[3:7] - dT*alphabar[:,[i]] sigbarth1 = Qbar @ epsbarth1 sigbarth2 = Qbar @ epsbarth2 # Local stress and strains, thermal loading only epsth1 = T2(plyangle[i]) @ epsbarth1 epsth2 = T2(plyangle[i]) @ epsbarth2 sigth1 = Q @ epsth1 sigth2 = Q @ epsth2 # Interface Stresses and Strains epsilon_th[:,k:k+2] = np.column_stack((epsth1,epsth2)) epsilonbar_th[:,k:k+2] = np.column_stack((epsbarth1+dT*alphabar[:,[i]],epsbarth2+dT*alphabar[:,[i]])) # remove the local thermal loads for plotting. only use local thermal strains for calculating stress sigma_th[:,k:k+2] = np.column_stack((sigth1,sigth2)) sigmabar_th[:,k:k+2] = np.column_stack((sigbarth1,sigbarth2)) # TOTAL global stresses and strains, applied and thermal epsbar1 = epsbarapp1 + epsbarth1 epsbar2 = epsbarapp2 + epsbarth2 sigbar1 = Qbar @ epsbar1 sigbar2 = Qbar @ epsbar2 # TOTAL local stresses and strains , applied and thermal eps1 = T2(plyangle[i]) @ epsbar1 eps2 = T2(plyangle[i]) @ epsbar2 sig1 = Q @ eps1 sig2 = Q @ eps2 # Interface Stresses and Strains epsilon[:,k:k+2] = np.column_stack((eps1,eps2)) epsilonbar[:,k:k+2] = np.column_stack((epsbar1+dT*alphabar[:,[i]],epsbar2+dT*alphabar[:,[i]])) # remove the local thermal loads for plotting. only use local thermal strains for calculating stress sigma[:,k:k+2] = np.column_stack((sig1,sig2)) sigmabar[:,k:k+2] = np.column_stack((sigbar1,sigbar2)) #========================================================================== # Strength Failure Calculations #========================================================================== # Strength Ratio STRENGTHRATIO_MAXSTRESS = zeros((3,2*nply)) # Failure Index FAILUREINDEX_MAXSTRESS = zeros((3,2*nply)) STRENGTHRATIO_TSAIWU = zeros((nply)) for i,k in enumerate(range(0,2*nply,2)): # stress s1 = sigma[0,k] s2 = sigma[1,k] s12 = np.abs(sigma[2,k]) # strength F1 = mat[materials[plymatindex[i]]].F1t if s1 > 0 else mat[materials[plymatindex[i]]].F1c F2 = mat[materials[plymatindex[i]]].F2t if s2 > 0 else mat[materials[plymatindex[i]]].F2c F12 = mat[materials[plymatindex[i]]].F12 # Max Stress failure index ,failure if > 1, then fail, FI = 1/SR FAILUREINDEX_MAXSTRESS[0,k:k+2] = s1 / F1 FAILUREINDEX_MAXSTRESS[1,k:k+2] = s2 / F2 FAILUREINDEX_MAXSTRESS[2,k:k+2] = s12 / F12 # Tsai Wu, failure occures when > 1 F1t = mat[materials[plymatindex[i]]].F1t F1c = mat[materials[plymatindex[i]]].F1c F2t = mat[materials[plymatindex[i]]].F2t F2c = mat[materials[plymatindex[i]]].F2c F12 = mat[materials[plymatindex[i]]].F12 # inhomogeneous Tsai-Wu criterion # from Daniel # http://www2.mae.ufl.edu/haftka/composites/mcdaniel-nonhomogenous.pdf f1 = 1/F1t + 1/F1c f2 = 1/F2t + 1/F2c f11 = -1/(F1t*F1c) f22 = -1/(F2t*F2c) f66 = 1/F12**2 f12 = -0.5*sqrt(f11*f22) #TW = f1*s1 + f2*s2 + f11*s1**2 + f22*s2**2 + f66*s12**2 + 2*f12*s1*s2 # polynomial to solve. Added a machine epsilon to avoid divide by zero errors lam1 = f11*s1**2 + f22*s2**2 + f66*s12**2 + 2*f12*s1*s2 + 1e-16 lam2 = f1*s1 + f2*s2 + 1e-16 lam3 = -1 # smallest positive root roots = array([(-lam2+sqrt(lam2**2-4*lam1*lam3)) / (2*lam1) , (-lam2-sqrt(lam2**2-4*lam1*lam3)) / (2*lam1)] ) STRENGTHRATIO_TSAIWU[i] = roots[roots>=0].min() # strength ratio # f1 = 1/F1t - 1/F1c # f2 = 1/F2t - 1/F2c # f11 = 1/(F1t*F1c) # f22 = 1/(F2t*F2c) # f66 = 1/F12**2 # STRENGTHRATIO_TSAIWU[i] = 2 / (f1*s2 + f2*s2 + sqrt((f1*s1+f2*s2)**2+4*(f11*s1**2+f22*s2**2+f66*s12**2))) ### Apply safety factors FAILUREINDEX_MAXSTRESS = FAILUREINDEX_MAXSTRESS * SF STRENGTHRATIO_TSAIWU = STRENGTHRATIO_TSAIWU / SF ### MARGINSAFETY_TSAIWU = STRENGTHRATIO_TSAIWU-1 # margin of safety # strength ratio for max stress, if < 1, then fail, SR = 1/FI STRENGTHRATIO_MAXSTRESS = 1/(FAILUREINDEX_MAXSTRESS+1e-16) # margin of safety based on max stress criteria MARGINSAFETY_MAXSTRESS = STRENGTHRATIO_MAXSTRESS-1 # minimum margin of safety for Max stress failure MARGINSAFETY_MAXSTRESS_min = MARGINSAFETY_MAXSTRESS.min().min() FAILUREINDEX_MAXSTRESS_max = FAILUREINDEX_MAXSTRESS.max().max() # minimum margin of safety of both Tsai-Wu and Max Stress #MARGINSAFETY_MAXSTRESS_min = np.minimum(MARGINSAFETY_MAXSTRESS.min().min(), MARGINSAFETY_TSAIWU.min() ) # find critial values for all failure criteria #MARGINSAFETY_MAXSTRESS = MARGINSAFETY_MAXSTRESS[~np.isinf(MARGINSAFETY_MAXSTRESS)] # remove inf #MARGINSAFETY_TSAIWU = MARGINSAFETY_TSAIWU[~np.isinf(MARGINSAFETY_TSAIWU)] # remove inf #========================================================================== # Buckling Failure Calculations #========================================================================== ''' Buckling of Clamped plates under shear load, reddy, 5.6.17''' k11 = 537.181*D11/a_width**4 + 324.829*(D12+2*D66)/(a_width**2*b_length**2) + 537.181*D22/b_length**4 k12 = 23.107/(a_width*b_length) k22 = 3791.532*D11/a_width**4 + 4227.255*(D12+2*D66)/(a_width**2*b_length**2) + 3791.532*D22/b_length**4 Nxycrit0 = 1/k12*np.sqrt(k11*k22) FI_clamped_shear_buckling = (abs(Nxy_)*SF) / Nxycrit0 # failure if > 1 MS_clamped_shear_buckling = 1/(FI_clamped_shear_buckling+1e-16)-1 '''Kassapoglous pg 126,137 simply supported plate buckling, assumes Nx>0 is compression Nxcrit0 is the axial load that causes buckling Nxycrit0 is the shear load that cause buckling Nxcrit is the axial load part of a combined load that causes buckling Nxycrit is the shear load part of a combined load that causes buckling ''' # no buckling issues if Nx is positive # buckling calcuations assumes Nx compression is positive. Nx__ = abs(Nx_) if Nx_ < 0 else np.float64(0) Nxy__ = np.float64(0) if Nxy_ == 0 else abs(Nxy_) # assume shear in 1 direction although both directions are ok # Nxy=0 Nxcrit0 = pi**2/a_width**2 * (D11 + 2*(D12 + 2*D66)*a_width**2/b_length**2 + D22*a_width**4/b_length**4) # Nx=0 Nxycrit0 = 9*pi**4*b_length / (32*a_width**3) * (D11 + 2*(D12 + 2*D66)*a_width**2/b_length**2 + D22*a_width**4/b_length**4) FI_Nxy0_buckling, FI_Nx0_buckling, FI_Nx_buckling, FI_Nxy_buckling = 0,0,0,0 if Nx__ == 0 or Nxy__ == 0: FI_Nxy0_buckling = (Nxy__*SF)/Nxycrit0 FI_Nx0_buckling = (Nx__*SF)/Nxcrit0 else: # interaction term k = Nxy__ / Nx__ Nxcrit = min( abs((pi**2/a_width**2) * (D11 + 2*(D12 + 2*D66)*a_width**2/b_length**2 +D22*a_width**4/b_length**4 ) / (2-8192*a_width**2*k**2/(81*b_length**2*pi**4)) * (5 + sqrt(9 + 65536*a_width**2*k**2/(81*pi**4*b_length**2)))) , abs((pi**2/a_width**2) * (D11 + 2*(D12 + 2*D66)*a_width**2/b_length**2 +D22*a_width**4/b_length**4 ) / (2-8192*a_width**2*k**2/(81*b_length**2*pi**4)) * (5 - sqrt(9 + 65536*a_width**2*k**2/(81*pi**4*b_length**2)))) ) Nxycrit = Nxycrit0*sqrt(1-Nxcrit/Nxcrit0) # interactive calc FI_Nx_buckling = (Nx__ *SF)/Nxcrit FI_Nxy_buckling = (Nxy__*SF)/Nxycrit FI_combinedload_simplesupport_buckle = max([FI_Nxy0_buckling, FI_Nx0_buckling, FI_Nx_buckling, FI_Nxy_buckling] ) MS_min_buckling = 1/(FI_combinedload_simplesupport_buckle+1e-16)-1 #========================================================================== # Facesheet Wrinkling #========================================================================== #========================================================================== # principal lamainte stresses #========================================================================== sigma_principal_laminate = np.linalg.eig(array([[sigma_laminate[0,0],sigma_laminate[2,0],0], [sigma_laminate[2,0],sigma_laminate[1,0],0], [0,0,0]]))[0] tauxy_p = sigma_laminate[2,0] sigmax_p = sigma_laminate[0,0] sigmay_p = sigma_laminate[1,0] thetap = 0.5 * np.arctan( 2*tauxy_p / ((sigmax_p-sigmay_p+1e-16))) * 180/np.pi #========================================================================== # Printing Results #========================================================================== if prints: print('--------------- laminate1 Stress analysis of fibers----------') print('(z-) plyangles (z+)'); print(plyangle) print('(z-) plymatindex (z+)'); print(plymatindex) print('ply layers') ; print(z) print('lamiante thickness, H = {:.4f}'.format(H)) #print('x- zero strain laminate center, z_eps0_x = {:.4f}'.format(z_eps0_x)) #print('y- zero strain laminate center, z_eps0_y = {:.4f}'.format(z_eps0_y)) #print('xy-zero strain laminate center, z_eps0_xy = {:.4f}'.format(z_eps0_xy)) #print('shear center laminate center, z_sc = {:.4f}'.format(z_sc)) print('Applied Loads'); print(NM) print('ABD=');print(ABD) print('Ex= {:.2f}'.format(Exbar) ) print('Ey= {:.2f}'.format(Eybar) ) print('nuxy= {:.2f}'.format(nuxybar) ) print('Gxy= {:.2f}'.format(Gxybar) ) print('epsilon_laminate') ; print(epsilon_laminate) print('sigma_laminate') ; print(sigma_laminate) print('sigma_principal_laminate') ; print(sigma_principal_laminate) print('principal_angle = {:.2f} deg'.format(thetap)) print('NMbarapp') ; print(NMbarapp) print('sigma') ; print(sigma) print('\nMax Stress Percent Margin of Safety, failure < 0, minimum = {:.4f}'.format( MARGINSAFETY_MAXSTRESS_min ) ) print(MARGINSAFETY_MAXSTRESS) print('\nTsai-Wu Percent Margin of Safety, failure < 0, minimum = {:.4f}'.format(MARGINSAFETY_TSAIWU.min())) print(MARGINSAFETY_TSAIWU) print('\nmaximum failure index = {:.4f}'.format( FAILUREINDEX_MAXSTRESS_max )) print(FAILUREINDEX_MAXSTRESS) print('\nBuckling MS for Nxy only for clamped edges = {:.4f}\n'.format(MS_clamped_shear_buckling)) # print('---- Individual Buckling Failure Index (fail>1) combined loads and simple support -----') # print('FI_Nxy0 = {:.2f}'.format(FI_Nxy0_buckling) ) # print('FI_Nx0 = {:.2f}'.format(FI_Nx0_buckling) ) # print('---- Interactive Buckling Failure Index (fail>1) combined loads and simple support -----') # print('FI_Nx = {:.2f}'.format(FI_Nx_buckling) ) # print('FI_Nxy = {:.2f}'.format(FI_Nxy_buckling) ) # print('---- Buckling Failure Index (fail>1) combined loads and simple support -----') # print(FI_combinedload_simplesupport_buckle) print('buckling combined loads and simple support MS = {:.4f}\n'.format((MS_min_buckling))) print('Mx_midspan = {:.2f}'.format(Mxq) ) print('My_midspan = {:.2f}'.format(Myq) ) print('Mxy_midspan = {:.2f}'.format(Mxyq) ) print('w0_simplesupport = {:.6f}'.format(w0_simplesupport) ) print('w0_clamped = {:.6f}'.format(w0_clamped) ) print('w0_clamped_isotropic= {:.6f}'.format(w0_clamped_isotropic) ) #display(sp.Matrix(sigmabar)) #========================================================================== # Plotting #========================================================================== if plots: windowwidth = 800 windowheight = 450 zplot = zeros(2*nply) for i,k in enumerate(range(0,2*nply,2)): # = nply zplot[k:k+2] = z[i:i+2] #legendlab = ['total','thermal','applied','laminate'] # global stresses and strains mylw = 1.5 #linewidth # Global Stresses and Strains f1, ((ax1,ax2,ax3), (ax4,ax5,ax6)) = plt.subplots(2,3, sharex='row', sharey=True) f1.canvas.set_window_title('Global Stress and Strain of %s laminate' % (plyangle)) stresslabel = ['$\sigma_x$','$\sigma_y$','$\\tau_{xy}$'] strainlabel = ['$\epsilon_x$','$\epsilon_y$','$\gamma_{xy}$'] for i,ax in enumerate([ax1,ax2,ax3]): ## the top axes ax.set_ylabel('thickness,z') ax.set_xlabel(strainlabel[i]) ax.set_title(' Ply Strain '+strainlabel[i]) ax.ticklabel_format(axis='x', style='sci', scilimits=(1,4)) # scilimits=(-2,2)) ax.plot(epsilonbar[i,:], zplot, color='blue', lw=mylw, label='total') ax.plot(epsilonbar_th[i,:], zplot, color='red', lw=mylw, alpha=0.75, linestyle='--', label='thermal') ax.plot(epsilonbar_app[i,:], zplot, color='green', lw=mylw, alpha=0.75,linestyle='-.', label='applied') ax.plot([epsilon_laminate[i], epsilon_laminate[i]],[np.min(z) , np.max(z)], color='black', lw=mylw, label='laminate') ax.grid(True) #ax.set_xticks(linspace( min(ax.get_xticks()) , max(ax.get_xticks()) ,6)) for i,ax in enumerate([ax4,ax5,ax6]): ax.set_ylabel('thickness,z') ax.set_xlabel(stresslabel[i]) ax.set_title(' Ply Stress '+stresslabel[i]) ax.ticklabel_format(axis='x', style='sci', scilimits=(-3,3)) # scilimits=(-2,2)) ax.plot(sigmabar[i,:], zplot, color='blue', lw=mylw, label='total') ax.plot(sigmabar_th[i,:], zplot, color='red', lw=mylw, alpha=0.75,linestyle='--', label='thermal') ax.plot(sigmabar_app[i,:], zplot, color='green', lw=mylw, alpha=0.75,linestyle='-.', label='applied') ax.plot([sigma_laminate[i], sigma_laminate[i]],[np.min(z) , np.max(z)], color='black', lw=mylw, label='laminate') ax.grid(True) leg = legend(fancybox=True) ; leg.get_frame().set_alpha(0.3) tight_layout() try: mngr = plt.get_current_fig_manager() mngr.window.setGeometry(25,50,windowwidth,windowheight) except: pass f1.show() #plt.savefig('global-stresses-strains.png') ### Local Stresses and Strains f2, ((ax1,ax2,ax3), (ax4,ax5,ax6)) = plt.subplots(2,3, sharex='row', sharey=True) f2.canvas.set_window_title('Local Stress and Strain of %s laminate' % (plyangle)) stresslabel = ['$\sigma_1$','$\sigma_2$','$\\tau_{12}$'] strainlabel = ['$\epsilon_1$','$\epsilon_2$','$\gamma_{12}$'] strengthplot = [ [ [F1t,F1t],[zplot.min(), zplot.max()], [F1c, F1c],[zplot.min(), zplot.max()] ] , [ [F2t,F2t],[zplot.min(), zplot.max()], [F2c, F2c],[zplot.min(), zplot.max()] ] , [ [F12,F12],[zplot.min(), zplot.max()], [-F12,-F12],[zplot.min(), zplot.max()] ] ] for i,ax in enumerate([ax1,ax2,ax3]): ## the top axes ax.set_ylabel('thickness,z') ax.set_xlabel(strainlabel[i]) ax.set_title(' Ply Strain '+strainlabel[i]) ax.ticklabel_format(axis='x', style='sci', scilimits=(1,4)) # scilimits=(-2,2)) ax.plot(epsilon[i,:], zplot, color='blue', lw=mylw, label='total') ax.plot(epsilon_th[i,:], zplot, color='red', lw=mylw, alpha=0.75,linestyle='--', label='thermal') ax.plot(epsilon_app[i,:], zplot, color='green', lw=mylw, alpha=0.75,linestyle='-.', label='applied') ax.plot([epsilon_laminate[i], epsilon_laminate[i]],[np.min(z) , np.max(z)], color='black', lw=mylw, label='laminate') ax.grid(True) for i,ax in enumerate([ax4,ax5,ax6]): ax.set_ylabel('thickness,z') ax.set_xlabel(stresslabel[i]) ax.set_title(' Ply Stress '+stresslabel[i]) ax.ticklabel_format(axis='x', style='sci', scilimits=(-3,3)) # scilimits=(-2,2)) ax.plot(sigma[i,:], zplot, color='blue', lw=mylw, label='total') ax.plot(sigma_th[i,:], zplot, color='red', lw=mylw, alpha=0.75,linestyle='--', label='thermal') ax.plot(sigma_app[i,:], zplot, color='green', lw=mylw, alpha=0.75,linestyle='-.', label='applied') ax.plot([sigma_laminate[i], sigma_laminate[i]],[np.min(z) , np.max(z)], color='black', lw=mylw, label='laminate') ### plots strengths #ax.plot(strengthplot[i][0],strengthplot[i][1], color='yellow', lw=mylw) ax.grid(True) leg = legend(fancybox=True) ; leg.get_frame().set_alpha(0.3) tight_layout() try: mngr = plt.get_current_fig_manager() mngr.window.setGeometry(windowwidth+50,50,windowwidth,windowheight) except: pass f2.show() #plt.savefig('local-stresses-strains.png') ### Failure f3, ((ax1,ax2,ax3)) = plt.subplots(1,3, sharex=True, sharey=True) f3.canvas.set_window_title('Failure Index(failure if > 1), %s laminate' % (plyangle)) stresslabel = ['$\sigma_1/F_1$','$\sigma_2/F_2$','$\\tau_{12}/F_{12}$'] for i,ax in enumerate([ax1,ax2,ax3]): ## the top axes ax.set_ylabel('thickness,z') ax.set_xlabel(stresslabel[i]) #ax.set_title(' Ply Strain at $\epsilon=%f$' % (epsxapp*100)) ax.ticklabel_format(axis='x', style='sci', scilimits=(1,4)) # scilimits=(-2,2)) ax.plot(FAILUREINDEX_MAXSTRESS[i,:], zplot, color='blue', lw=mylw, label='total') ax.grid(True) ax.set_title('Failure Index, fail if > 1') #leg = legend(fancybox=True) ; leg.get_frame().set_alpha(0.3) tight_layout() try: mngr = plt.get_current_fig_manager() mngr.window.setGeometry(25,windowheight+100,windowwidth,windowheight) except: pass f2.show() #plt.savefig('local-stresses-strains.png') ### warpage res = 100 Xplt,Yplt = np.meshgrid(np.linspace(-a_width/2,a_width/2,res), np.linspace(-b_length/2,b_length/2,res)) epsx = epsilon_laminate[0,0] epsy = epsilon_laminate[1,0] epsxy = epsilon_laminate[2,0] kapx = epsilon_laminate[3,0] kapy = epsilon_laminate[4,0] kapxy = epsilon_laminate[5,0] ### dispalcement w = -0.5*(kapx*Xplt**2 + kapy*Yplt**2 + kapxy*Xplt*Yplt) u = epsx*Xplt # pg 451 hyer fig = plt.figure('plate-warpage') ax = fig.gca(projection='3d') ax.plot_surface(Xplt, Yplt, w+zmid[0], cmap=mpl.cm.jet, alpha=0.3) ###ax.auto_scale_xyz([-(a_width/2)*1.1, (a_width/2)*1.1], [(b_length/2)*1.1, (b_length/2)*1.1], [-1e10, 1e10]) ax.set_xlabel('plate width,y-direction,in') ax.set_ylabel('plate length,x-direction, in') ax.set_zlabel('warpage,in') #ax.set_zlim(-0.01, 0.04) #mngr = plt.get_current_fig_manager() ; mngr.window.setGeometry(450,550,600, 450) try: mngr = plt.get_current_fig_manager() mngr.window.setGeometry(windowwidth+50,windowheight+100,windowwidth,windowheight) except: pass plt.show() #plt.savefig('plate-warpage') return MARGINSAFETY_MAXSTRESS_min, FAILUREINDEX_MAXSTRESS_max def plate(): ''' composite plate mechanics TODO - results need vetted ''' #========================================================================== # Initialize #========================================================================== get_ipython().magic('matplotlib') plt.close('all') plt.rcParams['figure.figsize'] = (12, 8) plt.rcParams['font.size'] = 13 #plt.rcParams['legend.fontsize'] = 14 #========================================================================== # Import Material Properties #========================================================================== plythk = 0.0025 plyangle = array([0,90,-45,45,0]) * np.pi/180 # angle for each ply nply = len(plyangle) # number of plies laminatethk = np.zeros(nply) + plythk H = sum(laminatethk) # plate thickness # Create z dimensions of laminate z_ = np.linspace(-H/2, H/2, nply+1) a = 20 # plate width; b = 10 # plate height q0_ = 5.7 # plate load; # Transversly isotropic material properties E1 = 150e9 E2 = 12.1e9 nu12 = 0.248 G12 = 4.4e9 nu23 = 0.458 G23 = E2 / (2*(1+nu23)) # Failure Strengths F1t = 1500e6 F1c = -1250e6 F2t = 50e6 F2c = -200e6 F12t = 100e6 F12c = -100e6 Strength = np.array([[F1t, F1c], [F2t, F2c], [F12t, F12c]]) th = sp.symbols('th') # Stiffnes matrix in material coordinates Cijm6 = inv(Sij6) # reduced stiffness in structural Cij = sp.Matrix([[Cij6[0,0], Cij6[0,1], 0], [Cij6[0,1], Cij6[1,1], 0], [0, 0, Cij6[5,5] ]] ) Tij = sp.Matrix([[cos(th)**2, sin(th)**2, 2*sin(th)*cos(th)], [sin(th)**2, cos(th)**2, -2*sin(th)*cos(th)], [-cos(th)*sin(th), sin(th)*cos(th), (cos(th)**2-sin(th)**2)]]) ## Cylindrical Bending of a laminated plate # displacement in w (z direction) from sympy.abc import x f = Function('f') eq = dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), hint = '1st_homogeneous_coeff_best', simplify=False) pprint(eq) #============================================================================== th,x,y,z,q0,C1,C2,C3,C4,C5,C6,C7,A11,B11,D11,A16,B16 = symbols('th x y z q0 C1 C2 C3 C4 C5 C6 C7 A11 B11 D11 A16 B16') wfun = Function('wfun') ufun = Function('ufun') ## EQ 4.4.1a eq1 = A11*ufun(x).diff(x,2) - B11*wfun(x).diff(x,3) #eq1 = A11*diff(ufun,x,2) - B11*diff(wfun,x,3); # C5 C1 ## EQ 4.4.1b #eq2 = A16*diff(ufun,x,2) - B16*diff(wfun,x,3); # C5 C1 eq2 = A16*ufun(x).diff(x,2) - B16*wfun(x).diff(x,3) ## EQ 4.4.1c #eq3 = B11*diff(ufun,x,3) - D11*diff(wfun,x,4) + q0; eq3 = B11*ufun(x).diff(x,3) - D11*wfun(x).diff(x,4) + q0 ################## python conversion eded here ################################ # solve eq1 eq2 and eq3 to get the w and u functions # displacement in w (z direction) from eq1,eq2,eq3 wfun = A11*q0*x**4 / (4*(6*B11**2-6*A11*D11)) + C1 + C2*x + C3*x**2 + C4*x**3 # C1 C2 C3 C4 # displacement in u (x direction) from eq1,eq2,eq3 ufun = B11*q0*x**3 / (6*(B11**2-A11*D11)) + C7 + x*C6 + 3*B11*x**2*C5/A11 # C5 C6 C7 # Cij6.evalf(subs={th:plyangle[i]}) * (z_[i+1]**3-z_[i]**3) # cond1 -> w(0)=0 at x(0), roller C1sol = sp.solve(wfun.subs(x,0), C1)[0] # = 0 # cond2 -> angle at dw/dx at x(0) is 0, cantilever C2sol = sp.solve(wfun.diff(x).subs(x,0),C2)[0] # = 0 # cond3 -> w(z) = 0 at x(a), roller C4sol1 = sp.solve(wfun.subs({x:a,C1:C1sol,C2:C2sol}),C4)[0] # C3 # cond4 u = 0 at x = 0 C7sol = sp.solve(ufun.subs(x,0),C7)[0] #=0 # u=0 at x = a C5sol1 = sp.solve(ufun.subs({x:a, C7:C7sol}),C5)[0] #C6 # cond 5 EQ 4.4.14a Myy = 0 @ x(a) (Mxx , B11 D11) (Myy, B12 D12) roller no moment C6sol1 = sp.solve( ( ((B11*ufun.diff(x)+0.5*wfun.diff(x)**2 ) - D11*wfun.diff(x,2)).subs({x:a, C1:C1sol, C2:C2sol, C4:C4sol1, C5:C5sol1, C7:C7sol})), C6)[0] # C6 C3 # EQ 4.4.13a, Nxx = 0 @ x(0) roller has no Nxx C6sol2 = sp.solve( ((A11* ufun.diff(x) + 0.5*wfun.diff(x)**2)-B11*wfun.diff(x,2)).subs({x:a, C1:C1sol, C2:C2sol, C4:C4sol1, C5:C5sol1, C7:C7sol}),C6)[0] # C6 C3 C3sol = sp.solve(C6sol1 - C6sol2,C3)[0] C4sol = C4sol1.subs(C3,C3sol) C6sol = sp.simplify(C6sol2.subs(C3,C3sol)) C5sol = sp.simplify(C5sol1.subs(C6,C6sol)) # substitute integration constants with actual values( _ is actual number) C1_ = copy(C1sol) C2_ = copy(C2sol) C7_ = copy(C7sol) C3_ = C3sol.subs({q0:q0_, A11:Aij[0,0], B11:Bij[0,0], D11:Dij[0,0]}) C4_ = C4sol.subs({q0:q0_, A11:Aij[0,0], B11:Bij[0,0], D11:Dij[0,0]}) C5_ = C5sol.subs({q0:q0_, A11:Aij[0,0], B11:Bij[0,0], D11:Dij[0,0]}) C6_ = C6sol.subs({q0:q0_, A11:Aij[0,0], B11:Bij[0,0], D11:Dij[0,0]}) # function w(x) vertical displacement w along z with actual vaules wsol = wfun.subs({q0:q0_, C1:C1_, C2:C2_, C3:C3_, C4:C4_, A11:Aij[0,0], B11:Bij[0,0], D11:Dij[0,0]}) # function u(x) horizontal displacement u along x with actual vaules usol = ufun.subs({q0:q0_, C5:C5_, C6:C6_, C7:C7_, A11:Aij[0,0], B11:Bij[0,0], D11:Dij[0,0]}) # 3d plots plot3d(wsol,(x,0,a), (y,0,b)) plt.xlabel('x') plt.ylabel('y') plt.title('Cylindrical Bending -Displacement of a plate With CLPT') ## Strain calculation # eq 3.3.8 (pg 116 reddy (pdf = 138)) epstotal = array([[usol.diff(x) + 0.5* wsol.diff(x)**5 - z*wsol.diff(x,2)],[0],[0]]) epsx = epstotal[0,0] ## Calculating and plotting Stress in each layer res = 8 # accuracy of finding max and min stress xplot = linspace(0,a,res) yplot = linspace(0,b,res) G0 = sp.symbols('G0') Globalminstress = np.zeros((3, nply)) Globalmaxstress = np.zeros((3, nply)) for kstress in range(3): # stress state s_x, s_y, s_xz plt.figure(kstress+1) for klay in range(nply): # loop through all layers thplot = plyangle[klay] zplot = linspace(z_[klay],z_[klay+1],res) stressplot = np.zeros((len(zplot),len(xplot))) ## Calc Stresses if kstress == 2: # Shear stresses G0_ = -sp.integrate(s_stress[0].diff(x),z)+G0 # solve for shear stresses from s_1 s_xz = sp.solve(G0_,G0)[0] # out of plane shear S_xz does not need to be transformed ?? plot3d(s_xz, (x,0, a), (z, z_[klay], z_[klay+1]) ) else: # normal stresses # Cij = reduced structural stiffness in strictural coordinates 3x3 # stress in structural coordinates s_stress = Cij.subs(th,thplot) @ epstotal # stressin material coordinates m_stress = Tij.subs(th,thplot) @ s_stress #ezsurf(m_stress(kstress),[0,a,z_(klay),z_(klay+1)]) ## find max stress in each layer ii=0 for i in xplot: jj=0 for j in zplot: if kstress == 2: stressplot[ii,jj] = s_xz.subs({x:i, z:j}) else: stressplot[ii,jj] = m_stress[kstress].subs({x:i, z:j}) jj+=jj ii+=ii Globalminstress[kstress,klay] = np.min(stressplot) Globalmaxstress[kstress,klay] = np.max(stressplot) # plt.title('\sigma_%i' % kstress) ## Plot max stress and failure strength plt.figure() for i in range(3): plt.subplot(1, 3, i+1) plt.bar(range(nply), Globalmaxstress[i,:]) plt.bar(range(nply), Globalminstress[i,:]) plt.scatter(range(nply),np.ones(nply) * Strength[i,0]) plt.scatter(range(nply),np.ones(nply) * Strength[i,1]) plt.xlabel('layer') plt.title('\sigma%i' % i) def plate_navier(): ''' composite plate bending with navier solution TODO - code needs to be converted from matlab ''' ## Plate a*b*h simply supported under q = q0 CLPT pass ''' q0,a,b,m,n,x,y = sp.symbols('q0 a b m n x y') Qmn = 4/(a*b)*sp.integrate( sp.integrate( q0*sp.sin(m*pi*x/a)*sp.sin(n*pi*y/b),(x,0,a)) ,(y,0,b)) dmn = pi**4 / b**4 * (DTij(1,1)*m**4*(b/a)**4 + 2* (DTij(1,2)+2*DTij(6,6)) *m**2*n**2*(b/a)**2 + DTij(2,2)*n**4) Wmn = Qmn/dmn; w0 = Wmn * sin(m*pi*x/a) * sin(n*pi*y/b); w0_ = subs(w0,[q0 a b],[-q0_ a_ b_] ); figure w0sum = 0; for n_ = 1:10 for m_ = 1:10 w0sum = w0sum + subs(w0_,[n m],[n_ m_]); end end w0sum; % xplot = linspace(0,a_,res); % yplot = linspace(0,b_,res); ii=1; for i = xplot jj=1; for j = yplot w0plot(ii,jj) = subs(w0sum,[x y],[i j]); jj=jj+1; end ii=ii+1; end surf(xplot,yplot,w0plot) colorbar set(gca,'PlotBoxAspectRatio',[2 1 1]); xlabel('length a, u(x)') ylabel('length b, v(y)') zlabel('w(z)') ''' class laminate(object): """ IN-WORK - laminate object for composite material analysis """ # constructor def __init__(self, plyangle, matindex, matname): # run when laminate is instantiated # loads materials used self.plyangle = plyangle self.matindex = matindex self.matname = matname self.__mat = self.__import_matprops(matname) # create a simple function to handle CTE properties def __alphaf(self, mat): return array([[mat.alpha1], [mat.alpha2], [0]]) self.laminatethk = array([self.__mat[matname[i]].plythk for i in matindex ]) self.nply = len(self.laminatethk) # number of plies self.H = np.sum(self.laminatethk) # plate thickness # area = a_width*H z = zeros(self.nply+1) zmid = zeros(self.nply) z[0] = -self.H/2 for i in range(self.nply): z[i+1] = z[i] + self.laminatethk[i] zmid[i] = z[i] + self.laminatethk[i]/2 self.z = z self.zmid = zmid self.__abdmatrix() def __Qf(self, E1,E2,nu12,G12): '''transversly isptropic compliance matrix. pg 58 herakovich G12 = E1/(2*(1+nu12)) if isotropic''' nu21 = E2*nu12/E1 Q = array([[E1/(1-nu12*nu21), E2*nu12/(1-nu12*nu21), 0], [ E2*nu12/(1-nu12*nu21), E2/(1-nu12*nu21), 0], [0, 0, G12]]) return Q def __T1(self, th): '''Stress Transform for Plane Stress th=ply angle in degrees voight notation for stress tranform. sigma1 = T1 @ sigmax recall T1(th)**-1 == T1(-th)''' n = sin(th*pi/180) m = cos(th*pi/180) T1 = array( [[m**2, n**2, 2*m*n], [n**2, m**2,-2*m*n], [-m*n, m*n,(m**2-n**2)]]) return T1 def __T2(self, th): '''Strain Transform for Plane Stress th=ply angle in degrees voight notation for strain transform. epsilon1 = T2 @ epsilonx''' n = sin(th*pi/180) m = cos(th*pi/180) T2 = array( [[m**2, n**2, m*n], [n**2, m**2,-m*n], [-2*m*n, 2*m*n, (m**2-n**2)]]) return T2 # private method def __abdmatrix(self): '''used within the object but not accessible outside''' #========================================================================== # ABD Matrix Compute #========================================================================== # Reduced stiffness matrix for a plane stress ply in principal coordinates # calcluating Q from the Compliance matrix may cause cancE1ation errors A = zeros((3,3)); B = zeros((3,3)); D = zeros((3,3)) for i in range(self.nply): # = nply Q = self.__Qf(self.__mat[self.matname[self.matindex[i]]].E1, self.__mat[self.matname[self.matindex[i]]].E2, self.__mat[self.matname[self.matindex[i]]].nu12, self.__mat[self.matname[self.matindex[i]]].G12 ) Qbar = inv(self.__T1(self.plyangle[i])) @ Q @ self.__T2(self.plyangle[i]) # solve(T1(plyangle[i]), Q) @ T2(plyangle[i]) A += Qbar*(self.z[i+1]-self.z[i]) # coupling stiffness B += (1/2)*Qbar*(self.z[i+1]**2-self.z[i]**2) # bending or flexural laminate stiffness relating moments to curvatures D += (1/3)*Qbar*(self.z[i+1]**3-self.z[i]**3) # laminate stiffness matrix ABD = zeros((6,6)) ABD[0:3,0:3] = A ABD[0:3,3:6] = B ABD[3:6,0:3] = B ABD[3:6,3:6] = D self.ABD = ABD # method def available_materials(self): '''show the materials available in the library''' matprops = pd.read_csv(os.path.join(os.path.dirname(__file__), "compositematerials.csv"), index_col=0) print('---available materials---') for k in matprops.columns.tolist(): print(k) print('-------------------------') # private method to be used internally def __import_matprops(self, mymaterial=['T300_5208','AL_7075']): ''' import material properties ''' matprops = pd.read_csv(os.path.join(os.path.dirname(__file__), "compositematerials.csv"), index_col=0) if mymaterial==[] or mymaterial=='': print(matprops.columns.tolist()) mat = matprops[mymaterial] #mat.applymap(lambda x:np.float(x)) mat = mat.applymap(lambda x:pd.to_numeric(x, errors='ignore')) return mat def failure_envelope_laminate(Nx,Ny,Nxy,Mx,My,Mxy,q0,mymat,layup): ''' find the miniumu margin give load conditions ''' # create a 45 carbon cloth panel with a 0.5 inch rohacell core _, FAILUREINDEX_MAXSTRESS_max = laminate_calcs(NM=[Nx,Ny,Nxy,Mx,My,Mxy], ek=[0,0,0,0,0,0], q0=q0, plyangle= layup, plymatindex=[0,0,0,0], materials = [mymat], platedim=[10,10], zoffset=0, SF=1.0, plots=0, prints=0) return FAILUREINDEX_MAXSTRESS_max def plot_single_max_failure_loads(mymat='E-Glass Epoxy fabric M10E-3783', mylayup=[0,45,45,0] ): ''' loops through and tries to find a load that is close to 0 and then attempts to find the root (ie margin=0) older version used newton method for root finding scipy.optimize.newton(laminate_min, guess) TODO: Current calculation is stupid using random points to plot. fix it by use FI, failure index instead of margin to generate a linear relationship and envelope ''' #laminate_min = lambda N: failure_envelope_laminate(N,0,0,0,0,0,0) loadnamelist = ['Nx','Ny','Nxy','Mx','My','Mxy','q0'] laminate_min_list = [] laminate_min_list.append(lambda N: failure_envelope_laminate(N,0,0,0,0,0,0,mymat,mylayup)) laminate_min_list.append(lambda N: failure_envelope_laminate(0,N,0,0,0,0,0,mymat,mylayup)) laminate_min_list.append(lambda N: failure_envelope_laminate(0,0,N,0,0,0,0,mymat,mylayup)) laminate_min_list.append(lambda N: failure_envelope_laminate(0,0,0,N,0,0,0,mymat,mylayup)) laminate_min_list.append(lambda N: failure_envelope_laminate(0,0,0,0,N,0,0,mymat,mylayup)) laminate_min_list.append(lambda N: failure_envelope_laminate(0,0,0,0,0,N,0,mymat,mylayup)) laminate_min_list.append(lambda N: failure_envelope_laminate(0,0,0,0,0,0,N,mymat,mylayup)) envelope_loads = [] N_t = array([0,1]) N_c = array([0,-1]) for loadname,laminate_min in zip(loadnamelist,laminate_min_list): # tension FI = [laminate_min(N) for N in N_t] m = (FI[1]-FI[0]) / (N_t[1] - N_t[0]) b = FI[1]-m*N_t[1] N_crit_t = (1-b) / m # compression FI = [laminate_min(N) for N in N_c] m = (FI[1]-FI[0]) / (N_c[1] - N_c[0]) b = FI[1]-m*N_c[1] N_crit_c = (1-b) / m envelope_loads.append('{} = {:.1f} , {:.1f}'.format(loadname,N_crit_t, N_crit_c)) print('------------- enveloped loads for {} {} -----------------'.format(mylayup, mymat)) for k in envelope_loads: print(k) # plot envelope Nx_env = [] Nxy_env = [] laminate_min = lambda N: failure_envelope_laminate(N,0,0,0,0,0,0,mymat,mylayup) # compression FI = [laminate_min(N) for N in N_c] m = (FI[1]-FI[0]) / (N_c[1] - N_c[0]) b = FI[1]-m*N_c[1] Nx_env.append( (1-b) / m ) Nxy_env.append( 0 ) # tension FI = [laminate_min(N) for N in N_t] m = (FI[1]-FI[0]) / (N_t[1] - N_t[0]) b = FI[1]-m*N_t[1] Nx_env.append( (1-b) / m ) Nxy_env.append( 0 ) laminate_min = lambda N: failure_envelope_laminate(0,0,N,0,0,0,0,mymat,mylayup) # compression FI = [laminate_min(N) for N in N_c] m = (FI[1]-FI[0]) / (N_c[1] - N_c[0]) b = FI[1]-m*N_c[1] Nxy_env.append( (1-b) / m ) Nx_env.append( 0 ) # tension FI = [laminate_min(N) for N in N_t] m = (FI[1]-FI[0]) / (N_t[1] - N_t[0]) b = FI[1]-m*N_t[1] Nxy_env.append( (1-b) / m ) Nx_env.append( 0 ) laminate_min_Nx_Nxy_func = lambda Nx,Nxy: failure_envelope_laminate(Nx,0,Nxy,0,0,0,0,mymat,mylayup) n = 500 f = 1.25 # < 1 # arr1 = np.random.randint(Nx_env[0]-abs(Nx_env[0]*f),Nx_env[0]+abs(Nx_env[0])*f,n) # arr2 = np.random.randint(Nx_env[1]-abs(Nx_env[1]*f),Nx_env[1]+abs(Nx_env[1])*f,n) # Nx_r = np.concatenate((arr1, arr2)) # # arr1 = np.random.randint(Nxy_env[2]-abs(Nxy_env[2])*f,Nxy_env[2]+abs(Nxy_env[2])*f,n) # arr2 = np.random.randint(Nxy_env[3]-abs(Nxy_env[3])*f,Nxy_env[3]+abs(Nxy_env[3])*f,n) # Nxy_r = np.concatenate((arr1, arr2)) Nx_r = np.random.randint(Nx_env[0]*f,Nx_env[1]*f, n) Nxy_r = np.random.randint(Nxy_env[2]*f,Nxy_env[3]*f, n) for Nx_ri, Nxy_ri in zip(Nx_r, Nxy_r): FI = laminate_min_Nx_Nxy_func(Nx_ri, Nxy_ri) if FI < 1: Nx_env.append(Nx_ri) Nxy_env.append(Nxy_ri) points = array([ [x,xy] for x,xy in zip(Nx_env, Nxy_env)]) hull = scipy.spatial.ConvexHull(points) plot(points[:,0], points[:,1], 'bo') for simplex in hull.simplices: plot(points[simplex, 0], points[simplex, 1], 'k-') xlabel('Nx, lb/in') ylabel('Nxy, lb/in') title('Failure envelope') return envelope_loads def my_laminate_with_loading(): # loads lbs/in Nx = 50 Ny = 0 Nxy = 0 Mx = 0 My = 0 Mxy = 0 q0 = 0 # pressure # Qx = 0 # Qy = 0 a_width = 50 b_length = 3.14*6.75 ## sandwich laminate # plyangle= [45,45,0, 45,45], # plymatindex=[0, 0, 1, 0, 0], # create a 45 carbon cloth panel with a 0.5 inch rohacell core laminate_calcs(NM=[Nx,Ny,Nxy,Mx,My,Mxy], ek=[0,0,0,0,0,0], q0=q0, plyangle= [0,60,-60,-60,60,0], plymatindex=[0,0,0,0,0,0], materials = ['E-Glass Epoxy Uni'], platedim=[a_width,b_length], zoffset=0, SF=2.0, plots=0, prints=1) if __name__=='__main__': #plot_single_max_failure_loads() #plot_failure_index() my_laminate_with_loading() #material_plots(['E-Glass Epoxy fabric M10E-3783']) #plate() #plot_Nx_Nxy_failure_envelope(['Carbon_cloth_AGP3705H']) #plot_single_max_failure_loads() # # reload modules # import importlib ; importlib.reload # from composites import laminate # plyangle = [0,45] # matindex = [0,0] # matname = ['graphite-polymer_SI'] # lam1 = laminate(plyangle, matindex, matname) # lam1.ABD
mit
guziy/basemap
setup.py
1
6013
from __future__ import (absolute_import, division, print_function) import glob import io import os import sys from setuptools.dist import Distribution if sys.version_info < (2, 6): raise SystemExit("""matplotlib and the basemap toolkit require Python 2.6 or later.""") # Do not require numpy for just querying the package # Taken from the netcdf-python setup file (which took it from h5py setup file). inc_dirs = [] if any('--' + opt in sys.argv for opt in Distribution.display_option_names + ['help-commands', 'help']) or sys.argv[1] == 'egg_info': from setuptools import setup, Extension else: import numpy # Use numpy versions if they are available. from numpy.distutils.core import setup, Extension # append numpy include dir. inc_dirs.append(numpy.get_include()) def get_install_requirements(path): path = os.path.join(os.path.dirname(__file__), path) with io.open(path, encoding='utf-8') as fp: content = fp.read() return [req for req in content.split("\n") if req != '' and not req.startswith('#')] def checkversion(GEOS_dir): """check geos C-API header file (geos_c.h)""" try: f = open(os.path.join(GEOS_dir, 'include', 'geos_c.h')) except IOError: return None geos_version = None for line in f: if line.startswith('#define GEOS_VERSION'): geos_version = line.split()[2] return geos_version # get location of geos lib from environment variable if it is set. if 'GEOS_DIR' in os.environ: GEOS_dir = os.environ.get('GEOS_DIR') else: # set GEOS_dir manually here if automatic detection fails. GEOS_dir = None user_home = os.path.expanduser('~') geos_search_locations = [user_home, os.path.join(user_home, 'local'), '/usr', '/usr/local', '/sw', '/opt', '/opt/local'] if GEOS_dir is None: # if GEOS_dir not set, check a few standard locations. GEOS_dirs = geos_search_locations for direc in GEOS_dirs: geos_version = checkversion(direc) sys.stdout.write('checking for GEOS lib in %s ....\n' % direc) if geos_version is None or geos_version < '"3.1.1"': continue else: sys.stdout.write('GEOS lib (version %s) found in %s\n' %\ (geos_version[1:-1],direc)) GEOS_dir = direc break else: geos_version = checkversion(GEOS_dir) if GEOS_dir is None: raise SystemExit(""" Can't find geos library in standard locations ('%s'). Please install the corresponding packages using your systems software management system (e.g. for Debian Linux do: 'apt-get install libgeos-3.3.3 libgeos-c1 libgeos-dev' and/or set the environment variable GEOS_DIR to point to the location where geos is installed (for example, if geos_c.h is in /usr/local/include, and libgeos_c is in /usr/local/lib, set GEOS_DIR to /usr/local), or edit the setup.py script manually and set the variable GEOS_dir (right after the line that says "set GEOS_dir manually here".""" % "', '".join(geos_search_locations)) else: geos_include_dirs=[os.path.join(GEOS_dir,'include')] + inc_dirs geos_library_dirs=[os.path.join(GEOS_dir,'lib'),os.path.join(GEOS_dir,'lib64')] packages = ['mpl_toolkits','mpl_toolkits.basemap'] namespace_packages = ['mpl_toolkits'] package_dirs = {'':'lib'} # can't install _geoslib in mpl_toolkits.basemap namespace, # or Basemap objects won't be pickleable. # don't use runtime_library_dirs on windows (workaround # for a distutils bug - http://bugs.python.org/issue2437). if sys.platform == 'win32': runtime_lib_dirs = [] else: runtime_lib_dirs = geos_library_dirs extensions = [ Extension("_geoslib",['src/_geoslib.c'], library_dirs=geos_library_dirs, runtime_library_dirs=runtime_lib_dirs, include_dirs=geos_include_dirs, libraries=['geos_c']) ] # Specify all the required mpl data pathout =\ os.path.join('lib',os.path.join('mpl_toolkits',os.path.join('basemap','data'))) datafiles = glob.glob(os.path.join(pathout,'*')) datafiles = [os.path.join('data',os.path.basename(f)) for f in datafiles] package_data = {'mpl_toolkits.basemap':datafiles} install_requires = get_install_requirements("requirements.txt") __version__ = "1.2.1" setup( name = "basemap", version = __version__, description = "Plot data on map projections with matplotlib", long_description = """ An add-on toolkit for matplotlib that lets you plot data on map projections with coastlines, lakes, rivers and political boundaries. See http://matplotlib.org/basemap/users/examples.html for examples of what it can do.""", url = "https://matplotlib.org/basemap/", download_url = "https://github.com/matplotlib/basemap/archive/v{0}rel.tar.gz".format(__version__), author = "Jeff Whitaker", author_email = "jeffrey.s.whitaker@noaa.gov", maintainer = "Ben Root", maintainer_email = "ben.v.root@gmail.com", install_requires = install_requires, platforms = ["any"], license = "OSI Approved", keywords = ["python","plotting","plots","graphs","charts","GIS","mapping","map projections","maps"], classifiers = ["Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering :: Visualization", "Topic :: Software Development :: Libraries :: Python Modules", "Operating System :: OS Independent"], packages = packages, namespace_packages = namespace_packages, package_dir = package_dirs, ext_modules = extensions, package_data = package_data )
gpl-2.0
YuepengGuo/zipline
zipline/history/history.py
11
11707
# # Copyright 2014 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import numpy as np import pandas as pd import re from zipline.errors import IncompatibleHistoryFrequency def parse_freq_str(freq_str): # TODO: Wish we were more aligned with pandas here. num_str, unit_str = re.match('([0-9]+)([A-Za-z]+)', freq_str).groups() return int(num_str), unit_str class Frequency(object): """ Represents how the data is sampled, as specified by the algoscript via units like "1d", "1m", etc. Currently only two frequencies are supported, "1d" and "1m" - "1d" provides data at daily frequency, with the latest bar aggregating the elapsed minutes of the (incomplete) current day - "1m" provides data at minute frequency """ SUPPORTED_FREQUENCIES = frozenset({'1d', '1m'}) MAX_MINUTES = {'m': 1, 'd': 390} MAX_DAYS = {'d': 1} def __init__(self, freq_str, data_frequency, env): if freq_str not in self.SUPPORTED_FREQUENCIES: raise ValueError( "history frequency must be in {supported}".format( supported=self.SUPPORTED_FREQUENCIES, )) # The string the at the algoscript specifies. # Hold onto to use a key for caching. self.freq_str = freq_str # num - The number of units of the frequency. # unit_str - The unit type, e.g. 'd' self.num, self.unit_str = parse_freq_str(freq_str) self.data_frequency = data_frequency self.env = env def next_window_start(self, previous_window_close): """ Get the first minute of the window starting after a window that finished on @previous_window_close. """ if self.unit_str == 'd': return self.next_day_window_start(previous_window_close, self.env, self.data_frequency) elif self.unit_str == 'm': return self.env.next_market_minute(previous_window_close) @staticmethod def next_day_window_start(previous_window_close, env, data_frequency='minute'): """ Get the next day window start after @previous_window_close. This is defined as the first market open strictly greater than @previous_window_close. """ if data_frequency == 'daily': next_open = env.next_trading_day(previous_window_close) else: next_open = env.next_market_minute(previous_window_close) return next_open def window_open(self, window_close): """ For a period ending on `window_end`, calculate the date of the first minute bar that should be used to roll a digest for this frequency. """ if self.unit_str == 'd': return self.day_window_open(window_close, self.num) elif self.unit_str == 'm': return self.minute_window_open(window_close, self.num) def window_close(self, window_start): """ For a period starting on `window_start`, calculate the date of the last minute bar that should be used to roll a digest for this frequency. """ if self.unit_str == 'd': return self.day_window_close(window_start, self.num) elif self.unit_str == 'm': return self.minute_window_close(window_start, self.num) def day_window_open(self, window_close, num_days): """ Get the first minute for a daily window of length @num_days with last minute @window_close. This is calculated by searching backward until @num_days market_closes are encountered. """ open_ = self.env.open_close_window( window_close, 1, offset=-(num_days - 1) ).market_open.iloc[0] if self.data_frequency == 'daily': open_ = pd.tslib.normalize_date(open_) return open_ def minute_window_open(self, window_close, num_minutes): """ Get the first minute for a minutely window of length @num_minutes with last minute @window_close. This is defined as window_close if num_minutes == 1, and otherwise as the N-1st market minute after @window_start. """ if num_minutes == 1: # Short circuit this case. return window_close return self.env.market_minute_window( window_close, count=-num_minutes )[-1] def day_window_close(self, window_start, num_days): """ Get the window close for a daily frequency. If the data_frequency is minute, then this will be the last minute of last day of the window. If the data_frequency is minute, this will be midnight utc of the last day of the window. """ if self.data_frequency != 'daily': return self.env.get_open_and_close( self.env.add_trading_days(num_days - 1, window_start), )[1] return pd.tslib.normalize_date( self.env.add_trading_days(num_days - 1, window_start), ) def minute_window_close(self, window_start, num_minutes): """ Get the last minute for a minutely window of length @num_minutes with first minute @window_start. This is defined as window_start if num_minutes == 1, and otherwise as the N-1st market minute after @window_start. """ if num_minutes == 1: # Short circuit this case. return window_start return self.env.market_minute_window( window_start, count=num_minutes )[-1] def prev_bar(self, dt): """ Returns the previous bar for dt. """ if self.unit_str == 'd': if self.data_frequency == 'minute': def func(dt): return self.env.get_open_and_close( self.env.previous_trading_day(dt))[1] else: func = self.env.previous_trading_day else: func = self.env.previous_market_minute # Cache the function dispatch. self.prev_bar = func return func(dt) @property def max_bars(self): if self.data_frequency == 'daily': return self.max_days else: return self.max_minutes @property def max_days(self): if self.data_frequency != 'daily': raise ValueError('max_days requested in minute mode') return self.MAX_DAYS[self.unit_str] * self.num @property def max_minutes(self): """ The maximum number of minutes required to roll a bar at this frequency. """ if self.data_frequency != 'minute': raise ValueError('max_minutes requested in daily mode') return self.MAX_MINUTES[self.unit_str] * self.num def normalize(self, dt): if self.data_frequency != 'daily': return dt return pd.tslib.normalize_date(dt) def __eq__(self, other): return self.freq_str == other.freq_str def __hash__(self): return hash(self.freq_str) def __repr__(self): return ''.join([str(self.__class__.__name__), "('", self.freq_str, "')"]) class HistorySpec(object): """ Maps to the parameters of the history() call made by the algoscript An object is used here so that get_history calls are not constantly parsing the parameters and provides values for caching and indexing into result frames. """ FORWARD_FILLABLE = frozenset({'price'}) @classmethod def spec_key(cls, bar_count, freq_str, field, ffill): """ Used as a hash/key value for the HistorySpec. """ return "{0}:{1}:{2}:{3}".format( bar_count, freq_str, field, ffill) def __init__(self, bar_count, frequency, field, ffill, env, data_frequency='daily'): # Number of bars to look back. self.bar_count = bar_count if isinstance(frequency, str): frequency = Frequency(frequency, data_frequency, env) if frequency.unit_str == 'm' and data_frequency == 'daily': raise IncompatibleHistoryFrequency( frequency=frequency.unit_str, data_frequency=data_frequency, ) # The frequency at which the data is sampled. self.frequency = frequency # The field, e.g. 'price', 'volume', etc. self.field = field # Whether or not to forward fill nan data. Only has an effect if this # spec's field is in FORWARD_FILLABLE. self._ffill = ffill # Calculate the cache key string once. self.key_str = self.spec_key( bar_count, frequency.freq_str, field, ffill) @property def ffill(self): """ Wrapper around self._ffill that returns False for fields which are not forward-fillable. """ return self._ffill and self.field in self.FORWARD_FILLABLE def __repr__(self): return ''.join([self.__class__.__name__, "('", self.key_str, "')"]) def days_index_at_dt(history_spec, algo_dt, env): """ Get the index of a frame to be used for a get_history call with daily frequency. """ # Get the previous (bar_count - 1) days' worth of market closes. day_delta = (history_spec.bar_count - 1) * history_spec.frequency.num market_closes = env.open_close_window( algo_dt, day_delta, offset=(-day_delta), step=history_spec.frequency.num, ).market_close if history_spec.frequency.data_frequency == 'daily': market_closes = market_closes.apply(pd.tslib.normalize_date) # Append the current algo_dt as the last index value. # Using the 'rawer' numpy array values here because of a bottleneck # that appeared when using DatetimeIndex return np.append(market_closes.values, algo_dt) def minutes_index_at_dt(history_spec, algo_dt, env): """ Get the index of a frame to be used for a get_history_call with minutely frequency. """ # TODO: This is almost certainly going to be too slow for production. return env.market_minute_window( algo_dt, history_spec.bar_count, step=-1, )[::-1] def index_at_dt(history_spec, algo_dt, env): """ Returns index of a frame returned by get_history() with the given history_spec and algo_dt. The resulting index will have @history_spec.bar_count bars, increasing in units of @history_spec.frequency, terminating at the given @algo_dt. Note: The last bar of the returned frame represents an as-of-yet incomplete time window, so the delta between the last and second-to-last bars is usually always less than `@history_spec.frequency` for frequencies greater than 1m. """ frequency = history_spec.frequency if frequency.unit_str == 'd': return days_index_at_dt(history_spec, algo_dt, env) elif frequency.unit_str == 'm': return minutes_index_at_dt(history_spec, algo_dt, env)
apache-2.0
chugunovyar/factoryForBuild
env/lib/python2.7/site-packages/matplotlib/sphinxext/mathmpl.py
12
3822
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import os import sys from hashlib import md5 from docutils import nodes from docutils.parsers.rst import directives import warnings from matplotlib import rcParams from matplotlib.mathtext import MathTextParser rcParams['mathtext.fontset'] = 'cm' mathtext_parser = MathTextParser("Bitmap") # Define LaTeX math node: class latex_math(nodes.General, nodes.Element): pass def fontset_choice(arg): return directives.choice(arg, ['cm', 'stix', 'stixsans']) options_spec = {'fontset': fontset_choice} def math_role(role, rawtext, text, lineno, inliner, options={}, content=[]): i = rawtext.find('`') latex = rawtext[i+1:-1] node = latex_math(rawtext) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node], [] math_role.options = options_spec def math_directive(name, arguments, options, content, lineno, content_offset, block_text, state, state_machine): latex = ''.join(content) node = latex_math(block_text) node['latex'] = latex node['fontset'] = options.get('fontset', 'cm') return [node] # This uses mathtext to render the expression def latex2png(latex, filename, fontset='cm'): latex = "$%s$" % latex orig_fontset = rcParams['mathtext.fontset'] rcParams['mathtext.fontset'] = fontset if os.path.exists(filename): depth = mathtext_parser.get_depth(latex, dpi=100) else: try: depth = mathtext_parser.to_png(filename, latex, dpi=100) except: warnings.warn("Could not render math expression %s" % latex, Warning) depth = 0 rcParams['mathtext.fontset'] = orig_fontset sys.stdout.write("#") sys.stdout.flush() return depth # LaTeX to HTML translation stuff: def latex2html(node, source): inline = isinstance(node.parent, nodes.TextElement) latex = node['latex'] name = 'math-%s' % md5(latex.encode()).hexdigest()[-10:] destdir = os.path.join(setup.app.builder.outdir, '_images', 'mathmpl') if not os.path.exists(destdir): os.makedirs(destdir) dest = os.path.join(destdir, '%s.png' % name) path = '/'.join((setup.app.builder.imgpath, 'mathmpl')) depth = latex2png(latex, dest, node['fontset']) if inline: cls = '' else: cls = 'class="center" ' if inline and depth != 0: style = 'style="position: relative; bottom: -%dpx"' % (depth + 1) else: style = '' return '<img src="%s/%s.png" %s%s/>' % (path, name, cls, style) def setup(app): setup.app = app # Add visit/depart methods to HTML-Translator: def visit_latex_math_html(self, node): source = self.document.attributes['source'] self.body.append(latex2html(node, source)) def depart_latex_math_html(self, node): pass # Add visit/depart methods to LaTeX-Translator: def visit_latex_math_latex(self, node): inline = isinstance(node.parent, nodes.TextElement) if inline: self.body.append('$%s$' % node['latex']) else: self.body.extend(['\\begin{equation}', node['latex'], '\\end{equation}']) def depart_latex_math_latex(self, node): pass app.add_node(latex_math, html=(visit_latex_math_html, depart_latex_math_html), latex=(visit_latex_math_latex, depart_latex_math_latex)) app.add_role('math', math_role) app.add_directive('math', math_directive, True, (0, 0, 0), **options_spec) metadata = {'parallel_read_safe': True, 'parallel_write_safe': True} return metadata
gpl-3.0
pylayers/pylayers
pylayers/antprop/examples/ex_signature.py
3
3411
#!/usr/bin/python #-*- coding:Utf-8 -*- import matplotlib.pyplot as plt import numpy as np import networkx as nx from pylayers.gis.layout import * from pylayers.antprop.signature import * # load the layout graphs def showr2(L,r2d,tx,rx,k,l): col = ['r','b','g','c','m','k','y'] r = r2d[str(k)] pts = r['pt'] sig = r['sig'] fig,ax = showsig(L,sig[:,:,l],tx,rx) sh = np.shape(pts) x = np.hstack((tx[0],pts[0,:,l],rx[0])) y = np.hstack((tx[1],pts[1,:,l],rx[1])) plt.plot(x,y,col[k]) plt.title(sig[:,:,l]) return fig,ax def showr2d(L,r2d,tx,rx): """ r2d['pt'] : nd,ni,nr """ L.display['thin']=True col = ['r','b','g','c','m','k','y'] fig,ax = L.showGs() for k in r2d: r = r2d[k] pts = r['pt'] sh = np.shape(pts) for r in range(sh[2]): x = np.hstack((tx[0],pts[0,:,r],rx[0])) y = np.hstack((tx[1],pts[1,:,r],rx[1])) plt.plot(x,y,col[eval(k)]) return fig,ax def showsig(L,s,tx,rx): L.display['thin']=True fig,ax = L.showGs() L.display['thin']=False L.display['edlabel']=True fig,ax = L.showGs(fig=fig,ax=ax,edlist=s[0,:],width=4) plt.plot(tx[0],tx[1],'x') plt.plot(rx[0],rx[1],'+') plt.title(str(s[0,:])+str(s[1,:])) L.display['edlabel']=False return fig,ax strucname = 'TA-Office' #strucname = 'defstr' L = Layout(strucname+'.ini') L.boundary() print L.ax try: L.dumpr() except: L.build() L.dumpw() #tx = np.array([8., 8., 1.]) #rx = np.array([30., 11., 2.]) #tx = np.array([1., 0., 1.]) #rx = np.array([8., -1.5, 2.]) #L = Layout('TA-Office.str') #L.build() tx = np.array([20, 8, 1]) rx = np.array([35, 6, 2]) S = Signatures(L, tx, rx) print "Calcul signatures" #s1 = S.get_sigslist(tx, rx) s1 = S.run(tx,rx,2) print "Fin calcul signatures" #print "signatures --> rayons " #r2d = S.sigs2rays(s1) r2d = S.rays(s1) ##print "fin signatures --> rayons " ## #r22 = r2d['2'] #pt2 = r22['pt'] #sig2 = r22['sig'] #pt2 = np.swapaxes(pt2,0,2) #pt2 = np.swapaxes(pt2,1,2) #tx2 = np.kron(np.ones(2),tx).reshape(2,3,1) #rx2 = np.kron(np.ones(2),rx).reshape(2,3,1) #tx2[:,2,:]=0 #rx2[:,2,:]=0 #pt = np.concatenate((tx2,pt2,rx2),axis=2) #vsi = pt[:, :, 1:] - pt[:,:,:-1] #si = np.sqrt(np.sum(vsi*vsi, axis=1)) #alpha = np.cumsum(si,axis=1) #c = alpha[:,-1].reshape(2,1) #alpha = alpha/c #pt[:,2,1:]= tx[2]+alpha*(rx[2]-tx[2]) # # showr2d(L,r2d,tx,rx) print "rayons 2D --> rayons3D " #rays3d = S.ray2D3D(r2d) #print "fin rayons 2D --> rayons3D " ## #S.show3(rays=rays3d,strucname=strucname) ## ## ## #s = np.array([[5,1,8],[1,1,2]]) #sig = Signature(s) #rsig = sig.sig2ray(L,tx[0:2],rx[0:2]) #sig.ev(L) #M = sig.image(tx[0:2]) #Y = sig.backtrace(tx[0:2],rx[0:2],M) #plt.plot(M[0,:],M[1,:],'ob') #plt.plot(Y[0,:],Y[1,:],'xk') #fig,ax = showr2(L,r2d,tx[0:2],rx[0:2],3,4) #plt.show() #room8 = L.Gt.node[8] #polyg8 = room8['polyg'] #vnodes8 = room8['vnodes'] #udeg1 = [] #udeg2 = [] #for ik, inode in enumerate(vnodes8): # deg = L.Gs.degree(inode) # if vnodes8[0] < 0: # index = ik / 2 # else: # index = (ik - 1) / 2 # if inode < 0: # if deg == 2: # udeg2.append(index) # if deg == 1: # udeg1.append(index) # warning not used #Gv = polyg8.buildGv(show=True,udeg2=udeg2) #L.showGs() #nx.draw_networkx_edges(L.dGv[8],L.Gs.pos,nx.edges(L.dGv[8],nbunch=[47]))
mit
aldian/tensorflow
tensorflow/python/estimator/inputs/queues/feeding_functions_test.py
59
13552
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests feeding functions using arrays and `DataFrames`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import numpy as np from tensorflow.python.estimator.inputs.queues import feeding_functions as ff from tensorflow.python.platform import test try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False def vals_to_list(a): return { key: val.tolist() if isinstance(val, np.ndarray) else val for key, val in a.items() } class _FeedingFunctionsTestCase(test.TestCase): """Tests for feeding functions.""" def testArrayFeedFnBatchOne(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 1) # cycle around a couple times for x in range(0, 100): i = x % 16 expected = { "index_placeholder": [i], "value_placeholder": [[2 * i, 2 * i + 1]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchFive(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = { "index_placeholder": [15, 0, 1, 2, 3], "value_placeholder": [[30, 31], [0, 1], [2, 3], [4, 5], [6, 7]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchTwoWithOneEpoch(self): array = np.arange(5) + 10 placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, batch_size=2, num_epochs=1) expected = { "index_placeholder": [0, 1], "value_placeholder": [10, 11] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [2, 3], "value_placeholder": [12, 13] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [4], "value_placeholder": [14] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundred(self): array = np.arange(32).reshape([16, 2]) placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, 100) expected = { "index_placeholder": list(range(0, 16)) * 6 + list(range(0, 4)), "value_placeholder": np.arange(32).reshape([16, 2]).tolist() * 6 + [[0, 1], [2, 3], [4, 5], [6, 7]] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testArrayFeedFnBatchOneHundredWithSmallerArrayAndMultipleEpochs(self): array = np.arange(2) + 10 placeholders = ["index_placeholder", "value_placeholder"] aff = ff._ArrayFeedFn(placeholders, array, batch_size=100, num_epochs=2) expected = { "index_placeholder": [0, 1, 0, 1], "value_placeholder": [10, 11, 10, 11], } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOne(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 1) # cycle around a couple times for x in range(0, 100): i = x % 32 expected = { "index_placeholder": [i + 96], "a_placeholder": [32 + i], "b_placeholder": [64 + i] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchFive(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 5) # cycle around a couple times for _ in range(0, 101, 2): aff() expected = { "index_placeholder": [127, 96, 97, 98, 99], "a_placeholder": [63, 32, 33, 34, 35], "b_placeholder": [95, 64, 65, 66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchTwoWithOneEpoch(self): if not HAS_PANDAS: return array1 = np.arange(32, 37) array2 = np.arange(64, 69) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 101)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, batch_size=2, num_epochs=1) expected = { "index_placeholder": [96, 97], "a_placeholder": [32, 33], "b_placeholder": [64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [98, 99], "a_placeholder": [34, 35], "b_placeholder": [66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [100], "a_placeholder": [36], "b_placeholder": [68] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundred(self): if not HAS_PANDAS: return array1 = np.arange(32, 64) array2 = np.arange(64, 96) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 128)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, 100) expected = { "index_placeholder": list(range(96, 128)) * 3 + list(range(96, 100)), "a_placeholder": list(range(32, 64)) * 3 + list(range(32, 36)), "b_placeholder": list(range(64, 96)) * 3 + list(range(64, 68)) } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testPandasFeedFnBatchOneHundredWithSmallDataArrayAndMultipleEpochs(self): if not HAS_PANDAS: return array1 = np.arange(32, 34) array2 = np.arange(64, 66) df = pd.DataFrame({"a": array1, "b": array2}, index=np.arange(96, 98)) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._PandasFeedFn(placeholders, df, batch_size=100, num_epochs=2) expected = { "index_placeholder": [96, 97, 96, 97], "a_placeholder": [32, 33, 32, 33], "b_placeholder": [64, 65, 64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testOrderedDictNumpyFeedFnBatchTwoWithOneEpoch(self): a = np.arange(32, 37) b = np.arange(64, 69) x = {"a": a, "b": b} ordered_dict_x = collections.OrderedDict( sorted(x.items(), key=lambda t: t[0])) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._OrderedDictNumpyFeedFn( placeholders, ordered_dict_x, batch_size=2, num_epochs=1) expected = { "index_placeholder": [0, 1], "a_placeholder": [32, 33], "b_placeholder": [64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [2, 3], "a_placeholder": [34, 35], "b_placeholder": [66, 67] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) expected = { "index_placeholder": [4], "a_placeholder": [36], "b_placeholder": [68] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testOrderedDictNumpyFeedFnLargeBatchWithSmallArrayAndMultipleEpochs(self): a = np.arange(32, 34) b = np.arange(64, 66) x = {"a": a, "b": b} ordered_dict_x = collections.OrderedDict( sorted(x.items(), key=lambda t: t[0])) placeholders = ["index_placeholder", "a_placeholder", "b_placeholder"] aff = ff._OrderedDictNumpyFeedFn( placeholders, ordered_dict_x, batch_size=100, num_epochs=2) expected = { "index_placeholder": [0, 1, 0, 1], "a_placeholder": [32, 33, 32, 33], "b_placeholder": [64, 65, 64, 65] } actual = aff() self.assertEqual(expected, vals_to_list(actual)) def testFillArraySmall(self): a = (np.ones(shape=[32, 32], dtype=np.int32).tolist() + np.ones(shape=[32, 36], dtype=np.int32).tolist()) actual = np.ones(shape=[64, 36], dtype=np.int32) ff._fill_array(actual, a) expected = np.ones(shape=[64, 36], dtype=np.int32) expected[:32, 32:] = 0 self.assertEqual(expected.tolist(), actual.tolist()) def testFillArrayLarge(self): a = (np.ones(shape=[8, 8, 8, 8, 32], dtype=np.int32).tolist() + np.ones(shape=[8, 8, 8, 8, 36], dtype=np.int32).tolist()) actual = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.int32) ff._fill_array(actual, a) expected = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.int32) expected[:8, ..., 32:] = 0 self.assertEqual(expected.tolist(), actual.tolist()) def testFillArraySmallWithSpecifiedValue(self): fill_value = 8 a = (np.ones(shape=[32, 32], dtype=np.int32).tolist() + np.ones(shape=[32, 36], dtype=np.int32).tolist()) actual = np.ones(shape=[64, 36], dtype=np.int32) ff._fill_array(actual, a, fill_value) expected = np.ones(shape=[64, 36], dtype=np.int32) expected[:32, 32:] = fill_value self.assertEqual(expected.tolist(), actual.tolist()) def testFillArrayLargeWithSpecifiedValue(self): fill_value = 8 a = (np.ones(shape=[8, 8, 8, 8, 32], dtype=np.int32).tolist() + np.ones(shape=[8, 8, 8, 8, 36], dtype=np.int32).tolist()) actual = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.int32) ff._fill_array(actual, a, fill_value) expected = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.int32) expected[:8, ..., 32:] = fill_value self.assertEqual(expected.tolist(), actual.tolist()) def testPadIfNeededSmall(self): a = (np.ones(shape=[32, 32], dtype=np.int32).tolist() + np.ones(shape=[32, 36], dtype=np.int32).tolist()) a = list(map(np.array, a)) actual = ff._pad_if_needed(a) expected = np.ones(shape=[64, 36], dtype=np.int32) expected[:32, 32:] = 0 self.assertEqual(expected.tolist(), actual.tolist()) def testPadIfNeededLarge(self): a = (np.ones(shape=[8, 8, 8, 8, 32], dtype=np.int32).tolist() + np.ones(shape=[8, 8, 8, 8, 36], dtype=np.int32).tolist()) a = list(map(np.array, a)) actual = ff._pad_if_needed(a) expected = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.int32) expected[:8, ..., 32:] = 0 self.assertEqual(expected.tolist(), actual.tolist()) def testPadIfNeededSmallWithSpecifiedValue(self): fill_value = 8 a = (np.ones(shape=[32, 32], dtype=np.int32).tolist() + np.ones(shape=[32, 36], dtype=np.int32).tolist()) a = list(map(np.array, a)) actual = ff._pad_if_needed(a, fill_value) expected = np.ones(shape=[64, 36], dtype=np.int32) expected[:32, 32:] = fill_value self.assertEqual(expected.tolist(), actual.tolist()) def testPadIfNeededLargeWithSpecifiedValue(self): fill_value = 8 a = (np.ones(shape=[8, 8, 8, 8, 32], dtype=np.int32).tolist() + np.ones(shape=[8, 8, 8, 8, 36], dtype=np.int32).tolist()) a = list(map(np.array, a)) actual = ff._pad_if_needed(a, fill_value) expected = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.int32) expected[:8, ..., 32:] = fill_value self.assertEqual(expected.tolist(), actual.tolist()) def testPadIfNeededSmallWithSpecifiedNonNumericValue(self): fill_value = False a = (np.ones(shape=[32, 32], dtype=np.bool).tolist() + np.ones(shape=[32, 36], dtype=np.bool).tolist()) a = list(map(np.array, a)) actual = ff._pad_if_needed(a, fill_value) expected = np.ones(shape=[64, 36], dtype=np.bool) expected[:32, 32:] = fill_value self.assertEqual(expected.tolist(), actual.tolist()) def testPadIfNeededLargeWithSpecifiedNonNumericValue(self): fill_value = False a = (np.ones(shape=[8, 8, 8, 8, 32], dtype=np.bool).tolist() + np.ones(shape=[8, 8, 8, 8, 36], dtype=np.bool).tolist()) a = list(map(np.array, a)) actual = ff._pad_if_needed(a, fill_value) expected = np.ones(shape=[16, 8, 8, 8, 36], dtype=np.bool) expected[:8, ..., 32:] = fill_value self.assertEqual(expected.tolist(), actual.tolist()) if __name__ == "__main__": test.main()
apache-2.0
matbra/bokeh
examples/compat/mpl/listcollection.py
34
1602
from matplotlib.collections import LineCollection import matplotlib.pyplot as plt import numpy as np from bokeh import mpl from bokeh.plotting import output_file, show def make_segments(x, y): ''' Create list of line segments from x and y coordinates. ''' points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) return segments def colorline(x, y, colors=None, linewidth=3, alpha=1.0): ''' Plot a line with segments. Optionally, specify segments colors and segments widths. ''' # Make a list of colors cycling through the rgbcmyk series. # You have several ways to input the colors: # colors = ['r','g','b','c','y','m','k'] # colors = ['red','green','blue','cyan','yellow','magenta','black'] # colors = ['#ff0000', '#008000', '#0000ff', '#00bfbf', '#bfbf00', '#bf00bf', '#000000'] # colors = [(1.0, 0.0, 0.0, 1.0), (0.0, 0.5, 0.0, 1.0), (0.0, 0.0, 1.0, 1.0), (0.0, 0.75, 0.75, 1.0), # (0.75, 0.75, 0, 1.0), (0.75, 0, 0.75, 1.0), (0.0, 0.0, 0.0, 1.0)] colors = ['r', 'g', 'b', 'c', 'y', 'm', 'k'] widths = [5, 10, 20, 40, 20, 10, 5] segments = make_segments(x, y) lc = LineCollection(segments, colors=colors, linewidth=widths, alpha=alpha) ax = plt.gca() ax.add_collection(lc) return lc # Colored sine wave x = np.linspace(0, 4 * np.pi, 100) y = np.sin(x) colorline(x, y) plt.title("MPL support for ListCollection in Bokeh") plt.xlim(x.min(), x.max()) plt.ylim(-1.0, 1.0) output_file("listcollection.html") show(mpl.to_bokeh())
bsd-3-clause
sgenoud/scikit-learn
sklearn/cluster/tests/test_dbscan.py
3
2890
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from numpy.testing import assert_equal from scipy.spatial import distance from sklearn.cluster.dbscan_ import DBSCAN, dbscan from .common import generate_clustered_data n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): """Tests the DBSCAN algorithm with a similarity array.""" # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): """Tests the DBSCAN algorithm with a feature vector array.""" # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_callable(): """Tests the DBSCAN algorithm with a callable metric.""" # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__)
bsd-3-clause
nekrut/tools-iuc
tools/vsnp/vsnp_add_zero_coverage.py
12
6321
#!/usr/bin/env python import argparse import os import re import shutil import pandas import pysam from Bio import SeqIO def get_sample_name(file_path): base_file_name = os.path.basename(file_path) if base_file_name.find(".") > 0: # Eliminate the extension. return os.path.splitext(base_file_name)[0] return base_file_name def get_coverage_df(bam_file): # Create a coverage dictionary. coverage_dict = {} coverage_list = pysam.depth(bam_file, split_lines=True) for line in coverage_list: chrom, position, depth = line.split('\t') coverage_dict["%s-%s" % (chrom, position)] = depth # Convert it to a data frame. coverage_df = pandas.DataFrame.from_dict(coverage_dict, orient='index', columns=["depth"]) return coverage_df def get_zero_df(reference): # Create a zero coverage dictionary. zero_dict = {} for record in SeqIO.parse(reference, "fasta"): chrom = record.id total_len = len(record.seq) for pos in list(range(1, total_len + 1)): zero_dict["%s-%s" % (str(chrom), str(pos))] = 0 # Convert it to a data frame with depth_x # and depth_y columns - index is NaN. zero_df = pandas.DataFrame.from_dict(zero_dict, orient='index', columns=["depth"]) return zero_df def output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf): column_names = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "Sample"] vcf_df = pandas.read_csv(vcf_file, sep='\t', header=None, names=column_names, comment='#') good_snp_count = len(vcf_df[(vcf_df['ALT'].str.len() == 1) & (vcf_df['REF'].str.len() == 1) & (vcf_df['QUAL'] > 150)]) if total_zero_coverage > 0: header_file = "%s_header.csv" % base_file_name with open(header_file, 'w') as outfile: with open(vcf_file) as infile: for line in infile: if re.search('^#', line): outfile.write("%s" % line) vcf_df_snp = vcf_df[vcf_df['REF'].str.len() == 1] vcf_df_snp = vcf_df_snp[vcf_df_snp['ALT'].str.len() == 1] vcf_df_snp['ABS_VALUE'] = vcf_df_snp['CHROM'].map(str) + "-" + vcf_df_snp['POS'].map(str) vcf_df_snp = vcf_df_snp.set_index('ABS_VALUE') cat_df = pandas.concat([vcf_df_snp, zero_df], axis=1, sort=False) cat_df = cat_df.drop(columns=['CHROM', 'POS', 'depth']) cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']] = cat_df[['ID', 'ALT', 'QUAL', 'FILTER', 'INFO']].fillna('.') cat_df['REF'] = cat_df['REF'].fillna('N') cat_df['FORMAT'] = cat_df['FORMAT'].fillna('GT') cat_df['Sample'] = cat_df['Sample'].fillna('./.') cat_df['temp'] = cat_df.index.str.rsplit('-', n=1) cat_df[['CHROM', 'POS']] = pandas.DataFrame(cat_df.temp.values.tolist(), index=cat_df.index) cat_df = cat_df[['CHROM', 'POS', 'ID', 'REF', 'ALT', 'QUAL', 'FILTER', 'INFO', 'FORMAT', 'Sample']] cat_df['POS'] = cat_df['POS'].astype(int) cat_df = cat_df.sort_values(['CHROM', 'POS']) body_file = "%s_body.csv" % base_file_name cat_df.to_csv(body_file, sep='\t', header=False, index=False) with open(output_vcf, "w") as outfile: for cf in [header_file, body_file]: with open(cf, "r") as infile: for line in infile: outfile.write("%s" % line) else: shutil.move(vcf_file, output_vcf) return good_snp_count def output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics): bam_metrics = [base_file_name, "", "%4f" % average_coverage, genome_coverage] vcf_metrics = [base_file_name, str(good_snp_count), "", ""] metrics_columns = ["File", "Number of Good SNPs", "Average Coverage", "Genome Coverage"] with open(output_metrics, "w") as fh: fh.write("# %s\n" % "\t".join(metrics_columns)) fh.write("%s\n" % "\t".join(bam_metrics)) fh.write("%s\n" % "\t".join(vcf_metrics)) def output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics): base_file_name = get_sample_name(vcf_file) good_snp_count = output_zc_vcf_file(base_file_name, vcf_file, zero_df, total_zero_coverage, output_vcf) output_metrics_file(base_file_name, average_coverage, genome_coverage, good_snp_count, output_metrics) def get_coverage_and_snp_count(bam_file, vcf_file, reference, output_metrics, output_vcf): coverage_df = get_coverage_df(bam_file) zero_df = get_zero_df(reference) coverage_df = zero_df.merge(coverage_df, left_index=True, right_index=True, how='outer') # depth_x "0" column no longer needed. coverage_df = coverage_df.drop(columns=['depth_x']) coverage_df = coverage_df.rename(columns={'depth_y': 'depth'}) # Covert the NaN to 0 coverage and get some metrics. coverage_df = coverage_df.fillna(0) coverage_df['depth'] = coverage_df['depth'].apply(int) total_length = len(coverage_df) average_coverage = coverage_df['depth'].mean() zero_df = coverage_df[coverage_df['depth'] == 0] total_zero_coverage = len(zero_df) total_coverage = total_length - total_zero_coverage genome_coverage = "{:.2%}".format(total_coverage / total_length) # Output a zero-coverage vcf fil and the metrics file. output_files(vcf_file, total_zero_coverage, zero_df, output_vcf, average_coverage, genome_coverage, output_metrics) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--bam_input', action='store', dest='bam_input', help='bam input file') parser.add_argument('--output_metrics', action='store', dest='output_metrics', required=False, default=None, help='Output metrics text file') parser.add_argument('--output_vcf', action='store', dest='output_vcf', required=False, default=None, help='Output VCF file') parser.add_argument('--reference', action='store', dest='reference', help='Reference dataset') parser.add_argument('--vcf_input', action='store', dest='vcf_input', help='vcf input file') args = parser.parse_args() get_coverage_and_snp_count(args.bam_input, args.vcf_input, args.reference, args.output_metrics, args.output_vcf)
mit
eduardoneira/SistemasDistribuidos_TPFinal
CentroMonitoreoCiudad/FaceRecognizer/modules/old_feature_matcher.py
1
4628
#!/bin/python3 import numpy as np import cv2 import base64 import pdb from tkinter import * from matplotlib import pyplot as plt class FeatureMatcher: __PORC_DISTANCE = 0.7 def __init__(self,feature_extractor='SURF',upright=True,min_match_count=10,threshold=400): self.MIN_MATCH_COUNT = min_match_count self.__create_feature_extractor(feature_extractor,upright,threshold) FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) search_params = dict(checks = 200) self.flann = cv2.FlannBasedMatcher(index_params, search_params) def __create_feature_extractor(self,feature_extractor,upright,threshold): if feature_extractor == 'SURF': self.feature_finder = cv2.xfeatures2d.SURF_create(threshold,extended=True) self.feature_finder.setUpright(upright) elif feature_extractor == 'SIFT': self.feature_finder = cv2.xfeatures2d.SIFT_create(edgeThreshold=20,sigma=1.1) elif feature_extractor == 'ORB': self.feature_finder = cv2.ORB_create() else: raise 'Feature extractor no encontrado' def compare(self,img1,img2): self.features_img1 = self.find_features(img1) self.features_img2 = self.find_features(img2) pdb.set_trace() return self.flann.knnMatch(self.features_img1[1],self.features_img2[1],k=2) def compare_base64(self,image1_base64,image2_base64): img1 = self.base64_to_img(image1_base64) img2 = self.base64_to_img(image2_base64) return self.compare(img1,img2) def are_similar(self,img1,img2): self.good_matches = [] for m,n in self.compare(img1,img2): if m.distance < self.__PORC_DISTANCE*n.distance: self.good_matches.append(m) return (len(self.good_matches) > self.MIN_MATCH_COUNT) def find_features(self,img): return self.feature_finder.detectAndCompute(img,None) def bytes_to_img(self,image_bytes): nparr = np.fromstring(image_bytes, np.uint8) return cv2.imdecode(nparr, 0) def base64_to_img(self,image_base64): return self.bytes_to_img(base64.b64decode(image_base64)) def compare_and_draw_base64(self,img1,img2): self.compare_and_draw(self.base64_to_img(img1),self.base64_to_img(img2)) def compare_and_draw(self,img1,img2): # if self.are_similar(img1,img2): # src_pts = np.float32([ self.features_img1[0][m.queryIdx].pt for m in self.good_matches ]).reshape(-1,1,2) # dst_pts = np.float32([ self.features_img2[0][m.trainIdx].pt for m in self.good_matches ]).reshape(-1,1,2) # M, mask = cv2.findHomography(src_pts,dst_pts,cv2.RANSAC,5.0) # matchesMask = mask.ravel().tolist() # h,w = img1.shape # pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) # dst = cv2.perspectiveTransform(pts,M) # img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3,cv2.LINE_AA) # else: # print("Not enough matches are found - %d/%d" % (len(self.good_matches),self.MIN_MATCH_COUNT)) # matchesMask = None # draw_params = dict(matchColor = (0,255,0), # singlePointColor = (255,0,0), # matchesMask = matchesMask, # flags = 2) # img3 = cv2.drawMatchesKnn(img1,self.features_img1[0],img2,self.features_img2[0],self.good_matches,None,**draw_params) # plt.imshow(img3,'gray'),plt.show() hash1 = self.find_features(img1) hash2 = self.find_features(img2) matches = self.flann.knnMatch(hash1[1],hash2[1],k=2) good = [] for m,n in matches: if m.distance < 0.95*n.distance: good.append(m) print(len(good)) if len(good)>self.MIN_MATCH_COUNT: src_pts = np.float32([ hash1[0][m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ hash2[0][m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) matchesMask = mask.ravel().tolist() h,w = img1.shape pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA) else: print( "Not enough matches are found - {}/{}".format(len(good), self.MIN_MATCH_COUNT) ) matchesMask = None draw_params = dict(matchColor = (0,255,0), # draw matches in green color singlePointColor = (255,0,0), matchesMask = matchesMask, # draw only inliers flags = 2) img3 = cv2.drawMatches(img1,hash1[0],img2,hash2[0],good,None,**draw_params) plt.imshow(img3, 'gray'),plt.show()
gpl-3.0
DTOcean/dtocean-core
tests/test_data_definitions_simplepie.py
1
2601
import pytest import matplotlib.pyplot as plt from aneris.control.factory import InterfaceFactory from dtocean_core.core import (AutoFileInput, AutoFileOutput, AutoPlot, Core) from dtocean_core.data import CoreMetaData from dtocean_core.data.definitions import SimplePie def test_SimplePie_available(): new_core = Core() all_objs = new_core.control._store._structures assert "SimplePie" in all_objs.keys() def test_SimplePie(): meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "types": ["float"]}) test = SimplePie() raw = {"a": 0, "b": 1} a = test.get_data(raw, meta) b = test.get_value(a) assert b["a"] == 0 assert b["b"] == 1 def test_get_None(): test = SimplePie() result = test.get_value(None) assert result is None @pytest.mark.parametrize("fext", [".csv", ".xls", ".xlsx"]) def test_SimplePie_auto_file(tmpdir, fext): test_path = tmpdir.mkdir("sub").join("test{}".format(fext)) test_path_str = str(test_path) raw = {"a": 0, "b": 1} meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "types": ["float"]}) test = SimplePie() fout_factory = InterfaceFactory(AutoFileOutput) FOutCls = fout_factory(meta, test) fout = FOutCls() fout._path = test_path_str fout.data.result = test.get_data(raw, meta) fout.connect() assert len(tmpdir.listdir()) == 1 fin_factory = InterfaceFactory(AutoFileInput) FInCls = fin_factory(meta, test) fin = FInCls() fin._path = test_path_str fin.connect() result = test.get_data(fin.data.result, meta) assert result["a"] == 0 assert result["b"] == 1 def test_SimplePie_auto_plot(): raw = {"a": 0, "b": 1} meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "types": ["float"]}) test = SimplePie() fout_factory = InterfaceFactory(AutoPlot) PlotCls = fout_factory(meta, test) plot = PlotCls() plot.data.result = test.get_data(raw, meta) plot.meta.result = meta plot.connect() assert len(plt.get_fignums()) == 1 plt.close("all")
gpl-3.0
buntyke/GPy
GPy/core/gp.py
8
37031
# Copyright (c) 2012-2014, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np import sys from .. import kern from .model import Model from .parameterization import ObsAr from .mapping import Mapping from .. import likelihoods from ..inference.latent_function_inference import exact_gaussian_inference, expectation_propagation from .parameterization.variational import VariationalPosterior import logging import warnings from GPy.util.normalizer import MeanNorm logger = logging.getLogger("GP") class GP(Model): """ General purpose Gaussian process model :param X: input observations :param Y: output observations :param kernel: a GPy kernel, defaults to rbf+white :param likelihood: a GPy likelihood :param inference_method: The :class:`~GPy.inference.latent_function_inference.LatentFunctionInference` inference method to use for this GP :rtype: model object :param Norm normalizer: normalize the outputs Y. Prediction will be un-normalized using this normalizer. If normalizer is None, we will normalize using MeanNorm. If normalizer is False, no normalization will be done. .. Note:: Multiple independent outputs are allowed using columns of Y """ def __init__(self, X, Y, kernel, likelihood, mean_function=None, inference_method=None, name='gp', Y_metadata=None, normalizer=False): super(GP, self).__init__(name) assert X.ndim == 2 if isinstance(X, (ObsAr, VariationalPosterior)): self.X = X.copy() else: self.X = ObsAr(X) self.num_data, self.input_dim = self.X.shape assert Y.ndim == 2 logger.info("initializing Y") if normalizer is True: self.normalizer = MeanNorm() elif normalizer is False: self.normalizer = None else: self.normalizer = normalizer if self.normalizer is not None: self.normalizer.scale_by(Y) self.Y_normalized = ObsAr(self.normalizer.normalize(Y)) self.Y = Y elif isinstance(Y, np.ndarray): self.Y = ObsAr(Y) self.Y_normalized = self.Y else: self.Y = Y if Y.shape[0] != self.num_data: #There can be cases where we want inputs than outputs, for example if we have multiple latent #function values warnings.warn("There are more rows in your input data X, \ than in your output data Y, be VERY sure this is what you want") _, self.output_dim = self.Y.shape assert ((Y_metadata is None) or isinstance(Y_metadata, dict)) self.Y_metadata = Y_metadata assert isinstance(kernel, kern.Kern) #assert self.input_dim == kernel.input_dim self.kern = kernel assert isinstance(likelihood, likelihoods.Likelihood) self.likelihood = likelihood #handle the mean function self.mean_function = mean_function if mean_function is not None: assert isinstance(self.mean_function, Mapping) assert mean_function.input_dim == self.input_dim assert mean_function.output_dim == self.output_dim self.link_parameter(mean_function) #find a sensible inference method logger.info("initializing inference method") if inference_method is None: if isinstance(likelihood, likelihoods.Gaussian) or isinstance(likelihood, likelihoods.MixedNoise): inference_method = exact_gaussian_inference.ExactGaussianInference() else: inference_method = expectation_propagation.EP() print("defaulting to ", inference_method, "for latent function inference") self.inference_method = inference_method logger.info("adding kernel and likelihood as parameters") self.link_parameter(self.kern) self.link_parameter(self.likelihood) self.posterior = None # The predictive variable to be used to predict using the posterior object's # woodbury_vector and woodbury_inv is defined as predictive_variable # as long as the posterior has the right woodbury entries. # It is the input variable used for the covariance between # X_star and the posterior of the GP. # This is usually just a link to self.X (full GP) or self.Z (sparse GP). # Make sure to name this variable and the predict functions will "just work" # In maths the predictive variable is: # K_{xx} - K_{xp}W_{pp}^{-1}K_{px} # W_{pp} := \texttt{Woodbury inv} # p := _predictive_variable @property def _predictive_variable(self): return self.X def set_XY(self, X=None, Y=None): """ Set the input / output data of the model This is useful if we wish to change our existing data but maintain the same model :param X: input observations :type X: np.ndarray :param Y: output observations :type Y: np.ndarray """ self.update_model(False) if Y is not None: if self.normalizer is not None: self.normalizer.scale_by(Y) self.Y_normalized = ObsAr(self.normalizer.normalize(Y)) self.Y = Y else: self.Y = ObsAr(Y) self.Y_normalized = self.Y if X is not None: if self.X in self.parameters: # LVM models if isinstance(self.X, VariationalPosterior): assert isinstance(X, type(self.X)), "The given X must have the same type as the X in the model!" self.unlink_parameter(self.X) self.X = X self.link_parameter(self.X) else: self.unlink_parameter(self.X) from ..core import Param self.X = Param('latent mean',X) self.link_parameter(self.X) else: self.X = ObsAr(X) self.update_model(True) def set_X(self,X): """ Set the input data of the model :param X: input observations :type X: np.ndarray """ self.set_XY(X=X) def set_Y(self,Y): """ Set the output data of the model :param X: output observations :type X: np.ndarray """ self.set_XY(Y=Y) def parameters_changed(self): """ Method that is called upon any changes to :class:`~GPy.core.parameterization.param.Param` variables within the model. In particular in the GP class this method reperforms inference, recalculating the posterior and log marginal likelihood and gradients of the model .. warning:: This method is not designed to be called manually, the framework is set up to automatically call this method upon changes to parameters, if you call this method yourself, there may be unexpected consequences. """ self.posterior, self._log_marginal_likelihood, self.grad_dict = self.inference_method.inference(self.kern, self.X, self.likelihood, self.Y_normalized, self.mean_function, self.Y_metadata) self.likelihood.update_gradients(self.grad_dict['dL_dthetaL']) self.kern.update_gradients_full(self.grad_dict['dL_dK'], self.X) if self.mean_function is not None: self.mean_function.update_gradients(self.grad_dict['dL_dm'], self.X) def log_likelihood(self): """ The log marginal likelihood of the model, :math:`p(\mathbf{y})`, this is the objective function of the model being optimised """ return self._log_marginal_likelihood def _raw_predict(self, Xnew, full_cov=False, kern=None): """ For making predictions, does not account for normalization or likelihood full_cov is a boolean which defines whether the full covariance matrix of the prediction is computed. If full_cov is False (default), only the diagonal of the covariance is returned. .. math:: p(f*|X*, X, Y) = \int^{\inf}_{\inf} p(f*|f,X*)p(f|X,Y) df = N(f*| K_{x*x}(K_{xx} + \Sigma)^{-1}Y, K_{x*x*} - K_{xx*}(K_{xx} + \Sigma)^{-1}K_{xx*} \Sigma := \texttt{Likelihood.variance / Approximate likelihood covariance} """ if kern is None: kern = self.kern Kx = kern.K(self._predictive_variable, Xnew) mu = np.dot(Kx.T, self.posterior.woodbury_vector) if len(mu.shape)==1: mu = mu.reshape(-1,1) if full_cov: Kxx = kern.K(Xnew) if self.posterior.woodbury_inv.ndim == 2: var = Kxx - np.dot(Kx.T, np.dot(self.posterior.woodbury_inv, Kx)) elif self.posterior.woodbury_inv.ndim == 3: # Missing data var = np.empty((Kxx.shape[0],Kxx.shape[1],self.posterior.woodbury_inv.shape[2])) from ..util.linalg import mdot for i in range(var.shape[2]): var[:, :, i] = (Kxx - mdot(Kx.T, self.posterior.woodbury_inv[:, :, i], Kx)) var = var else: Kxx = kern.Kdiag(Xnew) if self.posterior.woodbury_inv.ndim == 2: var = (Kxx - np.sum(np.dot(self.posterior.woodbury_inv.T, Kx) * Kx, 0))[:,None] elif self.posterior.woodbury_inv.ndim == 3: # Missing data var = np.empty((Kxx.shape[0],self.posterior.woodbury_inv.shape[2])) for i in range(var.shape[1]): var[:, i] = (Kxx - (np.sum(np.dot(self.posterior.woodbury_inv[:, :, i].T, Kx) * Kx, 0))) var = var #add in the mean function if self.mean_function is not None: mu += self.mean_function.f(Xnew) return mu, var def predict(self, Xnew, full_cov=False, Y_metadata=None, kern=None): """ Predict the function(s) at the new point(s) Xnew. :param Xnew: The points at which to make a prediction :type Xnew: np.ndarray (Nnew x self.input_dim) :param full_cov: whether to return the full covariance matrix, or just the diagonal :type full_cov: bool :param Y_metadata: metadata about the predicting point to pass to the likelihood :param kern: The kernel to use for prediction (defaults to the model kern). this is useful for examining e.g. subprocesses. :returns: (mean, var): mean: posterior mean, a Numpy array, Nnew x self.input_dim var: posterior variance, a Numpy array, Nnew x 1 if full_cov=False, Nnew x Nnew otherwise If full_cov and self.input_dim > 1, the return shape of var is Nnew x Nnew x self.input_dim. If self.input_dim == 1, the return shape is Nnew x Nnew. This is to allow for different normalizations of the output dimensions. Note: If you want the predictive quantiles (e.g. 95% confidence interval) use :py:func:"~GPy.core.gp.GP.predict_quantiles". """ #predict the latent function values mu, var = self._raw_predict(Xnew, full_cov=full_cov, kern=kern) if self.normalizer is not None: mu, var = self.normalizer.inverse_mean(mu), self.normalizer.inverse_variance(var) # now push through likelihood mean, var = self.likelihood.predictive_values(mu, var, full_cov, Y_metadata=Y_metadata) return mean, var def predict_quantiles(self, X, quantiles=(2.5, 97.5), Y_metadata=None, kern=None): """ Get the predictive quantiles around the prediction at X :param X: The points at which to make a prediction :type X: np.ndarray (Xnew x self.input_dim) :param quantiles: tuple of quantiles, default is (2.5, 97.5) which is the 95% interval :type quantiles: tuple :param kern: optional kernel to use for prediction :type predict_kw: dict :returns: list of quantiles for each X and predictive quantiles for interval combination :rtype: [np.ndarray (Xnew x self.output_dim), np.ndarray (Xnew x self.output_dim)] """ m, v = self._raw_predict(X, full_cov=False, kern=kern) if self.normalizer is not None: m, v = self.normalizer.inverse_mean(m), self.normalizer.inverse_variance(v) return self.likelihood.predictive_quantiles(m, v, quantiles, Y_metadata=Y_metadata) def predictive_gradients(self, Xnew): """ Compute the derivatives of the predicted latent function with respect to X* Given a set of points at which to predict X* (size [N*,Q]), compute the derivatives of the mean and variance. Resulting arrays are sized: dmu_dX* -- [N*, Q ,D], where D is the number of output in this GP (usually one). Note that this is not the same as computing the mean and variance of the derivative of the function! dv_dX* -- [N*, Q], (since all outputs have the same variance) :param X: The points at which to get the predictive gradients :type X: np.ndarray (Xnew x self.input_dim) :returns: dmu_dX, dv_dX :rtype: [np.ndarray (N*, Q ,D), np.ndarray (N*,Q) ] """ dmu_dX = np.empty((Xnew.shape[0],Xnew.shape[1],self.output_dim)) for i in range(self.output_dim): dmu_dX[:,:,i] = self.kern.gradients_X(self.posterior.woodbury_vector[:,i:i+1].T, Xnew, self.X) # gradients wrt the diagonal part k_{xx} dv_dX = self.kern.gradients_X(np.eye(Xnew.shape[0]), Xnew) #grads wrt 'Schur' part K_{xf}K_{ff}^{-1}K_{fx} alpha = -2.*np.dot(self.kern.K(Xnew, self.X),self.posterior.woodbury_inv) dv_dX += self.kern.gradients_X(alpha, Xnew, self.X) return dmu_dX, dv_dX def predict_jacobian(self, Xnew, kern=None, full_cov=True): """ Compute the derivatives of the posterior of the GP. Given a set of points at which to predict X* (size [N*,Q]), compute the mean and variance of the derivative. Resulting arrays are sized: dL_dX* -- [N*, Q ,D], where D is the number of output in this GP (usually one). Note that this is the mean and variance of the derivative, not the derivative of the mean and variance! (See predictive_gradients for that) dv_dX* -- [N*, Q], (since all outputs have the same variance) If there is missing data, it is not implemented for now, but there will be one output variance per output dimension. :param X: The points at which to get the predictive gradients. :type X: np.ndarray (Xnew x self.input_dim) :param kern: The kernel to compute the jacobian for. :param boolean full_cov: whether to return the full covariance of the jacobian. :returns: dmu_dX, dv_dX :rtype: [np.ndarray (N*, Q ,D), np.ndarray (N*,Q,(D)) ] Note: We always return sum in input_dim gradients, as the off-diagonals in the input_dim are not needed for further calculations. This is a compromise for increase in speed. Mathematically the jacobian would have another dimension in Q. """ if kern is None: kern = self.kern mean_jac = np.empty((Xnew.shape[0],Xnew.shape[1],self.output_dim)) for i in range(self.output_dim): mean_jac[:,:,i] = kern.gradients_X(self.posterior.woodbury_vector[:,i:i+1].T, Xnew, self._predictive_variable) dK_dXnew_full = np.empty((self._predictive_variable.shape[0], Xnew.shape[0], Xnew.shape[1])) for i in range(self._predictive_variable.shape[0]): dK_dXnew_full[i] = kern.gradients_X([[1.]], Xnew, self._predictive_variable[[i]]) if full_cov: dK2_dXdX = kern.gradients_XX([[1.]], Xnew) else: dK2_dXdX = kern.gradients_XX_diag([[1.]], Xnew) def compute_cov_inner(wi): if full_cov: # full covariance gradients: var_jac = dK2_dXdX - np.einsum('qnm,miq->niq', dK_dXnew_full.T.dot(wi), dK_dXnew_full) else: var_jac = dK2_dXdX - np.einsum('qim,miq->iq', dK_dXnew_full.T.dot(wi), dK_dXnew_full) return var_jac if self.posterior.woodbury_inv.ndim == 3: # Missing data: if full_cov: var_jac = np.empty((Xnew.shape[0],Xnew.shape[0],Xnew.shape[1],self.output_dim)) for d in range(self.posterior.woodbury_inv.shape[2]): var_jac[:, :, :, d] = compute_cov_inner(self.posterior.woodbury_inv[:, :, d]) else: var_jac = np.empty((Xnew.shape[0],Xnew.shape[1],self.output_dim)) for d in range(self.posterior.woodbury_inv.shape[2]): var_jac[:, :, d] = compute_cov_inner(self.posterior.woodbury_inv[:, :, d]) else: var_jac = compute_cov_inner(self.posterior.woodbury_inv) return mean_jac, var_jac def predict_wishard_embedding(self, Xnew, kern=None, mean=True, covariance=True): """ Predict the wishard embedding G of the GP. This is the density of the input of the GP defined by the probabilistic function mapping f. G = J_mean.T*J_mean + output_dim*J_cov. :param array-like Xnew: The points at which to evaluate the magnification. :param :py:class:`~GPy.kern.Kern` kern: The kernel to use for the magnification. Supplying only a part of the learning kernel gives insights into the density of the specific kernel part of the input function. E.g. one can see how dense the linear part of a kernel is compared to the non-linear part etc. """ if kern is None: kern = self.kern mu_jac, var_jac = self.predict_jacobian(Xnew, kern, full_cov=False) mumuT = np.einsum('iqd,ipd->iqp', mu_jac, mu_jac) Sigma = np.zeros(mumuT.shape) if var_jac.ndim == 3: Sigma[(slice(None), )+np.diag_indices(Xnew.shape[1], 2)] = var_jac.sum(-1) else: Sigma[(slice(None), )+np.diag_indices(Xnew.shape[1], 2)] = self.output_dim*var_jac G = 0. if mean: G += mumuT if covariance: G += Sigma return G def predict_magnification(self, Xnew, kern=None, mean=True, covariance=True): """ Predict the magnification factor as sqrt(det(G)) for each point N in Xnew """ G = self.predict_wishard_embedding(Xnew, kern, mean, covariance) from ..util.linalg import jitchol mag = np.empty(Xnew.shape[0]) for n in range(Xnew.shape[0]): try: mag[n] = np.sqrt(np.exp(2*np.sum(np.log(np.diag(jitchol(G[n, :, :])))))) except: mag[n] = np.sqrt(np.linalg.det(G[n, :, :])) return mag def posterior_samples_f(self,X,size=10, full_cov=True): """ Samples the posterior GP at the points X. :param X: The points at which to take the samples. :type X: np.ndarray (Nnew x self.input_dim) :param size: the number of a posteriori samples. :type size: int. :param full_cov: whether to return the full covariance matrix, or just the diagonal. :type full_cov: bool. :returns: fsim: set of simulations :rtype: np.ndarray (N x samples) """ m, v = self._raw_predict(X, full_cov=full_cov) if self.normalizer is not None: m, v = self.normalizer.inverse_mean(m), self.normalizer.inverse_variance(v) v = v.reshape(m.size,-1) if len(v.shape)==3 else v if not full_cov: fsim = np.random.multivariate_normal(m.flatten(), np.diag(v.flatten()), size).T else: fsim = np.random.multivariate_normal(m.flatten(), v, size).T return fsim def posterior_samples(self, X, size=10, full_cov=False, Y_metadata=None): """ Samples the posterior GP at the points X. :param X: the points at which to take the samples. :type X: np.ndarray (Nnew x self.input_dim.) :param size: the number of a posteriori samples. :type size: int. :param full_cov: whether to return the full covariance matrix, or just the diagonal. :type full_cov: bool. :param noise_model: for mixed noise likelihood, the noise model to use in the samples. :type noise_model: integer. :returns: Ysim: set of simulations, a Numpy array (N x samples). """ fsim = self.posterior_samples_f(X, size, full_cov=full_cov) Ysim = self.likelihood.samples(fsim, Y_metadata=Y_metadata) return Ysim def plot_f(self, plot_limits=None, which_data_rows='all', which_data_ycols='all', fixed_inputs=[], levels=20, samples=0, fignum=None, ax=None, resolution=None, plot_raw=True, linecol=None,fillcol=None, Y_metadata=None, data_symbol='kx', apply_link=False): """ Plot the GP's view of the world, where the data is normalized and before applying a likelihood. This is a call to plot with plot_raw=True. Data will not be plotted in this, as the GP's view of the world may live in another space, or units then the data. Can plot only part of the data and part of the posterior functions using which_data_rowsm which_data_ycols. :param plot_limits: The limits of the plot. If 1D [xmin,xmax], if 2D [[xmin,ymin],[xmax,ymax]]. Defaluts to data limits :type plot_limits: np.array :param which_data_rows: which of the training data to plot (default all) :type which_data_rows: 'all' or a slice object to slice model.X, model.Y :param which_data_ycols: when the data has several columns (independant outputs), only plot these :type which_data_ycols: 'all' or a list of integers :param fixed_inputs: a list of tuple [(i,v), (i,v)...], specifying that input index i should be set to value v. :type fixed_inputs: a list of tuples :param resolution: the number of intervals to sample the GP on. Defaults to 200 in 1D and 50 (a 50x50 grid) in 2D :type resolution: int :param levels: number of levels to plot in a contour plot. :param levels: for 2D plotting, the number of contour levels to use is ax is None, create a new figure :type levels: int :param samples: the number of a posteriori samples to plot :type samples: int :param fignum: figure to plot on. :type fignum: figure number :param ax: axes to plot on. :type ax: axes handle :param linecol: color of line to plot [Tango.colorsHex['darkBlue']] :type linecol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) as is standard in matplotlib :param fillcol: color of fill [Tango.colorsHex['lightBlue']] :type fillcol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) as is standard in matplotlib :param Y_metadata: additional data associated with Y which may be needed :type Y_metadata: dict :param data_symbol: symbol as used matplotlib, by default this is a black cross ('kx') :type data_symbol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) alongside marker type, as is standard in matplotlib. :param apply_link: if there is a link function of the likelihood, plot the link(f*) rather than f* :type apply_link: boolean """ assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import models_plots kw = {} if linecol is not None: kw['linecol'] = linecol if fillcol is not None: kw['fillcol'] = fillcol return models_plots.plot_fit(self, plot_limits, which_data_rows, which_data_ycols, fixed_inputs, levels, samples, fignum, ax, resolution, plot_raw=plot_raw, Y_metadata=Y_metadata, data_symbol=data_symbol, apply_link=apply_link, **kw) def plot(self, plot_limits=None, which_data_rows='all', which_data_ycols='all', fixed_inputs=[], levels=20, samples=0, fignum=None, ax=None, resolution=None, plot_raw=False, linecol=None,fillcol=None, Y_metadata=None, data_symbol='kx', predict_kw=None, plot_training_data=True, samples_y=0, apply_link=False): """ Plot the posterior of the GP. - In one dimension, the function is plotted with a shaded region identifying two standard deviations. - In two dimsensions, a contour-plot shows the mean predicted function - In higher dimensions, use fixed_inputs to plot the GP with some of the inputs fixed. Can plot only part of the data and part of the posterior functions using which_data_rowsm which_data_ycols. :param plot_limits: The limits of the plot. If 1D [xmin,xmax], if 2D [[xmin,ymin],[xmax,ymax]]. Defaluts to data limits :type plot_limits: np.array :param which_data_rows: which of the training data to plot (default all) :type which_data_rows: 'all' or a slice object to slice model.X, model.Y :param which_data_ycols: when the data has several columns (independant outputs), only plot these :type which_data_ycols: 'all' or a list of integers :param fixed_inputs: a list of tuple [(i,v), (i,v)...], specifying that input index i should be set to value v. :type fixed_inputs: a list of tuples :param resolution: the number of intervals to sample the GP on. Defaults to 200 in 1D and 50 (a 50x50 grid) in 2D :type resolution: int :param levels: number of levels to plot in a contour plot. :param levels: for 2D plotting, the number of contour levels to use is ax is None, create a new figure :type levels: int :param samples: the number of a posteriori samples to plot, p(f*|y) :type samples: int :param fignum: figure to plot on. :type fignum: figure number :param ax: axes to plot on. :type ax: axes handle :param linecol: color of line to plot [Tango.colorsHex['darkBlue']] :type linecol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) as is standard in matplotlib :param fillcol: color of fill [Tango.colorsHex['lightBlue']] :type fillcol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) as is standard in matplotlib :param Y_metadata: additional data associated with Y which may be needed :type Y_metadata: dict :param data_symbol: symbol as used matplotlib, by default this is a black cross ('kx') :type data_symbol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) alongside marker type, as is standard in matplotlib. :param plot_training_data: whether or not to plot the training points :type plot_training_data: boolean :param samples_y: the number of a posteriori samples to plot, p(y*|y) :type samples_y: int :param apply_link: if there is a link function of the likelihood, plot the link(f*) rather than f*, when plotting posterior samples f :type apply_link: boolean """ assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import models_plots kw = {} if linecol is not None: kw['linecol'] = linecol if fillcol is not None: kw['fillcol'] = fillcol return models_plots.plot_fit(self, plot_limits, which_data_rows, which_data_ycols, fixed_inputs, levels, samples, fignum, ax, resolution, plot_raw=plot_raw, Y_metadata=Y_metadata, data_symbol=data_symbol, predict_kw=predict_kw, plot_training_data=plot_training_data, samples_y=samples_y, apply_link=apply_link, **kw) def plot_data(self, which_data_rows='all', which_data_ycols='all', visible_dims=None, fignum=None, ax=None, data_symbol='kx'): """ Plot the training data - For higher dimensions than two, use fixed_inputs to plot the data points with some of the inputs fixed. Can plot only part of the data using which_data_rows and which_data_ycols. :param plot_limits: The limits of the plot. If 1D [xmin,xmax], if 2D [[xmin,ymin],[xmax,ymax]]. Defaluts to data limits :type plot_limits: np.array :param which_data_rows: which of the training data to plot (default all) :type which_data_rows: 'all' or a slice object to slice model.X, model.Y :param which_data_ycols: when the data has several columns (independant outputs), only plot these :type which_data_ycols: 'all' or a list of integers :param visible_dims: an array specifying the input dimensions to plot (maximum two) :type visible_dims: a numpy array :param resolution: the number of intervals to sample the GP on. Defaults to 200 in 1D and 50 (a 50x50 grid) in 2D :type resolution: int :param levels: number of levels to plot in a contour plot. :param levels: for 2D plotting, the number of contour levels to use is ax is None, create a new figure :type levels: int :param samples: the number of a posteriori samples to plot, p(f*|y) :type samples: int :param fignum: figure to plot on. :type fignum: figure number :param ax: axes to plot on. :type ax: axes handle :param linecol: color of line to plot [Tango.colorsHex['darkBlue']] :type linecol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) as is standard in matplotlib :param fillcol: color of fill [Tango.colorsHex['lightBlue']] :type fillcol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) as is standard in matplotlib :param data_symbol: symbol as used matplotlib, by default this is a black cross ('kx') :type data_symbol: color either as Tango.colorsHex object or character ('r' is red, 'g' is green) alongside marker type, as is standard in matplotlib. """ assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import models_plots kw = {} return models_plots.plot_data(self, which_data_rows, which_data_ycols, visible_dims, fignum, ax, data_symbol, **kw) def errorbars_trainset(self, which_data_rows='all', which_data_ycols='all', fixed_inputs=[], fignum=None, ax=None, linecol=None, data_symbol='kx', predict_kw=None, plot_training_data=True,lw=None): """ Plot the posterior error bars corresponding to the training data - For higher dimensions than two, use fixed_inputs to plot the data points with some of the inputs fixed. Can plot only part of the data using which_data_rows and which_data_ycols. :param which_data_rows: which of the training data to plot (default all) :type which_data_rows: 'all' or a slice object to slice model.X, model.Y :param which_data_ycols: when the data has several columns (independant outputs), only plot these :type which_data_rows: 'all' or a list of integers :param fixed_inputs: a list of tuple [(i,v), (i,v)...], specifying that input index i should be set to value v. :type fixed_inputs: a list of tuples :param fignum: figure to plot on. :type fignum: figure number :param ax: axes to plot on. :type ax: axes handle :param plot_training_data: whether or not to plot the training points :type plot_training_data: boolean """ assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import models_plots kw = {} if lw is not None: kw['lw'] = lw return models_plots.errorbars_trainset(self, which_data_rows, which_data_ycols, fixed_inputs, fignum, ax, linecol, data_symbol, predict_kw, plot_training_data, **kw) def plot_magnification(self, labels=None, which_indices=None, resolution=50, ax=None, marker='o', s=40, fignum=None, legend=True, plot_limits=None, aspect='auto', updates=False, plot_inducing=True, kern=None, **kwargs): import sys assert "matplotlib" in sys.modules, "matplotlib package has not been imported." from ..plotting.matplot_dep import dim_reduction_plots return dim_reduction_plots.plot_magnification(self, labels, which_indices, resolution, ax, marker, s, fignum, plot_inducing, legend, plot_limits, aspect, updates, **kwargs) def input_sensitivity(self, summarize=True): """ Returns the sensitivity for each dimension of this model """ return self.kern.input_sensitivity(summarize=summarize) def optimize(self, optimizer=None, start=None, **kwargs): """ Optimize the model using self.log_likelihood and self.log_likelihood_gradient, as well as self.priors. kwargs are passed to the optimizer. They can be: :param max_f_eval: maximum number of function evaluations :type max_f_eval: int :messages: whether to display during optimisation :type messages: bool :param optimizer: which optimizer to use (defaults to self.preferred optimizer), a range of optimisers can be found in :module:`~GPy.inference.optimization`, they include 'scg', 'lbfgs', 'tnc'. :type optimizer: string """ self.inference_method.on_optimization_start() try: super(GP, self).optimize(optimizer, start, **kwargs) except KeyboardInterrupt: print("KeyboardInterrupt caught, calling on_optimization_end() to round things up") self.inference_method.on_optimization_end() raise def infer_newX(self, Y_new, optimize=True): """ Infer X for the new observed data *Y_new*. :param Y_new: the new observed data for inference :type Y_new: numpy.ndarray :param optimize: whether to optimize the location of new X (True by default) :type optimize: boolean :return: a tuple containing the posterior estimation of X and the model that optimize X :rtype: (:class:`~GPy.core.parameterization.variational.VariationalPosterior` and numpy.ndarray, :class:`~GPy.core.model.Model`) """ from ..inference.latent_function_inference.inferenceX import infer_newX return infer_newX(self, Y_new, optimize=optimize) def log_predictive_density(self, x_test, y_test, Y_metadata=None): """ Calculation of the log predictive density .. math: p(y_{*}|D) = p(y_{*}|f_{*})p(f_{*}|\mu_{*}\\sigma^{2}_{*}) :param x_test: test locations (x_{*}) :type x_test: (Nx1) array :param y_test: test observations (y_{*}) :type y_test: (Nx1) array :param Y_metadata: metadata associated with the test points """ mu_star, var_star = self._raw_predict(x_test) return self.likelihood.log_predictive_density(y_test, mu_star, var_star, Y_metadata=Y_metadata) def log_predictive_density_sampling(self, x_test, y_test, Y_metadata=None, num_samples=1000): """ Calculation of the log predictive density by sampling .. math: p(y_{*}|D) = p(y_{*}|f_{*})p(f_{*}|\mu_{*}\\sigma^{2}_{*}) :param x_test: test locations (x_{*}) :type x_test: (Nx1) array :param y_test: test observations (y_{*}) :type y_test: (Nx1) array :param Y_metadata: metadata associated with the test points :param num_samples: number of samples to use in monte carlo integration :type num_samples: int """ mu_star, var_star = self._raw_predict(x_test) return self.likelihood.log_predictive_density_sampling(y_test, mu_star, var_star, Y_metadata=Y_metadata, num_samples=num_samples)
mit
jiyfeng/RSTParser
model.py
1
3945
## model.py ## Author: Yangfeng Ji ## Date: 09-09-2014 ## Time-stamp: <yangfeng 11/05/2014 20:44:25> ## Last changed: umashanthi 11/19/2014 """ As a parsing model, it includes the following functions 1, Mini-batch training on the data generated by the Data class 2, Shift-Reduce RST parsing for a given text sequence 3, Save/load parsing model """ from sklearn.svm import LinearSVC from cPickle import load, dump from parser import SRParser from feature import FeatureGenerator from tree import RSTTree from util import * from datastructure import ActionError import gzip, sys import numpy as np class ParsingModel(object): def __init__(self, vocab=None, idxlabelmap=None, clf=None): """ Initialization :type vocab: dict :param vocab: mappint from feature templates to feature indices :type idxrelamap: dict :param idxrelamap: mapping from parsing action indices to parsing actions :type clf: LinearSVC :param clf: an multiclass classifier from sklearn """ self.vocab = vocab # print labelmap self.labelmap = idxlabelmap if clf is None: self.clf = LinearSVC() def train(self, trnM, trnL): """ Perform batch-learning on parsing model """ self.clf.fit(trnM, trnL) def predict(self, features): """ Predict parsing actions for a given set of features :type features: list :param features: feature list generated by FeatureGenerator """ vec = vectorize(features, self.vocab) predicted_output = self.clf.decision_function(vec) idxs = np.argsort(predicted_output[0])[::-1] possible_labels = [] for index in idxs: possible_labels.append(self.labelmap[index]) return possible_labels def savemodel(self, fname): """ Save model and vocab """ if not fname.endswith('.gz'): fname += '.gz' D = {'clf':self.clf, 'vocab':self.vocab, 'idxlabelmap':self.labelmap} with gzip.open(fname, 'w') as fout: dump(D, fout) print 'Save model into file: {}'.format(fname) def loadmodel(self, fname): """ Load model """ with gzip.open(fname, 'r') as fin: D = load(fin) self.clf = D['clf'] self.vocab = D['vocab'] self.labelmap = D['idxlabelmap'] print 'Load model from file: {}'.format(fname) def sr_parse(self, texts): """ Shift-reduce RST parsing based on model prediction :type texts: list of string :param texts: list of EDUs for parsing """ # Initialize parser srparser = SRParser([],[]) srparser.init(texts) # Parsing while not srparser.endparsing(): # Generate features stack, queue = srparser.getstatus() # Make sure call the generator with # same arguments as in data generation part fg = FeatureGenerator(stack, queue) features = fg.features() labels = self.predict(features) # Enumerate through all possible actions ranked based on predcition scores for i,label in enumerate(labels): action = label2action(label) try: srparser.operate(action) break # if legal action, end the loop except ActionError: if i < len(labels): # if not a legal action, try the next possible action continue else: print "Parsing action error with {}".format(action) sys.exit() tree = srparser.getparsetree() rst = RSTTree(tree=tree) return rst
mit
sinhrks/scikit-learn
examples/manifold/plot_lle_digits.py
138
8594
""" ============================================================================= Manifold learning on handwritten digits: Locally Linear Embedding, Isomap... ============================================================================= An illustration of various embeddings on the digits dataset. The RandomTreesEmbedding, from the :mod:`sklearn.ensemble` module, is not technically a manifold embedding method, as it learn a high-dimensional representation on which we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-separable. t-SNE will be initialized with the embedding that is generated by PCA in this example, which is not the default setting. It ensures global stability of the embedding, i.e., the embedding does not depend on random initialization. """ # Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, discriminant_analysis, random_projection) digits = datasets.load_digits(n_class=6) X = digits.data y = digits.target n_samples, n_features = X.shape n_neighbors = 30 #---------------------------------------------------------------------- # Scale and visualize the embedding vectors def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(digits.data.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 4e-3: # don't show points that are too close continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) #---------------------------------------------------------------------- # Plot images of the digits n_img_per_row = 20 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') #---------------------------------------------------------------------- # Random 2D projection using a random unitary matrix print("Computing random projection") rp = random_projection.SparseRandomProjection(n_components=2, random_state=42) X_projected = rp.fit_transform(X) plot_embedding(X_projected, "Random Projection of the digits") #---------------------------------------------------------------------- # Projection on to the first 2 principal components print("Computing PCA projection") t0 = time() X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X) plot_embedding(X_pca, "Principal Components projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Projection on to the first 2 linear discriminant components print("Computing Linear Discriminant Analysis projection") X2 = X.copy() X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible t0 = time() X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y) plot_embedding(X_lda, "Linear Discriminant projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Isomap projection of the digits dataset print("Computing Isomap embedding") t0 = time() X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X) print("Done.") plot_embedding(X_iso, "Isomap projection of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Locally linear embedding of the digits dataset print("Computing LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='standard') t0 = time() X_lle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_lle, "Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Modified Locally linear embedding of the digits dataset print("Computing modified LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='modified') t0 = time() X_mlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_mlle, "Modified Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # HLLE embedding of the digits dataset print("Computing Hessian LLE embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='hessian') t0 = time() X_hlle = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_hlle, "Hessian Locally Linear Embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # LTSA embedding of the digits dataset print("Computing LTSA embedding") clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2, method='ltsa') t0 = time() X_ltsa = clf.fit_transform(X) print("Done. Reconstruction error: %g" % clf.reconstruction_error_) plot_embedding(X_ltsa, "Local Tangent Space Alignment of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # MDS embedding of the digits dataset print("Computing MDS embedding") clf = manifold.MDS(n_components=2, n_init=1, max_iter=100) t0 = time() X_mds = clf.fit_transform(X) print("Done. Stress: %f" % clf.stress_) plot_embedding(X_mds, "MDS embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Random Trees embedding of the digits dataset print("Computing Totally Random Trees embedding") hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0, max_depth=5) t0 = time() X_transformed = hasher.fit_transform(X) pca = decomposition.TruncatedSVD(n_components=2) X_reduced = pca.fit_transform(X_transformed) plot_embedding(X_reduced, "Random forest embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # Spectral embedding of the digits dataset print("Computing Spectral embedding") embedder = manifold.SpectralEmbedding(n_components=2, random_state=0, eigen_solver="arpack") t0 = time() X_se = embedder.fit_transform(X) plot_embedding(X_se, "Spectral embedding of the digits (time %.2fs)" % (time() - t0)) #---------------------------------------------------------------------- # t-SNE embedding of the digits dataset print("Computing t-SNE embedding") tsne = manifold.TSNE(n_components=2, init='pca', random_state=0) t0 = time() X_tsne = tsne.fit_transform(X) plot_embedding(X_tsne, "t-SNE embedding of the digits (time %.2fs)" % (time() - t0)) plt.show()
bsd-3-clause
sebp/scikit-survival
sksurv/preprocessing.py
1
3945
# This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils.validation import check_is_fitted from .column import encode_categorical __all__ = ['OneHotEncoder'] def check_columns_exist(actual, expected): missing_features = expected.difference(actual) if len(missing_features) != 0: raise ValueError("%d features are missing from data: %s" % ( len(missing_features), missing_features.tolist() )) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical columns with `M` categories into `M-1` columns according to the one-hot scheme. The order of non-categorical columns is preserved, encoded columns are inserted inplace of the original column. Parameters ---------- allow_drop : boolean, optional, default: True Whether to allow dropping categorical columns that only consist of a single category. Attributes ---------- feature_names_ : pandas.Index List of encoded columns. categories_ : dict Categories of encoded columns. encoded_columns_ : list Name of columns after encoding. Includes names of non-categorical columns. """ def __init__(self, allow_drop=True): self.allow_drop = allow_drop def fit(self, X, y=None): # pylint: disable=unused-argument """Retrieve categorical columns. Parameters ---------- X : pandas.DataFrame Data to encode. y : Ignored. For compatibility with Pipeline. Returns ------- self : object Returns self """ self.fit_transform(X) return self def _encode(self, X, columns_to_encode): return encode_categorical(X, columns=columns_to_encode, allow_drop=self.allow_drop) def fit_transform(self, X, y=None, **fit_params): # pylint: disable=unused-argument """Convert categorical columns to numeric values. Parameters ---------- X : pandas.DataFrame Data to encode. y : Ignored. For compatibility with TransformerMixin. fit_params : Ignored. For compatibility with TransformerMixin. Returns ------- Xt : pandas.DataFrame Encoded data. """ columns_to_encode = X.select_dtypes(include=["object", "category"]).columns x_dummy = self._encode(X, columns_to_encode) self.feature_names_ = columns_to_encode self.categories_ = {k: X[k].cat.categories for k in columns_to_encode} self.encoded_columns_ = x_dummy.columns return x_dummy def transform(self, X): """Convert categorical columns to numeric values. Parameters ---------- X : pandas.DataFrame Data to encode. Returns ------- Xt : pandas.DataFrame Encoded data. """ check_is_fitted(self, "encoded_columns_") check_columns_exist(X.columns, self.feature_names_) Xt = X.copy() for col, cat in self.categories_.items(): Xt[col].cat.set_categories(cat, inplace=True) new_data = self._encode(Xt, self.feature_names_) return new_data.loc[:, self.encoded_columns_]
gpl-3.0
jeffknupp/arrow
python/scripts/test_leak.py
6
1847
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pyarrow as pa import numpy as np import memory_profiler import gc import io def leak(): data = [pa.array(np.concatenate([np.random.randn(100000)] * 1000))] table = pa.Table.from_arrays(data, ['foo']) while True: print('calling to_pandas') print('memory_usage: {0}'.format(memory_profiler.memory_usage())) table.to_pandas() gc.collect() # leak() def leak2(): data = [pa.array(np.concatenate([np.random.randn(100000)] * 10))] table = pa.Table.from_arrays(data, ['foo']) while True: print('calling to_pandas') print('memory_usage: {0}'.format(memory_profiler.memory_usage())) df = table.to_pandas() batch = pa.RecordBatch.from_pandas(df) sink = io.BytesIO() writer = pa.RecordBatchFileWriter(sink, batch.schema) writer.write_batch(batch) writer.close() buf_reader = pa.BufferReader(sink.getvalue()) reader = pa.open_file(buf_reader) reader.read_all() gc.collect() leak2()
apache-2.0
jreback/pandas
pandas/tests/io/parser/usecols/test_strings.py
6
2564
""" Tests the usecols functionality during parsing for all of the parsers defined in parsers.py """ from io import StringIO import pytest from pandas import DataFrame import pandas._testing as tm _msg_validate_usecols_arg = ( "'usecols' must either be list-like " "of all strings, all unicode, all " "integers or a callable." ) _msg_validate_usecols_names = ( "Usecols do not match columns, columns expected but not found: {0}" ) def test_usecols_with_unicode_strings(all_parsers): # see gh-13219 data = """AAA,BBB,CCC,DDD 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a""" parser = all_parsers exp_data = { "AAA": { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002, }, "BBB": {0: 8, 1: 2, 2: 7}, } expected = DataFrame(exp_data) result = parser.read_csv(StringIO(data), usecols=["AAA", "BBB"]) tm.assert_frame_equal(result, expected) def test_usecols_with_single_byte_unicode_strings(all_parsers): # see gh-13219 data = """A,B,C,D 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a""" parser = all_parsers exp_data = { "A": { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002, }, "B": {0: 8, 1: 2, 2: 7}, } expected = DataFrame(exp_data) result = parser.read_csv(StringIO(data), usecols=["A", "B"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("usecols", [["AAA", b"BBB"], [b"AAA", "BBB"]]) def test_usecols_with_mixed_encoding_strings(all_parsers, usecols): data = """AAA,BBB,CCC,DDD 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a""" parser = all_parsers with pytest.raises(ValueError, match=_msg_validate_usecols_arg): parser.read_csv(StringIO(data), usecols=usecols) @pytest.mark.parametrize("usecols", [["あああ", "いい"], ["あああ", "いい"]]) def test_usecols_with_multi_byte_characters(all_parsers, usecols): data = """あああ,いい,ううう,ええええ 0.056674973,8,True,a 2.613230982,2,False,b 3.568935038,7,False,a""" parser = all_parsers exp_data = { "あああ": { 0: 0.056674972999999997, 1: 2.6132309819999997, 2: 3.5689350380000002, }, "いい": {0: 8, 1: 2, 2: 7}, } expected = DataFrame(exp_data) result = parser.read_csv(StringIO(data), usecols=usecols) tm.assert_frame_equal(result, expected)
bsd-3-clause
yaojenkuo/stockflow
ctrls/CandleDrawer.py
2
3513
#!/bin/python # -*- coding: utf-8 -*- import numpy as np from settings import * from datetime import datetime from ctrls.Reader import Reader import matplotlib.pyplot as plt from matplotlib.finance import candlestick_ohlc class CandleDrawer(): '''畫出近 n 天 K 線圖+Ma20布林通道+高低通道+量''' def _getBooleanBand(self, series): bool_next = []# 近 n 天和 Moving Average 的分佈 bool_up_series = []# boolean band 上界 ma_series = []# boolean band 中間 bool_down_series = []# boolean band 上界 for i in xrange(CANDLE_BOOL_NUM, len(series)): ma_series.append(np.mean(series[i - CANDLE_BOOL_NUM:i])) # Boolean Band # 近 n 天和 Moving Average 的分佈 bool_next.append(series[i] - ma_series[-1]) if len(bool_next) > CANDLE_BOOL_NUM: bool_next.pop(0) # 通道大小 bool_width = 2 * np.std(bool_next) bool_up_series.append(ma_series[-1] + bool_width) bool_down_series.append(ma_series[-1] - bool_width) return bool_up_series, ma_series, bool_down_series def _getFigTitle(self, number): t = datetime.now() return ('%s, Update: %s/%s/%s %s:%s:%s' % (number, str(t.year), str(t.month),str(t.day), str(t.hour), str(t.minute), str(t.second)) ) def draw(self, number, length = CANDLE_FIG_LENGTH): reader = Reader(number) series = [[] for x in xrange(7)] # Candle Stick candle_sticks = [] idx = -1 while True: idx +=1 row = reader.getInput() if row == None: break for i in [1, 3, 4, 5, 6]: series[i].append(float(row[i])) # matplotlib 的 candlestick_ohlc 依序放入 [編號, 收盤, 最高, 最低, 開盤] 會畫出 K 線圖 candle_sticks.append(( idx, float(row[6]), float(row[4]), float(row[5]), float(row[3]) )) bool_up_series, ma_series, bool_down_series = self._getBooleanBand(series[6]) # Draw Figure line_width = CANDLE_FIG_LINE_WIDTH fig, axarr = plt.subplots(2, sharex=True) candlestick_ohlc(axarr[0], candle_sticks[-length:], width=CANDLE_STICK_WIDTH) x_axis = range(len(series[6])) # set zorder 讓 candlestick 可以在上面 axarr[0].plot(x_axis[-length:], ma_series[-length:], c='#00ff00', ls='-', lw=line_width, zorder=-5) axarr[0].plot(x_axis[-length:], bool_up_series[-length:], c='#ff0000', ls='-', lw=line_width, zorder=-4) axarr[0].plot(x_axis[-length:], bool_down_series[-length:], c='#0000ff', ls='-', lw=line_width, zorder=-3) axarr[0].plot(x_axis[-length:], series[4][-length:], c='#ff3399', ls='-', lw=line_width, zorder=-2) axarr[0].plot(x_axis[-length:], series[5][-length:], c='#0099ff', ls='-', lw=line_width, zorder=-1) axarr[0].set_title(self._getFigTitle(number)) axarr[1].plot(x_axis[-length:], series[1][-length:], c='#000000', ls='-', lw=line_width) # set figure arguments fig.set_size_inches(FIGURE_WIDTH, FIGURE_HEIGHT) # output figure fig.savefig(CANDLE_FIG_PATH+'/'+number+'.png', dpi=FIGURE_DPI) plt.clf() plt.close('all')
mit
allenlavoie/tensorflow
tensorflow/contrib/learn/python/learn/learn_io/pandas_io.py
28
5024
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Methods to allow pandas.DataFrame (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.estimator.inputs.pandas_io import pandas_input_fn as core_pandas_input_fn from tensorflow.python.util.deprecation import deprecated try: # pylint: disable=g-import-not-at-top import pandas as pd HAS_PANDAS = True except IOError: # Pandas writes a temporary file during import. If it fails, don't use pandas. HAS_PANDAS = False except ImportError: HAS_PANDAS = False PANDAS_DTYPES = { 'int8': 'int', 'int16': 'int', 'int32': 'int', 'int64': 'int', 'uint8': 'int', 'uint16': 'int', 'uint32': 'int', 'uint64': 'int', 'float16': 'float', 'float32': 'float', 'float64': 'float', 'bool': 'i' } @deprecated(None, 'Please use tf.estimator.inputs.pandas_input_fn') def pandas_input_fn(x, y=None, batch_size=128, num_epochs=1, shuffle=True, queue_capacity=1000, num_threads=1, target_column='target'): """This input_fn diffs from the core version with default `shuffle`.""" return core_pandas_input_fn(x=x, y=y, batch_size=batch_size, shuffle=shuffle, num_epochs=num_epochs, queue_capacity=queue_capacity, num_threads=num_threads, target_column=target_column) @deprecated(None, 'Please access pandas data directly.') def extract_pandas_data(data): """Extract data from pandas.DataFrame for predictors. Given a DataFrame, will extract the values and cast them to float. The DataFrame is expected to contain values of type int, float or bool. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values as floats. Raises: ValueError: if data contains types other than int, float or bool. """ if not isinstance(data, pd.DataFrame): return data bad_data = [column for column in data if data[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return data.values.astype('float') else: error_report = [("'" + str(column) + "' type='" + data[column].dtype.name + "'") for column in bad_data] raise ValueError('Data types for extracting pandas data must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) @deprecated(None, 'Please access pandas data directly.') def extract_pandas_matrix(data): """Extracts numpy matrix from pandas DataFrame. Args: data: `pandas.DataFrame` containing the data to be extracted. Returns: A numpy `ndarray` of the DataFrame's values. """ if not isinstance(data, pd.DataFrame): return data return data.as_matrix() @deprecated(None, 'Please access pandas data directly.') def extract_pandas_labels(labels): """Extract data from pandas.DataFrame for labels. Args: labels: `pandas.DataFrame` or `pandas.Series` containing one column of labels to be extracted. Returns: A numpy `ndarray` of labels from the DataFrame. Raises: ValueError: if more than one column is found or type is not int, float or bool. """ if isinstance(labels, pd.DataFrame): # pandas.Series also belongs to DataFrame if len(labels.columns) > 1: raise ValueError('Only one column for labels is allowed.') bad_data = [column for column in labels if labels[column].dtype.name not in PANDAS_DTYPES] if not bad_data: return labels.values else: error_report = ["'" + str(column) + "' type=" + str(labels[column].dtype.name) for column in bad_data] raise ValueError('Data types for extracting labels must be int, ' 'float, or bool. Found: ' + ', '.join(error_report)) else: return labels
apache-2.0
PatrickChrist/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
NEONScience/NEON-Data-Skills
tutorials/Python/Lidar/lidar-biomass/calc-biomass_py/calc-biomass_py.py
1
20510
#!/usr/bin/env python # coding: utf-8 # --- # syncID: e6ccf19a4b454ca594388eeaa88ebe12 # title: "Calculate Vegetation Biomass from LiDAR Data in Python" # description: "Learn to calculate the biomass of standing vegetation using a canopy height model data product." # dateCreated: 2017-06-21 # authors: Tristan Goulden # contributors: Donal O'Leary # estimatedTime: 1 hour # packagesLibraries: numpy, gdal, matplotlib, matplotlib.pyplot, os # topics: lidar,remote-sensing # languagesTool: python # dataProduct: DP1.10098.001, DP3.30015.001, # code1: https://raw.githubusercontent.com/NEONScience/NEON-Data-Skills/main/tutorials/Python/Lidar/lidar-biomass/calc-biomass_py/calc-biomass_py.ipynb # tutorialSeries: intro-lidar-py-series # urlTitle: calc-biomass-py # --- # <div id="ds-objectives" markdown="1"> # # In this tutorial, we will calculate the biomass for a section of the SJER site. We # will be using the Canopy Height Model discrete LiDAR data product as well as NEON # field data on vegetation data. This tutorial will calculate Biomass for individual # trees in the forest. # # ### Objectives # After completing this tutorial, you will be able to: # # * Learn how to apply a guassian smoothing fernal for high-frequency spatial filtering # * Apply a watershed segmentation algorithm for delineating tree crowns # * Calculate biomass predictor variables from a CHM # * Setup training data for Biomass predictions # * Apply a Random Forest machine learning approach to calculate biomass # # # ### Install Python Packages # # * **numpy** # * **gdal** # * **matplotlib** # * **matplotlib.pyplot** # * **os** # # # ### Download Data # # If you have already downloaded the data set for the Data Institute, you have the # data for this tutorial within the SJER directory. If you would like to just # download the data for this tutorial use the following link. # # <a href="https://neondata.sharefile.com/d-s58db39240bf49ac8" class="link--button link--arrow"> # Download the Biomass Calculation teaching data subset</a> # # </div> # In this tutorial, we will calculate the biomass for a section of the SJER site. We # will be using the Canopy Height Model discrete LiDAR data product as well as NEON # field data on vegetation data. This tutorial will calculate Biomass for individual # trees in the forest. # # The calculation of biomass consists of four primary steps: # # 1. Delineating individual tree crowns # 2. Calculating predictor variables for all individuals # 3. Collecting training data # 4. Applying a regression model to estiamte biomass from predictors # # In this tutorial we will use a watershed segmentation algorithm for delineating # tree crowns (step 1) and and a Random Forest (RF) machine learning algorithm for # relating the predictor variables to biomass (part 4). The predictor variables were # selected following suggestions by Gleason et al. (2012) and biomass estimates were # determined from DBH (diamter at breast height) measurements following relationships # given in Jenkins et al. (2003). # # ## Get Started # # First, we need to specify the directory where we will find and save the data needed for this tutorial. You will need to change this line to suit your local machine. I have decided to save my data in the following directory: # In[1]: data_path = '/Users/olearyd/Git/data/' # Next, we will import several of the typical libraries. # In[2]: import numpy as np import os import gdal, osr import matplotlib.pyplot as plt import sys from scipy import ndimage as ndi get_ipython().run_line_magic('matplotlib', 'inline') # Next, we will add libraries from skilearn which will help with the watershed delination, determination of predictor variables and random forest algorithm # In[3]: #Import biomass specific libraries from skimage.morphology import watershed from skimage.feature import peak_local_max from skimage.measure import regionprops from sklearn.ensemble import RandomForestRegressor # ## Define functions # # Now we will define a few functions that allow us to more easily work with the NEON data. # # * `plot_band_array`: function to plot NEON spatial data. # In[4]: #Define plot band array function def plot_band_array(band_array,image_extent,title,cmap_title,colormap,colormap_limits): plt.imshow(band_array,extent=image_extent) cbar = plt.colorbar(); plt.set_cmap(colormap); plt.clim(colormap_limits) cbar.set_label(cmap_title,rotation=270,labelpad=20) plt.title(title); ax = plt.gca() ax.ticklabel_format(useOffset=False, style='plain') rotatexlabels = plt.setp(ax.get_xticklabels(),rotation=90) # * `array2raster`: function to output geotiff files. # In[5]: def array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,array,epsg): cols = array.shape[1] rows = array.shape[0] originX = rasterOrigin[0] originY = rasterOrigin[1] driver = gdal.GetDriverByName('GTiff') outRaster = driver.Create(newRasterfn, cols, rows, 1, gdal.GDT_Float32) outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight)) outband = outRaster.GetRasterBand(1) outband.WriteArray(array) outRasterSRS = osr.SpatialReference() outRasterSRS.ImportFromEPSG(epsg) outRaster.SetProjection(outRasterSRS.ExportToWkt()) outband.FlushCache() # * `raster2array`: function to conver rasters to an array. # In[6]: def raster2array(geotif_file): metadata = {} dataset = gdal.Open(geotif_file) metadata['array_rows'] = dataset.RasterYSize metadata['array_cols'] = dataset.RasterXSize metadata['bands'] = dataset.RasterCount metadata['driver'] = dataset.GetDriver().LongName metadata['projection'] = dataset.GetProjection() metadata['geotransform'] = dataset.GetGeoTransform() mapinfo = dataset.GetGeoTransform() metadata['pixelWidth'] = mapinfo[1] metadata['pixelHeight'] = mapinfo[5] metadata['ext_dict'] = {} metadata['ext_dict']['xMin'] = mapinfo[0] metadata['ext_dict']['xMax'] = mapinfo[0] + dataset.RasterXSize/mapinfo[1] metadata['ext_dict']['yMin'] = mapinfo[3] + dataset.RasterYSize/mapinfo[5] metadata['ext_dict']['yMax'] = mapinfo[3] metadata['extent'] = (metadata['ext_dict']['xMin'],metadata['ext_dict']['xMax'], metadata['ext_dict']['yMin'],metadata['ext_dict']['yMax']) if metadata['bands'] == 1: raster = dataset.GetRasterBand(1) metadata['noDataValue'] = raster.GetNoDataValue() metadata['scaleFactor'] = raster.GetScale() # band statistics metadata['bandstats'] = {} # make a nested dictionary to store band stats in same stats = raster.GetStatistics(True,True) metadata['bandstats']['min'] = round(stats[0],2) metadata['bandstats']['max'] = round(stats[1],2) metadata['bandstats']['mean'] = round(stats[2],2) metadata['bandstats']['stdev'] = round(stats[3],2) array = dataset.GetRasterBand(1).ReadAsArray(0,0, metadata['array_cols'], metadata['array_rows']).astype(np.float) array[array==int(metadata['noDataValue'])]=np.nan array = array/metadata['scaleFactor'] return array, metadata elif metadata['bands'] > 1: print('More than one band ... need to modify function for case of multiple bands') # * `crown_geometric_volume_pth`: function to get tree crown volumn. # In[7]: def crown_geometric_volume_pth(tree_data,min_tree_height,pth): p = np.percentile(tree_data, pth) tree_data_pth = [v if v < p else p for v in tree_data] crown_geometric_volume_pth = np.sum(tree_data_pth - min_tree_height) return crown_geometric_volume_pth, p # * `get_predictors`: function to get the trees from the biomass data. # In[8]: def get_predictors(tree,chm_array, labels): indexes_of_tree = np.asarray(np.where(labels==tree.label)).T tree_crown_heights = chm_array[indexes_of_tree[:,0],indexes_of_tree[:,1]] full_crown = np.sum(tree_crown_heights - np.min(tree_crown_heights)) crown50, p50 = crown_geometric_volume_pth(tree_crown_heights,tree.min_intensity,50) crown60, p60 = crown_geometric_volume_pth(tree_crown_heights,tree.min_intensity,60) crown70, p70 = crown_geometric_volume_pth(tree_crown_heights,tree.min_intensity,70) return [tree.label, np.float(tree.area), tree.major_axis_length, tree.max_intensity, tree.min_intensity, p50, p60, p70, full_crown, crown50, crown60, crown70] # ## Canopy Height Data # # With everything set up, we can now start working with our data by define the file path to our CHM file. Note that you will need to change this and subsequent filepaths according to your local machine. # In[9]: chm_file = data_path+'NEON_D17_SJER_DP3_256000_4106000_CHM.tif' # When we output the results, we will want to include the same file information as the input, so we will gather the file name information. # In[10]: #Get info from chm file for outputting results just_chm_file = os.path.basename(chm_file) just_chm_file_split = just_chm_file.split(sep="_") # Now we will get the CHM data... # In[11]: chm_array, chm_array_metadata = raster2array(chm_file) # ..., plot it, and save the figure. # In[12]: #Plot the original CHM plt.figure(1) #Plot the CHM figure plot_band_array(chm_array,chm_array_metadata['extent'], 'Canopy height Model', 'Canopy height (m)', 'Greens',[0, 9]) plt.savefig(data_path+just_chm_file[0:-4]+'_CHM.png',dpi=300,orientation='landscape', bbox_inches='tight', pad_inches=0.1) # It looks like SJER primarily has low vegetation with scattered taller trees. # # ## Create Filtered CHM # # Now we will use a Gaussian smoothing kernal (convolution) across the data set to remove spurious high vegetation points. This will help ensure we are finding the treetops properly before running the watershed segmentation algorithm. # # For different forest types it may be necessary to change the input parameters. Information on the function can be found in the <a href="https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.filters.gaussian_filter.html" target="_blank">SciPy documentation</a>. # # Of most importance are the second and fifth inputs. The second input defines the standard deviation of the Gaussian smoothing kernal. Too large a value will apply too much smoothing, too small and some spurious high points may be left behind. The fifth, the truncate value, controls after how many standard deviations the Gaussian kernal will get cut off (since it theoretically goes to infinity). # In[13]: #Smooth the CHM using a gaussian filter to remove spurious points chm_array_smooth = ndi.gaussian_filter(chm_array,2, mode='constant',cval=0,truncate=2.0) chm_array_smooth[chm_array==0] = 0 # Now save a copy of filtered CHM. We will later use this in our code, so we'll output it into our data directory. # In[14]: #Save the smoothed CHM array2raster(data_path+'chm_filter.tif', (chm_array_metadata['ext_dict']['xMin'],chm_array_metadata['ext_dict']['yMax']), 1,-1, np.array(chm_array_smooth,dtype=float), 32611) # ## Determine local maximums # # Now we will run an algorithm to determine local maximums within the image. Setting indices to 'False' returns a raster of the maximum points, as opposed to a list of coordinates. The footprint parameter is an area where only a single peak can be found. This should be approximately the size of the smallest tree. Information on more sophisticated methods to define the window can be found in Chen (2006). # In[15]: #Calculate local maximum points in the smoothed CHM local_maxi = peak_local_max(chm_array_smooth,indices=False, footprint=np.ones((5, 5))) # Our new object `local_maxi` is an array of boolean values where each pixel is identified as either being the local maximum (`True`) or not being the local maximum (`False`). # In[16]: local_maxi # This is very helpful, but it can be difficult to visualizee boolean values using our typical numeric plotting procedures as defined in the `plot_band_array` function above. Therefore, we will need to convert this boolean array to an numeric format to use this function. Booleans convert easily to integers with values of `False=0` and `True=1` using the `.astype(int)` method. # In[17]: local_maxi.astype(int) # Next ,we can plot the raster of local maximums bo coercing the boolean array into an array ofintegers inline. The following figure shows the difference in finding local maximums for a filtered vs. non-filtered CHM. # # We will save the graphics (.png) in an outputs folder sister to our working directory and data outputs (.tif) to our data directory. # In[18]: #Plot the local maximums plt.figure(2) plot_band_array(local_maxi.astype(int),chm_array_metadata['extent'], 'Maximum', 'Maxi', 'Greys', [0, 1]) plt.savefig(data_path+just_chm_file[0:-4]+ '_Maximums.png', dpi=300,orientation='landscape', bbox_inches='tight',pad_inches=0.1) array2raster(data_path+'maximum.tif', (chm_array_metadata['ext_dict']['xMin'],chm_array_metadata['ext_dict']['yMax']), 1,-1,np.array(local_maxi,dtype=np.float32),32611) # If we were to look at the overlap between the tree crowns and the local maxima from each method, it would appear a bit like this raster. # # <figure> # <a href="https://raw.githubusercontent.com/NEONScience/NEON-Data-Skills/main/graphics/raster-general/raster-classification-filter-vs-nonfilter.jpg"> # <img src="https://raw.githubusercontent.com/NEONScience/NEON-Data-Skills/main/graphics/raster-general/raster-classification-filter-vs-nonfilter.jpg"></a> # <figcaption> The difference in finding local maximums for a filtered vs. # non-filtered CHM. # Source: National Ecological Observatory Network (NEON) # </figcaption> # </figure> # # # Apply labels to all of the local maximum points # In[19]: #Identify all the maximum points markers = ndi.label(local_maxi)[0] # Next we will create a mask layer of all of the vegetation points so that the watershed segmentation will only occur on the trees and not extend into the surrounding ground points. Since 0 represent ground points in the CHM, setting the mask to 1 where the CHM is not zero will define the mask # In[20]: #Create a CHM mask so the segmentation will only occur on the trees chm_mask = chm_array_smooth chm_mask[chm_array_smooth != 0] = 1 # ## Watershed segmentation # # As in a river system, a watershed is divided by a ridge that divides areas. Here our watershed are the individual tree canopies and the ridge is the delineation between each one. # # <figure> # <a href="https://raw.githubusercontent.com/NEONScience/NEON-Data-Skills/main/graphics/raster-general/raster-classification-watershed-segments.png"> # <img src="https://raw.githubusercontent.com/NEONScience/NEON-Data-Skills/main/graphics/raster-general/raster-classification-watershed-segments.png"></a> # <figcaption> A raster classified based on watershed segmentation. # Source: National Ecological Observatory Network (NEON) # </figcaption> # </figure> # # Next, we will perform the watershed segmentation which produces a raster of labels. # In[21]: #Perfrom watershed segmentation labels = watershed(chm_array_smooth, markers, mask=chm_mask) labels_for_plot = labels.copy() labels_for_plot = np.array(labels_for_plot,dtype = np.float32) labels_for_plot[labels_for_plot==0] = np.nan max_labels = np.max(labels) # In[22]: #Plot the segments plot_band_array(labels_for_plot,chm_array_metadata['extent'], 'Crown Segmentation','Tree Crown Number', 'Spectral',[0, max_labels]) plt.savefig(data_path+just_chm_file[0:-4]+'_Segmentation.png', dpi=300,orientation='landscape', bbox_inches='tight',pad_inches=0.1) array2raster(data_path+'labels.tif', (chm_array_metadata['ext_dict']['xMin'], chm_array_metadata['ext_dict']['yMax']), 1,-1,np.array(labels,dtype=float),32611) # Now we will get several properties of the individual trees will be used as predictor variables. # In[23]: #Get the properties of each segment tree_properties = regionprops(labels,chm_array) # Now we will get the predictor variables to match the (soon to be loaded) training data using the function defined above. The first column will be segment IDs, the rest will be the predictor variables. # In[24]: predictors_chm = np.array([get_predictors(tree, chm_array, labels) for tree in tree_properties]) X = predictors_chm[:,1:] tree_ids = predictors_chm[:,0] # ## Training data # # We now bring in the training data file which is a simple CSV file with no header. The first column is biomass, and the remaining columns are the same predictor variables defined above. The tree diameter and max height are defined in the NEON vegetation structure data along with the tree DBH. The field validated values are used for training, while the other were determined from the CHM and camera images by manually delineating the tree crowns and pulling out the relevant information from the CHM. # # Biomass was calculated from DBH according to the formulas in Jenkins et al. (2003). # # If you didn't download this training dataset above, you can <a href="https://neondata.sharefile.com/share/view/cdc8242e24ad4517/fobd4959-4cf0-44ab-acc6-0695a04a1afc" target="_blank">Download the training dataset CSV here</a>. # In[25]: #Define the file of training data training_data_file = data_path+'SJER_Biomass_Training.csv' #Read in the training data from a CSV file training_data = np.genfromtxt(training_data_file,delimiter=',') #Grab the biomass (Y) from the first line biomass = training_data[:,0] #Grab the biomass prdeictors from the remaining lines biomass_predictors = training_data[:,1:12] # ## Random Forest classifiers # # We can then define parameters of the Random Forest classifier and fit the predictor variables from the training data to the Biomass estaimtes. # In[26]: #Define paraemters for Random forest regressor max_depth = 30 #Define regressor rules regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2) #Fit the biomass to regressor variables regr_rf.fit(biomass_predictors,biomass) # We now apply the Random Forest model to the predictor variables to retreive biomass # In[27]: #Apply the model to the predictors estimated_biomass = regr_rf.predict(X) # For outputting a raster, copy the labels raster to a biomass raster, then cycle through the segments and assign the biomass estimate to each individual tree segment. # In[28]: #Set an out raster with the same size as the labels biomass_map = np.array((labels),dtype=float) #Assign the appropriate biomass to the labels biomass_map[biomass_map==0] = np.nan for tree_id, biomass_of_tree_id in zip(tree_ids, estimated_biomass): biomass_map[biomass_map == tree_id] = biomass_of_tree_id # ## Calc Biomass # Collect some of the biomass statistics and then plot the results and save an output geotiff. # In[29]: #Get biomass stats for plotting mean_biomass = np.mean(estimated_biomass) std_biomass = np.std(estimated_biomass) min_biomass = np.min(estimated_biomass) sum_biomass = np.sum(estimated_biomass) print('Sum of biomass is ',sum_biomass,' kg') #Plot the biomass! plt.figure(5) plot_band_array(biomass_map,chm_array_metadata['extent'], 'Biomass (kg)','Biomass (kg)', 'winter', [min_biomass+std_biomass, mean_biomass+std_biomass*3]) plt.savefig(data_path+just_chm_file_split[0]+'_'+just_chm_file_split[1]+'_'+just_chm_file_split[2]+'_'+just_chm_file_split[3]+'_'+just_chm_file_split[4]+'_'+just_chm_file_split[5]+'_'+'Biomass.png', dpi=300,orientation='landscape', bbox_inches='tight', pad_inches=0.1) array2raster(data_path+'biomass.tif', (chm_array_metadata['ext_dict']['xMin'],chm_array_metadata['ext_dict']['yMax']), 1,-1,np.array(biomass_map,dtype=float),32611) # In[ ]:
agpl-3.0
herilalaina/scikit-learn
sklearn/feature_selection/tests/test_rfe.py
15
11812
""" Testing Recursive feature elimination """ import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from scipy import sparse from sklearn.feature_selection.rfe import RFE, RFECV from sklearn.datasets import load_iris, make_friedman1 from sklearn.metrics import zero_one_loss from sklearn.svm import SVC, SVR from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import GroupKFold from sklearn.utils import check_random_state from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_greater, assert_equal, assert_true from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer class MockClassifier(object): """ Dummy classifier to test recursive feature elimination """ def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.coef_ = np.ones(X.shape[1], dtype=np.float64) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=True): return {'foo_param': self.foo_param} def set_params(self, **params): return self def test_rfe_features_importance(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = RandomForestClassifier(n_estimators=20, random_state=generator, max_depth=2) rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) assert_equal(len(rfe.ranking_), X.shape[1]) clf_svc = SVC(kernel="linear") rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1) rfe_svc.fit(X, y) # Check if the supports are equal assert_array_equal(rfe.get_support(), rfe_svc.get_support()) def test_rfe(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] X_sparse = sparse.csr_matrix(X) y = iris.target # dense model clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) # sparse model clf_sparse = SVC(kernel="linear") rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1) rfe_sparse.fit(X_sparse, y) X_r_sparse = rfe_sparse.transform(X_sparse) assert_equal(X_r.shape, iris.data.shape) assert_array_almost_equal(X_r[:10], iris.data[:10]) assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data)) assert_equal(rfe.score(X, y), clf.score(iris.data, iris.target)) assert_array_almost_equal(X_r, X_r_sparse.toarray()) def test_rfe_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target # dense model clf = MockClassifier() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) assert_equal(X_r.shape, iris.data.shape) def test_rfecv(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) # All the noisy variable were filtered out assert_array_equal(X_r, iris.data) # same in sparse rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Test using a customized loss function scoring = make_scorer(zero_one_loss, greater_is_better=False) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scoring) ignore_warnings(rfecv.fit)(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test using a scorer scorer = get_scorer('accuracy') rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scorer) rfecv.fit(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test fix on grid_scores def test_scorer(estimator, X, y): return 1.0 rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=test_scorer) rfecv.fit(X, y) assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_))) # Same as the first two tests, but with step=2 rfecv = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) rfecv.fit(X, y) assert_equal(len(rfecv.grid_scores_), 6) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Verifying that steps < 1 don't blow up. rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=.2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) def test_rfecv_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=MockClassifier(), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) def test_rfecv_verbose_output(): # Check verbose=1 is producing an output. from sklearn.externals.six.moves import cStringIO as StringIO import sys sys.stdout = StringIO() generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, verbose=1) rfecv.fit(X, y) verbose_output = sys.stdout verbose_output.seek(0) assert_greater(len(verbose_output.readline()), 0) def test_rfe_estimator_tags(): rfe = RFE(SVC(kernel='linear')) assert_equal(rfe._estimator_type, "classifier") # make sure that cross-validation is stratified iris = load_iris() score = cross_val_score(rfe, iris.data, iris.target) assert_greater(score.min(), .7) def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X, y) assert_equal(sel.support_.sum(), n_features // 2) def test_number_of_subsets_of_features(): # In RFE, 'number_of_subsets_of_features' # = the number of iterations in '_fit' # = max(ranking_) # = 1 + (n_features + step - n_features_to_select - 1) // step # After optimization #4534, this number # = 1 + np.ceil((n_features - n_features_to_select) / float(step)) # This test case is to test their equivalence, refer to #4534 and #3824 def formula1(n_features, n_features_to_select, step): return 1 + ((n_features + step - n_features_to_select - 1) // step) def formula2(n_features, n_features_to_select, step): return 1 + np.ceil((n_features - n_features_to_select) / float(step)) # RFE # Case 1, n_features - n_features_to_select is divisible by step # Case 2, n_features - n_features_to_select is not divisible by step n_features_list = [11, 11] n_features_to_select_list = [3, 3] step_list = [2, 3] for n_features, n_features_to_select, step in zip( n_features_list, n_features_to_select_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfe = RFE(estimator=SVC(kernel="linear"), n_features_to_select=n_features_to_select, step=step) rfe.fit(X, y) # this number also equals to the maximum of ranking_ assert_equal(np.max(rfe.ranking_), formula1(n_features, n_features_to_select, step)) assert_equal(np.max(rfe.ranking_), formula2(n_features, n_features_to_select, step)) # In RFECV, 'fit' calls 'RFE._fit' # 'number_of_subsets_of_features' of RFE # = the size of 'grid_scores' of RFECV # = the number of iterations of the for loop before optimization #4534 # RFECV, n_features_to_select = 1 # Case 1, n_features - 1 is divisible by step # Case 2, n_features - 1 is not divisible by step n_features_to_select = 1 n_features_list = [11, 10] step_list = [2, 2] for n_features, step in zip(n_features_list, step_list): generator = check_random_state(43) X = generator.normal(size=(100, n_features)) y = generator.rand(100).round() rfecv = RFECV(estimator=SVC(kernel="linear"), step=step, cv=5) rfecv.fit(X, y) assert_equal(rfecv.grid_scores_.shape[0], formula1(n_features, n_features_to_select, step)) assert_equal(rfecv.grid_scores_.shape[0], formula2(n_features, n_features_to_select, step)) def test_rfe_cv_n_jobs(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target rfecv = RFECV(estimator=SVC(kernel='linear')) rfecv.fit(X, y) rfecv_ranking = rfecv.ranking_ rfecv_grid_scores = rfecv.grid_scores_ rfecv.set_params(n_jobs=2) rfecv.fit(X, y) assert_array_almost_equal(rfecv.ranking_, rfecv_ranking) assert_array_almost_equal(rfecv.grid_scores_, rfecv_grid_scores) def test_rfe_cv_groups(): generator = check_random_state(0) iris = load_iris() number_groups = 4 groups = np.floor(np.linspace(0, number_groups, len(iris.target))) X = iris.data y = (iris.target > 0).astype(int) est_groups = RFECV( estimator=RandomForestClassifier(random_state=generator), step=1, scoring='accuracy', cv=GroupKFold(n_splits=2) ) est_groups.fit(X, y, groups=groups) assert est_groups.n_features_ > 0
bsd-3-clause
antoinecarme/pyaf
setup.py
1
1126
from setuptools import setup from setuptools import find_packages with open("README.md", "r") as fh: pyaf_long_description = fh.read() setup(name='pyaf', version='3.0-RC1', description='Python Automatic Forecasting', long_description=pyaf_long_description, long_description_content_type="text/markdown", author='Antoine CARME', author_email='antoine.carme@laposte.net', url='https://github.com/antoinecarme/pyaf', license='BSD 3-clause', packages=find_packages(include=['pyaf', 'pyaf.*']), python_requires='>=3', classifiers=['Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 3'], keywords='arx automatic-forecasting autoregressive benchmark cycle decomposition exogenous forecasting heroku hierarchical-forecasting horizon jupyter pandas python scikit-learn seasonal time-series transformation trend web-service', install_requires=[ 'scipy', 'pandas', 'sklearn', 'matplotlib', 'pydot', 'dill', 'sqlalchemy' ])
bsd-3-clause
thorwhalen/ut
ml/sk/transformers.py
1
4610
__author__ = 'thor' from sklearn.base import TransformerMixin, BaseEstimator from sklearn.neighbors import KNeighborsRegressor from pandas import DataFrame import numpy as np from nltk import word_tokenize from functools import reduce class HourOfDayTransformer(TransformerMixin): def __init__(self, date_field='datetime'): self.date_field = date_field def transform(self, X, **transform_params): hours = DataFrame(X[self.date_field].apply(lambda x: x.hour)) return hours def fit(self, X, y=None, **fit_params): return self class ModelTransformer(TransformerMixin): """ Sometimes transformers do need to be fitted. ModelTransformer is used to wrap a scikit-learn model and make it behave like a transformer. This is useful when you want to use something like a KMeans clustering model to generate features for another model. It needs to be fitted in order to train the model it wraps. """ def __init__(self, model): self.model = model def fit(self, *args, **kwargs): self.model.fit(*args, **kwargs) return self def transform(self, X, **transform_params): return DataFrame(self.model.predict(X)) class KVExtractor(TransformerMixin): """ Transform multiple key/value columns in a scikit-learn pipeline. >>> import pandas as pd >>> D = pd.DataFrame([ ['a', 1, 'b', 2], ['b', 2, 'c', 3]], columns = ['k1', 'v1', 'k2', 'v2']) >>> kvpairs = [ ['k1', 'v1'], ['k2', 'v2'] ] >>> KVExtractor( kvpairs ).transform(D) [{'a': 1, 'b': 2}, {'c': 3, 'b': 2}] """ def __init__(self, kvpairs): self.kpairs = kvpairs def transform(self, X, *_): result = [] for index, rowdata in X.iterrows(): rowdict = {} for kvp in self.kpairs: rowdict.update({rowdata[kvp[0]]: rowdata[kvp[1]]}) result.append(rowdict) return result def fit(self, *_): return self class ColumnSelectTransformer(BaseEstimator, TransformerMixin): def __init__(self, keys): self.keys = keys def fit(self, X, y=None): return self def transform(self, X): return X[self.keys] class CategoryTransformer(BaseEstimator, TransformerMixin): def __init__(self): pass def fit(self, X, y=None): return self def transform(self, X): D = [] for record in X.values: D.append({k: 1 for k in record[0]}) return D class AttributeTransformer(BaseEstimator, TransformerMixin): def __init__(self): pass def _flatten(self, d, parent_key='', sep='_'): """ Flatten dictonary """ import collections items = [] for k, v in list(d.items()): new_key = parent_key + sep + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(list(self._flatten(v, new_key, sep=sep).items())) else: new_v = 1 if v == True else 0 items.append((new_key, new_v)) return dict(items) def fit(self, X, y=None): return self def transform(self, X): D = [] for record in X.values: D.append(self._flatten(record[0])) return D class KNNImputer(TransformerMixin): """ Fill missing values using KNN Regressor """ def __init__(self, k): self.k = k def fit(self, X, y=None): return self def transform(self, X, y=None): """ :param X: multidimensional numpy array like. """ rows, features = X.shape mask = list([reduce(lambda h, t: h or t, x) for x in np.isnan(X)]) criteria_for_bad = np.where(mask)[0] criteria_for_good = np.where(mask == np.zeros(len(mask)))[0] X_bad = X[criteria_for_bad] X_good = X[criteria_for_good] knn = KNeighborsRegressor(n_neighbors=self.k) for idx, x_bad in zip(criteria_for_bad.tolist(), X_bad): missing = np.isnan(x_bad) bad_dim = np.where(missing)[0] good_dim = np.where(missing == False)[0] for d in bad_dim: x = X_good[:, good_dim] y = X_good[:, d] knn.fit(x, y) X[idx, d] = knn.predict(x_bad[good_dim]) return X class NLTKBOW(TransformerMixin): def fit(self, X, y=None): return self def transform(self, X): return [{word: True for word in word_tokenize(document)} for document in X]
mit
HBNLdev/DataStore
db/sas_tools.py
1
2566
''' tools for working with .sas7bdat files ''' import os from collections import OrderedDict import pandas as pd from sas7bdat import SAS7BDAT from .knowledge.questionnaires import map_ph4, map_ph4_ssaga map_subject = {'core': {'file_pfixes': []}} parent_dir = '/processed_data/zork/zork-phase4-69/session/' n_header_lines = 30 def extract_descriptions(path): ''' given path to .sas7bdat file, returns dictionary mapping column labels to their verbose descriptions in the SAS header. dictionary will only contain an entry if there was new information present (if there was a description, and it was different from the label) ''' f = SAS7BDAT(path) kmap = OrderedDict() for line in str(f.header).splitlines()[n_header_lines + 1:]: line_parts = line.split(maxsplit=4) label = line_parts[1] try: description = line_parts[4].rstrip() if description == label or description[0] == '$': continue else: kmap[label] = description except IndexError: pass return kmap def exemplary_files(kdict): ''' given a questionnaire knowledge map, return a new dictionary mapping questionnaire names to the filepath of an exemplary .sas7bdat file for each file prefix ''' exemplars = {} for test, tdict in kdict.items(): for fpx in tdict['file_pfixes']: fd = parent_dir + test fn = fpx + '.sas7bdat' fp = os.path.join(fd, fn) if os.path.exists(fp): exemplars[test] = fp else: print(fp, 'did not exist') return exemplars def build_labelmaps(): ''' return a dict in which keys are questionnaires names and values are dictionaries mapping column labels to descriptions ''' comb_dict = map_ph4.copy() comb_dict.update(map_ph4_ssaga) exemplars = exemplary_files(comb_dict) big_kmap = {} for test, fp in exemplars.items(): kmap = extract_descriptions(fp) big_kmap[test] = kmap return big_kmap def df_fromsas(fullpath, id_lbl='ind_id'): ''' convert .sas7bdat to dataframe. unused because fails on incorrectly formatted files. ''' # read csv in as dataframe df = pd.read_sas(fullpath, format='sas7bdat') # convert id to str and save as new column df[id_lbl] = df[id_lbl].apply(int).apply(str) df['ID'] = df[id_lbl] return df
gpl-3.0
saimn/astropy
astropy/visualization/wcsaxes/frame.py
8
10649
# Licensed under a 3-clause BSD style license - see LICENSE.rst import abc from collections import OrderedDict import numpy as np from matplotlib import rcParams from matplotlib.lines import Line2D, Path from matplotlib.patches import PathPatch __all__ = ['RectangularFrame1D', 'Spine', 'BaseFrame', 'RectangularFrame', 'EllipticalFrame'] class Spine: """ A single side of an axes. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. """ def __init__(self, parent_axes, transform): self.parent_axes = parent_axes self.transform = transform self.data = None self.pixel = None self.world = None @property def data(self): return self._data @data.setter def data(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = value self._pixel = self.parent_axes.transData.transform(self._data) with np.errstate(invalid='ignore'): self._world = self.transform.transform(self._data) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._pixel = value self._world = self.transform.transform(self._data) self._update_normal() @property def world(self): return self._world @world.setter def world(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.transform.transform(value) self._pixel = self.parent_axes.transData.transform(self._data) self._world = value self._update_normal() def _update_normal(self): # Find angle normal to border and inwards, in display coordinate dx = self.pixel[1:, 0] - self.pixel[:-1, 0] dy = self.pixel[1:, 1] - self.pixel[:-1, 1] self.normal_angle = np.degrees(np.arctan2(dx, -dy)) def _halfway_x_y_angle(self): """ Return the x, y, normal_angle values halfway along the spine """ x_disp, y_disp = self.pixel[:, 0], self.pixel[:, 1] # Get distance along the path d = np.hstack([0., np.cumsum(np.sqrt(np.diff(x_disp) ** 2 + np.diff(y_disp) ** 2))]) xcen = np.interp(d[-1] / 2., d, x_disp) ycen = np.interp(d[-1] / 2., d, y_disp) # Find segment along which the mid-point lies imin = np.searchsorted(d, d[-1] / 2.) - 1 # Find normal of the axis label facing outwards on that segment normal_angle = self.normal_angle[imin] + 180. return xcen, ycen, normal_angle class SpineXAligned(Spine): """ A single side of an axes, aligned with the X data axis. This does not need to be a straight line, but represents a 'side' when determining which part of the frame to put labels and ticks on. """ @property def data(self): return self._data @data.setter def data(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = value self._pixel = self.parent_axes.transData.transform(self._data) with np.errstate(invalid='ignore'): self._world = self.transform.transform(self._data[:,0:1]) self._update_normal() @property def pixel(self): return self._pixel @pixel.setter def pixel(self, value): if value is None: self._data = None self._pixel = None self._world = None else: self._data = self.parent_axes.transData.inverted().transform(self._data) self._pixel = value self._world = self.transform.transform(self._data[:,0:1]) self._update_normal() class BaseFrame(OrderedDict, metaclass=abc.ABCMeta): """ Base class for frames, which are collections of :class:`~astropy.visualization.wcsaxes.frame.Spine` instances. """ spine_class = Spine def __init__(self, parent_axes, transform, path=None): super().__init__() self.parent_axes = parent_axes self._transform = transform self._linewidth = rcParams['axes.linewidth'] self._color = rcParams['axes.edgecolor'] self._path = path for axis in self.spine_names: self[axis] = self.spine_class(parent_axes, transform) @property def origin(self): ymin, ymax = self.parent_axes.get_ylim() return 'lower' if ymin < ymax else 'upper' @property def transform(self): return self._transform @transform.setter def transform(self, value): self._transform = value for axis in self: self[axis].transform = value def _update_patch_path(self): self.update_spines() x, y = [], [] for axis in self: x.append(self[axis].data[:, 0]) y.append(self[axis].data[:, 1]) vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices @property def patch(self): self._update_patch_path() return PathPatch(self._path, transform=self.parent_axes.transData, facecolor=rcParams['axes.facecolor'], edgecolor='white') def draw(self, renderer): for axis in self: x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer) def sample(self, n_samples): self.update_spines() spines = OrderedDict() for axis in self: data = self[axis].data p = np.linspace(0., 1., data.shape[0]) p_new = np.linspace(0., 1., n_samples) spines[axis] = self.spine_class(self.parent_axes, self.transform) spines[axis].data = np.array([np.interp(p_new, p, d) for d in data.T]).transpose() return spines def set_color(self, color): """ Sets the color of the frame. Parameters ---------- color : str The color of the frame. """ self._color = color def get_color(self): return self._color def set_linewidth(self, linewidth): """ Sets the linewidth of the frame. Parameters ---------- linewidth : float The linewidth of the frame in points. """ self._linewidth = linewidth def get_linewidth(self): return self._linewidth @abc.abstractmethod def update_spines(self): raise NotImplementedError("") class RectangularFrame1D(BaseFrame): """ A classic rectangular frame. """ spine_names = 'bt' spine_class = SpineXAligned def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self['b'].data = np.array(([xmin, ymin], [xmax, ymin])) self['t'].data = np.array(([xmax, ymax], [xmin, ymax])) def _update_patch_path(self): self.update_spines() xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] vertices = np.vstack([np.hstack(x), np.hstack(y)]).transpose() if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() x = [xmin, xmax, xmax, xmin, xmin] y = [ymin, ymin, ymax, ymax, ymin] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000, transform=self.parent_axes.transData) line.draw(renderer) class RectangularFrame(BaseFrame): """ A classic rectangular frame. """ spine_names = 'brtl' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() self['b'].data = np.array(([xmin, ymin], [xmax, ymin])) self['r'].data = np.array(([xmax, ymin], [xmax, ymax])) self['t'].data = np.array(([xmax, ymax], [xmin, ymax])) self['l'].data = np.array(([xmin, ymax], [xmin, ymin])) class EllipticalFrame(BaseFrame): """ An elliptical frame. """ spine_names = 'chv' def update_spines(self): xmin, xmax = self.parent_axes.get_xlim() ymin, ymax = self.parent_axes.get_ylim() xmid = 0.5 * (xmax + xmin) ymid = 0.5 * (ymax + ymin) dx = xmid - xmin dy = ymid - ymin theta = np.linspace(0., 2 * np.pi, 1000) self['c'].data = np.array([xmid + dx * np.cos(theta), ymid + dy * np.sin(theta)]).transpose() self['h'].data = np.array([np.linspace(xmin, xmax, 1000), np.repeat(ymid, 1000)]).transpose() self['v'].data = np.array([np.repeat(xmid, 1000), np.linspace(ymin, ymax, 1000)]).transpose() def _update_patch_path(self): """Override path patch to include only the outer ellipse, not the major and minor axes in the middle.""" self.update_spines() vertices = self['c'].data if self._path is None: self._path = Path(vertices) else: self._path.vertices = vertices def draw(self, renderer): """Override to draw only the outer ellipse, not the major and minor axes in the middle. FIXME: we may want to add a general method to give the user control over which spines are drawn.""" axis = 'c' x, y = self[axis].pixel[:, 0], self[axis].pixel[:, 1] line = Line2D(x, y, linewidth=self._linewidth, color=self._color, zorder=1000) line.draw(renderer)
bsd-3-clause
mne-tools/mne-tools.github.io
0.11/_downloads/plot_evoked_topomap.py
18
1498
""" ======================================== Plotting topographic maps of evoked data ======================================== Load evoked data and plot topomaps for selected time points. """ # Authors: Christian Brodbeck <christianbrodbeck@nyu.edu> # Tal Linzen <linzen@nyu.edu> # Denis A. Engeman <denis.engemann@gmail.com> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne.datasets import sample from mne import read_evokeds print(__doc__) path = sample.data_path() fname = path + '/MEG/sample/sample_audvis-ave.fif' # load evoked and subtract baseline condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) # set time instants in seconds (from 50 to 150ms in a step of 10ms) times = np.arange(0.05, 0.15, 0.01) # If times is set to None only 10 regularly spaced topographies will be shown # plot magnetometer data as topomaps evoked.plot_topomap(times, ch_type='mag') # compute a 50 ms bin to stabilize topographies evoked.plot_topomap(times, ch_type='mag', average=0.05) # plot gradiometer data (plots the RMS for each pair of gradiometers) evoked.plot_topomap(times, ch_type='grad') # plot magnetometer data as topomap at 1 time point : 100 ms # and add channel labels and title evoked.plot_topomap(0.1, ch_type='mag', show_names=True, colorbar=False, size=6, res=128, title='Auditory response') plt.subplots_adjust(left=0.01, right=0.99, bottom=0.01, top=0.88)
bsd-3-clause
gracecox/MagPySV
magpysv/tests/test_tools.py
2
1568
# -*- coding: utf-8 -*- """ Created on Thu Feb 2 16:45:42 2017 Testing functions for tools.py. @author: Grace Cox and Will Brown """ import unittest import os from .. import tools import pandas as pd import datetime as dt class DataResamplingTestCase(unittest.TestCase): """Set up test case for data resampling""" def setUp(self): """Specify location of test file""" # Directory where the test files are located self.path = os.path.join(os.path.dirname(__file__), 'data') testfile = os.path.join(self.path, 'testdaily.csv') self.col_names = ['date', 'code', 'component', 'daily_mean'] self.data = pd.read_csv(testfile, sep=' ', header=0, names=self.col_names, parse_dates=[0]) self.averaged = tools.data_resampling(self.data) def test_data_resampling(self): """Verify correct resampling of test file data""" self.assertAlmostEqual(self.averaged.daily_mean.values[0], 801.000000) self.assertAlmostEqual(self.averaged.daily_mean.values[7], 33335.750000) self.assertAlmostEqual(self.averaged.daily_mean.values[-1], 45115.500000) self.assertEqual(self.averaged.date[0], dt.datetime(day=15, month=1, year=2000)) self.assertEqual(self.averaged.date[1], dt.datetime(day=15, month=2, year=2000)) self.assertEqual(self.averaged.date[7], dt.datetime(day=15, month=8, year=2000))
mit
kaiserroll14/301finalproject
main/pandas/tseries/timedeltas.py
9
3765
""" timedelta support tools """ import re import numpy as np import pandas.tslib as tslib from pandas import compat from pandas.core.common import (ABCSeries, is_integer_dtype, is_timedelta64_dtype, is_list_like, isnull, _ensure_object, ABCIndexClass) from pandas.util.decorators import deprecate_kwarg @deprecate_kwarg(old_arg_name='coerce', new_arg_name='errors', mapping={True: 'coerce', False: 'raise'}) def to_timedelta(arg, unit='ns', box=True, errors='raise', coerce=None): """ Convert argument to timedelta Parameters ---------- arg : string, timedelta, array of strings (with possible NAs) unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an integer/float number box : boolean, default True - If True returns a Timedelta/TimedeltaIndex of the results - if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns] errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception - If 'coerce', then invalid parsing will be set as NaT - If 'ignore', then invalid parsing will return the input Returns ------- ret : timedelta64/arrays of timedelta64 if parsing succeeded """ unit = _validate_timedelta_unit(unit) def _convert_listlike(arg, box, unit, name=None): if isinstance(arg, (list,tuple)) or ((hasattr(arg,'__iter__') and not hasattr(arg,'dtype'))): arg = np.array(list(arg), dtype='O') # these are shortcutable if is_timedelta64_dtype(arg): value = arg.astype('timedelta64[ns]') elif is_integer_dtype(arg): value = arg.astype('timedelta64[{0}]'.format(unit)).astype('timedelta64[ns]', copy=False) else: value = tslib.array_to_timedelta64(_ensure_object(arg), unit=unit, errors=errors) value = value.astype('timedelta64[ns]', copy=False) if box: from pandas import TimedeltaIndex value = TimedeltaIndex(value,unit='ns', name=name) return value if arg is None: return arg elif isinstance(arg, ABCSeries): from pandas import Series values = _convert_listlike(arg._values, box=False, unit=unit) return Series(values, index=arg.index, name=arg.name, dtype='m8[ns]') elif isinstance(arg, ABCIndexClass): return _convert_listlike(arg, box=box, unit=unit, name=arg.name) elif is_list_like(arg): return _convert_listlike(arg, box=box, unit=unit) # ...so it must be a scalar value. Return scalar. return _coerce_scalar_to_timedelta_type(arg, unit=unit, box=box, errors=errors) _unit_map = { 'Y' : 'Y', 'y' : 'Y', 'W' : 'W', 'w' : 'W', 'D' : 'D', 'd' : 'D', 'days' : 'D', 'Days' : 'D', 'day' : 'D', 'Day' : 'D', 'M' : 'M', 'H' : 'h', 'h' : 'h', 'm' : 'm', 'T' : 'm', 'S' : 's', 's' : 's', 'L' : 'ms', 'MS' : 'ms', 'ms' : 'ms', 'US' : 'us', 'us' : 'us', 'NS' : 'ns', 'ns' : 'ns', } def _validate_timedelta_unit(arg): """ provide validation / translation for timedelta short units """ try: return _unit_map[arg] except: if arg is None: return 'ns' raise ValueError("invalid timedelta unit {0} provided".format(arg)) def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'): """ convert strings to timedelta; coerce to Timedelta (if box), else np.timedelta64""" result = tslib.convert_to_timedelta(r,unit,errors) if box: result = tslib.Timedelta(result) return result
gpl-3.0
nikitasingh981/scikit-learn
examples/semi_supervised/plot_label_propagation_versus_svm_iris.py
50
2378
""" ===================================================================== Decision boundary of label propagation versus SVM on the Iris dataset ===================================================================== Comparison for decision boundary generated on iris dataset between Label Propagation and SVM. This demonstrates Label Propagation learning a good boundary even with a small amount of labeled data. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # License: BSD import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn import svm from sklearn.semi_supervised import label_propagation rng = np.random.RandomState(0) iris = datasets.load_iris() X = iris.data[:, :2] y = iris.target # step size in the mesh h = .02 y_30 = np.copy(y) y_30[rng.rand(len(y)) < 0.3] = -1 y_50 = np.copy(y) y_50[rng.rand(len(y)) < 0.5] = -1 # we create an instance of SVM and fit out data. We do not scale our # data since we want to plot the support vectors ls30 = (label_propagation.LabelSpreading().fit(X, y_30), y_30) ls50 = (label_propagation.LabelSpreading().fit(X, y_50), y_50) ls100 = (label_propagation.LabelSpreading().fit(X, y), y) rbf_svc = (svm.SVC(kernel='rbf').fit(X, y), y) # create a mesh to plot in x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # title for the plots titles = ['Label Spreading 30% data', 'Label Spreading 50% data', 'Label Spreading 100% data', 'SVC with rbf kernel'] color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)} for i, (clf, y_train) in enumerate((ls30, ls50, ls100, rbf_svc)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, x_max]x[y_min, y_max]. plt.subplot(2, 2, i + 1) Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points colors = [color_map[y] for y in y_train] plt.scatter(X[:, 0], X[:, 1], c=colors, cmap=plt.cm.Paired) plt.title(titles[i]) plt.text(.90, 0, "Unlabeled points are colored white") plt.show()
bsd-3-clause
DongjunLee/kino-bot
kino/slack/plot.py
1
2684
from matplotlib import pyplot as plt import matplotlib.dates as dt import seaborn seaborn.set() import datetime class Plot(object): def __init__(self): pass def make_bar( x, y, f_name, title=None, legend=None, x_label=None, y_label=None, x_ticks=None, y_ticks=None, ): fig = plt.figure() if title is not None: plt.title(title, fontsize=16) if x_label is not None: plt.ylabel(x_label) if y_label is not None: plt.xlabel(y_label) if x_ticks is not None: plt.xticks(x, x_ticks) if y_ticks is not None: plt.yticks(y_ticks) plt.bar(x, y, align="center") if legend is not None: plt.legend(legend) plt.savefig(f_name) plt.close(fig) def make_line( x, y, f_name, title=None, legend=None, x_label=None, y_label=None, x_ticks=None, y_ticks=None, ): fig = plt.figure() if title is not None: plt.title(title, fontsize=16) if x_label is not None: plt.ylabel(x_label) if y_label is not None: plt.xlabel(y_label) if x_ticks is not None: plt.xticks(x, x_ticks) if y_ticks is not None: plt.yticks(y_ticks) if isinstance(y[0], list): for data in y: plt.plot(x, data) else: plt.plot(x, y) if legend is not None: plt.legend(legend) plt.savefig(f_name) plt.close(fig) def make_efficiency_date( total_data, avg_data, f_name, title=None, x_label=None, y_label=None, x_ticks=None, y_ticks=None, ): fig = plt.figure() if title is not None: plt.title(title, fontsize=16) if x_label is not None: plt.ylabel(x_label) if y_label is not None: plt.xlabel(y_label) v_date = [] v_val = [] for data in total_data: dates = dt.date2num(datetime.datetime.strptime(data[0], "%H:%M")) to_int = round(float(data[1])) plt.plot_date(dates, data[1], color=plt.cm.brg(to_int)) for data in avg_data: dates = dt.date2num(datetime.datetime.strptime(data[0], "%H:%M")) v_date.append(dates) v_val.append(data[1]) plt.plot_date(v_date, v_val, "^y-", label="Average") plt.legend() plt.savefig(f_name) plt.close(fig)
mit
sylvchev/mdla
examples/example_benchmark_performance.py
1
6309
"""Benchmarking dictionary learning algorithms on random dataset""" from multiprocessing import cpu_count from time import time import matplotlib.pyplot as plt import numpy as np from numpy import array from numpy.linalg import norm from numpy.random import permutation, rand, randint, randn from mdla import MiniBatchMultivariateDictLearning, MultivariateDictLearning # TODO: # investigate perf break from pydico def benchmarking_plot(figname, pst, plot_sep, minibatchRange, mprocessRange): _ = plt.figure(figsize=(15, 10)) bar_width = 0.35 _ = plt.bar( np.array([0]), pst[0], bar_width, color="b", label="Online, no multiprocessing (baseline)", ) index = [0] for i in range(1, plot_sep[1]): if i == 1: _ = plt.bar( np.array([i + 1]), pst[i], bar_width, color="r", label="Online with minibatch", ) else: _ = plt.bar(np.array([i + 1]), pst[i], bar_width, color="r") index.append(i + 1) for _ in range(plot_sep[1], plot_sep[2]): if i == plot_sep[1]: _ = plt.bar( np.array([i + 2]), pst[i], bar_width, label="Batch with multiprocessing", color="magenta", ) else: _ = plt.bar(np.array([i + 2]), pst[i], bar_width, color="magenta") index.append(i + 2) plt.ylabel("Time per iteration (s)") plt.title("Processing time for online and batch processing") tick = [""] tick.extend(map(str, minibatchRange)) tick.extend(map(str, mprocessRange)) plt.xticks(index, tuple(tick)) plt.legend() plt.savefig(figname + ".png") def _generate_testbed( kernel_init_len, n_nonzero_coefs, n_kernels, n_samples=10, n_features=5, n_dims=3, snr=1000, ): """Generate a dataset from a random dictionary Generate a random dictionary and a dataset, where samples are combination of n_nonzero_coefs dictionary atoms. Noise is added, based on SNR value, with 1000 indicated that no noise should be added. Return the dictionary, the dataset and an array indicated how atoms are combined to obtain each sample """ print("Dictionary sampled from uniform distribution") dico = [rand(kernel_init_len, n_dims) for i in range(n_kernels)] for i in range(len(dico)): dico[i] /= norm(dico[i], "fro") signals = list() decomposition = list() for _ in range(n_samples): s = np.zeros(shape=(n_features, n_dims)) d = np.zeros(shape=(n_nonzero_coefs, 3)) rk = permutation(range(n_kernels)) for j in range(n_nonzero_coefs): k_idx = rk[j] k_amplitude = 3.0 * rand() + 1.0 k_offset = randint(n_features - kernel_init_len + 1) s[k_offset : k_offset + kernel_init_len, :] += k_amplitude * dico[k_idx] d[j, :] = array([k_amplitude, k_offset, k_idx]) decomposition.append(d) noise = randn(n_features, n_dims) if snr == 1000: alpha = 0 else: ps = norm(s, "fro") pn = norm(noise, "fro") alpha = ps / (pn * 10 ** (snr / 20.0)) signals.append(s + alpha * noise) signals = np.array(signals) return dico, signals, decomposition rng_global = np.random.RandomState(1) n_samples, n_dims = 1500, 1 n_features = kernel_init_len = 5 n_nonzero_coefs = 3 n_kernels, max_iter, learning_rate = 50, 10, 1.5 n_jobs, batch_size = -1, None iter_time, plot_separator, it_separator = list(), list(), 0 generating_dict, X, code = _generate_testbed( kernel_init_len, n_nonzero_coefs, n_kernels, n_samples, n_features, n_dims ) # Online without mini-batch print( "Processing ", max_iter, "iterations in online mode, " "without multiprocessing:", end="", ) batch_size, n_jobs = n_samples, 1 learned_dict = MiniBatchMultivariateDictLearning( n_kernels=n_kernels, batch_size=batch_size, n_iter=max_iter, n_nonzero_coefs=n_nonzero_coefs, n_jobs=n_jobs, learning_rate=learning_rate, kernel_init_len=kernel_init_len, verbose=1, dict_init=None, random_state=rng_global, ) ts = time() learned_dict = learned_dict.fit(X) iter_time.append((time() - ts) / max_iter) it_separator += 1 plot_separator.append(it_separator) # Online with mini-batch minibatch_range = [cpu_count()] minibatch_range.extend([cpu_count() * i for i in range(3, 10, 2)]) n_jobs = -1 for mb in minibatch_range: print( "\nProcessing ", max_iter, "iterations in online mode, with ", "minibatch size", mb, "and", cpu_count(), "processes:", end="", ) batch_size = mb learned_dict = MiniBatchMultivariateDictLearning( n_kernels=n_kernels, batch_size=batch_size, n_iter=max_iter, n_nonzero_coefs=n_nonzero_coefs, n_jobs=n_jobs, learning_rate=learning_rate, kernel_init_len=kernel_init_len, verbose=1, dict_init=None, random_state=rng_global, ) ts = time() learned_dict = learned_dict.fit(X) iter_time.append((time() - ts) / max_iter) it_separator += 1 plot_separator.append(it_separator) # Batch learning mp_range = range(1, cpu_count() + 1) for p in mp_range: print( "\nProcessing ", max_iter, "iterations in batch mode, with", p, "processes:", end="", ) n_jobs = p learned_dict = MultivariateDictLearning( n_kernels=n_kernels, max_iter=max_iter, verbose=1, n_nonzero_coefs=n_nonzero_coefs, n_jobs=n_jobs, learning_rate=learning_rate, kernel_init_len=kernel_init_len, dict_init=None, random_state=rng_global, ) ts = time() learned_dict = learned_dict.fit(X) iter_time.append((time() - ts) / max_iter) it_separator += 1 plot_separator.append(it_separator) print("Done benchmarking") figname = "minibatch-performance" print("Plotting results in", figname) benchmarking_plot(figname, iter_time, plot_separator, minibatch_range, mp_range) print("Exiting.")
gpl-3.0
nkhuyu/blaze
blaze/compute/core.py
5
14061
from __future__ import absolute_import, division, print_function import numbers from datetime import date, datetime import toolz from toolz import first, concat, memoize, unique, assoc import itertools from collections import Iterator from ..compatibility import basestring from ..expr import Expr, Field, Symbol, symbol, eval_str from ..dispatch import dispatch __all__ = ['compute', 'compute_up'] base = (numbers.Number, basestring, date, datetime) @dispatch(Expr, object) def pre_compute(leaf, data, scope=None, **kwargs): """ Transform data prior to calling ``compute`` """ return data @dispatch(Expr, object) def post_compute(expr, result, scope=None): """ Effects after the computation is complete """ return result @dispatch(Expr, object) def optimize(expr, data): """ Optimize expression to be computed on data """ return expr @dispatch(object, object) def compute_up(a, b, **kwargs): raise NotImplementedError("Blaze does not know how to compute " "expression of type `%s` on data of type `%s`" % (type(a).__name__, type(b).__name__)) @dispatch(base) def compute_up(a, **kwargs): return a @dispatch((list, tuple)) def compute_up(seq, scope=None, **kwargs): return type(seq)(compute(item, scope or {}, **kwargs) for item in seq) @dispatch(Expr, object) def compute(expr, o, **kwargs): """ Compute against single input Assumes that only one Symbol exists in expression >>> t = symbol('t', 'var * {name: string, balance: int}') >>> deadbeats = t[t['balance'] < 0]['name'] >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> # list(compute(deadbeats, {t: data})) >>> list(compute(deadbeats, data)) ['Bob', 'Charlie'] """ ts = set([x for x in expr._subterms() if isinstance(x, Symbol)]) if len(ts) == 1: return compute(expr, {first(ts): o}, **kwargs) else: raise ValueError("Give compute dictionary input, got %s" % str(o)) @dispatch(object) def compute_down(expr, **kwargs): """ Compute the expression on the entire inputs inputs match up to leaves of the expression """ return expr def issubtype(a, b): """ A custom issubclass """ if issubclass(a, b): return True if issubclass(a, (tuple, list, set)) and issubclass(b, Iterator): return True if issubclass(b, (tuple, list, set)) and issubclass(a, Iterator): return True return False def type_change(old, new): """ Was there a significant type change between old and new data? >>> type_change([1, 2], [3, 4]) False >>> type_change([1, 2], [3, [1,2,3]]) True Some special cases exist, like no type change from list to Iterator >>> type_change([[1, 2]], [iter([1, 2])]) False """ if all(isinstance(x, base) for x in old + new): return False if len(old) != len(new): return True new_types = list(map(type, new)) old_types = list(map(type, old)) return not all(map(issubtype, new_types, old_types)) def top_then_bottom_then_top_again_etc(expr, scope, **kwargs): """ Compute expression against scope Does the following interpreter strategy: 1. Try compute_down on the entire expression 2. Otherwise compute_up from the leaves until we experience a type change (e.g. data changes from dict -> pandas DataFrame) 3. Re-optimize expression and re-pre-compute data 4. Go to step 1 Examples -------- >>> import numpy as np >>> s = symbol('s', 'var * {name: string, amount: int}') >>> data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], ... dtype=[('name', 'S7'), ('amount', 'i4')]) >>> e = s.amount.sum() + 1 >>> top_then_bottom_then_top_again_etc(e, {s: data}) 601 See Also -------- bottom_up_until_type_break -- uses this for bottom-up traversal top_to_bottom -- older version bottom_up -- older version still """ # 0. Base case: expression is in dict, return associated data if expr in scope: return scope[expr] if not hasattr(expr, '_leaves'): return expr leaf_exprs = list(expr._leaves()) leaf_data = [scope.get(leaf) for leaf in leaf_exprs] # 1. See if we have a direct computation path with compute_down try: return compute_down(expr, *leaf_data, **kwargs) except NotImplementedError: pass # 2. Compute from the bottom until there is a data type change expr2, scope2 = bottom_up_until_type_break(expr, scope, **kwargs) # 3. Re-optimize data and expressions optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) if pre_compute_: scope3 = dict((e, pre_compute_(e, datum, **assoc(kwargs, 'scope', scope2))) for e, datum in scope2.items()) else: scope3 = scope2 if optimize_: try: expr3 = optimize_(expr2, *[scope3[leaf] for leaf in expr2._leaves()]) _d = dict(zip(expr2._leaves(), expr3._leaves())) scope4 = dict((e._subs(_d), d) for e, d in scope3.items()) except NotImplementedError: expr3 = expr2 scope4 = scope3 else: expr3 = expr2 scope4 = scope3 # 4. Repeat if expr.isidentical(expr3): raise NotImplementedError("Don't know how to compute:\n" "expr: %s\n" "data: %s" % (expr3, scope4)) else: return top_then_bottom_then_top_again_etc(expr3, scope4, **kwargs) def top_to_bottom(d, expr, **kwargs): """ Processes an expression top-down then bottom-up """ # Base case: expression is in dict, return associated data if expr in d: return d[expr] if not hasattr(expr, '_leaves'): return expr leaves = list(expr._leaves()) data = [d.get(leaf) for leaf in leaves] # See if we have a direct computation path with compute_down try: return compute_down(expr, *data, **kwargs) except NotImplementedError: pass optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) # Otherwise... # Compute children of this expression if hasattr(expr, '_inputs'): children = [top_to_bottom(d, child, **kwargs) for child in expr._inputs] else: children = [] # Did we experience a data type change? if type_change(data, children): # If so call pre_compute again if pre_compute_: children = [pre_compute_(expr, child, **kwargs) for child in children] # If so call optimize again if optimize_: try: expr = optimize_(expr, *children) except NotImplementedError: pass # Compute this expression given the children return compute_up(expr, *children, scope=d, **kwargs) _names = ('leaf_%d' % i for i in itertools.count(1)) _leaf_cache = dict() _used_tokens = set() def _reset_leaves(): _leaf_cache.clear() _used_tokens.clear() def makeleaf(expr): """ Name of a new leaf replacement for this expression >>> _reset_leaves() >>> t = symbol('t', '{x: int, y: int, z: int}') >>> makeleaf(t) t >>> makeleaf(t.x) x >>> makeleaf(t.x + 1) x >>> makeleaf(t.x + 1) x >>> makeleaf(t.x).isidentical(makeleaf(t.x + 1)) False >>> from blaze import sin, cos >>> x = symbol('x', 'real') >>> makeleaf(cos(x)**2).isidentical(sin(x)**2) False >>> makeleaf(t) is t # makeleaf passes on Symbols True """ name = expr._name or '_' token = None if expr in _leaf_cache: return _leaf_cache[expr] if isinstance(expr, Symbol): # Idempotent on symbols return expr if (name, token) in _used_tokens: for token in itertools.count(): if (name, token) not in _used_tokens: break result = symbol(name, expr.dshape, token) _used_tokens.add((name, token)) _leaf_cache[expr] = result return result def data_leaves(expr, scope): return [scope[leaf] for leaf in expr._leaves()] def bottom_up_until_type_break(expr, scope, **kwargs): """ Traverse bottom up until data changes significantly Parameters ---------- expr: Expression Expression to compute scope: dict namespace matching leaves of expression to data Returns ------- expr: Expression New expression with lower subtrees replaced with leaves scope: dict New scope with entries for those leaves Examples -------- >>> import numpy as np >>> s = symbol('s', 'var * {name: string, amount: int}') >>> data = np.array([('Alice', 100), ('Bob', 200), ('Charlie', 300)], ... dtype=[('name', 'S7'), ('amount', 'i8')]) This computation completes without changing type. We get back a leaf symbol and a computational result >>> e = (s.amount + 1).distinct() >>> bottom_up_until_type_break(e, {s: data}) # doctest: +SKIP (amount, {amount: array([101, 201, 301])}) This computation has a type change midstream (``list`` to ``int``), so we stop and get the unfinished computation. >>> e = s.amount.sum() + 1 >>> bottom_up_until_type_break(e, {s: data}) (amount_sum + 1, {amount_sum: 600}) """ # 0. Base case. Return if expression is in scope if expr in scope: leaf = makeleaf(expr) return leaf, {leaf: scope[expr]} inputs = list(unique(expr._inputs)) # 1. Recurse down the tree, calling this function on children # (this is the bottom part of bottom up) exprs, new_scopes = zip(*[bottom_up_until_type_break(i, scope, **kwargs) for i in inputs]) # 2. Form new (much shallower) expression and new (more computed) scope new_scope = toolz.merge(new_scopes) new_expr = expr._subs(dict((i, e) for i, e in zip(inputs, exprs) if not i.isidentical(e))) old_expr_leaves = expr._leaves() old_data_leaves = [scope.get(leaf) for leaf in old_expr_leaves] # 3. If the leaves have changed substantially then stop key = lambda x: str(type(x)) if type_change(sorted(new_scope.values(), key=key), sorted(old_data_leaves, key=key)): return new_expr, new_scope # 4. Otherwise try to do some actual work try: leaf = makeleaf(expr) _data = [new_scope[i] for i in new_expr._inputs] except KeyError: return new_expr, new_scope try: return leaf, {leaf: compute_up(new_expr, *_data, scope=new_scope, **kwargs)} except NotImplementedError: return new_expr, new_scope def bottom_up(d, expr): """ Process an expression from the leaves upwards Parameters ---------- d : dict mapping {Symbol: data} Maps expressions to data elements, likely at the leaves of the tree expr : Expr Expression to compute Helper function for ``compute`` """ # Base case: expression is in dict, return associated data if expr in d: return d[expr] # Compute children of this expression children = ([bottom_up(d, child) for child in expr._inputs] if hasattr(expr, '_inputs') else []) # Compute this expression given the children result = compute_up(expr, *children, scope=d) return result def swap_resources_into_scope(expr, scope): """ Translate interactive expressions into normal abstract expressions Interactive Blaze expressions link to data on their leaves. From the expr/compute perspective, this is a hack. We push the resources onto the scope and return simple unadorned expressions instead. Examples -------- >>> from blaze import Data >>> t = Data([1, 2, 3], dshape='3 * int', name='t') >>> swap_resources_into_scope(t.head(2), {}) (t.head(2), {t: [1, 2, 3]}) >>> expr, scope = _ >>> list(scope.keys())[0]._resources() {} """ resources = expr._resources() symbol_dict = dict((t, symbol(t._name, t.dshape)) for t in resources) resources = dict((symbol_dict[k], v) for k, v in resources.items()) other_scope = dict((k, v) for k, v in scope.items() if k not in symbol_dict) new_scope = toolz.merge(resources, other_scope) expr = expr._subs(symbol_dict) return expr, new_scope @dispatch(Expr, dict) def compute(expr, d, **kwargs): """ Compute expression against data sources >>> t = symbol('t', 'var * {name: string, balance: int}') >>> deadbeats = t[t['balance'] < 0]['name'] >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> list(compute(deadbeats, {t: data})) ['Bob', 'Charlie'] """ _reset_leaves() optimize_ = kwargs.get('optimize', optimize) pre_compute_ = kwargs.get('pre_compute', pre_compute) post_compute_ = kwargs.get('post_compute', post_compute) expr2, d2 = swap_resources_into_scope(expr, d) if pre_compute_: d3 = dict( (e, pre_compute_(e, dat, **kwargs)) for e, dat in d2.items() if e in expr2 ) else: d3 = d2 if optimize_: try: expr3 = optimize_(expr2, *[v for e, v in d3.items() if e in expr2]) _d = dict(zip(expr2._leaves(), expr3._leaves())) d4 = dict((e._subs(_d), d) for e, d in d3.items()) except NotImplementedError: expr3 = expr2 d4 = d3 else: expr3 = expr2 d4 = d3 result = top_then_bottom_then_top_again_etc(expr3, d4, **kwargs) if post_compute_: result = post_compute_(expr3, result, scope=d4) return result @dispatch(Field, dict) def compute_up(expr, data, **kwargs): return data[expr._name]
bsd-3-clause
cl4rke/scikit-learn
sklearn/svm/tests/test_sparse.py
95
12156
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
david-ragazzi/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/axes.py
69
259904
from __future__ import division, generators import math, sys, warnings, datetime, new import numpy as np from numpy import ma import matplotlib rcParams = matplotlib.rcParams import matplotlib.artist as martist import matplotlib.axis as maxis import matplotlib.cbook as cbook import matplotlib.collections as mcoll import matplotlib.colors as mcolors import matplotlib.contour as mcontour import matplotlib.dates as mdates import matplotlib.font_manager as font_manager import matplotlib.image as mimage import matplotlib.legend as mlegend import matplotlib.lines as mlines import matplotlib.mlab as mlab import matplotlib.patches as mpatches import matplotlib.quiver as mquiver import matplotlib.scale as mscale import matplotlib.table as mtable import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms iterable = cbook.iterable is_string_like = cbook.is_string_like def _process_plot_format(fmt): """ Process a matlab(TM) style color/line style format string. Return a (*linestyle*, *color*) tuple as a result of the processing. Default values are ('-', 'b'). Example format strings include: * 'ko': black circles * '.b': blue dots * 'r--': red dashed lines .. seealso:: :func:`~matplotlib.Line2D.lineStyles` and :func:`~matplotlib.pyplot.colors`: for all possible styles and color format string. """ linestyle = None marker = None color = None # Is fmt just a colorspec? try: color = mcolors.colorConverter.to_rgb(fmt) return linestyle, marker, color # Yes. except ValueError: pass # No, not just a color. # handle the multi char special cases and strip them from the # string if fmt.find('--')>=0: linestyle = '--' fmt = fmt.replace('--', '') if fmt.find('-.')>=0: linestyle = '-.' fmt = fmt.replace('-.', '') if fmt.find(' ')>=0: linestyle = 'None' fmt = fmt.replace(' ', '') chars = [c for c in fmt] for c in chars: if c in mlines.lineStyles: if linestyle is not None: raise ValueError( 'Illegal format string "%s"; two linestyle symbols' % fmt) linestyle = c elif c in mlines.lineMarkers: if marker is not None: raise ValueError( 'Illegal format string "%s"; two marker symbols' % fmt) marker = c elif c in mcolors.colorConverter.colors: if color is not None: raise ValueError( 'Illegal format string "%s"; two color symbols' % fmt) color = c else: raise ValueError( 'Unrecognized character %c in format string' % c) if linestyle is None and marker is None: linestyle = rcParams['lines.linestyle'] if linestyle is None: linestyle = 'None' if marker is None: marker = 'None' return linestyle, marker, color def set_default_color_cycle(clist): """ Change the default cycle of colors that will be used by the plot command. This must be called before creating the :class:`Axes` to which it will apply; it will apply to all future axes. *clist* is a sequence of mpl color specifiers """ _process_plot_var_args.defaultColors = clist[:] rcParams['lines.color'] = clist[0] class _process_plot_var_args: """ Process variable length arguments to the plot command, so that plot commands like the following are supported:: plot(t, s) plot(t1, s1, t2, s2) plot(t1, s1, 'ko', t2, s2) plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3) an arbitrary number of *x*, *y*, *fmt* are allowed """ defaultColors = ['b','g','r','c','m','y','k'] def __init__(self, axes, command='plot'): self.axes = axes self.command = command self._clear_color_cycle() def _clear_color_cycle(self): self.colors = _process_plot_var_args.defaultColors[:] # if the default line color is a color format string, move it up # in the que try: ind = self.colors.index(rcParams['lines.color']) except ValueError: self.firstColor = rcParams['lines.color'] else: self.colors[0], self.colors[ind] = self.colors[ind], self.colors[0] self.firstColor = self.colors[0] self.Ncolors = len(self.colors) self.count = 0 def set_color_cycle(self, clist): self.colors = clist[:] self.firstColor = self.colors[0] self.Ncolors = len(self.colors) self.count = 0 def _get_next_cycle_color(self): if self.count==0: color = self.firstColor else: color = self.colors[int(self.count % self.Ncolors)] self.count += 1 return color def __call__(self, *args, **kwargs): if self.axes.xaxis is not None and self.axes.yaxis is not None: xunits = kwargs.pop( 'xunits', self.axes.xaxis.units) yunits = kwargs.pop( 'yunits', self.axes.yaxis.units) if xunits!=self.axes.xaxis.units: self.axes.xaxis.set_units(xunits) if yunits!=self.axes.yaxis.units: self.axes.yaxis.set_units(yunits) ret = self._grab_next_args(*args, **kwargs) return ret def set_lineprops(self, line, **kwargs): assert self.command == 'plot', 'set_lineprops only works with "plot"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(line,funcName): raise TypeError, 'There is no line property "%s"'%key func = getattr(line,funcName) func(val) def set_patchprops(self, fill_poly, **kwargs): assert self.command == 'fill', 'set_patchprops only works with "fill"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(fill_poly,funcName): raise TypeError, 'There is no patch property "%s"'%key func = getattr(fill_poly,funcName) func(val) def _xy_from_y(self, y): if self.axes.yaxis is not None: b = self.axes.yaxis.update_units(y) if b: return np.arange(len(y)), y, False if not ma.isMaskedArray(y): y = np.asarray(y) if len(y.shape) == 1: y = y[:,np.newaxis] nr, nc = y.shape x = np.arange(nr) if len(x.shape) == 1: x = x[:,np.newaxis] return x,y, True def _xy_from_xy(self, x, y): if self.axes.xaxis is not None and self.axes.yaxis is not None: bx = self.axes.xaxis.update_units(x) by = self.axes.yaxis.update_units(y) # right now multicol is not supported if either x or y are # unit enabled but this can be fixed.. if bx or by: return x, y, False x = ma.asarray(x) y = ma.asarray(y) if len(x.shape) == 1: x = x[:,np.newaxis] if len(y.shape) == 1: y = y[:,np.newaxis] nrx, ncx = x.shape nry, ncy = y.shape assert nrx == nry, 'Dimensions of x and y are incompatible' if ncx == ncy: return x, y, True if ncx == 1: x = np.repeat(x, ncy, axis=1) if ncy == 1: y = np.repeat(y, ncx, axis=1) assert x.shape == y.shape, 'Dimensions of x and y are incompatible' return x, y, True def _plot_1_arg(self, y, **kwargs): assert self.command == 'plot', 'fill needs at least 2 arguments' ret = [] x, y, multicol = self._xy_from_y(y) if multicol: for j in xrange(y.shape[1]): color = self._get_next_cycle_color() seg = mlines.Line2D(x, y[:,j], color = color, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) else: color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color = color, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) return ret def _plot_2_args(self, tup2, **kwargs): ret = [] if is_string_like(tup2[1]): assert self.command == 'plot', ('fill needs at least 2 non-string ' 'arguments') y, fmt = tup2 x, y, multicol = self._xy_from_y(y) linestyle, marker, color = _process_plot_format(fmt) def makeline(x, y): _color = color if _color is None: _color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color=_color, linestyle=linestyle, marker=marker, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) if multicol: for j in xrange(y.shape[1]): makeline(x[:,j], y[:,j]) else: makeline(x, y) return ret else: x, y = tup2 x, y, multicol = self._xy_from_xy(x, y) def makeline(x, y): color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color=color, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) def makefill(x, y): x = self.axes.convert_xunits(x) y = self.axes.convert_yunits(y) facecolor = self._get_next_cycle_color() seg = mpatches.Polygon(np.hstack( (x[:,np.newaxis],y[:,np.newaxis])), facecolor = facecolor, fill=True, closed=closed ) self.set_patchprops(seg, **kwargs) ret.append(seg) if self.command == 'plot': func = makeline else: closed = kwargs.get('closed', True) func = makefill if multicol: for j in xrange(y.shape[1]): func(x[:,j], y[:,j]) else: func(x, y) return ret def _plot_3_args(self, tup3, **kwargs): ret = [] x, y, fmt = tup3 x, y, multicol = self._xy_from_xy(x, y) linestyle, marker, color = _process_plot_format(fmt) def makeline(x, y): _color = color if _color is None: _color = self._get_next_cycle_color() seg = mlines.Line2D(x, y, color=_color, linestyle=linestyle, marker=marker, axes=self.axes, ) self.set_lineprops(seg, **kwargs) ret.append(seg) def makefill(x, y): facecolor = color x = self.axes.convert_xunits(x) y = self.axes.convert_yunits(y) seg = mpatches.Polygon(np.hstack( (x[:,np.newaxis],y[:,np.newaxis])), facecolor = facecolor, fill=True, closed=closed ) self.set_patchprops(seg, **kwargs) ret.append(seg) if self.command == 'plot': func = makeline else: closed = kwargs.get('closed', True) func = makefill if multicol: for j in xrange(y.shape[1]): func(x[:,j], y[:,j]) else: func(x, y) return ret def _grab_next_args(self, *args, **kwargs): remaining = args while 1: if len(remaining)==0: return if len(remaining)==1: for seg in self._plot_1_arg(remaining[0], **kwargs): yield seg remaining = [] continue if len(remaining)==2: for seg in self._plot_2_args(remaining, **kwargs): yield seg remaining = [] continue if len(remaining)==3: if not is_string_like(remaining[2]): raise ValueError, 'third arg must be a format string' for seg in self._plot_3_args(remaining, **kwargs): yield seg remaining=[] continue if is_string_like(remaining[2]): for seg in self._plot_3_args(remaining[:3], **kwargs): yield seg remaining=remaining[3:] else: for seg in self._plot_2_args(remaining[:2], **kwargs): yield seg remaining=remaining[2:] class Axes(martist.Artist): """ The :class:`Axes` contains most of the figure elements: :class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`, :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`, :class:`~matplotlib.patches.Polygon`, etc., and sets the coordinate system. The :class:`Axes` instance supports callbacks through a callbacks attribute which is a :class:`~matplotlib.cbook.CallbackRegistry` instance. The events you can connect to are 'xlim_changed' and 'ylim_changed' and the callback will be called with func(*ax*) where *ax* is the :class:`Axes` instance. """ name = "rectilinear" _shared_x_axes = cbook.Grouper() _shared_y_axes = cbook.Grouper() def __str__(self): return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds) def __init__(self, fig, rect, axisbg = None, # defaults to rc axes.facecolor frameon = True, sharex=None, # use Axes instance's xaxis info sharey=None, # use Axes instance's yaxis info label='', **kwargs ): """ Build an :class:`Axes` instance in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* in :class:`~matplotlib.figure.Figure` coordinates Optional keyword arguments: ================ ========================================= Keyword Description ================ ========================================= *adjustable* [ 'box' | 'datalim' ] *alpha* float: the alpha transparency *anchor* [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W' ] *aspect* [ 'auto' | 'equal' | aspect_ratio ] *autoscale_on* [ *True* | *False* ] whether or not to autoscale the *viewlim* *axis_bgcolor* any matplotlib color, see :func:`~matplotlib.pyplot.colors` *axisbelow* draw the grids and ticks below the other artists *cursor_props* a (*float*, *color*) tuple *figure* a :class:`~matplotlib.figure.Figure` instance *frame_on* a boolean - draw the axes frame *label* the axes label *navigate* [ *True* | *False* ] *navigate_mode* [ 'PAN' | 'ZOOM' | None ] the navigation toolbar button status *position* [left, bottom, width, height] in class:`~matplotlib.figure.Figure` coords *sharex* an class:`~matplotlib.axes.Axes` instance to share the x-axis with *sharey* an class:`~matplotlib.axes.Axes` instance to share the y-axis with *title* the title string *visible* [ *True* | *False* ] whether the axes is visible *xlabel* the xlabel *xlim* (*xmin*, *xmax*) view limits *xscale* [%(scale)s] *xticklabels* sequence of strings *xticks* sequence of floats *ylabel* the ylabel strings *ylim* (*ymin*, *ymax*) view limits *yscale* [%(scale)s] *yticklabels* sequence of strings *yticks* sequence of floats ================ ========================================= """ % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])} martist.Artist.__init__(self) if isinstance(rect, mtransforms.Bbox): self._position = rect else: self._position = mtransforms.Bbox.from_bounds(*rect) self._originalPosition = self._position.frozen() self.set_axes(self) self.set_aspect('auto') self._adjustable = 'box' self.set_anchor('C') self._sharex = sharex self._sharey = sharey if sharex is not None: self._shared_x_axes.join(self, sharex) if sharex._adjustable == 'box': sharex._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' if sharey is not None: self._shared_y_axes.join(self, sharey) if sharey._adjustable == 'box': sharey._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' self.set_label(label) self.set_figure(fig) # this call may differ for non-sep axes, eg polar self._init_axis() if axisbg is None: axisbg = rcParams['axes.facecolor'] self._axisbg = axisbg self._frameon = frameon self._axisbelow = rcParams['axes.axisbelow'] self._hold = rcParams['axes.hold'] self._connected = {} # a dict from events to (id, func) self.cla() # funcs used to format x and y - fall back on major formatters self.fmt_xdata = None self.fmt_ydata = None self.set_cursor_props((1,'k')) # set the cursor properties for axes self._cachedRenderer = None self.set_navigate(True) self.set_navigate_mode(None) if len(kwargs): martist.setp(self, **kwargs) if self.xaxis is not None: self._xcid = self.xaxis.callbacks.connect('units finalize', self.relim) if self.yaxis is not None: self._ycid = self.yaxis.callbacks.connect('units finalize', self.relim) def get_window_extent(self, *args, **kwargs): ''' get the axes bounding box in display space; *args* and *kwargs* are empty ''' return self.bbox def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) self._update_transScale() def set_figure(self, fig): """ Set the class:`~matplotlib.axes.Axes` figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure) #these will be updated later as data is added self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) self._set_lim_and_transforms() def _set_lim_and_transforms(self): """ set the *dataLim* and *viewLim* :class:`~matplotlib.transforms.Bbox` attributes and the *transScale*, *transData*, *transLimits* and *transAxes* transformations. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor # It is assumed that this part will have non-linear components self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.axes.transData, self.axes.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.axes.transAxes, self.axes.transData) def get_xaxis_transform(self): """ Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return self._xaxis_transform def get_xaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._xaxis_transform + mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0, self.figure.dpi_scale_trans), "top", "center") def get_xaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._xaxis_transform + mtransforms.ScaledTranslation(0, pad_points / 72.0, self.figure.dpi_scale_trans), "bottom", "center") def get_yaxis_transform(self): """ Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return self._yaxis_transform def get_yaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._yaxis_transform + mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "right") def get_yaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self._yaxis_transform + mtransforms.ScaledTranslation(pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "left") def _update_transScale(self): self.transScale.set( mtransforms.blended_transform_factory( self.xaxis.get_transform(), self.yaxis.get_transform())) if hasattr(self, "lines"): for line in self.lines: line._transformed_path.invalidate() def get_position(self, original=False): 'Return the a copy of the axes rectangle as a Bbox' if original: return self._originalPosition.frozen() else: return self._position.frozen() def set_position(self, pos, which='both'): """ Set the axes position with:: pos = [left, bottom, width, height] in relative 0,1 coords, or *pos* can be a :class:`~matplotlib.transforms.Bbox` There are two position variables: one which is ultimately used, but which may be modified by :meth:`apply_aspect`, and a second which is the starting point for :meth:`apply_aspect`. Optional keyword arguments: *which* ========== ==================== value description ========== ==================== 'active' to change the first 'original' to change the second 'both' to change both ========== ==================== """ if not isinstance(pos, mtransforms.BboxBase): pos = mtransforms.Bbox.from_bounds(*pos) if which in ('both', 'active'): self._position.set(pos) if which in ('both', 'original'): self._originalPosition.set(pos) def reset_position(self): 'Make the original position the active position' pos = self.get_position(original=True) self.set_position(pos, which='active') def _set_artist_props(self, a): 'set the boilerplate props for artists added to axes' a.set_figure(self.figure) if not a.is_transform_set(): a.set_transform(self.transData) a.set_axes(self) def _gen_axes_patch(self): """ Returns the patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0) def cla(self): 'Clear the current axes' # Note: this is called by Axes.__init__() self.xaxis.cla() self.yaxis.cla() self.ignore_existing_data_limits = True self.callbacks = cbook.CallbackRegistry(('xlim_changed', 'ylim_changed')) if self._sharex is not None: # major and minor are class instances with # locator and formatter attributes self.xaxis.major = self._sharex.xaxis.major self.xaxis.minor = self._sharex.xaxis.minor x0, x1 = self._sharex.get_xlim() self.set_xlim(x0, x1, emit=False) self.xaxis.set_scale(self._sharex.xaxis.get_scale()) else: self.xaxis.set_scale('linear') if self._sharey is not None: self.yaxis.major = self._sharey.yaxis.major self.yaxis.minor = self._sharey.yaxis.minor y0, y1 = self._sharey.get_ylim() self.set_ylim(y0, y1, emit=False) self.yaxis.set_scale(self._sharey.yaxis.get_scale()) else: self.yaxis.set_scale('linear') self._autoscaleon = True self._update_transScale() # needed? self._get_lines = _process_plot_var_args(self) self._get_patches_for_fill = _process_plot_var_args(self, 'fill') self._gridOn = rcParams['axes.grid'] self.lines = [] self.patches = [] self.texts = [] self.tables = [] self.artists = [] self.images = [] self.legend_ = None self.collections = [] # collection.Collection instances self.grid(self._gridOn) props = font_manager.FontProperties(size=rcParams['axes.titlesize']) self.titleOffsetTrans = mtransforms.ScaledTranslation( 0.0, 5.0 / 72.0, self.figure.dpi_scale_trans) self.title = mtext.Text( x=0.5, y=1.0, text='', fontproperties=props, verticalalignment='bottom', horizontalalignment='center', ) self.title.set_transform(self.transAxes + self.titleOffsetTrans) self.title.set_clip_box(None) self._set_artist_props(self.title) # the patch draws the background of the axes. we want this to # be below the other artists; the axesPatch name is # deprecated. We use the frame to draw the edges so we are # setting the edgecolor to None self.patch = self.axesPatch = self._gen_axes_patch() self.patch.set_figure(self.figure) self.patch.set_facecolor(self._axisbg) self.patch.set_edgecolor('None') self.patch.set_linewidth(0) self.patch.set_transform(self.transAxes) # the frame draws the border around the axes and we want this # above. this is a place holder for a more sophisticated # artist that might just draw a left, bottom frame, or a # centered frame, etc the axesFrame name is deprecated self.frame = self.axesFrame = self._gen_axes_patch() self.frame.set_figure(self.figure) self.frame.set_facecolor('none') self.frame.set_edgecolor(rcParams['axes.edgecolor']) self.frame.set_linewidth(rcParams['axes.linewidth']) self.frame.set_transform(self.transAxes) self.frame.set_zorder(2.5) self.axison = True self.xaxis.set_clip_path(self.patch) self.yaxis.set_clip_path(self.patch) self._shared_x_axes.clean() self._shared_y_axes.clean() def clear(self): 'clear the axes' self.cla() def set_color_cycle(self, clist): """ Set the color cycle for any future plot commands on this Axes. clist is a list of mpl color specifiers. """ self._get_lines.set_color_cycle(clist) def ishold(self): 'return the HOLD status of the axes' return self._hold def hold(self, b=None): """ call signature:: hold(b=None) Set the hold state. If *hold* is *None* (default), toggle the *hold* state. Else set the *hold* state to boolean value *b*. Examples: * toggle hold: >>> hold() * turn hold on: >>> hold(True) * turn hold off >>> hold(False) When hold is True, subsequent plot commands will be added to the current axes. When hold is False, the current axes and figure will be cleared on the next plot command """ if b is None: self._hold = not self._hold else: self._hold = b def get_aspect(self): return self._aspect def set_aspect(self, aspect, adjustable=None, anchor=None): """ *aspect* ======== ================================================ value description ======== ================================================ 'auto' automatic; fill position rectangle with data 'normal' same as 'auto'; deprecated 'equal' same scaling from data to plot units for x and y num a circle will be stretched such that the height is num times the width. aspect=1 is the same as aspect='equal'. ======== ================================================ *adjustable* ========= ============================ value description ========= ============================ 'box' change physical size of axes 'datalim' change xlim or ylim ========= ============================ *anchor* ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== """ if aspect in ('normal', 'auto'): self._aspect = 'auto' elif aspect == 'equal': self._aspect = 'equal' else: self._aspect = float(aspect) # raise ValueError if necessary if adjustable is not None: self.set_adjustable(adjustable) if anchor is not None: self.set_anchor(anchor) def get_adjustable(self): return self._adjustable def set_adjustable(self, adjustable): """ ACCEPTS: [ 'box' | 'datalim' ] """ if adjustable in ('box', 'datalim'): if self in self._shared_x_axes or self in self._shared_y_axes: if adjustable == 'box': raise ValueError( 'adjustable must be "datalim" for shared axes') self._adjustable = adjustable else: raise ValueError('argument must be "box", or "datalim"') def get_anchor(self): return self._anchor def set_anchor(self, anchor): """ *anchor* ===== ============ value description ===== ============ 'C' Center 'SW' bottom left 'S' bottom 'SE' bottom right 'E' right 'NE' top right 'N' top 'NW' top left 'W' left ===== ============ """ if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2: self._anchor = anchor else: raise ValueError('argument must be among %s' % ', '.join(mtransforms.BBox.coefs.keys())) def get_data_ratio(self): """ Returns the aspect ratio of the raw data. This method is intended to be overridden by new projection types. """ xmin,xmax = self.get_xbound() xsize = max(math.fabs(xmax-xmin), 1e-30) ymin,ymax = self.get_ybound() ysize = max(math.fabs(ymax-ymin), 1e-30) return ysize/xsize def apply_aspect(self, position=None): ''' Use :meth:`_aspect` and :meth:`_adjustable` to modify the axes box or the view limits. ''' if position is None: position = self.get_position(original=True) aspect = self.get_aspect() if aspect == 'auto': self.set_position( position , which='active') return if aspect == 'equal': A = 1 else: A = aspect #Ensure at drawing time that any Axes involved in axis-sharing # does not have its position changed. if self in self._shared_x_axes or self in self._shared_y_axes: if self._adjustable == 'box': self._adjustable = 'datalim' warnings.warn( 'shared axes: "adjustable" is being changed to "datalim"') figW,figH = self.get_figure().get_size_inches() fig_aspect = figH/figW if self._adjustable == 'box': box_aspect = A * self.get_data_ratio() pb = position.frozen() pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect) self.set_position(pb1.anchored(self.get_anchor(), pb), 'active') return # reset active to original in case it had been changed # by prior use of 'box' self.set_position(position, which='active') xmin,xmax = self.get_xbound() xsize = max(math.fabs(xmax-xmin), 1e-30) ymin,ymax = self.get_ybound() ysize = max(math.fabs(ymax-ymin), 1e-30) l,b,w,h = position.bounds box_aspect = fig_aspect * (h/w) data_ratio = box_aspect / A y_expander = (data_ratio*xsize/ysize - 1.0) #print 'y_expander', y_expander # If y_expander > 0, the dy/dx viewLim ratio needs to increase if abs(y_expander) < 0.005: #print 'good enough already' return dL = self.dataLim xr = 1.05 * dL.width yr = 1.05 * dL.height xmarg = xsize - xr ymarg = ysize - yr Ysize = data_ratio * xsize Xsize = ysize / data_ratio Xmarg = Xsize - xr Ymarg = Ysize - yr xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to help. ym = 0 #print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax #print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize changex = (self in self._shared_y_axes and self not in self._shared_x_axes) changey = (self in self._shared_x_axes and self not in self._shared_y_axes) if changex and changey: warnings.warn("adjustable='datalim' cannot work with shared " "x and y axes") return if changex: adjust_y = False else: #print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg if xmarg > xm and ymarg > ym: adjy = ((Ymarg > 0 and y_expander < 0) or (Xmarg < 0 and y_expander > 0)) else: adjy = y_expander > 0 #print 'y_expander, adjy', y_expander, adjy adjust_y = changey or adjy #(Ymarg > xmarg) if adjust_y: yc = 0.5*(ymin+ymax) y0 = yc - Ysize/2.0 y1 = yc + Ysize/2.0 self.set_ybound((y0, y1)) #print 'New y0, y1:', y0, y1 #print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize else: xc = 0.5*(xmin+xmax) x0 = xc - Xsize/2.0 x1 = xc + Xsize/2.0 self.set_xbound((x0, x1)) #print 'New x0, x1:', x0, x1 #print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0) def axis(self, *v, **kwargs): ''' Convenience method for manipulating the x and y view limits and the aspect ratio of the plot. *kwargs* are passed on to :meth:`set_xlim` and :meth:`set_ylim` ''' if len(v)==1 and is_string_like(v[0]): s = v[0].lower() if s=='on': self.set_axis_on() elif s=='off': self.set_axis_off() elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'): self.set_autoscale_on(True) self.set_aspect('auto') self.autoscale_view() # self.apply_aspect() if s=='equal': self.set_aspect('equal', adjustable='datalim') elif s == 'scaled': self.set_aspect('equal', adjustable='box', anchor='C') self.set_autoscale_on(False) # Req. by Mark Bakker elif s=='tight': self.autoscale_view(tight=True) self.set_autoscale_on(False) elif s == 'image': self.autoscale_view(tight=True) self.set_autoscale_on(False) self.set_aspect('equal', adjustable='box', anchor='C') else: raise ValueError('Unrecognized string %s to axis; ' 'try on or off' % s) xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax try: v[0] except IndexError: emit = kwargs.get('emit', True) xmin = kwargs.get('xmin', None) xmax = kwargs.get('xmax', None) xmin, xmax = self.set_xlim(xmin, xmax, emit) ymin = kwargs.get('ymin', None) ymax = kwargs.get('ymax', None) ymin, ymax = self.set_ylim(ymin, ymax, emit) return xmin, xmax, ymin, ymax v = v[0] if len(v) != 4: raise ValueError('v must contain [xmin xmax ymin ymax]') self.set_xlim([v[0], v[1]]) self.set_ylim([v[2], v[3]]) return v def get_child_artists(self): """ Return a list of artists the axes contains. .. deprecated:: 0.98 """ raise DeprecationWarning('Use get_children instead') def get_frame(self): 'Return the axes Rectangle frame' warnings.warn('use ax.patch instead', DeprecationWarning) return self.patch def get_legend(self): 'Return the legend.Legend instance, or None if no legend is defined' return self.legend_ def get_images(self): 'return a list of Axes images contained by the Axes' return cbook.silent_list('AxesImage', self.images) def get_lines(self): 'Return a list of lines contained by the Axes' return cbook.silent_list('Line2D', self.lines) def get_xaxis(self): 'Return the XAxis instance' return self.xaxis def get_xgridlines(self): 'Get the x grid lines as a list of Line2D instances' return cbook.silent_list('Line2D xgridline', self.xaxis.get_gridlines()) def get_xticklines(self): 'Get the xtick lines as a list of Line2D instances' return cbook.silent_list('Text xtickline', self.xaxis.get_ticklines()) def get_yaxis(self): 'Return the YAxis instance' return self.yaxis def get_ygridlines(self): 'Get the y grid lines as a list of Line2D instances' return cbook.silent_list('Line2D ygridline', self.yaxis.get_gridlines()) def get_yticklines(self): 'Get the ytick lines as a list of Line2D instances' return cbook.silent_list('Line2D ytickline', self.yaxis.get_ticklines()) #### Adding and tracking artists def has_data(self): '''Return *True* if any artists have been added to axes. This should not be used to determine whether the *dataLim* need to be updated, and may not actually be useful for anything. ''' return ( len(self.collections) + len(self.images) + len(self.lines) + len(self.patches))>0 def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the axes' a.set_axes(self) self.artists.append(a) self._set_artist_props(a) a.set_clip_path(self.patch) a._remove_method = lambda h: self.artists.remove(h) def add_collection(self, collection, autolim=True): ''' add a :class:`~matplotlib.collections.Collection` instance to the axes ''' label = collection.get_label() if not label: collection.set_label('collection%d'%len(self.collections)) self.collections.append(collection) self._set_artist_props(collection) collection.set_clip_path(self.patch) if autolim: if collection._paths and len(collection._paths): self.update_datalim(collection.get_datalim(self.transData)) collection._remove_method = lambda h: self.collections.remove(h) def add_line(self, line): ''' Add a :class:`~matplotlib.lines.Line2D` to the list of plot lines ''' self._set_artist_props(line) line.set_clip_path(self.patch) self._update_line_limits(line) if not line.get_label(): line.set_label('_line%d'%len(self.lines)) self.lines.append(line) line._remove_method = lambda h: self.lines.remove(h) def _update_line_limits(self, line): p = line.get_path() if p.vertices.size > 0: self.dataLim.update_from_path(p, self.ignore_existing_data_limits, updatex=line.x_isdata, updatey=line.y_isdata) self.ignore_existing_data_limits = False def add_patch(self, p): """ Add a :class:`~matplotlib.patches.Patch` *p* to the list of axes patches; the clipbox will be set to the Axes clipping box. If the transform is not set, it will be set to :attr:`transData`. """ self._set_artist_props(p) p.set_clip_path(self.patch) self._update_patch_limits(p) self.patches.append(p) p._remove_method = lambda h: self.patches.remove(h) def _update_patch_limits(self, patch): 'update the data limits for patch *p*' # hist can add zero height Rectangles, which is useful to keep # the bins, counts and patches lined up, but it throws off log # scaling. We'll ignore rects with zero height or width in # the auto-scaling if (isinstance(patch, mpatches.Rectangle) and (patch.get_width()==0 or patch.get_height()==0)): return vertices = patch.get_path().vertices if vertices.size > 0: xys = patch.get_patch_transform().transform(vertices) if patch.get_data_transform() != self.transData: transform = (patch.get_data_transform() + self.transData.inverted()) xys = transform.transform(xys) self.update_datalim(xys, updatex=patch.x_isdata, updatey=patch.y_isdata) def add_table(self, tab): ''' Add a :class:`~matplotlib.tables.Table` instance to the list of axes tables ''' self._set_artist_props(tab) self.tables.append(tab) tab.set_clip_path(self.patch) tab._remove_method = lambda h: self.tables.remove(h) def relim(self): 'recompute the data limits based on current artists' # Collections are deliberately not supported (yet); see # the TODO note in artists.py. self.dataLim.ignore(True) self.ignore_existing_data_limits = True for line in self.lines: self._update_line_limits(line) for p in self.patches: self._update_patch_limits(p) def update_datalim(self, xys, updatex=True, updatey=True): 'Update the data lim bbox with seq of xy tups or equiv. 2-D array' # if no data is set currently, the bbox will ignore its # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(xys) and not len(xys): return if not ma.isMaskedArray(xys): xys = np.asarray(xys) self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def update_datalim_numerix(self, x, y): 'Update the data lim bbox with seq of xy tups' # if no data is set currently, the bbox will ignore it's # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(x) and not len(x): return self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits) self.ignore_existing_data_limits = False def update_datalim_bounds(self, bounds): ''' Update the datalim to include the given :class:`~matplotlib.transforms.Bbox` *bounds* ''' self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds])) def _process_unit_info(self, xdata=None, ydata=None, kwargs=None): 'look for unit *kwargs* and update the axis instances as necessary' if self.xaxis is None or self.yaxis is None: return #print 'processing', self.get_geometry() if xdata is not None: # we only need to update if there is nothing set yet. if not self.xaxis.have_units(): self.xaxis.update_units(xdata) #print '\tset from xdata', self.xaxis.units if ydata is not None: # we only need to update if there is nothing set yet. if not self.yaxis.have_units(): self.yaxis.update_units(ydata) #print '\tset from ydata', self.yaxis.units # process kwargs 2nd since these will override default units if kwargs is not None: xunits = kwargs.pop( 'xunits', self.xaxis.units) if xunits!=self.xaxis.units: #print '\tkw setting xunits', xunits self.xaxis.set_units(xunits) # If the units being set imply a different converter, # we need to update. if xdata is not None: self.xaxis.update_units(xdata) yunits = kwargs.pop('yunits', self.yaxis.units) if yunits!=self.yaxis.units: #print '\tkw setting yunits', yunits self.yaxis.set_units(yunits) # If the units being set imply a different converter, # we need to update. if ydata is not None: self.yaxis.update_units(ydata) def in_axes(self, mouseevent): ''' return *True* if the given *mouseevent* (in display coords) is in the Axes ''' return self.patch.contains(mouseevent)[0] def get_autoscale_on(self): """ Get whether autoscaling is applied on plot commands """ return self._autoscaleon def set_autoscale_on(self, b): """ Set whether autoscaling is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleon = b def autoscale_view(self, tight=False, scalex=True, scaley=True): """ autoscale the view limits using the data limits. You can selectively autoscale only a single axis, eg, the xaxis by setting *scaley* to *False*. The autoscaling preserves any axis direction reversal that has already been done. """ # if image data only just use the datalim if not self._autoscaleon: return if scalex: xshared = self._shared_x_axes.get_siblings(self) dl = [ax.dataLim for ax in xshared] bb = mtransforms.BboxBase.union(dl) x0, x1 = bb.intervalx if scaley: yshared = self._shared_y_axes.get_siblings(self) dl = [ax.dataLim for ax in yshared] bb = mtransforms.BboxBase.union(dl) y0, y1 = bb.intervaly if (tight or (len(self.images)>0 and len(self.lines)==0 and len(self.patches)==0)): if scalex: self.set_xbound(x0, x1) if scaley: self.set_ybound(y0, y1) return if scalex: XL = self.xaxis.get_major_locator().view_limits(x0, x1) self.set_xbound(XL) if scaley: YL = self.yaxis.get_major_locator().view_limits(y0, y1) self.set_ybound(YL) #### Drawing def draw(self, renderer=None, inframe=False): "Draw everything (plot lines, axes, labels)" if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') if not self.get_visible(): return renderer.open_group('axes') self.apply_aspect() # the patch draws the background rectangle -- the frame below # will draw the edges if self.axison and self._frameon: self.patch.draw(renderer) artists = [] if len(self.images)<=1 or renderer.option_image_nocomposite(): for im in self.images: im.draw(renderer) else: # make a composite image blending alpha # list of (mimage.Image, ox, oy) mag = renderer.get_image_magnification() ims = [(im.make_image(mag),0,0) for im in self.images if im.get_visible()] l, b, r, t = self.bbox.extents width = mag*((round(r) + 0.5) - (round(l) - 0.5)) height = mag*((round(t) + 0.5) - (round(b) - 0.5)) im = mimage.from_images(height, width, ims) im.is_grayscale = False l, b, w, h = self.bbox.bounds # composite images need special args so they will not # respect z-order for now renderer.draw_image( round(l), round(b), im, self.bbox, self.patch.get_path(), self.patch.get_transform()) artists.extend(self.collections) artists.extend(self.patches) artists.extend(self.lines) artists.extend(self.texts) artists.extend(self.artists) if self.axison and not inframe: if self._axisbelow: self.xaxis.set_zorder(0.5) self.yaxis.set_zorder(0.5) else: self.xaxis.set_zorder(2.5) self.yaxis.set_zorder(2.5) artists.extend([self.xaxis, self.yaxis]) if not inframe: artists.append(self.title) artists.extend(self.tables) if self.legend_ is not None: artists.append(self.legend_) # the frame draws the edges around the axes patch -- we # decouple these so the patch can be in the background and the # frame in the foreground. if self.axison and self._frameon: artists.append(self.frame) dsu = [ (a.zorder, i, a) for i, a in enumerate(artists) if not a.get_animated() ] dsu.sort() for zorder, i, a in dsu: a.draw(renderer) renderer.close_group('axes') self._cachedRenderer = renderer def draw_artist(self, a): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None a.draw(self._cachedRenderer) def redraw_in_frame(self): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None self.draw(self._cachedRenderer, inframe=True) def get_renderer_cache(self): return self._cachedRenderer def __draw_animate(self): # ignore for now; broken if self._lastRenderer is None: raise RuntimeError('You must first call ax.draw()') dsu = [(a.zorder, a) for a in self.animated.keys()] dsu.sort() renderer = self._lastRenderer renderer.blit() for tmp, a in dsu: a.draw(renderer) #### Axes rectangle characteristics def get_frame_on(self): """ Get whether the axes rectangle patch is drawn """ return self._frameon def set_frame_on(self, b): """ Set whether the axes rectangle patch is drawn ACCEPTS: [ *True* | *False* ] """ self._frameon = b def get_axisbelow(self): """ Get whether axis below is true or not """ return self._axisbelow def set_axisbelow(self, b): """ Set whether the axis ticks and gridlines are above or below most artists ACCEPTS: [ *True* | *False* ] """ self._axisbelow = b def grid(self, b=None, **kwargs): """ call signature:: grid(self, b=None, **kwargs) Set the axes grids on or off; *b* is a boolean If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If *kwargs* are supplied, it is assumed that you want a grid and *b* is thus set to *True* *kawrgs* are used to set the grid line properties, eg:: ax.grid(color='r', linestyle='-', linewidth=2) Valid :class:`~matplotlib.lines.Line2D` kwargs are %(Line2D)s """ if len(kwargs): b = True self.xaxis.grid(b, **kwargs) self.yaxis.grid(b, **kwargs) grid.__doc__ = cbook.dedent(grid.__doc__) % martist.kwdocd def ticklabel_format(self, **kwargs): """ Convenience method for manipulating the ScalarFormatter used by default for linear axes. Optional keyword arguments: ============ ===================================== Keyword Description ============ ===================================== *style* [ 'sci' (or 'scientific') | 'plain' ] plain turns off scientific notation *scilimits* (m, n), pair of integers; if *style* is 'sci', scientific notation will be used for numbers outside the range 10`-m`:sup: to 10`n`:sup:. Use (0,0) to include all numbers. *axis* [ 'x' | 'y' | 'both' ] ============ ===================================== Only the major ticks are affected. If the method is called when the :class:`~matplotlib.ticker.ScalarFormatter` is not the :class:`~matplotlib.ticker.Formatter` being used, an :exc:`AttributeError` will be raised. """ style = kwargs.pop('style', '').lower() scilimits = kwargs.pop('scilimits', None) if scilimits is not None: try: m, n = scilimits m+n+1 # check that both are numbers except (ValueError, TypeError): raise ValueError("scilimits must be a sequence of 2 integers") axis = kwargs.pop('axis', 'both').lower() if style[:3] == 'sci': sb = True elif style in ['plain', 'comma']: sb = False if style == 'plain': cb = False else: cb = True raise NotImplementedError, "comma style remains to be added" elif style == '': sb = None else: raise ValueError, "%s is not a valid style value" try: if sb is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_scientific(sb) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_scientific(sb) if scilimits is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_powerlimits(scilimits) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_powerlimits(scilimits) except AttributeError: raise AttributeError( "This method only works with the ScalarFormatter.") def set_axis_off(self): """turn off the axis""" self.axison = False def set_axis_on(self): """turn on the axis""" self.axison = True def get_axis_bgcolor(self): 'Return the axis background color' return self._axisbg def set_axis_bgcolor(self, color): """ set the axes background color ACCEPTS: any matplotlib color - see :func:`~matplotlib.pyplot.colors` """ self._axisbg = color self.patch.set_facecolor(color) ### data limits, ticks, tick labels, and formatting def invert_xaxis(self): "Invert the x-axis." left, right = self.get_xlim() self.set_xlim(right, left) def xaxis_inverted(self): 'Returns True if the x-axis is inverted.' left, right = self.get_xlim() return right < left def get_xbound(self): """ Returns the x-axis numerical bounds where:: lowerBound < upperBound """ left, right = self.get_xlim() if left < right: return left, right else: return right, left def set_xbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion regardless of parameter order. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_xbound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.xaxis_inverted(): if lower < upper: self.set_xlim(upper, lower) else: self.set_xlim(lower, upper) else: if lower < upper: self.set_xlim(lower, upper) else: self.set_xlim(upper, lower) def get_xlim(self): """ Get the x-axis range [*xmin*, *xmax*] """ return tuple(self.viewLim.intervalx) def set_xlim(self, xmin=None, xmax=None, emit=True, **kwargs): """ call signature:: set_xlim(self, *args, **kwargs) Set the limits for the xaxis Returns the current xlimits as a length 2 tuple: [*xmin*, *xmax*] Examples:: set_xlim((valmin, valmax)) set_xlim(valmin, valmax) set_xlim(xmin=1) # xmax unchanged set_xlim(xmax=1) # xmin unchanged Keyword arguments: *ymin*: scalar the min of the ylim *ymax*: scalar the max of the ylim *emit*: [ True | False ] notify observers of lim change ACCEPTS: len(2) sequence of floats """ if xmax is None and iterable(xmin): xmin,xmax = xmin self._process_unit_info(xdata=(xmin, xmax)) if xmin is not None: xmin = self.convert_xunits(xmin) if xmax is not None: xmax = self.convert_xunits(xmax) old_xmin,old_xmax = self.get_xlim() if xmin is None: xmin = old_xmin if xmax is None: xmax = old_xmax xmin, xmax = mtransforms.nonsingular(xmin, xmax, increasing=False) xmin, xmax = self.xaxis.limit_range_for_scale(xmin, xmax) self.viewLim.intervalx = (xmin, xmax) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_x_axes.get_siblings(self): if other is not self: other.set_xlim(self.viewLim.intervalx, emit=False) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return xmin, xmax def get_xscale(self): 'return the xaxis scale string: %s' % ( ", ".join(mscale.get_scale_names())) return self.xaxis.get_scale() def set_xscale(self, value, **kwargs): """ call signature:: set_xscale(value) Set the scaling of the x-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.xaxis.set_scale(value, **kwargs) self.autoscale_view() self._update_transScale() set_xscale.__doc__ = cbook.dedent(set_xscale.__doc__) % { 'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()]), 'scale_docs': mscale.get_scale_docs().strip()} def get_xticks(self, minor=False): 'Return the x ticks as a list of locations' return self.xaxis.get_ticklocs(minor=minor) def set_xticks(self, ticks, minor=False): """ Set the x ticks with list of *ticks* ACCEPTS: sequence of floats """ return self.xaxis.set_ticks(ticks, minor=minor) def get_xmajorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text xticklabel', self.xaxis.get_majorticklabels()) def get_xminorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text xticklabel', self.xaxis.get_minorticklabels()) def get_xticklabels(self, minor=False): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text xticklabel', self.xaxis.get_ticklabels(minor=minor)) def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ call signature:: set_xticklabels(labels, fontdict=None, minor=False, **kwargs) Set the xtick labels with list of strings *labels*. Return a list of axis text instances. *kwargs* set the :class:`~matplotlib.text.Text` properties. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.xaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) set_xticklabels.__doc__ = cbook.dedent( set_xticklabels.__doc__) % martist.kwdocd def invert_yaxis(self): "Invert the y-axis." left, right = self.get_ylim() self.set_ylim(right, left) def yaxis_inverted(self): 'Returns True if the y-axis is inverted.' left, right = self.get_ylim() return right < left def get_ybound(self): "Return y-axis numerical bounds in the form of lowerBound < upperBound" left, right = self.get_ylim() if left < right: return left, right else: return right, left def set_ybound(self, lower=None, upper=None): """Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion regardless of parameter order. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_ybound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.yaxis_inverted(): if lower < upper: self.set_ylim(upper, lower) else: self.set_ylim(lower, upper) else: if lower < upper: self.set_ylim(lower, upper) else: self.set_ylim(upper, lower) def get_ylim(self): """ Get the y-axis range [*ymin*, *ymax*] """ return tuple(self.viewLim.intervaly) def set_ylim(self, ymin=None, ymax=None, emit=True, **kwargs): """ call signature:: set_ylim(self, *args, **kwargs): Set the limits for the yaxis; v = [ymin, ymax]:: set_ylim((valmin, valmax)) set_ylim(valmin, valmax) set_ylim(ymin=1) # ymax unchanged set_ylim(ymax=1) # ymin unchanged Keyword arguments: *ymin*: scalar the min of the ylim *ymax*: scalar the max of the ylim *emit*: [ True | False ] notify observers of lim change Returns the current ylimits as a length 2 tuple ACCEPTS: len(2) sequence of floats """ if ymax is None and iterable(ymin): ymin,ymax = ymin if ymin is not None: ymin = self.convert_yunits(ymin) if ymax is not None: ymax = self.convert_yunits(ymax) old_ymin,old_ymax = self.get_ylim() if ymin is None: ymin = old_ymin if ymax is None: ymax = old_ymax ymin, ymax = mtransforms.nonsingular(ymin, ymax, increasing=False) ymin, ymax = self.yaxis.limit_range_for_scale(ymin, ymax) self.viewLim.intervaly = (ymin, ymax) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_y_axes.get_siblings(self): if other is not self: other.set_ylim(self.viewLim.intervaly, emit=False) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return ymin, ymax def get_yscale(self): 'return the xaxis scale string: %s' % ( ", ".join(mscale.get_scale_names())) return self.yaxis.get_scale() def set_yscale(self, value, **kwargs): """ call signature:: set_yscale(value) Set the scaling of the y-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.yaxis.set_scale(value, **kwargs) self.autoscale_view() self._update_transScale() set_yscale.__doc__ = cbook.dedent(set_yscale.__doc__) % { 'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()]), 'scale_docs': mscale.get_scale_docs().strip()} def get_yticks(self, minor=False): 'Return the y ticks as a list of locations' return self.yaxis.get_ticklocs(minor=minor) def set_yticks(self, ticks, minor=False): """ Set the y ticks with list of *ticks* ACCEPTS: sequence of floats Keyword arguments: *minor*: [ False | True ] Sets the minor ticks if True """ return self.yaxis.set_ticks(ticks, minor=minor) def get_ymajorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text yticklabel', self.yaxis.get_majorticklabels()) def get_yminorticklabels(self): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text yticklabel', self.yaxis.get_minorticklabels()) def get_yticklabels(self, minor=False): 'Get the xtick labels as a list of Text instances' return cbook.silent_list('Text yticklabel', self.yaxis.get_ticklabels(minor=minor)) def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ call signature:: set_yticklabels(labels, fontdict=None, minor=False, **kwargs) Set the ytick labels with list of strings *labels*. Return a list of :class:`~matplotlib.text.Text` instances. *kwargs* set :class:`~matplotlib.text.Text` properties for the labels. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.yaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) set_yticklabels.__doc__ = cbook.dedent( set_yticklabels.__doc__) % martist.kwdocd def xaxis_date(self, tz=None): """Sets up x-axis ticks and labels that treat the x data as dates. *tz* is the time zone to use in labeling dates. Defaults to rc value. """ xmin, xmax = self.dataLim.intervalx if xmin==0.: # no data has been added - let's set the default datalim. # We should probably use a better proxy for the datalim # have been updated than the ignore setting dmax = today = datetime.date.today() dmin = today-datetime.timedelta(days=10) self._process_unit_info(xdata=(dmin, dmax)) dmin, dmax = self.convert_xunits([dmin, dmax]) self.viewLim.intervalx = dmin, dmax self.dataLim.intervalx = dmin, dmax locator = self.xaxis.get_major_locator() if not isinstance(locator, mdates.DateLocator): locator = mdates.AutoDateLocator(tz) self.xaxis.set_major_locator(locator) # the autolocator uses the viewlim to pick the right date # locator, but it may not have correct viewlim before an # autoscale. If the viewlim is still zero..1, set it to the # datalim and the autoscaler will update it on request if self.viewLim.intervalx[0]==0.: self.viewLim.intervalx = tuple(self.dataLim.intervalx) locator.refresh() formatter = self.xaxis.get_major_formatter() if not isinstance(formatter, mdates.DateFormatter): formatter = mdates.AutoDateFormatter(locator, tz) self.xaxis.set_major_formatter(formatter) def yaxis_date(self, tz=None): """Sets up y-axis ticks and labels that treat the y data as dates. *tz* is the time zone to use in labeling dates. Defaults to rc value. """ ymin, ymax = self.dataLim.intervaly if ymin==0.: # no data has been added - let's set the default datalim. # We should probably use a better proxy for the datalim # have been updated than the ignore setting dmax = today = datetime.date.today() dmin = today-datetime.timedelta(days=10) self._process_unit_info(ydata=(dmin, dmax)) dmin, dmax = self.convert_yunits([dmin, dmax]) self.viewLim.intervaly = dmin, dmax self.dataLim.intervaly = dmin, dmax locator = self.yaxis.get_major_locator() if not isinstance(locator, mdates.DateLocator): locator = mdates.AutoDateLocator(tz) self.yaxis.set_major_locator(locator) # the autolocator uses the viewlim to pick the right date # locator, but it may not have correct viewlim before an # autoscale. If the viewlim is still zero..1, set it to the # datalim and the autoscaler will update it on request if self.viewLim.intervaly[0]==0.: self.viewLim.intervaly = tuple(self.dataLim.intervaly) locator.refresh() formatter = self.xaxis.get_major_formatter() if not isinstance(formatter, mdates.DateFormatter): formatter = mdates.AutoDateFormatter(locator, tz) self.yaxis.set_major_formatter(formatter) def format_xdata(self, x): """ Return *x* string formatted. This function will use the attribute self.fmt_xdata if it is callable, else will fall back on the xaxis major formatter """ try: return self.fmt_xdata(x) except TypeError: func = self.xaxis.get_major_formatter().format_data_short val = func(x) return val def format_ydata(self, y): """ Return y string formatted. This function will use the :attr:`fmt_ydata` attribute if it is callable, else will fall back on the yaxis major formatter """ try: return self.fmt_ydata(y) except TypeError: func = self.yaxis.get_major_formatter().format_data_short val = func(y) return val def format_coord(self, x, y): 'return a format string formatting the *x*, *y* coord' if x is None: x = '???' if y is None: y = '???' xs = self.format_xdata(x) ys = self.format_ydata(y) return 'x=%s, y=%s'%(xs,ys) #### Interactive manipulation def can_zoom(self): """ Return *True* if this axes support the zoom box """ return True def get_navigate(self): """ Get whether the axes responds to navigation commands """ return self._navigate def set_navigate(self, b): """ Set whether the axes responds to navigation toolbar commands ACCEPTS: [ True | False ] """ self._navigate = b def get_navigate_mode(self): """ Get the navigation toolbar button status: 'PAN', 'ZOOM', or None """ return self._navigate_mode def set_navigate_mode(self, b): """ Set the navigation toolbar button status; .. warning:: this is not a user-API function. """ self._navigate_mode = b def start_pan(self, x, y, button): """ Called when a pan operation has started. *x*, *y* are the mouse coordinates in display coords. button is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT .. note:: Intended to be overridden by new projection types. """ self._pan_start = cbook.Bunch( lim = self.viewLim.frozen(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), bbox = self.bbox.frozen(), x = x, y = y ) def end_pan(self): """ Called when a pan operation completes (when the mouse button is up.) .. note:: Intended to be overridden by new projection types. """ del self._pan_start def drag_pan(self, button, key, x, y): """ Called when the mouse moves during a pan operation. *button* is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT *key* is a "shift" key *x*, *y* are the mouse coordinates in display coords. .. note:: Intended to be overridden by new projection types. """ def format_deltas(key, dx, dy): if key=='control': if(abs(dx)>abs(dy)): dy = dx else: dx = dy elif key=='x': dy = 0 elif key=='y': dx = 0 elif key=='shift': if 2*abs(dx) < abs(dy): dx=0 elif 2*abs(dy) < abs(dx): dy=0 elif(abs(dx)>abs(dy)): dy=dy/abs(dy)*abs(dx) else: dx=dx/abs(dx)*abs(dy) return (dx,dy) p = self._pan_start dx = x - p.x dy = y - p.y if dx == 0 and dy == 0: return if button == 1: dx, dy = format_deltas(key, dx, dy) result = p.bbox.translated(-dx, -dy) \ .transformed(p.trans_inverse) elif button == 3: try: dx = -dx / float(self.bbox.width) dy = -dy / float(self.bbox.height) dx, dy = format_deltas(key, dx, dy) if self.get_aspect() != 'auto': dx = 0.5 * (dx + dy) dy = dx alpha = np.power(10.0, (dx, dy)) start = p.trans_inverse.transform_point((p.x, p.y)) lim_points = p.lim.get_points() result = start + alpha * (lim_points - start) result = mtransforms.Bbox(result) except OverflowError: warnings.warn('Overflow while panning') return self.set_xlim(*result.intervalx) self.set_ylim(*result.intervaly) def get_cursor_props(self): """ return the cursor propertiess as a (*linewidth*, *color*) tuple, where *linewidth* is a float and *color* is an RGBA tuple """ return self._cursorProps def set_cursor_props(self, *args): """ Set the cursor property as:: ax.set_cursor_props(linewidth, color) or:: ax.set_cursor_props((linewidth, color)) ACCEPTS: a (*float*, *color*) tuple """ if len(args)==1: lw, c = args[0] elif len(args)==2: lw, c = args else: raise ValueError('args must be a (linewidth, color) tuple') c =mcolors.colorConverter.to_rgba(c) self._cursorProps = lw, c def connect(self, s, func): """ Register observers to be notified when certain events occur. Register with callback functions with the following signatures. The function has the following signature:: func(ax) # where ax is the instance making the callback. The following events can be connected to: 'xlim_changed','ylim_changed' The connection id is is returned - you can use this with disconnect to disconnect from the axes event """ raise DeprecationWarning('use the callbacks CallbackRegistry instance ' 'instead') def disconnect(self, cid): 'disconnect from the Axes event.' raise DeprecationWarning('use the callbacks CallbackRegistry instance ' 'instead') def get_children(self): 'return a list of child artists' children = [] children.append(self.xaxis) children.append(self.yaxis) children.extend(self.lines) children.extend(self.patches) children.extend(self.texts) children.extend(self.tables) children.extend(self.artists) children.extend(self.images) if self.legend_ is not None: children.append(self.legend_) children.extend(self.collections) children.append(self.title) children.append(self.patch) children.append(self.frame) return children def contains(self,mouseevent): """Test whether the mouse event occured in the axes. Returns T/F, {} """ if callable(self._contains): return self._contains(self,mouseevent) return self.patch.contains(mouseevent) def pick(self, *args): """ call signature:: pick(mouseevent) each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set """ if len(args)>1: raise DeprecationWarning('New pick API implemented -- ' 'see API_CHANGES in the src distribution') martist.Artist.pick(self,args[0]) def __pick(self, x, y, trans=None, among=None): """ Return the artist under point that is closest to the *x*, *y*. If *trans* is *None*, *x*, and *y* are in window coords, (0,0 = lower left). Otherwise, *trans* is a :class:`~matplotlib.transforms.Transform` that specifies the coordinate system of *x*, *y*. The selection of artists from amongst which the pick function finds an artist can be narrowed using the optional keyword argument *among*. If provided, this should be either a sequence of permitted artists or a function taking an artist as its argument and returning a true value if and only if that artist can be selected. Note this algorithm calculates distance to the vertices of the polygon, so if you want to pick a patch, click on the edge! """ # MGDTODO: Needs updating if trans is not None: xywin = trans.transform_point((x,y)) else: xywin = x,y def dist_points(p1, p2): 'return the distance between two points' x1, y1 = p1 x2, y2 = p2 return math.sqrt((x1-x2)**2+(y1-y2)**2) def dist_x_y(p1, x, y): '*x* and *y* are arrays; return the distance to the closest point' x1, y1 = p1 return min(np.sqrt((x-x1)**2+(y-y1)**2)) def dist(a): if isinstance(a, Text): bbox = a.get_window_extent() l,b,w,h = bbox.bounds verts = (l,b), (l,b+h), (l+w,b+h), (l+w, b) xt, yt = zip(*verts) elif isinstance(a, Patch): path = a.get_path() tverts = a.get_transform().transform_path(path) xt, yt = zip(*tverts) elif isinstance(a, mlines.Line2D): xdata = a.get_xdata(orig=False) ydata = a.get_ydata(orig=False) xt, yt = a.get_transform().numerix_x_y(xdata, ydata) return dist_x_y(xywin, np.asarray(xt), np.asarray(yt)) artists = self.lines + self.patches + self.texts if callable(among): artists = filter(test, artists) elif iterable(among): amongd = dict([(k,1) for k in among]) artists = [a for a in artists if a in amongd] elif among is None: pass else: raise ValueError('among must be callable or iterable') if not len(artists): return None ds = [ (dist(a),a) for a in artists] ds.sort() return ds[0][1] #### Labelling def get_title(self): """ Get the title text string. """ return self.title.get_text() def set_title(self, label, fontdict=None, **kwargs): """ call signature:: set_title(label, fontdict=None, **kwargs): Set the title for the axes. kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text`: for information on how override and the optional args work """ default = { 'fontsize':rcParams['axes.titlesize'], 'verticalalignment' : 'bottom', 'horizontalalignment' : 'center' } self.title.set_text(label) self.title.update(default) if fontdict is not None: self.title.update(fontdict) self.title.update(kwargs) return self.title set_title.__doc__ = cbook.dedent(set_title.__doc__) % martist.kwdocd def get_xlabel(self): """ Get the xlabel text string. """ label = self.xaxis.get_label() return label.get_text() def set_xlabel(self, xlabel, fontdict=None, **kwargs): """ call signature:: set_xlabel(xlabel, fontdict=None, **kwargs) Set the label for the xaxis. Valid kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text`: for information on how override and the optional args work """ label = self.xaxis.get_label() label.set_text(xlabel) if fontdict is not None: label.update(fontdict) label.update(kwargs) return label set_xlabel.__doc__ = cbook.dedent(set_xlabel.__doc__) % martist.kwdocd def get_ylabel(self): """ Get the ylabel text string. """ label = self.yaxis.get_label() return label.get_text() def set_ylabel(self, ylabel, fontdict=None, **kwargs): """ call signature:: set_ylabel(ylabel, fontdict=None, **kwargs) Set the label for the yaxis Valid kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text`: for information on how override and the optional args work """ label = self.yaxis.get_label() label.set_text(ylabel) if fontdict is not None: label.update(fontdict) label.update(kwargs) return label set_ylabel.__doc__ = cbook.dedent(set_ylabel.__doc__) % martist.kwdocd def text(self, x, y, s, fontdict=None, withdash=False, **kwargs): """ call signature:: text(x, y, s, fontdict=None, **kwargs) Add text in string *s* to axis at location *x*, *y*, data coordinates. Keyword arguments: *fontdict*: A dictionary to override the default text properties. If *fontdict* is *None*, the defaults are determined by your rc parameters. *withdash*: [ False | True ] Creates a :class:`~matplotlib.text.TextWithDash` instance instead of a :class:`~matplotlib.text.Text` instance. Individual keyword arguments can be used to override any given parameter:: text(x, y, s, fontsize=12) The default transform specifies that text is in data coords, alternatively, you can specify text in axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the axes:: text(0.5, 0.5,'matplotlib', horizontalalignment='center', verticalalignment='center', transform = ax.transAxes) You can put a rectangular box around the text instance (eg. to set a background color) by using the keyword *bbox*. *bbox* is a dictionary of :class:`matplotlib.patches.Rectangle` properties. For example:: text(x, y, s, bbox=dict(facecolor='red', alpha=0.5)) Valid kwargs are :class:`matplotlib.text.Text` properties: %(Text)s """ default = { 'verticalalignment' : 'bottom', 'horizontalalignment' : 'left', #'verticalalignment' : 'top', 'transform' : self.transData, } # At some point if we feel confident that TextWithDash # is robust as a drop-in replacement for Text and that # the performance impact of the heavier-weight class # isn't too significant, it may make sense to eliminate # the withdash kwarg and simply delegate whether there's # a dash to TextWithDash and dashlength. if withdash: t = mtext.TextWithDash( x=x, y=y, text=s, ) else: t = mtext.Text( x=x, y=y, text=s, ) self._set_artist_props(t) t.update(default) if fontdict is not None: t.update(fontdict) t.update(kwargs) self.texts.append(t) t._remove_method = lambda h: self.texts.remove(h) #if t.get_clip_on(): t.set_clip_box(self.bbox) if 'clip_on' in kwargs: t.set_clip_box(self.bbox) return t text.__doc__ = cbook.dedent(text.__doc__) % martist.kwdocd def annotate(self, *args, **kwargs): """ call signature:: annotate(s, xy, xytext=None, xycoords='data', textcoords='data', arrowprops=None, **kwargs) Keyword arguments: %(Annotation)s .. plot:: mpl_examples/pylab_examples/annotation_demo2.py """ a = mtext.Annotation(*args, **kwargs) a.set_transform(mtransforms.IdentityTransform()) self._set_artist_props(a) if kwargs.has_key('clip_on'): a.set_clip_path(self.patch) self.texts.append(a) return a annotate.__doc__ = cbook.dedent(annotate.__doc__) % martist.kwdocd #### Lines and spans def axhline(self, y=0, xmin=0, xmax=1, **kwargs): """ call signature:: axhline(y=0, xmin=0, xmax=1, **kwargs) Axis Horizontal Line Draw a horizontal line at *y* from *xmin* to *xmax*. With the default values of *xmin* = 0 and *xmax* = 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red hline at *y* = 0 that spans the xrange >>> axhline(linewidth=4, color='r') * draw a default hline at *y* = 1 that spans the xrange >>> axhline(y=1) * draw a default hline at *y* = .5 that spans the the middle half of the xrange >>> axhline(y=.5, xmin=0.25, xmax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`axhspan`: for example plot and source code """ ymin, ymax = self.get_ybound() # We need to strip away the units for comparison with # non-unitized bounds yy = self.convert_yunits( y ) scaley = (yy<ymin) or (yy>ymax) trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) l = mlines.Line2D([xmin,xmax], [y,y], transform=trans, **kwargs) l.x_isdata = False self.add_line(l) self.autoscale_view(scalex=False, scaley=scaley) return l axhline.__doc__ = cbook.dedent(axhline.__doc__) % martist.kwdocd def axvline(self, x=0, ymin=0, ymax=1, **kwargs): """ call signature:: axvline(x=0, ymin=0, ymax=1, **kwargs) Axis Vertical Line Draw a vertical line at *x* from *ymin* to *ymax*. With the default values of *ymin* = 0 and *ymax* = 1, this line will always span the vertical extent of the axes, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red vline at *x* = 0 that spans the yrange >>> axvline(linewidth=4, color='r') * draw a default vline at *x* = 1 that spans the yrange >>> axvline(x=1) * draw a default vline at *x* = .5 that spans the the middle half of the yrange >>> axvline(x=.5, ymin=0.25, ymax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`axhspan`: for example plot and source code """ xmin, xmax = self.get_xbound() # We need to strip away the units for comparison with # non-unitized bounds xx = self.convert_xunits( x ) scalex = (xx<xmin) or (xx>xmax) trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) l = mlines.Line2D([x,x], [ymin,ymax] , transform=trans, **kwargs) l.y_isdata = False self.add_line(l) self.autoscale_view(scalex=scalex, scaley=False) return l axvline.__doc__ = cbook.dedent(axvline.__doc__) % martist.kwdocd def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs): """ call signature:: axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs) Axis Horizontal Span. *y* coords are in data units and *x* coords are in axes (relative 0-1) units. Draw a horizontal span (rectangle) from *ymin* to *ymax*. With the default values of *xmin* = 0 and *xmax* = 1, this always spans the xrange, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is a :class:`matplotlib.patches.Polygon` instance. Examples: * draw a gray rectangle from *y* = 0.25-0.75 that spans the horizontal extent of the axes >>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/axhspan_demo.py """ trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin) p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) p.x_isdata = False self.add_patch(p) return p axhspan.__doc__ = cbook.dedent(axhspan.__doc__) % martist.kwdocd def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs): """ call signature:: axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs) Axis Vertical Span. *x* coords are in data units and *y* coords are in axes (relative 0-1) units. Draw a vertical span (rectangle) from *xmin* to *xmax*. With the default values of *ymin* = 0 and *ymax* = 1, this always spans the yrange, regardless of the ylim settings, even if you change them, eg. with the :meth:`set_ylim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *y* location is in data coordinates. Return value is the :class:`matplotlib.patches.Polygon` instance. Examples: * draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s .. seealso:: :meth:`axhspan`: for example plot and source code """ trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)] p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) p.y_isdata = False self.add_patch(p) return p axvspan.__doc__ = cbook.dedent(axvspan.__doc__) % martist.kwdocd def hlines(self, y, xmin, xmax, colors='k', linestyles='solid', label='', **kwargs): """ call signature:: hlines(y, xmin, xmax, colors='k', linestyles='solid', **kwargs) Plot horizontal lines at each *y* from *xmin* to *xmax*. Returns the :class:`~matplotlib.collections.LineCollection` that was added. Required arguments: *y*: a 1-D numpy array or iterable. *xmin* and *xmax*: can be scalars or ``len(x)`` numpy arrays. If they are scalars, then the respective values are constant, else the widths of the lines are determined by *xmin* and *xmax*. Optional keyword arguments: *colors*: a line collections color argument, either a single color or a ``len(y)`` list of colors *linestyles*: [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] **Example:** .. plot:: mpl_examples/pylab_examples/hline_demo.py """ if kwargs.get('fmt') is not None: raise DeprecationWarning('hlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') # We do the conversion first since not all unitized data is uniform y = self.convert_yunits( y ) xmin = self.convert_xunits( xmin ) xmax = self.convert_xunits( xmax ) if not iterable(y): y = [y] if not iterable(xmin): xmin = [xmin] if not iterable(xmax): xmax = [xmax] y = np.asarray(y) xmin = np.asarray(xmin) xmax = np.asarray(xmax) if len(xmin)==1: xmin = np.resize( xmin, y.shape ) if len(xmax)==1: xmax = np.resize( xmax, y.shape ) if len(xmin)!=len(y): raise ValueError, 'xmin and y are unequal sized sequences' if len(xmax)!=len(y): raise ValueError, 'xmax and y are unequal sized sequences' verts = [ ((thisxmin, thisy), (thisxmax, thisy)) for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)] coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) minx = min(xmin.min(), xmax.min()) maxx = max(xmin.max(), xmax.max()) miny = y.min() maxy = y.max() corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll hlines.__doc__ = cbook.dedent(hlines.__doc__) def vlines(self, x, ymin, ymax, colors='k', linestyles='solid', label='', **kwargs): """ call signature:: vlines(x, ymin, ymax, color='k', linestyles='solid') Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin* or *ymax* can be scalars or len(*x*) numpy arrays. If they are scalars, then the respective values are constant, else the heights of the lines are determined by *ymin* and *ymax*. *colors* a line collections color args, either a single color or a len(*x*) list of colors *linestyles* one of [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] Returns the :class:`matplotlib.collections.LineCollection` that was added. kwargs are :class:`~matplotlib.collections.LineCollection` properties: %(LineCollection)s """ if kwargs.get('fmt') is not None: raise DeprecationWarning('vlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') self._process_unit_info(xdata=x, ydata=ymin, kwargs=kwargs) # We do the conversion first since not all unitized data is uniform x = self.convert_xunits( x ) ymin = self.convert_yunits( ymin ) ymax = self.convert_yunits( ymax ) if not iterable(x): x = [x] if not iterable(ymin): ymin = [ymin] if not iterable(ymax): ymax = [ymax] x = np.asarray(x) ymin = np.asarray(ymin) ymax = np.asarray(ymax) if len(ymin)==1: ymin = np.resize( ymin, x.shape ) if len(ymax)==1: ymax = np.resize( ymax, x.shape ) if len(ymin)!=len(x): raise ValueError, 'ymin and x are unequal sized sequences' if len(ymax)!=len(x): raise ValueError, 'ymax and x are unequal sized sequences' Y = np.array([ymin, ymax]).T verts = [ ((thisx, thisymin), (thisx, thisymax)) for thisx, (thisymin, thisymax) in zip(x,Y)] #print 'creating line collection' coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) minx = min( x ) maxx = max( x ) miny = min( min(ymin), min(ymax) ) maxy = max( max(ymin), max(ymax) ) corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll vlines.__doc__ = cbook.dedent(vlines.__doc__) % martist.kwdocd #### Basic plotting def plot(self, *args, **kwargs): """ Plot lines and/or markers to the :class:`~matplotlib.axes.Axes`. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional format string. For example, each of the following is legal:: plot(x, y) # plot x and y using default line style and color plot(x, y, 'bo') # plot x and y using blue circle markers plot(y) # plot y using x as index array 0..N-1 plot(y, 'r+') # ditto, but with red plusses If *x* and/or *y* is 2-dimensional, then the corresponding columns will be plotted. An arbitrary number of *x*, *y*, *fmt* groups can be specified, as in:: a.plot(x1, y1, 'g^', x2, y2, 'g-') Return value is a list of lines that were added. The following format string characters are accepted to control the line style or marker: ================ =============================== character description ================ =============================== '-' solid line style '--' dashed line style '-.' dash-dot line style ':' dotted line style '.' point marker ',' pixel marker 'o' circle marker 'v' triangle_down marker '^' triangle_up marker '<' triangle_left marker '>' triangle_right marker '1' tri_down marker '2' tri_up marker '3' tri_left marker '4' tri_right marker 's' square marker 'p' pentagon marker '*' star marker 'h' hexagon1 marker 'H' hexagon2 marker '+' plus marker 'x' x marker 'D' diamond marker 'd' thin_diamond marker '|' vline marker '_' hline marker ================ =============================== The following color abbreviations are supported: ========== ======== character color ========== ======== 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ========== ======== In addition, you can specify colors in many weird and wonderful ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``). Of these, the string specifications can be used in place of a ``fmt`` group, but the tuple forms can be used only as ``kwargs``. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. The *kwargs* can be used to set line properties (any property that has a ``set_*`` method). You can use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an example:: plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2) plot([1,2,3], [1,4,9], 'rs', label='line 2') axis([0, 4, 0, 10]) legend() If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:: plot(x1, y1, x2, y2, antialised=False) Neither line will be antialiased. You do not need to use format strings, which are just abbreviations. All of the line properties can be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and markercolor with:: plot(x, y, color='green', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=12). See :class:`~matplotlib.lines.Line2D` for details. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s kwargs *scalex* and *scaley*, if defined, are passed on to :meth:`~matplotlib.axes.Axes.autoscale_view` to determine whether the *x* and *y* axes are autoscaled; the default is *True*. """ scalex = kwargs.pop( 'scalex', True) scaley = kwargs.pop( 'scaley', True) if not self._hold: self.cla() lines = [] for line in self._get_lines(*args, **kwargs): self.add_line(line) lines.append(line) self.autoscale_view(scalex=scalex, scaley=scaley) return lines plot.__doc__ = cbook.dedent(plot.__doc__) % martist.kwdocd def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs): """ call signature:: plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs) Similar to the :func:`~matplotlib.pyplot.plot` command, except the *x* or *y* (or both) data is considered to be dates, and the axis is labeled accordingly. *x* and/or *y* can be a sequence of dates represented as float days since 0001-01-01 UTC. Keyword arguments: *fmt*: string The plot format string. *tz*: [ None | timezone string ] The time zone to use in labeling dates. If *None*, defaults to rc value. *xdate*: [ True | False ] If *True*, the *x*-axis will be labeled with dates. *ydate*: [ False | True ] If *True*, the *y*-axis will be labeled with dates. Note if you are using custom date tickers and formatters, it may be necessary to set the formatters/locators after the call to :meth:`plot_date` since :meth:`plot_date` will set the default tick locator to :class:`matplotlib.ticker.AutoDateLocator` (if the tick locator is not already set to a :class:`matplotlib.ticker.DateLocator` instance) and the default tick formatter to :class:`matplotlib.ticker.AutoDateFormatter` (if the tick formatter is not already set to a :class:`matplotlib.ticker.DateFormatter` instance). Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :mod:`~matplotlib.dates`: for helper functions :func:`~matplotlib.dates.date2num`, :func:`~matplotlib.dates.num2date` and :func:`~matplotlib.dates.drange`: for help on creating the required floating point dates. """ if not self._hold: self.cla() ret = self.plot(x, y, fmt, **kwargs) if xdate: self.xaxis_date(tz) if ydate: self.yaxis_date(tz) self.autoscale_view() return ret plot_date.__doc__ = cbook.dedent(plot_date.__doc__) % martist.kwdocd def loglog(self, *args, **kwargs): """ call signature:: loglog(*args, **kwargs) Make a plot with log scaling on the *x* and *y* axis. :func:`~matplotlib.pyplot.loglog` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basex*/*basey*: scalar > 1 base of the *x*/*y* logarithm *subsx*/*subsy*: [ None | sequence ] the location of the minor *x*/*y* ticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale` for details The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/log_demo.py """ if not self._hold: self.cla() dx = {'basex': kwargs.pop('basex', 10), 'subsx': kwargs.pop('subsx', None), } dy = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), } self.set_xscale('log', **dx) self.set_yscale('log', **dy) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l loglog.__doc__ = cbook.dedent(loglog.__doc__) % martist.kwdocd def semilogx(self, *args, **kwargs): """ call signature:: semilogx(*args, **kwargs) Make a plot with log scaling on the *x* axis. :func:`semilogx` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale`. Notable keyword arguments: *basex*: scalar > 1 base of the *x* logarithm *subsx*: [ None | sequence ] The location of the minor xticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for details. The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog`: For example code and figure """ if not self._hold: self.cla() d = {'basex': kwargs.pop( 'basex', 10), 'subsx': kwargs.pop( 'subsx', None), } self.set_xscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l semilogx.__doc__ = cbook.dedent(semilogx.__doc__) % martist.kwdocd def semilogy(self, *args, **kwargs): """ call signature:: semilogy(*args, **kwargs) Make a plot with log scaling on the *y* axis. :func:`semilogy` supports all the keyword arguments of :func:`~matplotlib.pylab.plot` and :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basey*: scalar > 1 Base of the *y* logarithm *subsy*: [ None | sequence ] The location of the minor yticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for details. The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog`: For example code and figure """ if not self._hold: self.cla() d = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), } self.set_yscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l semilogy.__doc__ = cbook.dedent(semilogy.__doc__) % martist.kwdocd def acorr(self, x, **kwargs): """ call signature:: acorr(x, normed=False, detrend=mlab.detrend_none, usevlines=False, maxlags=None, **kwargs) Plot the autocorrelation of *x*. If *normed* = *True*, normalize the data by the autocorrelation at 0-th lag. *x* is detrended by the *detrend* callable (default no normalization). Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length 2*maxlags+1 lag vector - *c* is the 2*maxlags+1 auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :meth:`plot` The default *linestyle* is None and the default *marker* is ``'o'``, though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines` rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw vertical lines from the origin to the acorr. Otherwise, the plot style is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all :math:`2 \mathrm{len}(x) - 1` lags. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where - *linecol* is the :class:`~matplotlib.collections.LineCollection` - *b* is the *x*-axis. .. seealso:: :meth:`~matplotlib.axes.Axes.plot` or :meth:`~matplotlib.axes.Axes.vlines`: For documentation on valid kwargs. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ return self.xcorr(x, x, **kwargs) acorr.__doc__ = cbook.dedent(acorr.__doc__) % martist.kwdocd def xcorr(self, x, y, normed=False, detrend=mlab.detrend_none, usevlines=False, maxlags=None, **kwargs): """ call signature:: xcorr(x, y, normed=False, detrend=mlab.detrend_none, usevlines=False, **kwargs): Plot the cross correlation between *x* and *y*. If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` above, and :func:`~matplotlib.pyplot.acorr` below. **Example:** .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c/= np.sqrt(np.dot(x,x) * np.dot(y,y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maglags must be None or strictly ' 'positive < %d'%Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b xcorr.__doc__ = cbook.dedent(xcorr.__doc__) % martist.kwdocd def legend(self, *args, **kwargs): """ call signature:: legend(*args, **kwargs) Place a legend on the current axes at location *loc*. Labels are a sequence of strings and *loc* can be a string or an integer specifying the legend location. To make a legend with existing lines:: legend() :meth:`legend` by itself will try and build a legend using the label property of the lines/patches/collections. You can set the label of a line by doing:: plot(x, y, label='my data') or:: line.set_label('my data'). If label is set to '_nolegend_', the item will not be shown in legend. To automatically generate the legend from labels:: legend( ('label1', 'label2', 'label3') ) To make a legend for a list of lines and labels:: legend( (line1, line2, line3), ('label1', 'label2', 'label3') ) To make a legend at a given location, using a location argument:: legend( ('label1', 'label2', 'label3'), loc='upper left') or:: legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2) The location codes are =============== ============= Location String Location Code =============== ============= 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 =============== ============= If none of these are locations are suitable, loc can be a 2-tuple giving x,y in axes coords, ie:: loc = 0, 1 # left top loc = 0.5, 0.5 # center Keyword arguments: *isaxes*: [ True | False ] Indicates that this is an axes legend *numpoints*: integer The number of points in the legend line, default is 4 *prop*: [ None | FontProperties ] A :class:`matplotlib.font_manager.FontProperties` instance, or *None* to use rc settings. *pad*: [ None | scalar ] The fractional whitespace inside the legend border, between 0 and 1. If *None*, use rc settings. *markerscale*: [ None | scalar ] The relative size of legend markers vs. original. If *None*, use rc settings. *shadow*: [ None | False | True ] If *True*, draw a shadow behind legend. If *None*, use rc settings. *labelsep*: [ None | scalar ] The vertical space between the legend entries. If *None*, use rc settings. *handlelen*: [ None | scalar ] The length of the legend lines. If *None*, use rc settings. *handletextsep*: [ None | scalar ] The space between the legend line and legend text. If *None*, use rc settings. *axespad*: [ None | scalar ] The border between the axes and legend edge. If *None*, use rc settings. **Example:** .. plot:: mpl_examples/api/legend_demo.py """ def get_handles(): handles = self.lines[:] handles.extend(self.patches) handles.extend([c for c in self.collections if isinstance(c, mcoll.LineCollection)]) handles.extend([c for c in self.collections if isinstance(c, mcoll.RegularPolyCollection)]) return handles if len(args)==0: handles = [] labels = [] for handle in get_handles(): label = handle.get_label() if (label is not None and label != '' and not label.startswith('_')): handles.append(handle) labels.append(label) if len(handles) == 0: warnings.warn("No labeled objects found. " "Use label='...' kwarg on individual plots.") return None elif len(args)==1: # LABELS labels = args[0] handles = [h for h, label in zip(get_handles(), labels)] elif len(args)==2: if is_string_like(args[1]) or isinstance(args[1], int): # LABELS, LOC labels, loc = args handles = [h for h, label in zip(get_handles(), labels)] kwargs['loc'] = loc else: # LINES, LABELS handles, labels = args elif len(args)==3: # LINES, LABELS, LOC handles, labels, loc = args kwargs['loc'] = loc else: raise TypeError('Invalid arguments to legend') handles = cbook.flatten(handles) self.legend_ = mlegend.Legend(self, handles, labels, **kwargs) return self.legend_ #### Specialized plotting def step(self, x, y, *args, **kwargs): ''' call signature:: step(x, y, *args, **kwargs) Make a step plot. Additional keyword args to :func:`step` are the same as those for :func:`~matplotlib.pyplot.plot`. *x* and *y* must be 1-D sequences, and it is assumed, but not checked, that *x* is uniformly increasing. Keyword arguments: *where*: [ 'pre' | 'post' | 'mid' ] If 'pre', the interval from x[i] to x[i+1] has level y[i] If 'post', that interval has level y[i+1] If 'mid', the jumps in *y* occur half-way between the *x*-values. ''' where = kwargs.pop('where', 'pre') if where not in ('pre', 'post', 'mid'): raise ValueError("'where' argument to step must be " "'pre', 'post' or 'mid'") kwargs['linestyle'] = 'steps-' + where return self.plot(x, y, *args, **kwargs) def bar(self, left, height, width=0.8, bottom=None, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False, **kwargs ): """ call signature:: bar(left, height, width=0.8, bottom=0, color=None, edgecolor=None, linewidth=None, yerr=None, xerr=None, ecolor=None, capsize=3, align='edge', orientation='vertical', log=False) Make a bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *left*, *height*, *width*, and *bottom* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== =============================================== Argument Description ======== =============================================== *left* the x coordinates of the left sides of the bars *height* the heights of the bars ======== =============================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *width* the widths of the bars *bottom* the y coordinates of the bottom edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* 'edge' (default) | 'center' *orientation* 'vertical' | 'horizontal' *log* [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale =============== ========================================== For vertical bars, *align* = 'edge' aligns bars by their left edges in left, while *align* = 'center' interprets these values as the *x* coordinates of the bar centers. For horizontal bars, *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts, or candlestick plots. Other optional kwargs: %(Rectangle)s **Example:** A stacked bar chart. .. plot:: mpl_examples/pylab_examples/bar_stacked.py """ if not self._hold: self.cla() label = kwargs.pop('label', '') def make_iterable(x): if not iterable(x): return [x] else: return x # make them safe to take len() of _left = left left = make_iterable(left) height = make_iterable(height) width = make_iterable(width) _bottom = bottom bottom = make_iterable(bottom) linewidth = make_iterable(linewidth) adjust_ylim = False adjust_xlim = False if orientation == 'vertical': self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs) if log: self.set_yscale('log') # size width and bottom according to length of left if _bottom is None: if self.get_yscale() == 'log': bottom = [1e-100] adjust_ylim = True else: bottom = [0] nbars = len(left) if len(width) == 1: width *= nbars if len(bottom) == 1: bottom *= nbars elif orientation == 'horizontal': self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs) if log: self.set_xscale('log') # size left and height according to length of bottom if _left is None: if self.get_xscale() == 'log': left = [1e-100] adjust_xlim = True else: left = [0] nbars = len(bottom) if len(left) == 1: left *= nbars if len(height) == 1: height *= nbars else: raise ValueError, 'invalid orientation: %s' % orientation # do not convert to array here as unit info is lost #left = np.asarray(left) #height = np.asarray(height) #width = np.asarray(width) #bottom = np.asarray(bottom) if len(linewidth) < nbars: linewidth *= nbars if color is None: color = [None] * nbars else: color = list(mcolors.colorConverter.to_rgba_array(color)) if len(color) < nbars: color *= nbars if edgecolor is None: edgecolor = [None] * nbars else: edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor)) if len(edgecolor) < nbars: edgecolor *= nbars if yerr is not None: if not iterable(yerr): yerr = [yerr]*nbars if xerr is not None: if not iterable(xerr): xerr = [xerr]*nbars # FIXME: convert the following to proper input validation # raising ValueError; don't use assert for this. assert len(left)==nbars, "argument 'left' must be %d or scalar" % nbars assert len(height)==nbars, ("argument 'height' must be %d or scalar" % nbars) assert len(width)==nbars, ("argument 'width' must be %d or scalar" % nbars) assert len(bottom)==nbars, ("argument 'bottom' must be %d or scalar" % nbars) if yerr is not None and len(yerr)!=nbars: raise ValueError( "bar() argument 'yerr' must be len(%s) or scalar" % nbars) if xerr is not None and len(xerr)!=nbars: raise ValueError( "bar() argument 'xerr' must be len(%s) or scalar" % nbars) patches = [] # lets do some conversions now since some types cannot be # subtracted uniformly if self.xaxis is not None: xconv = self.xaxis.converter if xconv is not None: units = self.xaxis.get_units() left = xconv.convert( left, units ) width = xconv.convert( width, units ) if self.yaxis is not None: yconv = self.yaxis.converter if yconv is not None : units = self.yaxis.get_units() bottom = yconv.convert( bottom, units ) height = yconv.convert( height, units ) if align == 'edge': pass elif align == 'center': if orientation == 'vertical': left = [left[i] - width[i]/2. for i in xrange(len(left))] elif orientation == 'horizontal': bottom = [bottom[i] - height[i]/2. for i in xrange(len(bottom))] else: raise ValueError, 'invalid alignment: %s' % align args = zip(left, bottom, width, height, color, edgecolor, linewidth) for l, b, w, h, c, e, lw in args: if h<0: b += h h = abs(h) if w<0: l += w w = abs(w) r = mpatches.Rectangle( xy=(l, b), width=w, height=h, facecolor=c, edgecolor=e, linewidth=lw, label=label ) label = '_nolegend_' r.update(kwargs) #print r.get_label(), label, 'label' in kwargs self.add_patch(r) patches.append(r) holdstate = self._hold self.hold(True) # ensure hold is on before plotting errorbars if xerr is not None or yerr is not None: if orientation == 'vertical': # using list comps rather than arrays to preserve unit info x = [l+0.5*w for l, w in zip(left, width)] y = [b+h for b,h in zip(bottom, height)] elif orientation == 'horizontal': # using list comps rather than arrays to preserve unit info x = [l+w for l,w in zip(left, width)] y = [b+0.5*h for b,h in zip(bottom, height)] self.errorbar( x, y, yerr=yerr, xerr=xerr, fmt=None, ecolor=ecolor, capsize=capsize) self.hold(holdstate) # restore previous hold state if adjust_xlim: xmin, xmax = self.dataLim.intervalx xmin = np.amin(width[width!=0]) # filter out the 0 width rects if xerr is not None: xmin = xmin - np.amax(xerr) xmin = max(xmin*0.9, 1e-100) self.dataLim.intervalx = (xmin, xmax) if adjust_ylim: ymin, ymax = self.dataLim.intervaly ymin = np.amin(height[height!=0]) # filter out the 0 height rects if yerr is not None: ymin = ymin - np.amax(yerr) ymin = max(ymin*0.9, 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() return patches bar.__doc__ = cbook.dedent(bar.__doc__) % martist.kwdocd def barh(self, bottom, width, height=0.8, left=None, **kwargs): """ call signature:: barh(bottom, width, height=0.8, left=0, **kwargs) Make a horizontal bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *bottom*, *width*, *height*, and *left* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== ====================================================== Argument Description ======== ====================================================== *bottom* the vertical positions of the bottom edges of the bars *width* the lengths of the bars ======== ====================================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *height* the heights (thicknesses) of the bars *left* the x coordinates of the left edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* 'edge' (default) | 'center' *log* [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale =============== ========================================== Setting *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts, or candlestick plots. other optional kwargs: %(Rectangle)s """ patches = self.bar(left=left, height=height, width=width, bottom=bottom, orientation='horizontal', **kwargs) return patches barh.__doc__ = cbook.dedent(barh.__doc__) % martist.kwdocd def broken_barh(self, xranges, yrange, **kwargs): """ call signature:: broken_barh(self, xranges, yrange, **kwargs) A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. Required arguments: ========= ============================== Argument Description ========= ============================== *xranges* sequence of (*xmin*, *xwidth*) *yrange* sequence of (*ymin*, *ywidth*) ========= ============================== kwargs are :class:`matplotlib.collections.BrokenBarHCollection` properties: %(BrokenBarHCollection)s these can either be a single argument, ie:: facecolors = 'black' or a sequence of arguments for the various bars, ie:: facecolors = ('black', 'red', 'green') **Example:** .. plot:: mpl_examples/pylab_examples/broken_barh.py """ col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs) self.add_collection(col, autolim=True) self.autoscale_view() return col broken_barh.__doc__ = cbook.dedent(broken_barh.__doc__) % martist.kwdocd def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-'): """ call signature:: stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-') A stem plot plots vertical lines (using *linefmt*) at each *x* location from the baseline to *y*, and places a marker there using *markerfmt*. A horizontal line at 0 is is plotted using *basefmt*. Return value is a tuple (*markerline*, *stemlines*, *baseline*). .. seealso:: `this document`__ for details :file:`examples/pylab_examples/stem_plot.py`: for a demo __ http://www.mathworks.com/access/helpdesk/help/techdoc/ref/stem.html """ remember_hold=self._hold if not self._hold: self.cla() self.hold(True) markerline, = self.plot(x, y, markerfmt) stemlines = [] for thisx, thisy in zip(x, y): l, = self.plot([thisx,thisx], [0, thisy], linefmt) stemlines.append(l) baseline, = self.plot([np.amin(x), np.amax(x)], [0,0], basefmt) self.hold(remember_hold) return markerline, stemlines, baseline def pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1): r""" call signature:: pie(x, explode=None, labels=None, colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'), autopct=None, pctdistance=0.6, labeldistance=1.1, shadow=False) Make a pie chart of array *x*. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give the fractional area directly and the array will not be normalized. Keyword arguments: *explode*: [ None | len(x) sequence ] If not *None*, is a len(*x*) array which specifies the fraction of the radius with which to offset each wedge. *colors*: [ None | color sequence ] A sequence of matplotlib color args through which the pie chart will cycle. *labels*: [ None | len(x) sequence of strings ] A sequence of strings providing the labels for each wedge *autopct*: [ None | format string | format function ] If not *None*, is a string or function used to label the wedges with their numeric value. The label will be placed inside the wedge. If it is a format string, the label will be ``fmt%pct``. If it is a function, it will be called. *pctdistance*: scalar The ratio between the center of each pie slice and the start of the text generated by *autopct*. Ignored if *autopct* is *None*; default is 0.6. *labeldistance*: scalar The radial distance at which the pie labels are drawn *shadow*: [ False | True ] Draw a shadow beneath the pie. The pie chart will probably look best if the figure and axes are square. Eg.:: figure(figsize=(8,8)) ax = axes([0.1, 0.1, 0.8, 0.8]) Return value: If *autopct* is None, return the tuple (*patches*, *texts*): - *patches* is a sequence of :class:`matplotlib.patches.Wedge` instances - *texts* is a list of the label :class:`matplotlib.text.Text` instances. If *autopct* is not *None*, return the tuple (*patches*, *texts*, *autotexts*), where *patches* and *texts* are as above, and *autotexts* is a list of :class:`~matplotlib.text.Text` instances for the numeric labels. """ self.set_frame_on(False) x = np.asarray(x).astype(np.float32) sx = float(x.sum()) if sx>1: x = np.divide(x,sx) if labels is None: labels = ['']*len(x) if explode is None: explode = [0]*len(x) assert(len(x)==len(labels)) assert(len(x)==len(explode)) if colors is None: colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w') center = 0,0 radius = 1 theta1 = 0 i = 0 texts = [] slices = [] autotexts = [] for frac, label, expl in cbook.safezip(x,labels, explode): x, y = center theta2 = theta1 + frac thetam = 2*math.pi*0.5*(theta1+theta2) x += expl*math.cos(thetam) y += expl*math.sin(thetam) w = mpatches.Wedge((x,y), radius, 360.*theta1, 360.*theta2, facecolor=colors[i%len(colors)]) slices.append(w) self.add_patch(w) w.set_label(label) if shadow: # make sure to add a shadow after the call to # add_patch so the figure and transform props will be # set shad = mpatches.Shadow(w, -0.02, -0.02, #props={'facecolor':w.get_facecolor()} ) shad.set_zorder(0.9*w.get_zorder()) self.add_patch(shad) xt = x + labeldistance*radius*math.cos(thetam) yt = y + labeldistance*radius*math.sin(thetam) label_alignment = xt > 0 and 'left' or 'right' t = self.text(xt, yt, label, size=rcParams['xtick.labelsize'], horizontalalignment=label_alignment, verticalalignment='center') texts.append(t) if autopct is not None: xt = x + pctdistance*radius*math.cos(thetam) yt = y + pctdistance*radius*math.sin(thetam) if is_string_like(autopct): s = autopct%(100.*frac) elif callable(autopct): s = autopct(100.*frac) else: raise TypeError( 'autopct must be callable or a format string') t = self.text(xt, yt, s, horizontalalignment='center', verticalalignment='center') autotexts.append(t) theta1 = theta2 i += 1 self.set_xlim((-1.25, 1.25)) self.set_ylim((-1.25, 1.25)) self.set_xticks([]) self.set_yticks([]) if autopct is None: return slices, texts else: return slices, texts, autotexts def errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, **kwargs): """ call signature:: errorbar(x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False) Plot *x* versus *y* with error deltas in *yerr* and *xerr*. Vertical errorbars are plotted if *yerr* is not *None*. Horizontal errorbars are plotted if *xerr* is not *None*. *x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a single error bar at *x*, *y*. Optional keyword arguments: *xerr*/*yerr*: [ scalar | N, Nx1, Nx2 array-like ] If a scalar number, len(N) array-like object, or an Nx1 array-like object, errorbars are drawn +/- value. If a rank-1, Nx2 Numpy array, errorbars are drawn at -column1 and +column2 *fmt*: '-' The plot format symbol for *y*. If *fmt* is *None*, just plot the errorbars with no line symbols. This can be useful for creating a bar plot with errorbars. *ecolor*: [ None | mpl color ] a matplotlib color arg which gives the color the errorbar lines; if *None*, use the marker color. *elinewidth*: scalar the linewidth of the errorbar lines. If *None*, use the linewidth. *capsize*: scalar the size of the error bar caps in points *barsabove*: [ True | False ] if *True*, will plot the errorbars above the plot symbols. Default is below. *lolims*/*uplims*/*xlolims*/*xuplims*: [ False | True ] These arguments can be used to indicate that a value gives only upper/lower limits. In that case a caret symbol is used to indicate this. lims-arguments may be of the same type as *xerr* and *yerr*. All other keyword arguments are passed on to the plot command for the markers, so you can add additional key=value pairs to control the errorbar markers. For example, this code makes big red squares with thick green edges:: x,y,yerr = rand(3,10) errorbar(x, y, yerr, marker='s', mfc='red', mec='green', ms=20, mew=4) where *mfc*, *mec*, *ms* and *mew* are aliases for the longer property names, *markerfacecolor*, *markeredgecolor*, *markersize* and *markeredgewith*. valid kwargs for the marker properties are %(Line2D)s Return value is a length 3 tuple. The first element is the :class:`~matplotlib.lines.Line2D` instance for the *y* symbol lines. The second element is a list of error bar cap lines, the third element is a list of :class:`~matplotlib.collections.LineCollection` instances for the horizontal and vertical error ranges. **Example:** .. plot:: mpl_examples/pylab_examples/errorbar_demo.py """ self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) if not self._hold: self.cla() # make sure all the args are iterable; use lists not arrays to # preserve units if not iterable(x): x = [x] if not iterable(y): y = [y] if xerr is not None: if not iterable(xerr): xerr = [xerr]*len(x) if yerr is not None: if not iterable(yerr): yerr = [yerr]*len(y) l0 = None if barsabove and fmt is not None: l0, = self.plot(x,y,fmt,**kwargs) barcols = [] caplines = [] lines_kw = {'label':'_nolegend_'} if elinewidth: lines_kw['linewidth'] = elinewidth else: if 'linewidth' in kwargs: lines_kw['linewidth']=kwargs['linewidth'] if 'lw' in kwargs: lines_kw['lw']=kwargs['lw'] if 'transform' in kwargs: lines_kw['transform'] = kwargs['transform'] # arrays fine here, they are booleans and hence not units if not iterable(lolims): lolims = np.asarray([lolims]*len(x), bool) else: lolims = np.asarray(lolims, bool) if not iterable(uplims): uplims = np.array([uplims]*len(x), bool) else: uplims = np.asarray(uplims, bool) if not iterable(xlolims): xlolims = np.array([xlolims]*len(x), bool) else: xlolims = np.asarray(xlolims, bool) if not iterable(xuplims): xuplims = np.array([xuplims]*len(x), bool) else: xuplims = np.asarray(xuplims, bool) def xywhere(xs, ys, mask): """ return xs[mask], ys[mask] where mask is True but xs and ys are not arrays """ assert len(xs)==len(ys) assert len(xs)==len(mask) xs = [thisx for thisx, b in zip(xs, mask) if b] ys = [thisy for thisy, b in zip(ys, mask) if b] return xs, ys if capsize > 0: plot_kw = { 'ms':2*capsize, 'label':'_nolegend_'} if 'markeredgewidth' in kwargs: plot_kw['markeredgewidth']=kwargs['markeredgewidth'] if 'mew' in kwargs: plot_kw['mew']=kwargs['mew'] if 'transform' in kwargs: plot_kw['transform'] = kwargs['transform'] if xerr is not None: if (iterable(xerr) and len(xerr)==2 and iterable(xerr[0]) and iterable(xerr[1])): # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[0])] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[1])] else: # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] barcols.append( self.hlines(y, left, right, **lines_kw ) ) if capsize > 0: if xlolims.any(): # can't use numpy logical indexing since left and # y are lists leftlo, ylo = xywhere(left, y, xlolims) caplines.extend( self.plot(leftlo, ylo, ls='None', marker=mlines.CARETLEFT, **plot_kw) ) xlolims = ~xlolims leftlo, ylo = xywhere(left, y, xlolims) caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) ) else: caplines.extend( self.plot(left, y, 'k|', **plot_kw) ) if xuplims.any(): rightup, yup = xywhere(right, y, xuplims) caplines.extend( self.plot(rightup, yup, ls='None', marker=mlines.CARETRIGHT, **plot_kw) ) xuplims = ~xuplims rightup, yup = xywhere(right, y, xuplims) caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) ) else: caplines.extend( self.plot(right, y, 'k|', **plot_kw) ) if yerr is not None: if (iterable(yerr) and len(yerr)==2 and iterable(yerr[0]) and iterable(yerr[1])): # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[0])] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[1])] else: # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] barcols.append( self.vlines(x, lower, upper, **lines_kw) ) if capsize > 0: if lolims.any(): xlo, lowerlo = xywhere(x, lower, lolims) caplines.extend( self.plot(xlo, lowerlo, ls='None', marker=mlines.CARETDOWN, **plot_kw) ) lolims = ~lolims xlo, lowerlo = xywhere(x, lower, lolims) caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) ) else: caplines.extend( self.plot(x, lower, 'k_', **plot_kw) ) if uplims.any(): xup, upperup = xywhere(x, upper, uplims) caplines.extend( self.plot(xup, upperup, ls='None', marker=mlines.CARETUP, **plot_kw) ) uplims = ~uplims xup, upperup = xywhere(x, upper, uplims) caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) ) else: caplines.extend( self.plot(x, upper, 'k_', **plot_kw) ) if not barsabove and fmt is not None: l0, = self.plot(x,y,fmt,**kwargs) if ecolor is None: if l0 is None: ecolor = self._get_lines._get_next_cycle_color() else: ecolor = l0.get_color() for l in barcols: l.set_color(ecolor) for l in caplines: l.set_color(ecolor) self.autoscale_view() return (l0, caplines, barcols) errorbar.__doc__ = cbook.dedent(errorbar.__doc__) % martist.kwdocd def boxplot(self, x, notch=0, sym='b+', vert=1, whis=1.5, positions=None, widths=None): """ call signature:: boxplot(x, notch=0, sym='+', vert=1, whis=1.5, positions=None, widths=None) Make a box and whisker plot for each column of *x* or each vector in sequence *x*. The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers. - *notch* = 0 (default) produces a rectangular box plot. - *notch* = 1 will produce a notched box plot *sym* (default 'b+') is the default symbol for flier points. Enter an empty string ('') if you don't want to show fliers. - *vert* = 1 (default) makes the boxes vertical. - *vert* = 0 makes horizontal boxes. This seems goofy, but that's how Matlab did it. *whis* (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They extend to the most extreme data point within ( ``whis*(75%-25%)`` ) data range. *positions* (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are automatically set to match the positions. *widths* is either a scalar or a vector and sets the width of each box. The default is 0.5, or ``0.15*(distance between extreme positions)`` if that is smaller. *x* is an array or a sequence of vectors. Returns a dictionary mapping each component of the boxplot to a list of the :class:`matplotlib.lines.Line2D` instances created. **Example:** .. plot:: pyplots/boxplot_demo.py """ if not self._hold: self.cla() holdStatus = self._hold whiskers, caps, boxes, medians, fliers = [], [], [], [], [] # convert x to a list of vectors if hasattr(x, 'shape'): if len(x.shape) == 1: if hasattr(x[0], 'shape'): x = list(x) else: x = [x,] elif len(x.shape) == 2: nr, nc = x.shape if nr == 1: x = [x] elif nc == 1: x = [x.ravel()] else: x = [x[:,i] for i in xrange(nc)] else: raise ValueError, "input x can have no more than 2 dimensions" if not hasattr(x[0], '__len__'): x = [x] col = len(x) # get some plot info if positions is None: positions = range(1, col + 1) if widths is None: distance = max(positions) - min(positions) widths = min(0.15*max(distance,1.0), 0.5) if isinstance(widths, float) or isinstance(widths, int): widths = np.ones((col,), float) * widths # loop through columns, adding each to plot self.hold(True) for i,pos in enumerate(positions): d = np.ravel(x[i]) row = len(d) # get median and quartiles q1, med, q3 = mlab.prctile(d,[25,50,75]) # get high extreme iq = q3 - q1 hi_val = q3 + whis*iq wisk_hi = np.compress( d <= hi_val , d ) if len(wisk_hi) == 0: wisk_hi = q3 else: wisk_hi = max(wisk_hi) # get low extreme lo_val = q1 - whis*iq wisk_lo = np.compress( d >= lo_val, d ) if len(wisk_lo) == 0: wisk_lo = q1 else: wisk_lo = min(wisk_lo) # get fliers - if we are showing them flier_hi = [] flier_lo = [] flier_hi_x = [] flier_lo_x = [] if len(sym) != 0: flier_hi = np.compress( d > wisk_hi, d ) flier_lo = np.compress( d < wisk_lo, d ) flier_hi_x = np.ones(flier_hi.shape[0]) * pos flier_lo_x = np.ones(flier_lo.shape[0]) * pos # get x locations for fliers, whisker, whisker cap and box sides box_x_min = pos - widths[i] * 0.5 box_x_max = pos + widths[i] * 0.5 wisk_x = np.ones(2) * pos cap_x_min = pos - widths[i] * 0.25 cap_x_max = pos + widths[i] * 0.25 cap_x = [cap_x_min, cap_x_max] # get y location for median med_y = [med, med] # calculate 'regular' plot if notch == 0: # make our box vectors box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min ] box_y = [q1, q1, q3, q3, q1 ] # make our median line vectors med_x = [box_x_min, box_x_max] # calculate 'notch' plot else: notch_max = med + 1.57*iq/np.sqrt(row) notch_min = med - 1.57*iq/np.sqrt(row) if notch_max > q3: notch_max = q3 if notch_min < q1: notch_min = q1 # make our notched box vectors box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max, box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min, box_x_min ] box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max, med, notch_min, q1] # make our median line vectors med_x = [cap_x_min, cap_x_max] med_y = [med, med] # vertical or horizontal plot? if vert: def doplot(*args): return self.plot(*args) else: def doplot(*args): shuffled = [] for i in xrange(0, len(args), 3): shuffled.extend([args[i+1], args[i], args[i+2]]) return self.plot(*shuffled) whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--', wisk_x, [q3, wisk_hi], 'b--')) caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-', cap_x, [wisk_lo, wisk_lo], 'k-')) boxes.extend(doplot(box_x, box_y, 'b-')) medians.extend(doplot(med_x, med_y, 'r-')) fliers.extend(doplot(flier_hi_x, flier_hi, sym, flier_lo_x, flier_lo, sym)) # fix our axes/ticks up a little if 1 == vert: setticks, setlim = self.set_xticks, self.set_xlim else: setticks, setlim = self.set_yticks, self.set_ylim newlimits = min(positions)-0.5, max(positions)+0.5 setlim(newlimits) setticks(positions) # reset hold status self.hold(holdStatus) return dict(whiskers=whiskers, caps=caps, boxes=boxes, medians=medians, fliers=fliers) def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, faceted=True, verts=None, **kwargs): """ call signatures:: scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, verts=None, **kwargs) Make a scatter plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. Keyword arguments: *s*: size in points^2. It is a scalar or an array of the same length as *x* and *y*. *c*: a color. *c* can be a single color format string, or a sequence of color specifications of length *N*, or a sequence of *N* numbers to be mapped to colors using the *cmap* and *norm* specified via kwargs (see below). Note that *c* should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. *c* can be a 2-D array in which the rows are RGB or RGBA, however. *marker*: can be one of: ===== ============== Value Description ===== ============== 's' square 'o' circle '^' triangle up '>' triangle right 'v' triangle down '<' triangle left 'd' diamond 'p' pentagram 'h' hexagon '8' octagon '+' plus 'x' cross ===== ============== The marker can also be a tuple (*numsides*, *style*, *angle*), which will create a custom, regular symbol. *numsides*: the number of sides *style*: the style of the regular symbol: ===== ============================================= Value Description ===== ============================================= 0 a regular polygon 1 a star-like symbol 2 an asterisk 3 a circle (*numsides* and *angle* is ignored) ===== ============================================= *angle*: the angle of rotation of the symbol Finally, *marker* can be (*verts*, 0): *verts* is a sequence of (*x*, *y*) vertices for a custom scatter symbol. Alternatively, use the kwarg combination *marker* = *None*, *verts* = *verts*. Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted. Other keyword arguments: the color mapping and normalization arguments will be used only if *c* is an array of floats. *cmap*: [ None | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *cmap* is only used if *c* is an array of floats. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0, 1. If *None*, use the default :func:`normalize`. *norm* is only used if *c* is an array of floats. *vmin*/*vmax*: *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are None, the min and max of the color array *C* is used. Note if you pass a *norm* instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: 0 <= scalar <= 1 The alpha value for the patches *linewidths*: [ None | scalar | sequence ] If *None*, defaults to (lines.linewidth,). Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Optional kwargs control the :class:`~matplotlib.collections.Collection` properties; in particular: *edgecolors*: 'none' to plot faces with no outlines *facecolors*: 'none' to plot unfilled outlines Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s A :class:`~matplotlib.collections.Collection` instance is returned. """ if not self._hold: self.cla() syms = { # a dict from symbol to (numsides, angle) 's' : (4,math.pi/4.0,0), # square 'o' : (20,3,0), # circle '^' : (3,0,0), # triangle up '>' : (3,math.pi/2.0,0), # triangle right 'v' : (3,math.pi,0), # triangle down '<' : (3,3*math.pi/2.0,0), # triangle left 'd' : (4,0,0), # diamond 'p' : (5,0,0), # pentagram 'h' : (6,0,0), # hexagon '8' : (8,0,0), # octagon '+' : (4,0,2), # plus 'x' : (4,math.pi/4.0,2) # cross } self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x, y, s, c = cbook.delete_masked_points(x, y, s, c) if is_string_like(c) or cbook.is_sequence_of_strings(c): colors = mcolors.colorConverter.to_rgba_array(c, alpha) else: sh = np.shape(c) # The inherent ambiguity is resolved in favor of color # mapping, not interpretation as rgb or rgba: if len(sh) == 1 and sh[0] == len(x): colors = None # use cmap, norm after collection is created else: colors = mcolors.colorConverter.to_rgba_array(c, alpha) if not iterable(s): scales = (s,) else: scales = s if faceted: edgecolors = None else: edgecolors = 'none' warnings.warn( '''replace "faceted=False" with "edgecolors='none'"''', DeprecationWarning) #2008/04/18 sym = None symstyle = 0 # to be API compatible if marker is None and not (verts is None): marker = (verts, 0) verts = None if is_string_like(marker): # the standard way to define symbols using a string character sym = syms.get(marker) if sym is None and verts is None: raise ValueError('Unknown marker symbol to scatter') numsides, rotation, symstyle = syms[marker] elif iterable(marker): # accept marker to be: # (numsides, style, [angle]) # or # (verts[], style, [angle]) if len(marker)<2 or len(marker)>3: raise ValueError('Cannot create markersymbol from marker') if cbook.is_numlike(marker[0]): # (numsides, style, [angle]) if len(marker)==2: numsides, rotation = marker[0], 0. elif len(marker)==3: numsides, rotation = marker[0], marker[2] sym = True if marker[1] in (1,2): symstyle = marker[1] else: verts = np.asarray(marker[0]) if sym is not None: if symstyle==0: collection = mcoll.RegularPolyCollection( numsides, rotation, scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) elif symstyle==1: collection = mcoll.StarPolygonCollection( numsides, rotation, scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) elif symstyle==2: collection = mcoll.AsteriskPolygonCollection( numsides, rotation, scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) elif symstyle==3: collection = mcoll.CircleCollection( scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) else: rescale = np.sqrt(max(verts[:,0]**2+verts[:,1]**2)) verts /= rescale collection = mcoll.PolyCollection( (verts,), scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = self.transData, ) collection.set_transform(mtransforms.IdentityTransform()) collection.set_alpha(alpha) collection.update(kwargs) if colors is None: if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_array(np.asarray(c)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() temp_x = x temp_y = y minx = np.amin(temp_x) maxx = np.amax(temp_x) miny = np.amin(temp_y) maxy = np.amax(temp_y) w = maxx-minx h = maxy-miny # the pad is a little hack to deal with the fact that we don't # want to transform all the symbols whose scales are in points # to data coords to get the exact bounding box for efficiency # reasons. It can be done right if this is deemed important padx, pady = 0.05*w, 0.05*h corners = (minx-padx, miny-pady), (maxx+padx, maxy+pady) self.update_datalim( corners) self.autoscale_view() # add the collection last self.add_collection(collection) return collection scatter.__doc__ = cbook.dedent(scatter.__doc__) % martist.kwdocd def hexbin(self, x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none', reduce_C_function = np.mean, **kwargs): """ call signature:: hexbin(x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=1.0, linewidths=None, edgecolors='none' reduce_C_function = np.mean, **kwargs) Make a hexagonal binning plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. If *C* is None (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]). If *C* is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each hexagonal bin and then reduced according to *reduce_C_function*, which defaults to numpy's mean function (np.mean). (If *C* is specified, it must also be a 1-D sequence of the same length as *x* and *y*.) *x*, *y* and/or *C* may be masked arrays, in which case only unmasked points will be plotted. Optional keyword arguments: *gridsize*: [ 100 | integer ] The number of hexagons in the *x*-direction, default is 100. The corresponding number of hexagons in the *y*-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the *x*-direction and the *y*-direction. *bins*: [ None | 'log' | integer | sequence ] If *None*, no binning is applied; the color of each hexagon directly corresponds to its count value. If 'log', use a logarithmic scale for the color map. Internally, :math:`log_{10}(i+1)` is used to determine the hexagon color. If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly. If a sequence of values, the values of the lower bound of the bins to be used. *xscale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the horizontal axis. *scale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the vertical axis. Other keyword arguments controlling color mapping and normalization arguments: *cmap*: [ None | Colormap ] a :class:`matplotlib.cm.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *norm*: [ None | Normalize ] :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. *vmin*/*vmax*: scalar *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a norm instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: scalar the alpha value for the patches *linewidths*: [ None | scalar ] If *None*, defaults to rc lines.linewidth. Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Other keyword arguments controlling the Collection properties: *edgecolors*: [ None | mpl color | color sequence ] If 'none', draws the edges in the same color as the fill color. This is the default, as it avoids unsightly unpainted pixels between the hexagons. If *None*, draws the outlines in the default color. If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color. Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s The return value is a :class:`~matplotlib.collections.PolyCollection` instance; use :meth:`~matplotlib.collection.PolyCollection.get_array` on this :class:`~matplotlib.collections.PolyCollection` to get the counts in each hexagon. **Example:** .. plot:: mpl_examples/pylab_examples/hexbin_demo.py """ if not self._hold: self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x, y, C = cbook.delete_masked_points(x, y, C) # Set the size of the hexagon grid if iterable(gridsize): nx, ny = gridsize else: nx = gridsize ny = int(nx/math.sqrt(3)) # Count the number of data in each hexagon x = np.array(x, float) y = np.array(y, float) if xscale=='log': x = np.log10(x) if yscale=='log': y = np.log10(y) xmin = np.amin(x) xmax = np.amax(x) ymin = np.amin(y) ymax = np.amax(y) # In the x-direction, the hexagons exactly cover the region from # xmin to xmax. Need some padding to avoid roundoff errors. padding = 1.e-9 * (xmax - xmin) xmin -= padding xmax += padding sx = (xmax-xmin) / nx sy = (ymax-ymin) / ny x = (x-xmin)/sx y = (y-ymin)/sy ix1 = np.round(x).astype(int) iy1 = np.round(y).astype(int) ix2 = np.floor(x).astype(int) iy2 = np.floor(y).astype(int) nx1 = nx + 1 ny1 = ny + 1 nx2 = nx ny2 = ny n = nx1*ny1+nx2*ny2 d1 = (x-ix1)**2 + 3.0 * (y-iy1)**2 d2 = (x-ix2-0.5)**2 + 3.0 * (y-iy2-0.5)**2 bdist = (d1<d2) if C is None: accum = np.zeros(n) # Create appropriate views into "accum" array. lattice1 = accum[:nx1*ny1] lattice2 = accum[nx1*ny1:] lattice1.shape = (nx1,ny1) lattice2.shape = (nx2,ny2) for i in xrange(len(x)): if bdist[i]: lattice1[ix1[i], iy1[i]]+=1 else: lattice2[ix2[i], iy2[i]]+=1 else: # create accumulation arrays lattice1 = np.empty((nx1,ny1),dtype=object) for i in xrange(nx1): for j in xrange(ny1): lattice1[i,j] = [] lattice2 = np.empty((nx2,ny2),dtype=object) for i in xrange(nx2): for j in xrange(ny2): lattice2[i,j] = [] for i in xrange(len(x)): if bdist[i]: lattice1[ix1[i], iy1[i]].append( C[i] ) else: lattice2[ix2[i], iy2[i]].append( C[i] ) for i in xrange(nx1): for j in xrange(ny1): vals = lattice1[i,j] if len(vals): lattice1[i,j] = reduce_C_function( vals ) else: lattice1[i,j] = np.nan for i in xrange(nx2): for j in xrange(ny2): vals = lattice2[i,j] if len(vals): lattice2[i,j] = reduce_C_function( vals ) else: lattice2[i,j] = np.nan accum = np.hstack(( lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = ~np.isnan(accum) px = xmin + sx * np.array([ 0.5, 0.5, 0.0, -0.5, -0.5, 0.0]) py = ymin + sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0 polygons = np.zeros((6, n, 2), float) polygons[:,:nx1*ny1,0] = np.repeat(np.arange(nx1), ny1) polygons[:,:nx1*ny1,1] = np.tile(np.arange(ny1), nx1) polygons[:,nx1*ny1:,0] = np.repeat(np.arange(nx2) + 0.5, ny2) polygons[:,nx1*ny1:,1] = np.tile(np.arange(ny2), nx2) + 0.5 if C is not None: # remove accumulation bins with no data polygons = polygons[:,good_idxs,:] accum = accum[good_idxs] polygons = np.transpose(polygons, axes=[1,0,2]) polygons[:,:,0] *= sx polygons[:,:,1] *= sy polygons[:,:,0] += px polygons[:,:,1] += py if xscale=='log': polygons[:,:,0] = 10**(polygons[:,:,0]) xmin = 10**xmin xmax = 10**xmax self.set_xscale('log') if yscale=='log': polygons[:,:,1] = 10**(polygons[:,:,1]) ymin = 10**ymin ymax = 10**ymax self.set_yscale('log') if edgecolors=='none': edgecolors = 'face' collection = mcoll.PolyCollection( polygons, edgecolors = edgecolors, linewidths = linewidths, transOffset = self.transData, ) # Transform accum if needed if bins=='log': accum = np.log10(accum+1) elif bins!=None: if not iterable(bins): minimum, maximum = min(accum), max(accum) bins-=1 # one less edge than bins bins = minimum + (maximum-minimum)*np.arange(bins)/bins bins = np.sort(bins) accum = bins.searchsorted(accum) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_array(accum) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_alpha(alpha) collection.update(kwargs) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() corners = ((xmin, ymin), (xmax, ymax)) self.update_datalim( corners) self.autoscale_view() # add the collection last self.add_collection(collection) return collection hexbin.__doc__ = cbook.dedent(hexbin.__doc__) % martist.kwdocd def arrow(self, x, y, dx, dy, **kwargs): """ call signature:: arrow(x, y, dx, dy, **kwargs) Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*, *y* + *dy*). Optional kwargs control the arrow properties: %(FancyArrow)s **Example:** .. plot:: mpl_examples/pylab_examples/arrow_demo.py """ a = mpatches.FancyArrow(x, y, dx, dy, **kwargs) self.add_artist(a) return a arrow.__doc__ = cbook.dedent(arrow.__doc__) % martist.kwdocd def quiverkey(self, *args, **kw): qk = mquiver.QuiverKey(*args, **kw) self.add_artist(qk) return qk quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc def quiver(self, *args, **kw): if not self._hold: self.cla() q = mquiver.Quiver(self, *args, **kw) self.add_collection(q, False) self.update_datalim(q.XY) self.autoscale_view() return q quiver.__doc__ = mquiver.Quiver.quiver_doc def barbs(self, *args, **kw): """ %(barbs_doc)s **Example:** .. plot:: mpl_examples/pylab_examples/barb_demo.py """ if not self._hold: self.cla() b = mquiver.Barbs(self, *args, **kw) self.add_collection(b) self.update_datalim(b.get_offsets()) self.autoscale_view() return b barbs.__doc__ = cbook.dedent(barbs.__doc__) % { 'barbs_doc': mquiver.Barbs.barbs_doc} def fill(self, *args, **kwargs): """ call signature:: fill(*args, **kwargs) Plot filled polygons. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional color format string; see :func:`~matplotlib.pyplot.plot` for details on the argument parsing. For example, to plot a polygon with vertices at *x*, *y* in blue.:: ax.fill(x,y, 'b' ) An arbitrary number of *x*, *y*, *color* groups can be specified:: ax.fill(x1, y1, 'g', x2, y2, 'r') Return value is a list of :class:`~matplotlib.patches.Patch` instances that were added. The same color strings that :func:`~matplotlib.pyplot.plot` supports are supported by the fill format string. If you would like to fill below a curve, eg. shade a region between 0 and *y* along *x*, use :meth:`fill_between` The *closed* kwarg will close the polygon when *True* (default). kwargs control the Polygon properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/fill_demo.py """ if not self._hold: self.cla() patches = [] for poly in self._get_patches_for_fill(*args, **kwargs): self.add_patch( poly ) patches.append( poly ) self.autoscale_view() return patches fill.__doc__ = cbook.dedent(fill.__doc__) % martist.kwdocd def fill_between(self, x, y1, y2=0, where=None, **kwargs): """ call signature:: fill_between(x, y1, y2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *y1* and *y2* where ``where==True`` *x* an N length np array of the x data *y1* an N length scalar or np array of the x data *y2* an N length scalar or np array of the x data *where* if None, default to fill between everywhere. If not None, it is a a N length numpy boolean array and the fill will only happen over the regions where ``where==True`` *kwargs* keyword args passed on to the :class:`PolyCollection` kwargs control the Polygon properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_between.py """ # Handle united data, such as dates self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs) self._process_unit_info(ydata=y2) # Convert the arrays so we can work with them x = np.asarray(self.convert_xunits(x)) y1 = np.asarray(self.convert_yunits(y1)) y2 = np.asarray(self.convert_yunits(y2)) if not cbook.iterable(y1): y1 = np.ones_like(x)*y1 if not cbook.iterable(y2): y2 = np.ones_like(x)*y2 if where is None: where = np.ones(len(x), np.bool) where = np.asarray(where) assert( (len(x)==len(y1)) and (len(x)==len(y2)) and len(x)==len(where)) polys = [] for ind0, ind1 in mlab.contiguous_regions(where): theseverts = [] xslice = x[ind0:ind1] y1slice = y1[ind0:ind1] y2slice = y2[ind0:ind1] if not len(xslice): continue N = len(xslice) X = np.zeros((2*N+2, 2), np.float) # the purpose of the next two lines is for when y2 is a # scalar like 0 and we want the fill to go all the way # down to 0 even if none of the y1 sample points do X[0] = xslice[0], y2slice[0] X[N+1] = xslice[-1], y2slice[-1] X[1:N+1,0] = xslice X[1:N+1,1] = y1slice X[N+2:,0] = xslice[::-1] X[N+2:,1] = y2slice[::-1] polys.append(X) collection = mcoll.PolyCollection(polys, **kwargs) # now update the datalim and autoscale XY1 = np.array([x[where], y1[where]]).T XY2 = np.array([x[where], y2[where]]).T self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection fill_between.__doc__ = cbook.dedent(fill_between.__doc__) % martist.kwdocd #### plotting z(x,y): imshow, pcolor and relatives, contour def imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, **kwargs): """ call signature:: imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=1.0, vmin=None, vmax=None, origin=None, extent=None, **kwargs) Display the image in *X* to current axes. *X* may be a float array, a uint8 array or a PIL image. If *X* is an array, *X* can have the following shapes: * MxN -- luminance (grayscale, float array only) * MxNx3 -- RGB (float or uint8 array) * MxNx4 -- RGBA (float or uint8 array) The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0; MxN float arrays may be normalised. An :class:`matplotlib.image.AxesImage` instance is returned. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance, eg. cm.jet. If *None*, default to rc ``image.cmap`` value. *cmap* is ignored when *X* has RGB(A) information *aspect*: [ None | 'auto' | 'equal' | scalar ] If 'auto', changes the image aspect ratio to match that of the axes If 'equal', and *extent* is *None*, changes the axes aspect ratio to match that of the image. If *extent* is not *None*, the axes aspect ratio is changed to match that of the extent. If *None*, default to rc ``image.aspect`` value. *interpolation*: Acceptable values are *None*, 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos', If *interpolation* is *None*, default to rc ``image.interpolation``. See also the *filternorm* and *filterrad* parameters *norm*: [ None | Normalize ] An :class:`matplotlib.colors.Normalize` instance; if *None*, default is ``normalization()``. This scales luminance -> 0-1 *norm* is only used for an MxN float array. *vmin*/*vmax*: [ None | scalar ] Used to scale a luminance image to 0-1. If either is *None*, the min and max of the luminance values will be used. Note if *norm* is not *None*, the settings for *vmin* and *vmax* will be ignored. *alpha*: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) *origin*: [ None | 'upper' | 'lower' ] Place the [0,0] index of the array in the upper left or lower left corner of the axes. If *None*, default to rc ``image.origin``. *extent*: [ None | scalars (left, right, bottom, top) ] Eata values of the axes. The default assigns zero-based row, column indices to the *x*, *y* centers of the pixels. *shape*: [ None | scalars (columns, rows) ] For raw buffer images *filternorm*: A parameter for the antigrain image resize filter. From the antigrain documentation, if *filternorm* = 1, the filter normalizes integer values and corrects the rounding errors. It doesn't do anything with the source floating point values, it corrects only integers according to the rule of 1.0 which means that any sum of pixel weights must be equal to 1.0. So, the filter function must produce a graph of the proper shape. *filterrad*: The filter radius for filters that have a radius parameter, i.e. when interpolation is one of: 'sinc', 'lanczos' or 'blackman' Additional kwargs are :class:`~matplotlib.artist.Artist` properties: %(Artist)s **Example:** .. plot:: mpl_examples/pylab_examples/image_demo.py """ if not self._hold: self.cla() if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) if aspect is None: aspect = rcParams['image.aspect'] self.set_aspect(aspect) im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs) im.set_data(X) im.set_alpha(alpha) self._set_artist_props(im) im.set_clip_path(self.patch) #if norm is None and shape is None: # im.set_clim(vmin, vmax) if vmin is not None or vmax is not None: im.set_clim(vmin, vmax) else: im.autoscale_None() im.set_url(url) xmin, xmax, ymin, ymax = im.get_extent() corners = (xmin, ymin), (xmax, ymax) self.update_datalim(corners) if self._autoscaleon: self.set_xlim((xmin, xmax)) self.set_ylim((ymin, ymax)) self.images.append(im) return im imshow.__doc__ = cbook.dedent(imshow.__doc__) % martist.kwdocd def _pcolorargs(self, funcname, *args): if len(args)==1: C = args[0] numRows, numCols = C.shape X, Y = np.meshgrid(np.arange(numCols+1), np.arange(numRows+1) ) elif len(args)==3: X, Y, C = args else: raise TypeError( 'Illegal arguments to %s; see help(%s)' % (funcname, funcname)) Nx = X.shape[-1] Ny = Y.shape[0] if len(X.shape) <> 2 or X.shape[0] == 1: x = X.reshape(1,Nx) X = x.repeat(Ny, axis=0) if len(Y.shape) <> 2 or Y.shape[1] == 1: y = Y.reshape(Ny, 1) Y = y.repeat(Nx, axis=1) if X.shape != Y.shape: raise TypeError( 'Incompatible X, Y inputs to %s; see help(%s)' % ( funcname, funcname)) return X, Y, C def pcolor(self, *args, **kwargs): """ call signatures:: pcolor(C, **kwargs) pcolor(X, Y, C, **kwargs) Create a pseudocolor plot of a 2-D array. *C* is the array of color values. *X* and *Y*, if given, specify the (*x*, *y*) coordinates of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at:: (X[i, j], Y[i, j]), (X[i, j+1], Y[i, j+1]), (X[i+1, j], Y[i+1, j]), (X[i+1, j+1], Y[i+1, j+1]). Ideally the dimensions of *X* and *Y* should be one greater than those of *C*; if the dimensions are the same, then the last row and column of *C* will be ignored. Note that the the column index corresponds to the *x*-coordinate, and the row index corresponds to *y*; for details, see the :ref:`Grid Orientation <axes-pcolor-grid-orientation>` section below. If either or both of *X* and *Y* are 1-D arrays or column vectors, they will be expanded as needed into the appropriate 2-D arrays, making a rectangular grid. *X*, *Y* and *C* may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance. If *None*, use rc settings. norm: [ None | Normalize ] An :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a *norm* instance, *vmin* and *vmax* will be ignored. *shading*: [ 'flat' | 'faceted' ] If 'faceted', a black grid is drawn around each rectangle; if 'flat', edges are not drawn. Default is 'flat', contrary to Matlab(TM). This kwarg is deprecated; please use 'edgecolors' instead: * shading='flat' -- edgecolors='None' * shading='faceted -- edgecolors='k' *edgecolors*: [ None | 'None' | color | color sequence] If *None*, the rc setting is used by default. If 'None', edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is a :class:`matplotlib.collection.Collection` instance. .. _axes-pcolor-grid-orientation: The grid orientation follows the Matlab(TM) convention: an array *C* with shape (*nrows*, *ncolumns*) is plotted with the column number as *X* and the row number as *Y*, increasing up; hence it is plotted the way the array would be printed, except that the *Y* axis is reversed. That is, *C* is taken as *C*(*y*, *x*). Similarly for :func:`~matplotlib.pyplot.meshgrid`:: x = np.arange(5) y = np.arange(3) X, Y = meshgrid(x,y) is equivalent to: X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) so if you have:: C = rand( len(x), len(y)) then you need:: pcolor(X, Y, C.T) or:: pcolor(C.T) Matlab :func:`pcolor` always discards the last row and column of *C*, but matplotlib displays the last row and column if *X* and *Y* are not specified, or if *X* and *Y* have one more row and column than *C*. kwargs can be used to control the :class:`~matplotlib.collection.PolyCollection` properties: %(PolyCollection)s """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') X, Y, C = self._pcolorargs('pcolor', *args) Ny, Nx = X.shape # convert to MA, if necessary. C = ma.asarray(C) X = ma.asarray(X) Y = ma.asarray(Y) mask = ma.getmaskarray(X)+ma.getmaskarray(Y) xymask = mask[0:-1,0:-1]+mask[1:,1:]+mask[0:-1,1:]+mask[1:,0:-1] # don't plot if C or any of the surrounding vertices are masked. mask = ma.getmaskarray(C)[0:Ny-1,0:Nx-1]+xymask newaxis = np.newaxis compress = np.compress ravelmask = (mask==0).ravel() X1 = compress(ravelmask, ma.filled(X[0:-1,0:-1]).ravel()) Y1 = compress(ravelmask, ma.filled(Y[0:-1,0:-1]).ravel()) X2 = compress(ravelmask, ma.filled(X[1:,0:-1]).ravel()) Y2 = compress(ravelmask, ma.filled(Y[1:,0:-1]).ravel()) X3 = compress(ravelmask, ma.filled(X[1:,1:]).ravel()) Y3 = compress(ravelmask, ma.filled(Y[1:,1:]).ravel()) X4 = compress(ravelmask, ma.filled(X[0:-1,1:]).ravel()) Y4 = compress(ravelmask, ma.filled(Y[0:-1,1:]).ravel()) npoly = len(X1) xy = np.concatenate((X1[:,newaxis], Y1[:,newaxis], X2[:,newaxis], Y2[:,newaxis], X3[:,newaxis], Y3[:,newaxis], X4[:,newaxis], Y4[:,newaxis], X1[:,newaxis], Y1[:,newaxis]), axis=1) verts = xy.reshape((npoly, 5, 2)) #verts = zip(zip(X1,Y1),zip(X2,Y2),zip(X3,Y3),zip(X4,Y4)) C = compress(ravelmask, ma.filled(C[0:Ny-1,0:Nx-1]).ravel()) if shading == 'faceted': edgecolors = (0,0,0,1), linewidths = (0.25,) else: edgecolors = 'face' linewidths = (1.0,) kwargs.setdefault('edgecolors', edgecolors) kwargs.setdefault('antialiaseds', (0,)) kwargs.setdefault('linewidths', linewidths) collection = mcoll.PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() self.grid(False) x = X.compressed() y = Y.compressed() minx = np.amin(x) maxx = np.amax(x) miny = np.amin(y) maxy = np.amax(y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection pcolor.__doc__ = cbook.dedent(pcolor.__doc__) % martist.kwdocd def pcolormesh(self, *args, **kwargs): """ call signatures:: pcolormesh(C) pcolormesh(X, Y, C) pcolormesh(C, **kwargs) *C* may be a masked array, but *X* and *Y* may not. Masked array support is implemented via *cmap* and *norm*; in contrast, :func:`~matplotlib.pyplot.pcolor` simply does not draw quadrilaterals with masked colors or vertices. Keyword arguments: *cmap*: [ None | Colormap ] A :class:`matplotlib.cm.Colormap` instance. If None, use rc settings. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If None, defaults to :func:`normalize`. *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a *norm* instance, *vmin* and *vmax* will be ignored. *shading*: [ 'flat' | 'faceted' ] If 'faceted', a black grid is drawn around each rectangle; if 'flat', edges are not drawn. Default is 'flat', contrary to Matlab(TM). This kwarg is deprecated; please use 'edgecolors' instead: * shading='flat' -- edgecolors='None' * shading='faceted -- edgecolors='k' *edgecolors*: [ None | 'None' | color | color sequence] If None, the rc setting is used by default. If 'None', edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is a :class:`matplotlib.collection.QuadMesh` object. kwargs can be used to control the :class:`matplotlib.collections.QuadMesh` properties: %(QuadMesh)s .. seealso:: :func:`~matplotlib.pyplot.pcolor`: For an explanation of the grid orientation and the expansion of 1-D *X* and/or *Y* to 2-D arrays. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') edgecolors = kwargs.pop('edgecolors', 'None') antialiased = kwargs.pop('antialiased', False) X, Y, C = self._pcolorargs('pcolormesh', *args) Ny, Nx = X.shape # convert to one dimensional arrays C = ma.ravel(C[0:Ny-1, 0:Nx-1]) # data point in each cell is value at # lower left corner X = X.ravel() Y = Y.ravel() coords = np.zeros(((Nx * Ny), 2), dtype=float) coords[:, 0] = X coords[:, 1] = Y if shading == 'faceted' or edgecolors != 'None': showedges = 1 else: showedges = 0 collection = mcoll.QuadMesh( Nx - 1, Ny - 1, coords, showedges, antialiased=antialiased) # kwargs are not used collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() self.grid(False) minx = np.amin(X) maxx = np.amax(X) miny = np.amin(Y) maxy = np.amax(Y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection pcolormesh.__doc__ = cbook.dedent(pcolormesh.__doc__) % martist.kwdocd def pcolorfast(self, *args, **kwargs): """ pseudocolor plot of a 2-D array Experimental; this is a version of pcolor that does not draw lines, that provides the fastest possible rendering with the Agg backend, and that can handle any quadrilateral grid. Call signatures:: pcolor(C, **kwargs) pcolor(xr, yr, C, **kwargs) pcolor(x, y, C, **kwargs) pcolor(X, Y, C, **kwargs) C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape. C may be a masked array. ``pcolor(C, **kwargs)`` is equivalent to ``pcolor([0,nc], [0,nr], C, **kwargs)`` *xr*, *yr* specify the ranges of *x* and *y* corresponding to the rectangular region bounding *C*. If:: xr = [x0, x1] and:: yr = [y0,y1] then *x* goes from *x0* to *x1* as the second index of *C* goes from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of cell (0,0), and (*x1*, *y1*) is the outermost corner of cell (*nr*-1, *nc*-1). All cells are rectangles of the same size. This is the fastest version. *x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively, giving the x and y boundaries of the cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate. (The grid is checked, and if found to be uniform the fast version is used.) *X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify the (x,y) coordinates of the corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular. This is the most general, but the slowest to render. It may produce faster and more compact output using ps, pdf, and svg backends, however. Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y; for details, see the "Grid Orientation" section below. Optional keyword arguments: *cmap*: [ None | Colormap ] A cm Colormap instance from cm. If None, use rc settings. *norm*: [ None | Normalize ] An mcolors.Normalize instance is used to scale luminance data to 0,1. If None, defaults to normalize() *vmin*/*vmax*: [ None | scalar ] *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a norm instance, *vmin* and *vmax* will be *None*. *alpha*: 0 <= scalar <= 1 the alpha blending value Return value is an image if a regular or rectangular grid is specified, and a QuadMesh collection in the general quadrilateral case. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', 1.0) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if cmap is not None: assert(isinstance(cmap, mcolors.Colormap)) C = args[-1] nr, nc = C.shape if len(args) == 1: style = "image" x = [0, nc] y = [0, nr] elif len(args) == 3: x, y = args[:2] x = np.asarray(x) y = np.asarray(y) if x.ndim == 1 and y.ndim == 1: if x.size == 2 and y.size == 2: style = "image" else: dx = np.diff(x) dy = np.diff(y) if (np.ptp(dx) < 0.01*np.abs(dx.mean()) and np.ptp(dy) < 0.01*np.abs(dy.mean())): style = "image" else: style = "pcolorimage" elif x.ndim == 2 and y.ndim == 2: style = "quadmesh" else: raise TypeError("arguments do not match valid signatures") else: raise TypeError("need 1 argument or 3 arguments") if style == "quadmesh": # convert to one dimensional arrays # This should also be moved to the QuadMesh class C = ma.ravel(C) # data point in each cell is value # at lower left corner X = x.ravel() Y = y.ravel() Nx = nc+1 Ny = nr+1 # The following needs to be cleaned up; the renderer # requires separate contiguous arrays for X and Y, # but the QuadMesh class requires the 2D array. coords = np.empty(((Nx * Ny), 2), np.float64) coords[:, 0] = X coords[:, 1] = Y # The QuadMesh class can also be changed to # handle relevant superclass kwargs; the initializer # should do much more than it does now. collection = mcoll.QuadMesh(nc, nr, coords, 0) collection.set_alpha(alpha) collection.set_array(C) collection.set_cmap(cmap) collection.set_norm(norm) self.add_collection(collection) xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max() ret = collection else: # One of the image styles: xl, xr, yb, yt = x[0], x[-1], y[0], y[-1] if style == "image": im = mimage.AxesImage(self, cmap, norm, interpolation='nearest', origin='lower', extent=(xl, xr, yb, yt), **kwargs) im.set_data(C) im.set_alpha(alpha) self.images.append(im) ret = im if style == "pcolorimage": im = mimage.PcolorImage(self, x, y, C, cmap=cmap, norm=norm, alpha=alpha, **kwargs) self.images.append(im) ret = im self._set_artist_props(ret) if vmin is not None or vmax is not None: ret.set_clim(vmin, vmax) else: ret.autoscale_None() self.update_datalim(np.array([[xl, yb], [xr, yt]])) self.autoscale_view(tight=True) return ret def contour(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = False return mcontour.ContourSet(self, *args, **kwargs) contour.__doc__ = mcontour.ContourSet.contour_doc def contourf(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = True return mcontour.ContourSet(self, *args, **kwargs) contourf.__doc__ = mcontour.ContourSet.contour_doc def clabel(self, CS, *args, **kwargs): return CS.clabel(*args, **kwargs) clabel.__doc__ = mcontour.ContourSet.clabel.__doc__ def table(self, **kwargs): """ call signature:: table(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): Add a table to the current axes. Returns a :class:`matplotlib.table.Table` instance. For finer grained control over tables, use the :class:`~matplotlib.table.Table` class and add it to the axes with :meth:`~matplotlib.axes.Axes.add_table`. Thanks to John Gill for providing the class and table. kwargs control the :class:`~matplotlib.table.Table` properties: %(Table)s """ return mtable.table(self, **kwargs) table.__doc__ = cbook.dedent(table.__doc__) % martist.kwdocd def twinx(self): """ call signature:: ax = twinx() create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis of self will have ticks on left and the returned axes will have ticks on the right """ ax2 = self.figure.add_axes(self.get_position(True), sharex=self, frameon=False) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') self.yaxis.tick_left() return ax2 def twiny(self): """ call signature:: ax = twiny() create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The x-axis of self will have ticks on bottom and the returned axes will have ticks on the top """ ax2 = self.figure.add_axes(self.get_position(True), sharey=self, frameon=False) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') self.xaxis.tick_bottom() return ax2 def get_shared_x_axes(self): 'Return a copy of the shared axes Grouper object for x axes' return self._shared_x_axes def get_shared_y_axes(self): 'Return a copy of the shared axes Grouper object for y axes' return self._shared_y_axes #### Data analysis def hist(self, x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs): """ call signature:: hist(x, bins=10, range=None, normed=False, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, **kwargs) Compute and draw the histogram of *x*. The return value is a tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*,...]) if the input contains multiple data. Keyword arguments: *bins*: Either an integer number of bins or a sequence giving the bins. *x* are the data to be binned. *x* can be an array, a 2D array with multiple data in its columns, or a list of arrays with data of different length. Note, if *bins* is an integer input argument=numbins, *bins* + 1 bin edges will be returned, compatible with the semantics of :func:`numpy.histogram` with the *new* = True argument. Unequally spaced bins are supported if *bins* is a sequence. *range*: The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, *range* is (x.min(), x.max()). Range has no effect if *bins* is a sequence. If *bins* is a sequence or *range* is specified, autoscaling is set off (*autoscale_on* is set to *False*) and the xaxis limits are set to encompass the full specified bin range. *normed*: If *True*, the first element of the return tuple will be the counts normalized to form a probability density, i.e., ``n/(len(x)*dbin)``. In a probability density, the integral of the histogram should be 1; you can verify that with a trapezoidal integration of the probability density function:: pdf, bins, patches = ax.hist(...) print np.sum(pdf * np.diff(bins)) *cumulative*: If *True*, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If *normed* is also *True* then the histogram is normalized such that the last bin equals 1. If *cumulative* evaluates to less than 0 (e.g. -1), the direction of accumulation is reversed. In this case, if *normed* is also *True*, then the histogram is normalized such that the first bin equals 1. *histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ] The type of histogram to draw. - 'bar' is a traditional bar-type histogram. If multiple data are given the bars are aranged side by side. - 'barstacked' is a bar-type histogram where multiple data are stacked on top of each other. - 'step' generates a lineplot that is by default unfilled. - 'stepfilled' generates a lineplot that is by default filled. *align*: ['left' | 'mid' | 'right' ] Controls how the histogram is plotted. - 'left': bars are centered on the left bin edges. - 'mid': bars are centered between the bin edges. - 'right': bars are centered on the right bin edges. *orientation*: [ 'horizontal' | 'vertical' ] If 'horizontal', :func:`~matplotlib.pyplot.barh` will be used for bar-type histograms and the *bottom* kwarg will be the left edges. *rwidth*: The relative width of the bars as a fraction of the bin width. If *None*, automatically compute the width. Ignored if *histtype* = 'step' or 'stepfilled'. *log*: If *True*, the histogram axis will be set to a log scale. If *log* is *True* and *x* is a 1D array, empty bins will be filtered out and only the non-empty (*n*, *bins*, *patches*) will be returned. kwargs are used to update the properties of the hist :class:`~matplotlib.patches.Rectangle` instances: %(Rectangle)s You can use labels for your histogram, and only the first :class:`~matplotlib.patches.Rectangle` gets the label (the others get the magic string '_nolegend_'. This will make the histograms work in the intuitive way for bar charts:: ax.hist(10+2*np.random.randn(1000), label='men') ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5) ax.legend() **Example:** .. plot:: mpl_examples/pylab_examples/histogram_demo.py """ if not self._hold: self.cla() # NOTE: the range keyword overwrites the built-in func range !!! # needs to be fixed in with numpy !!! if kwargs.get('width') is not None: raise DeprecationWarning( 'hist now uses the rwidth to give relative width ' 'and not absolute width') try: # make sure a copy is created: don't use asarray x = np.transpose(np.array(x)) if len(x.shape)==1: x.shape = (1,x.shape[0]) elif len(x.shape)==2 and x.shape[1]<x.shape[0]: warnings.warn('2D hist should be nsamples x nvariables; ' 'this looks transposed') except ValueError: # multiple hist with data of different length if iterable(x[0]) and not is_string_like(x[0]): tx = [] for i in xrange(len(x)): tx.append( np.array(x[i]) ) x = tx else: raise ValueError, 'Can not use providet data to create a histogram' # Check whether bins or range are given explicitly. In that # case do not autoscale axes. binsgiven = (cbook.iterable(bins) or range != None) # check the version of the numpy if np.__version__ < "1.3": # version 1.1 and 1.2 hist_kwargs = dict(range=range, normed=bool(normed), new=True) else: # version 1.3 and later, drop new=True hist_kwargs = dict(range=range, normed=bool(normed)) n = [] for i in xrange(len(x)): # this will automatically overwrite bins, # so that each histogram uses the same bins m, bins = np.histogram(x[i], bins, **hist_kwargs) n.append(m) if cumulative: slc = slice(None) if cbook.is_numlike(cumulative) and cumulative < 0: slc = slice(None,None,-1) if normed: n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n] else: n = [m[slc].cumsum()[slc] for m in n] patches = [] if histtype.startswith('bar'): totwidth = np.diff(bins) stacked = False if rwidth is not None: dr = min(1., max(0., rwidth)) elif len(n)>1: dr = 0.8 else: dr = 1.0 if histtype=='bar': width = dr*totwidth/len(n) dw = width if len(n)>1: boffset = -0.5*dr*totwidth*(1.-1./len(n)) else: boffset = 0.0 elif histtype=='barstacked': width = dr*totwidth boffset, dw = 0.0, 0.0 stacked = True else: raise ValueError, 'invalid histtype: %s' % histtype if align == 'mid' or align == 'edge': boffset += 0.5*totwidth elif align == 'right': boffset += totwidth elif align != 'left' and align != 'center': raise ValueError, 'invalid align: %s' % align if orientation == 'horizontal': for m in n: color = self._get_lines._get_next_cycle_color() patch = self.barh(bins[:-1]+boffset, m, height=width, left=bottom, align='center', log=log, color=color) patches.append(patch) if stacked: if bottom is None: bottom = 0.0 bottom += m boffset += dw elif orientation == 'vertical': for m in n: color = self._get_lines._get_next_cycle_color() patch = self.bar(bins[:-1]+boffset, m, width=width, bottom=bottom, align='center', log=log, color=color) patches.append(patch) if stacked: if bottom is None: bottom = 0.0 bottom += m boffset += dw else: raise ValueError, 'invalid orientation: %s' % orientation elif histtype.startswith('step'): x = np.zeros( 2*len(bins), np.float ) y = np.zeros( 2*len(bins), np.float ) x[0::2], x[1::2] = bins, bins if align == 'left' or align == 'center': x -= 0.5*(bins[1]-bins[0]) elif align == 'right': x += 0.5*(bins[1]-bins[0]) elif align != 'mid' and align != 'edge': raise ValueError, 'invalid align: %s' % align if log: y[0],y[-1] = 1e-100, 1e-100 if orientation == 'horizontal': self.set_xscale('log') elif orientation == 'vertical': self.set_yscale('log') fill = False if histtype == 'stepfilled': fill = True elif histtype != 'step': raise ValueError, 'invalid histtype: %s' % histtype for m in n: y[1:-1:2], y[2::2] = m, m if orientation == 'horizontal': x,y = y,x elif orientation != 'vertical': raise ValueError, 'invalid orientation: %s' % orientation color = self._get_lines._get_next_cycle_color() if fill: patches.append( self.fill(x, y, closed=False, facecolor=color) ) else: patches.append( self.fill(x, y, closed=False, edgecolor=color, fill=False) ) # adopted from adjust_x/ylim part of the bar method if orientation == 'horizontal': xmin, xmax = 0, self.dataLim.intervalx[1] for m in n: xmin = np.amin(m[m!=0]) # filter out the 0 height bins xmin = max(xmin*0.9, 1e-100) self.dataLim.intervalx = (xmin, xmax) elif orientation == 'vertical': ymin, ymax = 0, self.dataLim.intervaly[1] for m in n: ymin = np.amin(m[m!=0]) # filter out the 0 height bins ymin = max(ymin*0.9, 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() else: raise ValueError, 'invalid histtype: %s' % histtype label = kwargs.pop('label', '') for patch in patches: for p in patch: p.update(kwargs) p.set_label(label) label = '_nolegend_' if binsgiven: self.set_autoscale_on(False) if orientation == 'vertical': self.autoscale_view(scalex=False, scaley=True) XL = self.xaxis.get_major_locator().view_limits(bins[0], bins[-1]) self.set_xbound(XL) else: self.autoscale_view(scalex=True, scaley=False) YL = self.yaxis.get_major_locator().view_limits(bins[0], bins[-1]) self.set_ybound(YL) if len(n)==1: return n[0], bins, cbook.silent_list('Patch', patches[0]) else: return n, bins, cbook.silent_list('Lists of Patches', patches) hist.__doc__ = cbook.dedent(hist.__doc__) % martist.kwdocd def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ call signature:: psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. *Fs* is the sampling frequency. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns the tuple (*Pxx*, *freqs*). For plotting, the power is plotted as :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself is returned. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/psd_demo.py """ if not self._hold: self.cla() pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxx.shape = len(freqs), freqs += Fc if scale_by_freq in (None, True): psd_units = 'dB/Hz' else: psd_units = 'dB' self.plot(freqs, 10*np.log10(pxx), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Power Spectral Density (%s)' % psd_units) self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin logi = int(np.log10(intv)) if logi==0: logi=.1 step = 10*logi #print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1 ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxx, freqs psd_doc_dict = dict() psd_doc_dict.update(martist.kwdocd) psd_doc_dict.update(mlab.kwdocd) psd_doc_dict['PSD'] = cbook.dedent(psd_doc_dict['PSD']) psd.__doc__ = cbook.dedent(psd.__doc__) % psd_doc_dict def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ call signature:: csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum (complex valued), and :math:`10\log_{10}|P_{xy}|` is plotted. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the Line2D properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/csd_demo.py .. seealso: :meth:`psd` For a description of the optional parameters. """ if not self._hold: self.cla() pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxy.shape = len(freqs), # pxy is complex freqs += Fc self.plot(freqs, 10*np.log10(np.absolute(pxy)), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Cross Spectrum Magnitude (dB)') self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin step = 10*int(np.log10(intv)) ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxy, freqs csd.__doc__ = cbook.dedent(csd.__doc__) % psd_doc_dict def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ call signature:: cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none, window = mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) cohere the coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. The return value is a tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. kwargs are applied to the lines. References: * Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties of the coherence plot: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/cohere_demo.py """ if not self._hold: self.cla() cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap, scale_by_freq) freqs += Fc self.plot(freqs, cxy, **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Coherence') self.grid(True) return cxy, freqs cohere.__doc__ = cbook.dedent(cohere.__doc__) % psd_doc_dict def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None): """ call signature:: specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None) Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. %(PSD)s *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the y extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. *cmap*: A :class:`matplotlib.cm.Colormap` instance; if *None* use default determined by rc *xextent*: The image extent along the x-axis. xextent = (xmin,xmax) The default is (0,max(bins)), where bins is the return value from :func:`mlab.specgram` Return value is (*Pxx*, *freqs*, *bins*, *im*): - *bins* are the time points the spectrogram is calculated over - *freqs* is an array of frequencies - *Pxx* is a len(times) x len(freqs) array of power - *im* is a :class:`matplotlib.image.AxesImage` instance Note: If *x* is real (i.e. non-complex), only the positive spectrum is shown. If *x* is complex, both positive and negative parts of the spectrum are shown. This can be overridden using the *sides* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/specgram_demo.py """ if not self._hold: self.cla() Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Z = 10. * np.log10(Pxx) Z = np.flipud(Z) if xextent is None: xextent = 0, np.amax(bins) xmin, xmax = xextent freqs += Fc extent = xmin, xmax, freqs[0], freqs[-1] im = self.imshow(Z, cmap, extent=extent) self.axis('auto') return Pxx, freqs, bins, im specgram.__doc__ = cbook.dedent(specgram.__doc__) % psd_doc_dict del psd_doc_dict #So that this does not become an Axes attribute def spy(self, Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs): """ call signature:: spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs) ``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*. If *precision* is 0, any non-zero value will be plotted; else, values of :math:`|Z| > precision` will be plotted. For :class:`scipy.sparse.spmatrix` instances, there is a special case: if *precision* is 'present', any value present in the array will be plotted, even if it is identically zero. The array will be plotted as it would be printed, with the first index (row) increasing down and the second index (column) increasing to the right. By default aspect is 'equal', so that each array element occupies a square space; set the aspect kwarg to 'auto' to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an array element directly. Two plotting styles are available: image or marker. Both are available for full arrays, but only the marker style works for :class:`scipy.sparse.spmatrix` instances. If *marker* and *markersize* are *None*, an image will be returned and any remaining kwargs are passed to :func:`~matplotlib.pyplot.imshow`; else, a :class:`~matplotlib.lines.Line2D` object will be returned with the value of marker determining the marker type, and any remaining kwargs passed to the :meth:`~matplotlib.axes.Axes.plot` method. If *marker* and *markersize* are *None*, useful kwargs include: * *cmap* * *alpha* .. seealso:: :func:`~matplotlib.pyplot.imshow` For controlling colors, e.g. cyan background and red marks, use:: cmap = mcolors.ListedColormap(['c','r']) If *marker* or *markersize* is not *None*, useful kwargs include: * *marker* * *markersize* * *color* Useful values for *marker* include: * 's' square (default) * 'o' circle * '.' point * ',' pixel .. seealso:: :func:`~matplotlib.pyplot.plot` """ if precision is None: precision = 0 warnings.DeprecationWarning("Use precision=0 instead of None") # 2008/10/03 if marker is None and markersize is None and hasattr(Z, 'tocoo'): marker = 's' if marker is None and markersize is None: Z = np.asarray(Z) mask = np.absolute(Z)>precision if 'cmap' not in kwargs: kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'], name='binary') nr, nc = Z.shape extent = [-0.5, nc-0.5, nr-0.5, -0.5] ret = self.imshow(mask, interpolation='nearest', aspect=aspect, extent=extent, origin='upper', **kwargs) else: if hasattr(Z, 'tocoo'): c = Z.tocoo() if precision == 'present': y = c.row x = c.col else: nonzero = np.absolute(c.data) > precision y = c.row[nonzero] x = c.col[nonzero] else: Z = np.asarray(Z) nonzero = np.absolute(Z)>precision y, x = np.nonzero(nonzero) if marker is None: marker = 's' if markersize is None: markersize = 10 marks = mlines.Line2D(x, y, linestyle='None', marker=marker, markersize=markersize, **kwargs) self.add_line(marks) nr, nc = Z.shape self.set_xlim(xmin=-0.5, xmax=nc-0.5) self.set_ylim(ymin=nr-0.5, ymax=-0.5) self.set_aspect(aspect) ret = marks self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return ret def matshow(self, Z, **kwargs): ''' Plot a matrix or array as an image. The matrix will be shown the way it would be printed, with the first row at the top. Row and column numbering is zero-based. Argument: *Z* anything that can be interpreted as a 2-D array kwargs all are passed to :meth:`~matplotlib.axes.Axes.imshow`. :meth:`matshow` sets defaults for *extent*, *origin*, *interpolation*, and *aspect*; use care in overriding the *extent* and *origin* kwargs, because they interact. (Also, if you want to change them, you probably should be using imshow directly in your own version of matshow.) Returns: an :class:`matplotlib.image.AxesImage` instance. ''' Z = np.asarray(Z) nr, nc = Z.shape extent = [-0.5, nc-0.5, nr-0.5, -0.5] kw = {'extent': extent, 'origin': 'upper', 'interpolation': 'nearest', 'aspect': 'equal'} # (already the imshow default) kw.update(kwargs) im = self.imshow(Z, **kw) self.title.set_y(1.05) self.xaxis.tick_top() self.xaxis.set_ticks_position('both') self.xaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) self.yaxis.set_major_locator(mticker.MaxNLocator(nbins=9, steps=[1, 2, 5, 10], integer=True)) return im class SubplotBase: """ Base class for subplots, which are :class:`Axes` instances with additional methods to facilitate generating and manipulating a set of :class:`Axes` within a figure. """ def __init__(self, fig, *args, **kwargs): """ *fig* is a :class:`matplotlib.figure.Figure` instance. *args* is the tuple (*numRows*, *numCols*, *plotNum*), where the array of subplots in the figure has dimensions *numRows*, *numCols*, and where *plotNum* is the number of the subplot being created. *plotNum* starts at 1 in the upper left corner and increases to the right. If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*. """ self.figure = fig if len(args)==1: s = str(args[0]) if len(s) != 3: raise ValueError('Argument to subplot must be a 3 digits long') rows, cols, num = map(int, s) elif len(args)==3: rows, cols, num = args else: raise ValueError( 'Illegal argument to subplot') total = rows*cols num -= 1 # convert from matlab to python indexing # ie num in range(0,total) if num >= total: raise ValueError( 'Subplot number exceeds total subplots') self._rows = rows self._cols = cols self._num = num self.update_params() # _axes_class is set in the subplot_class_factory self._axes_class.__init__(self, fig, self.figbox, **kwargs) def get_geometry(self): 'get the subplot geometry, eg 2,2,3' return self._rows, self._cols, self._num+1 # COVERAGE NOTE: Never used internally or from examples def change_geometry(self, numrows, numcols, num): 'change subplot geometry, eg. from 1,1,1 to 2,2,3' self._rows = numrows self._cols = numcols self._num = num-1 self.update_params() self.set_position(self.figbox) def update_params(self): 'update the subplot position from fig.subplotpars' rows = self._rows cols = self._cols num = self._num pars = self.figure.subplotpars left = pars.left right = pars.right bottom = pars.bottom top = pars.top wspace = pars.wspace hspace = pars.hspace totWidth = right-left totHeight = top-bottom figH = totHeight/(rows + hspace*(rows-1)) sepH = hspace*figH figW = totWidth/(cols + wspace*(cols-1)) sepW = wspace*figW rowNum, colNum = divmod(num, cols) figBottom = top - (rowNum+1)*figH - rowNum*sepH figLeft = left + colNum*(figW + sepW) self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom, figW, figH) self.rowNum = rowNum self.colNum = colNum self.numRows = rows self.numCols = cols if 0: print 'rcn', rows, cols, num print 'lbrt', left, bottom, right, top print 'self.figBottom', self.figBottom print 'self.figLeft', self.figLeft print 'self.figW', self.figW print 'self.figH', self.figH print 'self.rowNum', self.rowNum print 'self.colNum', self.colNum print 'self.numRows', self.numRows print 'self.numCols', self.numCols def is_first_col(self): return self.colNum==0 def is_first_row(self): return self.rowNum==0 def is_last_row(self): return self.rowNum==self.numRows-1 def is_last_col(self): return self.colNum==self.numCols-1 # COVERAGE NOTE: Never used internally or from examples def label_outer(self): """ set the visible property on ticklabels so xticklabels are visible only if the subplot is in the last row and yticklabels are visible only if the subplot is in the first column """ lastrow = self.is_last_row() firstcol = self.is_first_col() for label in self.get_xticklabels(): label.set_visible(lastrow) for label in self.get_yticklabels(): label.set_visible(firstcol) _subplot_classes = {} def subplot_class_factory(axes_class=None): # This makes a new class that inherits from SubclassBase and the # given axes_class (which is assumed to be a subclass of Axes). # This is perhaps a little bit roundabout to make a new class on # the fly like this, but it means that a new Subplot class does # not have to be created for every type of Axes. if axes_class is None: axes_class = Axes new_class = _subplot_classes.get(axes_class) if new_class is None: new_class = new.classobj("%sSubplot" % (axes_class.__name__), (SubplotBase, axes_class), {'_axes_class': axes_class}) _subplot_classes[axes_class] = new_class return new_class # This is provided for backward compatibility Subplot = subplot_class_factory() martist.kwdocd['Axes'] = martist.kwdocd['Subplot'] = martist.kwdoc(Axes) """ # this is some discarded code I was using to find the minimum positive # data point for some log scaling fixes. I realized there was a # cleaner way to do it, but am keeping this around as an example for # how to get the data out of the axes. Might want to make something # like this a method one day, or better yet make get_verts an Artist # method minx, maxx = self.get_xlim() if minx<=0 or maxx<=0: # find the min pos value in the data xs = [] for line in self.lines: xs.extend(line.get_xdata(orig=False)) for patch in self.patches: xs.extend([x for x,y in patch.get_verts()]) for collection in self.collections: xs.extend([x for x,y in collection.get_verts()]) posx = [x for x in xs if x>0] if len(posx): minx = min(posx) maxx = max(posx) # warning, probably breaks inverted axis self.set_xlim((0.1*minx, maxx)) """
gpl-3.0
cbertinato/pandas
pandas/tests/frame/test_duplicates.py
1
14578
import numpy as np import pytest from pandas import DataFrame, Series import pandas.util.testing as tm @pytest.mark.parametrize('subset', ['a', ['a'], ['a', 'B']]) def test_duplicated_with_misspelled_column_name(subset): # GH 19730 df = DataFrame({'A': [0, 0, 1], 'B': [0, 0, 1], 'C': [0, 0, 1]}) with pytest.raises(KeyError): df.duplicated(subset) with pytest.raises(KeyError): df.drop_duplicates(subset) @pytest.mark.slow def test_duplicated_do_not_fail_on_wide_dataframes(): # gh-21524 # Given the wide dataframe with a lot of columns # with different (important!) values data = {'col_{0:02d}'.format(i): np.random.randint(0, 1000, 30000) for i in range(100)} df = DataFrame(data).T result = df.duplicated() # Then duplicates produce the bool Series as a result and don't fail during # calculation. Actual values doesn't matter here, though usually it's all # False in this case assert isinstance(result, Series) assert result.dtype == np.bool @pytest.mark.parametrize('keep, expected', [ ('first', Series([False, False, True, False, True])), ('last', Series([True, True, False, False, False])), (False, Series([True, True, True, False, True])) ]) def test_duplicated_keep(keep, expected): df = DataFrame({'A': [0, 1, 1, 2, 0], 'B': ['a', 'b', 'b', 'c', 'a']}) result = df.duplicated(keep=keep) tm.assert_series_equal(result, expected) @pytest.mark.xfail(reason="GH#21720; nan/None falsely considered equal") @pytest.mark.parametrize('keep, expected', [ ('first', Series([False, False, True, False, True])), ('last', Series([True, True, False, False, False])), (False, Series([True, True, True, False, True])) ]) def test_duplicated_nan_none(keep, expected): df = DataFrame({'C': [np.nan, 3, 3, None, np.nan]}, dtype=object) result = df.duplicated(keep=keep) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('keep', ['first', 'last', False]) @pytest.mark.parametrize('subset', [None, ['A', 'B'], 'A']) def test_duplicated_subset(subset, keep): df = DataFrame({'A': [0, 1, 1, 2, 0], 'B': ['a', 'b', 'b', 'c', 'a'], 'C': [np.nan, 3, 3, None, np.nan]}) if subset is None: subset = list(df.columns) elif isinstance(subset, str): # need to have a DataFrame, not a Series # -> select columns with singleton list, not string subset = [subset] expected = df[subset].duplicated(keep=keep) result = df.duplicated(keep=keep, subset=subset) tm.assert_series_equal(result, expected) def test_drop_duplicates(): df = DataFrame({'AAA': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'bar', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': [1, 1, 2, 2, 2, 2, 1, 2], 'D': range(8), }) # single column result = df.drop_duplicates('AAA') expected = df[:2] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('AAA', keep='last') expected = df.loc[[6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('AAA', keep=False) expected = df.loc[[]] tm.assert_frame_equal(result, expected) assert len(result) == 0 # multi column expected = df.loc[[0, 1, 2, 3]] result = df.drop_duplicates(np.array(['AAA', 'B'])) tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['AAA', 'B']) tm.assert_frame_equal(result, expected) result = df.drop_duplicates(('AAA', 'B'), keep='last') expected = df.loc[[0, 5, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(('AAA', 'B'), keep=False) expected = df.loc[[0]] tm.assert_frame_equal(result, expected) # consider everything df2 = df.loc[:, ['AAA', 'B', 'C']] result = df2.drop_duplicates() # in this case only expected = df2.drop_duplicates(['AAA', 'B']) tm.assert_frame_equal(result, expected) result = df2.drop_duplicates(keep='last') expected = df2.drop_duplicates(['AAA', 'B'], keep='last') tm.assert_frame_equal(result, expected) result = df2.drop_duplicates(keep=False) expected = df2.drop_duplicates(['AAA', 'B'], keep=False) tm.assert_frame_equal(result, expected) # integers result = df.drop_duplicates('C') expected = df.iloc[[0, 2]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('C', keep='last') expected = df.iloc[[-2, -1]] tm.assert_frame_equal(result, expected) df['E'] = df['C'].astype('int8') result = df.drop_duplicates('E') expected = df.iloc[[0, 2]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('E', keep='last') expected = df.iloc[[-2, -1]] tm.assert_frame_equal(result, expected) # GH 11376 df = DataFrame({'x': [7, 6, 3, 3, 4, 8, 0], 'y': [0, 6, 5, 5, 9, 1, 2]}) expected = df.loc[df.index != 3] tm.assert_frame_equal(df.drop_duplicates(), expected) df = DataFrame([[1, 0], [0, 2]]) tm.assert_frame_equal(df.drop_duplicates(), df) df = DataFrame([[-2, 0], [0, -4]]) tm.assert_frame_equal(df.drop_duplicates(), df) x = np.iinfo(np.int64).max / 3 * 2 df = DataFrame([[-x, x], [0, x + 4]]) tm.assert_frame_equal(df.drop_duplicates(), df) df = DataFrame([[-x, x], [x, x + 4]]) tm.assert_frame_equal(df.drop_duplicates(), df) # GH 11864 df = DataFrame([i] * 9 for i in range(16)) df = df.append([[1] + [0] * 8], ignore_index=True) for keep in ['first', 'last', False]: assert df.duplicated(keep=keep).sum() == 0 def test_duplicated_on_empty_frame(): # GH 25184 df = DataFrame(columns=['a', 'b']) dupes = df.duplicated('a') result = df[dupes] expected = df.copy() tm.assert_frame_equal(result, expected) def test_drop_duplicates_with_duplicate_column_names(): # GH17836 df = DataFrame([ [1, 2, 5], [3, 4, 6], [3, 4, 7] ], columns=['a', 'a', 'b']) result0 = df.drop_duplicates() tm.assert_frame_equal(result0, df) result1 = df.drop_duplicates('a') expected1 = df[:2] tm.assert_frame_equal(result1, expected1) def test_drop_duplicates_for_take_all(): df = DataFrame({'AAA': ['foo', 'bar', 'baz', 'bar', 'foo', 'bar', 'qux', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': [1, 1, 2, 2, 2, 2, 1, 2], 'D': range(8), }) # single column result = df.drop_duplicates('AAA') expected = df.iloc[[0, 1, 2, 6]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('AAA', keep='last') expected = df.iloc[[2, 5, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('AAA', keep=False) expected = df.iloc[[2, 6]] tm.assert_frame_equal(result, expected) # multiple columns result = df.drop_duplicates(['AAA', 'B']) expected = df.iloc[[0, 1, 2, 3, 4, 6]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['AAA', 'B'], keep='last') expected = df.iloc[[0, 1, 2, 5, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['AAA', 'B'], keep=False) expected = df.iloc[[0, 1, 2, 6]] tm.assert_frame_equal(result, expected) def test_drop_duplicates_tuple(): df = DataFrame({('AA', 'AB'): ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'bar', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': [1, 1, 2, 2, 2, 2, 1, 2], 'D': range(8), }) # single column result = df.drop_duplicates(('AA', 'AB')) expected = df[:2] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(('AA', 'AB'), keep='last') expected = df.loc[[6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(('AA', 'AB'), keep=False) expected = df.loc[[]] # empty df assert len(result) == 0 tm.assert_frame_equal(result, expected) # multi column expected = df.loc[[0, 1, 2, 3]] result = df.drop_duplicates((('AA', 'AB'), 'B')) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('df', [ DataFrame(), DataFrame(columns=[]), DataFrame(columns=['A', 'B', 'C']), DataFrame(index=[]), DataFrame(index=['A', 'B', 'C']) ]) def test_drop_duplicates_empty(df): # GH 20516 result = df.drop_duplicates() tm.assert_frame_equal(result, df) result = df.copy() result.drop_duplicates(inplace=True) tm.assert_frame_equal(result, df) def test_drop_duplicates_NA(): # none df = DataFrame({'A': [None, None, 'foo', 'bar', 'foo', 'bar', 'bar', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': [1.0, np.nan, np.nan, np.nan, 1., 1., 1, 1.], 'D': range(8), }) # single column result = df.drop_duplicates('A') expected = df.loc[[0, 2, 3]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('A', keep='last') expected = df.loc[[1, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('A', keep=False) expected = df.loc[[]] # empty df tm.assert_frame_equal(result, expected) assert len(result) == 0 # multi column result = df.drop_duplicates(['A', 'B']) expected = df.loc[[0, 2, 3, 6]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['A', 'B'], keep='last') expected = df.loc[[1, 5, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['A', 'B'], keep=False) expected = df.loc[[6]] tm.assert_frame_equal(result, expected) # nan df = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'bar', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': [1.0, np.nan, np.nan, np.nan, 1., 1., 1, 1.], 'D': range(8), }) # single column result = df.drop_duplicates('C') expected = df[:2] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('C', keep='last') expected = df.loc[[3, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('C', keep=False) expected = df.loc[[]] # empty df tm.assert_frame_equal(result, expected) assert len(result) == 0 # multi column result = df.drop_duplicates(['C', 'B']) expected = df.loc[[0, 1, 2, 4]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['C', 'B'], keep='last') expected = df.loc[[1, 3, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates(['C', 'B'], keep=False) expected = df.loc[[1]] tm.assert_frame_equal(result, expected) def test_drop_duplicates_NA_for_take_all(): # none df = DataFrame({'A': [None, None, 'foo', 'bar', 'foo', 'baz', 'bar', 'qux'], 'C': [1.0, np.nan, np.nan, np.nan, 1., 2., 3, 1.]}) # single column result = df.drop_duplicates('A') expected = df.iloc[[0, 2, 3, 5, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('A', keep='last') expected = df.iloc[[1, 4, 5, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('A', keep=False) expected = df.iloc[[5, 7]] tm.assert_frame_equal(result, expected) # nan # single column result = df.drop_duplicates('C') expected = df.iloc[[0, 1, 5, 6]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('C', keep='last') expected = df.iloc[[3, 5, 6, 7]] tm.assert_frame_equal(result, expected) result = df.drop_duplicates('C', keep=False) expected = df.iloc[[5, 6]] tm.assert_frame_equal(result, expected) def test_drop_duplicates_inplace(): orig = DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'bar', 'foo'], 'B': ['one', 'one', 'two', 'two', 'two', 'two', 'one', 'two'], 'C': [1, 1, 2, 2, 2, 2, 1, 2], 'D': range(8), }) # single column df = orig.copy() df.drop_duplicates('A', inplace=True) expected = orig[:2] result = df tm.assert_frame_equal(result, expected) df = orig.copy() df.drop_duplicates('A', keep='last', inplace=True) expected = orig.loc[[6, 7]] result = df tm.assert_frame_equal(result, expected) df = orig.copy() df.drop_duplicates('A', keep=False, inplace=True) expected = orig.loc[[]] result = df tm.assert_frame_equal(result, expected) assert len(df) == 0 # multi column df = orig.copy() df.drop_duplicates(['A', 'B'], inplace=True) expected = orig.loc[[0, 1, 2, 3]] result = df tm.assert_frame_equal(result, expected) df = orig.copy() df.drop_duplicates(['A', 'B'], keep='last', inplace=True) expected = orig.loc[[0, 5, 6, 7]] result = df tm.assert_frame_equal(result, expected) df = orig.copy() df.drop_duplicates(['A', 'B'], keep=False, inplace=True) expected = orig.loc[[0]] result = df tm.assert_frame_equal(result, expected) # consider everything orig2 = orig.loc[:, ['A', 'B', 'C']].copy() df2 = orig2.copy() df2.drop_duplicates(inplace=True) # in this case only expected = orig2.drop_duplicates(['A', 'B']) result = df2 tm.assert_frame_equal(result, expected) df2 = orig2.copy() df2.drop_duplicates(keep='last', inplace=True) expected = orig2.drop_duplicates(['A', 'B'], keep='last') result = df2 tm.assert_frame_equal(result, expected) df2 = orig2.copy() df2.drop_duplicates(keep=False, inplace=True) expected = orig2.drop_duplicates(['A', 'B'], keep=False) result = df2 tm.assert_frame_equal(result, expected)
bsd-3-clause
fabioticconi/scikit-learn
benchmarks/bench_plot_lasso_path.py
301
4003
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function from collections import defaultdict import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path from sklearn.linear_model import lasso_path from sklearn.datasets.samples_generator import make_regression def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') dataset_kwargs = { 'n_samples': n_samples, 'n_features': n_features, 'n_informative': n_features / 10, 'effective_rank': min(n_samples, n_features) / 10, #'effective_rank': None, 'bias': 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (with Gram)'].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (without Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (with Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (without Gram)'].append(delta) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(np.int) features_range = np.linspace(10, 2000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure('scikit-learn Lasso path benchmark results') i = 1 for c, (label, timings) in zip('bcry', sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection='3d') X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) #ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) #ax.legend() i += 1 plt.show()
bsd-3-clause
FluidityProject/multifluids
tests/sloshing_tank/plot_freesurface.py
5
2631
#!/usr/bin/env python import settings import ana_sol import sys import math import commands import matplotlib.pyplot as plt import getopt from scipy.special import erf from numpy import poly1d from matplotlib.pyplot import figure, show from numpy import pi, sin, linspace from matplotlib.mlab import stineman_interp from numpy import exp, cos from fluidity_tools import stat_parser as stat # Usage def usage(): print "plt_freesurface.py --file=detectorfile" print "All the other options are read from settings.py" ################# Main ########################### def main(argv=None): a_0 = settings.a0 # initial maximum perturbation g = settings.g # gravity eta= settings.eta # viscosity L= settings.L # wavelength timestep= settings.timestep # timestep filename='' global debug debug=False #debug=True try: opts, args = getopt.getopt(sys.argv[1:], "h:", ['file=']) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt == '--file': filename=arg elif opt == '-h' or opt == '--help': usage() sys.exit(2) if filename=='': usage() sys.exit(2) print 'Using:\n\ta_0 =', a_0 # initial maximum perturbation print '\tg =', g # gravity print '\teta=', eta # viscosity print '\tL=', L # wavelength print '\ttimestep=', timestep # timestep ####################### Print time plot ########################### print 'Generating time plot' x_time= stat(filename)["ElapsedTime"]["value"] fs_simu= stat(filename)["water"]["FreeSurface"]["left"] # fs_simu= stat(filename)["water"]["FreeSurface"]["middle"] fs_ana = stat(filename)["water"]["FreeSurface_Analytical"]["left"] # fs_ana = stat(filename)["water"]["FreeSurface_Analytical"]["middle"] plt.ion() # swith on interactive mode fig = figure() ax = fig.add_subplot(111) ax.plot(x_time,fs_simu,'ro') ax.plot(x_time,fs_ana,'-') plt.title('Free Surface timeplot at x=0') plt.xlabel('Time [s]') plt.ylabel('Free surface [m]') plt.draw() raw_input("Please press Enter") #plt.cla() if __name__ == "__main__": main()
lgpl-2.1
mupif/mupif
mupif/Field.py
1
42683
# # MuPIF: Multi-Physics Integration Framework # Copyright (C) 2010-2015 Borek Patzak # # Czech Technical University, Faculty of Civil Engineering, # Department of Structural Mechanics, 166 29 Prague, Czech Republic # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301 USA # from builtins import range from builtins import object from . import Cell from . import FieldID from . import ValueType from . import BBox from . import APIError from . import MupifObject from . import Mesh from .Physics import PhysicalQuantities from .Physics.PhysicalQuantities import PhysicalQuantity from numpy import array, arange, random, zeros import numpy import copy import Pyro4 from enum import IntEnum import logging log = logging.getLogger() try: import cPickle as pickle # faster serialization if available except: import pickle # import logging - never use it here, it causes cPickle.PicklingError: Can't pickle <type 'thread.lock'>: attribute # lookup thread.lock failed # debug flag debug = 0 class FieldType(IntEnum): """ Represent the supported values of FieldType, i.e. FT_vertexBased or FT_cellBased. """ FT_vertexBased = 1 FT_cellBased = 2 @Pyro4.expose class Field(MupifObject.MupifObject, PhysicalQuantity): """ Representation of field. Field is a scalar, vector, or tensorial quantity defined on a spatial domain. The field, however is assumed to be fixed at certain time. The field can be evaluated in any spatial point belonging to underlying domain. Derived classes will implement fields defined on common discretizations, like fields defined on structured/unstructured FE meshes, FD grids, etc. .. automethod:: __init__ .. automethod:: _evaluate """ def __init__(self, mesh, fieldID, valueType, units, time, values=None, fieldType=FieldType.FT_vertexBased, objectID=0, metaData={}): """ Initializes the field instance. :param Mesh.Mesh mesh: Instance of a Mesh class representing the underlying discretization :param FieldID fieldID: Field type (displacement, strain, temperature ...) :param ValueType valueType: Type of field values (scalar, vector, tensor). Tensor is a tuple of 9 values. It is changed to 3x3 for VTK output automatically. :param Physics.PhysicalUnits units: Field value units :param Physics.PhysicalQuantity time: Time associated with field values :param values: Field values (format dependent on a particular field type, however each individual value should be stored as tuple, even scalar value) :type values: list of tuples representing individual values :param FieldType fieldType: Optional, determines field type (values specified as vertex or cell values), default is FT_vertexBased :param int objectID: Optional ID of problem object/subdomain to which field is related, default = 0 :param dict metaData: Optionally pass metadata for merging """ super(Field, self).__init__() self.mesh = mesh self.fieldID = fieldID self.valueType = valueType self.time = time self.uri = None # pyro uri; used in distributed setting # self.log = logging.getLogger() self.fieldType = fieldType self.objectID = objectID if values is None: if self.fieldType == FieldType.FT_vertexBased: ncomponents = mesh.getNumberOfVertices() else: ncomponents = mesh.getNumberOfCells() self.value = zeros((ncomponents, self.getRecordSize())) else: self.value = values if PhysicalQuantities.isPhysicalUnit(units): self.unit = units else: self.unit = PhysicalQuantities.findUnit(units) self.setMetadata('Units', self.unit.name()) self.setMetadata('Type', 'mupif.Field.Field') self.setMetadata('Type_ID', str(self.fieldID)) self.setMetadata('FieldType', str(fieldType)) self.setMetadata('ValueType', str(self.valueType)) self.updateMetadata(metaData) @classmethod def loadFromLocalFile(cls, fileName): """ Alternative constructor which loads instance directly from a Pickle module. :param str fileName: File name :return: Returns Field instance :rtype: Field """ return pickle.load(open(fileName, 'rb')) def getRecordSize(self): """ Return the number of scalars per value, depending on :obj:`valueType` passed when constructing the instance. :return: number of scalars (1,3,9 respectively for scalar, vector, tensor) :rtype: int """ if self.valueType == ValueType.Scalar: return 1 elif self.valueType == ValueType.Vector: return 3 elif self.valueType == ValueType.Tensor: return 9 else: raise ValueError("Invalid value of Field.valueType (%d)." % self.valueType) def getMesh(self): """ Obtain mesh. :return: Returns a mesh of underlying discretization :rtype: Mesh.Mesh """ return self.mesh def getValueType(self): """ Returns ValueType of the field, e.g. scalar, vector, tensor. :return: Returns value type of the receiver :rtype: ValueType """ return self.valueType def getFieldID(self): """ Returns FieldID, e.g. FID_Displacement, FID_Temperature. :return: Returns field ID :rtype: FieldID """ return self.fieldID def getFieldIDName(self): """ Returns name of the field. :return: Returns fieldID name :rtype: string """ return self.fieldID.name def getFieldType(self): """ Returns receiver field type (values specified as vertex or cell values) :return: Returns fieldType id :rtype: FieldType """ return self.fieldType def getTime(self): """ Get time of the field. :return: Time of field data :rtype: Physics.PhysicalQuantity """ return self.time def evaluate(self, positions, eps=0.0): """ Evaluates the receiver at given spatial position(s). :param positions: 1D/2D/3D position vectors :type positions: tuple, a list of tuples :param float eps: Optional tolerance for probing whether the point belongs to a cell (should really not be used) :return: field value(s) :rtype: Physics.PhysicalQuantity with given value or tuple of values """ # test if positions is a list of positions if isinstance(positions, list): ans = [] for pos in positions: ans.append(self._evaluate(pos, eps)) return PhysicalQuantity(ans, self.unit) else: # single position passed return PhysicalQuantity(self._evaluate(positions, eps), self.unit) def _evaluate(self, position, eps): """ Evaluates the receiver at a single spatial position. :param tuple position: 1D/2D/3D position vector :param float eps: Optional tolerance :return: field value :rtype: tuple of doubles .. note:: This method has some issues related to https://sourceforge.net/p/mupif/tickets/22/ . """ cells = self.mesh.giveCellLocalizer().giveItemsInBBox(BBox.BBox([c-eps for c in position], [c+eps for c in position])) # answer=None if len(cells): if self.fieldType == FieldType.FT_vertexBased: for icell in cells: try: if icell.containsPoint(position): if debug: log.debug(icell.getVertices()) try: answer = icell.interpolate(position, [self.value[i.number] for i in icell.getVertices()]) except IndexError: log.error('Field::evaluate failed, inconsistent data at cell %d' % icell.label) raise return answer except ZeroDivisionError: print('ZeroDivisionError?') log.debug(icell.number) log.debug(position) icell.debug = 1 log.debug(icell.containsPoint(position), icell.glob2loc(position)) log.error('Field::evaluate - no source cell found for position %s' % str(position)) for icell in cells: log.debug(icell.number) log.debug(icell.containsPoint(position)) log.debug(icell.glob2loc(position)) else: # if (self.fieldType == FieldType.FT_vertexBased): # in case of cell based fields do compute average of cell values containing point # this typically happens when point is on the shared edge or vertex count = 0 for icell in cells: if icell.containsPoint(position): if debug: log.debug(icell.getVertices()) try: tmp = self.value[icell.number] if count == 0: answer = list(tmp) else: for i in answer: answer = [x+y for x in answer for y in tmp] count += 1 except IndexError: log.error('Field::evaluate failed, inconsistent data at cell %d' % icell.label) log.error(icell.getVertices()) raise # end loop over icells if count == 0: log.error('Field::evaluate - no source cell found for position %s', str(position)) # for icell in cells: # log.debug(icell.number, icell.containsPoint(position), icell.glob2loc(position)) else: answer = [x/count for x in answer] return answer else: # no source cell found log.error('Field::evaluate - no source cell found for position ' + str(position)) raise ValueError('Field::evaluate - no source cell found for position ' + str(position)) def getVertexValue(self, vertexID): """ Returns the value associated with a given vertex. :param int vertexID: Vertex identifier :return: The value :rtype: Physics.PhysicalQuantity """ if self.fieldType == FieldType.FT_vertexBased: return PhysicalQuantity(self.value[vertexID], self.unit) else: raise TypeError('Attempt to acces vertex value of cell based field, use evaluate instead') def getCellValue(self, cellID): """ Returns the value associated with a given cell. :param int cellID: Cell identifier :return: The value :rtype: Physics.PhysicalQuantity """ if self.fieldType == FieldType.FT_cellBased: return PhysicalQuantity(self.value[cellID], self.unit) else: raise TypeError('Attempt to acces cell value of vertex based field, use evaluate instead') def _giveValue(self, componentID): """ Returns the value associated with a given component (vertex or cell). Depreceated, use getVertexValue() or getCellValue() :param int componentID: An identifier of a component: vertexID or cellID :return: The value :rtype: Physics.PhysicalQuantity """ return PhysicalQuantity(self.value[componentID], self.unit) def giveValue(self, componentID): """ Returns the value associated with a given component (vertex or cell). :param int componentID: An identifier of a component: vertexID or cellID :return: The value :rtype: tuple """ return self.value[componentID] def setValue(self, componentID, value): """ Sets the value associated with a given component (vertex or cell). :param int componentID: An identifier of a component: vertexID or cellID :param tuple value: Value to be set for a given component, should have the same units as receiver .. Note:: If a mesh has mapping attached (a mesh view) then we have to remember value locally and record change. The source field values are updated after commit() method is invoked. """ self.value[componentID] = value def commit(self): """ Commits the recorded changes (via setValue method) to a primary field. """ def getObjectID(self): """ Returns field objectID. :return: Object's ID :rtype: int """ return self.objectID def getUnits(self): """ :return: Returns units of the receiver :rtype: Physics.PhysicalUnits """ return self.unit def merge(self, field): """ Merges the receiver with given field together. Both fields should be on different parts of the domain (can also overlap), but should refer to same underlying discretization, otherwise unpredictable results can occur. :param Field field: given field to merge with. """ # first merge meshes mesh = copy.deepcopy(self.mesh) mesh.merge(field.mesh) log.debug(mesh) # merge the field values # some type checking first if self.fieldType != field.fieldType: raise TypeError("Field::merge: fieldType of receiver and parameter is different") if self.fieldType == FieldType.FT_vertexBased: values = [0]*mesh.getNumberOfVertices() for v in range(self.mesh.getNumberOfVertices()): values[mesh.vertexLabel2Number(self.mesh.getVertex(v).label)] = self.value[v] for v in range(field.mesh.getNumberOfVertices()): values[mesh.vertexLabel2Number(field.mesh.getVertex(v).label)] = field.value[v] else: values = [0]*mesh.getNumberOfCells() for v in range(self.mesh.getNumberOfCells()): values[mesh.cellLabel2Number(self.mesh.giveCell(v).label)] = self.value[v] for v in range(field.mesh.getNumberOfCells()): values[mesh.cellLabel2Number(field.mesh.giveCell(v).label)] = field.value[v] self.mesh = mesh self.value = values def field2VTKData (self, name=None, lookupTable=None): """ Creates VTK representation of the receiver. Useful for visualization. Requires pyvtk module. :param str name: human-readable name of the field :param pyvtk.LookupTable lookupTable: color lookup table :return: Instance of pyvtk :rtype: pyvtk.VtkData """ import pyvtk if name is None: name = self.getFieldIDName() if lookupTable and not isinstance(lookupTable, pyvtk.LookupTable): log.info('ignoring lookupTable which is not a pyvtk.LookupTable instance.') lookupTable = None if lookupTable is None: lookupTable=pyvtk.LookupTable([(0, .231, .298, 1.0), (.4, .865, .865, 1.0), (.8, .706, .016, 1.0)], name='coolwarm') # Scalars use different name than 'coolwarm'. Then Paraview uses its own color mapping instead of taking # 'coolwarm' from *.vtk file. This prevents setting Paraview's color mapping. scalarsKw = dict(name=name, lookup_table='default') else: scalarsKw = dict(name=name, lookup_table=lookupTable.name) # see http://cens.ioc.ee/cgi-bin/cvsweb/python/pyvtk/examples/example1.py?rev=1.3 for an example vectorsKw = dict(name=name) # vectors don't have a lookup_table if self.fieldType == FieldType.FT_vertexBased: if self.getValueType() == ValueType.Scalar: return pyvtk.VtkData(self.mesh.getVTKRepresentation(), pyvtk.PointData(pyvtk.Scalars([val[0] for val in self.value], **scalarsKw), lookupTable), 'Unstructured Grid Example') elif self.getValueType() == ValueType.Vector: return pyvtk.VtkData(self.mesh.getVTKRepresentation(), pyvtk.PointData(pyvtk.Vectors(self.value, **vectorsKw), lookupTable), 'Unstructured Grid Example') elif self.getValueType() == ValueType.Tensor: return pyvtk.VtkData(self.mesh.getVTKRepresentation(), pyvtk.PointData(pyvtk.Tensors(self.getMartixForTensor(self.value), **vectorsKw), lookupTable), 'Unstructured Grid Example') else: if self.getValueType() == ValueType.Scalar: return pyvtk.VtkData(self.mesh.getVTKRepresentation(), pyvtk.CellData(pyvtk.Scalars([val[0] for val in self.value], **scalarsKw), lookupTable), 'Unstructured Grid Example') elif self.getValueType() == ValueType.Vector: return pyvtk.VtkData(self.mesh.getVTKRepresentation(), pyvtk.CellData(pyvtk.Vectors(self.value, **vectorsKw),lookupTable), 'Unstructured Grid Example') elif self.getValueType() == ValueType.Tensor: return pyvtk.VtkData(self.mesh.getVTKRepresentation(), pyvtk.CellData(pyvtk.Tensors(self.getMartixForTensor(self.value), **vectorsKw), lookupTable), 'Unstructured Grid Example') def getMartixForTensor(self, values): """ Reshape values to a list with 3x3 arrays. Usable for VTK export. :param list values: List containing tuples of 9 values, e.g. [(1,2,3,4,5,6,7,8,9), (1,2,3,4,5,6,7,8,9), ...] :return: List containing 3x3 matrices for each tensor :rtype: list """ tensor = [] for i in values: tensor.append(numpy.reshape(i, (3, 3))) return tensor def dumpToLocalFile(self, fileName, protocol=pickle.HIGHEST_PROTOCOL): """ Dump Field to a file using a Pickle serialization module. :param str fileName: File name :param int protocol: Used protocol - 0=ASCII, 1=old binary, 2=new binary """ pickle.dump(self, open(fileName, 'wb'), protocol) def field2Image2D(self, plane='xy', elevation=(-1.e-6, 1.e-6), numX=10, numY=20, interp='linear', fieldComponent=0, vertex=True, colorBar='horizontal', colorBarLegend='', barRange=(None, None), barFormatNum='%.3g', title='', xlabel='', ylabel='', fileName='', show=True, figsize=(8, 4), matPlotFig=None): """ Plots and/or saves 2D image using a matplotlib library. Works for structured and unstructured 2D/3D fields. 2D/3D fields need to define plane. This method gives only basic viewing options, for aesthetic and more elaborated output use e.g. VTK field export with postprocessors such as ParaView or Mayavi. Idea from https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html#id1 :param str plane: what plane to extract from field, valid values are 'xy', 'xz', 'yz' :param tuple elevation: range of third coordinate. For example, in plane='xy' is grabs z coordinates in the range :param int numX: number of divisions on x graph axis :param int numY: number of divisions on y graph axis :param str interp: interpolation type when transferring to a grid. Valid values 'linear', 'nearest' or 'cubic' :param int fieldComponent: component of the field :param bool vertex: if vertices shoud be plot as points :param str colorBar: color bar details. Valid values '' for no colorbar, 'vertical' or 'horizontal' :param str colorBarLegend: Legend for color bar. If '', current field name and units are printed. None prints nothing. :param tuple barRange: min and max bar range. If barRange=('NaN','NaN'), it is adjusted automatically :param str barFormatNum: format of color bar numbers :param str title: title :param str xlabel: x axis label :param str ylabel: y axis label :param str fileName: if nonempty, a filename is written to the disk, usually png, pdf, ps, eps and svg are supported :param bool show: if the plot should be showed :param tuple figsize: size of canvas in inches. Affects only showing a figure. Image to a file adjust one side automatically. :param obj matPlotFig: False means plot window remains in separate thread, True waits until a plot window becomes closed :return: handle to matPlotFig :rtype: matPlotFig """ try: import numpy as np import math from scipy.interpolate import griddata import matplotlib matplotlib.use('TkAgg') # Qt4Agg gives an empty, black window import matplotlib.pyplot as plt except ImportError as e: log.error('Skipping field2Image2D due to missing modules: %s' % e) return None # raise if self.fieldType != FieldType.FT_vertexBased: raise APIError.APIError('Only FieldType.FT_vertexBased is now supported') mesh = self.getMesh() numVertices = mesh.getNumberOfVertices() indX = 0 indY = 0 elev = 0 if plane == 'xy': indX = 0 indY = 1 elev = 2 elif plane == 'xz': indX = 0 indY = 2 elev = 1 elif plane == 'yz': indX = 1 indY = 2 elev = 0 # find eligible vertex points and values vertexPoints = [] vertexValue = [] for i in range(0, numVertices): coords = mesh.getVertex(i).getCoordinates() # print(coords) value = self.giveValue(i)[fieldComponent] if elevation[1] > coords[elev] > elevation[0]: vertexPoints.append((coords[indX], coords[indY])) vertexValue.append(value) if len(vertexPoints) == 0: log.info('No valid vertex points found, putting zeros on domain 1 x 1') for i in range(5): vertexPoints.append((i % 2, i/4.)) vertexValue.append(0) # for i in range (0, len(vertexPoints)): # print (vertexPoints[i], vertexValue[i]) vertexPointsArr = np.array(vertexPoints) vertexValueArr = np.array(vertexValue) xMin = vertexPointsArr[:, 0].min() xMax = vertexPointsArr[:, 0].max() yMin = vertexPointsArr[:, 1].min() yMax = vertexPointsArr[:, 1].max() # print(xMin, xMax, yMin, yMax) grid_x, grid_y = np.mgrid[xMin:xMax:complex(0, numX), yMin:yMax:complex(0, numY)] grid_z1 = griddata(vertexPointsArr, vertexValueArr, (grid_x, grid_y), interp) # print (grid_z1.T) plt.ion() # ineractive mode if matPlotFig is None: matPlotFig = plt.figure(figsize=figsize) # plt.xlim(xMin, xMax) # plt.ylim(yMin, yMax) plt.clf() plt.axis((xMin, xMax, yMin, yMax)) image = plt.imshow(grid_z1.T, extent=(xMin, xMax, yMin, yMax), origin='lower', aspect='equal') # plt.margins(tight=True) # plt.tight_layout() # plt.margins(x=-0.3, y=-0.3) if colorBar: cbar = plt.colorbar(orientation=colorBar, format=barFormatNum) if colorBarLegend is not None: if colorBarLegend == '': colorBarLegend = self.getFieldIDName() + '_' + str(fieldComponent) if self.unit is not None: colorBarLegend = colorBarLegend + ' (' + self.unit.name() + ')' cbar.set_label(colorBarLegend, rotation=0 if colorBar == 'horizontal' else 90) if title: plt.title(title) if xlabel: plt.xlabel(xlabel) if ylabel: plt.ylabel(ylabel) if vertex == 1: plt.scatter(vertexPointsArr[:, 0], vertexPointsArr[:, 1], marker='o', c='b', s=5, zorder=10) # plt.axis('equal') # plt.gca().set_aspect('equal', adjustable='box-forced') if isinstance(barRange[0], float) or isinstance(barRange[0], int): image.set_clim(vmin=barRange[0], vmax=barRange[1]) if fileName: plt.savefig(fileName, bbox_inches='tight') if show: matPlotFig.canvas.draw() # plt.ioff() # plt.show(block=True) return matPlotFig def field2Image2DBlock(self): """ Block an open window from matPlotLib. Waits until closed. """ import matplotlib.pyplot as plt plt.ioff() plt.show(block=True) def toHdf5(self, fileName, group='component1/part1'): """ Dump field to HDF5, in a simple format suitable for interoperability (TODO: document). :param str fileName: HDF5 file :param str group: HDF5 group the data will be saved under. The HDF hierarchy is like this:: group | +--- mesh_01 {hash=25aa0aa04457} | +--- [vertex_coords] | +--- [cell_types] | \--- [cell_vertices] +--- mesh_02 {hash=17809e2b86ea} | +--- [vertex_coords] | +--- [cell_types] | \--- [cell_vertices] +--- ... +--- field_01 | +--- -> mesh_01 | \--- [vertex_values] +--- field_02 | +--- -> mesh_01 | \--- [vertex_values] +--- field_03 | +--- -> mesh_02 | \--- [cell_values] \--- ... where ``plain`` names are HDF (sub)groups, ``[bracketed]`` names are datasets, ``{name=value}`` are HDF attributes, ``->`` prefix indicated HDF5 hardlink (transparent to the user); numerical suffixes (``_01``, ...) are auto-allocated. Mesh objects are hardlinked using HDF5 hardlinks if an identical mesh is already stored in the group, based on hexdigest of its full data. .. note:: This method has not been tested yet. The format is subject to future changes. """ import h5py hdf = h5py.File(fileName, 'a', libver='latest') if group not in hdf: gg = hdf.create_group(group) else: gg = hdf[group] # raise IOError('Path "%s" is already used in "%s".'%(path,fileName)) def lowestUnused(trsf, predicate, start=1): """ Find the lowest unused index, where *predicate* is used to test for existence, and *trsf* transforms integer (starting at *start* and incremented until unused value is found) to whatever predicate accepts as argument. Lowest transformed value is returned. """ import itertools for i in itertools.count(start=start): t = trsf(i) if not predicate(t): return t # save mesh (not saved if there already) newgrp = lowestUnused(trsf=lambda i: 'mesh_%02d' % i, predicate=lambda t: t in gg) mh5 = self.getMesh().asHdf5Object(parentgroup=gg, newgroup=newgrp) if self.value: fieldGrp = hdf.create_group(lowestUnused(trsf=lambda i, group=group: group+'/field_%02d' % i, predicate=lambda t: t in hdf)) fieldGrp['mesh'] = mh5 fieldGrp.attrs['fieldID'] = self.fieldID fieldGrp.attrs['valueType'] = self.valueType # string/bytes may not contain NULL when stored as string in HDF5 # see http://docs.h5py.org/en/2.3/strings.html # that's why we cast to opaque type "void" and uncast using tostring before unpickling fieldGrp.attrs['units'] = numpy.void(pickle.dumps(self.unit)) fieldGrp.attrs['time'] = numpy.void(pickle.dumps(self.time)) # fieldGrp.attrs['time']=self.time.getValue() if self.fieldType == FieldType.FT_vertexBased: val = numpy.empty(shape=(self.getMesh().getNumberOfVertices(), self.getRecordSize()), dtype=numpy.float) for vert in range(self.getMesh().getNumberOfVertices()): val[vert] = self.getVertexValue(vert).getValue() fieldGrp['vertex_values'] = val elif self.fieldType == FieldType.FT_cellBased: # raise NotImplementedError("Saving cell-based fields to HDF5 is not yet implemented.") val = numpy.empty(shape=(self.getMesh().getNumberOfCells(), self.getRecordSize()), dtype=numpy.float) for cell in range(self.getMesh().getNumberOfCells()): val[cell] = self.getCellValue(cell) fieldGrp['cell_values'] = val else: raise RuntimeError("Unknown fieldType %d." % self.fieldType) @staticmethod def makeFromHdf5(fileName, group='component1/part1'): """ Restore Fields from HDF5 file. :param str fileName: HDF5 file :param str group: HDF5 group the data will be read from (IOError is raised if the group does not exist). :return: list of new :obj:`Field` instances :rtype: [Field,Field,...] .. note:: This method has not been tested yet. """ import h5py hdf = h5py.File(fileName, 'r', libver='latest') grp = hdf[group] # load mesh and field data from HDF5 meshObjs = [obj for name, obj in grp.items() if name.startswith('mesh_')] fieldObjs = [obj for name, obj in grp.items() if name.startswith('field_')] # construct all meshes as mupif objects meshes = [Mesh.Mesh.makeFromHdf5Object(meshObj) for meshObj in meshObjs] # construct all fields as mupif objects ret = [] for f in fieldObjs: if 'vertex_values' in f: fieldType, values = FieldType.FT_vertexBased, f['vertex_values'] elif 'cell_values' in f: fieldType, values = FieldType.FT_cellBased, f['cell_values'] else: ValueError("HDF5/mupif format error: unable to determine field type.") fieldID, valueType, units, time = FieldID(f.attrs['fieldID']), f.attrs['valueType'], f.attrs['units'].tostring(), f.attrs['time'].tostring() if units == '': units = None # special case, handled at saving time else: units = pickle.loads(units) if time == '': time = None # special case, handled at saving time else: time = pickle.loads(time) meshIndex = meshObjs.index(f['mesh']) # find which mesh object this field refers to ret.append(Field(mesh=meshes[meshIndex], fieldID=fieldID, units=units, time=time, valueType=valueType, values=values, fieldType=fieldType)) return ret def toVTK2(self, fileName, format='ascii'): """ Save the instance as Unstructured Grid in VTK2 format (``.vtk``). :param str fileName: where to save :param str format: one of ``ascii`` or ``binary`` """ self.field2VTKData().tofile(filename=fileName, format=format) @staticmethod def makeFromVTK2(fileName, unit, time=0, skip=['coolwarm']): """ Return fields stored in *fileName* in the VTK2 (``.vtk``) format. :param str fileName: filename to load from :param PhysicalUnit unit: physical unit of filed values :param float time: time value for created fields (time is not saved in VTK2, thus cannot be recovered) :param [string,] skip: file names to be skipped when reading the input file; the default value skips the default coolwarm colormap. :returns: one field from VTK :rtype: Field """ import pyvtk from .dataID import FieldID if not fileName.endswith('.vtk'): log.warning('Field.makeFromVTK2: fileName should end with .vtk, you may get in trouble (proceeding).') ret = [] try: data = pyvtk.VtkData(fileName) # this is where reading the file happens (inside pyvtk) except NotImplementedError: log.info('pyvtk fails to open (binary?) file "%s", trying through vtk.vtkGenericDataReader.' % fileName) return Field.makeFromVTK3(fileName, time=time, units=unit, forceVersion2=True) ugr = data.structure if not isinstance(ugr, pyvtk.UnstructuredGrid): raise NotImplementedError( "grid type %s is not handled by mupif (only UnstructuredGrid is)." % ugr.__class__.__name__) mesh = Mesh.UnstructuredMesh.makeFromPyvtkUnstructuredGrid(ugr) # get cell and point data pd, cd = data.point_data.data, data.cell_data.data for dd, fieldType in (pd, FieldType.FT_vertexBased), (cd, FieldType.FT_cellBased): for d in dd: # will raise KeyError if fieldID with that name is not defined if d.name in skip: continue fid = FieldID[d.name] # determine the number of components using the expected number of values from the mesh expectedNumVal = (mesh.getNumberOfVertices() if fieldType == FieldType.FT_vertexBased else mesh.getNumberOfCells()) nc = len(d.scalars)//expectedNumVal valueType = ValueType.fromNumberOfComponents(nc) values = [d.scalars[i*nc:i*nc+nc] for i in range(len(d.scalars))] ret.append(Field( mesh=mesh, fieldID=fid, units=unit, # not stored at all time=time, # not stored either, set by caller valueType=valueType, values=values, fieldType=fieldType )) return ret def toVTK3(self, fileName, **kw): """ Save the instance as Unstructured Grid in VTK3 format (``.vtu``). This is a simple proxy for calling :obj:`manyToVTK3` with the instance as the only field to be saved. If multiple fields with identical mesh are to be saved in VTK3, use :obj:`manyToVTK3` directly. :param fileName: output file name :param ``**kw``: passed to :obj:`manyToVTK3` """ return self.manyToVTK3([self], fileName, **kw) @staticmethod def manyToVTK3(fields, fileName, ascii=False, compress=True): """ Save all fields passed as argument into VTK3 Unstructured Grid file (``*.vtu``). All *fields* must be defined on the same mesh object; exception will be raised if this is not the case. :param list of Field fields: :param fileName: output file name :param bool ascii: write numbers are ASCII in the XML-based VTU file (rather than base64-encoded binary in XML) :param bool compress: apply compression to the data """ import vtk if not fields: raise ValueError('At least one field must be passed.') # check if all fields are defined on the same mesh if len(set([f.mesh for f in fields])) != 1: raise RuntimeError( 'Not all fields are sharing the same Mesh object (and could not be saved to a single .vtu file') # convert mesh to VTK UnstructuredGrid mesh = fields[0].getMesh() vtkgrid = mesh.asVtkUnstructuredGrid() # add fields as arrays for f in fields: arr = vtk.vtkDoubleArray() arr.SetNumberOfComponents(f.getRecordSize()) arr.SetName(f.getFieldIDName()) assert f.getFieldType() in (FieldType.FT_vertexBased, FieldType.FT_cellBased) # other future types not handled if f.getFieldType() == FieldType.FT_vertexBased: nn = mesh.getNumberOfVertices() else: nn = mesh.getNumberOfCells() arr.SetNumberOfValues(nn) for i in range(nn): arr.SetTuple(i, f.giveValue(i)) if f.getFieldType() == FieldType.FT_vertexBased: vtkgrid.GetPointData().AddArray(arr) else: vtkgrid.GetCellData().AddArray(arr) # write the unstructured grid to file writer = vtk.vtkXMLUnstructuredGridWriter() if compress: writer.SetCompressor(vtk.vtkZLibDataCompressor()) if ascii: writer.SetDataModeToAscii() writer.SetFileName(fileName) # change between VTK5 and VTK6 if vtk.vtkVersion().GetVTKMajorVersion() == 6: writer.SetInputData(vtkgrid) else: writer.SetInputData(vtkgrid) writer.Write() # finito @staticmethod def makeFromVTK3(fileName, units, time=0, forceVersion2=False): """ Create fields from a VTK unstructured grid file (``.vtu``, format version 3, or ``.vtp`` with *forceVersion2*); the mesh is shared between fields. ``vtk.vtkXMLGenericDataObjectReader`` is used to open the file (unless *forceVersion2* is set), but it is checked that contained dataset is a ``vtk.vtkUnstructuredGrid`` and an error is raised if not. .. note:: Units are not supported when loading from VTK, all fields will have ``None`` unit assigned. :param str fileName: VTK (``*.vtu``) file :param PhysicalUnit units: units of read values :param float time: time value for created fields (time is not saved in VTK3, thus cannot be recovered) :param bool forceVersion2: if ``True``, ``vtk.vtkGenericDataObjectReader`` (for VTK version 2) will be used to open the file, isntead of ``vtk.vtkXMLGenericDataObjectReader``; this also supposes *fileName* ends with ``.vtk`` (not checked, but may cause an error). :return: list of new :obj:`Field` instances :rtype: [Field,Field,...] """ import vtk from .dataID import FieldID # rr=vtk.vtkXMLUnstructuredGridReader() if forceVersion2 or fileName.endswith('.vtk'): rr = vtk.vtkGenericDataObjectReader() else: rr = vtk.vtkXMLGenericDataObjectReader() rr.SetFileName(fileName) rr.Update() ugrid = rr.GetOutput() if not isinstance(ugrid, vtk.vtkUnstructuredGrid): raise RuntimeError("vtkDataObject read from '%s' must be a vtkUnstructuredGrid (not a %s)" % ( fileName, ugrid.__class__.__name__)) # import sys # sys.stderr.write(str((ugrid,ugrid.__class__,vtk.vtkUnstructuredGrid))) # make mesh -- implemented separately mesh = Mesh.UnstructuredMesh.makeFromVtkUnstructuredGrid(ugrid) # fields which will be returned ret = [] # get cell and point data cd, pd = ugrid.GetCellData(), ugrid.GetPointData() for data, fieldType in (pd, FieldType.FT_vertexBased), (cd, FieldType.FT_cellBased): for idata in range(data.GetNumberOfArrays()): aname, arr = pd.GetArrayName(idata), pd.GetArray(idata) nt = arr.GetNumberOfTuples() if nt == 0: raise RuntimeError("Zero values in field '%s', unable to determine value type." % aname) t0 = arr.GetTuple(0) valueType = ValueType.fromNumberOfComponents(len(arr.GetTuple(0))) # this will raise KeyError if fieldID with that name not defined fid = FieldID[aname] # get actual values as tuples values = [arr.GetTuple(t) for t in range(nt)] ret.append(Field( mesh=mesh, fieldID=fid, units=units, # not stored at all time=time, # not stored either, set by caller valueType=valueType, values=values, fieldType=fieldType )) return ret def _sum(self, other, sign1, sign2): """ Should return a new instance. As deep copy is expensive, this operation should be avoided. Better to modify the field values. """ raise TypeError('Not supported') def inUnitsOf(self, *units): """ Should return a new instance. As deep copy is expensive, this operation should be avoided. Better to use convertToUnits method performing in place conversion. """ raise TypeError('Not supported') # def __deepcopy__(self, memo): # """ Deepcopy operatin modified not to include attributes starting with underscore. # These are supposed to be the ones valid only to s specific copy of the receiver. # An example of these attributes are _PyroURI (injected by Application), # where _PyroURI contains the URI of specific object, the copy should receive # its own URI # """ # cls = self.__class__ # dpcpy = cls.__new__(cls) # # memo[id(self)] = dpcpy # for attr in dir(self): # if not attr.startswith('_'): # value = getattr(self, attr) # setattr(dpcpy, attr, copy.deepcopy(value, memo)) # return dpcpy
lgpl-3.0
miloharper/neural-network-animation
matplotlib/tests/test_ticker.py
9
4261
from __future__ import (absolute_import, division, print_function, unicode_literals) import six import nose.tools from nose.tools import assert_raises from numpy.testing import assert_almost_equal import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as mticker from matplotlib.testing.decorators import cleanup def test_MaxNLocator(): loc = mticker.MaxNLocator(nbins=5) test_value = np.array([20., 40., 60., 80., 100.]) assert_almost_equal(loc.tick_values(20, 100), test_value) test_value = np.array([0., 0.0002, 0.0004, 0.0006, 0.0008, 0.001]) assert_almost_equal(loc.tick_values(0.001, 0.0001), test_value) test_value = np.array([-1.0e+15, -5.0e+14, 0e+00, 5e+14, 1.0e+15]) assert_almost_equal(loc.tick_values(-1e15, 1e15), test_value) def test_LinearLocator(): loc = mticker.LinearLocator(numticks=3) test_value = np.array([-0.8, -0.3, 0.2]) assert_almost_equal(loc.tick_values(-0.8, 0.2), test_value) def test_MultipleLocator(): loc = mticker.MultipleLocator(base=3.147) test_value = np.array([-9.441, -6.294, -3.147, 0., 3.147, 6.294, 9.441, 12.588]) assert_almost_equal(loc.tick_values(-7, 10), test_value) @cleanup def test_AutoMinorLocator(): fig, ax = plt.subplots() ax.set_xlim(0, 1.39) ax.minorticks_on() test_value = np.array([0.05, 0.1, 0.15, 0.25, 0.3, 0.35, 0.45, 0.5, 0.55, 0.65, 0.7, 0.75, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.25, 1.3, 1.35]) assert_almost_equal(ax.xaxis.get_ticklocs(minor=True), test_value) def test_LogLocator(): loc = mticker.LogLocator(numticks=5) assert_raises(ValueError, loc.tick_values, 0, 1000) test_value = np.array([1.00000000e-05, 1.00000000e-03, 1.00000000e-01, 1.00000000e+01, 1.00000000e+03, 1.00000000e+05, 1.00000000e+07, 1.000000000e+09]) assert_almost_equal(loc.tick_values(0.001, 1.1e5), test_value) loc = mticker.LogLocator(base=2) test_value = np.array([0.5, 1., 2., 4., 8., 16., 32., 64., 128., 256.]) assert_almost_equal(loc.tick_values(1, 100), test_value) def test_LogFormatterExponent(): class FakeAxis(object): """Allow Formatter to be called without having a "full" plot set up.""" def get_view_interval(self): return 1, 10 i = np.arange(-3, 4, dtype=float) expected_result = ['-3', '-2', '-1', '0', '1', '2', '3'] for base in [2, 5, 10, np.pi, np.e]: formatter = mticker.LogFormatterExponent(base=base) formatter.axis = FakeAxis() vals = base**i labels = [formatter(x, pos) for (x, pos) in zip(vals, i)] nose.tools.assert_equal(labels, expected_result) # Should be a blank string for non-integer powers if labelOnlyBase=True formatter = mticker.LogFormatterExponent(base=10, labelOnlyBase=True) formatter.axis = FakeAxis() nose.tools.assert_equal(formatter(10**0.1), '') # Otherwise, non-integer powers should be nicely formatted locs = np.array([0.1, 0.00001, np.pi, 0.2, -0.2, -0.00001]) i = range(len(locs)) expected_result = ['0.1', '1e-05', '3.14', '0.2', '-0.2', '-1e-05'] for base in [2, 5, 10, np.pi, np.e]: formatter = mticker.LogFormatterExponent(base, labelOnlyBase=False) formatter.axis = FakeAxis() vals = base**locs labels = [formatter(x, pos) for (x, pos) in zip(vals, i)] nose.tools.assert_equal(labels, expected_result) def test_use_offset(): for use_offset in [True, False]: with matplotlib.rc_context({'axes.formatter.useoffset': use_offset}): tmp_form = mticker.ScalarFormatter() nose.tools.assert_equal(use_offset, tmp_form.get_useOffset()) def test_formatstrformatter(): # test % style formatter tmp_form = mticker.FormatStrFormatter('%05d') nose.tools.assert_equal('00002', tmp_form(2)) # test str.format() style formatter tmp_form = mticker.StrMethodFormatter('{x:05d}') nose.tools.assert_equal('00002', tmp_form(2)) if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
mit
marionleborgne/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/contour.py
69
42063
""" These are classes to support contour plotting and labelling for the axes class """ from __future__ import division import warnings import matplotlib as mpl import numpy as np from numpy import ma import matplotlib._cntr as _cntr import matplotlib.path as path import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib.colors as colors import matplotlib.collections as collections import matplotlib.font_manager as font_manager import matplotlib.text as text import matplotlib.cbook as cbook import matplotlib.mlab as mlab # Import needed for adding manual selection capability to clabel from matplotlib.blocking_input import BlockingContourLabeler # We can't use a single line collection for contour because a line # collection can have only a single line style, and we want to be able to have # dashed negative contours, for example, and solid positive contours. # We could use a single polygon collection for filled contours, but it # seems better to keep line and filled contours similar, with one collection # per level. class ContourLabeler: '''Mixin to provide labelling capability to ContourSet''' def clabel(self, *args, **kwargs): """ call signature:: clabel(cs, **kwargs) adds labels to line contours in *cs*, where *cs* is a :class:`~matplotlib.contour.ContourSet` object returned by contour. :: clabel(cs, v, **kwargs) only labels contours listed in *v*. Optional keyword arguments: *fontsize*: See http://matplotlib.sf.net/fonts.html *colors*: - if *None*, the color of each label matches the color of the corresponding contour - if one string color, e.g. *colors* = 'r' or *colors* = 'red', all labels will be plotted in this color - if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be plotted in different colors in the order specified *inline*: controls whether the underlying contour is removed or not. Default is *True*. *inline_spacing*: space in pixels to leave on each side of label when placing inline. Defaults to 5. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. *fmt*: a format string for the label. Default is '%1.3f' Alternatively, this can be a dictionary matching contour levels with arbitrary strings to use for each contour level (i.e., fmt[level]=string) *manual*: if *True*, contour labels will be placed manually using mouse clicks. Click the first button near a contour to add a label, click the second button (or potentially both mouse buttons at once) to finish adding labels. The third button can be used to remove the last label added, but only if labels are not inline. Alternatively, the keyboard can be used to select label locations (enter to end label placement, delete or backspace act like the third mouse button, and any other key will select a label location). .. plot:: mpl_examples/pylab_examples/contour_demo.py """ """ NOTES on how this all works: clabel basically takes the input arguments and uses them to add a list of "label specific" attributes to the ContourSet object. These attributes are all of the form label* and names should be fairly self explanatory. Once these attributes are set, clabel passes control to the labels method (case of automatic label placement) or BlockingContourLabeler (case of manual label placement). """ fontsize = kwargs.get('fontsize', None) inline = kwargs.get('inline', 1) inline_spacing = kwargs.get('inline_spacing', 5) self.labelFmt = kwargs.get('fmt', '%1.3f') _colors = kwargs.get('colors', None) # Detect if manual selection is desired and remove from argument list self.labelManual=kwargs.get('manual',False) if len(args) == 0: levels = self.levels indices = range(len(self.levels)) elif len(args) == 1: levlabs = list(args[0]) indices, levels = [], [] for i, lev in enumerate(self.levels): if lev in levlabs: indices.append(i) levels.append(lev) if len(levels) < len(levlabs): msg = "Specified levels " + str(levlabs) msg += "\n don't match available levels " msg += str(self.levels) raise ValueError(msg) else: raise TypeError("Illegal arguments to clabel, see help(clabel)") self.labelLevelList = levels self.labelIndiceList = indices self.labelFontProps = font_manager.FontProperties() if fontsize == None: font_size = int(self.labelFontProps.get_size_in_points()) else: if type(fontsize) not in [int, float, str]: raise TypeError("Font size must be an integer number.") # Can't it be floating point, as indicated in line above? else: if type(fontsize) == str: font_size = int(self.labelFontProps.get_size_in_points()) else: self.labelFontProps.set_size(fontsize) font_size = fontsize self.labelFontSizeList = [font_size] * len(levels) if _colors == None: self.labelMappable = self self.labelCValueList = np.take(self.cvalues, self.labelIndiceList) else: cmap = colors.ListedColormap(_colors, N=len(self.labelLevelList)) self.labelCValueList = range(len(self.labelLevelList)) self.labelMappable = cm.ScalarMappable(cmap = cmap, norm = colors.NoNorm()) #self.labelTexts = [] # Initialized in ContourSet.__init__ #self.labelCValues = [] # same self.labelXYs = [] if self.labelManual: print 'Select label locations manually using first mouse button.' print 'End manual selection with second mouse button.' if not inline: print 'Remove last label by clicking third mouse button.' blocking_contour_labeler = BlockingContourLabeler(self) blocking_contour_labeler(inline,inline_spacing) else: self.labels(inline,inline_spacing) # Hold on to some old attribute names. These are depricated and will # be removed in the near future (sometime after 2008-08-01), but keeping # for now for backwards compatibility self.cl = self.labelTexts self.cl_xy = self.labelXYs self.cl_cvalues = self.labelCValues self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts) return self.labelTextsList def print_label(self, linecontour,labelwidth): "if contours are too short, don't plot a label" lcsize = len(linecontour) if lcsize > 10 * labelwidth: return 1 xmax = np.amax(linecontour[:,0]) xmin = np.amin(linecontour[:,0]) ymax = np.amax(linecontour[:,1]) ymin = np.amin(linecontour[:,1]) lw = labelwidth if (xmax - xmin) > 1.2* lw or (ymax - ymin) > 1.2 * lw: return 1 else: return 0 def too_close(self, x,y, lw): "if there's a label already nearby, find a better place" if self.labelXYs != []: dist = [np.sqrt((x-loc[0]) ** 2 + (y-loc[1]) ** 2) for loc in self.labelXYs] for d in dist: if d < 1.2*lw: return 1 else: return 0 else: return 0 def get_label_coords(self, distances, XX, YY, ysize, lw): """ labels are ploted at a location with the smallest dispersion of the contour from a straight line unless there's another label nearby, in which case the second best place on the contour is picked up if there's no good place a label isplotted at the beginning of the contour """ hysize = int(ysize/2) adist = np.argsort(distances) for ind in adist: x, y = XX[ind][hysize], YY[ind][hysize] if self.too_close(x,y, lw): continue else: return x,y, ind ind = adist[0] x, y = XX[ind][hysize], YY[ind][hysize] return x,y, ind def get_label_width(self, lev, fmt, fsize): "get the width of the label in points" if cbook.is_string_like(lev): lw = (len(lev)) * fsize else: lw = (len(self.get_text(lev,fmt))) * fsize return lw def get_real_label_width( self, lev, fmt, fsize ): """ This computes actual onscreen label width. This uses some black magic to determine onscreen extent of non-drawn label. This magic may not be very robust. """ # Find middle of axes xx = np.mean( np.asarray(self.ax.axis()).reshape(2,2), axis=1 ) # Temporarily create text object t = text.Text( xx[0], xx[1] ) self.set_label_props( t, self.get_text(lev,fmt), 'k' ) # Some black magic to get onscreen extent # NOTE: This will only work for already drawn figures, as the canvas # does not have a renderer otherwise. This is the reason this function # can't be integrated into the rest of the code. bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer) # difference in pixel extent of image lw = np.diff(bbox.corners()[0::2,0])[0] return lw def set_label_props(self, label, text, color): "set the label properties - color, fontsize, text" label.set_text(text) label.set_color(color) label.set_fontproperties(self.labelFontProps) label.set_clip_box(self.ax.bbox) def get_text(self, lev, fmt): "get the text of the label" if cbook.is_string_like(lev): return lev else: if isinstance(fmt,dict): return fmt[lev] else: return fmt%lev def locate_label(self, linecontour, labelwidth): """find a good place to plot a label (relatively flat part of the contour) and the angle of rotation for the text object """ nsize= len(linecontour) if labelwidth > 1: xsize = int(np.ceil(nsize/labelwidth)) else: xsize = 1 if xsize == 1: ysize = nsize else: ysize = labelwidth XX = np.resize(linecontour[:,0],(xsize, ysize)) YY = np.resize(linecontour[:,1],(xsize, ysize)) #I might have fouled up the following: yfirst = YY[:,0].reshape(xsize, 1) ylast = YY[:,-1].reshape(xsize, 1) xfirst = XX[:,0].reshape(xsize, 1) xlast = XX[:,-1].reshape(xsize, 1) s = (yfirst-YY) * (xlast-xfirst) - (xfirst-XX) * (ylast-yfirst) L = np.sqrt((xlast-xfirst)**2+(ylast-yfirst)**2).ravel() dist = np.add.reduce(([(abs(s)[i]/L[i]) for i in range(xsize)]),-1) x,y,ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth) #print 'ind, x, y', ind, x, y # There must be a more efficient way... lc = [tuple(l) for l in linecontour] dind = lc.index((x,y)) #print 'dind', dind #dind = list(linecontour).index((x,y)) return x, y, dind def calc_label_rot_and_inline( self, slc, ind, lw, lc=None, spacing=5 ): """ This function calculates the appropriate label rotation given the linecontour coordinates in screen units, the index of the label location and the label width. It will also break contour and calculate inlining if *lc* is not empty (lc defaults to the empty list if None). *spacing* is the space around the label in pixels to leave empty. Do both of these tasks at once to avoid calling mlab.path_length multiple times, which is relatively costly. The method used here involves calculating the path length along the contour in pixel coordinates and then looking approximately label width / 2 away from central point to determine rotation and then to break contour if desired. """ if lc is None: lc = [] # Half the label width hlw = lw/2.0 # Check if closed and, if so, rotate contour so label is at edge closed = mlab.is_closed_polygon(slc) if closed: slc = np.r_[ slc[ind:-1], slc[:ind+1] ] if len(lc): # Rotate lc also if not empty lc = np.r_[ lc[ind:-1], lc[:ind+1] ] ind = 0 # Path length in pixel space pl = mlab.path_length(slc) pl = pl-pl[ind] # Use linear interpolation to get points around label xi = np.array( [ -hlw, hlw ] ) if closed: # Look at end also for closed contours dp = np.array([pl[-1],0]) else: dp = np.zeros_like(xi) ll = mlab.less_simple_linear_interpolation( pl, slc, dp+xi, extrap=True ) # get vector in pixel space coordinates from one point to other dd = np.diff( ll, axis=0 ).ravel() # Get angle of vector - must be calculated in pixel space for # text rotation to work correctly if np.all(dd==0): # Must deal with case of zero length label rotation = 0.0 else: rotation = np.arctan2(dd[1], dd[0]) * 180.0 / np.pi # Fix angle so text is never upside-down if rotation > 90: rotation = rotation - 180.0 if rotation < -90: rotation = 180.0 + rotation # Break contour if desired nlc = [] if len(lc): # Expand range by spacing xi = dp + xi + np.array([-spacing,spacing]) # Get indices near points of interest I = mlab.less_simple_linear_interpolation( pl, np.arange(len(pl)), xi, extrap=False ) # If those indices aren't beyond contour edge, find x,y if (not np.isnan(I[0])) and int(I[0])<>I[0]: xy1 = mlab.less_simple_linear_interpolation( pl, lc, [ xi[0] ] ) if (not np.isnan(I[1])) and int(I[1])<>I[1]: xy2 = mlab.less_simple_linear_interpolation( pl, lc, [ xi[1] ] ) # Make integer I = [ np.floor(I[0]), np.ceil(I[1]) ] # Actually break contours if closed: # This will remove contour if shorter than label if np.all(~np.isnan(I)): nlc.append( np.r_[ xy2, lc[I[1]:I[0]+1], xy1 ] ) else: # These will remove pieces of contour if they have length zero if not np.isnan(I[0]): nlc.append( np.r_[ lc[:I[0]+1], xy1 ] ) if not np.isnan(I[1]): nlc.append( np.r_[ xy2, lc[I[1]:] ] ) # The current implementation removes contours completely # covered by labels. Uncomment line below to keep # original contour if this is the preferred behavoir. #if not len(nlc): nlc = [ lc ] return (rotation,nlc) def add_label(self,x,y,rotation,lev,cvalue): dx,dy = self.ax.transData.inverted().transform_point((x,y)) t = text.Text(dx, dy, rotation = rotation, horizontalalignment='center', verticalalignment='center') color = self.labelMappable.to_rgba(cvalue,alpha=self.alpha) _text = self.get_text(lev,self.labelFmt) self.set_label_props(t, _text, color) self.labelTexts.append(t) self.labelCValues.append(cvalue) self.labelXYs.append((x,y)) # Add label to plot here - useful for manual mode label selection self.ax.add_artist(t) def pop_label(self,index=-1): '''Defaults to removing last label, but any index can be supplied''' self.labelCValues.pop(index) t = self.labelTexts.pop(index) t.remove() def labels(self, inline, inline_spacing): trans = self.ax.transData # A bit of shorthand for icon, lev, fsize, cvalue in zip( self.labelIndiceList, self.labelLevelList, self.labelFontSizeList, self.labelCValueList ): con = self.collections[icon] lw = self.get_label_width(lev, self.labelFmt, fsize) additions = [] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # Line contour slc0 = trans.transform(lc) # Line contour in screen coords # For closed polygons, add extra point to avoid division by # zero in print_label and locate_label. Other than these # functions, this is not necessary and should probably be # eventually removed. if mlab.is_closed_polygon( lc ): slc = np.r_[ slc0, slc0[1:2,:] ] else: slc = slc0 if self.print_label(slc,lw): # Check if long enough for a label x,y,ind = self.locate_label(slc, lw) if inline: lcarg = lc else: lcarg = None rotation,new=self.calc_label_rot_and_inline( slc0, ind, lw, lcarg, inline_spacing ) # Actually add the label self.add_label(x,y,rotation,lev,cvalue) # If inline, add new contours if inline: for n in new: # Add path if not empty or single point if len(n)>1: additions.append( path.Path(n) ) else: # If not adding label, keep old path additions.append(linepath) # After looping over all segments on a contour, remove old # paths and add new ones if inlining if inline: del paths[:] paths.extend(additions) class ContourSet(cm.ScalarMappable, ContourLabeler): """ Create and store a set of contour lines or filled regions. User-callable method: clabel Useful attributes: ax: the axes object in which the contours are drawn collections: a silent_list of LineCollections or PolyCollections levels: contour levels layers: same as levels for line contours; half-way between levels for filled contours. See _process_colors method. """ def __init__(self, ax, *args, **kwargs): """ Draw contour lines or filled regions, depending on whether keyword arg 'filled' is False (default) or True. The first argument of the initializer must be an axes object. The remaining arguments and keyword arguments are described in ContourSet.contour_doc. """ self.ax = ax self.levels = kwargs.get('levels', None) self.filled = kwargs.get('filled', False) self.linewidths = kwargs.get('linewidths', None) self.linestyles = kwargs.get('linestyles', 'solid') self.alpha = kwargs.get('alpha', 1.0) self.origin = kwargs.get('origin', None) self.extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) self.colors = kwargs.get('colors', None) norm = kwargs.get('norm', None) self.extend = kwargs.get('extend', 'neither') self.antialiased = kwargs.get('antialiased', True) self.nchunk = kwargs.get('nchunk', 0) self.locator = kwargs.get('locator', None) if (isinstance(norm, colors.LogNorm) or isinstance(self.locator, ticker.LogLocator)): self.logscale = True if norm is None: norm = colors.LogNorm() if self.extend is not 'neither': raise ValueError('extend kwarg does not work yet with log scale') else: self.logscale = False if self.origin is not None: assert(self.origin in ['lower', 'upper', 'image']) if self.extent is not None: assert(len(self.extent) == 4) if cmap is not None: assert(isinstance(cmap, colors.Colormap)) if self.colors is not None and cmap is not None: raise ValueError('Either colors or cmap must be None') if self.origin == 'image': self.origin = mpl.rcParams['image.origin'] x, y, z = self._contour_args(*args) # also sets self.levels, # self.layers if self.colors is not None: cmap = colors.ListedColormap(self.colors, N=len(self.layers)) if self.filled: self.collections = cbook.silent_list('collections.PolyCollection') else: self.collections = cbook.silent_list('collections.LineCollection') # label lists must be initialized here self.labelTexts = [] self.labelCValues = [] kw = {'cmap': cmap} if norm is not None: kw['norm'] = norm cm.ScalarMappable.__init__(self, **kw) # sets self.cmap; self._process_colors() _mask = ma.getmask(z) if _mask is ma.nomask: _mask = None if self.filled: if self.linewidths is not None: warnings.warn('linewidths is ignored by contourf') C = _cntr.Cntr(x, y, z.filled(), _mask) lowers = self._levels[:-1] uppers = self._levels[1:] for level, level_upper in zip(lowers, uppers): nlist = C.trace(level, level_upper, points = 0, nchunk = self.nchunk) col = collections.PolyCollection(nlist, antialiaseds = (self.antialiased,), edgecolors= 'none', alpha=self.alpha) self.ax.add_collection(col) self.collections.append(col) else: tlinewidths = self._process_linewidths() self.tlinewidths = tlinewidths tlinestyles = self._process_linestyles() C = _cntr.Cntr(x, y, z.filled(), _mask) for level, width, lstyle in zip(self.levels, tlinewidths, tlinestyles): nlist = C.trace(level, points = 0) col = collections.LineCollection(nlist, linewidths = width, linestyle = lstyle, alpha=self.alpha) if level < 0.0 and self.monochrome: ls = mpl.rcParams['contour.negative_linestyle'] col.set_linestyle(ls) col.set_label('_nolegend_') self.ax.add_collection(col, False) self.collections.append(col) self.changed() # set the colors x0 = ma.minimum(x) x1 = ma.maximum(x) y0 = ma.minimum(y) y1 = ma.maximum(y) self.ax.update_datalim([(x0,y0), (x1,y1)]) self.ax.autoscale_view() def changed(self): tcolors = [ (tuple(rgba),) for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)] self.tcolors = tcolors for color, collection in zip(tcolors, self.collections): collection.set_alpha(self.alpha) collection.set_color(color) for label, cv in zip(self.labelTexts, self.labelCValues): label.set_alpha(self.alpha) label.set_color(self.labelMappable.to_rgba(cv)) # add label colors cm.ScalarMappable.changed(self) def _autolev(self, z, N): ''' Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. ''' if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N+1) self.locator.create_dummy_axis() zmax = self.zmax zmin = self.zmin self.locator.set_bounds(zmin, zmax) lev = self.locator() zmargin = (zmax - zmin) * 0.000001 # so z < (zmax + zmargin) if zmax >= lev[-1]: lev[-1] += zmargin if zmin <= lev[0]: if self.logscale: lev[0] = 0.99 * zmin else: lev[0] -= zmargin self._auto = True if self.filled: return lev return lev[1:-1] def _initialize_x_y(self, z): ''' Return X, Y arrays such that contour(Z) will match imshow(Z) if origin is not None. The center of pixel Z[i,j] depends on origin: if origin is None, x = j, y = i; if origin is 'lower', x = j + 0.5, y = i + 0.5; if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5 If extent is not None, x and y will be scaled to match, as in imshow. If origin is None and extent is not None, then extent will give the minimum and maximum values of x and y. ''' if z.ndim != 2: raise TypeError("Input must be a 2D array.") else: Ny, Nx = z.shape if self.origin is None: # Not for image-matching. if self.extent is None: return np.meshgrid(np.arange(Nx), np.arange(Ny)) else: x0,x1,y0,y1 = self.extent x = np.linspace(x0, x1, Nx) y = np.linspace(y0, y1, Ny) return np.meshgrid(x, y) # Match image behavior: if self.extent is None: x0,x1,y0,y1 = (0, Nx, 0, Ny) else: x0,x1,y0,y1 = self.extent dx = float(x1 - x0)/Nx dy = float(y1 - y0)/Ny x = x0 + (np.arange(Nx) + 0.5) * dx y = y0 + (np.arange(Ny) + 0.5) * dy if self.origin == 'upper': y = y[::-1] return np.meshgrid(x,y) def _check_xyz(self, args): ''' For functions like contour, check that the dimensions of the input arrays match; if x and y are 1D, convert them to 2D using meshgrid. Possible change: I think we should make and use an ArgumentError Exception class (here and elsewhere). ''' # We can strip away the x and y units x = self.ax.convert_xunits( args[0] ) y = self.ax.convert_yunits( args[1] ) x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) z = ma.asarray(args[2], dtype=np.float64) if z.ndim != 2: raise TypeError("Input z must be a 2D array.") else: Ny, Nx = z.shape if x.shape == z.shape and y.shape == z.shape: return x,y,z if x.ndim != 1 or y.ndim != 1: raise TypeError("Inputs x and y must be 1D or 2D.") nx, = x.shape ny, = y.shape if nx != Nx or ny != Ny: raise TypeError("Length of x must be number of columns in z,\n" + "and length of y must be number of rows.") x,y = np.meshgrid(x,y) return x,y,z def _contour_args(self, *args): if self.filled: fn = 'contourf' else: fn = 'contour' Nargs = len(args) if Nargs <= 2: z = ma.asarray(args[0], dtype=np.float64) x, y = self._initialize_x_y(z) elif Nargs <=4: x,y,z = self._check_xyz(args[:3]) else: raise TypeError("Too many arguments to %s; see help(%s)" % (fn,fn)) self.zmax = ma.maximum(z) self.zmin = ma.minimum(z) if self.logscale and self.zmin <= 0: z = ma.masked_where(z <= 0, z) warnings.warn('Log scale: values of z <=0 have been masked') self.zmin = z.min() self._auto = False if self.levels is None: if Nargs == 1 or Nargs == 3: lev = self._autolev(z, 7) else: # 2 or 4 args level_arg = args[-1] try: if type(level_arg) == int: lev = self._autolev(z, level_arg) else: lev = np.asarray(level_arg).astype(np.float64) except: raise TypeError( "Last %s arg must give levels; see help(%s)" % (fn,fn)) if self.filled and len(lev) < 2: raise ValueError("Filled contours require at least 2 levels.") # Workaround for cntr.c bug wrt masked interior regions: #if filled: # z = ma.masked_array(z.filled(-1e38)) # It's not clear this is any better than the original bug. self.levels = lev #if self._auto and self.extend in ('both', 'min', 'max'): # raise TypeError("Auto level selection is inconsistent " # + "with use of 'extend' kwarg") self._levels = list(self.levels) if self.extend in ('both', 'min'): self._levels.insert(0, min(self.levels[0],self.zmin) - 1) if self.extend in ('both', 'max'): self._levels.append(max(self.levels[-1],self.zmax) + 1) self._levels = np.asarray(self._levels) self.vmin = np.amin(self.levels) # alternative would be self.layers self.vmax = np.amax(self.levels) if self.extend in ('both', 'min'): self.vmin = 2 * self.levels[0] - self.levels[1] if self.extend in ('both', 'max'): self.vmax = 2 * self.levels[-1] - self.levels[-2] self.layers = self._levels # contour: a line is a thin layer if self.filled: self.layers = 0.5 * (self._levels[:-1] + self._levels[1:]) if self.extend in ('both', 'min'): self.layers[0] = 0.5 * (self.vmin + self._levels[1]) if self.extend in ('both', 'max'): self.layers[-1] = 0.5 * (self.vmax + self._levels[-2]) return (x, y, z) def _process_colors(self): """ Color argument processing for contouring. Note that we base the color mapping on the contour levels, not on the actual range of the Z values. This means we don't have to worry about bad values in Z, and we always have the full dynamic range available for the selected levels. The color is based on the midpoint of the layer, except for an extended end layers. """ self.monochrome = self.cmap.monochrome if self.colors is not None: i0, i1 = 0, len(self.layers) if self.extend in ('both', 'min'): i0 = -1 if self.extend in ('both', 'max'): i1 = i1 + 1 self.cvalues = range(i0, i1) self.set_norm(colors.NoNorm()) else: self.cvalues = self.layers if not self.norm.scaled(): self.set_clim(self.vmin, self.vmax) if self.extend in ('both', 'max', 'min'): self.norm.clip = False self.set_array(self.layers) # self.tcolors are set by the "changed" method def _process_linewidths(self): linewidths = self.linewidths Nlev = len(self.levels) if linewidths is None: tlinewidths = [(mpl.rcParams['lines.linewidth'],)] *Nlev else: if cbook.iterable(linewidths) and len(linewidths) < Nlev: linewidths = list(linewidths) * int(np.ceil(Nlev/len(linewidths))) elif not cbook.iterable(linewidths) and type(linewidths) in [int, float]: linewidths = [linewidths] * Nlev tlinewidths = [(w,) for w in linewidths] return tlinewidths def _process_linestyles(self): linestyles = self.linestyles Nlev = len(self.levels) if linestyles is None: tlinestyles = ['solid'] * Nlev else: if cbook.is_string_like(linestyles): tlinestyles = [linestyles] * Nlev elif cbook.iterable(linestyles) and len(linestyles) <= Nlev: tlinestyles = list(linestyles) * int(np.ceil(Nlev/len(linestyles))) return tlinestyles def get_alpha(self): '''returns alpha to be applied to all ContourSet artists''' return self.alpha def set_alpha(self, alpha): '''sets alpha for all ContourSet artists''' self.alpha = alpha self.changed() contour_doc = """ :func:`~matplotlib.pyplot.contour` and :func:`~matplotlib.pyplot.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions. :func:`~matplotlib.pyplot.contourf` differs from the Matlab (TM) version in that it does not draw the polygon edges, because the contouring engine yields simply connected regions with branch cuts. To draw the edges, add line contours with calls to :func:`~matplotlib.pyplot.contour`. call signatures:: contour(Z) make a contour plot of an array *Z*. The level values are chosen automatically. :: contour(X,Y,Z) *X*, *Y* specify the (*x*, *y*) coordinates of the surface :: contour(Z,N) contour(X,Y,Z,N) contour *N* automatically-chosen levels. :: contour(Z,V) contour(X,Y,Z,V) draw contour lines at the values specified in sequence *V* :: contourf(..., V) fill the (len(*V*)-1) regions between the values in *V* :: contour(Z, **kwargs) Use keyword args to control colors, linewidth, origin, cmap ... see below for more details. *X*, *Y*, and *Z* must be arrays with the same dimensions. *Z* may be a masked array, but filled contouring may not handle internal masked regions correctly. ``C = contour(...)`` returns a :class:`~matplotlib.contour.ContourSet` object. Optional keyword arguments: *colors*: [ None | string | (mpl_colors) ] If *None*, the colormap specified by cmap will be used. If a string, like 'r' or 'red', all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. *alpha*: float The alpha blending value *cmap*: [ None | Colormap ] A cm :class:`~matplotlib.cm.Colormap` instance or *None*. If *cmap* is *None* and *colors* is *None*, a default Colormap is used. *norm*: [ None | Normalize ] A :class:`matplotlib.colors.Normalize` instance for scaling data values to colors. If *norm* is *None* and *colors* is *None*, the default linear scaling is used. *origin*: [ None | 'upper' | 'lower' | 'image' ] If *None*, the first value of *Z* will correspond to the lower left corner, location (0,0). If 'image', the rc value for ``image.origin`` will be used. This keyword is not active if *X* and *Y* are specified in the call to contour. *extent*: [ None | (x0,x1,y0,y1) ] If *origin* is not *None*, then *extent* is interpreted as in :func:`matplotlib.pyplot.imshow`: it gives the outer pixel boundaries. In this case, the position of Z[0,0] is the center of the pixel, not a corner. If *origin* is *None*, then (*x0*, *y0*) is the position of Z[0,0], and (*x1*, *y1*) is the position of Z[-1,-1]. This keyword is not active if *X* and *Y* are specified in the call to contour. *locator*: [ None | ticker.Locator subclass ] If *locator* is None, the default :class:`~matplotlib.ticker.MaxNLocator` is used. The locator is used to determine the contour levels if they are not given explicitly via the *V* argument. *extend*: [ 'neither' | 'both' | 'min' | 'max' ] Unless this is 'neither', contour levels are automatically added to one or both ends of the range so that all data are included. These added ranges are then mapped to the special colormap values which default to the ends of the colormap range, but can be set via :meth:`matplotlib.cm.Colormap.set_under` and :meth:`matplotlib.cm.Colormap.set_over` methods. contour-only keyword arguments: *linewidths*: [ None | number | tuple of numbers ] If *linewidths* is *None*, the default width in ``lines.linewidth`` in ``matplotlibrc`` is used. If a number, all levels will be plotted with this linewidth. If a tuple, different levels will be plotted with different linewidths in the order specified *linestyles*: [None | 'solid' | 'dashed' | 'dashdot' | 'dotted' ] If *linestyles* is *None*, the 'solid' is used. *linestyles* can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary. If contour is using a monochrome colormap and the contour level is less than 0, then the linestyle specified in ``contour.negative_linestyle`` in ``matplotlibrc`` will be used. contourf-only keyword arguments: *antialiased*: [ True | False ] enable antialiasing *nchunk*: [ 0 | integer ] If 0, no subdivision of the domain. Specify a positive integer to divide the domain into subdomains of roughly *nchunk* by *nchunk* points. This may never actually be advantageous, so this option may be removed. Chunking introduces artifacts at the chunk boundaries unless *antialiased* is *False*. **Example:** .. plot:: mpl_examples/pylab_examples/contour_demo.py """ def find_nearest_contour( self, x, y, indices=None, pixel=True ): """ Finds contour that is closest to a point. Defaults to measuring distance in pixels (screen space - useful for manual contour labeling), but this can be controlled via a keyword argument. Returns a tuple containing the contour, segment, index of segment, x & y of segment point and distance to minimum point. Call signature:: conmin,segmin,imin,xmin,ymin,dmin = find_nearest_contour( self, x, y, indices=None, pixel=True ) Optional keyword arguments:: *indices*: Indexes of contour levels to consider when looking for nearest point. Defaults to using all levels. *pixel*: If *True*, measure distance in pixel space, if not, measure distance in axes space. Defaults to *True*. """ # This function uses a method that is probably quite # inefficient based on converting each contour segment to # pixel coordinates and then comparing the given point to # those coordinates for each contour. This will probably be # quite slow for complex contours, but for normal use it works # sufficiently well that the time is not noticeable. # Nonetheless, improvements could probably be made. if indices==None: indices = range(len(self.levels)) dmin = 1e10 conmin = None segmin = None xmin = None ymin = None for icon in indices: con = self.collections[icon] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # transfer all data points to screen coordinates if desired if pixel: lc = self.ax.transData.transform(lc) ds = (lc[:,0]-x)**2 + (lc[:,1]-y)**2 d = min( ds ) if d < dmin: dmin = d conmin = icon segmin = segNum imin = mpl.mlab.find( ds == d )[0] xmin = lc[imin,0] ymin = lc[imin,1] return (conmin,segmin,imin,xmin,ymin,dmin)
agpl-3.0
numenta/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/colorbar.py
69
27260
''' Colorbar toolkit with two classes and a function: :class:`ColorbarBase` the base class with full colorbar drawing functionality. It can be used as-is to make a colorbar for a given colormap; a mappable object (e.g., image) is not needed. :class:`Colorbar` the derived class for use with images or contour plots. :func:`make_axes` a function for resizing an axes and adding a second axes suitable for a colorbar The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes` and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`. ''' import numpy as np import matplotlib as mpl import matplotlib.colors as colors import matplotlib.cm as cm import matplotlib.ticker as ticker import matplotlib.cbook as cbook import matplotlib.lines as lines import matplotlib.patches as patches import matplotlib.collections as collections import matplotlib.contour as contour make_axes_kw_doc = ''' ========== ==================================================== Property Description ========== ==================================================== *fraction* 0.15; fraction of original axes to use for colorbar *pad* 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new image axes *shrink* 1.0; fraction by which to shrink the colorbar *aspect* 20; ratio of long to short dimensions ========== ==================================================== ''' colormap_kw_doc = ''' =========== ==================================================== Property Description =========== ==================================================== *extend* [ 'neither' | 'both' | 'min' | 'max' ] If not 'neither', make pointed end(s) for out-of- range values. These are set for a given colormap using the colormap set_under and set_over methods. *spacing* [ 'uniform' | 'proportional' ] Uniform spacing gives each discrete color the same space; proportional makes the space proportional to the data interval. *ticks* [ None | list of ticks | Locator object ] If None, ticks are determined automatically from the input. *format* [ None | format string | Formatter object ] If None, the :class:`~matplotlib.ticker.ScalarFormatter` is used. If a format string is given, e.g. '%.3f', that is used. An alternative :class:`~matplotlib.ticker.Formatter` object may be given instead. *drawedges* [ False | True ] If true, draw lines at color boundaries. =========== ==================================================== The following will probably be useful only in the context of indexed colors (that is, when the mappable has norm=NoNorm()), or other unusual circumstances. ============ =================================================== Property Description ============ =================================================== *boundaries* None or a sequence *values* None or a sequence which must be of length 1 less than the sequence of *boundaries*. For each region delimited by adjacent entries in *boundaries*, the color mapped to the corresponding value in values will be used. ============ =================================================== ''' colorbar_doc = ''' Add a colorbar to a plot. Function signatures for the :mod:`~matplotlib.pyplot` interface; all but the first are also method signatures for the :meth:`~matplotlib.figure.Figure.colorbar` method:: colorbar(**kwargs) colorbar(mappable, **kwargs) colorbar(mappable, cax=cax, **kwargs) colorbar(mappable, ax=ax, **kwargs) arguments: *mappable* the :class:`~matplotlib.image.Image`, :class:`~matplotlib.contour.ContourSet`, etc. to which the colorbar applies; this argument is mandatory for the :meth:`~matplotlib.figure.Figure.colorbar` method but optional for the :func:`~matplotlib.pyplot.colorbar` function, which sets the default to the current image. keyword arguments: *cax* None | axes object into which the colorbar will be drawn *ax* None | parent axes object from which space for a new colorbar axes will be stolen Additional keyword arguments are of two kinds: axes properties: %s colorbar properties: %s If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend* kwarg is included automatically. Note that the *shrink* kwarg provides a simple way to keep a vertical colorbar, for example, from being taller than the axes of the mappable to which the colorbar is attached; but it is a manual method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a smaller value of *shrink*. For more precise control, you can manually specify the positions of the axes objects in which the mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs. returns: :class:`~matplotlib.colorbar.Colorbar` instance; see also its base class, :class:`~matplotlib.colorbar.ColorbarBase`. Call the :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method to label the colorbar. ''' % (make_axes_kw_doc, colormap_kw_doc) class ColorbarBase(cm.ScalarMappable): ''' Draw a colorbar in an existing axes. This is a base class for the :class:`Colorbar` class, which is the basis for the :func:`~matplotlib.pyplot.colorbar` method and pylab function. It is also useful by itself for showing a colormap. If the *cmap* kwarg is given but *boundaries* and *values* are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and over-value colors, specify the *norm* as:: colors.Normalize(clip=False) To show the colors versus index instead of on the 0-1 scale, use:: norm=colors.NoNorm. Useful attributes: :attr:`ax` the Axes instance in which the colorbar is drawn :attr:`lines` a LineCollection if lines were drawn, otherwise None :attr:`dividers` a LineCollection if *drawedges* is True, otherwise None Useful public methods are :meth:`set_label` and :meth:`add_lines`. ''' _slice_dict = {'neither': slice(0,1000000), 'both': slice(1,-1), 'min': slice(1,1000000), 'max': slice(0,-1)} def __init__(self, ax, cmap=None, norm=None, alpha=1.0, values=None, boundaries=None, orientation='vertical', extend='neither', spacing='uniform', # uniform or proportional ticks=None, format=None, drawedges=False, filled=True, ): self.ax = ax if cmap is None: cmap = cm.get_cmap() if norm is None: norm = colors.Normalize() self.alpha = alpha cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm) self.values = values self.boundaries = boundaries self.extend = extend self._inside = self._slice_dict[extend] self.spacing = spacing self.orientation = orientation self.drawedges = drawedges self.filled = filled self.solids = None self.lines = None self.dividers = None self.set_label('') if cbook.iterable(ticks): self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) else: self.locator = ticks # Handle default in _ticker() if format is None: if isinstance(self.norm, colors.LogNorm): self.formatter = ticker.LogFormatter() else: self.formatter = ticker.ScalarFormatter() elif cbook.is_string_like(format): self.formatter = ticker.FormatStrFormatter(format) else: self.formatter = format # Assume it is a Formatter # The rest is in a method so we can recalculate when clim changes. self.draw_all() def draw_all(self): ''' Calculate any free parameters based on the current cmap and norm, and do all the drawing. ''' self._process_values() self._find_range() X, Y = self._mesh() C = self._values[:,np.newaxis] self._config_axes(X, Y) if self.filled: self._add_solids(X, Y, C) self._set_label() def _config_axes(self, X, Y): ''' Make an axes patch and outline. ''' ax = self.ax ax.set_frame_on(False) ax.set_navigate(False) xy = self._outline(X, Y) ax.update_datalim(xy) ax.set_xlim(*ax.dataLim.intervalx) ax.set_ylim(*ax.dataLim.intervaly) self.outline = lines.Line2D(xy[:, 0], xy[:, 1], color=mpl.rcParams['axes.edgecolor'], linewidth=mpl.rcParams['axes.linewidth']) ax.add_artist(self.outline) self.outline.set_clip_box(None) self.outline.set_clip_path(None) c = mpl.rcParams['axes.facecolor'] self.patch = patches.Polygon(xy, edgecolor=c, facecolor=c, linewidth=0.01, zorder=-1) ax.add_artist(self.patch) ticks, ticklabels, offset_string = self._ticker() if self.orientation == 'vertical': ax.set_xticks([]) ax.yaxis.set_label_position('right') ax.yaxis.set_ticks_position('right') ax.set_yticks(ticks) ax.set_yticklabels(ticklabels) ax.yaxis.get_major_formatter().set_offset_string(offset_string) else: ax.set_yticks([]) ax.xaxis.set_label_position('bottom') ax.set_xticks(ticks) ax.set_xticklabels(ticklabels) ax.xaxis.get_major_formatter().set_offset_string(offset_string) def _set_label(self): if self.orientation == 'vertical': self.ax.set_ylabel(self._label, **self._labelkw) else: self.ax.set_xlabel(self._label, **self._labelkw) def set_label(self, label, **kw): ''' Label the long axis of the colorbar ''' self._label = label self._labelkw = kw self._set_label() def _outline(self, X, Y): ''' Return *x*, *y* arrays of colorbar bounding polygon, taking orientation into account. ''' N = X.shape[0] ii = [0, 1, N-2, N-1, 2*N-1, 2*N-2, N+1, N, 0] x = np.take(np.ravel(np.transpose(X)), ii) y = np.take(np.ravel(np.transpose(Y)), ii) x = x.reshape((len(x), 1)) y = y.reshape((len(y), 1)) if self.orientation == 'horizontal': return np.hstack((y, x)) return np.hstack((x, y)) def _edges(self, X, Y): ''' Return the separator line segments; helper for _add_solids. ''' N = X.shape[0] # Using the non-array form of these line segments is much # simpler than making them into arrays. if self.orientation == 'vertical': return [zip(X[i], Y[i]) for i in range(1, N-1)] else: return [zip(Y[i], X[i]) for i in range(1, N-1)] def _add_solids(self, X, Y, C): ''' Draw the colors using :meth:`~matplotlib.axes.Axes.pcolor`; optionally add separators. ''' ## Change to pcolorfast after fixing bugs in some backends... if self.orientation == 'vertical': args = (X, Y, C) else: args = (np.transpose(Y), np.transpose(X), np.transpose(C)) kw = {'cmap':self.cmap, 'norm':self.norm, 'shading':'flat', 'alpha':self.alpha} # Save, set, and restore hold state to keep pcolor from # clearing the axes. Ordinarily this will not be needed, # since the axes object should already have hold set. _hold = self.ax.ishold() self.ax.hold(True) col = self.ax.pcolor(*args, **kw) self.ax.hold(_hold) #self.add_observer(col) # We should observe, not be observed... self.solids = col if self.drawedges: self.dividers = collections.LineCollection(self._edges(X,Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=(0.5*mpl.rcParams['axes.linewidth'],) ) self.ax.add_collection(self.dividers) def add_lines(self, levels, colors, linewidths): ''' Draw lines on the colorbar. ''' N = len(levels) dummy, y = self._locate(levels) if len(y) <> N: raise ValueError("levels are outside colorbar range") x = np.array([0.0, 1.0]) X, Y = np.meshgrid(x,y) if self.orientation == 'vertical': xy = [zip(X[i], Y[i]) for i in range(N)] else: xy = [zip(Y[i], X[i]) for i in range(N)] col = collections.LineCollection(xy, linewidths=linewidths) self.lines = col col.set_color(colors) self.ax.add_collection(col) def _ticker(self): ''' Return two sequences: ticks (colorbar data locations) and ticklabels (strings). ''' locator = self.locator formatter = self.formatter if locator is None: if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator() else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b, nbins=10) if isinstance(self.norm, colors.NoNorm): intv = self._values[0], self._values[-1] else: intv = self.vmin, self.vmax locator.create_dummy_axis() formatter.create_dummy_axis() locator.set_view_interval(*intv) locator.set_data_interval(*intv) formatter.set_view_interval(*intv) formatter.set_data_interval(*intv) b = np.array(locator()) b, ticks = self._locate(b) formatter.set_locs(b) ticklabels = [formatter(t, i) for i, t in enumerate(b)] offset_string = formatter.get_offset() return ticks, ticklabels, offset_string def _process_values(self, b=None): ''' Set the :attr:`_boundaries` and :attr:`_values` attributes based on the input boundaries and values. Input boundaries can be *self.boundaries* or the argument *b*. ''' if b is None: b = self.boundaries if b is not None: self._boundaries = np.asarray(b, dtype=float) if self.values is None: self._values = 0.5*(self._boundaries[:-1] + self._boundaries[1:]) if isinstance(self.norm, colors.NoNorm): self._values = (self._values + 0.00001).astype(np.int16) return self._values = np.array(self.values) return if self.values is not None: self._values = np.array(self.values) if self.boundaries is None: b = np.zeros(len(self.values)+1, 'd') b[1:-1] = 0.5*(self._values[:-1] - self._values[1:]) b[0] = 2.0*b[1] - b[2] b[-1] = 2.0*b[-2] - b[-3] self._boundaries = b return self._boundaries = np.array(self.boundaries) return # Neither boundaries nor values are specified; # make reasonable ones based on cmap and norm. if isinstance(self.norm, colors.NoNorm): b = self._uniform_y(self.cmap.N+1) * self.cmap.N - 0.5 v = np.zeros((len(b)-1,), dtype=np.int16) v[self._inside] = np.arange(self.cmap.N, dtype=np.int16) if self.extend in ('both', 'min'): v[0] = -1 if self.extend in ('both', 'max'): v[-1] = self.cmap.N self._boundaries = b self._values = v return elif isinstance(self.norm, colors.BoundaryNorm): b = list(self.norm.boundaries) if self.extend in ('both', 'min'): b = [b[0]-1] + b if self.extend in ('both', 'max'): b = b + [b[-1] + 1] b = np.array(b) v = np.zeros((len(b)-1,), dtype=float) bi = self.norm.boundaries v[self._inside] = 0.5*(bi[:-1] + bi[1:]) if self.extend in ('both', 'min'): v[0] = b[0] - 1 if self.extend in ('both', 'max'): v[-1] = b[-1] + 1 self._boundaries = b self._values = v return else: if not self.norm.scaled(): self.norm.vmin = 0 self.norm.vmax = 1 b = self.norm.inverse(self._uniform_y(self.cmap.N+1)) if self.extend in ('both', 'min'): b[0] = b[0] - 1 if self.extend in ('both', 'max'): b[-1] = b[-1] + 1 self._process_values(b) def _find_range(self): ''' Set :attr:`vmin` and :attr:`vmax` attributes to the first and last boundary excluding extended end boundaries. ''' b = self._boundaries[self._inside] self.vmin = b[0] self.vmax = b[-1] def _central_N(self): '''number of boundaries **before** extension of ends''' nb = len(self._boundaries) if self.extend == 'both': nb -= 2 elif self.extend in ('min', 'max'): nb -= 1 return nb def _extended_N(self): ''' Based on the colormap and extend variable, return the number of boundaries. ''' N = self.cmap.N + 1 if self.extend == 'both': N += 2 elif self.extend in ('min', 'max'): N += 1 return N def _uniform_y(self, N): ''' Return colorbar data coordinates for *N* uniformly spaced boundaries, plus ends if required. ''' if self.extend == 'neither': y = np.linspace(0, 1, N) else: if self.extend == 'both': y = np.zeros(N + 2, 'd') y[0] = -0.05 y[-1] = 1.05 elif self.extend == 'min': y = np.zeros(N + 1, 'd') y[0] = -0.05 else: y = np.zeros(N + 1, 'd') y[-1] = 1.05 y[self._inside] = np.linspace(0, 1, N) return y def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): b = self._boundaries[self._inside] y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) if self.extend in ('both', 'min'): y[0] = -0.05 if self.extend in ('both', 'max'): y[-1] = 1.05 yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = norm(yi) return y def _mesh(self): ''' Return X,Y, the coordinate arrays for the colorbar pcolormesh. These are suitable for a vertical colorbar; swapping and transposition for a horizontal colorbar are done outside this function. ''' x = np.array([0.0, 1.0]) if self.spacing == 'uniform': y = self._uniform_y(self._central_N()) else: y = self._proportional_y() self._y = y X, Y = np.meshgrid(x,y) if self.extend in ('min', 'both'): X[0,:] = 0.5 if self.extend in ('max', 'both'): X[-1,:] = 0.5 return X, Y def _locate(self, x): ''' Given a possible set of color data values, return the ones within range, together with their corresponding colorbar data coordinates. ''' if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): b = self._boundaries xn = x xout = x else: # Do calculations using normalized coordinates so # as to make the interpolation more accurate. b = self.norm(self._boundaries, clip=False).filled() # We do our own clipping so that we can allow a tiny # bit of slop in the end point ticks to allow for # floating point errors. xn = self.norm(x, clip=False).filled() in_cond = (xn > -0.001) & (xn < 1.001) xn = np.compress(in_cond, xn) xout = np.compress(in_cond, x) # The rest is linear interpolation with clipping. y = self._y N = len(b) ii = np.minimum(np.searchsorted(b, xn), N-1) i0 = np.maximum(ii - 1, 0) #db = b[ii] - b[i0] db = np.take(b, ii) - np.take(b, i0) db = np.where(i0==ii, 1.0, db) #dy = y[ii] - y[i0] dy = np.take(y, ii) - np.take(y, i0) z = np.take(y, i0) + (xn-np.take(b,i0))*dy/db return xout, z def set_alpha(self, alpha): self.alpha = alpha class Colorbar(ColorbarBase): def __init__(self, ax, mappable, **kw): mappable.autoscale_None() # Ensure mappable.norm.vmin, vmax # are set when colorbar is called, # even if mappable.draw has not yet # been called. This will not change # vmin, vmax if they are already set. self.mappable = mappable kw['cmap'] = mappable.cmap kw['norm'] = mappable.norm kw['alpha'] = mappable.get_alpha() if isinstance(mappable, contour.ContourSet): CS = mappable kw['boundaries'] = CS._levels kw['values'] = CS.cvalues kw['extend'] = CS.extend #kw['ticks'] = CS._levels kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10)) kw['filled'] = CS.filled ColorbarBase.__init__(self, ax, **kw) if not CS.filled: self.add_lines(CS) else: ColorbarBase.__init__(self, ax, **kw) def add_lines(self, CS): ''' Add the lines from a non-filled :class:`~matplotlib.contour.ContourSet` to the colorbar. ''' if not isinstance(CS, contour.ContourSet) or CS.filled: raise ValueError('add_lines is only for a ContourSet of lines') tcolors = [c[0] for c in CS.tcolors] tlinewidths = [t[0] for t in CS.tlinewidths] # The following was an attempt to get the colorbar lines # to follow subsequent changes in the contour lines, # but more work is needed: specifically, a careful # look at event sequences, and at how # to make one object track another automatically. #tcolors = [col.get_colors()[0] for col in CS.collections] #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections] #print 'tlinewidths:', tlinewidths ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths) def update_bruteforce(self, mappable): ''' Manually change any contour line colors. This is called when the image or contour plot to which this colorbar belongs is changed. ''' # We are using an ugly brute-force method: clearing and # redrawing the whole thing. The problem is that if any # properties have been changed by methods other than the # colorbar methods, those changes will be lost. self.ax.cla() self.draw_all() #if self.vmin != self.norm.vmin or self.vmax != self.norm.vmax: # self.ax.cla() # self.draw_all() if isinstance(self.mappable, contour.ContourSet): CS = self.mappable if not CS.filled: self.add_lines(CS) #if self.lines is not None: # tcolors = [c[0] for c in CS.tcolors] # self.lines.set_color(tcolors) #Fixme? Recalculate boundaries, ticks if vmin, vmax have changed. #Fixme: Some refactoring may be needed; we should not # be recalculating everything if there was a simple alpha # change. def make_axes(parent, **kw): orientation = kw.setdefault('orientation', 'vertical') fraction = kw.pop('fraction', 0.15) shrink = kw.pop('shrink', 1.0) aspect = kw.pop('aspect', 20) #pb = transforms.PBox(parent.get_position()) pb = parent.get_position(original=True).frozen() if orientation == 'vertical': pad = kw.pop('pad', 0.05) x1 = 1.0-fraction pb1, pbx, pbcb = pb.splitx(x1-pad, x1) pbcb = pbcb.shrunk(1.0, shrink).anchored('C', pbcb) anchor = (0.0, 0.5) panchor = (1.0, 0.5) else: pad = kw.pop('pad', 0.15) pbcb, pbx, pb1 = pb.splity(fraction, fraction+pad) pbcb = pbcb.shrunk(shrink, 1.0).anchored('C', pbcb) aspect = 1.0/aspect anchor = (0.5, 1.0) panchor = (0.5, 0.0) parent.set_position(pb1) parent.set_anchor(panchor) fig = parent.get_figure() cax = fig.add_axes(pbcb) cax.set_aspect(aspect, anchor=anchor, adjustable='box') return cax, kw make_axes.__doc__ =''' Resize and reposition a parent axes, and return a child axes suitable for a colorbar:: cax, kw = make_axes(parent, **kw) Keyword arguments may include the following (with defaults): *orientation* 'vertical' or 'horizontal' %s All but the first of these are stripped from the input kw set. Returns (cax, kw), the child axes and the reduced kw dictionary. ''' % make_axes_kw_doc
agpl-3.0
NDManh/numbbo
code-postprocessing/bbob_pproc/comp2/pptable2.py
3
20251
#! /usr/bin/env python # -*- coding: utf-8 -*- """Rank-sum tests table on "Final Data Points". That is, for example, using 1/#fevals(ftarget) if ftarget was reached and -f_final otherwise as input for the rank-sum test, where obviously the larger the better. One table per function and dimension. """ from __future__ import absolute_import import os, warnings import numpy import matplotlib.pyplot as plt from .. import genericsettings, bestalg, toolsstats, pproc from ..pptex import tableLaTeX, tableLaTeXStar, writeFEvals2, writeFEvalsMaxPrec, writeLabels from ..toolsstats import significancetest from pdb import set_trace targetsOfInterest = pproc.TargetValues((1e+1, 1e-1, 1e-3, 1e-5, 1e-7)) targetf = 1e-8 # value for determining the success ratio samplesize = genericsettings.simulated_runlength_bootstrap_sample_size table_caption_one = r"""% Expected running time (ERT in number of function evaluations) divided by the respective best ERT measured during BBOB-2009 in dimensions 5 (left) and 20 (right). The ERT and in braces, as dispersion measure, the half difference between 90 and 10\%-tile of bootstrapped run lengths appear for each algorithm and """ table_caption_two1 = r"""% target, the corresponding best ERT in the first row. The different target \Df-values are shown in the top row. \#succ is the number of trials that reached the (final) target $\fopt + 10^{-8}$. """ table_caption_two2 = r"""% run-length based target, the corresponding best ERT (preceded by the target \Df-value in \textit{italics}) in the first row. \#succ is the number of trials that reached the target value of the last column. """ table_caption_rest = r"""% The median number of conducted function evaluations is additionally given in \textit{italics}, if the target in the last column was never reached. 1:\algorithmAshort\ is \algorithmA\ and 2:\algorithmBshort\ is \algorithmB. Bold entries are statistically significantly better compared to the other algorithm, with $p=0.05$ or $p=10^{-k}$ where $k\in\{2,3,4,\dots\}$ is the number following the $\star$ symbol, with Bonferroni correction of #1. A $\downarrow$ indicates the same tested against the best algorithm of BBOB-2009. """ table_caption = table_caption_one + table_caption_two1 + table_caption_rest table_caption_expensive = table_caption_one + table_caption_two2 + table_caption_rest def main(dsList0, dsList1, dimsOfInterest, outputdir, info='', verbose=True): """One table per dimension, modified to fit in 1 page per table.""" #TODO: method is long, split if possible dictDim0 = dsList0.dictByDim() dictDim1 = dsList1.dictByDim() alg0 = set(i[0] for i in dsList0.dictByAlg().keys()).pop().replace(genericsettings.extraction_folder_prefix, '')[0:3] alg1 = set(i[0] for i in dsList1.dictByAlg().keys()).pop().replace(genericsettings.extraction_folder_prefix, '')[0:3] open(os.path.join(outputdir, 'bbob_pproc_commands.tex'), 'a' ).write(r'\providecommand{\algorithmAshort}{%s}' % writeLabels(alg0) + '\n' + r'\providecommand{\algorithmBshort}{%s}' % writeLabels(alg1) + '\n') if info: info = '_' + info dims = set.intersection(set(dictDim0.keys()), set(dictDim1.keys())) bestalgentries = bestalg.loadBestAlgorithm(dsList0.isBiobjective()) header = [] if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): header = [r'\#FEs/D'] headerHtml = ['<thead>\n<tr>\n<th>#FEs/D</th>\n'] for label in targetsOfInterest.labels(): header.append(r'\multicolumn{2}{@{}c@{}}{%s}' % label) headerHtml.append('<td>%s</td>\n' % label) else: header = [r'$\Delta f_\mathrm{opt}$'] headerHtml = ['<thead>\n<tr>\n<th>&#916; f</th>\n'] for label in targetsOfInterest.labels(): header.append(r'\multicolumn{2}{@{\,}c@{\,}}{%s}' % label) headerHtml.append('<td>%s</td>\n' % label) header.append(r'\multicolumn{2}{@{}l@{}}{\#succ}') headerHtml.append('<td>#succ</td>\n</tr>\n</thead>\n') for d in dimsOfInterest: # TODO set as input arguments table = [header] tableHtml = headerHtml extraeol = [r'\hline'] try: dictFunc0 = dictDim0[d].dictByFunc() dictFunc1 = dictDim1[d].dictByFunc() except KeyError: continue funcs = set.union(set(dictFunc0.keys()), set(dictFunc1.keys())) nbtests = len(funcs) * 2. #len(dimsOfInterest) tableHtml.append('<tbody>\n') for f in sorted(funcs): tableHtml.append('<tr>\n') targets = targetsOfInterest((f, d)) targetf = targets[-1] bestalgentry = bestalgentries[(d, f)] curline = [r'${\bf f_{%d}}$' % f] curlineHtml = ['<th><b>f<sub>%d</sub></b></th>\n' % f] bestalgdata = bestalgentry.detERT(targets) bestalgevals, bestalgalgs = bestalgentry.detEvals(targets) if isinstance(targetsOfInterest, pproc.RunlengthBasedTargetValues): # write ftarget:fevals for i in xrange(len(bestalgdata[:-1])): temp = "%.1e" % targetsOfInterest((f, d))[i] if temp[-2]=="0": temp = temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}}{\textit{%s}:%s \quad}' % (temp,writeFEvalsMaxPrec(bestalgdata[i], 2))) curlineHtml.append('<td><i>%s</i>:%s</td>\n' % (temp, writeFEvalsMaxPrec(bestalgdata[i], 2))) temp = "%.1e" % targetsOfInterest((f, d))[-1] if temp[-2]=="0": temp = temp[:-2]+temp[-1] curline.append(r'\multicolumn{2}{@{}c@{}|}{\textit{%s}:%s }' % (temp,writeFEvalsMaxPrec(bestalgdata[-1], 2))) curlineHtml.append('<td><i>%s</i>:%s</td>\n' % (temp, writeFEvalsMaxPrec(bestalgdata[-1], 2))) else: # write #fevals of the reference alg for i in bestalgdata[:-1]: curline.append(r'\multicolumn{2}{@{}c@{}}{%s \quad}' % writeFEvalsMaxPrec(i, 2)) curlineHtml.append('<td>%s</td>\n' % writeFEvalsMaxPrec(i, 2)) curline.append(r'\multicolumn{2}{@{}c@{}|}{%s}' % writeFEvalsMaxPrec(bestalgdata[-1], 2)) curlineHtml.append('<td>%s</td>\n' % writeFEvalsMaxPrec(bestalgdata[-1], 2)) tmp = bestalgentry.detEvals([targetf])[0][0] tmp2 = numpy.sum(numpy.isnan(tmp) == False) curline.append('%d' % (tmp2)) if tmp2 > 0: curline.append('/%d' % len(tmp)) curlineHtml.append('<td>%d/%d</td>\n' % (tmp2, len(tmp))) else: curlineHtml.append('<td>%d</td>\n' % (tmp2)) table.append(curline[:]) tableHtml.extend(curlineHtml[:]) tableHtml.append('</tr>\n') extraeol.append('') rankdata0 = [] # never used # generate all data from ranksum test entries = [] ertdata = {} for nb, dsList in enumerate((dictFunc0, dictFunc1)): try: entry = dsList[f][0] # take the first DataSet, there should be only one? except KeyError: warnings.warn('data missing for data set ' + str(nb) + ' and function ' + str(f)) print('*** Warning: data missing for data set ' + str(nb) + ' and function ' + str(f) + '***') continue # TODO: problem here! ertdata[nb] = entry.detERT(targets) entries.append(entry) for _t in ertdata.values(): for _tt in _t: if _tt is None: raise ValueError if len(entries) < 2: # funcion not available for *both* algorithms continue # TODO: check which one is missing and make sure that what is there is displayed properly in the following testres0vs1 = significancetest(entries[0], entries[1], targets) testresbestvs1 = significancetest(bestalgentry, entries[1], targets) testresbestvs0 = significancetest(bestalgentry, entries[0], targets) for nb, entry in enumerate(entries): tableHtml.append('<tr>\n') if nb == 0: curline = [r'1:\:\algorithmAshort\hspace*{\fill}'] curlineHtml = ['<th>1: %s</th>\n' % alg0] else: curline = [r'2:\:\algorithmBshort\hspace*{\fill}'] curlineHtml = ['<th>2: %s</th>\n' % alg1] #data = entry.detERT(targetsOfInterest) dispersion = [] data = [] evals = entry.detEvals(targets) for i in evals: succ = (numpy.isnan(i) == False) tmp = i.copy() tmp[succ==False] = entry.maxevals[numpy.isnan(i)] #set_trace() data.append(toolsstats.sp(tmp, issuccessful=succ)[0]) #if not any(succ): #set_trace() if any(succ): tmp2 = toolsstats.drawSP(tmp[succ], tmp[succ==False], (10, 50, 90), samplesize)[0] dispersion.append((tmp2[-1]-tmp2[0])/2.) else: dispersion.append(None) if nb == 0: assert not isinstance(data, numpy.ndarray) data0 = data[:] # TODO: check if it is not an array, it's never used anyway? for i, dati in enumerate(data): z, p = testres0vs1[i] # TODO: there is something with the sign that I don't get # assign significance flag, which is the -log10(p) significance0vs1 = 0 if nb != 0: z = -z # the test is symmetric if nbtests * p < 0.05 and z > 0: significance0vs1 = -int(numpy.ceil(numpy.log10(min([1.0, nbtests * p])))) # this is the larger the more significant isBold = significance0vs1 > 0 alignment = 'c' if i == len(data) - 1: # last element alignment = 'c|' if numpy.isinf(bestalgdata[i]): # if the 2009 best did not solve the problem tmp = writeFEvalsMaxPrec(float(dati), 2) if not numpy.isinf(dati): tmpHtml = '<i>%s</i>' % (tmp) tmp = r'\textit{%s}' % (tmp) if isBold: tmp = r'\textbf{%s}' % tmp tmpHtml = '<b>%s</b>' % tmpHtml if dispersion[i] and numpy.isfinite(dispersion[i]): tmp += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tmp)) tableentryHtml = (' (%s)' % tmp) else: # Formatting tmp = float(dati)/bestalgdata[i] assert not numpy.isnan(tmp) isscientific = False if tmp >= 1000: isscientific = True tableentry = writeFEvals2(tmp, 2, isscientific=isscientific) tableentry = writeFEvalsMaxPrec(tmp, 2) tableentryHtml = writeFEvalsMaxPrec(tmp, 2) if numpy.isinf(tmp) and i == len(data)-1: tableentry = (tableentry + r'\textit{%s}' % writeFEvals2(numpy.median(entry.maxevals), 2)) tableentryHtml = (tableentryHtml + ' <i>%s</i>' % writeFEvals2(numpy.median(entry.maxevals), 2)) if isBold: tableentry = r'\textbf{%s}' % tableentry tableentryHtml = '<b>%s</b>' % tableentryHtml elif 11 < 3 and significance0vs1 < 0: # cave: negative significance has no meaning anymore tableentry = r'\textit{%s}' % tableentry tableentryHtml = '<i>%s</i>' % tableentryHtml if dispersion[i] and numpy.isfinite(dispersion[i]/bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentryHtml += ' (%s)' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) elif tableentry.find('e') > -1 or (numpy.isinf(tmp) and i != len(data) - 1): if isBold: tableentry = r'\textbf{%s}' % tableentry tableentryHtml = '<b>%s</b>' % tableentryHtml elif 11 < 3 and significance0vs1 < 0: tableentry = r'\textit{%s}' % tableentry tableentryHtml = '<i>%s</i>' % tableentryHtml if dispersion[i] and numpy.isfinite(dispersion[i]/bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentryHtml += ' (%s)' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentry = (r'\multicolumn{2}{@{}%s@{}}{%s}' % (alignment, tableentry)) else: tmp = tableentry.split('.', 1) tmpHtml = tableentryHtml.split('.', 1) if isBold: tmp = list(r'\textbf{%s}' % i for i in tmp) tmpHtml = list('<b>%s</b>' % i for i in tmpHtml) elif 11 < 3 and significance0vs1 < 0: tmp = list(r'\textit{%s}' % i for i in tmp) tmpHtml = list('<i>%s</i>' % i for i in tmpHtml) tableentry = ' & .'.join(tmp) tableentryHtml = '.'.join(tmpHtml) if len(tmp) == 1: tableentry += '&' if dispersion[i] and numpy.isfinite(dispersion[i]/bestalgdata[i]): tableentry += r'${\scriptscriptstyle (%s)}$' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) tableentryHtml += ' (%s)' % writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 1) superscript = '' superscriptHtml = '' if nb == 0: z, p = testresbestvs0[i] else: z, p = testresbestvs1[i] #The conditions are now that ERT < ERT_best if ((nbtests * p) < 0.05 and dati - bestalgdata[i] < 0. and z < 0.): nbstars = -numpy.ceil(numpy.log10(nbtests * p)) #tmp = '\hspace{-.5ex}'.join(nbstars * [r'\star']) if z > 0: superscript = r'\uparrow' #* nbstars superscriptHtml = '&uarr;' else: superscript = r'\downarrow' #* nbstars superscriptHtml = '&darr;' # print z, linebest[i], line1 if nbstars > 1: superscript += str(int(nbstars)) superscriptHtml += str(int(nbstars)) if superscript or significance0vs1: s = '' shtml = '' if significance0vs1 > 0: s = '\star' shtml = '&#9733;' if significance0vs1 > 1: s += str(significance0vs1) shtml += str(significance0vs1) s = r'$^{' + s + superscript + r'}$' shtml = '<sup>' + shtml + superscriptHtml + '</sup>' if tableentry.endswith('}'): tableentry = tableentry[:-1] + s + r'}' else: tableentry += s tableentryHtml += shtml tableentryHtml = tableentryHtml.replace('$\infty$', '&infin;') curlineHtml.append('<td>%s</td>\n' % tableentryHtml) curline.append(tableentry) #curline.append(tableentry) #if dispersion[i] is None or numpy.isinf(bestalgdata[i]): #curline.append('') #else: #tmp = writeFEvalsMaxPrec(dispersion[i]/bestalgdata[i], 2) #curline.append('(%s)' % tmp) tmp = entry.evals[entry.evals[:, 0] <= targetf, 1:] try: tmp = tmp[0] curline.append('%d' % numpy.sum(numpy.isnan(tmp) == False)) curlineHtml.append('<td>%d' % numpy.sum(numpy.isnan(tmp) == False)) except IndexError: curline.append('%d' % 0) curlineHtml.append('<td>%d' % 0) curline.append('/%d' % entry.nbRuns()) curlineHtml.append('/%d</td>\n' % entry.nbRuns()) table.append(curline[:]) tableHtml.extend(curlineHtml[:]) tableHtml.append('</tr>\n') extraeol.append('') extraeol[-1] = r'\hline' extraeol[-1] = '' outputfile = os.path.join(outputdir, 'pptable2_%02dD%s.tex' % (d, info)) spec = r'@{}c@{}|' + '*{%d}{@{}r@{}@{}l@{}}' % len(targetsOfInterest) + '|@{}r@{}@{}l@{}' res = r'\providecommand{\algorithmAshort}{%s}' % writeLabels(alg0) + '\n' res += r'\providecommand{\algorithmBshort}{%s}' % writeLabels(alg1) + '\n' # open(os.path.join(outputdir, 'bbob_pproc_commands.tex'), 'a').write(res) #res += tableLaTeXStar(table, width=r'0.45\textwidth', spec=spec, #extraeol=extraeol) res += tableLaTeX(table, spec=spec, extraeol=extraeol) f = open(outputfile, 'w') f.write(res) f.close() res = ("").join(str(item) for item in tableHtml) res = '<p><b>%d-D</b></p>\n<table>\n%s</table>\n' % (d, res) filename = os.path.join(outputdir, genericsettings.two_algorithm_file_name + '.html') lines = [] with open(filename) as infile: for line in infile: if '<!--pptable2Html-->' in line: lines.append(res) lines.append(line) with open(filename, 'w') as outfile: for line in lines: outfile.write(line) if verbose: print "Table written in %s" % outputfile
bsd-3-clause
Ziqi-Li/bknqgis
pandas/pandas/core/reshape/reshape.py
1
45812
# pylint: disable=E1101,E1103 # pylint: disable=W0703,W0622,W0613,W0201 from pandas.compat import range, zip from pandas import compat import itertools import re import numpy as np from pandas.core.dtypes.common import ( _ensure_platform_int, is_list_like, is_bool_dtype, needs_i8_conversion) from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.missing import notna import pandas.core.dtypes.concat as _concat from pandas.core.series import Series from pandas.core.frame import DataFrame from pandas.core.sparse.api import SparseDataFrame, SparseSeries from pandas.core.sparse.array import SparseArray from pandas._libs.sparse import IntIndex from pandas.core.categorical import Categorical, _factorize_from_iterable from pandas.core.sorting import (get_group_index, get_compressed_ids, compress_group_index, decons_obs_group_ids) import pandas.core.algorithms as algos from pandas._libs import algos as _algos, reshape as _reshape from pandas.core.frame import _shared_docs from pandas.util._decorators import Appender from pandas.core.index import MultiIndex, _get_na_value class _Unstacker(object): """ Helper class to unstack data / pivot with multi-level index Parameters ---------- level : int or str, default last level Level to "unstack". Accepts a name for the level. Examples -------- >>> import pandas as pd >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1, 5, dtype=np.int64), index=index) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 Returns ------- unstacked : DataFrame """ def __init__(self, values, index, level=-1, value_columns=None, fill_value=None): self.is_categorical = None if values.ndim == 1: if isinstance(values, Categorical): self.is_categorical = values values = np.array(values) values = values[:, np.newaxis] self.values = values self.value_columns = value_columns self.fill_value = fill_value if value_columns is None and values.shape[1] != 1: # pragma: no cover raise ValueError('must pass column labels for multi-column data') self.index = index if isinstance(self.index, MultiIndex): if index._reference_duplicate_name(level): msg = ("Ambiguous reference to {0}. The index " "names are not unique.".format(level)) raise ValueError(msg) self.level = self.index._get_level_number(level) # when index includes `nan`, need to lift levels/strides by 1 self.lift = 1 if -1 in self.index.labels[self.level] else 0 self.new_index_levels = list(index.levels) self.new_index_names = list(index.names) self.removed_name = self.new_index_names.pop(self.level) self.removed_level = self.new_index_levels.pop(self.level) self._make_sorted_values_labels() self._make_selectors() def _make_sorted_values_labels(self): v = self.level labs = list(self.index.labels) levs = list(self.index.levels) to_sort = labs[:v] + labs[v + 1:] + [labs[v]] sizes = [len(x) for x in levs[:v] + levs[v + 1:] + [levs[v]]] comp_index, obs_ids = get_compressed_ids(to_sort, sizes) ngroups = len(obs_ids) indexer = _algos.groupsort_indexer(comp_index, ngroups)[0] indexer = _ensure_platform_int(indexer) self.sorted_values = algos.take_nd(self.values, indexer, axis=0) self.sorted_labels = [l.take(indexer) for l in to_sort] def _make_selectors(self): new_levels = self.new_index_levels # make the mask remaining_labels = self.sorted_labels[:-1] level_sizes = [len(x) for x in new_levels] comp_index, obs_ids = get_compressed_ids(remaining_labels, level_sizes) ngroups = len(obs_ids) comp_index = _ensure_platform_int(comp_index) stride = self.index.levshape[self.level] + self.lift self.full_shape = ngroups, stride selector = self.sorted_labels[-1] + stride * comp_index + self.lift mask = np.zeros(np.prod(self.full_shape), dtype=bool) mask.put(selector, True) if mask.sum() < len(self.index): raise ValueError('Index contains duplicate entries, ' 'cannot reshape') self.group_index = comp_index self.mask = mask self.unique_groups = obs_ids self.compressor = comp_index.searchsorted(np.arange(ngroups)) def get_result(self): # TODO: find a better way than this masking business values, value_mask = self.get_new_values() columns = self.get_new_columns() index = self.get_new_index() # filter out missing levels if values.shape[1] > 0: col_inds, obs_ids = compress_group_index(self.sorted_labels[-1]) # rare case, level values not observed if len(obs_ids) < self.full_shape[1]: inds = (value_mask.sum(0) > 0).nonzero()[0] values = algos.take_nd(values, inds, axis=1) columns = columns[inds] # may need to coerce categoricals here if self.is_categorical is not None: categories = self.is_categorical.categories ordered = self.is_categorical.ordered values = [Categorical(values[:, i], categories=categories, ordered=ordered) for i in range(values.shape[-1])] return DataFrame(values, index=index, columns=columns) def get_new_values(self): values = self.values # place the values length, width = self.full_shape stride = values.shape[1] result_width = width * stride result_shape = (length, result_width) mask = self.mask mask_all = mask.all() # we can simply reshape if we don't have a mask if mask_all and len(values): new_values = (self.sorted_values .reshape(length, width, stride) .swapaxes(1, 2) .reshape(result_shape) ) new_mask = np.ones(result_shape, dtype=bool) return new_values, new_mask # if our mask is all True, then we can use our existing dtype if mask_all: dtype = values.dtype new_values = np.empty(result_shape, dtype=dtype) else: dtype, fill_value = maybe_promote(values.dtype, self.fill_value) new_values = np.empty(result_shape, dtype=dtype) new_values.fill(fill_value) new_mask = np.zeros(result_shape, dtype=bool) name = np.dtype(dtype).name sorted_values = self.sorted_values # we need to convert to a basic dtype # and possibly coerce an input to our output dtype # e.g. ints -> floats if needs_i8_conversion(values): sorted_values = sorted_values.view('i8') new_values = new_values.view('i8') name = 'int64' elif is_bool_dtype(values): sorted_values = sorted_values.astype('object') new_values = new_values.astype('object') name = 'object' else: sorted_values = sorted_values.astype(name, copy=False) # fill in our values & mask f = getattr(_reshape, "unstack_{}".format(name)) f(sorted_values, mask.view('u1'), stride, length, width, new_values, new_mask.view('u1')) # reconstruct dtype if needed if needs_i8_conversion(values): new_values = new_values.view(values.dtype) return new_values, new_mask def get_new_columns(self): if self.value_columns is None: if self.lift == 0: return self.removed_level lev = self.removed_level return lev.insert(0, _get_na_value(lev.dtype.type)) stride = len(self.removed_level) + self.lift width = len(self.value_columns) propagator = np.repeat(np.arange(width), stride) if isinstance(self.value_columns, MultiIndex): new_levels = self.value_columns.levels + (self.removed_level,) new_names = self.value_columns.names + (self.removed_name,) new_labels = [lab.take(propagator) for lab in self.value_columns.labels] else: new_levels = [self.value_columns, self.removed_level] new_names = [self.value_columns.name, self.removed_name] new_labels = [propagator] new_labels.append(np.tile(np.arange(stride) - self.lift, width)) return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) def get_new_index(self): result_labels = [lab.take(self.compressor) for lab in self.sorted_labels[:-1]] # construct the new index if len(self.new_index_levels) == 1: lev, lab = self.new_index_levels[0], result_labels[0] if (lab == -1).any(): lev = lev.insert(len(lev), _get_na_value(lev.dtype.type)) return lev.take(lab) return MultiIndex(levels=self.new_index_levels, labels=result_labels, names=self.new_index_names, verify_integrity=False) def _unstack_multiple(data, clocs): if len(clocs) == 0: return data # NOTE: This doesn't deal with hierarchical columns yet index = data.index clocs = [index._get_level_number(i) for i in clocs] rlocs = [i for i in range(index.nlevels) if i not in clocs] clevels = [index.levels[i] for i in clocs] clabels = [index.labels[i] for i in clocs] cnames = [index.names[i] for i in clocs] rlevels = [index.levels[i] for i in rlocs] rlabels = [index.labels[i] for i in rlocs] rnames = [index.names[i] for i in rlocs] shape = [len(x) for x in clevels] group_index = get_group_index(clabels, shape, sort=False, xnull=False) comp_ids, obs_ids = compress_group_index(group_index, sort=False) recons_labels = decons_obs_group_ids(comp_ids, obs_ids, shape, clabels, xnull=False) dummy_index = MultiIndex(levels=rlevels + [obs_ids], labels=rlabels + [comp_ids], names=rnames + ['__placeholder__'], verify_integrity=False) if isinstance(data, Series): dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack('__placeholder__') new_levels = clevels new_names = cnames new_labels = recons_labels else: if isinstance(data.columns, MultiIndex): result = data for i in range(len(clocs)): val = clocs[i] result = result.unstack(val) clocs = [v if i > v else v - 1 for v in clocs] return result dummy = data.copy() dummy.index = dummy_index unstacked = dummy.unstack('__placeholder__') if isinstance(unstacked, Series): unstcols = unstacked.index else: unstcols = unstacked.columns new_levels = [unstcols.levels[0]] + clevels new_names = [data.columns.name] + cnames new_labels = [unstcols.labels[0]] for rec in recons_labels: new_labels.append(rec.take(unstcols.labels[-1])) new_columns = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) if isinstance(unstacked, Series): unstacked.index = new_columns else: unstacked.columns = new_columns return unstacked def pivot(self, index=None, columns=None, values=None): """ See DataFrame.pivot """ if values is None: cols = [columns] if index is None else [index, columns] append = index is None indexed = self.set_index(cols, append=append) return indexed.unstack(columns) else: if index is None: index = self.index else: index = self[index] indexed = Series(self[values].values, index=MultiIndex.from_arrays([index, self[columns]])) return indexed.unstack(columns) def pivot_simple(index, columns, values): """ Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters ---------- index : ndarray Labels to use to make new frame's index columns : ndarray Labels to use to make new frame's columns values : ndarray Values to use for populating new frame's values Notes ----- Obviously, all 3 of the input arguments must have the same length Returns ------- DataFrame See also -------- DataFrame.pivot_table : generalization of pivot that can handle duplicate values for one index/column pair """ if (len(index) != len(columns)) or (len(columns) != len(values)): raise AssertionError('Length of index, columns, and values must be the' ' same') if len(index) == 0: return DataFrame(index=[]) hindex = MultiIndex.from_arrays([index, columns]) series = Series(values.ravel(), index=hindex) series = series.sort_index(level=0) return series.unstack() def _slow_pivot(index, columns, values): """ Produce 'pivot' table based on 3 columns of this DataFrame. Uses unique values from index / columns and fills with values. Parameters ---------- index : string or object Column name to use to make new frame's index columns : string or object Column name to use to make new frame's columns values : string or object Column name to use for populating new frame's values Could benefit from some Cython here. """ tree = {} for i, (idx, col) in enumerate(zip(index, columns)): if col not in tree: tree[col] = {} branch = tree[col] branch[idx] = values[i] return DataFrame(tree) def unstack(obj, level, fill_value=None): if isinstance(level, (tuple, list)): return _unstack_multiple(obj, level) if isinstance(obj, DataFrame): if isinstance(obj.index, MultiIndex): return _unstack_frame(obj, level, fill_value=fill_value) else: return obj.T.stack(dropna=False) else: unstacker = _Unstacker(obj.values, obj.index, level=level, fill_value=fill_value) return unstacker.get_result() def _unstack_frame(obj, level, fill_value=None): from pandas.core.internals import BlockManager, make_block if obj._is_mixed_type: unstacker = _Unstacker(np.empty(obj.shape, dtype=bool), # dummy obj.index, level=level, value_columns=obj.columns) new_columns = unstacker.get_new_columns() new_index = unstacker.get_new_index() new_axes = [new_columns, new_index] new_blocks = [] mask_blocks = [] for blk in obj._data.blocks: blk_items = obj._data.items[blk.mgr_locs.indexer] bunstacker = _Unstacker(blk.values.T, obj.index, level=level, value_columns=blk_items, fill_value=fill_value) new_items = bunstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = bunstacker.get_new_values() mblk = make_block(mask.T, placement=new_placement) mask_blocks.append(mblk) newb = make_block(new_values.T, placement=new_placement) new_blocks.append(newb) result = DataFrame(BlockManager(new_blocks, new_axes)) mask_frame = DataFrame(BlockManager(mask_blocks, new_axes)) return result.loc[:, mask_frame.sum(0) > 0] else: unstacker = _Unstacker(obj.values, obj.index, level=level, value_columns=obj.columns, fill_value=fill_value) return unstacker.get_result() def stack(frame, level=-1, dropna=True): """ Convert DataFrame to Series with multi-level Index. Columns become the second level of the resulting hierarchical index Returns ------- stacked : Series """ def factorize(index): if index.is_unique: return index, np.arange(len(index)) codes, categories = _factorize_from_iterable(index) return categories, codes N, K = frame.shape if isinstance(frame.columns, MultiIndex): if frame.columns._reference_duplicate_name(level): msg = ("Ambiguous reference to {0}. The column " "names are not unique.".format(level)) raise ValueError(msg) # Will also convert negative level numbers and check if out of bounds. level_num = frame.columns._get_level_number(level) if isinstance(frame.columns, MultiIndex): return _stack_multi_columns(frame, level_num=level_num, dropna=dropna) elif isinstance(frame.index, MultiIndex): new_levels = list(frame.index.levels) new_labels = [lab.repeat(K) for lab in frame.index.labels] clev, clab = factorize(frame.columns) new_levels.append(clev) new_labels.append(np.tile(clab, N).ravel()) new_names = list(frame.index.names) new_names.append(frame.columns.name) new_index = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) else: levels, (ilab, clab) = zip(*map(factorize, (frame.index, frame.columns))) labels = ilab.repeat(K), np.tile(clab, N).ravel() new_index = MultiIndex(levels=levels, labels=labels, names=[frame.index.name, frame.columns.name], verify_integrity=False) new_values = frame.values.ravel() if dropna: mask = notna(new_values) new_values = new_values[mask] new_index = new_index[mask] return Series(new_values, index=new_index) def stack_multiple(frame, level, dropna=True): # If all passed levels match up to column names, no # ambiguity about what to do if all(lev in frame.columns.names for lev in level): result = frame for lev in level: result = stack(result, lev, dropna=dropna) # Otherwise, level numbers may change as each successive level is stacked elif all(isinstance(lev, int) for lev in level): # As each stack is done, the level numbers decrease, so we need # to account for that when level is a sequence of ints result = frame # _get_level_number() checks level numbers are in range and converts # negative numbers to positive level = [frame.columns._get_level_number(lev) for lev in level] # Can't iterate directly through level as we might need to change # values as we go for index in range(len(level)): lev = level[index] result = stack(result, lev, dropna=dropna) # Decrement all level numbers greater than current, as these # have now shifted down by one updated_level = [] for other in level: if other > lev: updated_level.append(other - 1) else: updated_level.append(other) level = updated_level else: raise ValueError("level should contain all level names or all level " "numbers, not a mixture of the two.") return result def _stack_multi_columns(frame, level_num=-1, dropna=True): def _convert_level_number(level_num, columns): """ Logic for converting the level number to something we can safely pass to swaplevel: We generally want to convert the level number into a level name, except when columns do not have names, in which case we must leave as a level number """ if level_num in columns.names: return columns.names[level_num] else: if columns.names[level_num] is None: return level_num else: return columns.names[level_num] this = frame.copy() # this makes life much simpler if level_num != frame.columns.nlevels - 1: # roll levels to put selected level at end roll_columns = this.columns for i in range(level_num, frame.columns.nlevels - 1): # Need to check if the ints conflict with level names lev1 = _convert_level_number(i, roll_columns) lev2 = _convert_level_number(i + 1, roll_columns) roll_columns = roll_columns.swaplevel(lev1, lev2) this.columns = roll_columns if not this.columns.is_lexsorted(): # Workaround the edge case where 0 is one of the column names, # which interferes with trying to sort based on the first # level level_to_sort = _convert_level_number(0, this.columns) this = this.sort_index(level=level_to_sort, axis=1) # tuple list excluding level for grouping columns if len(frame.columns.levels) > 2: tuples = list(zip(*[lev.take(lab) for lev, lab in zip(this.columns.levels[:-1], this.columns.labels[:-1])])) unique_groups = [key for key, _ in itertools.groupby(tuples)] new_names = this.columns.names[:-1] new_columns = MultiIndex.from_tuples(unique_groups, names=new_names) else: new_columns = unique_groups = this.columns.levels[0] # time to ravel the values new_data = {} level_vals = this.columns.levels[-1] level_labels = sorted(set(this.columns.labels[-1])) level_vals_used = level_vals[level_labels] levsize = len(level_labels) drop_cols = [] for key in unique_groups: loc = this.columns.get_loc(key) # can make more efficient? # we almost always return a slice # but if unsorted can get a boolean # indexer if not isinstance(loc, slice): slice_len = len(loc) else: slice_len = loc.stop - loc.start if slice_len == 0: drop_cols.append(key) continue elif slice_len != levsize: chunk = this.loc[:, this.columns[loc]] chunk.columns = level_vals.take(chunk.columns.labels[-1]) value_slice = chunk.reindex(columns=level_vals_used).values else: if frame._is_mixed_type: value_slice = this.loc[:, this.columns[loc]].values else: value_slice = this.values[:, loc] new_data[key] = value_slice.ravel() if len(drop_cols) > 0: new_columns = new_columns.difference(drop_cols) N = len(this) if isinstance(this.index, MultiIndex): new_levels = list(this.index.levels) new_names = list(this.index.names) new_labels = [lab.repeat(levsize) for lab in this.index.labels] else: new_levels = [this.index] new_labels = [np.arange(N).repeat(levsize)] new_names = [this.index.name] # something better? new_levels.append(level_vals) new_labels.append(np.tile(level_labels, N)) new_names.append(frame.columns.names[level_num]) new_index = MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) result = DataFrame(new_data, index=new_index, columns=new_columns) # more efficient way to go about this? can do the whole masking biz but # will only save a small amount of time... if dropna: result = result.dropna(axis=0, how='all') return result @Appender(_shared_docs['melt'] % dict(caller='pd.melt(df, ', versionadded="", other='DataFrame.melt')) def melt(frame, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None): # TODO: what about the existing index? if id_vars is not None: if not is_list_like(id_vars): id_vars = [id_vars] elif (isinstance(frame.columns, MultiIndex) and not isinstance(id_vars, list)): raise ValueError('id_vars must be a list of tuples when columns' ' are a MultiIndex') else: id_vars = list(id_vars) else: id_vars = [] if value_vars is not None: if not is_list_like(value_vars): value_vars = [value_vars] elif (isinstance(frame.columns, MultiIndex) and not isinstance(value_vars, list)): raise ValueError('value_vars must be a list of tuples when' ' columns are a MultiIndex') else: value_vars = list(value_vars) frame = frame.loc[:, id_vars + value_vars] else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, MultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = ['variable_%s' % i for i in range(len(frame.columns.names))] else: var_name = [frame.columns.name if frame.columns.name is not None else 'variable'] if isinstance(var_name, compat.string_types): var_name = [var_name] N, K = frame.shape K -= len(id_vars) mdata = {} for col in id_vars: mdata[col] = np.tile(frame.pop(col).values, K) mcolumns = id_vars + var_name + [value_name] mdata[value_name] = frame.values.ravel('F') for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index mdata[col] = np.asanyarray(frame.columns ._get_level_values(i)).repeat(N) return DataFrame(mdata, columns=mcolumns) def lreshape(data, groups, dropna=True, label=None): """ Reshape long-format data to wide. Generalized inverse of DataFrame.pivot Parameters ---------- data : DataFrame groups : dict {new_name : list_of_columns} dropna : boolean, default True Examples -------- >>> import pandas as pd >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2007], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team year hr 0 Red Sox 2007 514 1 Yankees 2007 573 2 Red Sox 2008 545 3 Yankees 2008 526 Returns ------- reshaped : DataFrame """ if isinstance(groups, dict): keys = list(groups.keys()) values = list(groups.values()) else: keys, values = zip(*groups) all_cols = list(set.union(*[set(x) for x in values])) id_cols = list(data.columns.difference(all_cols)) K = len(values[0]) for seq in values: if len(seq) != K: raise ValueError('All column lists must be same length') mdata = {} pivot_cols = [] for target, names in zip(keys, values): to_concat = [data[col].values for col in names] mdata[target] = _concat._concat_compat(to_concat) pivot_cols.append(target) for col in id_cols: mdata[col] = np.tile(data[col].values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notna(mdata[c]) if not mask.all(): mdata = dict((k, v[mask]) for k, v in compat.iteritems(mdata)) return DataFrame(mdata, columns=id_cols + pivot_cols) def wide_to_long(df, stubnames, i, j, sep="", suffix='\d+'): r""" Wide panel to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format Asuffix1, Asuffix2,..., Bsuffix1, Bsuffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s) j : str The name of the subobservation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hypen by specifying `sep='-'` .. versionadded:: 0.20.0 suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form Aone, Btwo,.., and you have an unrelated column Arating, you can ignore the last one by specifying `suffix='(!?one|two)'` .. versionadded:: 0.20.0 Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j) Examples -------- >>> import pandas as pd >>> import numpy as np >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multuple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df birth famid ht1 ht2 0 1 1 2.8 3.4 1 2 1 2.9 3.8 2 3 1 2.2 2.9 3 1 2 2.0 3.2 4 2 2 1.8 2.8 5 3 2 1.9 2.4 6 1 3 2.2 3.3 7 2 3 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.reset_index().set_index(['famid', 'birth', 'age']).unstack() >>> w.columns = pd.Index(w.columns).str.join('') >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(quarterly)-2010': np.random.rand(3), ... 'A(quarterly)-2011': np.random.rand(3), ... 'B(quarterly)-2010': np.random.rand(3), ... 'B(quarterly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(quarterly)-2010 A(quarterly)-2011 B(quarterly)-2010 ... 0 0.548814 0.544883 0.437587 ... 1 0.715189 0.423655 0.891773 ... 2 0.602763 0.645894 0.963663 ... X id 0 0 0 1 1 1 2 1 2 >>> pd.wide_to_long(df, ['A(quarterly)', 'B(quarterly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(quarterly) B(quarterly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != [] ]) ... ) >>> list(stubnames) ['A(quarterly)', 'B(quarterly)'] Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typicaly case. """ def get_var_names(df, stub, sep, suffix): regex = "^{0}{1}{2}".format(re.escape(stub), re.escape(sep), suffix) return df.filter(regex=regex).columns.tolist() def melt_stub(df, stub, i, j, value_vars, sep): newdf = melt(df, id_vars=i, value_vars=value_vars, value_name=stub.rstrip(sep), var_name=j) newdf[j] = Categorical(newdf[j]) newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "") return newdf.set_index(i + [j]) if any(map(lambda s: s in df.columns.tolist(), stubnames)): raise ValueError("stubname can't be identical to a column name") if not is_list_like(stubnames): stubnames = [stubnames] else: stubnames = list(stubnames) if not is_list_like(i): i = [i] else: i = list(i) if df[i].duplicated().any(): raise ValueError("the id variables need to uniquely identify each row") value_vars = list(map(lambda stub: get_var_names(df, stub, sep, suffix), stubnames)) value_vars_flattened = [e for sublist in value_vars for e in sublist] id_vars = list(set(df.columns.tolist()).difference(value_vars_flattened)) melted = [] for s, v in zip(stubnames, value_vars): melted.append(melt_stub(df, s, i, j, v, sep)) melted = melted[0].join(melted[1:], how='outer') if len(i) == 1: new = df[id_vars].set_index(i).join(melted) return new new = df[id_vars].merge(melted.reset_index(), on=i).set_index(i + [j]) return new def get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False): """ Convert categorical variable into dummy/indicator variables Parameters ---------- data : array-like, Series, or DataFrame prefix : string, list of strings, or dict of strings, default None String to append DataFrame column names Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternativly, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : string, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix.` dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy columns should be sparse or not. Returns SparseDataFrame if `data` is a Series or if all columns are included. Otherwise returns a DataFrame with some SparseBlocks. .. versionadded:: 0.16.1 drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. .. versionadded:: 0.18.0 Returns ------- dummies : DataFrame or SparseDataFrame Examples -------- >>> import pandas as pd >>> s = pd.Series(list('abca')) >>> pd.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> s1 = ['a', 'b', np.nan] >>> pd.get_dummies(s1) a b 0 1 0 1 0 1 2 0 0 >>> pd.get_dummies(s1, dummy_na=True) a b NaN 0 1 0 0 1 0 1 0 2 0 0 1 >>> df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}) >>> pd.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pd.get_dummies(pd.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pd.get_dummies(pd.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 See Also -------- Series.str.get_dummies """ from pandas.core.reshape.concat import concat from itertools import cycle if isinstance(data, DataFrame): # determine columns being encoded if columns is None: columns_to_encode = data.select_dtypes( include=['object', 'category']).columns else: columns_to_encode = columns # validate prefixes and separator to avoid silently dropping cols def check_len(item, name): length_msg = ("Length of '{0}' ({1}) did not match the length of " "the columns being encoded ({2}).") if is_list_like(item): if not len(item) == len(columns_to_encode): raise ValueError(length_msg.format(name, len(item), len(columns_to_encode))) check_len(prefix, 'prefix') check_len(prefix_sep, 'prefix_sep') if isinstance(prefix, compat.string_types): prefix = cycle([prefix]) if isinstance(prefix, dict): prefix = [prefix[col] for col in columns_to_encode] if prefix is None: prefix = columns_to_encode # validate separators if isinstance(prefix_sep, compat.string_types): prefix_sep = cycle([prefix_sep]) elif isinstance(prefix_sep, dict): prefix_sep = [prefix_sep[col] for col in columns_to_encode] if set(columns_to_encode) == set(data.columns): with_dummies = [] else: with_dummies = [data.drop(columns_to_encode, axis=1)] for (col, pre, sep) in zip(columns_to_encode, prefix, prefix_sep): dummy = _get_dummies_1d(data[col], prefix=pre, prefix_sep=sep, dummy_na=dummy_na, sparse=sparse, drop_first=drop_first) with_dummies.append(dummy) result = concat(with_dummies, axis=1) else: result = _get_dummies_1d(data, prefix, prefix_sep, dummy_na, sparse=sparse, drop_first=drop_first) return result def _get_dummies_1d(data, prefix, prefix_sep='_', dummy_na=False, sparse=False, drop_first=False): # Series avoids inconsistent NaN handling codes, levels = _factorize_from_iterable(Series(data)) def get_empty_Frame(data, sparse): if isinstance(data, Series): index = data.index else: index = np.arange(len(data)) if not sparse: return DataFrame(index=index) else: return SparseDataFrame(index=index, default_fill_value=0) # if all NaN if not dummy_na and len(levels) == 0: return get_empty_Frame(data, sparse) codes = codes.copy() if dummy_na: codes[codes == -1] = len(levels) levels = np.append(levels, np.nan) # if dummy_na, we just fake a nan level. drop_first will drop it again if drop_first and len(levels) == 1: return get_empty_Frame(data, sparse) number_of_cols = len(levels) if prefix is not None: dummy_cols = ['%s%s%s' % (prefix, prefix_sep, v) for v in levels] else: dummy_cols = levels if isinstance(data, Series): index = data.index else: index = None if sparse: sparse_series = {} N = len(data) sp_indices = [[] for _ in range(len(dummy_cols))] for ndx, code in enumerate(codes): if code == -1: # Blank entries if not dummy_na and code == -1, #GH4446 continue sp_indices[code].append(ndx) if drop_first: # remove first categorical level to avoid perfect collinearity # GH12042 sp_indices = sp_indices[1:] dummy_cols = dummy_cols[1:] for col, ixs in zip(dummy_cols, sp_indices): sarr = SparseArray(np.ones(len(ixs), dtype=np.uint8), sparse_index=IntIndex(N, ixs), fill_value=0, dtype=np.uint8) sparse_series[col] = SparseSeries(data=sarr, index=index) out = SparseDataFrame(sparse_series, index=index, columns=dummy_cols, default_fill_value=0, dtype=np.uint8) return out else: dummy_mat = np.eye(number_of_cols, dtype=np.uint8).take(codes, axis=0) if not dummy_na: # reset NaN GH4446 dummy_mat[codes == -1] = 0 if drop_first: # remove first GH12042 dummy_mat = dummy_mat[:, 1:] dummy_cols = dummy_cols[1:] return DataFrame(dummy_mat, index=index, columns=dummy_cols) def make_axis_dummies(frame, axis='minor', transform=None): """ Construct 1-0 dummy variables corresponding to designated axis labels Parameters ---------- frame : DataFrame axis : {'major', 'minor'}, default 'minor' transform : function, default None Function to apply to axis labels first. For example, to get "day of week" dummies in a time series regression you might call:: make_axis_dummies(panel, axis='major', transform=lambda d: d.weekday()) Returns ------- dummies : DataFrame Column names taken from chosen axis """ numbers = {'major': 0, 'minor': 1} num = numbers.get(axis, axis) items = frame.index.levels[num] labels = frame.index.labels[num] if transform is not None: mapped_items = items.map(transform) labels, items = _factorize_from_iterable(mapped_items.take(labels)) values = np.eye(len(items), dtype=float) values = values.take(labels, axis=0) return DataFrame(values, columns=items, index=frame.index)
gpl-2.0
winklerand/pandas
asv_bench/benchmarks/replace.py
1
2171
from .pandas_vb_common import * class replace_fillna(object): goal_time = 0.2 def setup(self): self.N = 1000000 try: self.rng = date_range('1/1/2000', periods=self.N, freq='min') except NameError: self.rng = DatetimeIndex('1/1/2000', periods=self.N, offset=datetools.Minute()) self.date_range = DateRange self.ts = Series(np.random.randn(self.N), index=self.rng) def time_replace_fillna(self): self.ts.fillna(0.0, inplace=True) class replace_large_dict(object): goal_time = 0.2 def setup(self): self.n = (10 ** 6) self.start_value = (10 ** 5) self.to_rep = {i: self.start_value + i for i in range(self.n)} self.s = Series(np.random.randint(self.n, size=(10 ** 3))) def time_replace_large_dict(self): self.s.replace(self.to_rep, inplace=True) class replace_convert(object): goal_time = 0.5 def setup(self): self.n = (10 ** 3) self.to_ts = {i: pd.Timestamp(i) for i in range(self.n)} self.to_td = {i: pd.Timedelta(i) for i in range(self.n)} self.s = Series(np.random.randint(self.n, size=(10 ** 3))) self.df = DataFrame({'A': np.random.randint(self.n, size=(10 ** 3)), 'B': np.random.randint(self.n, size=(10 ** 3))}) def time_replace_series_timestamp(self): self.s.replace(self.to_ts) def time_replace_series_timedelta(self): self.s.replace(self.to_td) def time_replace_frame_timestamp(self): self.df.replace(self.to_ts) def time_replace_frame_timedelta(self): self.df.replace(self.to_td) class replace_replacena(object): goal_time = 0.2 def setup(self): self.N = 1000000 try: self.rng = date_range('1/1/2000', periods=self.N, freq='min') except NameError: self.rng = DatetimeIndex('1/1/2000', periods=self.N, offset=datetools.Minute()) self.date_range = DateRange self.ts = Series(np.random.randn(self.N), index=self.rng) def time_replace_replacena(self): self.ts.replace(np.nan, 0.0, inplace=True)
bsd-3-clause
mattpitkin/GraWIToNStatisticsLectures
figures/scripts/pvalue.py
1
1242
#!/usr/bin/env python """ Make plots showing how to calculate the p-value """ import matplotlib.pyplot as pl from scipy.stats import norm from scipy.special import erf import numpy as np mu = 0. # the mean, mu sigma = 1. # standard deviation x = np.linspace(-4, 4, 1000) # x # set plot to render labels using latex pl.rc('text', usetex=True) pl.rc('font', family='serif') pl.rc('font', size=14) fig = pl.figure(figsize=(7,4), dpi=100) # value of x for calculating p-value Z = 1.233 y = norm.pdf(x, mu, sigma) # plot pdfs pl.plot(x, y, 'r') pl.plot([-Z, -Z], [0., np.max(y)], 'k--') pl.plot([Z, Z], [0., np.max(y)], 'k--') pl.fill_between(x, np.zeros(len(x)), y, where=x<=-Z, facecolor='green', interpolate=True, alpha=0.6) pl.fill_between(x, np.zeros(len(x)), y, where=x>=Z, facecolor='green', interpolate=True, alpha=0.6) pvalue = 1.-erf(Z/np.sqrt(2.)) ax = pl.gca() ax.set_xlabel('$Z$', fontsize=14) ax.set_ylabel('$p(Z)$', fontsize=14) ax.set_xlim(-4, 4) ax.grid(True) ax.text(Z+0.1, 0.3, '$Z_{\\textrm{obs}} = 1.233$', fontsize=16) ax.text(-3.6, 0.31, '$p$-value$= %.2f$' % pvalue, fontsize=18, bbox={'facecolor': 'none', 'pad':12, 'ec': 'r'}) fig.subplots_adjust(bottom=0.15) pl.savefig('../pvalue.pdf') pl.show()
mit
arcade-lab/tia-infrastructure
tools/simulator/system.py
1
9352
""" Top-level system wrapper. """ import re import sys import pandas as pd from simulator.exception import SimulatorException class System: """ A system class to wrap a collection of processing and memory elements as well as the channels through which they communicate. """ def __init__(self): """ Empty system. """ # Start at the zeroth cycle, and initialize system elements as empty lists to allow for appends. self.cycle = 0 self.processing_elements = [] self.memories = [] self.buffers = [] # Add hierarchical elements for easier access. self.quartets = [] self.blocks = [] self.arrays = [] # --- Time-stepping Method --- def iterate(self, interactive, show_processing_elements, show_memories, show_buffers, keep_execution_trace): """ Move ahead one clock cycle, period or whatever you want to call it (this is a functional simulator). :param interactive: waiting on the user at each cycle :param show_processing_elements: showing processing element information :param show_memories: showing memory element information :param show_buffers: showing channel information :return: whether the system has halted """ # Initially, assume the system is halting this cycle. halt = True # Print out a debug header, if requested. if interactive or show_processing_elements or show_memories or show_buffers: print(f"\n--- Cycle: {self.cycle} ---\n") # Perform local processing element operations. if show_processing_elements: print("Processing Elements\n") for processing_element in self.processing_elements: processing_element.iterate(show_processing_elements, keep_execution_trace) for processing_element in self.processing_elements: halt &= processing_element.core.halt_register # Only halt if all processing elements have halted. # Perform memory operations. if show_memories: print("Memories\n") for memory in self.memories: memory.iterate(show_memories) # Commit all pending buffer transactions. if show_buffers: print("Buffers\n") for buffer in self.buffers: buffer.commit(show_buffers) halt &= buffer.empty # Only halt the system if all buffers are empty. # Move time forward assuming we are not halting. if not halt: self.cycle += 1 # Return whether we should halt. return halt # --- Display Methods --- def halt_message(self): """ Print a message showing the state of the system upon halting. """ # Formatted message. print(f"\n--- System halted after {self.cycle} cycles. ---\n") print("Final Memory Layout\n") for memory in self.memories: print(f"name: {memory.name}") print("contents:") i = 0 while i < 10: if i < len(memory.contents): print(f"0x{memory.contents[i]:08x}") else: break i += 1 if len(memory.contents) > 10: print("...\n") else: print("bound\n") def interrupted_message(self): """ Print a message showing the state of the system upon being interrupted by the user in a simulation. :param self: system wrapper """ # Formatted message. print(f"\n--- System interrupted after {self.cycle} cycles. ---\n") print("Final Memory Layout\n") for memory in self.memories: print(f"name: {memory.name}") print("contents:") i = 0 while i < 10: if i < len(memory.contents): print(f"0x{memory.contents[i]:08x}") else: break i += 1 if len(memory.contents) > 10: print("...\n") else: print("bound\n") # --- Top-level Methods --- def register(self, element): """ Register a functional unit (processing element, memory, etc.) with the event loop. :param element: functional unit """ # Make sure the functional unit has a special registration method. registration_operation = getattr(element, "_register") if not callable(registration_operation): exception_string = f"The functional unit of type {type(element)} does not have internal system " \ + f"registration method." raise SimulatorException(exception_string) # Call the functional unit's internal method. element._register(self) def finalize(self): """ Alphabetize components in the event loop for clean debug output and make sure all processing elements are indexed. """ # The numerical strings are the ones we care about. def natural_number_sort_key(entity): name = entity.name key_string_list = re.findall(r"(\d+)", name) if len(key_string_list) > 0: return [int(key_string) for key_string in key_string_list] else: return [] # Sort all the entities. self.processing_elements = sorted(self.processing_elements, key=natural_number_sort_key) for i, processing_element in enumerate(self.processing_elements): if processing_element.name != f"processing_element_{i}": exception_string = f"Missing processing element {i}." raise SimulatorException(exception_string) self.memories = sorted(self.memories, key=natural_number_sort_key) self.buffers = sorted(self.buffers, key=natural_number_sort_key) def run(self, interactive, show_processing_elements, show_memories, show_buffers, keep_execution_trace): """ Execute until the system halts or a user issues an interrupt or writes an EOF. :param interactive: whether to wait for user input on each cycle :param show_processing_elements: whether to show processing element status each cycle :param show_memories: whether to show a summary of the memory contents each cycle :param show_buffers: whether to show channel state each cycle :param keep_execution_trace: whether to keep a running log of executed instructions on each processing element :return: whether the system has halted and whether it was interrupted """ # Simple event/read-evaluate loop. halt = False interrupted = False while True: try: if interactive: if self.cycle > 0: user_input = input("Press [Enter] to continue. Type \"exit\", or use [Ctrl-C] o [Ctrl-D] to " + "exit.\n").strip() if user_input == "exit": break elif user_input != "": print(f"Unrecognized command: {user_input}.", file=sys.stderr) halt = self.iterate(interactive, show_processing_elements, show_memories, show_buffers, keep_execution_trace) if halt: self.halt_message() break except (KeyboardInterrupt, EOFError): interrupted = True self.interrupted_message() break # Return the status flags. return halt, interrupted def reset_processing_elements(self): """ Reset all the processing elements in a system. """ # Use the reset() methods built in to the processing elements. for processing_element in self.processing_elements: processing_element.reset() def reset_memories(self): """ Reset all the memories in a system. """ # Use the reset() methods built in to the memories. for memory in self.memories: memory.reset() def reset_buffers(self): """ Reset all the buffers in a system. """ # Use the buffers' own reset() methods. for buffer in self.buffers: buffer.reset() def reset(self): """ Reset all the processing elements, memories and buffers. """ # Just wrap our own methods. self.reset_processing_elements() self.reset_memories() self.reset_buffers() @property def processing_element_traces(self): # Return a dictionary of execution traces. return {processing_element.name: processing_element.core.execution_trace for processing_element in self.processing_elements} @property def processing_element_traces_as_data_frame(self): # For convenient CSV output and analysis. return pd.DataFrame(self.processing_element_traces)
mit
gwpy/gwpy.github.io
docs/0.8.0/plotter/colors-1.py
7
1123
from __future__ import division import numpy from matplotlib import (pyplot, rcParams) from matplotlib.colors import to_hex from gwpy.plotter import colors rcParams.update({ 'text.usetex': False, 'font.size': 15 }) th = numpy.linspace(0, 2*numpy.pi, 512) names = [ 'gwpy:geo600', 'gwpy:kagra', 'gwpy:ligo-hanford', 'gwpy:ligo-india', 'gwpy:ligo-livingston', 'gwpy:virgo', ] fig = pyplot.figure(figsize=(5, 2)) ax = fig.gca() ax.axis('off') for j, name in enumerate(sorted(names)): c = str(to_hex(name)) v_offset = -(j / len(names)) ax.plot(th, .1*numpy.sin(th) + v_offset, color=c) ax.annotate("{!r}".format(name), (0, v_offset), xytext=(-1.5, 0), ha='right', va='center', color=c, textcoords='offset points', family='monospace') ax.annotate("{!r}".format(c), (2*numpy.pi, v_offset), xytext=(1.5, 0), ha='left', va='center', color=c, textcoords='offset points', family='monospace') fig.subplots_adjust(**{'bottom': 0.0, 'left': 0.54, 'right': 0.78, 'top': 1}) pyplot.show()
gpl-3.0
karpeev/libmesh
doc/statistics/libmesh_citations.py
1
2340
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Number of "papers using libmesh" by year. # # Note 1: this does not count citations "only," the authors must have actually # used libmesh in part of their work. Therefore, these counts do not include # things like Wolfgang citing us in his papers to show how Deal.II is # superior... # # Note 2: I typically update this data after regenerating the web page, # since bibtex2html renumbers the references starting from "1" each year. # # Note 3: These citations include anything that is not a dissertation/thesis. # So, some are conference papers, some are journal articles, etc. # # Note 4: The libmesh paper came out in 2006, but there are some citations # prior to that date, obviously. These counts include citations of the # website libmesh.sf.net as well... # # Note 5: Preprints are listed as the "current year + 1" and are constantly # being moved to their respective years after being published. data = [ '2004', 5, '\'05', 2, '\'06', 13, '\'07', 8, '\'08', 23, '\'09', 30, '\'10', 24, '\'11', 37, '\'12', 50, '\'13', 78, '\'14', 62, '\'15', 24, 'P', 5, # Preprints 'T', 38 # Theses ] # Extract the x-axis labels from the data array xlabels = data[0::2] # Extract the publication counts from the data array n_papers = data[1::2] # The number of data points N = len(xlabels); # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Create an x-axis for plotting x = np.linspace(1, N, N) # Width of the bars width = 0.8 # Make the bar chart. Plot years in blue, preprints and theses in green. ax.bar(x[0:N-2], n_papers[0:N-2], width, color='b') ax.bar(x[N-2:N], n_papers[N-2:N], width, color='g') # Label the x-axis plt.xlabel('P=Preprints, T=Theses') # Set up the xtick locations and labels. Note that you have to offset # the position of the ticks by width/2, where width is the width of # the bars. ax.set_xticks(np.linspace(1,N,N) + width/2) ax.set_xticklabels(xlabels) # Create a title string title_string = 'LibMesh Citations, (' + str(sum(n_papers)) + ' Total)' fig.suptitle(title_string) # Save as PDF plt.savefig('libmesh_citations.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
numenta/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/mlab.py
69
104273
""" Numerical python functions written for compatability with matlab(TM) commands with the same names. Matlab(TM) compatible functions ------------------------------- :func:`cohere` Coherence (normalized cross spectral density) :func:`csd` Cross spectral density uing Welch's average periodogram :func:`detrend` Remove the mean or best fit line from an array :func:`find` Return the indices where some condition is true; numpy.nonzero is similar but more general. :func:`griddata` interpolate irregularly distributed data to a regular grid. :func:`prctile` find the percentiles of a sequence :func:`prepca` Principal Component Analysis :func:`psd` Power spectral density uing Welch's average periodogram :func:`rk4` A 4th order runge kutta integrator for 1D or ND systems :func:`specgram` Spectrogram (power spectral density over segments of time) Miscellaneous functions ------------------------- Functions that don't exist in matlab(TM), but are useful anyway: :meth:`cohere_pairs` Coherence over all pairs. This is not a matlab function, but we compute coherence a lot in my lab, and we compute it for a lot of pairs. This function is optimized to do this efficiently by caching the direct FFTs. :meth:`rk4` A 4th order Runge-Kutta ODE integrator in case you ever find yourself stranded without scipy (and the far superior scipy.integrate tools) record array helper functions ------------------------------- A collection of helper methods for numpyrecord arrays .. _htmlonly:: See :ref:`misc-examples-index` :meth:`rec2txt` pretty print a record array :meth:`rec2csv` store record array in CSV file :meth:`csv2rec` import record array from CSV file with type inspection :meth:`rec_append_fields` adds field(s)/array(s) to record array :meth:`rec_drop_fields` drop fields from record array :meth:`rec_join` join two record arrays on sequence of fields :meth:`rec_groupby` summarize data by groups (similar to SQL GROUP BY) :meth:`rec_summarize` helper code to filter rec array fields into new fields For the rec viewer functions(e rec2csv), there are a bunch of Format objects you can pass into the functions that will do things like color negative values red, set percent formatting and scaling, etc. Example usage:: r = csv2rec('somefile.csv', checkrows=0) formatd = dict( weight = FormatFloat(2), change = FormatPercent(2), cost = FormatThousands(2), ) rec2excel(r, 'test.xls', formatd=formatd) rec2csv(r, 'test.csv', formatd=formatd) scroll = rec2gtk(r, formatd=formatd) win = gtk.Window() win.set_size_request(600,800) win.add(scroll) win.show_all() gtk.main() Deprecated functions --------------------- The following are deprecated; please import directly from numpy (with care--function signatures may differ): :meth:`conv` convolution (numpy.convolve) :meth:`corrcoef` The matrix of correlation coefficients :meth:`hist` Histogram (numpy.histogram) :meth:`linspace` Linear spaced array from min to max :meth:`load` load ASCII file - use numpy.loadtxt :meth:`meshgrid` Make a 2D grid from 2 1 arrays (numpy.meshgrid) :meth:`polyfit` least squares best polynomial fit of x to y (numpy.polyfit) :meth:`polyval` evaluate a vector for a vector of polynomial coeffs (numpy.polyval) :meth:`save` save ASCII file - use numpy.savetxt :meth:`trapz` trapeziodal integration (trapz(x,y) -> numpy.trapz(y,x)) :meth:`vander` the Vandermonde matrix (numpy.vander) """ from __future__ import division import csv, warnings, copy, os import numpy as np ma = np.ma from matplotlib import verbose import matplotlib.nxutils as nxutils import matplotlib.cbook as cbook # set is a new builtin function in 2.4; delete the following when # support for 2.3 is dropped. try: set except NameError: from sets import Set as set def linspace(*args, **kw): warnings.warn("use numpy.linspace", DeprecationWarning) return np.linspace(*args, **kw) def meshgrid(x,y): warnings.warn("use numpy.meshgrid", DeprecationWarning) return np.meshgrid(x,y) def mean(x, dim=None): warnings.warn("Use numpy.mean(x) or x.mean()", DeprecationWarning) if len(x)==0: return None return np.mean(x, axis=dim) def logspace(xmin,xmax,N): return np.exp(np.linspace(np.log(xmin), np.log(xmax), N)) def _norm(x): "return sqrt(x dot x)" return np.sqrt(np.dot(x,x)) def window_hanning(x): "return x times the hanning window of len(x)" return np.hanning(len(x))*x def window_none(x): "No window function; simply return x" return x #from numpy import convolve as conv def conv(x, y, mode=2): 'convolve x with y' warnings.warn("Use numpy.convolve(x, y, mode='full')", DeprecationWarning) return np.convolve(x,y,mode) def detrend(x, key=None): if key is None or key=='constant': return detrend_mean(x) elif key=='linear': return detrend_linear(x) def demean(x, axis=0): "Return x minus its mean along the specified axis" x = np.asarray(x) if axis: ind = [slice(None)] * axis ind.append(np.newaxis) return x - x.mean(axis)[ind] return x - x.mean(axis) def detrend_mean(x): "Return x minus the mean(x)" return x - x.mean() def detrend_none(x): "Return x: no detrending" return x def detrend_linear(y): "Return y minus best fit line; 'linear' detrending " # This is faster than an algorithm based on linalg.lstsq. x = np.arange(len(y), dtype=np.float_) C = np.cov(x, y, bias=1) b = C[0,1]/C[0,0] a = y.mean() - b*x.mean() return y - (b*x + a) #This is a helper function that implements the commonality between the #psd, csd, and spectrogram. It is *NOT* meant to be used outside of mlab def _spectral_helper(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): #The checks for if y is x are so that we can use the same function to #implement the core of psd(), csd(), and spectrogram() without doing #extra calculations. We return the unaveraged Pxy, freqs, and t. same_data = y is x #Make sure we're dealing with a numpy array. If y and x were the same #object to start with, keep them that way x = np.asarray(x) if not same_data: y = np.asarray(y) # zero pad x and y up to NFFT if they are shorter than NFFT if len(x)<NFFT: n = len(x) x = np.resize(x, (NFFT,)) x[n:] = 0 if not same_data and len(y)<NFFT: n = len(y) y = np.resize(y, (NFFT,)) y[n:] = 0 if pad_to is None: pad_to = NFFT if scale_by_freq is None: warnings.warn("psd, csd, and specgram have changed to scale their " "densities by the sampling frequency for better MatLab " "compatibility. You can pass scale_by_freq=False to disable " "this behavior. Also, one-sided densities are scaled by a " "factor of 2.") scale_by_freq = True # For real x, ignore the negative frequencies unless told otherwise if (sides == 'default' and np.iscomplexobj(x)) or sides == 'twosided': numFreqs = pad_to scaling_factor = 1. elif sides in ('default', 'onesided'): numFreqs = pad_to//2 + 1 scaling_factor = 2. else: raise ValueError("sides must be one of: 'default', 'onesided', or " "'twosided'") # Matlab divides by the sampling frequency so that density function # has units of dB/Hz and can be integrated by the plotted frequency # values. Perform the same scaling here. if scale_by_freq: scaling_factor /= Fs if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), x.dtype)) step = NFFT - noverlap ind = np.arange(0, len(x) - NFFT + 1, step) n = len(ind) Pxy = np.zeros((numFreqs,n), np.complex_) # do the ffts of the slices for i in range(n): thisX = x[ind[i]:ind[i]+NFFT] thisX = windowVals * detrend(thisX) fx = np.fft.fft(thisX, n=pad_to) if same_data: fy = fx else: thisY = y[ind[i]:ind[i]+NFFT] thisY = windowVals * detrend(thisY) fy = np.fft.fft(thisY, n=pad_to) Pxy[:,i] = np.conjugate(fx[:numFreqs]) * fy[:numFreqs] # Scale the spectrum by the norm of the window to compensate for # windowing loss; see Bendat & Piersol Sec 11.5.2. Also include # scaling factors for one-sided densities and dividing by the sampling # frequency, if desired. Pxy *= scaling_factor / (np.abs(windowVals)**2).sum() t = 1./Fs * (ind + NFFT / 2.) freqs = float(Fs) / pad_to * np.arange(numFreqs) return Pxy, freqs, t #Split out these keyword docs so that they can be used elsewhere kwdocd = dict() kwdocd['PSD'] =""" Keyword arguments: *NFFT*: integer The number of data points used in each block for the FFT. Must be even; a power 2 is most efficient. The default value is 256. *Fs*: scalar The sampling frequency (samples per time unit). It is used to calculate the Fourier frequencies, freqs, in cycles per time unit. The default value is 2. *detrend*: callable The function applied to each segment before fft-ing, designed to remove the mean or linear trend. Unlike in matlab, where the *detrend* parameter is a vector, in matplotlib is it a function. The :mod:`~matplotlib.pylab` module defines :func:`~matplotlib.pylab.detrend_none`, :func:`~matplotlib.pylab.detrend_mean`, and :func:`~matplotlib.pylab.detrend_linear`, but you can use a custom function as well. *window*: callable or ndarray A function or a vector of length *NFFT*. To create window vectors see :func:`window_hanning`, :func:`window_none`, :func:`numpy.blackman`, :func:`numpy.hamming`, :func:`numpy.bartlett`, :func:`scipy.signal`, :func:`scipy.signal.get_window`, etc. The default is :func:`window_hanning`. If a function is passed as the argument, it must take a data segment as an argument and return the windowed version of the segment. *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *pad_to*: integer The number of points to which the data segment is padded when performing the FFT. This can be different from *NFFT*, which specifies the number of data points used. While not increasing the actual resolution of the psd (the minimum distance between resolvable peaks), this can give more points in the plot, allowing for more detail. This corresponds to the *n* parameter in the call to fft(). The default is None, which sets *pad_to* equal to *NFFT* *sides*: [ 'default' | 'onesided' | 'twosided' ] Specifies which sides of the PSD to return. Default gives the default behavior, which returns one-sided for real data and both for complex data. 'onesided' forces the return of a one-sided PSD, while 'twosided' forces two-sided. *scale_by_freq*: boolean Specifies whether the resulting density values should be scaled by the scaling frequency, which gives density in units of Hz^-1. This allows for integration over the returned frequency values. The default is True for MatLab compatibility. """ def psd(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The absolute(fft(block))**2 of each segment are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT*, it will be zero padded to *NFFT*. *x* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxx*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxx,freqs = csd(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) return Pxx.real,freqs psd.__doc__ = psd.__doc__ % kwdocd def csd(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The cross power spectral density by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length blocks. Each block is detrended by the function *detrend* and windowed by the function *window*. *noverlap* gives the length of the overlap between blocks. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute *Pxy*, with a scaling to correct for power loss due to windowing. If len(*x*) < *NFFT* or len(*y*) < *NFFT*, they will be zero padded to *NFFT*. *x*, *y* Array or sequence containing the data %(PSD)s Returns the tuple (*Pxy*, *freqs*). Refs: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, John Wiley & Sons (1986) """ Pxy, freqs, t = _spectral_helper(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) if len(Pxy.shape) == 2 and Pxy.shape[1]>1: Pxy = Pxy.mean(axis=1) return Pxy, freqs csd.__doc__ = csd.__doc__ % kwdocd def specgram(x, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=128, pad_to=None, sides='default', scale_by_freq=None): """ Compute a spectrogram of data in *x*. Data are split into *NFFT* length segements and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. If *x* is real (i.e. non-complex) only the spectrum of the positive frequencie is returned. If *x* is complex then the complete spectrum is returned. %(PSD)s Returns a tuple (*Pxx*, *freqs*, *t*): - *Pxx*: 2-D array, columns are the periodograms of successive segments - *freqs*: 1-D array of frequencies corresponding to the rows in Pxx - *t*: 1-D array of times corresponding to midpoints of segments. .. seealso:: :func:`psd`: :func:`psd` differs in the default overlap; in returning the mean of the segment periodograms; and in not returning times. """ assert(NFFT > noverlap) Pxx, freqs, t = _spectral_helper(x, x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxx = Pxx.real #Needed since helper implements generically if (np.iscomplexobj(x) and sides == 'default') or sides == 'twosided': # center the frequency range at zero freqs = np.concatenate((freqs[NFFT/2:]-Fs,freqs[:NFFT/2])) Pxx = np.concatenate((Pxx[NFFT/2:,:],Pxx[:NFFT/2,:]),0) return Pxx, freqs, t specgram.__doc__ = specgram.__doc__ % kwdocd _coh_error = """Coherence is calculated by averaging over *NFFT* length segments. Your signal is too short for your choice of *NFFT*. """ def cohere(x, y, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None): """ The coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} *x*, *y* Array or sequence containing the data %(PSD)s The return value is the tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. For cohere, scaling the individual densities by the sampling frequency has no effect, since the factors cancel out. .. seealso:: :func:`psd` and :func:`csd`: For information about the methods used to compute :math:`P_{xy}`, :math:`P_{xx}` and :math:`P_{yy}`. """ if len(x)<2*NFFT: raise ValueError(_coh_error) Pxx, f = psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pyy, f = psd(y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Pxy, f = csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Cxy = np.divide(np.absolute(Pxy)**2, Pxx*Pyy) Cxy.shape = (len(f),) return Cxy, f cohere.__doc__ = cohere.__doc__ % kwdocd def corrcoef(*args): """ corrcoef(*X*) where *X* is a matrix returns a matrix of correlation coefficients for the columns of *X* corrcoef(*x*, *y*) where *x* and *y* are vectors returns the matrix of correlation coefficients for *x* and *y*. Numpy arrays can be real or complex. The correlation matrix is defined from the covariance matrix *C* as .. math:: r_{ij} = \\frac{C_{ij}}{\\sqrt{C_{ii}C_{jj}}} """ warnings.warn("Use numpy.corrcoef", DeprecationWarning) kw = dict(rowvar=False) return np.corrcoef(*args, **kw) def polyfit(*args, **kwargs): u""" polyfit(*x*, *y*, *N*) Do a best fit polynomial of order *N* of *y* to *x*. Return value is a vector of polynomial coefficients [pk ... p1 p0]. Eg, for *N*=2:: p2*x0^2 + p1*x0 + p0 = y1 p2*x1^2 + p1*x1 + p0 = y1 p2*x2^2 + p1*x2 + p0 = y2 ..... p2*xk^2 + p1*xk + p0 = yk Method: if *X* is a the Vandermonde Matrix computed from *x* (see `vandermonds <http://mathworld.wolfram.com/VandermondeMatrix.html>`_), then the polynomial least squares solution is given by the '*p*' in X*p = y where *X* is a (len(*x*) \N{MULTIPLICATION SIGN} *N* + 1) matrix, *p* is a *N*+1 length vector, and *y* is a (len(*x*) \N{MULTIPLICATION SIGN} 1) vector. This equation can be solved as .. math:: p = (X_t X)^-1 X_t y where :math:`X_t` is the transpose of *X* and -1 denotes the inverse. Numerically, however, this is not a good method, so we use :func:`numpy.linalg.lstsq`. For more info, see `least squares fitting <http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html>`_, but note that the *k*'s and *n*'s in the superscripts and subscripts on that page. The linear algebra is correct, however. .. seealso:: :func:`polyval` """ warnings.warn("use numpy.poyfit", DeprecationWarning) return np.polyfit(*args, **kwargs) def polyval(*args, **kwargs): """ *y* = polyval(*p*, *x*) *p* is a vector of polynomial coeffients and *y* is the polynomial evaluated at *x*. Example code to remove a polynomial (quadratic) trend from y:: p = polyfit(x, y, 2) trend = polyval(p, x) resid = y - trend .. seealso:: :func:`polyfit` """ warnings.warn("use numpy.polyval", DeprecationWarning) return np.polyval(*args, **kwargs) def vander(*args, **kwargs): """ *X* = vander(*x*, *N* = *None*) The Vandermonde matrix of vector *x*. The *i*-th column of *X* is the the *i*-th power of *x*. *N* is the maximum power to compute; if *N* is *None* it defaults to len(*x*). """ warnings.warn("Use numpy.vander()", DeprecationWarning) return np.vander(*args, **kwargs) def donothing_callback(*args): pass def cohere_pairs( X, ij, NFFT=256, Fs=2, detrend=detrend_none, window=window_hanning, noverlap=0, preferSpeedOverMemory=True, progressCallback=donothing_callback, returnPxx=False): u""" Cxy, Phase, freqs = cohere_pairs(X, ij, ...) Compute the coherence for all pairs in *ij*. *X* is a (*numSamples*, *numCols*) numpy array. *ij* is a list of tuples (*i*, *j*). Each tuple is a pair of indexes into the columns of *X* for which you want to compute coherence. For example, if *X* has 64 columns, and you want to compute all nonredundant pairs, define *ij* as:: ij = [] for i in range(64): for j in range(i+1,64): ij.append( (i, j) ) The other function arguments, except for *preferSpeedOverMemory* (see below), are explained in the help string of :func:`psd`. Return value is a tuple (*Cxy*, *Phase*, *freqs*). - *Cxy*: a dictionary of (*i*, *j*) tuples -> coherence vector for that pair. I.e., ``Cxy[(i,j)] = cohere(X[:,i], X[:,j])``. Number of dictionary keys is ``len(ij)``. - *Phase*: a dictionary of phases of the cross spectral density at each frequency for each pair. The keys are ``(i,j)``. - *freqs*: a vector of frequencies, equal in length to either the coherence or phase vectors for any (*i*, *j*) key.. Eg, to make a coherence Bode plot:: subplot(211) plot( freqs, Cxy[(12,19)]) subplot(212) plot( freqs, Phase[(12,19)]) For a large number of pairs, :func:`cohere_pairs` can be much more efficient than just calling :func:`cohere` for each pair, because it caches most of the intensive computations. If *N* is the number of pairs, this function is O(N) for most of the heavy lifting, whereas calling cohere for each pair is O(N\N{SUPERSCRIPT TWO}). However, because of the caching, it is also more memory intensive, making 2 additional complex arrays with approximately the same number of elements as *X*. The parameter *preferSpeedOverMemory*, if *False*, limits the caching by only making one, rather than two, complex cache arrays. This is useful if memory becomes critical. Even when *preferSpeedOverMemory* is *False*, :func:`cohere_pairs` will still give significant performace gains over calling :func:`cohere` for each pair, and will use subtantially less memory than if *preferSpeedOverMemory* is *True*. In my tests with a (43000, 64) array over all non-redundant pairs, *preferSpeedOverMemory* = *True* delivered a 33% performace boost on a 1.7GHZ Athlon with 512MB RAM compared with *preferSpeedOverMemory* = *False*. But both solutions were more than 10x faster than naievly crunching all possible pairs through cohere. .. seealso:: :file:`test/cohere_pairs_test.py` in the src tree: For an example script that shows that this :func:`cohere_pairs` and :func:`cohere` give the same results for a given pair. """ numRows, numCols = X.shape # zero pad if X is too short if numRows < NFFT: tmp = X X = np.zeros( (NFFT, numCols), X.dtype) X[:numRows,:] = tmp del tmp numRows, numCols = X.shape # get all the columns of X that we are interested in by checking # the ij tuples seen = {} for i,j in ij: seen[i]=1; seen[j] = 1 allColumns = seen.keys() Ncols = len(allColumns) del seen # for real X, ignore the negative frequencies if np.iscomplexobj(X): numFreqs = NFFT else: numFreqs = NFFT//2+1 # cache the FFT of every windowed, detrended NFFT length segement # of every channel. If preferSpeedOverMemory, cache the conjugate # as well if cbook.iterable(window): assert(len(window) == NFFT) windowVals = window else: windowVals = window(np.ones((NFFT,), typecode(X))) ind = range(0, numRows-NFFT+1, NFFT-noverlap) numSlices = len(ind) FFTSlices = {} FFTConjSlices = {} Pxx = {} slices = range(numSlices) normVal = norm(windowVals)**2 for iCol in allColumns: progressCallback(i/Ncols, 'Cacheing FFTs') Slices = np.zeros( (numSlices,numFreqs), dtype=np.complex_) for iSlice in slices: thisSlice = X[ind[iSlice]:ind[iSlice]+NFFT, iCol] thisSlice = windowVals*detrend(thisSlice) Slices[iSlice,:] = fft(thisSlice)[:numFreqs] FFTSlices[iCol] = Slices if preferSpeedOverMemory: FFTConjSlices[iCol] = conjugate(Slices) Pxx[iCol] = np.divide(np.mean(absolute(Slices)**2), normVal) del Slices, ind, windowVals # compute the coherences and phases for all pairs using the # cached FFTs Cxy = {} Phase = {} count = 0 N = len(ij) for i,j in ij: count +=1 if count%10==0: progressCallback(count/N, 'Computing coherences') if preferSpeedOverMemory: Pxy = FFTSlices[i] * FFTConjSlices[j] else: Pxy = FFTSlices[i] * np.conjugate(FFTSlices[j]) if numSlices>1: Pxy = np.mean(Pxy) Pxy = np.divide(Pxy, normVal) Cxy[(i,j)] = np.divide(np.absolute(Pxy)**2, Pxx[i]*Pxx[j]) Phase[(i,j)] = np.arctan2(Pxy.imag, Pxy.real) freqs = Fs/NFFT*np.arange(numFreqs) if returnPxx: return Cxy, Phase, freqs, Pxx else: return Cxy, Phase, freqs def entropy(y, bins): r""" Return the entropy of the data in *y*. .. math:: \sum p_i \log_2(p_i) where :math:`p_i` is the probability of observing *y* in the :math:`i^{th}` bin of *bins*. *bins* can be a number of bins or a range of bins; see :func:`numpy.histogram`. Compare *S* with analytic calculation for a Gaussian:: x = mu + sigma * randn(200000) Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) ) """ n,bins = np.histogram(y, bins) n = n.astype(np.float_) n = np.take(n, np.nonzero(n)[0]) # get the positive p = np.divide(n, len(y)) delta = bins[1]-bins[0] S = -1.0*np.sum(p*log(p)) + log(delta) #S = -1.0*np.sum(p*log(p)) return S def hist(y, bins=10, normed=0): """ Return the histogram of *y* with *bins* equally sized bins. If bins is an array, use those bins. Return value is (*n*, *x*) where *n* is the count for each bin in *x*. If *normed* is *False*, return the counts in the first element of the returned tuple. If *normed* is *True*, return the probability density :math:`\\frac{n}{(len(y)\mathrm{dbin}}`. If *y* has rank > 1, it will be raveled. If *y* is masked, only the unmasked values will be used. Credits: the Numeric 22 documentation """ warnings.warn("Use numpy.histogram()", DeprecationWarning) return np.histogram(y, bins=bins, range=None, normed=normed) def normpdf(x, *args): "Return the normal pdf evaluated at *x*; args provides *mu*, *sigma*" mu, sigma = args return 1./(np.sqrt(2*np.pi)*sigma)*np.exp(-0.5 * (1./sigma*(x - mu))**2) def levypdf(x, gamma, alpha): "Returm the levy pdf evaluated at *x* for params *gamma*, *alpha*" N = len(x) if N%2 != 0: raise ValueError, 'x must be an event length array; try\n' + \ 'x = np.linspace(minx, maxx, N), where N is even' dx = x[1]-x[0] f = 1/(N*dx)*np.arange(-N/2, N/2, np.float_) ind = np.concatenate([np.arange(N/2, N, int), np.arange(0, N/2, int)]) df = f[1]-f[0] cfl = exp(-gamma*np.absolute(2*pi*f)**alpha) px = np.fft.fft(np.take(cfl,ind)*df).astype(np.float_) return np.take(px, ind) def find(condition): "Return the indices where ravel(condition) is true" res, = np.nonzero(np.ravel(condition)) return res def trapz(x, y): """ Trapezoidal integral of *y*(*x*). """ warnings.warn("Use numpy.trapz(y,x) instead of trapz(x,y)", DeprecationWarning) return np.trapz(y, x) #if len(x)!=len(y): # raise ValueError, 'x and y must have the same length' #if len(x)<2: # raise ValueError, 'x and y must have > 1 element' #return np.sum(0.5*np.diff(x)*(y[1:]+y[:-1])) def longest_contiguous_ones(x): """ Return the indices of the longest stretch of contiguous ones in *x*, assuming *x* is a vector of zeros and ones. If there are two equally long stretches, pick the first. """ x = np.ravel(x) if len(x)==0: return np.array([]) ind = (x==0).nonzero()[0] if len(ind)==0: return np.arange(len(x)) if len(ind)==len(x): return np.array([]) y = np.zeros( (len(x)+2,), x.dtype) y[1:-1] = x dif = np.diff(y) up = (dif == 1).nonzero()[0]; dn = (dif == -1).nonzero()[0]; i = (dn-up == max(dn - up)).nonzero()[0][0] ind = np.arange(up[i], dn[i]) return ind def longest_ones(x): '''alias for longest_contiguous_ones''' return longest_contiguous_ones(x) def prepca(P, frac=0): """ Compute the principal components of *P*. *P* is a (*numVars*, *numObs*) array. *frac* is the minimum fraction of variance that a component must contain to be included. Return value is a tuple of the form (*Pcomponents*, *Trans*, *fracVar*) where: - *Pcomponents* : a (numVars, numObs) array - *Trans* : the weights matrix, ie, *Pcomponents* = *Trans* * *P* - *fracVar* : the fraction of the variance accounted for by each component returned A similar function of the same name was in the Matlab (TM) R13 Neural Network Toolbox but is not found in later versions; its successor seems to be called "processpcs". """ U,s,v = np.linalg.svd(P) varEach = s**2/P.shape[1] totVar = varEach.sum() fracVar = varEach/totVar ind = slice((fracVar>=frac).sum()) # select the components that are greater Trans = U[:,ind].transpose() # The transformed data Pcomponents = np.dot(Trans,P) return Pcomponents, Trans, fracVar[ind] def prctile(x, p = (0.0, 25.0, 50.0, 75.0, 100.0)): """ Return the percentiles of *x*. *p* can either be a sequence of percentile values or a scalar. If *p* is a sequence, the ith element of the return sequence is the *p*(i)-th percentile of *x*. If *p* is a scalar, the largest value of *x* less than or equal to the *p* percentage point in the sequence is returned. """ x = np.array(x).ravel() # we need a copy x.sort() Nx = len(x) if not cbook.iterable(p): return x[int(p*Nx/100.0)] p = np.asarray(p)* Nx/100.0 ind = p.astype(int) ind = np.where(ind>=Nx, Nx-1, ind) return x.take(ind) def prctile_rank(x, p): """ Return the rank for each element in *x*, return the rank 0..len(*p*). Eg if *p* = (25, 50, 75), the return value will be a len(*x*) array with values in [0,1,2,3] where 0 indicates the value is less than the 25th percentile, 1 indicates the value is >= the 25th and < 50th percentile, ... and 3 indicates the value is above the 75th percentile cutoff. *p* is either an array of percentiles in [0..100] or a scalar which indicates how many quantiles of data you want ranked. """ if not cbook.iterable(p): p = np.arange(100.0/p, 100.0, 100.0/p) else: p = np.asarray(p) if p.max()<=1 or p.min()<0 or p.max()>100: raise ValueError('percentiles should be in range 0..100, not 0..1') ptiles = prctile(x, p) return np.searchsorted(ptiles, x) def center_matrix(M, dim=0): """ Return the matrix *M* with each row having zero mean and unit std. If *dim* = 1 operate on columns instead of rows. (*dim* is opposite to the numpy axis kwarg.) """ M = np.asarray(M, np.float_) if dim: M = (M - M.mean(axis=0)) / M.std(axis=0) else: M = (M - M.mean(axis=1)[:,np.newaxis]) M = M / M.std(axis=1)[:,np.newaxis] return M def rk4(derivs, y0, t): """ Integrate 1D or ND system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. *y0* initial state vector *t* sample times *derivs* returns the derivative of the system and has the signature ``dy = derivs(yi, ti)`` Example 1 :: ## 2D system def derivs6(x,t): d1 = x[0] + 2*x[1] d2 = -3*x[0] + 4*x[1] return (d1, d2) dt = 0.0005 t = arange(0.0, 2.0, dt) y0 = (1,2) yout = rk4(derivs6, y0, t) Example 2:: ## 1D system alpha = 2 def derivs(x,t): return -alpha*x + exp(-t) y0 = 1 yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. """ try: Ny = len(y0) except TypeError: yout = np.zeros( (len(t),), np.float_) else: yout = np.zeros( (len(t), Ny), np.float_) yout[0] = y0 i = 0 for i in np.arange(len(t)-1): thist = t[i] dt = t[i+1] - thist dt2 = dt/2.0 y0 = yout[i] k1 = np.asarray(derivs(y0, thist)) k2 = np.asarray(derivs(y0 + dt2*k1, thist+dt2)) k3 = np.asarray(derivs(y0 + dt2*k2, thist+dt2)) k4 = np.asarray(derivs(y0 + dt*k3, thist+dt)) yout[i+1] = y0 + dt/6.0*(k1 + 2*k2 + 2*k3 + k4) return yout def bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0): """ Bivariate Gaussian distribution for equal shape *X*, *Y*. See `bivariate normal <http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_ at mathworld. """ Xmu = X-mux Ymu = Y-muy rho = sigmaxy/(sigmax*sigmay) z = Xmu**2/sigmax**2 + Ymu**2/sigmay**2 - 2*rho*Xmu*Ymu/(sigmax*sigmay) denom = 2*np.pi*sigmax*sigmay*np.sqrt(1-rho**2) return np.exp( -z/(2*(1-rho**2))) / denom def get_xyz_where(Z, Cond): """ *Z* and *Cond* are *M* x *N* matrices. *Z* are data and *Cond* is a boolean matrix where some condition is satisfied. Return value is (*x*, *y*, *z*) where *x* and *y* are the indices into *Z* and *z* are the values of *Z* at those indices. *x*, *y*, and *z* are 1D arrays. """ X,Y = np.indices(Z.shape) return X[Cond], Y[Cond], Z[Cond] def get_sparse_matrix(M,N,frac=0.1): """ Return a *M* x *N* sparse matrix with *frac* elements randomly filled. """ data = np.zeros((M,N))*0. for i in range(int(M*N*frac)): x = np.random.randint(0,M-1) y = np.random.randint(0,N-1) data[x,y] = np.random.rand() return data def dist(x,y): """ Return the distance between two points. """ d = x-y return np.sqrt(np.dot(d,d)) def dist_point_to_segment(p, s0, s1): """ Get the distance of a point to a segment. *p*, *s0*, *s1* are *xy* sequences This algorithm from http://softsurfer.com/Archive/algorithm_0102/algorithm_0102.htm#Distance%20to%20Ray%20or%20Segment """ p = np.asarray(p, np.float_) s0 = np.asarray(s0, np.float_) s1 = np.asarray(s1, np.float_) v = s1 - s0 w = p - s0 c1 = np.dot(w,v); if ( c1 <= 0 ): return dist(p, s0); c2 = np.dot(v,v) if ( c2 <= c1 ): return dist(p, s1); b = c1 / c2 pb = s0 + b * v; return dist(p, pb) def segments_intersect(s1, s2): """ Return *True* if *s1* and *s2* intersect. *s1* and *s2* are defined as:: s1: (x1, y1), (x2, y2) s2: (x3, y3), (x4, y4) """ (x1, y1), (x2, y2) = s1 (x3, y3), (x4, y4) = s2 den = ((y4-y3) * (x2-x1)) - ((x4-x3)*(y2-y1)) n1 = ((x4-x3) * (y1-y3)) - ((y4-y3)*(x1-x3)) n2 = ((x2-x1) * (y1-y3)) - ((y2-y1)*(x1-x3)) if den == 0: # lines parallel return False u1 = n1/den u2 = n2/den return 0.0 <= u1 <= 1.0 and 0.0 <= u2 <= 1.0 def fftsurr(x, detrend=detrend_none, window=window_none): """ Compute an FFT phase randomized surrogate of *x*. """ if cbook.iterable(window): x=window*detrend(x) else: x = window(detrend(x)) z = np.fft.fft(x) a = 2.*np.pi*1j phase = a * np.random.rand(len(x)) z = z*np.exp(phase) return np.fft.ifft(z).real def liaupunov(x, fprime): """ *x* is a very long trajectory from a map, and *fprime* returns the derivative of *x*. Returns : .. math:: \lambda = \\frac{1}{n}\\sum \\ln|f^'(x_i)| .. seealso:: Sec 10.5 Strogatz (1994) "Nonlinear Dynamics and Chaos". `Wikipedia article on Lyapunov Exponent <http://en.wikipedia.org/wiki/Lyapunov_exponent>`_. .. note:: What the function here calculates may not be what you really want; *caveat emptor*. It also seems that this function's name is badly misspelled. """ return np.mean(np.log(np.absolute(fprime(x)))) class FIFOBuffer: """ A FIFO queue to hold incoming *x*, *y* data in a rotating buffer using numpy arrays under the hood. It is assumed that you will call asarrays much less frequently than you add data to the queue -- otherwise another data structure will be faster. This can be used to support plots where data is added from a real time feed and the plot object wants to grab data from the buffer and plot it to screen less freqeuently than the incoming. If you set the *dataLim* attr to :class:`~matplotlib.transforms.BBox` (eg :attr:`matplotlib.Axes.dataLim`), the *dataLim* will be updated as new data come in. TODO: add a grow method that will extend nmax .. note:: mlab seems like the wrong place for this class. """ def __init__(self, nmax): """ Buffer up to *nmax* points. """ self._xa = np.zeros((nmax,), np.float_) self._ya = np.zeros((nmax,), np.float_) self._xs = np.zeros((nmax,), np.float_) self._ys = np.zeros((nmax,), np.float_) self._ind = 0 self._nmax = nmax self.dataLim = None self.callbackd = {} def register(self, func, N): """ Call *func* every time *N* events are passed; *func* signature is ``func(fifo)``. """ self.callbackd.setdefault(N, []).append(func) def add(self, x, y): """ Add scalar *x* and *y* to the queue. """ if self.dataLim is not None: xys = ((x,y),) self.dataLim.update(xys, -1) #-1 means use the default ignore setting ind = self._ind % self._nmax #print 'adding to fifo:', ind, x, y self._xs[ind] = x self._ys[ind] = y for N,funcs in self.callbackd.items(): if (self._ind%N)==0: for func in funcs: func(self) self._ind += 1 def last(self): """ Get the last *x*, *y* or *None*. *None* if no data set. """ if self._ind==0: return None, None ind = (self._ind-1) % self._nmax return self._xs[ind], self._ys[ind] def asarrays(self): """ Return *x* and *y* as arrays; their length will be the len of data added or *nmax*. """ if self._ind<self._nmax: return self._xs[:self._ind], self._ys[:self._ind] ind = self._ind % self._nmax self._xa[:self._nmax-ind] = self._xs[ind:] self._xa[self._nmax-ind:] = self._xs[:ind] self._ya[:self._nmax-ind] = self._ys[ind:] self._ya[self._nmax-ind:] = self._ys[:ind] return self._xa, self._ya def update_datalim_to_current(self): """ Update the *datalim* in the current data in the fifo. """ if self.dataLim is None: raise ValueError('You must first set the dataLim attr') x, y = self.asarrays() self.dataLim.update_numerix(x, y, True) def movavg(x,n): """ Compute the len(*n*) moving average of *x*. """ w = np.empty((n,), dtype=np.float_) w[:] = 1.0/n return np.convolve(x, w, mode='valid') def save(fname, X, fmt='%.18e',delimiter=' '): """ Save the data in *X* to file *fname* using *fmt* string to convert the data to strings. *fname* can be a filename or a file handle. If the filename ends in '.gz', the file is automatically saved in compressed gzip format. The :func:`load` function understands gzipped files transparently. Example usage:: save('test.out', X) # X is an array save('test1.out', (x,y,z)) # x,y,z equal sized 1D arrays save('test2.out', x) # x is 1D save('test3.out', x, fmt='%1.4e') # use exponential notation *delimiter* is used to separate the fields, eg. *delimiter* ',' for comma-separated values. """ if cbook.is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname,'wb') else: fh = file(fname,'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') X = np.asarray(X) origShape = None if X.ndim == 1: origShape = X.shape X.shape = len(X), 1 for row in X: fh.write(delimiter.join([fmt%val for val in row]) + '\n') if origShape is not None: X.shape = origShape def load(fname,comments='#',delimiter=None, converters=None,skiprows=0, usecols=None, unpack=False, dtype=np.float_): """ Load ASCII data from *fname* into an array and return the array. The data must be regular, same number of values in every row *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz'. matfile data is not supported; for that, use :mod:`scipy.io.mio` module. Example usage:: X = load('test.dat') # data in two columns t = X[:,0] y = X[:,1] Alternatively, you can do the same with "unpack"; see below:: X = load('test.dat') # a matrix of data x = load('test.dat') # a single column of data - *comments*: the character used to indicate the start of a comment in the file - *delimiter* is a string-like character used to seperate values in the file. If *delimiter* is unspecified or *None*, any whitespace string is a separator. - *converters*, if not *None*, is a dictionary mapping column number to a function that will convert that column to a float (or the optional *dtype* if specified). Eg, if column 0 is a date string:: converters = {0:datestr2num} - *skiprows* is the number of rows from the top to skip. - *usecols*, if not *None*, is a sequence of integer column indexes to extract where 0 is the first column, eg ``usecols=[1,4,5]`` to extract just the 2nd, 5th and 6th columns - *unpack*, if *True*, will transpose the matrix allowing you to unpack into named arguments on the left hand side:: t,y = load('test.dat', unpack=True) # for two column data x,y,z = load('somefile.dat', usecols=[3,5,7], unpack=True) - *dtype*: the array will have this dtype. default: ``numpy.float_`` .. seealso:: See :file:`examples/pylab_examples/load_converter.py` in the source tree: Exercises many of these options. """ if converters is None: converters = {} fh = cbook.to_filehandle(fname) X = [] if delimiter==' ': # space splitting is a special case since x.split() is what # you want, not x.split(' ') def splitfunc(x): return x.split() else: def splitfunc(x): return x.split(delimiter) converterseq = None for i,line in enumerate(fh): if i<skiprows: continue line = line.split(comments, 1)[0].strip() if not len(line): continue if converterseq is None: converterseq = [converters.get(j,float) for j,val in enumerate(splitfunc(line))] if usecols is not None: vals = splitfunc(line) row = [converterseq[j](vals[j]) for j in usecols] else: row = [converterseq[j](val) for j,val in enumerate(splitfunc(line))] thisLen = len(row) X.append(row) X = np.array(X, dtype) r,c = X.shape if r==1 or c==1: X.shape = max(r,c), if unpack: return X.transpose() else: return X def slopes(x,y): """ SLOPES calculate the slope y'(x) Given data vectors X and Y SLOPES calculates Y'(X), i.e the slope of a curve Y(X). The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between x- and y-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ STINEMAN_INTERP Well behaved data interpolation. Given data vectors X and Y, the slope vector YP and a new abscissa vector XI the function stineman_interp(xi,x,y,yp) uses Stineman interpolation to calculate a vector YI corresponding to XI. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For yp=None, the routine automatically determines the slopes using the "slopes" routine. X is assumed to be sorted in increasing order For values xi[j] < x[0] or xi[j] > x[-1], the routine tries a extrapolation. The relevance of the data obtained from this, of course, questionable... original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi def inside_poly(points, verts): """ points is a sequence of x,y points verts is a sequence of x,y vertices of a poygon return value is a sequence of indices into points for the points that are inside the polygon """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(ymin, xs, ys): """ given a arrays *xs* and *ys*, return the vertices of a polygon that has a scalar lower bound *ymin* and an upper bound at the *ys*. intended for use with Axes.fill, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ return poly_between(xs, ys, xmin) def poly_between(x, ylower, yupper): """ given a sequence of x, ylower and yupper, return the polygon that fills the regions between them. ylower or yupper can be scalar or iterable. If they are iterable, they must be equal in length to x return value is x, y arrays for use with Axes.fill """ Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*np.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*np.ones(Nx) x = np.concatenate( (x, x[::-1]) ) y = np.concatenate( (yupper, ylower[::-1]) ) return x,y ### the following code was written and submitted by Fernando Perez ### from the ipython numutils package under a BSD license # begin fperez functions """ A set of convenient utilities for numerical work. Most of this module requires numpy or is meant to be used with it. Copyright (c) 2001-2004, Fernando Perez. <Fernando.Perez@colorado.edu> All rights reserved. This license was generated from the BSD license template as found in: http://www.opensource.org/licenses/bsd-license.php Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the IPython project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import operator import math #***************************************************************************** # Globals #**************************************************************************** # function definitions exp_safe_MIN = math.log(2.2250738585072014e-308) exp_safe_MAX = 1.7976931348623157e+308 def exp_safe(x): """ Compute exponentials which safely underflow to zero. Slow, but convenient to use. Note that numpy provides proper floating point exception handling with access to the underlying hardware. """ if type(x) is np.ndarray: return exp(np.clip(x,exp_safe_MIN,exp_safe_MAX)) else: return math.exp(x) def amap(fn,*args): """ amap(function, sequence[, sequence, ...]) -> array. Works like :func:`map`, but it returns an array. This is just a convenient shorthand for ``numpy.array(map(...))``. """ return np.array(map(fn,*args)) #from numpy import zeros_like def zeros_like(a): """ Return an array of zeros of the shape and typecode of *a*. """ warnings.warn("Use numpy.zeros_like(a)", DeprecationWarning) return np.zeros_like(a) #from numpy import sum as sum_flat def sum_flat(a): """ Return the sum of all the elements of *a*, flattened out. It uses ``a.flat``, and if *a* is not contiguous, a call to ``ravel(a)`` is made. """ warnings.warn("Use numpy.sum(a) or a.sum()", DeprecationWarning) return np.sum(a) #from numpy import mean as mean_flat def mean_flat(a): """ Return the mean of all the elements of *a*, flattened out. """ warnings.warn("Use numpy.mean(a) or a.mean()", DeprecationWarning) return np.mean(a) def rms_flat(a): """ Return the root mean square of all the elements of *a*, flattened out. """ return np.sqrt(np.mean(np.absolute(a)**2)) def l1norm(a): """ Return the *l1* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sum(np.absolute(a)) def l2norm(a): """ Return the *l2* norm of *a*, flattened out. Implemented as a separate function (not a call to :func:`norm` for speed). """ return np.sqrt(np.sum(np.absolute(a)**2)) def norm_flat(a,p=2): """ norm(a,p=2) -> l-p norm of a.flat Return the l-p norm of *a*, considered as a flat array. This is NOT a true matrix norm, since arrays of arbitrary rank are always flattened. *p* can be a number or the string 'Infinity' to get the L-infinity norm. """ # This function was being masked by a more general norm later in # the file. We may want to simply delete it. if p=='Infinity': return np.amax(np.absolute(a)) else: return (np.sum(np.absolute(a)**p))**(1.0/p) def frange(xini,xfin=None,delta=None,**kw): """ frange([start,] stop[, step, keywords]) -> array of floats Return a numpy ndarray containing a progression of floats. Similar to :func:`numpy.arange`, but defaults to a closed interval. ``frange(x0, x1)`` returns ``[x0, x0+1, x0+2, ..., x1]``; *start* defaults to 0, and the endpoint *is included*. This behavior is different from that of :func:`range` and :func:`numpy.arange`. This is deliberate, since :func:`frange` will probably be more useful for generating lists of points for function evaluation, and endpoints are often desired in this use. The usual behavior of :func:`range` can be obtained by setting the keyword *closed* = 0, in this case, :func:`frange` basically becomes :func:numpy.arange`. When *step* is given, it specifies the increment (or decrement). All arguments can be floating point numbers. ``frange(x0,x1,d)`` returns ``[x0,x0+d,x0+2d,...,xfin]`` where *xfin* <= *x1*. :func:`frange` can also be called with the keyword *npts*. This sets the number of points the list should contain (and overrides the value *step* might have been given). :func:`numpy.arange` doesn't offer this option. Examples:: >>> frange(3) array([ 0., 1., 2., 3.]) >>> frange(3,closed=0) array([ 0., 1., 2.]) >>> frange(1,6,2) array([1, 3, 5]) or 1,3,5,7, depending on floating point vagueries >>> frange(1,6.5,npts=5) array([ 1. , 2.375, 3.75 , 5.125, 6.5 ]) """ #defaults kw.setdefault('closed',1) endpoint = kw['closed'] != 0 # funny logic to allow the *first* argument to be optional (like range()) # This was modified with a simpler version from a similar frange() found # at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/66472 if xfin == None: xfin = xini + 0.0 xini = 0.0 if delta == None: delta = 1.0 # compute # of points, spacing and return final list try: npts=kw['npts'] delta=(xfin-xini)/float(npts-endpoint) except KeyError: npts = int(round((xfin-xini)/delta)) + endpoint #npts = int(floor((xfin-xini)/delta)*(1.0+1e-10)) + endpoint # round finds the nearest, so the endpoint can be up to # delta/2 larger than xfin. return np.arange(npts)*delta+xini # end frange() #import numpy.diag as diagonal_matrix def diagonal_matrix(diag): """ Return square diagonal matrix whose non-zero elements are given by the input array. """ warnings.warn("Use numpy.diag(d)", DeprecationWarning) return np.diag(diag) def identity(n, rank=2, dtype='l', typecode=None): """ Returns the identity matrix of shape (*n*, *n*, ..., *n*) (rank *r*). For ranks higher than 2, this object is simply a multi-index Kronecker delta:: / 1 if i0=i1=...=iR, id[i0,i1,...,iR] = -| \ 0 otherwise. Optionally a *dtype* (or typecode) may be given (it defaults to 'l'). Since rank defaults to 2, this function behaves in the default case (when only *n* is given) like ``numpy.identity(n)`` -- but surprisingly, it is much faster. """ if typecode is not None: warnings.warn("Use dtype kwarg instead of typecode", DeprecationWarning) dtype = typecode iden = np.zeros((n,)*rank, dtype) for i in range(n): idx = (i,)*rank iden[idx] = 1 return iden def base_repr (number, base = 2, padding = 0): """ Return the representation of a *number* in any given *base*. """ chars = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' if number < base: \ return (padding - 1) * chars [0] + chars [int (number)] max_exponent = int (math.log (number)/math.log (base)) max_power = long (base) ** max_exponent lead_digit = int (number/max_power) return chars [lead_digit] + \ base_repr (number - max_power * lead_digit, base, \ max (padding - 1, max_exponent)) def binary_repr(number, max_length = 1025): """ Return the binary representation of the input *number* as a string. This is more efficient than using :func:`base_repr` with base 2. Increase the value of max_length for very large numbers. Note that on 32-bit machines, 2**1023 is the largest integer power of 2 which can be converted to a Python float. """ #assert number < 2L << max_length shifts = map (operator.rshift, max_length * [number], \ range (max_length - 1, -1, -1)) digits = map (operator.mod, shifts, max_length * [2]) if not digits.count (1): return 0 digits = digits [digits.index (1):] return ''.join (map (repr, digits)).replace('L','') def log2(x,ln2 = math.log(2.0)): """ Return the log(*x*) in base 2. This is a _slow_ function but which is guaranteed to return the correct integer value if the input is an integer exact power of 2. """ try: bin_n = binary_repr(x)[1:] except (AssertionError,TypeError): return math.log(x)/ln2 else: if '1' in bin_n: return math.log(x)/ln2 else: return len(bin_n) def ispower2(n): """ Returns the log base 2 of *n* if *n* is a power of 2, zero otherwise. Note the potential ambiguity if *n* == 1: 2**0 == 1, interpret accordingly. """ bin_n = binary_repr(n)[1:] if '1' in bin_n: return 0 else: return len(bin_n) def isvector(X): """ Like the Matlab (TM) function with the same name, returns *True* if the supplied numpy array or matrix *X* looks like a vector, meaning it has a one non-singleton axis (i.e., it can have multiple axes, but all must have length 1, except for one of them). If you just want to see if the array has 1 axis, use X.ndim == 1. """ return np.prod(X.shape)==np.max(X.shape) #from numpy import fromfunction as fromfunction_kw def fromfunction_kw(function, dimensions, **kwargs): """ Drop-in replacement for :func:`numpy.fromfunction`. Allows passing keyword arguments to the desired function. Call it as (keywords are optional):: fromfunction_kw(MyFunction, dimensions, keywords) The function ``MyFunction`` is responsible for handling the dictionary of keywords it will receive. """ warnings.warn("Use numpy.fromfunction()", DeprecationWarning) return np.fromfunction(function, dimensions, **kwargs) ### end fperez numutils code def rem(x,y): """ Deprecated - see :func:`numpy.remainder` """ raise NotImplementedError('Deprecated - see numpy.remainder') def norm(x,y=2): """ Deprecated - see :func:`numpy.linalg.norm` """ raise NotImplementedError('Deprecated - see numpy.linalg.norm') def orth(A): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') def rank(x): """ Deprecated - see :func:`numpy.rank` """ raise NotImplementedError('Deprecated - see numpy.rank') def sqrtm(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - see scipy.linalg.sqrtm') def mfuncC(f, x): """ Deprecated """ raise NotImplementedError('Deprecated - needs clean room implementation') def approx_real(x): """ Deprecated - needs clean room implementation """ raise NotImplementedError('Deprecated - needs clean room implementation') #helpers for loading, saving, manipulating and viewing numpy record arrays def safe_isnan(x): ':func:`numpy.isnan` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isnan(x) except NotImplementedError: return False except TypeError: return False else: return b def safe_isinf(x): ':func:`numpy.isinf` for arbitrary types' if cbook.is_string_like(x): return False try: b = np.isinf(x) except NotImplementedError: return False except TypeError: return False else: return b def rec_view(rec): """ Return a view of an ndarray as a recarray .. seealso:: http://projects.scipy.org/pipermail/numpy-discussion/2008-August/036429.html """ return rec.view(np.recarray) #return rec.view(dtype=(np.record, rec.dtype), type=np.recarray) def rec_append_field(rec, name, arr, dtype=None): """ Return a new record array with field name populated with data from array *arr*. This function is Deprecated. Please use :func:`rec_append_fields`. """ warnings.warn("use rec_append_fields", DeprecationWarning) return rec_append_fields(rec, name, arr, dtype) def rec_append_fields(rec, names, arrs, dtypes=None): """ Return a new record array with field names populated with data from arrays in *arrs*. If appending a single field, then *names*, *arrs* and *dtypes* do not have to be lists. They can just be the values themselves. """ if (not cbook.is_string_like(names) and cbook.iterable(names) \ and len(names) and cbook.is_string_like(names[0])): if len(names) != len(arrs): raise ValueError, "number of arrays do not match number of names" else: # we have only 1 name and 1 array names = [names] arrs = [arrs] arrs = map(np.asarray, arrs) if dtypes is None: dtypes = [a.dtype for a in arrs] elif not cbook.iterable(dtypes): dtypes = [dtypes] if len(arrs) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(arrs) else: raise ValueError, "dtypes must be None, a single dtype or a list" newdtype = np.dtype(rec.dtype.descr + zip(names, dtypes)) newrec = np.empty(rec.shape, dtype=newdtype) for field in rec.dtype.fields: newrec[field] = rec[field] for name, arr in zip(names, arrs): newrec[name] = arr return rec_view(newrec) def rec_drop_fields(rec, names): """ Return a new numpy record array with fields in *names* dropped. """ names = set(names) Nr = len(rec) newdtype = np.dtype([(name, rec.dtype[name]) for name in rec.dtype.names if name not in names]) newrec = np.empty(Nr, dtype=newdtype) for field in newdtype.names: newrec[field] = rec[field] return rec_view(newrec) def rec_groupby(r, groupby, stats): """ *r* is a numpy record array *groupby* is a sequence of record array attribute names that together form the grouping key. eg ('date', 'productcode') *stats* is a sequence of (*attr*, *func*, *outname*) tuples which will call ``x = func(attr)`` and assign *x* to the record array output with attribute *outname*. For example:: stats = ( ('sales', len, 'numsales'), ('sales', np.mean, 'avgsale') ) Return record array has *dtype* names for each attribute name in the the *groupby* argument, with the associated group values, and for each outname name in the *stats* argument, with the associated stat summary output. """ # build a dictionary from groupby keys-> list of indices into r with # those keys rowd = dict() for i, row in enumerate(r): key = tuple([row[attr] for attr in groupby]) rowd.setdefault(key, []).append(i) # sort the output by groupby keys keys = rowd.keys() keys.sort() rows = [] for key in keys: row = list(key) # get the indices for this groupby key ind = rowd[key] thisr = r[ind] # call each stat function for this groupby slice row.extend([func(thisr[attr]) for attr, func, outname in stats]) rows.append(row) # build the output record array with groupby and outname attributes attrs, funcs, outnames = zip(*stats) names = list(groupby) names.extend(outnames) return np.rec.fromrecords(rows, names=names) def rec_summarize(r, summaryfuncs): """ *r* is a numpy record array *summaryfuncs* is a list of (*attr*, *func*, *outname*) tuples which will apply *func* to the the array *r*[attr] and assign the output to a new attribute name *outname*. The returned record array is identical to *r*, with extra arrays for each element in *summaryfuncs*. """ names = list(r.dtype.names) arrays = [r[name] for name in names] for attr, func, outname in summaryfuncs: names.append(outname) arrays.append(np.asarray(func(r[attr]))) return np.rec.fromarrays(arrays, names=names) def rec_join(key, r1, r2, jointype='inner', defaults=None, r1postfix='1', r2postfix='2'): """ Join record arrays *r1* and *r2* on *key*; *key* is a tuple of field names -- if *key* is a string it is assumed to be a single attribute name. If *r1* and *r2* have equal values on all the keys in the *key* tuple, then their fields will be merged into a new record array containing the intersection of the fields of *r1* and *r2*. *r1* (also *r2*) must not have any duplicate keys. The *jointype* keyword can be 'inner', 'outer', 'leftouter'. To do a rightouter join just reverse *r1* and *r2*. The *defaults* keyword is a dictionary filled with ``{column_name:default_value}`` pairs. The keywords *r1postfix* and *r2postfix* are postfixed to column names (other than keys) that are both in *r1* and *r2*. """ if cbook.is_string_like(key): key = (key, ) for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s'%name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s'%name) def makekey(row): return tuple([row[name] for name in key]) r1d = dict([(makekey(row),i) for i,row in enumerate(r1)]) r2d = dict([(makekey(row),i) for i,row in enumerate(r2)]) r1keys = set(r1d.keys()) r2keys = set(r2d.keys()) common_keys = r1keys & r2keys r1ind = np.array([r1d[k] for k in common_keys]) r2ind = np.array([r2d[k] for k in common_keys]) common_len = len(common_keys) left_len = right_len = 0 if jointype == "outer" or jointype == "leftouter": left_keys = r1keys.difference(r2keys) left_ind = np.array([r1d[k] for k in left_keys]) left_len = len(left_ind) if jointype == "outer": right_keys = r2keys.difference(r1keys) right_ind = np.array([r2d[k] for k in right_keys]) right_len = len(right_ind) def key_desc(name): 'if name is a string key, use the larger size of r1 or r2 before merging' dt1 = r1.dtype[name] if dt1.type != np.string_: return (name, dt1.descr[0][1]) dt2 = r1.dtype[name] assert dt2==dt1 if dt1.num>dt2.num: return (name, dt1.descr[0][1]) else: return (name, dt2.descr[0][1]) keydesc = [key_desc(name) for name in key] def mapped_r1field(name): """ The column name in *newrec* that corresponds to the column in *r1*. """ if name in key or name not in r2.dtype.names: return name else: return name + r1postfix def mapped_r2field(name): """ The column name in *newrec* that corresponds to the column in *r2*. """ if name in key or name not in r1.dtype.names: return name else: return name + r2postfix r1desc = [(mapped_r1field(desc[0]), desc[1]) for desc in r1.dtype.descr if desc[0] not in key] r2desc = [(mapped_r2field(desc[0]), desc[1]) for desc in r2.dtype.descr if desc[0] not in key] newdtype = np.dtype(keydesc + r1desc + r2desc) newrec = np.empty(common_len + left_len + right_len, dtype=newdtype) if jointype != 'inner' and defaults is not None: # fill in the defaults enmasse newrec_fields = newrec.dtype.fields.keys() for k, v in defaults.items(): if k in newrec_fields: newrec[k] = v for field in r1.dtype.names: newfield = mapped_r1field(field) if common_len: newrec[newfield][:common_len] = r1[field][r1ind] if (jointype == "outer" or jointype == "leftouter") and left_len: newrec[newfield][common_len:(common_len+left_len)] = r1[field][left_ind] for field in r2.dtype.names: newfield = mapped_r2field(field) if field not in key and common_len: newrec[newfield][:common_len] = r2[field][r2ind] if jointype == "outer" and right_len: newrec[newfield][-right_len:] = r2[field][right_ind] newrec.sort(order=key) return rec_view(newrec) def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',', converterd=None, names=None, missing='', missingd=None, use_mrecords=True): """ Load data from comma/space/tab delimited file in *fname* into a numpy record array and return the record array. If *names* is *None*, a header row is required to automatically assign the recarray names. The headers will be lower cased, spaces will be converted to underscores, and illegal attribute name characters removed. If *names* is not *None*, it is a sequence of names to use for the column names. In this case, it is assumed there is no header row. - *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' - *comments*: the character used to indicate the start of a comment in the file - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *converted*: if not *None*, is a dictionary mapping column number or munged column name to a converter function. - *names*: if not None, is a list of header names. In this case, no header will be read from the file - *missingd* is a dictionary mapping munged column names to field values which signify that the field does not contain actual data and should be masked, e.g. '0000-00-00' or 'unused' - *missing*: a string whose value signals a missing field regardless of the column it appears in - *use_mrecords*: if True, return an mrecords.fromrecords record array if any of the data are missing If no rows are found, *None* is returned -- see :file:`examples/loadrec.py` """ if converterd is None: converterd = dict() if missingd is None: missingd = {} import dateutil.parser import datetime parsedate = dateutil.parser.parse fh = cbook.to_filehandle(fname) class FH: """ For space-delimited files, we want different behavior than comma or tab. Generally, we want multiple spaces to be treated as a single separator, whereas with comma and tab we want multiple commas to return multiple (empty) fields. The join/strip trick below effects this. """ def __init__(self, fh): self.fh = fh def close(self): self.fh.close() def seek(self, arg): self.fh.seek(arg) def fix(self, s): return ' '.join(s.split()) def next(self): return self.fix(self.fh.next()) def __iter__(self): for line in self.fh: yield self.fix(line) if delimiter==' ': fh = FH(fh) reader = csv.reader(fh, delimiter=delimiter) def process_skiprows(reader): if skiprows: for i, row in enumerate(reader): if i>=(skiprows-1): break return fh, reader process_skiprows(reader) def ismissing(name, val): "Should the value val in column name be masked?" if val == missing or val == missingd.get(name) or val == '': return True else: return False def with_default_value(func, default): def newfunc(name, val): if ismissing(name, val): return default else: return func(val) return newfunc def mybool(x): if x=='True': return True elif x=='False': return False else: raise ValueError('invalid bool') dateparser = dateutil.parser.parse mydateparser = with_default_value(dateparser, datetime.date(1,1,1)) myfloat = with_default_value(float, np.nan) myint = with_default_value(int, -1) mystr = with_default_value(str, '') mybool = with_default_value(mybool, None) def mydate(x): # try and return a date object d = dateparser(x) if d.hour>0 or d.minute>0 or d.second>0: raise ValueError('not a date') return d.date() mydate = with_default_value(mydate, datetime.date(1,1,1)) def get_func(name, item, func): # promote functions in this order funcmap = {mybool:myint,myint:myfloat, myfloat:mydate, mydate:mydateparser, mydateparser:mystr} try: func(name, item) except: if func==mystr: raise ValueError('Could not find a working conversion function') else: return get_func(name, item, funcmap[func]) # recurse else: return func # map column names that clash with builtins -- TODO - extend this list itemd = { 'return' : 'return_', 'file' : 'file_', 'print' : 'print_', } def get_converters(reader): converters = None for i, row in enumerate(reader): if i==0: converters = [mybool]*len(row) if checkrows and i>checkrows: break #print i, len(names), len(row) #print 'converters', zip(converters, row) for j, (name, item) in enumerate(zip(names, row)): func = converterd.get(j) if func is None: func = converterd.get(name) if func is None: #if not item.strip(): continue func = converters[j] if len(item.strip()): func = get_func(name, item, func) else: # how should we handle custom converters and defaults? func = with_default_value(func, None) converters[j] = func return converters # Get header and remove invalid characters needheader = names is None if needheader: for row in reader: #print 'csv2rec', row if len(row) and row[0].startswith(comments): continue headers = row break # remove these chars delete = set("""~!@#$%^&*()-=+~\|]}[{';: /?.>,<""") delete.add('"') names = [] seen = dict() for i, item in enumerate(headers): item = item.strip().lower().replace(' ', '_') item = ''.join([c for c in item if c not in delete]) if not len(item): item = 'column%d'%i item = itemd.get(item, item) cnt = seen.get(item, 0) if cnt>0: names.append(item + '_%d'%cnt) else: names.append(item) seen[item] = cnt+1 else: if cbook.is_string_like(names): names = [n.strip() for n in names.split(',')] # get the converter functions by inspecting checkrows converters = get_converters(reader) if converters is None: raise ValueError('Could not find any valid data in CSV file') # reset the reader and start over fh.seek(0) reader = csv.reader(fh, delimiter=delimiter) process_skiprows(reader) if needheader: skipheader = reader.next() # iterate over the remaining rows and convert the data to date # objects, ints, or floats as approriate rows = [] rowmasks = [] for i, row in enumerate(reader): if not len(row): continue if row[0].startswith(comments): continue rows.append([func(name, val) for func, name, val in zip(converters, names, row)]) rowmasks.append([ismissing(name, val) for name, val in zip(names, row)]) fh.close() if not len(rows): return None if use_mrecords and np.any(rowmasks): try: from numpy.ma import mrecords except ImportError: raise RuntimeError('numpy 1.05 or later is required for masked array support') else: r = mrecords.fromrecords(rows, names=names, mask=rowmasks) else: r = np.rec.fromrecords(rows, names=names) return r # a series of classes for describing the format intentions of various rec views class FormatObj: def tostr(self, x): return self.toval(x) def toval(self, x): return str(x) def fromstr(self, s): return s class FormatString(FormatObj): def tostr(self, x): val = repr(x) return val[1:-1] #class FormatString(FormatObj): # def tostr(self, x): # return '"%r"'%self.toval(x) class FormatFormatStr(FormatObj): def __init__(self, fmt): self.fmt = fmt def tostr(self, x): if x is None: return 'None' return self.fmt%self.toval(x) class FormatFloat(FormatFormatStr): def __init__(self, precision=4, scale=1.): FormatFormatStr.__init__(self, '%%1.%df'%precision) self.precision = precision self.scale = scale def toval(self, x): if x is not None: x = x * self.scale return x def fromstr(self, s): return float(s)/self.scale class FormatInt(FormatObj): def tostr(self, x): return '%d'%int(x) def toval(self, x): return int(x) def fromstr(self, s): return int(s) class FormatBool(FormatObj): def toval(self, x): return str(x) def fromstr(self, s): return bool(s) class FormatPercent(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=100.) class FormatThousands(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-3) class FormatMillions(FormatFloat): def __init__(self, precision=4): FormatFloat.__init__(self, precision, scale=1e-6) class FormatDate(FormatObj): def __init__(self, fmt): self.fmt = fmt def toval(self, x): if x is None: return 'None' return x.strftime(self.fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x).date() class FormatDatetime(FormatDate): def __init__(self, fmt='%Y-%m-%d %H:%M:%S'): FormatDate.__init__(self, fmt) def fromstr(self, x): import dateutil.parser return dateutil.parser.parse(x) defaultformatd = { np.bool_ : FormatBool(), np.int16 : FormatInt(), np.int32 : FormatInt(), np.int64 : FormatInt(), np.float32 : FormatFloat(), np.float64 : FormatFloat(), np.object_ : FormatObj(), np.string_ : FormatString(), } def get_formatd(r, formatd=None): 'build a formatd guaranteed to have a key for every dtype name' if formatd is None: formatd = dict() for i, name in enumerate(r.dtype.names): dt = r.dtype[name] format = formatd.get(name) if format is None: format = defaultformatd.get(dt.type, FormatObj()) formatd[name] = format return formatd def csvformat_factory(format): format = copy.deepcopy(format) if isinstance(format, FormatFloat): format.scale = 1. # override scaling for storage format.fmt = '%r' return format def rec2txt(r, header=None, padding=3, precision=3): """ Returns a textual representation of a record array. *r*: numpy recarray *header*: list of column headers *padding*: space between each column *precision*: number of decimal places to use for floats. Set to an integer to apply to all floats. Set to a list of integers to apply precision individually. Precision for non-floats is simply ignored. Example:: precision=[0,2,3] Output:: ID Price Return ABC 12.54 0.234 XYZ 6.32 -0.076 """ if cbook.is_numlike(precision): precision = [precision]*len(r.dtype) def get_type(item,atype=int): tdict = {None:int, int:float, float:str} try: atype(str(item)) except: return get_type(item,tdict[atype]) return atype def get_justify(colname, column, precision): ntype = type(column[0]) if ntype==np.str or ntype==np.str_ or ntype==np.string0 or ntype==np.string_: length = max(len(colname),column.itemsize) return 0, length+padding, "%s" # left justify if ntype==np.int or ntype==np.int16 or ntype==np.int32 or ntype==np.int64 or ntype==np.int8 or ntype==np.int_: length = max(len(colname),np.max(map(len,map(str,column)))) return 1, length+padding, "%d" # right justify # JDH: my powerbook does not have np.float96 using np 1.3.0 """ In [2]: np.__version__ Out[2]: '1.3.0.dev5948' In [3]: !uname -a Darwin Macintosh-5.local 9.4.0 Darwin Kernel Version 9.4.0: Mon Jun 9 19:30:53 PDT 2008; root:xnu-1228.5.20~1/RELEASE_I386 i386 i386 In [4]: np.float96 --------------------------------------------------------------------------- AttributeError Traceback (most recent call la """ if ntype==np.float or ntype==np.float32 or ntype==np.float64 or (hasattr(np, 'float96') and (ntype==np.float96)) or ntype==np.float_: fmt = "%." + str(precision) + "f" length = max(len(colname),np.max(map(len,map(lambda x:fmt%x,column)))) return 1, length+padding, fmt # right justify return 0, max(len(colname),np.max(map(len,map(str,column))))+padding, "%s" if header is None: header = r.dtype.names justify_pad_prec = [get_justify(header[i],r.__getitem__(colname),precision[i]) for i, colname in enumerate(r.dtype.names)] justify_pad_prec_spacer = [] for i in range(len(justify_pad_prec)): just,pad,prec = justify_pad_prec[i] if i == 0: justify_pad_prec_spacer.append((just,pad,prec,0)) else: pjust,ppad,pprec = justify_pad_prec[i-1] if pjust == 0 and just == 1: justify_pad_prec_spacer.append((just,pad-padding,prec,0)) elif pjust == 1 and just == 0: justify_pad_prec_spacer.append((just,pad,prec,padding)) else: justify_pad_prec_spacer.append((just,pad,prec,0)) def format(item, just_pad_prec_spacer): just, pad, prec, spacer = just_pad_prec_spacer if just == 0: return spacer*' ' + str(item).ljust(pad) else: if get_type(item) == float: item = (prec%float(item)) elif get_type(item) == int: item = (prec%int(item)) return item.rjust(pad) textl = [] textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(header)])) for i, row in enumerate(r): textl.append(''.join([format(colitem,justify_pad_prec_spacer[j]) for j, colitem in enumerate(row)])) if i==0: textl[0] = textl[0].rstrip() text = os.linesep.join(textl) return text def rec2csv(r, fname, delimiter=',', formatd=None, missing='', missingd=None): """ Save the data from numpy recarray *r* into a comma-/space-/tab-delimited file. The record array dtype names will be used for column headers. *fname*: can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in '.gz' .. seealso:: :func:`csv2rec`: For information about *missing* and *missingd*, which can be used to fill in masked values into your CSV file. """ if missingd is None: missingd = dict() def with_mask(func): def newfunc(val, mask, mval): if mask: return mval else: return func(val) return newfunc formatd = get_formatd(r, formatd) funcs = [] for i, name in enumerate(r.dtype.names): funcs.append(with_mask(csvformat_factory(formatd[name]).tostr)) fh, opened = cbook.to_filehandle(fname, 'w', return_opened=True) writer = csv.writer(fh, delimiter=delimiter) header = r.dtype.names writer.writerow(header) # Our list of specials for missing values mvals = [] for name in header: mvals.append(missingd.get(name, missing)) ismasked = False if len(r): row = r[0] ismasked = hasattr(row, '_fieldmask') for row in r: if ismasked: row, rowmask = row.item(), row._fieldmask.item() else: rowmask = [False] * len(row) writer.writerow([func(val, mask, mval) for func, val, mask, mval in zip(funcs, row, rowmask, mvals)]) if opened: fh.close() def griddata(x,y,z,xi,yi): """ ``zi = griddata(x,y,z,xi,yi)`` fits a surface of the form *z* = *f*(*x*, *y*) to the data in the (usually) nonuniformly spaced vectors (*x*, *y*, *z*). :func:`griddata` interpolates this surface at the points specified by (*xi*, *yi*) to produce *zi*. *xi* and *yi* must describe a regular grid, can be either 1D or 2D, but must be monotonically increasing. A masked array is returned if any grid points are outside convex hull defined by input data (no extrapolation is done). Uses natural neighbor interpolation based on Delaunay triangulation. By default, this algorithm is provided by the :mod:`matplotlib.delaunay` package, written by Robert Kern. The triangulation algorithm in this package is known to fail on some nearly pathological cases. For this reason, a separate toolkit (:mod:`mpl_tookits.natgrid`) has been created that provides a more robust algorithm fof triangulation and interpolation. This toolkit is based on the NCAR natgrid library, which contains code that is not redistributable under a BSD-compatible license. When installed, this function will use the :mod:`mpl_toolkits.natgrid` algorithm, otherwise it will use the built-in :mod:`matplotlib.delaunay` package. The natgrid matplotlib toolkit can be downloaded from http://sourceforge.net/project/showfiles.php?group_id=80706&package_id=142792 """ try: from mpl_toolkits.natgrid import _natgrid, __version__ _use_natgrid = True except ImportError: import matplotlib.delaunay as delaunay from matplotlib.delaunay import __version__ _use_natgrid = False if not griddata._reported: if _use_natgrid: verbose.report('using natgrid version %s' % __version__) else: verbose.report('using delaunay version %s' % __version__) griddata._reported = True if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if not len(x)==len(y)==len(z): raise TypeError("inputs x,y,z must all be 1D arrays of the same length") # remove masked points. if hasattr(z,'mask'): x = x.compress(z.mask == False) y = y.compress(z.mask == False) z = z.compressed() if _use_natgrid: # use natgrid toolkit if available. if xi.ndim == 2: xi = xi[0,:] yi = yi[:,0] # override default natgrid internal parameters. _natgrid.seti('ext',0) _natgrid.setr('nul',np.nan) # cast input arrays to doubles (this makes a copy) x = x.astype(np.float) y = y.astype(np.float) z = z.astype(np.float) xo = xi.astype(np.float) yo = yi.astype(np.float) if min(xo[1:]-xo[0:-1]) < 0 or min(yo[1:]-yo[0:-1]) < 0: raise ValueError, 'output grid defined by xi,yi must be monotone increasing' # allocate array for output (buffer will be overwritten by nagridd) zo = np.empty((yo.shape[0],xo.shape[0]), np.float) _natgrid.natgridd(x,y,z,xo,yo,zo) else: # use Robert Kern's delaunay package from scikits (default) if xi.ndim != yi.ndim: raise TypeError("inputs xi and yi must have same number of dimensions (1 or 2)") if xi.ndim != 1 and xi.ndim != 2: raise TypeError("inputs xi and yi must be 1D or 2D.") if xi.ndim == 1: xi,yi = np.meshgrid(xi,yi) # triangulate data tri = delaunay.Triangulation(x,y) # interpolate data interp = tri.nn_interpolator(z) zo = interp(xi,yi) # mask points on grid outside convex hull of input data. if np.any(np.isnan(zo)): zo = np.ma.masked_where(np.isnan(zo),zo) return zo griddata._reported = False ################################################## # Linear interpolation algorithms ################################################## def less_simple_linear_interpolation( x, y, xi, extrap=False ): """ This function provides simple (but somewhat less so than :func:`cbook.simple_linear_interpolation`) linear interpolation. :func:`simple_linear_interpolation` will give a list of point between a start and an end, while this does true linear interpolation at an arbitrary set of points. This is very inefficient linear interpolation meant to be used only for a small number of points in relatively non-intensive use cases. For real linear interpolation, use scipy. """ if cbook.is_scalar(xi): xi = [xi] x = np.asarray(x) y = np.asarray(y) xi = np.asarray(xi) s = list(y.shape) s[0] = len(xi) yi = np.tile( np.nan, s ) for ii,xx in enumerate(xi): bb = x == xx if np.any(bb): jj, = np.nonzero(bb) yi[ii] = y[jj[0]] elif xx<x[0]: if extrap: yi[ii] = y[0] elif xx>x[-1]: if extrap: yi[ii] = y[-1] else: jj, = np.nonzero(x<xx) jj = max(jj) yi[ii] = y[jj] + (xx-x[jj])/(x[jj+1]-x[jj]) * (y[jj+1]-y[jj]) return yi def slopes(x,y): """ :func:`slopes` calculates the slope *y*'(*x*) The slope is estimated using the slope obtained from that of a parabola through any three consecutive points. This method should be superior to that described in the appendix of A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russel W. Stineman (Creative Computing July 1980) in at least one aspect: Circles for interpolation demand a known aspect ratio between *x*- and *y*-values. For many functions, however, the abscissa are given in different dimensions, so an aspect ratio is completely arbitrary. The parabola method gives very similar results to the circle method for most regular cases but behaves much better in special cases. Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de (inspired by a original implementation by Halldor Bjornsson, Icelandic Meteorological Office, March 2006 halldor at vedur.is) """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) yp=np.zeros(y.shape, np.float_) dx=x[1:] - x[:-1] dy=y[1:] - y[:-1] dydx = dy/dx yp[1:-1] = (dydx[:-1] * dx[1:] + dydx[1:] * dx[:-1])/(dx[1:] + dx[:-1]) yp[0] = 2.0 * dy[0]/dx[0] - yp[1] yp[-1] = 2.0 * dy[-1]/dx[-1] - yp[-2] return yp def stineman_interp(xi,x,y,yp=None): """ Given data vectors *x* and *y*, the slope vector *yp* and a new abscissa vector *xi*, the function :func:`stineman_interp` uses Stineman interpolation to calculate a vector *yi* corresponding to *xi*. Here's an example that generates a coarse sine curve, then interpolates over a finer abscissa:: x = linspace(0,2*pi,20); y = sin(x); yp = cos(x) xi = linspace(0,2*pi,40); yi = stineman_interp(xi,x,y,yp); plot(x,y,'o',xi,yi) The interpolation method is described in the article A CONSISTENTLY WELL BEHAVED METHOD OF INTERPOLATION by Russell W. Stineman. The article appeared in the July 1980 issue of Creative Computing with a note from the editor stating that while they were: not an academic journal but once in a while something serious and original comes in adding that this was "apparently a real solution" to a well known problem. For *yp* = *None*, the routine automatically determines the slopes using the :func:`slopes` routine. *x* is assumed to be sorted in increasing order. For values ``xi[j] < x[0]`` or ``xi[j] > x[-1]``, the routine tries an extrapolation. The relevance of the data obtained from this, of course, is questionable... Original implementation by Halldor Bjornsson, Icelandic Meteorolocial Office, March 2006 halldor at vedur.is Completely reworked and optimized for Python by Norbert Nemec, Institute of Theoretical Physics, University or Regensburg, April 2006 Norbert.Nemec at physik.uni-regensburg.de """ # Cast key variables as float. x=np.asarray(x, np.float_) y=np.asarray(y, np.float_) assert x.shape == y.shape N=len(y) if yp is None: yp = slopes(x,y) else: yp=np.asarray(yp, np.float_) xi=np.asarray(xi, np.float_) yi=np.zeros(xi.shape, np.float_) # calculate linear slopes dx = x[1:] - x[:-1] dy = y[1:] - y[:-1] s = dy/dx #note length of s is N-1 so last element is #N-2 # find the segment each xi is in # this line actually is the key to the efficiency of this implementation idx = np.searchsorted(x[1:-1], xi) # now we have generally: x[idx[j]] <= xi[j] <= x[idx[j]+1] # except at the boundaries, where it may be that xi[j] < x[0] or xi[j] > x[-1] # the y-values that would come out from a linear interpolation: sidx = s.take(idx) xidx = x.take(idx) yidx = y.take(idx) xidxp1 = x.take(idx+1) yo = yidx + sidx * (xi - xidx) # the difference that comes when using the slopes given in yp dy1 = (yp.take(idx)- sidx) * (xi - xidx) # using the yp slope of the left point dy2 = (yp.take(idx+1)-sidx) * (xi - xidxp1) # using the yp slope of the right point dy1dy2 = dy1*dy2 # The following is optimized for Python. The solution actually # does more calculations than necessary but exploiting the power # of numpy, this is far more efficient than coding a loop by hand # in Python yi = yo + dy1dy2 * np.choose(np.array(np.sign(dy1dy2), np.int32)+1, ((2*xi-xidx-xidxp1)/((dy1-dy2)*(xidxp1-xidx)), 0.0, 1/(dy1+dy2),)) return yi ################################################## # Code related to things in and around polygons ################################################## def inside_poly(points, verts): """ *points* is a sequence of *x*, *y* points. *verts* is a sequence of *x*, *y* vertices of a polygon. Return value is a sequence of indices into points for the points that are inside the polygon. """ res, = np.nonzero(nxutils.points_inside_poly(points, verts)) return res def poly_below(xmin, xs, ys): """ Given a sequence of *xs* and *ys*, return the vertices of a polygon that has a horizontal base at *xmin* and an upper bound at the *ys*. *xmin* is a scalar. Intended for use with :meth:`matplotlib.axes.Axes.fill`, eg:: xv, yv = poly_below(0, x, y) ax.fill(xv, yv) """ if ma.isMaskedArray(xs) or ma.isMaskedArray(ys): nx = ma else: nx = np xs = nx.asarray(xs) ys = nx.asarray(ys) Nx = len(xs) Ny = len(ys) assert(Nx==Ny) x = xmin*nx.ones(2*Nx) y = nx.ones(2*Nx) x[:Nx] = xs y[:Nx] = ys y[Nx:] = ys[::-1] return x, y def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): nx = ma else: nx = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*nx.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*nx.ones(Nx) x = nx.concatenate( (x, x[::-1]) ) y = nx.concatenate( (yupper, ylower[::-1]) ) return x,y def is_closed_polygon(X): """ Tests whether first and last object in a sequence are the same. These are presumably coordinates on a polygonal curve, in which case this function tests if that curve is closed. """ return np.all(X[0] == X[-1]) def contiguous_regions(mask): """ return a list of (ind0, ind1) such that mask[ind0:ind1].all() is True and we cover all such regions TODO: this is a pure python implementation which probably has a much faster numpy impl """ in_region = None boundaries = [] for i, val in enumerate(mask): if in_region is None and val: in_region = i elif in_region is not None and not val: boundaries.append((in_region, i)) in_region = None if in_region is not None: boundaries.append((in_region, i+1)) return boundaries ################################################## # Vector and path length geometry calculations ################################################## def vector_lengths( X, P=2., axis=None ): """ Finds the length of a set of vectors in *n* dimensions. This is like the :func:`numpy.norm` function for vectors, but has the ability to work over a particular axis of the supplied array or matrix. Computes ``(sum((x_i)^P))^(1/P)`` for each ``{x_i}`` being the elements of *X* along the given axis. If *axis* is *None*, compute over all elements of *X*. """ X = np.asarray(X) return (np.sum(X**(P),axis=axis))**(1./P) def distances_along_curve( X ): """ Computes the distance between a set of successive points in *N* dimensions. Where *X* is an *M* x *N* array or matrix. The distances between successive rows is computed. Distance is the standard Euclidean distance. """ X = np.diff( X, axis=0 ) return vector_lengths(X,axis=1) def path_length(X): """ Computes the distance travelled along a polygonal curve in *N* dimensions. Where *X* is an *M* x *N* array or matrix. Returns an array of length *M* consisting of the distance along the curve at each point (i.e., the rows of *X*). """ X = distances_along_curve(X) return np.concatenate( (np.zeros(1), np.cumsum(X)) ) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ Converts a quadratic Bezier curve to a cubic approximation. The inputs are the *x* and *y* coordinates of the three control points of a quadratic curve, and the output is a tuple of *x* and *y* coordinates of the four control points of the cubic curve. """ # c0x, c0y = q0x, q0y c1x, c1y = q0x + 2./3. * (q1x - q0x), q0y + 2./3. * (q1y - q0y) c2x, c2y = c1x + 1./3. * (q2x - q0x), c1y + 1./3. * (q2y - q0y) # c3x, c3y = q2x, q2y return q0x, q0y, c1x, c1y, c2x, c2y, q2x, q2y
agpl-3.0
RomainBrault/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
notkarol/banjin
experiment/python_word_matching_speed.py
1
4650
#!/usr/bin/python # Takes in a dictionary of words # Verifies that all functions return the same answers # Generates random hands from the probability of getting tiles from the bunch # Then prints out how long each function takes to find all matching words # Generates various hand sizes to see if there's any scaling import matplotlib.pyplot as plt import numpy as np import pickle import os import sys import timeit # Naive list way of matching wordbank def f0_list(hand, wordbank): results = [] for w_i in range(len(wordbank)): match = True for i in range(26): if hand[i] < wordbank[w_i][i]: match = False break if match: results.append(w_i) return results # A for loop and some numpy def f1_list(hand, wordbank): results = [] for w_i in range(len(wordbank)): if min(list(map(lambda x: x[1] - x[0], zip(wordbank[w_i], hand)))) >= 0: results.append(w_i) return results # Naive way using numpy def f0_np(hand, wordbank): results = [] for w_i in range(len(wordbank)): match = True for i in range(26): if hand[i] < wordbank[w_i,i]: match = False break if match: results.append(w_i) return results # A for loop and some numpy def f1_np(hand, wordbank): results = [] for w_i in range(len(wordbank)): if not np.any((hand - wordbank[w_i]) < 0): results.append(w_i) return results # A for loop and some numpy def f2_np(hand, wordbank): results = [] for w_i in range(len(wordbank)): if np.min(hand - wordbank[w_i]) >= 0: results.append(w_i) return results # Vectorized sum and difference def f3_np(hand, wordbank): return np.where(np.sum((wordbank - hand) > 0, axis=1) == 0)[0] # vectorized just using any def f4_np(hand, wordbank): return np.where(np.any(wordbank > hand, axis=1) == 0)[0] # Prepare a 2D list and a 2D np array of letter frequencies with open(sys.argv[1]) as f: words = [x.split()[0] for x in f.readlines()] wordbank_list = [[0] * 26 for _ in range(len(words))] wordbank_np = np.zeros((len(words), 26)) for w_i in range(len(words)): for letter in sorted(words[w_i]): pos = ord(letter) - 65 wordbank_list[w_i][pos] += 1 wordbank_np[w_i][pos] += 1 # Arrays for keeping track of functions and data-specific wordbanks hand_sizes = list(range(2, 9)) functions = {'list' : [f0_list, f1_list], 'numpy': [f0_np, f1_np, f2_np, f3_np, f4_np]} wordbanks = {'list' : wordbank_list, 'numpy': wordbank_np} n_iter = 10 if len(sys.argv) < 3 else int(sys.argv[2]) timings = {} for datatype in functions: timings[datatype] = np.zeros((max(hand_sizes) + 1, n_iter, len(functions[datatype]))) # Verify that our functions give the same answers for datatype in functions: for func in functions[datatype]: print(datatype, func(wordbanks[datatype][len(wordbank_list) // 2], wordbanks[datatype])) # Time each word imports = 'from __main__ import functions, wordbanks' for counter in range(n_iter): for hand_size in hand_sizes: # Get a specific hand size hand = [13,3,3,6,18,3,4,3,12,2,2,5,3,8,11,3,2,9,6,9,6,3,3,2,3,2] while sum(hand) > hand_size: pos = np.random.randint(sum(hand)) for i in range(len(hand)): pos -= hand[i] if pos < 0: hand[i] -= 1 break hand = str(hand) # For this hand go wild for datatype in functions: for f_i in range(len(functions[datatype])): cmd = 'functions["%s"][%i](%s, wordbanks["%s"])' % (datatype, f_i, hand, datatype) timings[datatype][hand_size, counter, f_i] += timeit.timeit(cmd, imports, number=8) print("\rCompleted %.1f%%" % (100 * (counter + 1) / n_iter), end='') print() # Save words and timings in case we're doing a long-lasting operation filename = 'word_matching_timings_%s.pkl' % os.path.basename(sys.argv[1]) with open(filename, 'wb') as f: print("Saving", filename) pickle.dump((words, wordbanks, timings), f) # Show Results for datatype in functions: means = np.mean(timings[datatype], axis=1) for f_i in range(means.shape[1]): plt.semilogy(hand_sizes, means[:, f_i][min(hand_sizes):], label='%s F%i' % (datatype, f_i)) plt.legend(loc='center left', bbox_to_anchor=(0.85, 0.5)) plt.xlabel("Hand Size") plt.ylabel("Execution Time") plt.title("Word Matching") plt.show()
mit
PatrickOReilly/scikit-learn
examples/model_selection/plot_validation_curve.py
141
1931
""" ========================== Plotting Validation Curves ========================== In this plot you can see the training scores and validation scores of an SVM for different values of the kernel parameter gamma. For very low values of gamma, you can see that both the training score and the validation score are low. This is called underfitting. Medium values of gamma will result in high values for both scores, i.e. the classifier is performing fairly well. If gamma is too high, the classifier will overfit, which means that the training score is good but the validation score is poor. """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_digits from sklearn.svm import SVC from sklearn.model_selection import validation_curve digits = load_digits() X, y = digits.data, digits.target param_range = np.logspace(-6, -1, 5) train_scores, test_scores = validation_curve( SVC(), X, y, param_name="gamma", param_range=param_range, cv=10, scoring="accuracy", n_jobs=1) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.title("Validation Curve with SVM") plt.xlabel("$\gamma$") plt.ylabel("Score") plt.ylim(0.0, 1.1) lw = 2 plt.semilogx(param_range, train_scores_mean, label="Training score", color="darkorange", lw=lw) plt.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="darkorange", lw=lw) plt.semilogx(param_range, test_scores_mean, label="Cross-validation score", color="navy", lw=lw) plt.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="navy", lw=lw) plt.legend(loc="best") plt.show()
bsd-3-clause
DSLituiev/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
mortonjt/scipy
scipy/signal/wavelets.py
23
10483
from __future__ import division, print_function, absolute_import import numpy as np from numpy.dual import eig from scipy.special import comb from scipy import linspace, pi, exp from scipy.signal import convolve __all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'cwt'] def daub(p): """ The coefficients for the FIR low-pass filter producing Daubechies wavelets. p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients. Parameters ---------- p : int Order of the zero at f=1/2, can have values from 1 to 34. Returns ------- daub : ndarray Return """ sqrt = np.sqrt if p < 1: raise ValueError("p must be at least 1.") if p == 1: c = 1 / sqrt(2) return np.array([c, c]) elif p == 2: f = sqrt(2) / 8 c = sqrt(3) return f * np.array([1 + c, 3 + c, 3 - c, 1 - c]) elif p == 3: tmp = 12 * sqrt(10) z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6 z1c = np.conj(z1) f = sqrt(2) / 8 d0 = np.real((1 - z1) * (1 - z1c)) a0 = np.real(z1 * z1c) a1 = 2 * np.real(z1) return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1, a0 - 3 * a1 + 3, 3 - a1, 1]) elif p < 35: # construct polynomial and factor it if p < 35: P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1] yj = np.roots(P) else: # try different polynomial --- needs work P = [comb(p - 1 + k, k, exact=1) / 4.0**k for k in range(p)][::-1] yj = np.roots(P) / 4 # for each root, compute two z roots, select the one with |z|>1 # Build up final polynomial c = np.poly1d([1, 1])**p q = np.poly1d([1]) for k in range(p - 1): yval = yj[k] part = 2 * sqrt(yval * (yval - 1)) const = 1 - 2 * yval z1 = const + part if (abs(z1)) < 1: z1 = const - part q = q * [1, -z1] q = c * np.real(q) # Normalize result q = q / np.sum(q) * sqrt(2) return q.c[::-1] else: raise ValueError("Polynomial factorization does not work " "well for p too large.") def qmf(hk): """ Return high-pass qmf filter from low-pass Parameters ---------- hk : array_like Coefficients of high-pass filter. """ N = len(hk) - 1 asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)] return hk[::-1] * np.array(asgn) def cascade(hk, J=7): """ Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients. Parameters ---------- hk : array_like Coefficients of low-pass filter. J : int, optional Values will be computed at grid points ``K/2**J``. Default is 7. Returns ------- x : ndarray The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where ``len(hk) = len(gk) = N+1``. phi : ndarray The scaling function ``phi(x)`` at `x`: ``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N. psi : ndarray, optional The wavelet function ``psi(x)`` at `x`: ``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N. `psi` is only returned if `gk` is not None. Notes ----- The algorithm uses the vector cascade algorithm described by Strang and Nguyen in "Wavelets and Filter Banks". It builds a dictionary of values and slices for quick reuse. Then inserts vectors into final vector at the end. """ N = len(hk) - 1 if (J > 30 - np.log2(N + 1)): raise ValueError("Too many levels.") if (J < 1): raise ValueError("Too few levels.") # construct matrices needed nn, kk = np.ogrid[:N, :N] s2 = np.sqrt(2) # append a zero so that take works thk = np.r_[hk, 0] gk = qmf(hk) tgk = np.r_[gk, 0] indx1 = np.clip(2 * nn - kk, -1, N + 1) indx2 = np.clip(2 * nn - kk + 1, -1, N + 1) m = np.zeros((2, 2, N, N), 'd') m[0, 0] = np.take(thk, indx1, 0) m[0, 1] = np.take(thk, indx2, 0) m[1, 0] = np.take(tgk, indx1, 0) m[1, 1] = np.take(tgk, indx2, 0) m *= s2 # construct the grid of points x = np.arange(0, N * (1 << J), dtype=np.float) / (1 << J) phi = 0 * x psi = 0 * x # find phi0, and phi1 lam, v = eig(m[0, 0]) ind = np.argmin(np.absolute(lam - 1)) # a dictionary with a binary representation of the # evaluation points x < 1 -- i.e. position is 0.xxxx v = np.real(v[:, ind]) # need scaling function to integrate to 1 so find # eigenvector normalized to sum(v,axis=0)=1 sm = np.sum(v) if sm < 0: # need scaling function to integrate to 1 v = -v sm = -sm bitdic = {} bitdic['0'] = v / sm bitdic['1'] = np.dot(m[0, 1], bitdic['0']) step = 1 << J phi[::step] = bitdic['0'] phi[(1 << (J - 1))::step] = bitdic['1'] psi[::step] = np.dot(m[1, 0], bitdic['0']) psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0']) # descend down the levels inserting more and more values # into bitdic -- store the values in the correct location once we # have computed them -- stored in the dictionary # for quicker use later. prevkeys = ['1'] for level in range(2, J + 1): newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys] fac = 1 << (J - level) for key in newkeys: # convert key to number num = 0 for pos in range(level): if key[pos] == '1': num += (1 << (level - 1 - pos)) pastphi = bitdic[key[1:]] ii = int(key[0]) temp = np.dot(m[0, ii], pastphi) bitdic[key] = temp phi[num * fac::step] = temp psi[num * fac::step] = np.dot(m[1, ii], pastphi) prevkeys = newkeys return x, phi, psi def morlet(M, w=5.0, s=1.0, complete=True): """ Complex Morlet wavelet. Parameters ---------- M : int Length of the wavelet. w : float, optional Omega0. Default is 5 s : float, optional Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1. complete : bool, optional Whether to use the complete or the standard version. Returns ------- morlet : (M,) ndarray See Also -------- scipy.signal.gausspulse Notes ----- The standard version:: pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2)) This commonly used wavelet is often referred to simply as the Morlet wavelet. Note that this simplified version can cause admissibility problems at low values of w. The complete version:: pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2)) The complete version of the Morlet wavelet, with a correction term to improve admissibility. For w greater than 5, the correction term is negligible. Note that the energy of the return wavelet is not normalised according to s. The fundamental frequency of this wavelet in Hz is given by ``f = 2*s*w*r / M`` where r is the sampling rate. """ x = linspace(-s * 2 * pi, s * 2 * pi, M) output = exp(1j * w * x) if complete: output -= exp(-0.5 * (w**2)) output *= exp(-0.5 * (x**2)) * pi**(-0.25) return output def ricker(points, a): """ Return a Ricker wavelet, also known as the "Mexican hat wavelet". It models the function: ``A (1 - x^2/a^2) exp(-x^2/2 a^2)``, where ``A = 2/sqrt(3a)pi^1/4``. Parameters ---------- points : int Number of points in `vector`. Will be centered around 0. a : scalar Width parameter of the wavelet. Returns ------- vector : (N,) ndarray Array of length `points` in shape of ricker curve. Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> points = 100 >>> a = 4.0 >>> vec2 = signal.ricker(points, a) >>> print(len(vec2)) 100 >>> plt.plot(vec2) >>> plt.show() """ A = 2 / (np.sqrt(3 * a) * (np.pi**0.25)) wsq = a**2 vec = np.arange(0, points) - (points - 1.0) / 2 xsq = vec**2 mod = (1 - xsq / wsq) gauss = np.exp(-xsq / (2 * wsq)) total = A * mod * gauss return total def cwt(data, wavelet, widths): """ Continuous wavelet transform. Performs a continuous wavelet transform on `data`, using the `wavelet` function. A CWT performs a convolution with `data` using the `wavelet` function, which is characterized by a width parameter and length parameter. Parameters ---------- data : (N,) ndarray data on which to perform the transform. wavelet : function Wavelet function, which should take 2 arguments. The first argument is the number of points that the returned vector will have (len(wavelet(width,length)) == length). The second is a width parameter, defining the size of the wavelet (e.g. standard deviation of a gaussian). See `ricker`, which satisfies these requirements. widths : (M,) sequence Widths to use for transform. Returns ------- cwt: (M, N) ndarray Will have shape of (len(widths), len(data)). Notes ----- >>> length = min(10 * width[ii], len(data)) >>> cwt[ii,:] = scipy.signal.convolve(data, wavelet(length, ... width[ii]), mode='same') Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 200, endpoint=False) >>> sig = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2) >>> widths = np.arange(1, 31) >>> cwtmatr = signal.cwt(sig, signal.ricker, widths) >>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto', ... vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max()) >>> plt.show() """ output = np.zeros([len(widths), len(data)]) for ind, width in enumerate(widths): wavelet_data = wavelet(min(10 * width, len(data)), width) output[ind, :] = convolve(data, wavelet_data, mode='same') return output
bsd-3-clause
broadinstitute/cms
cms/power/power_func.py
1
8625
## functions for analyzing empirical/simulated CMS output ## last updated 09.14.2017 vitti@broadinstitute.org import matplotlib as mp mp.use('agg') import matplotlib.pyplot as plt import numpy as np import math from scipy.stats import percentileofscore ################### ## DEFINE SCORES ## ################### def write_master_likesfile(writefilename, model, selpop, freq,basedir, miss = "neut",): '''adapted from run_likes_func.py''' writefile = open(writefilename, 'w') for score in ['ihs', 'nsl', 'delihh']: hitlikesfilename = basedir + model + "/" + score + "/likes_sel" + str(selpop) + "_" + str(freq) + "_causal.txt"#_smoothed.txt" misslikesfilename = basedir + model + "/" + score + "/likes_sel" + str(selpop) + "_" + str(freq) + "_" + miss + ".txt"#"_smoothed.txt" #assert(os.path.isfile(hitlikesfilename) and os.path.isfile(misslikesfilename)) writefile.write(hitlikesfilename + "\n" + misslikesfilename + "\n") for score in ['xpehh', 'fst', 'deldaf']: hitlikesfilename = basedir + model + "/" + score + "/likes_sel" + str(selpop) + "_choose_" + str(freq) + "_causal.txt"#_smoothed.txt" misslikesfilename = basedir + model + "/" + score + "/likes_sel" + str(selpop) + "_choose_" + str(freq) + "_" + miss + ".txt"#"_smoothed.txt" #assert(os.path.isfile(hitlikesfilename) and os.path.isfile(misslikesfilename)) writefile.write(hitlikesfilename + "\n" + misslikesfilename + "\n") writefile.close() print("wrote to: " + writefilename) return ############### ## REGION ID ## ############### def get_window(istart, physpos, scores, windowlen = 100000): window_scores = [scores[istart]] startpos = physpos[istart] pos = startpos iscore = istart while pos < (startpos + windowlen): iscore += 1 if iscore >= len(scores): break window_scores.append(scores[iscore]) pos = physpos[iscore] #print(str(pos) + " " + str(startpos)) return window_scores def check_outliers(scorelist, cutoff = 3): numscores = len(scorelist) outliers = [item for item in scorelist if item > cutoff] numoutliers = len(outliers) percentage = (float(numoutliers) / float(numscores)) * 100. return percentage def check_rep_windows(physpos, scores, windowlen = 100000, cutoff = 3, totalchrlen=1000000): ''' previous implementation: !!!! this is going to result in false positives whenever I have a small uptick right near the edge of the replicate ''' #check window defined by each snp as starting point rep_percentages = [] numSnps = len(physpos) numWindows = 0 #get exhaustive windows and stop at chrom edge for isnp in range(numSnps): if physpos[isnp] + windowlen < totalchrlen: numWindows +=1 else: #print(str(physpos[isnp]) + "\t") break for iPos in range(numWindows): window_scores = get_window(iPos, physpos, scores, windowlen) percentage = check_outliers(window_scores, cutoff) rep_percentages.append(percentage) return rep_percentages def merge_windows(chrom_signif, windowlen, maxGap = 100000): print('should implement this using bedtools') starts, ends = [], [] contig = False this_windowlen = 0 starting_pos = 0 if len(chrom_signif) > 0: for i_start in range(len(chrom_signif) - 1): if not contig: starts.append(chrom_signif[i_start]) this_windowlen = windowlen #unmerged, default starting_pos = chrom_signif[i_start] if ((chrom_signif[i_start] + this_windowlen) > chrom_signif[i_start + 1]): #contiguous contig = True this_windowlen = chrom_signif[i_start +1] + windowlen - starting_pos #or, could also be contiguous in the situation where the next snp is not within this window because there doesn't exist such a snp elif chrom_signif[i_start +1] >=(chrom_signif[i_start] + this_windowlen) and chrom_signif[i_start +1] < (chrom_signif[i_start] + maxGap): contig = True this_windowlen = chrom_signif[i_start +1] + windowlen - starting_pos else: contig = False if not contig: windowend = chrom_signif[i_start] + windowlen ends.append(windowend) if contig: #last region is overlapped by its predecssor ends.append(chrom_signif[-1] + windowlen) else: starts.append(chrom_signif[-1]) ends.append(chrom_signif[-1] + windowlen) assert len(starts) == len(ends) return starts, ends ########################## ## POWER & SIGNIFICANCE ## ########################## def calc_pr(all_percentages, threshhold): numNeutReps_exceedThresh = 0 totalnumNeutReps = len(all_percentages) for irep in range(totalnumNeutReps): if len(all_percentages[irep]) != 0: if max(all_percentages[irep]) > threshhold: numNeutReps_exceedThresh +=1 numNeutReps_exceedThresh, totalnumNeutReps = float(numNeutReps_exceedThresh), float(totalnumNeutReps) if totalnumNeutReps != 0: pr = numNeutReps_exceedThresh / totalnumNeutReps else: pr = 0 print('ERROR; empty set') return pr def get_causal_rank(values, causal_val): if np.isnan(causal_val): return(float('nan')) assert(causal_val in values) cleanvals = [] for item in values: if not np.isnan(item) and not np.isinf(item): cleanvals.append(item) values = cleanvals values.sort() values.reverse() causal_rank = values.index(causal_val) return causal_rank def get_cdf_from_causal_ranks(causal_ranks): numbins = max(causal_ranks) #? heuristic counts, bins = np.histogram(causal_ranks, bins=numbins, normed = True) #doublecheck cdf = np.cumsum(counts) return bins, cdf def get_pval(all_simscores, thisScore): r = np.searchsorted(all_simscores,thisScore) n = len(all_simscores) pval = 1. - ((r + 1.) / (n + 1.)) if pval > 0: #pval *= nSnps #Bonferroni return pval else: #print("r: " +str(r) + " , n: " + str(n)) pval = 1. - (r/(n+1)) #pval *= nSnps #Bonferroni return pval ############### ## VISUALIZE ## ############### def quick_plot(ax, pos, val, ylabel,causal_index=-1): ax.scatter(pos, val, s=.8) if causal_index != -1: ax.scatter(pos[causal_index], val[causal_index], color='r', s=4) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize('6') ax.set_ylabel(ylabel, fontsize='6') #ax.set_xlim([0, 1500000]) #make flexible? ax.yaxis.set_label_position('right') #ax.set_ylim([min(val), max(val)]) return ax def plot_dist(allvals, savefilename= "/web/personal/vitti/test.png", numBins=1000): #print(allvals) #get rid of nans and infs #cleanvals = [item for item in allvals if not np.isnan(item)] #allvals = cleanvals allvals = np.array(allvals) allvals = allvals[~np.isnan(allvals)] allvals = allvals[~np.isinf(allvals)] #allvals = list(allvals) #print(allvals) print("percentile for score = 10: " + str(percentileofscore(allvals, 10))) print("percentile for score = 15: " + str(percentileofscore(allvals, 15))) if len(allvals) > 0: f, ax = plt.subplots(1) ax.hist(allvals, bins=numBins) plt.savefig(savefilename) print('plotted to ' + savefilename) return def plotManhattan(ax, neut_rep_scores, emp_scores, chrom_pos, nSnps, maxSkipVal = 0, zscores = True): #neut_rep_scores.sort() #print('sorted neutral scores...') lastpos = 0 for chrom in range(1,23): ichrom = chrom-1 if ichrom%2 == 0: plotcolor = "darkblue" else: plotcolor = "lightblue" if zscores == True: #http://stackoverflow.com/questions/3496656/convert-z-score-z-value-standard-score-to-p-value-for-normal-distribution-in?rq=1 #Z SCORE cf SG email 103116 #pvals = [get_pval(neut_rep_scores, item) for item in emp_scores[ichrom]] pvalues = [] for item in emp_scores[ichrom]: if item < maxSkipVal: #speed up this process by ignoring anything obviously insignificant pval = 1 else: #print('scipy') #sys.exit() pval = scipy.stats.norm.sf(abs(item)) pvalues.append(pval) #else: # pval = get_pval(neut_rep_scores, item) #pvalues.append(pval) print("calculated pvalues for chrom " + str(chrom)) chrom_pos = range(lastpos, lastpos + len(pvalues)) logtenpvals = [(-1. * math.log10(pval)) for pval in pvalues] ax.scatter(chrom_pos, logtenpvals, color =plotcolor, s=.5) lastpos = chrom_pos[-1] else: chrom_pos = range(lastpos, lastpos + len(emp_scores[ichrom])) ax.scatter(chrom_pos, emp_scores[ichrom], color=plotcolor, s=.5) lastpos = chrom_pos[-1] return ax def plotManhattan_extended(ax, emp_scores, chrom_pos, chrom): ''' makes a figure more like in Karlsson 2013 instead of Grossman 2013''' ax.plot(chrom_pos, emp_scores, linestyle='None', marker=".", markersize=.3, color="black") ax.set_ylabel('chr' + str(chrom), fontsize=6, rotation='horizontal') labels = ax.get_yticklabels() ax.set_yticklabels(labels, fontsize=6) ax.set_axis_bgcolor('LightGray') return ax
bsd-2-clause
vshtanko/scikit-learn
examples/applications/plot_prediction_latency.py
234
11277
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <eustache@diemert.fr> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[i, :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) X_train = X[:n_train] y_train = y[:n_train] X_test = X[n_train:] y_test = y[n_train:] idx = np.arange(n_train) np.random.seed(13) np.random.shuffle(idx) X_train = X_train[idx] y_train = y_train[idx] std = X_train.std(axis=0) mean = X_train.mean(axis=0) X_train = (X_train - mean) / std X_test = (X_test - mean) / std std = y_train.std(axis=0) mean = y_train.mean(axis=0) y_train = (y_train - mean) / std y_test = (y_test - mean) / std gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[0]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
tashaxe/Red-DiscordBot
lib/youtube_dl/extractor/wsj.py
7
4311
# coding: utf-8 from __future__ import unicode_literals from .common import InfoExtractor from ..utils import ( int_or_none, float_or_none, unified_strdate, ) class WSJIE(InfoExtractor): _VALID_URL = r'''(?x) (?: https?://video-api\.wsj\.com/api-video/player/iframe\.html\?.*?\bguid=| https?://(?:www\.)?wsj\.com/video/[^/]+/| wsj: ) (?P<id>[a-fA-F0-9-]{36}) ''' IE_DESC = 'Wall Street Journal' _TESTS = [{ 'url': 'http://video-api.wsj.com/api-video/player/iframe.html?guid=1BD01A4C-BFE8-40A5-A42F-8A8AF9898B1A', 'md5': 'e230a5bb249075e40793b655a54a02e4', 'info_dict': { 'id': '1BD01A4C-BFE8-40A5-A42F-8A8AF9898B1A', 'ext': 'mp4', 'upload_date': '20150202', 'uploader_id': 'jdesai', 'creator': 'jdesai', 'categories': list, # a long list 'duration': 90, 'title': 'Bills Coach Rex Ryan Updates His Old Jets Tattoo', }, }, { 'url': 'http://www.wsj.com/video/can-alphabet-build-a-smarter-city/359DDAA8-9AC1-489C-82E6-0429C1E430E0.html', 'only_matching': True, }] def _real_extract(self, url): video_id = self._match_id(url) info = self._download_json( 'http://video-api.wsj.com/api-video/find_all_videos.asp', video_id, query={ 'type': 'guid', 'count': 1, 'query': video_id, 'fields': ','.join(( 'type', 'hls', 'videoMP4List', 'thumbnailList', 'author', 'description', 'name', 'duration', 'videoURL', 'titletag', 'formattedCreationDate', 'keywords', 'editor')), })['items'][0] title = info.get('name', info.get('titletag')) formats = [] f4m_url = info.get('videoURL') if f4m_url: formats.extend(self._extract_f4m_formats( f4m_url, video_id, f4m_id='hds', fatal=False)) m3u8_url = info.get('hls') if m3u8_url: formats.extend(self._extract_m3u8_formats( info['hls'], video_id, ext='mp4', entry_protocol='m3u8_native', m3u8_id='hls', fatal=False)) for v in info.get('videoMP4List', []): mp4_url = v.get('url') if not mp4_url: continue tbr = int_or_none(v.get('bitrate')) formats.append({ 'url': mp4_url, 'format_id': 'http' + ('-%d' % tbr if tbr else ''), 'tbr': tbr, 'width': int_or_none(v.get('width')), 'height': int_or_none(v.get('height')), 'fps': float_or_none(v.get('fps')), }) self._sort_formats(formats) return { 'id': video_id, 'formats': formats, # Thumbnails are conveniently in the correct format already 'thumbnails': info.get('thumbnailList'), 'creator': info.get('author'), 'uploader_id': info.get('editor'), 'duration': int_or_none(info.get('duration')), 'upload_date': unified_strdate(info.get( 'formattedCreationDate'), day_first=False), 'title': title, 'categories': info.get('keywords'), } class WSJArticleIE(InfoExtractor): _VALID_URL = r'(?i)https?://(?:www\.)?wsj\.com/articles/(?P<id>[^/?#&]+)' _TEST = { 'url': 'https://www.wsj.com/articles/dont-like-china-no-pandas-for-you-1490366939?', 'info_dict': { 'id': '4B13FA62-1D8C-45DB-8EA1-4105CB20B362', 'ext': 'mp4', 'upload_date': '20170221', 'uploader_id': 'ralcaraz', 'title': 'Bao Bao the Panda Leaves for China', } } def _real_extract(self, url): article_id = self._match_id(url) webpage = self._download_webpage(url, article_id) video_id = self._search_regex( r'data-src=["\']([a-fA-F0-9-]{36})', webpage, 'video id') return self.url_result('wsj:%s' % video_id, WSJIE.ie_key(), video_id)
gpl-3.0
DiCarloLab-Delft/PycQED_py3
pycqed/utilities/pulse_scheme.py
1
5469
import numpy as np import matplotlib.pyplot as plt import matplotlib.patches def new_pulse_fig(figsize): ''' Open a new figure and configure it to plot pulse schemes. ''' fig, ax = plt.subplots(1, 1, figsize=figsize, frameon=False) ax.axis('off') fig.subplots_adjust(bottom=0, top=1, left=0, right=1) ax.axhline(0, color='0.75') return fig, ax def new_pulse_subplot(fig, *args, **kwargs): ''' Add a new subplot configured for plotting pulse schemes to a figure. All *args and **kwargs are passed to fig.add_subplot. ''' ax = fig.add_subplot(*args, **kwargs) ax.axis('off') fig.subplots_adjust(bottom=0, top=1, left=0, right=1) ax.axhline(0, color='0.75') return ax def mwPulse(ax, pos, y_offs=0, width=1.5, amp=1, label=None, phase=0, labelHeight=1.3, color='C0', modulation='normal', **plot_kws): ''' Draw a microwave pulse: Gaussian envelope with modulation. ''' x = np.linspace(pos, pos + width, 100) envPos = amp * np.exp(-(x - (pos + width / 2))**2 / (width / 4)**2) envNeg = -amp * np.exp(-(x - (pos + width / 2))**2 / (width / 4)**2) if modulation == 'normal': mod = envPos * np.sin(2 * np.pi * 3 / width * x + phase) elif modulation == 'high': mod = envPos * np.sin(5 * np.pi * 3 / width * x + phase) else: raise ValueError() ax.plot(x, envPos+y_offs, '--', color=color, **plot_kws) ax.plot(x, envNeg+y_offs, '--', color=color, **plot_kws) ax.plot(x, mod+y_offs, '-', color=color, **plot_kws) if label is not None: ax.text(pos + width / 2, labelHeight, label, horizontalalignment='right', color=color) return pos + width def fluxPulse(ax, pos, y_offs=0, width=2.5, s=.1, amp=1.5, label=None, labelHeight=1.7, color='C1', **plot_kws): ''' Draw a smooth flux pulse, where the rising and falling edges are given by Fermi-Dirac functions. s: smoothness of edge ''' x = np.linspace(pos, pos + width, 100) y = amp / ((np.exp(-(x - (pos + 5.5 * s)) / s) + 1) * (np.exp((x - (pos + width - 5.5 * s)) / s) + 1)) ax.fill_between(x, y+y_offs, color=color, alpha=0.3) ax.plot(x, y+y_offs, color=color, **plot_kws) if label is not None: ax.text(pos + width / 2, labelHeight, label, horizontalalignment='center', color=color) return pos + width def ramZPulse(ax, pos, y_offs=0, width=2.5, s=0.1, amp=1.5, sep=1.5, color='C1'): ''' Draw a Ram-Z flux pulse, i.e. only part of the pulse is shaded, to indicate cutting off the pulse at some time. ''' xLeft = np.linspace(pos, pos + sep, 100) xRight = np.linspace(pos + sep, pos + width, 100) xFull = np.concatenate((xLeft, xRight)) y = amp / ((np.exp(-(xFull - (pos + 5.5 * s)) / s) + 1) * (np.exp((xFull - (pos + width - 5.5 * s)) / s) + 1)) yLeft = y[:len(xLeft)] ax.fill_between(xLeft, yLeft+y_offs, alpha=0.3, color=color, linewidth=0.0) ax.plot(xFull, y+y_offs, color=color) return pos + width def modZPulse(ax, pos, y_offs=0, width=2.5, s=0.1, amp=1.5, sep=1.5, color='C1'): ''' Draw a modulated Z pulse. ''' return pos + width def interval(ax, start, stop, y_offs = 0, height=1.5, label=None, labelHeight=None, vlines=True, color='k', arrowstyle='<|-|>', **plot_kws): ''' Draw an arrow to indicate an interval. ''' if labelHeight is None: labelHeight = height + 0.2 arrow = matplotlib.patches.FancyArrowPatch( posA=(start, height+y_offs), posB=(stop, height+y_offs), arrowstyle=arrowstyle, color=color, mutation_scale=7, **plot_kws) ax.add_patch(arrow) if vlines: ax.plot([start, start], [0+y_offs, height+y_offs], '--', color=color, **plot_kws) ax.plot([stop, stop], [0+y_offs, height+y_offs], '--', color=color, **plot_kws) if label is not None: ax.text((start + stop) / 2, labelHeight+y_offs, label, color=color, horizontalalignment='center') def interval_vertical(ax, start, stop, position, label=None, labelHeight=None, color='k', arrowstyle='<|-|>', labeloffset: float = 0, horizontalalignment='center'): ''' Draw an arrow to indicate an interval. ''' if labelHeight is None: labelHeight = (start+stop)/2 arrow = matplotlib.patches.FancyArrowPatch( posA=(position, start), posB=(position, stop), arrowstyle=arrowstyle, color=color, mutation_scale=7) ax.add_patch(arrow) if label is not None: ax.text(position+labeloffset, labelHeight, label, color=color, horizontalalignment=horizontalalignment) def meter(ax, x0, y0, y_offs=0, w=1.1, h=.8, color='black', fillcolor=None): """ Draws a measurement meter on the specified position. """ if fillcolor == None: fill = False else: fill = True p1 = matplotlib.patches.Rectangle( (x0-w/2, y0-h/2+y_offs), w, h, facecolor=fillcolor, edgecolor=color, fill=fill, zorder=5) ax.add_patch(p1) p0 = matplotlib.patches.Wedge( (x0, y0-h/4+y_offs), .4, theta1=40, theta2=180-40, color=color, lw=2, width=.01, zorder=5) ax.add_patch(p0) ax.arrow(x0, y0-h/4+y_offs, dx=.5*np.cos(np.deg2rad(70)), dy=.5*np.sin(np.deg2rad(60)), width=.03, color=color, zorder=5)
mit
florian-f/sklearn
examples/cluster/plot_dbscan.py
3
2634
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ print(__doc__) import numpy as np from scipy.spatial import distance from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4) ############################################################################## # Compute similarities D = distance.squareform(distance.pdist(X)) S = 1 - (D / np.max(D)) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.95, min_samples=10).fit(S) core_samples = db.core_sample_indices_ labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(D, labels, metric='precomputed')) ############################################################################## # Plot result import pylab as pl from itertools import cycle pl.close('all') pl.figure(1) pl.clf() # Black removed and is used for noise instead. colors = cycle('bgrcmybgrcmybgrcmybgrcmy') for k, col in zip(set(labels), colors): if k == -1: # Black used for noise. col = 'k' markersize = 6 class_members = [index[0] for index in np.argwhere(labels == k)] cluster_core_samples = [index for index in core_samples if labels[index] == k] for index in class_members: x = X[index] if index in core_samples and k != -1: markersize = 14 else: markersize = 6 pl.plot(x[0], x[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=markersize) pl.title('Estimated number of clusters: %d' % n_clusters_) pl.show()
bsd-3-clause
bthirion/nipy
examples/labs/need_data/localizer_glm_ar.py
3
5428
#!/usr/bin/env python # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import print_function # Python 2/3 compatibility __doc__ = """ Full step-by-step example of fitting a GLM to experimental data and visualizing the results. More specifically: 1. A sequence of fMRI volumes are loaded 2. A design matrix describing all the effects related to the data is computed 3. a mask of the useful brain volume is computed 4. A GLM is applied to the dataset (effect/covariance, then contrast estimation) Note that this corresponds to a single run. Needs matplotlib Author : Bertrand Thirion, 2010--2012 """ print(__doc__) from os import mkdir, getcwd, path import numpy as np try: import matplotlib.pyplot as plt except ImportError: raise RuntimeError("This script needs the matplotlib library") from nibabel import save from nipy.modalities.fmri.glm import FMRILinearModel from nipy.modalities.fmri.design_matrix import make_dmtx from nipy.modalities.fmri.experimental_paradigm import \ load_paradigm_from_csv_file from nipy.labs.viz import plot_map, cm # Local import from get_data_light import DATA_DIR, get_first_level_dataset ####################################### # Data and analysis parameters ####################################### # volume mask # This dataset is large get_first_level_dataset() data_path = path.join(DATA_DIR, 's12069_swaloc1_corr.nii.gz') paradigm_file = path.join(DATA_DIR, 'localizer_paradigm.csv') # timing n_scans = 128 tr = 2.4 # paradigm frametimes = np.linspace(0.5 * tr, (n_scans - .5) * tr, n_scans) # confounds hrf_model = 'canonical with derivative' drift_model = "cosine" hfcut = 128 # write directory write_dir = path.join(getcwd(), 'results') if not path.exists(write_dir): mkdir(write_dir) print('Computation will be performed in directory: %s' % write_dir) ######################################## # Design matrix ######################################## print('Loading design matrix...') paradigm = load_paradigm_from_csv_file(paradigm_file)['0'] design_matrix = make_dmtx(frametimes, paradigm, hrf_model=hrf_model, drift_model=drift_model, hfcut=hfcut) ax = design_matrix.show() ax.set_position([.05, .25, .9, .65]) ax.set_title('Design matrix') plt.savefig(path.join(write_dir, 'design_matrix.png')) ######################################### # Specify the contrasts ######################################### # simplest ones contrasts = {} n_columns = len(design_matrix.names) for i in range(paradigm.n_conditions): contrasts['%s' % design_matrix.names[2 * i]] = np.eye(n_columns)[2 * i] # and more complex/ interesting ones contrasts["audio"] = contrasts["clicDaudio"] + contrasts["clicGaudio"] +\ contrasts["calculaudio"] + contrasts["phraseaudio"] contrasts["video"] = contrasts["clicDvideo"] + contrasts["clicGvideo"] + \ contrasts["calculvideo"] + contrasts["phrasevideo"] contrasts["left"] = contrasts["clicGaudio"] + contrasts["clicGvideo"] contrasts["right"] = contrasts["clicDaudio"] + contrasts["clicDvideo"] contrasts["computation"] = contrasts["calculaudio"] + contrasts["calculvideo"] contrasts["sentences"] = contrasts["phraseaudio"] + contrasts["phrasevideo"] contrasts["H-V"] = contrasts["damier_H"] - contrasts["damier_V"] contrasts["V-H"] = contrasts["damier_V"] - contrasts["damier_H"] contrasts["left-right"] = contrasts["left"] - contrasts["right"] contrasts["right-left"] = contrasts["right"] - contrasts["left"] contrasts["audio-video"] = contrasts["audio"] - contrasts["video"] contrasts["video-audio"] = contrasts["video"] - contrasts["audio"] contrasts["computation-sentences"] = contrasts["computation"] - \ contrasts["sentences"] contrasts["reading-visual"] = contrasts["sentences"] * 2 - \ contrasts["damier_H"] - contrasts["damier_V"] contrasts['effects_of_interest'] = np.eye(25)[:20:2] ######################################## # Perform a GLM analysis ######################################## print('Fitting a GLM (this takes time)...') fmri_glm = FMRILinearModel(data_path, design_matrix.matrix, mask='compute') fmri_glm.fit(do_scaling=True, model='ar1') ######################################### # Estimate the contrasts ######################################### print('Computing contrasts...') for index, (contrast_id, contrast_val) in enumerate(contrasts.items()): print(' Contrast % 2i out of %i: %s' % (index + 1, len(contrasts), contrast_id)) # save the z_image image_path = path.join(write_dir, '%s_z_map.nii' % contrast_id) z_map, = fmri_glm.contrast(contrast_val, con_id=contrast_id, output_z=True) save(z_map, image_path) # Create snapshots of the contrasts vmax = max(- z_map.get_data().min(), z_map.get_data().max()) if index > 0: plt.clf() plot_map(z_map.get_data(), z_map.get_affine(), cmap=cm.cold_hot, vmin=- vmax, vmax=vmax, anat=None, cut_coords=None, slicer='z', black_bg=True, # looks much better thus figure=10, threshold=2.5) plt.savefig(path.join(write_dir, '%s_z_map.png' % contrast_id)) print("All the results were witten in %s" % write_dir) plt.show()
bsd-3-clause
kiyoto/statsmodels
statsmodels/regression/_prediction.py
27
6035
# -*- coding: utf-8 -*- """ Created on Fri Dec 19 11:29:18 2014 Author: Josef Perktold License: BSD-3 """ import numpy as np from scipy import stats # this is similar to ContrastResults after t_test, partially copied and adjusted class PredictionResults(object): def __init__(self, predicted_mean, var_pred_mean, var_resid, df=None, dist=None, row_labels=None): self.predicted_mean = predicted_mean self.var_pred_mean = var_pred_mean self.df = df self.var_resid = var_resid self.row_labels = row_labels if dist is None or dist == 'norm': self.dist = stats.norm self.dist_args = () elif dist == 't': self.dist = stats.t self.dist_args = (self.df,) else: self.dist = dist self.dist_args = () @property def se_obs(self): return np.sqrt(self.var_pred_mean + self.var_resid) @property def se_mean(self): return np.sqrt(self.var_pred_mean) def conf_int(self, obs=False, alpha=0.05): """ Returns the confidence interval of the value, `effect` of the constraint. This is currently only available for t and z tests. Parameters ---------- alpha : float, optional The significance level for the confidence interval. ie., The default `alpha` = .05 returns a 95% confidence interval. Returns ------- ci : ndarray, (k_constraints, 2) The array has the lower and the upper limit of the confidence interval in the columns. """ se = self.se_obs if obs else self.se_mean q = self.dist.ppf(1 - alpha / 2., *self.dist_args) lower = self.predicted_mean - q * se upper = self.predicted_mean + q * se return np.column_stack((lower, upper)) def summary_frame(self, what='all', alpha=0.05): # TODO: finish and cleanup import pandas as pd from statsmodels.compat.collections import OrderedDict ci_obs = self.conf_int(alpha=alpha, obs=True) # need to split ci_mean = self.conf_int(alpha=alpha, obs=False) to_include = OrderedDict() to_include['mean'] = self.predicted_mean to_include['mean_se'] = self.se_mean to_include['mean_ci_lower'] = ci_mean[:, 0] to_include['mean_ci_upper'] = ci_mean[:, 1] to_include['obs_ci_lower'] = ci_obs[:, 0] to_include['obs_ci_upper'] = ci_obs[:, 1] self.table = to_include #OrderedDict doesn't work to preserve sequence # pandas dict doesn't handle 2d_array #data = np.column_stack(list(to_include.values())) #names = .... res = pd.DataFrame(to_include, index=self.row_labels, columns=to_include.keys()) return res def get_prediction(self, exog=None, transform=True, weights=None, row_labels=None, pred_kwds=None): """ compute prediction results Parameters ---------- exog : array-like, optional The values for which you want to predict. transform : bool, optional If the model was fit via a formula, do you want to pass exog through the formula. Default is True. E.g., if you fit a model y ~ log(x1) + log(x2), and transform is True, then you can pass a data structure that contains x1 and x2 in their original form. Otherwise, you'd need to log the data first. weights : array_like, optional Weights interpreted as in WLS, used for the variance of the predicted residual. args, kwargs : Some models can take additional arguments or keywords, see the predict method of the model for the details. Returns ------- prediction_results : instance The prediction results instance contains prediction and prediction variance and can on demand calculate confidence intervals and summary tables for the prediction of the mean and of new observations. """ ### prepare exog and row_labels, based on base Results.predict if transform and hasattr(self.model, 'formula') and exog is not None: from patsy import dmatrix exog = dmatrix(self.model.data.design_info.builder, exog) if exog is not None: if row_labels is None: if hasattr(exog, 'index'): row_labels = exog.index else: row_labels = None exog = np.asarray(exog) if exog.ndim == 1 and (self.model.exog.ndim == 1 or self.model.exog.shape[1] == 1): exog = exog[:, None] exog = np.atleast_2d(exog) # needed in count model shape[1] else: exog = self.model.exog if weights is None: weights = getattr(self.model, 'weights', None) if row_labels is None: row_labels = getattr(self.model.data, 'row_labels', None) # need to handle other arrays, TODO: is delegating to model possible ? if weights is not None: weights = np.asarray(weights) if (weights.size > 1 and (weights.ndim != 1 or weights.shape[0] == exog.shape[1])): raise ValueError('weights has wrong shape') ### end if pred_kwds is None: pred_kwds = {} predicted_mean = self.model.predict(self.params, exog, **pred_kwds) covb = self.cov_params() var_pred_mean = (exog * np.dot(covb, exog.T).T).sum(1) # TODO: check that we have correct scale, Refactor scale #??? var_resid = self.scale / weights # self.mse_resid / weights # special case for now: if self.cov_type == 'fixed scale': var_resid = self.cov_kwds['scale'] / weights dist = ['norm', 't'][self.use_t] return PredictionResults(predicted_mean, var_pred_mean, var_resid, df=self.df_resid, dist=dist, row_labels=row_labels)
bsd-3-clause
kyleam/seaborn
examples/elaborate_violinplot.py
30
1055
""" Violinplot from a wide-form dataset =================================== _thumb: .6, .45 """ import seaborn as sns import matplotlib.pyplot as plt sns.set(style="whitegrid") # Load the example dataset of brain network correlations df = sns.load_dataset("brain_networks", header=[0, 1, 2], index_col=0) # Pull out a specific subset of networks used_networks = [1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 16, 17] used_columns = (df.columns.get_level_values("network") .astype(int) .isin(used_networks)) df = df.loc[:, used_columns] # Compute the correlation matrix and average over networks corr_df = df.corr().groupby(level="network").mean() corr_df.index = corr_df.index.astype(int) corr_df = corr_df.sort_index().T # Set up the matplotlib figure f, ax = plt.subplots(figsize=(11, 6)) # Draw a violinplot with a narrower bandwidth than the default sns.violinplot(data=corr_df, palette="Set3", bw=.2, cut=1, linewidth=1) # Finalize the figure ax.set(ylim=(-.7, 1.05)) sns.despine(left=True, bottom=True)
bsd-3-clause
syagev/kaggle_dsb
luna16/src/conv_net/data.py
1
2668
from __future__ import division import numpy as np import os import pickle import glob import Image from skimage.io import imread from sklearn.cross_validation import train_test_split dataset_dir = "../../data/samples" def load(): tps = glob.glob(dataset_dir+"/*true.jpg") fps_2 = glob.glob(dataset_dir+"/*false.jpg") fps = np.random.choice(fps_2,10000) images_tps = [[imread(x)] for x in tps] images_fps = [[imread(x)] for x in fps] labels = np.concatenate((np.ones((len(images_tps))),np.zeros((len(images_fps))))).astype("ubyte") images = np.concatenate((images_tps,images_fps)).astype("float32") train_X, test_X, train_y, test_y = train_test_split(images,labels, test_size=0.4, random_state=1337) half = 0.5*len(test_X) val_X = test_X[:half] val_y = test_y[:half] test_X = test_X[half:] test_y = test_y[half:] label_to_names = {0:"false",1:"true"} # training set, batches 1-4 # train_X = np.zeros((40000, 3, 32, 32), dtype="float32") # train_y = np.zeros((40000, 1), dtype="ubyte").flatten() # n_samples = 10000 # number of samples per batch # for i in range(0,4): # f = open(os.path.join(dataset_dir, "data_batch_"+str(i+1)+""), "rb") # cifar_batch = pickle.load(f) # f.close() # train_X[i*n_samples:(i+1)*n_samples] = (cifar_batch['data'].reshape(-1, 3, 32, 32) / 255.).astype("float32") # train_y[i*n_samples:(i+1)*n_samples] = np.array(cifar_batch['labels'], dtype='ubyte') # # # validation set, batch 5 # f = open(os.path.join(dataset_dir, "data_batch_5"), "rb") # cifar_batch_5 = pickle.load(f) # f.close() # val_X = (cifar_batch_5['data'].reshape(-1, 3, 32, 32) / 255.).astype("float32") # val_y = np.array(cifar_batch_5['labels'], dtype='ubyte') # # # labels # f = open(os.path.join(dataset_dir, "batches.meta"), "rb") # cifar_dict = pickle.load(f) # label_to_names = {k:v for k, v in zip(range(10), cifar_dict['label_names'])} # f.close() # # # test set # f = open(os.path.join(dataset_dir, "test_batch"), "rb") # cifar_test = pickle.load(f) # f.close() # test_X = (cifar_test['data'].reshape(-1, 3, 32, 32) / 255.).astype("float32") # test_y = np.array(cifar_test['labels'], dtype='ubyte') # # # print("training set size: data = {}, labels = {}".format(train_X.shape, train_y.shape)) # print("validation set size: data = {}, labels = {}".format(val_X.shape, val_y.shape)) # print("test set size: data = {}, labels = {}".format(test_X.shape, test_y.shape)) # return train_X, train_y, val_X, val_y, test_X, test_y, label_to_names
apache-2.0
phoebe-project/phoebe2-docs
2.2/tutorials/irrad_method_horvat.py
1
3005
#!/usr/bin/env python # coding: utf-8 # Lambert Scattering (irrad_method='horvat') # ============================ # # Setup # ----------------------------- # Let's first make sure we have the latest version of PHOEBE 2.2 installed. (You can comment out this line if you don't use pip for your installation or don't want to update to the latest release). # In[ ]: get_ipython().system('pip install -I "phoebe>=2.2,<2.3"') # As always, let's do imports and initialize a logger and a new bundle. See [Building a System](../tutorials/building_a_system.ipynb) for more details. # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger('error') b = phoebe.default_binary() # Relevant Parameters # --------------------------------- # For parameters that affect reflection and heating (irrad_frac_\*) see the tutorial on [reflection and heating](./reflection_heating.ipynb). # # The 'irrad_method' compute option dictates whether irradiation is handled according to the new Horvat scheme which includes Lambert Scattering, Wilson's original reflection scheme, or ignored entirely. # In[3]: print(b['irrad_method']) # Influence on Light Curves (fluxes) # --------------------------------- # # Let's (roughtly) reproduce Figure 8 from [Prsa et al. 2016](http://phoebe-project.org/publications/2016Prsa+) which shows the difference between Wilson and Horvat schemes for various inclinations. # # <img src="prsa+2016_fig8.png" alt="Figure 8" width="600px"/> # # First we'll roughly create a A0-K0 binary and set reasonable albedos. # In[4]: b['teff@primary'] = 11000 b['requiv@primary'] = 2.5 b['gravb_bol@primary'] = 1.0 b['teff@secondary'] = 5000 b['requiv@secondary'] = 0.85 b['q@binary'] = 0.8/3.0 b.flip_constraint('mass@primary', solve_for='sma@binary') b['mass@primary'] = 3.0 # In[5]: print(b.filter(qualifier=['mass', 'requiv', 'teff'], context='component')) # In[6]: b['irrad_frac_refl_bol@primary'] = 1.0 b['irrad_frac_refl_bol@secondary'] = 0.6 # We'll also disable any eclipsing effects. # In[7]: b['eclipse_method'] = 'only_horizon' # Now we'll compute the light curves with wilson and horvat irradiation, and plot the relative differences between the two as a function of phase, for several different values of the inclination. # In[8]: phases = phoebe.linspace(0,1,101) b.add_dataset('lc', times=b.to_time(phases)) # In[9]: for incl in [0,30,60,90]: b.set_value('incl@binary', incl) b.run_compute(irrad_method='wilson') fluxes_wilson = b.get_value('fluxes', context='model') b.run_compute(irrad_method='horvat') fluxes_horvat = b.get_value('fluxes', context='model') plt.plot(phases, (fluxes_wilson-fluxes_horvat)/fluxes_wilson, label='i={}'.format(incl)) plt.xlabel('phase') plt.ylabel('[F(wilson) - F(horvat)] / F(wilson)') plt.legend(loc='upper center') plt.show() # In[ ]:
gpl-3.0
salazardetroya/libmesh
doc/statistics/libmesh_citations.py
1
2340
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np # Number of "papers using libmesh" by year. # # Note 1: this does not count citations "only," the authors must have actually # used libmesh in part of their work. Therefore, these counts do not include # things like Wolfgang citing us in his papers to show how Deal.II is # superior... # # Note 2: I typically update this data after regenerating the web page, # since bibtex2html renumbers the references starting from "1" each year. # # Note 3: These citations include anything that is not a dissertation/thesis. # So, some are conference papers, some are journal articles, etc. # # Note 4: The libmesh paper came out in 2006, but there are some citations # prior to that date, obviously. These counts include citations of the # website libmesh.sf.net as well... # # Note 5: Preprints are listed as the "current year + 1" and are constantly # being moved to their respective years after being published. data = [ '2004', 5, '\'05', 2, '\'06', 13, '\'07', 8, '\'08', 23, '\'09', 30, '\'10', 24, '\'11', 37, '\'12', 50, '\'13', 78, '\'14', 60, '\'15', 11, 'P', 8, # Preprints 'T', 36 # Theses ] # Extract the x-axis labels from the data array xlabels = data[0::2] # Extract the publication counts from the data array n_papers = data[1::2] # The number of data points N = len(xlabels); # Get a reference to the figure fig = plt.figure() # 111 is equivalent to Matlab's subplot(1,1,1) command ax = fig.add_subplot(111) # Create an x-axis for plotting x = np.linspace(1, N, N) # Width of the bars width = 0.8 # Make the bar chart. Plot years in blue, preprints and theses in green. ax.bar(x[0:N-2], n_papers[0:N-2], width, color='b') ax.bar(x[N-2:N], n_papers[N-2:N], width, color='g') # Label the x-axis plt.xlabel('P=Preprints, T=Theses') # Set up the xtick locations and labels. Note that you have to offset # the position of the ticks by width/2, where width is the width of # the bars. ax.set_xticks(np.linspace(1,N,N) + width/2) ax.set_xticklabels(xlabels) # Create a title string title_string = 'LibMesh Citations, (' + str(sum(n_papers)) + ' Total)' fig.suptitle(title_string) # Save as PDF plt.savefig('libmesh_citations.pdf') # Local Variables: # python-indent: 2 # End:
lgpl-2.1
CI-WATER/TethysCluster
utils/scimage_12_04.py
2
17224
#!/usr/bin/env python """ This script is meant to be run inside of a ubuntu cloud image available at uec-images.ubuntu.com:: $ EC2_UBUNTU_IMG_URL=http://uec-images.ubuntu.com/precise/current $ wget $EC2_UBUNTU_IMG_URL/precise-server-cloudimg-amd64.tar.gz or:: $ wget $EC2_UBUNTU_IMG_URL/precise-server-cloudimg-i386.tar.gz After downloading a Ubuntu cloud image the next step is to extract the image:: $ tar xvzf precise-server-cloudimg-amd64.tar.gz Then resize it to 10GB:: $ e2fsck -f precise-server-cloudimg-amd64.img $ resize2fs precise-server-cloudimg-amd64.img 10G Next you need to mount the image:: $ mkdir /tmp/img-mount $ mount precise-server-cloudimg-amd64.img /tmp/img-mount $ mount -t proc none /tmp/img-mount/proc $ mount -t sysfs none /tmp/img-mount/sys $ mount -o bind /dev /tmp/img-mount/dev $ mount -t devpts none /tmp/img-mount/dev/pts $ mount -o rbind /var/run/dbus /tmp/img-mount/var/run/dbus Copy /etc/resolv.conf and /etc/mtab to the image:: $ mkdir -p /tmp/img-mount/var/run/resolvconf $ cp /etc/resolv.conf /tmp/img-mount/var/run/resolvconf/resolv.conf $ grep -v rootfs /etc/mtab > /tmp/img-mount/etc/mtab Next copy this script inside the image:: $ cp /path/to/scimage.py /tmp/img-mount/root/scimage.py Finally chroot inside the image and run this script: $ chroot /tmp/img-mount /bin/bash $ cd $HOME $ python scimage.py """ import os import sys import glob import shutil import fileinput import subprocess import multiprocessing SRC_DIR = "/usr/local/src" APT_SOURCES_FILE = "/etc/apt/sources.list" BUILD_UTILS_PKGS = "build-essential devscripts debconf debconf-utils dpkg-dev " BUILD_UTILS_PKGS += "gfortran llvm-3.2-dev swig cdbs patch python-dev " BUILD_UTILS_PKGS += "python-distutils-extra python-setuptools python-pip " BUILD_UTILS_PKGS += "python-nose" CLOUD_CFG_FILE = '/etc/cloud/cloud.cfg' GRID_SCHEDULER_GIT = 'git://github.com/jtriley/gridscheduler.git' CLOUDERA_ARCHIVE_KEY = 'http://archive.cloudera.com/debian/archive.key' CLOUDERA_APT = 'http://archive.cloudera.com/debian maverick-cdh3u5 contrib' CONDOR_APT = 'http://www.cs.wisc.edu/condor/debian/development lenny contrib' NUMPY_SCIPY_SITE_CFG = """\ [DEFAULT] library_dirs = /usr/lib include_dirs = /usr/include:/usr/include/suitesparse [blas_opt] libraries = ptf77blas, ptcblas, atlas [lapack_opt] libraries = lapack, ptf77blas, ptcblas, atlas [amd] amd_libs = amd [umfpack] umfpack_libs = umfpack [fftw] libraries = fftw3 """ STARCLUSTER_MOTD = """\ #!/bin/sh cat<<"EOF" _ _ _ __/\_____| |_ __ _ _ __ ___| |_ _ ___| |_ ___ _ __ \ / __| __/ _` | '__/ __| | | | / __| __/ _ \ '__| /_ _\__ \ || (_| | | | (__| | |_| \__ \ || __/ | \/ |___/\__\__,_|_| \___|_|\__,_|___/\__\___|_| TethysCluster Ubuntu 12.04 AMI Software Tools for Academics and Researchers (STAR) Homepage: http://star.mit.edu/cluster Documentation: http://star.mit.edu/cluster/docs/latest Code: https://github.com/jtriley/TethysCluster Mailing list: tethyscluster@mit.edu This AMI Contains: * Open Grid Scheduler (OGS - formerly SGE) queuing system * Condor workload management system * OpenMPI compiled with Open Grid Scheduler support * OpenBLAS - Highly optimized Basic Linear Algebra Routines * NumPy/SciPy linked against OpenBlas * IPython 0.13 with parallel and notebook support * and more! (use 'dpkg -l' to show all installed packages) Open Grid Scheduler/Condor cheat sheet: * qstat/condor_q - show status of batch jobs * qhost/condor_status- show status of hosts, queues, and jobs * qsub/condor_submit - submit batch jobs (e.g. qsub -cwd ./job.sh) * qdel/condor_rm - delete batch jobs (e.g. qdel 7) * qconf - configure Open Grid Scheduler system Current System Stats: EOF landscape-sysinfo | grep -iv 'graph this data' """ CLOUD_INIT_CFG = """\ user: ubuntu disable_root: 0 preserve_hostname: False # datasource_list: [ "NoCloud", "OVF", "Ec2" ] cloud_init_modules: - bootcmd - resizefs - set_hostname - update_hostname - update_etc_hosts - rsyslog - ssh cloud_config_modules: - mounts - ssh-import-id - locale - set-passwords - grub-dpkg - timezone - puppet - chef - mcollective - disable-ec2-metadata - runcmd cloud_final_modules: - rightscale_userdata - scripts-per-once - scripts-per-boot - scripts-per-instance - scripts-user - keys-to-console - final-message apt_sources: - source: deb $MIRROR $RELEASE multiverse - source: deb %(CLOUDERA_APT)s - source: deb-src %(CLOUDERA_APT)s - source: deb %(CONDOR_APT)s """ % dict(CLOUDERA_APT=CLOUDERA_APT, CONDOR_APT=CONDOR_APT) def run_command(cmd, ignore_failure=False, failure_callback=None, get_output=False): kwargs = {} if get_output: kwargs.update(dict(stdout=subprocess.PIPE, stderr=subprocess.PIPE)) p = subprocess.Popen(cmd, shell=True, **kwargs) output = [] if get_output: line = None while line != '': line = p.stdout.readline() if line != '': output.append(line) print line, for line in p.stderr.readlines(): if line != '': output.append(line) print line, retval = p.wait() if retval != 0: errmsg = "command '%s' failed with status %d" % (cmd, retval) if failure_callback: ignore_failure = failure_callback(retval) if not ignore_failure: raise Exception(errmsg) else: sys.stderr.write(errmsg + '\n') if get_output: return retval, ''.join(output) return retval def apt_command(cmd): dpkg_opts = "Dpkg::Options::='--force-confnew'" cmd = "apt-get -o %s -y --force-yes %s" % (dpkg_opts, cmd) cmd = "DEBIAN_FRONTEND='noninteractive' " + cmd run_command(cmd) def apt_install(pkgs): apt_command('install %s' % pkgs) def chdir(directory): opts = glob.glob(directory) isdirlist = [o for o in opts if os.path.isdir(o)] if len(isdirlist) > 1: raise Exception("more than one dir matches: %s" % directory) os.chdir(isdirlist[0]) def _fix_atlas_rules(rules_file='debian/rules'): for line in fileinput.input(rules_file, inplace=1): if 'ATLAS=None' not in line: print line, def configure_apt_sources(): srcfile = open(APT_SOURCES_FILE) contents = srcfile.readlines() srcfile.close() srclines = [] for line in contents: if not line.strip() or line.startswith('#'): continue parts = line.split() if parts[0] == 'deb': parts[0] = 'deb-src' srclines.append(' '.join(parts).strip()) srcfile = open(APT_SOURCES_FILE, 'w') srcfile.write(''.join(contents)) srcfile.write('\n'.join(srclines) + '\n') srcfile.write('deb %s\n' % CLOUDERA_APT) srcfile.write('deb-src %s\n' % CLOUDERA_APT) srcfile.write('deb %s\n' % CONDOR_APT) srcfile.close() run_command('add-apt-repository ppa:staticfloat/julia-deps -y') run_command('gpg --keyserver keyserver.ubuntu.com --recv-keys 0F932C9C') run_command('curl -s %s | sudo apt-key add -' % CLOUDERA_ARCHIVE_KEY) apt_install('debian-archive-keyring') def upgrade_packages(): apt_command('update') apt_command('upgrade') def install_build_utils(): """docstring for configure_build""" apt_install(BUILD_UTILS_PKGS) def install_gridscheduler(): chdir(SRC_DIR) apt_command('build-dep gridengine') if os.path.isfile('gridscheduler-scbuild.tar.gz'): run_command('tar xvzf gridscheduler-scbuild.tar.gz') run_command('mv gridscheduler /opt/sge6-fresh') return run_command('git clone %s' % GRID_SCHEDULER_GIT) sts, out = run_command('readlink -f `which java`', get_output=True) java_home = out.strip().split('/jre')[0] chdir(os.path.join(SRC_DIR, 'gridscheduler', 'source')) run_command('git checkout -t -b develop origin/develop') env = 'JAVA_HOME=%s' % java_home run_command('%s ./aimk -only-depend' % env) run_command('%s scripts/zerodepend' % env) run_command('%s ./aimk depend' % env) run_command('%s ./aimk -no-secure -no-gui-inst' % env) sge_root = '/opt/sge6-fresh' os.mkdir(sge_root) env += ' SGE_ROOT=%s' % sge_root run_command('%s scripts/distinst -all -local -noexit -y -- man' % env) def install_condor(): chdir(SRC_DIR) run_command("rm /var/lock") apt_install('condor=7.7.2-1') run_command('echo condor hold | dpkg --set-selections') run_command('ln -s /etc/condor/condor_config /etc/condor_config.local') run_command('mkdir /var/lib/condor/log') run_command('mkdir /var/lib/condor/run') run_command('chown -R condor:condor /var/lib/condor/log') run_command('chown -R condor:condor /var/lib/condor/run') def install_torque(): chdir(SRC_DIR) apt_install('torque-server torque-mom torque-client') def install_pydrmaa(): chdir(SRC_DIR) run_command('pip install drmaa') def install_blas_lapack(): """docstring for install_openblas""" chdir(SRC_DIR) apt_install("libopenblas-dev") def install_numpy_scipy(): """docstring for install_numpy""" chdir(SRC_DIR) run_command('pip install -d . numpy') run_command('unzip numpy*.zip') run_command("sed -i 's/return None #/pass #/' numpy*/numpy/core/setup.py") run_command('pip install scipy') def install_pandas(): """docstring for install_pandas""" chdir(SRC_DIR) apt_command('build-dep pandas') run_command('pip install pandas') def install_matplotlib(): chdir(SRC_DIR) run_command('pip install matplotlib') def install_julia(): apt_install("libsuitesparse-dev libncurses5-dev " "libopenblas-dev libarpack2-dev libfftw3-dev libgmp-dev " "libunwind7-dev libreadline-dev zlib1g-dev") buildopts = """\ BUILDOPTS="LLVM_CONFIG=llvm-config-3.2 USE_QUIET=0 USE_LIB64=0"; for lib in \ LLVM ZLIB SUITESPARSE ARPACK BLAS FFTW LAPACK GMP LIBUNWIND READLINE GLPK \ NGINX; do export BUILDOPTS="$BUILDOPTS USE_SYSTEM_$lib=1"; done""" chdir(SRC_DIR) if not os.path.exists("julia"): run_command("git clone git://github.com/JuliaLang/julia.git") run_command("%s && cd julia && make $BUILDOPTS PREFIX=/usr install" % buildopts) def install_mpi(): chdir(SRC_DIR) apt_install('mpich2') apt_command('build-dep openmpi') apt_install('blcr-util') if glob.glob('*openmpi*.deb'): run_command('dpkg -i *openmpi*.deb') else: apt_command('source openmpi') chdir('openmpi*') for line in fileinput.input('debian/rules', inplace=1): print line, if '--enable-heterogeneous' in line: print ' --with-sge \\' def _deb_failure_callback(retval): if not glob.glob('../*openmpi*.deb'): return False return True run_command('dch --local=\'+custom\' ' '"custom build on: `uname -s -r -v -m -p -i -o`"') run_command('dpkg-buildpackage -rfakeroot -b', failure_callback=_deb_failure_callback) run_command('dpkg -i ../*openmpi*.deb') sts, out = run_command('ompi_info | grep -i grid', get_output=True) if 'gridengine' not in out: raise Exception("failed to build OpenMPI with " "Open Grid Scheduler support") run_command('echo libopenmpi1.3 hold | dpkg --set-selections') run_command('echo libopenmpi-dev hold | dpkg --set-selections') run_command('echo libopenmpi-dbg hold | dpkg --set-selections') run_command('echo openmpi-bin hold | dpkg --set-selections') run_command('echo openmpi-checkpoint hold | dpkg --set-selections') run_command('echo openmpi-common hold | dpkg --set-selections') run_command('echo openmpi-doc hold | dpkg --set-selections') run_command('pip install mpi4py') def install_hadoop(): chdir(SRC_DIR) hadoop_pkgs = ['namenode', 'datanode', 'tasktracker', 'jobtracker', 'secondarynamenode'] pkgs = ['hadoop-0.20'] + ['hadoop-0.20-%s' % pkg for pkg in hadoop_pkgs] apt_install(' '.join(pkgs)) run_command('easy_install dumbo') def install_ipython(): chdir(SRC_DIR) apt_install('libzmq-dev') run_command('pip install ipython tornado pygments pyzmq') mjax_install = 'from IPython.external.mathjax import install_mathjax' mjax_install += '; install_mathjax()' run_command("python -c '%s'" % mjax_install) def configure_motd(): for f in glob.glob('/etc/update-motd.d/*'): os.unlink(f) motd = open('/etc/update-motd.d/00-tethyscluster', 'w') motd.write(STARCLUSTER_MOTD) motd.close() os.chmod(motd.name, 0755) def configure_cloud_init(): """docstring for configure_cloud_init""" cloudcfg = open('/etc/cloud/cloud.cfg', 'w') cloudcfg.write(CLOUD_INIT_CFG) cloudcfg.close() def configure_bash(): completion_line_found = False for line in fileinput.input('/etc/bash.bashrc', inplace=1): if 'bash_completion' in line and line.startswith('#'): print line.replace('#', ''), completion_line_found = True elif completion_line_found: print line.replace('#', ''), completion_line_found = False else: print line, aliasfile = open('/root/.bash_aliases', 'w') aliasfile.write("alias ..='cd ..'\n") aliasfile.close() def setup_environ(): num_cpus = multiprocessing.cpu_count() os.environ['MAKEFLAGS'] = '-j%d' % (num_cpus + 1) os.environ['DEBIAN_FRONTEND'] = "noninteractive" if os.path.isfile('/sbin/initctl') and not os.path.islink('/sbin/initctl'): run_command('mv /sbin/initctl /sbin/initctl.bak') run_command('ln -s /bin/true /sbin/initctl') def install_nfs(): chdir(SRC_DIR) run_command('initctl reload-configuration') apt_install('nfs-kernel-server') run_command('ln -s /etc/init.d/nfs-kernel-server /etc/init.d/nfs') def install_default_packages(): # stop mysql for interactively asking for password preseedf = '/tmp/mysql-preseed.txt' mysqlpreseed = open(preseedf, 'w') preseeds = """\ mysql-server mysql-server/root_password select mysql-server mysql-server/root_password seen true mysql-server mysql-server/root_password_again select mysql-server mysql-server/root_password_again seen true """ mysqlpreseed.write(preseeds) mysqlpreseed.close() run_command('debconf-set-selections < %s' % mysqlpreseed.name) run_command('rm %s' % mysqlpreseed.name) pkgs = ["git", "mercurial", "subversion", "cvs", "vim", "vim-scripts", "emacs", "tmux", "screen", "zsh", "ksh", "csh", "tcsh", "encfs", "keychain", "unzip", "rar", "unace", "ec2-api-tools", "ec2-ami-tools", "mysql-server", "mysql-client", "apache2", "libapache2-mod-wsgi", "sysv-rc-conf", "pssh", "cython", "irssi", "htop", "mosh", "default-jdk", "xvfb", "python-imaging", "python-ctypes"] apt_install(' '.join(pkgs)) def install_python_packges(): pypkgs = ['python-boto', 'python-paramiko', 'python-django', 'python-pudb'] for pypkg in pypkgs: if pypkg.startswith('python-'): apt_command('build-dep %s' % pypkg.split('python-')[1]) run_command('pip install %s') def configure_init(): for script in ['nfs-kernel-server', 'hadoop', 'condor', 'apache', 'mysql']: run_command('find /etc/rc* -iname \*%s\* -delete' % script) def cleanup(): run_command('rm -f /etc/resolv.conf') run_command('rm -rf /var/run/resolvconf') run_command('rm -f /etc/mtab') run_command('rm -rf /root/*') exclude = ['/root/.bashrc', '/root/.profile', '/root/.bash_aliases'] for dot in glob.glob("/root/.*"): if dot not in exclude: run_command('rm -rf %s' % dot) for path in glob.glob('/usr/local/src/*'): if os.path.isdir(path): shutil.rmtree(path) run_command('rm -f /var/cache/apt/archives/*.deb') run_command('rm -f /var/cache/apt/archives/partial/*') for f in glob.glob('/etc/profile.d'): if 'byobu' in f: run_command('rm -f %s' % f) if os.path.islink('/sbin/initctl') and os.path.isfile('/sbin/initctl.bak'): run_command('mv -f /sbin/initctl.bak /sbin/initctl') def main(): """docstring for main""" if os.getuid() != 0: sys.stderr.write('you must be root to run this script\n') return setup_environ() configure_motd() configure_cloud_init() configure_bash() configure_apt_sources() upgrade_packages() install_build_utils() install_default_packages() install_gridscheduler() install_condor() #install_torque() install_pydrmaa() install_blas_lapack() install_numpy_scipy() install_matplotlib() install_pandas() install_ipython() install_mpi() install_hadoop() install_nfs() install_julia() configure_init() cleanup() if __name__ == '__main__': main()
gpl-3.0
Brett777/Predict-Churn
model_management/datascience_framework.py
1
8515
import os import io import sys import dill import copy from datetime import datetime from .evaluator import Evaluator from .utils import ( post_to_platform, get_current_notebook, strip_output, get_current_notebook, mkdir_p, ) class DataScienceFramework(object): def __init__( self, model, problem_class, x_test, y_test, name=None, description=None, evaluator=Evaluator, ): # assign variables to class self.name = name self.description = description self.model = model self.problem_class = problem_class self.y_test = list(y_test) self.x_test = list(x_test) self.framework = model.__module__.split(".")[0] # get environment data self._meta_data = self.meta_data() self.y_pred = self.predict() # initialize evaluator self.evaluator = Evaluator(self.problem_class) # class methods @classmethod def load(cls, model_id): # use hard coded string to load for now with open(".model_cache/sklearn_model_cache.pkl", "rb") as file: instance = dill.load(file) instance.model = instance.parse_model(io.BytesIO(instance.model_serialized)) return instance @classmethod def project_models(cls): query = """ query($service_name: String!) { runnableInstance(serviceName: $service_name) { runnable { project { name models { edges { node { id name description problemClass framework objectClass language languageVersion createdAt updatedAt rank hyperParameters structure author { fullName } metrics { edges { node { key value } } } diagnostics { edges { node { ... on ModelDiagnosticROC { title falsePositiveRates truePositiveRates thresholds } ... on ModelDiagnosticResidual { title observations residuals } ... on ModelDiagnosticConfusionMatrix { title matrix } } } } parameters { edges { node { key value confidenceInterval { positive negative } } } } } } } } } } } """ response = post_to_platform( {"query": query, "variables": {"service_name": os.environ["SERVICE_NAME"]}} ) response_data = response.json()["data"] models = list( map( lambda edge: edge["node"], response_data["runnableInstance"]["runnable"]["project"]["models"][ "edges" ], ) ) return models # framework dependent functions def predict(self): """ Make prediction based on x_test """ raise NotImplementedError def framework_version(self): """ Return version of the framework been used. """ raise NotImplementedError def object_class(self): """ Return name of the model object. """ raise NotImplementedError def parameter(self): """ Get parameter from model. """ raise NotImplementedError def hyperparameter(self): """ Get hyper parameter from model. """ raise NotImplementedError def serialize_model(self): """ Default methods for serialize model. """ return dill.dumps(self.model) def parse_model(self, model_file): """ Default methods for reading in model. """ return dill.load(model_file) # base framework functions def meta_data(self): """ Capture environment meta data. """ meta_data_obj = { "name": self.name, "description": self.description, "framework": self.framework, "createdAt": datetime.now().isoformat(), "sessionName": os.environ["SERVICE_NAME"], "language": "python", "languageVersion": ".".join(map(str, sys.version_info[0:3])), } return meta_data_obj def diagnostics(self): """ Return diagnostics of model. """ return [fn(self.y_test, self.y_pred) for fn in self.evaluator.diagnostics] def metrics(self): """ Return evaluation of model performance. """ return [fn(self.y_test, self.y_pred) for fn in self.evaluator.metrics] def summary(self): """ Return all infomation that will be stored. """ model_meta = { "diagnostics": self.diagnostics(), "metrics": self.metrics(), "parameters": self.parameter(), "frameworkVersion": self.framework_version(), "hyperParameters": self.hyperparameter(), "problemClass": self.problem_class, "objectClass": self.object_class(), } model_meta.update(self._meta_data) return model_meta def save(self): """ Save all information to platform. """ self.model_serialized = self.serialize_model() # save model object locally for now #mkdir_p(".model_cache") #with open(".model_cache/sklearn_model_cache.pkl", "w") as file: # dill.dump(self, file) model_meta = self.summary() model_meta.update( { "data": {"y_pred": list(self.y_pred), "y_test": list(self.y_test)}, "notebook": get_current_notebook(), } ) query = """ mutation($input: CreateModelInput!) { createModel(input: $input) { clientMutationId } } """ return post_to_platform({"query": query, "variables": {"input": model_meta}})
mit
kristohr/pybayenv2
pybayenv/compute_average_bf.py
1
4066
#!/usr/bin/python import sys, string, re, os, commands, time, math #from scipy import stats #import scipy as sp import numpy as np #import matplotlib as mpl #from matplotlib import pyplot as plt class SNP: def __init__(self, name, num_env, t): self.name = name self.num_env = [False] * num_env self.bf_list = [[0 for i in range(t)] for j in range(num_env)] self.rel_signal = [] self.sum_signals = 0 self.lg_info = [] self.chr = 99 self.lg = 99 def get_name(self): return self.name def get_num_env(self): return self.num_env def set_num_env(self, n): self.num_env[n] = True def add_to_list(self, bf, k, i): self.bf_list[k][i] = bf def set_signal(self, gamma): self.rel_signal.append(gamma) self.sum_signals += gamma #Add to the total of signals #Return the bf signal in variable k def get_signal(self, k): return self.rel_signal[k] #Return the bf signal list def get_signals(self): return self.rel_signal def get_sum_signals(self): return self.sum_signals def print_env(self): print self.num_env def get_median_bf(self, k): #print self.bf_list[k] bfs = np.array(self.bf_list[k]) median = np.median(bfs) return median def get_avg_bf(self, k): #print self.bf_list[k] bfs = np.array(self.bf_list[k]) avg = np.average(bfs) return avg def add_bf(self, bf): self.sum_bf += bf def get_sum_bf(self): return self.sum_bf def get_num_runs(self): return self.num_runs def get_bf_list(self): return self.bf_list def get_bf_list(self): return self.bf_list def set_lg_info(self, info): self.lg_info.append(info) def get_lg_info(self): return self.lg_info def set_chr(self, ch): self.chr = ch def get_chr(self): return self.chr def set_linkage_group(self, lg): self.lg = lg def get_linkage_group(self): return self.lg def compute_average_bf(num_var, num_tests): N = int(num_var) t = int(num_tests) snp_dict = {} for i in range (0, t): filename = "results/bf_results_t" + str(i) + ".bf" data = open( filename, "r") print filename lines = data.readlines() for line in lines: cols = line.split("\t") snp_name = cols[0][0:-2] if i > 9: snp_name = snp_name[0:-1] if snp_name in snp_dict: snp = snp_dict[snp_name] for k in range(0, N): snp.add_to_list(float(cols[k+1]), k, i) else: snp = SNP(snp_name, N, t) snp_dict[snp_name] = snp for k in range(0, N): snp.add_to_list(float(cols[k+1]), k, i) data.close() print "################LENGTH:" + str(len(snp_dict)) FILE1 = open("results/median_bf.txt", "w") FILE2 = open("results/average_bf.txt", "w") #bf_median = "marker\tsal1\tsal2\ttemp1\ttemp2\tox1\tox2\n" #bf_avg = "marker\tsal1\tsal2\ttemp1\ttemp2\tox1\tox2\n" bf_median = "" bf_avg = "" for key in snp_dict: snp = snp_dict[key] bf_avg += snp.get_name() bf_median += snp.get_name() for k in range(0, N): bf_a = snp.get_avg_bf(k) bf_m = snp.get_median_bf(k) bf_avg += "\t" + str(bf_a) bf_median += "\t" + str(bf_m) bf_avg += "\n" bf_median += "\n" FILE1.write(bf_median) FILE2.write(bf_avg) FILE1.close() FILE2.close() if __name__ == '__main__': # Terminate if too few arguments if len(sys.argv) < 3: print 'usage: %s <number of vars> <num tests>' % sys.argv[0] sys.exit(-1) main(sys.argv[1], sys.argv[2])
bsd-3-clause
liyu1990/sklearn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
davidgardenier/frbpoppy
tests/dm_snr/future.py
1
6523
"""Check the log N log F slope for future surveys.""" import numpy as np import matplotlib.pyplot as plt from copy import copy from frbpoppy import CosmicPopulation, Survey, LargePopulation, SurveyPopulation, hist from frbpoppy import unpickle, pprint import frbpoppy.direction_dists as did import frbpoppy.galacticops as go from tests.convenience import plot_aa_style, rel_path from tests.rates.alpha_real import EXPECTED MAKE = True SURVEYS = ('parkes-htru', 'wsrt-apertif', 'fast-crafts', 'puma-full', 'chord', 'ska1-low', 'ska1-mid') SIZE = 5e4 if MAKE: # Calculate the fraction of the sky that the survey covers surv_f_area = {} for name in SURVEYS: pop = CosmicPopulation.simple(5e5) pop.gen_direction() survey = Survey(name) mask = survey.in_region(pop.frbs.ra, pop.frbs.dec, pop.frbs.gl, pop.frbs.gb) in_surv_region = np.sum(mask) tot_region = len(mask) area_sky = 4*np.pi*(180/np.pi)**2 # In sq. degrees f_area = (survey.beam_size/area_sky)*(tot_region/in_surv_region) surv_f_area[name] = f_area print(f'{name} covers {f_area*100}% of the sky') surv_pops = [] for name in SURVEYS: # Set up survey survey = Survey(name) if name in ('parkes-htru', 'wsrt-apertif'): survey.set_beam(model=name) # Set up CosmicPopulation pop = CosmicPopulation.optimal(SIZE, generate=False) # Only generate FRBs in the survey region pop.set_direction(model='uniform', min_ra=survey.ra_min, max_ra=survey.ra_max, min_dec=survey.dec_min, max_dec=survey.dec_max) # Parkes also has galactic limits: if name == 'parkes-htru': pop.gen_index() pop.gen_dist() pop.gen_time() # Generate FRBs just within the galactic constraints pop.gen_direction() # Gather ra, dec coordinate limits lims = {'min_ra': survey.ra_min, 'max_ra': survey.ra_max, 'min_dec': survey.dec_min, 'max_dec': survey.dec_max} def sample(n_gen): ra, dec = did.uniform(n_srcs=n_gen, **lims) gl, gb = go.radec_to_lb(ra, dec, frac=True) coords = [ra, dec, gl, gb] return coords def accept(coords): return survey.in_region(*coords) coords = sample(int(SIZE)) mask = accept(coords) reject, = np.where(~mask) while reject.size > 0: fill = sample(reject.size) mask = accept(fill) for i in range(len(coords)): coords[i][reject[mask]] = fill[i][mask] reject = reject[~mask] # Assign the values frbs = pop.frbs frbs.ra, frbs.dec = coords[0], coords[1] frbs.gl, frbs.gb = coords[2], coords[3] # Continue with generation pop.gen_gal_coords() pop.gen_dm() pop.gen_w() pop.gen_lum() pop.gen_si() else: pop.generate() surv_pop = SurveyPopulation(pop, survey, scale_by_area=False) surv_pop.source_rate.f_area = surv_f_area[name] surv_pop.source_rate.scale_by_area() # surv_pop.save() surv_pops.append(surv_pop) else: surv_pops = [] for name in SURVEYS: surv_pops.append(unpickle(f'optimal_{name}')) # Start plot plot_aa_style(cols=2) plt.rcParams["figure.figsize"] = (3.556*3, 3.556) fig, axes = plt.subplots(1, 3) for ax in axes.flatten(): ax.set_aspect('auto') # Get norm pop y = 0 ys = [] names = [] rates = [] norm_sim_rate = surv_pops[0].source_rate.det norm_real_rate = EXPECTED['parkes-htru'][0] / EXPECTED['parkes-htru'][1] norm_rate = norm_sim_rate / norm_real_rate for i, surv_pop in enumerate(surv_pops): name = surv_pop.name.split('_')[-1] pprint(name) if surv_pop.n_sources() == 0: print(surv_pop.source_rate) print(f'{name} | no FRBs in population') continue names.append(name) ys.append(y) # Dimensions measure plot ax = axes[0] ax.set_xlabel(r'DM ($\textrm{pc}\ \textrm{cm}^{-3}$)') ax.set_ylabel(r'\#') ax.set_yscale('log') bins, values = hist(surv_pop.frbs.dm, bin_type='lin', norm='frac', n_bins=20) values = values.astype(np.float64) values *= float(surv_pop.source_rate.f_area)*1e6 ax.step(bins, values, where='mid', label=name) # Fluence plot ax = axes[1] ax.set_xlabel('S/N') ax.set_xscale('log') ax.set_ylabel(r'\#(${>}\text{S/N}$)') ax.set_yscale('log') # Update fluence plot bins, values = hist(surv_pop.frbs.snr, bin_type='log', norm='frac', n_bins=25) # Cumulative sum values = np.cumsum(values[::-1])[::-1] values = values.astype(np.float64) values *= float(surv_pop.source_rate.f_area)*1e6 ax.step(bins, values, where='mid', label=name) # Plot rates ax = axes[2] ax.set_xscale('log') ax.set_xlabel(r'Rate (day$^{-1}$)') rate = surv_pop.source_rate.det/norm_rate print(f'rate: {rate}') line = ax.errorbar(rate, y, fmt='x', label=rf'{name}') ax.grid() rates.append(rate) y += 1 ax.yaxis.tick_right() ax.set_yticks(ys) ax.set_yticklabels(names) colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] for i, y in enumerate(ax.get_yticklabels()): y.set_color(colors[i]) ax.invert_yaxis() # labels read top-to-bottom # Add thin grey horizontal lines x_lim = ax.get_xlim() ax.set_xlim(x_lim) for i, y in enumerate(ys): ax.plot((x_lim[0], rates[i]), (y, y), color='k', lw=0.5, zorder=0, ls='--') for e in list(zip(SURVEYS, rates)): pprint(e) euclidean_lines = True if euclidean_lines: xlims = axes[1].get_xlim() ylims = axes[1].get_ylim() axes[1].set_xlim(xlims) axes[1].set_ylim(ylims) xs = np.logspace(np.log10(xlims[0]), np.log10(xlims[1]), 100) for n in range(-10, 15): ys = 10**((np.log10(xs)+n)*-1.5) axes[1].plot(xs, ys, 'k:', linewidth=0.25) # plt.legend() plt.tight_layout() plt.savefig(rel_path('./plots/future_surveys.pdf'))
mit
tu-rbo/differentiable-particle-filters
methods/dpf_kitti.py
1
43029
import os import numpy as np import sonnet as snt import tensorflow as tf import matplotlib.pyplot as plt from utils.data_utils_kitti import wrap_angle, compute_statistics, split_data, make_batch_iterator, make_repeating_batch_iterator, rotation_matrix, load_data_for_stats from utils.method_utils import atan2, compute_sq_distance from utils.plotting_utils import plot_maze, show_pause from datetime import datetime if tf.__version__ == '1.1.0-rc1' or tf.__version__ == '1.2.0': from tensorflow.python.framework import ops @ops.RegisterGradient("FloorMod") def _mod_grad(op, grad): x, y = op.inputs gz = grad x_grad = gz y_grad = None # tf.reduce_mean(-(x // y) * gz, axis=[0], keep_dims=True)[0] return x_grad, y_grad class DPF(): def __init__(self, init_with_true_state, learn_odom, use_proposer, propose_ratio, proposer_keep_ratio, min_obs_likelihood, learn_gaussian_mle): """ :param init_with_true_state: :param learn_odom: :param use_proposer: :param propose_ratio: :param particle_std: :param proposer_keep_ratio: :param min_obs_likelihood: """ # store hyperparameters which are needed later self.init_with_true_state = init_with_true_state self.learn_odom = learn_odom self.use_proposer = use_proposer and not init_with_true_state # only use proposer if we do not initializet with true state self.propose_ratio = propose_ratio if not self.init_with_true_state else 0.0 # define some more parameters and placeholders self.state_dim = 5 self.action_dim = 3 self.observation_dim = 6 self.placeholders = {'o': tf.placeholder('float32', [None, None, 50, 150, self.observation_dim], 'observations'), 'a': tf.placeholder('float32', [None, None, 3], 'actions'), 's': tf.placeholder('float32', [None, None, 5], 'states'), 'num_particles': tf.placeholder('float32'), 'keep_prob': tf.placeholder_with_default(tf.constant(1.0), []), 'is_training': tf.placeholder_with_default(tf.constant(False), []) } self.num_particles_float = self.placeholders['num_particles'] self.num_particles = tf.to_int32(self.num_particles_float) # build learnable modules self.build_modules(min_obs_likelihood, proposer_keep_ratio, learn_gaussian_mle) def build_modules(self, min_obs_likelihood, proposer_keep_ratio, learn_gaussian_mle): """ :param min_obs_likelihood: :param proposer_keep_ratio: :return: None """ # MEASUREMENT MODEL # conv net for encoding the image self.encoder = snt.Sequential([ snt.nets.ConvNet2D([16, 16, 16, 16], [[7, 7], [5, 5], [5, 5], [5, 5]], [[1,1], [1, 2], [1, 2], [2, 2]], [snt.SAME], activate_final=True, name='encoder/convnet'), snt.BatchFlatten(), lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']), snt.Linear(128, name='encoder/linear'), tf.nn.relu ]) # observation likelihood estimator that maps states and image encodings to probabilities self.obs_like_estimator = snt.Sequential([ snt.Linear(128, name='obs_like_estimator/linear'), tf.nn.relu, snt.Linear(128, name='obs_like_estimator/linear'), tf.nn.relu, snt.Linear(1, name='obs_like_estimator/linear'), tf.nn.sigmoid, lambda x: x * (1 - min_obs_likelihood) + min_obs_likelihood ], name='obs_like_estimator') # motion noise generator used for motion sampling if learn_gaussian_mle: self.mo_noise_generator = snt.nets.MLP([32, 32, 4], activate_final=False, name='mo_noise_generator') else: self.mo_noise_generator = snt.nets.MLP([32, 32, 2], activate_final=False, name='mo_noise_generator') # odometry model (if we want to learn it) if self.learn_odom: self.mo_transition_model = snt.nets.MLP([128, 128, 128, self.state_dim], activate_final=False, name='mo_transition_model') # particle proposer that maps encodings to particles (if we want to use it) if self.use_proposer: self.particle_proposer = snt.Sequential([ snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, lambda x: tf.nn.dropout(x, proposer_keep_ratio), snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(128, name='particle_proposer/linear'), tf.nn.relu, snt.Linear(4, name='particle_proposer/linear'), tf.nn.tanh, ]) self.noise_scaler1 = snt.Module(lambda x: x * tf.exp(10 * tf.get_variable('motion_sampler/noise_scaler1', initializer=np.array(0.0, dtype='float32')))) self.noise_scaler2 = snt.Module(lambda x: x * tf.exp(10 * tf.get_variable('motion_sampler/noise_scaler2', initializer=np.array(0.0, dtype='float32')))) def custom_build(self, inputs): """A custom build method to wrap into a sonnet Module.""" outputs = snt.Conv2D(output_channels=16, kernel_shape=[7, 7], stride=[1, 1])(inputs) outputs = tf.nn.relu(outputs) outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[1, 2])(outputs) outputs = tf.nn.relu(outputs) outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[1, 2])(outputs) outputs = tf.nn.relu(outputs) outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[2, 2])(outputs) outputs = tf.nn.relu(outputs) outputs = tf.nn.dropout(outputs, self.placeholders['keep_prob']) outputs = snt.BatchFlatten()(outputs) outputs = snt.Linear(128)(outputs) outputs = tf.nn.relu(outputs) return outputs def measurement_update(self, encoding, particles, means, stds): """ Compute the likelihood of the encoded observation for each particle. :param encoding: encoding of the observation :param particles: :param means: :param stds: :return: observation likelihood """ # prepare input (normalize particles poses and repeat encoding per particle) particle_input = self.transform_particles_as_input(particles, means, stds) encoding_input = tf.tile(encoding[:, tf.newaxis, :], [1, tf.shape(particles)[1], 1]) input = tf.concat([encoding_input, particle_input], axis=-1) # estimate the likelihood of the encoded observation for each particle, remove last dimension obs_likelihood = snt.BatchApply(self.obs_like_estimator)(input)[:, :, 0] return obs_likelihood def transform_particles_as_input(self, particles, means, stds): return ((particles - means['s']) / stds['s'])[..., 3:5] def propose_particles(self, encoding, num_particles, state_mins, state_maxs): duplicated_encoding = tf.tile(encoding[:, tf.newaxis, :], [1, num_particles, 1]) proposed_particles = snt.BatchApply(self.particle_proposer)(duplicated_encoding) proposed_particles = tf.concat([ proposed_particles[:,:,:1] * (state_maxs[0] - state_mins[0]) / 2.0 + (state_maxs[0] + state_mins[0]) / 2.0, proposed_particles[:,:,1:2] * (state_maxs[1] - state_mins[1]) / 2.0 + (state_maxs[1] + state_mins[1]) / 2.0, atan2(proposed_particles[:,:,2:3], proposed_particles[:,:,3:4])], axis=2) return proposed_particles def motion_update(self, actions, particles, means, stds, state_step_sizes, learn_gaussian_mle, stop_sampling_gradient=False): """ Move particles according to odometry info in actions. Add learned noise. :param actions: :param particles: :param means: :param stds: :param state_step_sizes: :param stop_sampling_gradient: :return: moved particles """ # 1. SAMPLE NOISY ACTIONS # add dimension for particles time_step = 0.103 if learn_gaussian_mle: actions = tf.concat([particles[:, :, 3:4] - means['s'][:, :, 3:4], particles[:, :, 4:5] - means['s'][:, :, 4:5]], axis=-1) # prepare input (normalize actions and repeat per particle) action_input = actions / stds['s'][:, :, 3:5] input = action_input # estimate action noise delta = snt.BatchApply(self.mo_noise_generator)(input) delta = tf.concat([delta[:, :, 0:2] * state_step_sizes[3], delta[:, :, 2:4] * state_step_sizes[4]], axis=-1) if stop_sampling_gradient: delta = tf.stop_gradient(delta) action_vel_f = tf.random_normal(tf.shape(particles[:, :, 3:4]), mean = delta[:, :, 0:1], stddev = delta[:, :, 1:2]) action_vel_rot = tf.random_normal(tf.shape(particles[:, :, 4:5]), mean = delta[:, :, 2:3], stddev = delta[:, :, 3:4]) heading = particles[:, :, 2:3] sin_heading = tf.sin(heading) cos_heading = tf.cos(heading) new_x = particles[:, :, 0:1] + cos_heading * particles[:, :, 3:4] * time_step new_y = particles[:, :, 1:2] + sin_heading * particles[:, :, 3:4] * time_step new_theta = particles[:, :, 2:3] + particles[:, :, 4:5] * time_step wrap_angle(new_theta) new_v = particles[:, :, 3:4] + action_vel_f new_theta_dot = particles[:, :, 4:5] + action_vel_rot moved_particles = tf.concat([new_x, new_y, new_theta, new_v, new_theta_dot], axis=-1) return moved_particles, delta else: heading = particles[:, :, 2:3] sin_heading = tf.sin(heading) cos_heading = tf.cos(heading) random_input = tf.random_normal(tf.shape(particles[:, :, 3:5])) noise = snt.BatchApply(self.mo_noise_generator)(random_input) noise = noise - tf.reduce_mean(noise, axis=1, keep_dims=True) new_z = particles[:, :, 0:1] + cos_heading * particles[:, :, 3:4] * time_step new_x = particles[:, :, 1:2] + sin_heading * particles[:, :, 3:4] * time_step new_theta = wrap_angle(particles[:, :, 2:3] + particles[:, :, 4:5] * time_step) new_v = particles[:, :, 3:4] + noise[:, :, :1] * state_step_sizes[3] new_theta_dot = particles[:, :, 4:5] + noise[:, :, 1:] * state_step_sizes[4] moved_particles = tf.concat([new_z, new_x, new_theta, new_v, new_theta_dot], axis=-1) return moved_particles def compile_training_stages(self, sess, batch_iterators, particle_list, particle_probs_list, encodings, means, stds, state_step_sizes, state_mins, state_maxs, learn_gaussian_mle, learning_rate, plot_task): # TRAINING! losses = dict() train_stages = dict() std = 0.25 # TRAIN ODOMETRY if self.learn_odom: # apply model motion_samples = self.motion_update(self.placeholders['a'][:,0], self.placeholders['s'][:, :1], means, stds, state_step_sizes, stop_sampling_gradient=True) # define loss and optimizer sq_distance = compute_sq_distance(motion_samples, self.placeholders['s'][:, 1:2], state_step_sizes) losses['motion_mse'] = tf.reduce_mean(sq_distance, name='loss') optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # put everything together train_stages['train_odom'] = { 'train_op': optimizer.minimize(losses['motion_mse']), 'batch_iterator_names': {'train': 'train1', 'val': 'val1'}, 'monitor_losses': ['motion_mse'], 'validation_loss': 'motion_mse', 'plot': lambda e: self.plot_motion_model(sess, next(batch_iterators['val2']), motion_samples, plot_task, state_step_sizes) if e % 1 == 0 else None } # TRAIN MOTION MODEL if learn_gaussian_mle: motion_samples, motion_params = self.motion_update(self.placeholders['a'][:,1], tf.tile(self.placeholders['s'][:, :1], [1, 1, 1]), means, stds, state_step_sizes, learn_gaussian_mle) # define loss and optimizer diff_in_states = self.placeholders['s'][:, 1:2] - self.placeholders['s'][:, :1] activations_vel_f = (1 / 32) / tf.sqrt(2 * np.pi * motion_params[:, :, 1] ** 2) * tf.exp( -(diff_in_states[:, :, 3] - motion_params[:, :, 0]) ** 2 / (2.0 * motion_params[:, :, 1] ** 2)) activations_vel_rot = (1 / 32) / tf.sqrt(2 * np.pi * motion_params[:, :, 3] ** 2) * tf.exp( -(diff_in_states[:, :, 4] - motion_params[:, :, 2]) ** 2 / (2.0 * motion_params[:, :, 3] ** 2)) losses['motion_mle'] = tf.reduce_mean(-tf.log(1e-16 + (tf.reduce_sum(activations_vel_f, axis=-1, name='loss1') * tf.reduce_sum(activations_vel_rot, axis=-1, name='loss2')))) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # put everything together train_stages['train_motion_sampling'] = { 'train_op': optimizer.minimize(losses['motion_mle']), 'batch_iterator_names': {'train': 'train2', 'val': 'val2'}, 'monitor_losses': ['motion_mle'], 'validation_loss': 'motion_mle', 'plot': lambda e: self.plot_motion_model(sess, next(batch_iterators['val2']), motion_samples, plot_task, state_step_sizes) if e % 1 == 0 else None } else: motion_samples = self.motion_update(self.placeholders['a'][:,1], tf.tile(self.placeholders['s'][:, :1], [1, self.num_particles, 1]), means, stds, state_step_sizes, learn_gaussian_mle) # define loss and optimizer sq_distance = compute_sq_distance(motion_samples, self.placeholders['s'][:, 1:2], state_step_sizes) activations_sample = (1 / self.num_particles_float) / tf.sqrt(2 * np.pi * std ** 2) * tf.exp( -sq_distance / (2.0 * std ** 2)) losses['motion_mle'] = tf.reduce_mean(-tf.log(1e-16 + tf.reduce_sum(activations_sample, axis=-1, name='loss'))) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # put everything together train_stages['train_motion_sampling'] = { 'train_op': optimizer.minimize(losses['motion_mle']), 'batch_iterator_names': {'train': 'train2', 'val': 'val2'}, 'monitor_losses': ['motion_mle'], 'validation_loss': 'motion_mle', 'plot': lambda e: self.plot_motion_model(sess, next(batch_iterators['val2']), motion_samples, plot_task, state_step_sizes) if e % 1 == 0 else None } # TRAIN MEASUREMENT MODEL # apply model for all pairs of observations and states in that batch test_particles = tf.tile(self.placeholders['s'][tf.newaxis, :, 0], [self.batch_size, 1, 1]) measurement_model_out = self.measurement_update(encodings[:, 0], test_particles, means, stds) # define loss (correct -> 1, incorrect -> 0) and optimizer correct_samples = tf.diag_part(measurement_model_out) incorrect_samples = measurement_model_out - tf.diag(tf.diag_part(measurement_model_out)) losses['measurement_heuristic'] = tf.reduce_sum(-tf.log(correct_samples)) / tf.cast(self.batch_size, tf.float32) \ + tf.reduce_sum(-tf.log(1.0 - incorrect_samples)) / tf.cast(self.batch_size * (self.batch_size - 1), tf.float32) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # put everything together train_stages['train_measurement_model'] = { 'train_op': optimizer.minimize(losses['measurement_heuristic']), 'batch_iterator_names': {'train': 'train1', 'val': 'val1'}, 'monitor_losses': ['measurement_heuristic'], 'validation_loss': 'measurement_heuristic', 'plot': lambda e: self.plot_measurement_model(sess, batch_iterators['val1'], measurement_model_out) if e % 1 == 0 else None } # TRAIN PARTICLE PROPOSER if self.use_proposer: # apply model (but only compute gradients until the encoding, # otherwise we would unlearn it and the observation likelihood wouldn't work anymore) proposed_particles = self.propose_particles(tf.stop_gradient(encodings[:, 0]), self.num_particles, state_mins, state_maxs) # define loss and optimizer std = 0.2 sq_distance = compute_sq_distance(proposed_particles, self.placeholders['s'][:, :1], state_step_sizes) activations = (1 / self.num_particles_float) / tf.sqrt(2 * np.pi * std ** 2) * tf.exp( -sq_distance / (2.0 * std ** 2)) losses['proposed_mle'] = tf.reduce_mean(-tf.log(1e-16 + tf.reduce_sum(activations, axis=-1))) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) # put everything together train_stages['train_particle_proposer'] = { 'train_op': optimizer.minimize(losses['proposed_mle']), 'batch_iterator_names': {'train': 'train1', 'val': 'val1'}, 'monitor_losses': ['proposed_mle'], 'validation_loss': 'proposed_mle', 'plot': lambda e: self.plot_particle_proposer(sess, next(batch_iterators['val1']), proposed_particles, plot_task) if e % 10 == 0 else None } # END-TO-END TRAINING # model was already applied further up -> particle_list, particle_probs_list # define losses and optimizer # first loss (which is being optimized) sq_distance = compute_sq_distance(particle_list[:, :, :, 3:5], self.placeholders['s'][:, :, tf.newaxis, 3:5], state_step_sizes[3:5]) activations = particle_probs_list[:, :] / tf.sqrt(2 * np.pi * self.particle_std ** 2) * tf.exp( -sq_distance / (2.0 * self.particle_std ** 2)) losses['mle'] = tf.reduce_mean(-tf.log(1e-16 + tf.reduce_sum(activations, axis=2, name='loss'))) # second loss (which we will monitor during execution) pred = self.particles_to_state(particle_list, particle_probs_list) sq_error = compute_sq_distance(pred[:, -1, 0:2], self.placeholders['s'][:, -1, 0:2], [1., 1.]) sq_dist = compute_sq_distance(self.placeholders['s'][:, 0, 0:2], self.placeholders['s'][:, -1, 0:2], [1., 1.]) losses['m/m'] = tf.reduce_mean(sq_error**0.5/sq_dist**0.5) sq_error = compute_sq_distance(pred[:, -1, 2:3], self.placeholders['s'][:, -1, 2:3], [np.pi/180.0]) losses['deg/m'] = tf.reduce_mean(sq_error ** 0.5 / sq_dist ** 0.5) # optimizer optimizer = tf.train.AdamOptimizer(learning_rate) # put everything together train_stages['train_e2e'] = { 'train_op': optimizer.minimize(losses['mle']), 'batch_iterator_names': {'train': 'train', 'val': 'val'}, 'monitor_losses': ['m/m', 'deg/m', 'mle'], 'validation_loss': 'deg/m', 'plot': lambda e: self.plot_particle_filter(sess, next(batch_iterators['val_ex']), particle_list, particle_probs_list, state_step_sizes, plot_task) if e % 1 == 0 else None } return losses, train_stages def load(self, sess, model_path, model_file='best_validation', statistics_file='statistics.npz', connect_and_initialize=True, modules=('encoder', 'mo_noise_generator', 'mo_transition_model', 'obs_like_estimator', 'particle_proposer')): if type(modules) not in [type(list()), type(tuple())]: raise Exception('modules must be a list or tuple, not a ' + str(type(modules))) # build the tensorflow graph if connect_and_initialize: # load training data statistics (which are needed to build the tf graph) statistics = dict(np.load(os.path.join(model_path, statistics_file))) for key in statistics.keys(): if statistics[key].shape == (): statistics[key] = statistics[key].item() # convert 0d array of dictionary back to a normal dictionary # connect all modules into the particle filter self.connect_modules(**statistics) init = tf.global_variables_initializer() sess.run(init) # load variables all_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) vars_to_load = [] loaded_modules = set() for v in all_vars: for m in modules: if m in v.name: vars_to_load.append(v) loaded_modules.add(m) print('Loading all modules') saver = tf.train.Saver() saver.restore(sess, os.path.join(model_path, model_file)) # def fit(self, sess, data, model_path, train_individually, train_e2e, split_ratio, seq_len, batch_size, epoch_length, num_epochs, patience, learning_rate, dropout_keep_ratio, num_particles, particle_std, plot_task=None, plot=False): def fit(self, sess, data, model_path, train_individually, train_e2e, split_ratio, seq_len, batch_size, epoch_length, num_epochs, patience, learning_rate, dropout_keep_ratio, num_particles, particle_std, learn_gaussian_mle, plot_task=None, plot=False): if plot: plt.ion() self.particle_std = particle_std mean_loss_for_plot = np.zeros((1,)) means, stds, state_step_sizes, state_mins, state_maxs = compute_statistics(data) data = split_data(data, ratio=split_ratio) epoch_lengths = {'train': epoch_length, 'val': epoch_length*2} batch_iterators = {'train': make_batch_iterator(data['train'], seq_len=seq_len, batch_size=batch_size), 'val': make_repeating_batch_iterator(data['val'], epoch_lengths['val'], batch_size=batch_size, seq_len=seq_len), 'train_ex': make_batch_iterator(data['train'], batch_size=batch_size, seq_len=seq_len), 'val_ex': make_batch_iterator(data['val'], batch_size=batch_size, seq_len=seq_len), 'train1': make_batch_iterator(data['train'], batch_size=batch_size, seq_len=1), 'train2': make_batch_iterator(data['train'], batch_size=batch_size, seq_len=2), 'val1': make_repeating_batch_iterator(data['val'], epoch_lengths['val'], batch_size=batch_size, seq_len=1), 'val2': make_repeating_batch_iterator(data['val'], epoch_lengths['val'], batch_size=batch_size, seq_len=2), } # build the tensorflow graph by connecting all modules in the particles filter particles, particle_probs, encodings, particle_list, particle_probs_list = self.connect_modules(means, stds, state_mins, state_maxs, state_step_sizes, learn_gaussian_mle) # define losses and train stages for different ways of training (e.g. training individual models and e2e training) losses, train_stages = self.compile_training_stages(sess, batch_iterators, particle_list, particle_probs_list, encodings, means, stds, state_step_sizes, state_mins, state_maxs, learn_gaussian_mle, learning_rate, plot_task) # initialize variables init = tf.global_variables_initializer() sess.run(init) # save statistics and prepare saving variables if not os.path.exists(model_path): os.makedirs(model_path) np.savez(os.path.join(model_path, 'statistics'), means=means, stds=stds, state_step_sizes=state_step_sizes, state_mins=state_mins, state_maxs=state_maxs) saver = tf.train.Saver() save_path = os.path.join(model_path, 'best_validation') # define the training curriculum curriculum = [] if train_individually: if self.learn_odom: curriculum += ['train_odom'] curriculum += ['train_measurement_model'] curriculum += ['train_motion_sampling'] if self.use_proposer: curriculum += ['train_particle_proposer'] if train_e2e: curriculum += ['train_e2e'] # split data for early stopping data_keys = ['train'] if split_ratio < 1.0: data_keys.append('val') # define log dict log = {c: {dk: {lk: {'mean': [], 'se': []} for lk in train_stages[c]['monitor_losses']} for dk in data_keys} for c in curriculum} # go through curriculum for c in curriculum: stage = train_stages[c] best_val_loss = np.inf best_epoch = 0 epoch = 0 if c == 'train_e2e': saver.save(sess, os.path.join(model_path, 'before_e2e/best_validation')) np.savez(os.path.join(model_path, 'before_e2e/statistics'), means=means, stds=stds, state_step_sizes=state_step_sizes, state_mins=state_mins, state_maxs=state_maxs) while epoch < num_epochs and epoch - best_epoch < patience: # training for dk in data_keys: # don't train in the first epoch, just evaluate the initial parameters if dk == 'train' and epoch == 0: continue # set up loss lists which will be filled during the epoch loss_lists = {lk: [] for lk in stage['monitor_losses']} for e in range(epoch_lengths[dk]): # t0 = time.time() # pick a batch from the right iterator batch = next(batch_iterators[stage['batch_iterator_names'][dk]]) # define the inputs and train/run the model input_dict = {**{self.placeholders[key]: batch[key] for key in 'osa'}, **{self.placeholders['num_particles']: num_particles}, } if dk == 'train': input_dict[self.placeholders['keep_prob']] = dropout_keep_ratio input_dict[self.placeholders['is_training']] = True monitor_losses = {l: losses[l] for l in stage['monitor_losses']} if dk == 'train': s_losses, _ = sess.run([monitor_losses, stage['train_op']], input_dict) else: s_losses = sess.run(monitor_losses, input_dict) for lk in stage['monitor_losses']: loss_lists[lk].append(s_losses[lk]) # after each epoch, compute and log statistics for lk in stage['monitor_losses']: log[c][dk][lk]['mean'].append(np.mean(loss_lists[lk])) log[c][dk][lk]['se'].append(np.std(loss_lists[lk], ddof=1) / np.sqrt(len(loss_lists[lk]))) # check whether the current model is better than all previous models if 'val' in data_keys: current_val_loss = log[c]['val'][stage['validation_loss']]['mean'][-1] mean_loss_for_plot = np.append(mean_loss_for_plot,current_val_loss) if current_val_loss < best_val_loss: best_val_loss = current_val_loss best_epoch = epoch # save current model saver.save(sess, save_path) txt = 'epoch {:>3} >> '.format(epoch) else: txt = 'epoch {:>3} == '.format(epoch) else: best_epoch = epoch saver.save(sess, save_path) txt = 'epoch {:>3} >> '.format(epoch) # after going through all data sets, do a print out of the current result for lk in stage['monitor_losses']: txt += '{}: '.format(lk) for dk in data_keys: if len(log[c][dk][lk]['mean']) > 0: txt += '{:.2f}+-{:.2f}/'.format(log[c][dk][lk]['mean'][-1], log[c][dk][lk]['se'][-1]) txt = txt[:-1] + ' -- ' print(txt) if plot: stage['plot'](epoch) epoch += 1 # after running out of patience, restore the model with lowest validation loss saver.restore(sess, save_path) return log def predict(self, sess, batch, return_particles=False, **kwargs): # define input dict, use the first state only if we do tracking input_dict = {self.placeholders['o']: batch['o'], self.placeholders['a']: batch['a'], self.placeholders['num_particles']: 100} if self.init_with_true_state: input_dict[self.placeholders['s']] = batch['s'][:, :1] if return_particles: return sess.run([self.pred_states, self.particle_list, self.particle_probs_list], input_dict) else: return sess.run(self.pred_states, input_dict) def connect_modules(self, means, stds, state_mins, state_maxs, state_step_sizes, learn_gaussian_mle=False): # get shapes self.batch_size = tf.shape(self.placeholders['o'])[0] self.seq_len = tf.shape(self.placeholders['o'])[1] # we use the static shape here because we need it to build the graph self.action_dim = self.placeholders['a'].get_shape()[-1].value encodings = snt.BatchApply(self.encoder)((self.placeholders['o'] - means['o']) / stds['o']) # initialize particles if self.init_with_true_state: # tracking with known initial state initial_particles = tf.tile(self.placeholders['s'][:, 0, tf.newaxis, :], [1, self.num_particles, 1]) else: # global localization if self.use_proposer: # propose particles from observations initial_particles = self.propose_particles(encodings[:, 0], self.num_particles, state_mins, state_maxs) else: # sample particles randomly initial_particles = tf.concat( [tf.random_uniform([self.batch_size, self.num_particles, 1], state_mins[d], state_maxs[d]) for d in range(self.state_dim)], axis=-1, name='particles') initial_particle_probs = tf.ones([self.batch_size, self.num_particles], name='particle_probs') / self.num_particles_float # assumes that samples has the correct size def permute_batch(x, samples): # get shapes batch_size = tf.shape(x)[0] num_particles = tf.shape(x)[1] sample_size = tf.shape(samples)[1] # compute 1D indices into the 2D array idx = samples + num_particles * tf.tile( tf.reshape(tf.range(batch_size), [batch_size, 1]), [1, sample_size]) # index using the 1D indices and reshape again result = tf.gather(tf.reshape(x, [batch_size * num_particles, -1]), idx) result = tf.reshape(result, tf.shape(x[:,:sample_size])) return result def loop(particles, particle_probs, particle_list, particle_probs_list, additional_probs_list, i): num_proposed_float = tf.round((self.propose_ratio ** tf.cast(i, tf.float32)) * self.num_particles_float) num_proposed = tf.cast(num_proposed_float, tf.int32) num_resampled_float = self.num_particles_float - num_proposed_float num_resampled = tf.cast(num_resampled_float, tf.int32) if self.propose_ratio < 1.0: # resampling basic_markers = tf.linspace(0.0, (num_resampled_float - 1.0) / num_resampled_float, num_resampled) random_offset = tf.random_uniform([self.batch_size], 0.0, 1.0 / num_resampled_float) markers = random_offset[:, None] + basic_markers[None, :] # shape: batch_size x num_resampled cum_probs = tf.cumsum(particle_probs, axis=1) marker_matching = markers[:, :, None] < cum_probs[:, None, :] # shape: batch_size x num_resampled x num_particles samples = tf.cast(tf.argmax(tf.cast(marker_matching, 'int32'), dimension=2), 'int32') standard_particles = permute_batch(particles, samples) standard_particle_probs = tf.ones([self.batch_size, num_resampled]) standard_particles = tf.stop_gradient(standard_particles) standard_particle_probs = tf.stop_gradient(standard_particle_probs) # motion update if learn_gaussian_mle: standard_particles, _ = self.motion_update(self.placeholders['a'][:, i], standard_particles, means, stds, state_step_sizes, learn_gaussian_mle) else: standard_particles = self.motion_update(self.placeholders['a'][:, i], standard_particles, means, stds, state_step_sizes, learn_gaussian_mle) # measurement update standard_particle_probs *= self.measurement_update(encodings[:, i], standard_particles, means, stds) if self.propose_ratio > 0.0: # proposed particles proposed_particles = self.propose_particles(encodings[:, i], num_proposed, state_mins, state_maxs) proposed_particle_probs = tf.ones([self.batch_size, num_proposed]) # NORMALIZE AND COMBINE PARTICLES if self.propose_ratio == 1.0: particles = proposed_particles particle_probs = proposed_particle_probs elif self.propose_ratio == 0.0: particles = standard_particles particle_probs = standard_particle_probs else: standard_particle_probs *= (num_resampled_float / self.num_particles_float) / tf.reduce_sum(standard_particle_probs, axis=1, keep_dims=True) proposed_particle_probs *= (num_proposed_float / self.num_particles_float) / tf.reduce_sum(proposed_particle_probs, axis=1, keep_dims=True) particles = tf.concat([standard_particles, proposed_particles], axis=1) particle_probs = tf.concat([standard_particle_probs, proposed_particle_probs], axis=1) # NORMALIZE PROBABILITIES particle_probs /= tf.reduce_sum(particle_probs, axis=1, keep_dims=True) particle_list = tf.concat([particle_list, particles[:, tf.newaxis]], axis=1) particle_probs_list = tf.concat([particle_probs_list, particle_probs[:, tf.newaxis]], axis=1) return particles, particle_probs, particle_list, particle_probs_list, additional_probs_list, i + 1 # reshapes and sets the first shape sizes to None (which is necessary to keep the shape consistent in while loop) particle_list = tf.reshape(initial_particles, shape=[self.batch_size, -1, self.num_particles, self.state_dim]) particle_probs_list = tf.reshape(initial_particle_probs, shape=[self.batch_size, -1, self.num_particles]) additional_probs_list = tf.reshape(tf.ones([self.batch_size, self.num_particles, 4]), shape=[self.batch_size, -1, self.num_particles, 4]) # run the filtering process particles, particle_probs, particle_list, particle_probs_list, additional_probs_list, i = tf.while_loop( lambda *x: x[-1] < self.seq_len, loop, [initial_particles, initial_particle_probs, particle_list, particle_probs_list, additional_probs_list, tf.constant(1, dtype='int32')], name='loop') # compute mean of particles self.pred_states = self.particles_to_state(particle_list, particle_probs_list) self.particle_list = particle_list self.particle_probs_list = particle_probs_list return particles, particle_probs, encodings, particle_list, particle_probs_list def particles_to_state(self, particle_list, particle_probs_list): mean_position = tf.reduce_sum(particle_probs_list[:, :, :, tf.newaxis] * particle_list[:, :, :, :2], axis=2) mean_orientation = atan2( tf.reduce_sum(particle_probs_list[:, :, :, tf.newaxis] * tf.cos(particle_list[:, :, :, 2:3]), axis=2), tf.reduce_sum(particle_probs_list[:, :, :, tf.newaxis] * tf.sin(particle_list[:, :, :, 2:3]), axis=2)) mean_velocity = tf.reduce_sum(particle_probs_list[:, :, :, tf.newaxis] * particle_list[:, :, :, 3:5], axis=2) return tf.concat([mean_position, mean_orientation, mean_velocity], axis=2) def plot_motion_model(self, sess, batch, motion_samples, task, state_step_sizes): # define the inputs and train/run the model input_dict = {**{self.placeholders[key]: batch[key] for key in 'osa'}, **{self.placeholders['num_particles']: 100}, } s_motion_samples = sess.run(motion_samples, input_dict) plt.figure('Motion Model') plt.gca().clear() for i in range(min(len(s_motion_samples), 10)): plt.scatter(s_motion_samples[i, :, 3] / state_step_sizes[3], s_motion_samples[i, :, 4] / state_step_sizes[4], color='blue', s=1) plt.scatter(batch['s'][i, 0, 3] / state_step_sizes[3], batch['s'][i, 0, 4] / state_step_sizes[4], color='black', s=1) plt.scatter(batch['s'][i, 1, 3] / state_step_sizes[3], batch['s'][i, 1, 4] / state_step_sizes[4], color='red', s=3) plt.plot(batch['s'][i, :2, 3] / state_step_sizes[3], batch['s'][i, :2, 4] / state_step_sizes[4], color='black') plt.xlim([0, 200]) plt.ylim([-50, 50]) plt.xlabel('translational vel') plt.ylabel('angular vel') plt.gca().set_aspect('equal') plt.pause(0.01) def plot_measurement_model(self, sess, batch_iterator, measurement_model_out): batch = next(batch_iterator) # define the inputs and train/run the model input_dict = {**{self.placeholders[key]: batch[key] for key in 'osa'}, **{self.placeholders['num_particles']: 100}, } s_measurement_model_out = sess.run([measurement_model_out], input_dict) plt.figure('Measurement Model Output') plt.gca().clear() plt.imshow(s_measurement_model_out[0], interpolation="nearest", cmap="viridis_r", vmin=0.0, vmax=1.0) plt.figure('Measurement Model Input') plt.clf() plt.scatter(batch['s'][:1, 0, 3], batch['s'][:1, 0, 4], marker='x', c=s_measurement_model_out[0][0,:1], vmin=0, vmax=1.0, cmap='viridis_r') plt.scatter(batch['s'][1:, 0, 3], batch['s'][1:, 0, 4], marker='o', c=s_measurement_model_out[0][0,1:], vmin=0, vmax=1.0, cmap='viridis_r') plt.xlabel('x_dot') plt.ylabel('theta_dot') plt.pause(0.01) def plot_particle_proposer(self, sess, batch, proposed_particles, task): # define the inputs and train/run the model input_dict = {**{self.placeholders[key]: batch[key] for key in 'osa'}, **{self.placeholders['num_particles']: 100}, } s_samples = sess.run(proposed_particles, input_dict) plt.figure('Particle Proposer') plt.gca().clear() plot_maze(task) for i in range(min(len(s_samples), 10)): color = np.random.uniform(0.0, 1.0, 3) plt.quiver(s_samples[i, :, 0], s_samples[i, :, 1], np.cos(s_samples[i, :, 2]), np.sin(s_samples[i, :, 2]), color=color, width=0.001, scale=100) plt.quiver(batch['s'][i, 0, 0], batch['s'][i, 0, 1], np.cos(batch['s'][i, 0, 2]), np.sin(batch['s'][i, 0, 2]), color=color, scale=50, width=0.003) plt.pause(0.01) def plot_particle_filter(self, sess, batch, particle_list, particle_probs_list, state_step_sizes, task): s_states, s_particle_list, s_particle_probs_list, \ = sess.run([self.placeholders['s'], particle_list, particle_probs_list], #self.noise_scaler1(1.0), self.noise_scaler2(2.0)], {**{self.placeholders[key]: batch[key] for key in 'osa'}, **{self.placeholders['num_particles']: 20}, }) # print('learned motion noise factors {:.2f}/{:.2f}'.format(n1, n2)) num_steps = s_particle_list.shape[1] for s in range(3): plt.figure('particle_evolution, example {}'.format(s)) plt.clf() for d in range(5): plt.subplot(3, 2, [1, 3, 5, 2, 4][d]) for i in range(num_steps): plt.scatter(i * np.ones_like(s_particle_list[s, i, :, d]), s_particle_list[s, i, :, d] / (1 if s == 0 else state_step_sizes[d]), c=s_particle_probs_list[s, i, :], cmap='viridis_r', marker='o', s=6, alpha=0.5, linewidths=0.05, vmin=0.0, vmax=0.1) current_state = batch['s'][s, i, d] / (1 if s == 0 else state_step_sizes[d]) plt.plot([i], [current_state], 'o', markerfacecolor='None', markeredgecolor='k', markersize=2.5) plt.xlabel('Time') plt.ylabel('State {}'.format(d)) show_pause(pause=0.01)
mit
kc-lab/dms2dfe
dms2dfe/lib/io_ml.py
2
24058
#!usr/bin/python # Copyright 2016, Rohan Dandage <rraadd_8@hotmail.com,rohan@igib.in> # This program is distributed under General Public License v. 3. """ ================================ ``io_ml`` ================================ """ from os.path import abspath,dirname,exists,basename from os import makedirs from sklearn.preprocessing import label_binarize from dms2dfe.lib.io_data_files import read_pkl,to_pkl from dms2dfe.lib.io_dfs import set_index,denan,denanrows,del_Unnamed import numpy as np import pandas as pd import matplotlib matplotlib.use('Agg') # no Xwindows import matplotlib.pyplot as plt import warnings warnings.simplefilter(action = "ignore", category = FutureWarning) from dms2dfe.lib.io_strs import get_logger logging=get_logger() # logging.basicConfig(format='[%(asctime)s] %(levelname)s\tfrom %(filename)s in %(funcName)s(..):%(lineno)d: %(message)s',level=logging.DEBUG) # filename=cfg_xls_fh+'.log' def corrplot(info): """ Plots a correlation matrix heatmap between range of features and fold change values :param info: dict, with the information of the experiment """ from dms2dfe.lib.io_dfs import fhs2data_combo from glob import glob from dms2dfe.lib.plot_mut_data_heatmaps import clustermap from dms2dfe.lib.io_ml_data import make_dXy ml_input=info.ml_input prj_dh=info.prj_dh data_fit_fhs=glob('%s/data_fit/aas/*' % prj_dh) data_feats_all_fh='%s/data_feats/aas/data_feats_all' % prj_dh data_feats_all=pd.read_csv(data_feats_all_fh).set_index('mutids') data_fit_all=fhs2data_combo(data_fit_fhs,['%sA' % ml_input],'mutids') data_fit_all.columns=[c.split(': ')[0] for c in data_fit_all] for c in data_fit_all: plot_fh='%s/plots/aas/%s.corr.pdf' % (prj_dh,c) if not exists(plot_fh): if not exists(dirname(plot_fh)): makedirs(dirname(plot_fh)) dXy=data_feats_all.join(data_fit_all[c]) dXy,Xcols,ycol=make_dXy(dXy,ycol=c, if_rescalecols=False, unique_quantile=0.25) dXy,Xcols,ycol=feats_sel_corr(dXy,ycol,range_coef=[0.9,0.8]) g,ax=clustermap(dXy.corr(method='spearman'), highlight_col=c, vlim=[-0.5,0.5],figsize=[10,10], plot_fh=plot_fh, ) def run_RF_classi(data_all,X_cols,y_coln, test_size=0.34,data_test=None,data_out_fh=None): """ This implements Random Forest classifier. :param data_all: dataframe with columns with features(Xs) and classes(y). :param X_cols: list of column names with features. :param y_coln: column name of column with classes. :param plot_fh: path to output plot file. :returns grid_search: trained classifier object. :returns y_test: classes used for testing classifier. :returns y_pred: predicted classes. :returns y_score: scores of predicted classes used to plot ROC curve. :returns feature_importances: relative importances of features (dataframe). """ from sklearn.ensemble import RandomForestClassifier X=data_all.loc[:,list(X_cols)] X=X.as_matrix() y=data_all.loc[:,y_coln] classes=y.unique() y=y.as_matrix() y = label_binarize(y, classes=classes) if len(classes)==2: y=np.array([i[0] for i in y]) if len(classes)>1: if test_size!=0: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=88) else : X_train=X y_train=y X_test_df=data_test.loc[:,list(X_cols)] X_test_df=denan(X_test_df,axis='both',condi='all any') X_test=X_test_df.as_matrix() y_test=None model = RandomForestClassifier(random_state =88) param_grid = {"n_estimators": [1000], "max_features": ['sqrt'],#[None,'sqrt','log2'], "min_samples_leaf":[1],#[1,25,50,100], "criterion": ['entropy'],#["gini", "entropy"] } grid_search = GridSearchCV(model, param_grid=param_grid,cv=10) grid_search.fit(X_train,y_train) y_pred=grid_search.predict(X_test) if test_size!=0: data_preds=None else: data_preds=X_test_df data_preds[y_coln]=binary2classes(y_pred,classes) featimps=pd.DataFrame(columns=['Feature','Importance']) featimps.loc[:,'Feature']=X_cols#[indices] featimps.loc[:,'Importance']=grid_search.best_estimator_.feature_importances_ data={'RF_classi':grid_search, 'X_train':X_train, 'X_test':X_test, 'y_train':y_train, 'y_test':y_test, 'y_score':grid_search.predict_proba(X_test), 'classes':classes, 'X_cols':X_cols, 'y_coln':y_coln, 'features':X_cols, 'featimps':featimps, 'y_pred':y_pred, 'data_preds':data_preds} to_pkl(data,data_out_fh) return grid_search,data_preds def run_RF_regress(data_all,X_cols,y_coln, test_size=0.5,data_test=None,data_out_fh=None): """ This implements Random Forest classifier. :param data_all: dataframe with columns with features(Xs) and classes(y). :param X_cols: list of column names with features. :param y_coln: column name of column with classes. :param plot_fh: path to output plot file. :returns grid_search: trained classifier object. :returns y_test: classes used for testing classifier. :returns y_pred: predicted classes. :returns y_score: scores of predicted classes used to plot ROC curve. :returns feature_importances: relative importances of features (dataframe). """ from sklearn.ensemble import RandomForestRegressor X=data_all.loc[:,list(X_cols)] X=X.as_matrix() y=data_all.loc[:,y_coln] y=y.as_matrix() if test_size!=0: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=88) else : X_train=X y_train=y X_test=data_test.loc[:,list(X_cols)].as_matrix() y_test=None model = RandomForestRegressor(random_state =88) param_grid = {"n_estimators": [3000],#[1000,2000,4000],# "max_features": ['sqrt'],#[None,'sqrt','log2'], "min_samples_leaf": [1],#[1,25,50,100], "criterion": ["mse"], "oob_score": [True], } grid_search = GridSearchCV(model, param_grid=param_grid,cv=10) grid_search.fit(X_train,y_train) y_pred=grid_search.predict(X_test) if test_size!=0: data_preds=None # print grid_search.score(X_test, y_test) else: data_preds=data_test.loc[:,list(X_cols)] data_preds[y_coln]=y_pred featimps=pd.DataFrame(columns=['Feature','Importance']) featimps.loc[:,'Feature']=X_cols#[indices] featimps.loc[:,'Importance']=grid_search.best_estimator_.feature_importances_ data={'RF_regress':grid_search, 'X_train':X_train, 'X_test':X_test, 'y_train':y_train, 'y_test':y_test, 'X_cols':X_cols, 'y_coln':y_coln, 'features':X_cols, 'featimps':featimps, 'y_pred':y_pred, 'data_preds':data_preds} to_pkl(data,data_out_fh) return grid_search,data_preds def data_combo2ml(data_combo,data_fn,data_dh,plot_dh, ycoln,col_idx, ml_type='both', middle_percentile_skipped=0.1, force=False, ): """ This runs the submodules to run classifier from fitness data (`data_combo`). :param basename(data_fn): in the form <data_combo>/<aas/cds>/<name of file>. :param data_feats: dataframe with features. :param y_coln: column name of column with classes (ys). :param ml_type: classi | both """ data_combo=del_Unnamed(data_combo) for dh in [plot_dh,data_dh]: if not exists(dh): makedirs(dh) # plot_cls_fh="%s/plot_ml_cls_%s.pdf" % (plot_dh,data_fn) # plot_reg_fh="%s/plot_ml_reg_%s.pdf" % (plot_dh,data_fn) data_combo_fh="%s/%s.input_raw" % (data_dh,data_fn) data_fh="%s/%s.cls.all" % (data_dh,data_fn) data_cls_train_fh="%s/%s.cls.train" % (data_dh,data_fn) data_cls_tests_fh="%s/%s.cls.tests" % (data_dh,data_fn) data_reg_train_fh="%s/%s.reg.train" % (data_dh,data_fn) data_reg_tests_fh="%s/%s.reg.tests" % (data_dh,data_fn) pkld_cls_fh='%s/%s.cls.pkl' % (data_dh,data_fn) pkld_reg_fh='%s/%s.reg.pkl' % (data_dh,data_fn) # pkld_cls_metrics_fh='%s/%s.cls.metrics.pkl' % (data_dh,data_fn) pkld_reg_metrics_fh='%s/%s.reg.metrics.pkl' % (data_dh,data_fn) feature_importances_cls_fh="%s_%s_.csv" % (pkld_cls_fh,'featimps') y_coln_cls=ycoln y_coln_reg=ycoln if np.sum(~data_combo.loc[:,y_coln_cls].isnull())<50: logging.error("skipping %s: need more data: %d<50" %\ (data_fn,np.sum(~data_combo.loc[:,ycoln].isnull()))) return False logging.info("processing: %s" % data_fn) if ml_type=='cls' or ml_type=='both': if not exists(pkld_cls_fh): if not exists(data_cls_train_fh): data_combo,data_ml,data_cls_train,data_cls_tests=make_cls_input(data_combo, y_coln_cls, middle_percentile_skipped=middle_percentile_skipped) data_combo.to_csv(data_combo_fh) data_ml.to_csv(data_fh) data_cls_train.to_csv(data_cls_train_fh) data_cls_tests.to_csv(data_cls_tests_fh) else: data_cls_train=pd.read_csv(data_cls_train_fh) data_cls_tests=pd.read_csv(data_cls_tests_fh) data_cls_train =data_cls_train.set_index(col_idx,drop=True) data_cls_tests =data_cls_tests.set_index(col_idx,drop=True) y_coln_cls="classes" logging.info("cls: train set = %d" % len(data_cls_train)) X_cols_cls=data_cls_train.columns.tolist() X_cols_cls.remove(y_coln_cls) # cls pkld_cls,data_preds=run_RF_classi(data_cls_train,X_cols_cls,y_coln_cls, test_size=0.34,data_out_fh=pkld_cls_fh) # else: logging.info('already exists: %s' % basename(pkld_cls_fh)) if not exists(feature_importances_cls_fh): get_RF_classi_metrics(pkld_cls_fh,data_dh=data_dh,plot_dh=plot_dh) if ml_type=='both': if not exists(pkld_reg_fh): if not exists('%s.train' % data_fh): data_cls_tests=pd.read_csv(data_cls_train_fh) data_cls_train=pd.read_csv(data_cls_tests_fh) data_cls_tests =data_cls_tests.set_index(col_idx,drop=True) data_cls_train =data_cls_train.set_index(col_idx,drop=True) feature_importances_cls=pd.read_csv(feature_importances_cls_fh) data_reg_train,data_reg_tests=make_reg_input(data_combo,data_cls_train,data_cls_tests, feature_importances_cls, y_coln_reg, y_coln_cls="classes", topNfeats=25) data_reg_train.to_csv(data_reg_train_fh) data_reg_tests.to_csv(data_reg_tests_fh) else: data_reg_train=pd.read_csv(data_cls_train_fh) data_reg_tests=pd.read_csv(data_cls_tests_fh) data_reg_train =data_reg_train.set_index(col_idx,drop=True) data_reg_tests =data_reg_tests.set_index(col_idx,drop=True) logging.info("reg: train set = %d" % len(data_reg_train)) X_cols_reg=[c for c in data_reg_train.columns.tolist() if c!=y_coln_reg] # print data_reg_train.loc[:,X_cols_reg] pkld_reg_metrics,data_preds_reg_metrics=\ run_RF_regress(data_reg_train,X_cols_reg,y_coln_reg, test_size=0.34,data_out_fh=pkld_reg_metrics_fh) get_RF_regress_metrics(pkld_reg_metrics_fh,data_dh=data_dh,plot_dh=plot_dh) else: logging.info('already exists: %s' % basename(pkld_reg_fh)) def data_regress2data_fit(prj_dh,data_fit_key, data_regress_all,col='FCA_norm'): """ Transforms the fold changes estimated from a regression model in the format of data_fit :param prj_dh: path to the project dorectory :param data_fit_key: path key to data_fit file :param data_regress_all: pandas table with regression estimated fold change values """ # from dms2dfe.lib.io_nums import str2num from dms2dfe.lib.io_mut_files import rescale_fitnessbysynonymous,class_fit,mutids_converter data_fit=pd.read_csv("%s/%s" % (prj_dh,data_fit_key)) data_fit=data_fit.loc[:,["mutids",col]].set_index("mutids",drop=True) data_fit_combo=data_fit.copy() data_fit_inferred=data_regress_all.reset_index().loc[:,["mutids",col]].set_index("mutids",drop=True) data_mutids_common=denanrows(data_fit.join(data_fit_inferred.loc[:,col],rsuffix='_inferred')) data_mutids_common=data_mutids_common.loc[(data_mutids_common.loc[:,data_mutids_common.columns[0]]!=data_mutids_common.loc[:,data_mutids_common.columns[1]]),:] for m in data_fit_combo.index.tolist(): if pd.isnull(data_fit.loc[m,col]): if m in data_fit_inferred.index.tolist(): data_fit_combo.loc[m,'inferred']=True data_fit_combo.loc[m,col]=data_fit_inferred.loc[m,col] else: data_fit_combo.loc[m,'inferred']=False for c in ['refi','ref','mut','refrefi']: data_fit_combo.loc[:,c]=mutids_converter(data_fit_combo.index.tolist(), c, 'aas') if col=='FCA_norm': data_fit_combo=rescale_fitnessbysynonymous(data_fit_combo,col_fit=col,col_fit_rescaled="FiA") data_fit_combo=class_fit(data_fit_combo) data_fit_combo.loc[:,'FiS']=\ data_fit_combo.loc[(data_fit_combo.loc[:,'ref']==data_fit_combo.loc[:,'mut']),'FiA'] data_fit_combo=data_fit_combo.sort_values(by="refi",axis=0) data_fit_combo.to_csv("%s/%s_inferred" % (prj_dh,data_fit_key)) return data_fit_combo #GB from dms2dfe.lib.io_strs import get_time from dms2dfe.lib.io_ml_data import feats_inter,keep_cols,feats_sel_corr,make_dXy,feats_inter_sel_corr # %run ../../progs/dms2dfe/dms2dfe/lib/io_ml.py # %run ../../progs/dms2dfe/dms2dfe/lib/io_ml_data.py # %run ../../1_dms_software/progs/dms2dfe/dms2dfe/lib/io_ml_metrics.py from sklearn.model_selection import cross_val_predict,cross_val_score from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor from sklearn.model_selection import GridSearchCV from sklearn.ensemble.partial_dependence import plot_partial_dependence,partial_dependence def run_est(est,X,y,params,cv=True): """ Runs an estimator :param est: estimator object :param X: predictors (X) values :param y: target (y) values :param params: additional fitting parameters """ if est=='GBR': est = GradientBoostingRegressor(random_state=88) elif est=='GBC': est = GradientBoostingClassifier(random_state=88) est.set_params(**params) if cv: r2s=cross_val_score(est,X,y,cv=10) print [r2s,np.mean(r2s)] return r2s,est def est2feats_imp(est,Xcols,Xy=None): """ Get Feature importances from estimator :param est: Estimator object :param Xcols: list of column names of predictors """ try: feat_imp = pd.DataFrame(est.feature_importances_, Xcols)#.sort_values(ascending=False) except: est.fit(Xy[0],Xy[1]) feat_imp = pd.DataFrame(est.feature_importances_, Xcols)#.sort_values(ascending=False) feat_imp.columns=['Feature importance'] feat_imp=feat_imp.sort_values(by='Feature importance',ascending=False) return feat_imp def dXy2ml(dXy,ycol,params=None, if_gridsearch=False, if_partial_dependence=False, if_feats_imps=False, inter=None, use_top=None, out_fh=None, regORcls='reg', force=False,cores=8): """ Wrapper for ml operations :param dXy: pandas table with preditors (X) and target (y) values :param ycol: column name of the target column """ if out_fh is None: out_fh='%s_%s.pkl' % ('dXy2ml',get_time()) if exists(out_fh) and (not force): try: dpkl=read_pkl(out_fh) except: return False else: dpkl={} if not ('dXy_final' in dpkl.keys()) or force: dpkl['dXy_input']=dXy dpkl['ycol']=ycol dXy_input=dXy.copy() to_pkl(dpkl,out_fh) #back dXy,Xcols,ycol=make_dXy(dXy,ycol=ycol, if_rescalecols=True, unique_quantile=0.25) if len(dXy)<100: return False dpkl['dXy_preprocessed']=dXy to_pkl(dpkl,out_fh) #back dXy,Xcols,ycol=feats_sel_corr(dXy,ycol,range_coef=[0.9,0.8,0.7]) dpkl['dXy_feats_sel_corr']=dXy to_pkl(dpkl,out_fh) #back dXy,Xcols,ycol=keep_cols(dXy,dXy_input,ycol) dpkl['dXy_feats_indi']=dXy to_pkl(dpkl,out_fh) #back if inter=='pre': dXy,Xcols,ycol=feats_inter_sel_corr(dXy,ycol,Xcols,dpkl['dXy_feats_indi'].copy(), top_cols=[ 'Conservation score (inverse shannon uncertainty): gaps ignored',#'Conservation score (ConSurf)', 'Distance from active site residue: minimum', 'Distance from dimer interface', 'Temperature factor (flexibility)', 'Residue depth']) dpkl['dXy_feats_inter_sel_corr']=dXy dpkl['dXy_final']=dXy else: dXy_input=dpkl['dXy_input'] dXy=dpkl['dXy_final'] ycol=dpkl['ycol'] to_pkl(dpkl,out_fh) #back Xcols=[c for c in dXy.columns.tolist() if c!=ycol] X=dXy.loc[:,Xcols].as_matrix() y=dXy.loc[:,ycol].as_matrix() dpkl['X_final']=X dpkl['y_final']=y if regORcls=='reg': est_method='GBR' elif regORcls=='cls': est_method='GBC' if (if_gridsearch) or (params is None): if not ('gs_cv' in dpkl.keys()) or force: param_grid = {'learning_rate':[0.005,0.001,0.0001],#[0.1,0.01,0.005],# tuned with n estimators 'n_estimators':[1500,2000,3000,5000], # tuned with learning rate 'min_samples_leaf':[50,125], # lower -> less overfitting 'max_features':[None], 'max_depth':[6], 'min_samples_split':[int(len(dXy)*0.05),int(len(dXy)*0.1),int(len(dXy)*0.25),int(len(dXy)*0.5)], # 0.5 to 1 of samples 'subsample':[0.8], } if regORcls=='reg': param_grid['loss']=['ls', 'lad', 'huber'] est_method='GBR' est = GradientBoostingRegressor(random_state=88) elif regORcls=='cls': param_grid['loss']=['deviance', 'exponential'] est_method='GBC' est = GradientBoostingClassifier(random_state=88) logging.info('running grid search') gs_cv = GridSearchCV(est, param_grid, n_jobs=cores,cv=10).fit(X, y) print [gs_cv.best_params_,gs_cv.best_score_] params=gs_cv.best_params_ dpkl['gs_cv']=gs_cv to_pkl(dpkl,out_fh) #back dpkl['params']=params if 'params' in dpkl.keys() and not force: params= dpkl['params'] elif params is None: dpkl['params']=params if not ('est_all_feats_r2s' in dpkl.keys()) or force: r2s,est=run_est(est=est_method,X=X,y=y,params=params) dpkl['est_all_feats']=est dpkl['est_all_feats_r2s']=r2s if not ('feat_imp' in dpkl.keys()) or force: if if_gridsearch: feat_imp=est2feats_imp(dpkl['gs_cv'].best_estimator_,Xcols,Xy=None) else: feat_imp=est2feats_imp(est,Xcols,Xy=[X,y]) dpkl['feat_imp']=feat_imp to_pkl(dpkl,out_fh) #back if if_feats_imps: fig=plt.figure(figsize=(5,10)) ax=plt.subplot(111) feat_imp.plot(kind='barh', title='Feature Importances',ax=ax) ax.set_ylabel('Feature Importance Score') to_pkl(dpkl,out_fh) #back if not use_top is None: Xcols=dpkl['feat_imp'].head(use_top).index.tolist() #int(len(feat_imp)*0.15) # print Xcols[:use_top//5] if inter=='top': dXy,Xcols,ycol=feats_inter_sel_corr(dXy,ycol,Xcols,dXy_input,top_cols=Xcols[:len(Xcols)//5]) X=dXy.loc[:,Xcols].as_matrix() y=dXy.loc[:,ycol].as_matrix() r2s,est=run_est(est=est_method,X=X,y=y,params=params) feat_imp=est2feats_imp(est,Xcols,Xy=[X,y]) dpkl['feat_imp_top_feats']=feat_imp dpkl['dXy_top_feats']=dXy dpkl['est_top_feats']=est dpkl['est_top_feats_r2s']=r2s to_pkl(dpkl,out_fh) #back if if_partial_dependence: feats_indi=[s for s in Xcols if not ((') ' in s) and (' (' in s))] features=[Xcols.index(f) for f in feats_indi] fig, axs = plot_partial_dependence(est, X, features, feature_names=Xcols, n_jobs=cores, grid_resolution=50, figsize=[10,30]) to_pkl(dpkl,out_fh) #back # return est,dXy,dpkl from dms2dfe.lib.io_ml_metrics import get_GB_cls_metrics def data_fit2ml(dX_fh,dy_fh,info,regORcls='cls'): """ Wrapper for overall data_fit to regression modelling :param dX_fh: path to the file containing preditor values :param dy_fh: path to the file containing target values :param info: dict contaning information about the experiment """ dy=pd.read_csv(dy_fh).set_index('mutids') dX=pd.read_csv(dX_fh).set_index('mutids') out_fh='%s/data_ml/%s.pkl' % (info.prj_dh,basename(dy_fh)) if regORcls=='reg': ycol='FiA' dXy=pd.concat([dy.loc[:,ycol],dX],axis=1) dXy.index.name='mutids' params={'loss': 'ls', 'learning_rate': 0.001, 'min_samples_leaf': 50, 'n_estimators': 5000, 'subsample': 0.8, 'min_samples_split': 38, 'max_features': None, 'max_depth': 6} elif regORcls=='cls': ycol='class_fit_binary' dy.loc[(dy.loc[:,'class_fit']=='enriched'),ycol]=1 dy.loc[(dy.loc[:,'class_fit']=='neutral'),ycol]=np.nan dy.loc[(dy.loc[:,'class_fit']=='depleted'),ycol]=0 dXy=pd.concat([dy.loc[:,ycol],dX],axis=1) dXy.index.name='mutids' # params={'loss': 'deviance', 'learning_rate': 0.0001, 'min_samples_leaf': 50, 'n_estimators': 3000, 'subsample': 0.8, 'min_samples_split': 23, 'max_features': None, 'max_depth': 6} params={'loss': 'exponential', 'learning_rate': 0.001, 'min_samples_leaf': 50, 'n_estimators': 1500, 'subsample': 0.8, 'min_samples_split': 23, 'max_features': None, 'max_depth': 6} dXy2ml(dXy,ycol, # params=params, if_gridsearch=True, if_partial_dependence=False, # if_feats_imps=True, out_fh=out_fh, inter='pre', # force=True, # use_top=25, regORcls=regORcls, cores=int(info.cores)) # get metrics plots get_GB_cls_metrics(data_fh=out_fh,info=info)
gpl-3.0
mjgrav2001/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <vanderplas@astro.washington.edu> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
russel1237/scikit-learn
examples/plot_digits_pipe.py
250
1809
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Pipelining: chaining a PCA and a logistic regression ========================================================= The PCA does an unsupervised dimensionality reduction, while the logistic regression does the prediction. We use a GridSearchCV to set the dimensionality of the PCA """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, decomposition, datasets from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV logistic = linear_model.LogisticRegression() pca = decomposition.PCA() pipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)]) digits = datasets.load_digits() X_digits = digits.data y_digits = digits.target ############################################################################### # Plot the PCA spectrum pca.fit(X_digits) plt.figure(1, figsize=(4, 3)) plt.clf() plt.axes([.2, .2, .7, .7]) plt.plot(pca.explained_variance_, linewidth=2) plt.axis('tight') plt.xlabel('n_components') plt.ylabel('explained_variance_') ############################################################################### # Prediction n_components = [20, 40, 64] Cs = np.logspace(-4, 4, 3) #Parameters of pipelines can be set using ‘__’ separated parameter names: estimator = GridSearchCV(pipe, dict(pca__n_components=n_components, logistic__C=Cs)) estimator.fit(X_digits, y_digits) plt.axvline(estimator.best_estimator_.named_steps['pca'].n_components, linestyle=':', label='n_components chosen') plt.legend(prop=dict(size=12)) plt.show()
bsd-3-clause
SepehrMN/nest-simulator
pynest/examples/spatial/connex_ew.py
14
2269
# -*- coding: utf-8 -*- # # connex_ew.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ NEST spatial example -------------------- Create two populations of iaf_psc_alpha neurons on a 30x30 grid with edge_wrap, connect with circular mask, flat probability, visualize. BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB """ import matplotlib.pyplot as plt import numpy as np import nest nest.ResetKernel() pos = nest.spatial.grid(shape=[30, 30], extent=[3., 3.], edge_wrap=True) ####################################################################### # create and connect two populations a = nest.Create('iaf_psc_alpha', positions=pos) b = nest.Create('iaf_psc_alpha', positions=pos) cdict = {'rule': 'pairwise_bernoulli', 'p': 0.5, 'mask': {'circular': {'radius': 0.5}}} nest.Connect(a, b, conn_spec=cdict, syn_spec={'weight': nest.random.uniform(0.5, 2.)}) plt.clf() ##################################################################### # plot targets of neurons in different grid locations # first, clear existing figure, get current figure plt.clf() fig = plt.gcf() # plot targets of two source neurons into same figure, with mask for src_index in [30 * 15 + 15, 0]: # obtain node id for center src = a[src_index:src_index + 1] nest.PlotTargets(src, b, mask=cdict['mask'], fig=fig) # beautify plt.axes().set_xticks(np.arange(-1.5, 1.55, 0.5)) plt.axes().set_yticks(np.arange(-1.5, 1.55, 0.5)) plt.grid(True) plt.axis([-2.0, 2.0, -2.0, 2.0]) plt.axes().set_aspect('equal', 'box') plt.title('Connection targets') plt.show() # plt.savefig('connex_ew.pdf')
gpl-2.0
alexeyum/scikit-learn
sklearn/datasets/base.py
11
23497
""" Base IO code for all datasets """ # Copyright (c) 2007 David Cournapeau <cournape@gmail.com> # 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr> # 2010 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause import os import csv import sys import shutil from os import environ from os.path import dirname from os.path import join from os.path import exists from os.path import expanduser from os.path import isdir from os.path import splitext from os import listdir from os import makedirs import numpy as np from ..utils import check_random_state class Bunch(dict): """Container object for datasets Dictionary-like object that exposes its keys as attributes. >>> b = Bunch(a=1, b=2) >>> b['b'] 2 >>> b.b 2 >>> b.a = 3 >>> b['a'] 3 >>> b.c = 6 >>> b['c'] 6 """ def __init__(self, **kwargs): super(Bunch, self).__init__(kwargs) def __setattr__(self, key, value): self[key] = value def __getattr__(self, key): try: return self[key] except KeyError: raise AttributeError(key) def __setstate__(self, state): # Bunch pickles generated with scikit-learn 0.16.* have an non # empty __dict__. This causes a surprising behaviour when # loading these pickles scikit-learn 0.17: reading bunch.key # uses __dict__ but assigning to bunch.key use __setattr__ and # only changes bunch['key']. More details can be found at: # https://github.com/scikit-learn/scikit-learn/issues/6196. # Overriding __setstate__ to be a noop has the effect of # ignoring the pickled __dict__ pass def get_data_home(data_home=None): """Return the path of the scikit-learn data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'scikit_learn_data' in the user home folder. Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('SCIKIT_LEARN_DATA', join('~', 'scikit_learn_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def load_files(container_path, description=None, categories=None, load_content=True, shuffle=True, encoding=None, decode_error='strict', random_state=0): """Load text files with categories as subfolder names. Individual samples are assumed to be files stored a two levels folder structure such as the following: container_folder/ category_1_folder/ file_1.txt file_2.txt ... file_42.txt category_2_folder/ file_43.txt file_44.txt ... The folder names are used as supervised signal label names. The individual file names are not important. This function does not try to extract features into a numpy array or scipy sparse matrix. In addition, if load_content is false it does not try to load the files in memory. To use text files in a scikit-learn classification or clustering algorithm, you will need to use the `sklearn.feature_extraction.text` module to build a feature extraction transformer that suits your problem. If you set load_content=True, you should also specify the encoding of the text using the 'encoding' parameter. For many modern text files, 'utf-8' will be the correct encoding. If you leave encoding equal to None, then the content will be made of bytes instead of Unicode, and you will not be able to use most functions in `sklearn.feature_extraction.text`. Similar feature extractors should be built for other kind of unstructured data input such as images, audio, video, ... Read more in the :ref:`User Guide <datasets>`. Parameters ---------- container_path : string or unicode Path to the main folder holding one subfolder per category description: string or unicode, optional (default=None) A paragraph describing the characteristic of the dataset: its source, reference, etc. categories : A collection of strings or None, optional (default=None) If None (default), load all the categories. If not None, list of category names to load (other categories ignored). load_content : boolean, optional (default=True) Whether to load or not the content of the different files. If true a 'data' attribute containing the text information is present in the data structure returned. If not, a filenames attribute gives the path to the files. encoding : string or None (default is None) If None, do not try to decode the content of the files (e.g. for images or other non-text content). If not None, encoding to use to decode text files to Unicode if load_content is True. decode_error: {'strict', 'ignore', 'replace'}, optional Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given `encoding`. Passed as keyword argument 'errors' to bytes.decode. shuffle : bool, optional (default=True) Whether or not to shuffle the data: might be important for models that make the assumption that the samples are independent and identically distributed (i.i.d.), such as stochastic gradient descent. random_state : int, RandomState instance or None, optional (default=0) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: either data, the raw text data to learn, or 'filenames', the files holding it, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. """ target = [] target_names = [] filenames = [] folders = [f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))] if categories is not None: folders = [f for f in folders if f in categories] for label, folder in enumerate(folders): target_names.append(folder) folder_path = join(container_path, folder) documents = [join(folder_path, d) for d in sorted(listdir(folder_path))] target.extend(len(documents) * [label]) filenames.extend(documents) # convert to array for fancy indexing filenames = np.array(filenames) target = np.array(target) if shuffle: random_state = check_random_state(random_state) indices = np.arange(filenames.shape[0]) random_state.shuffle(indices) filenames = filenames[indices] target = target[indices] if load_content: data = [] for filename in filenames: with open(filename, 'rb') as f: data.append(f.read()) if encoding is not None: data = [d.decode(encoding, decode_error) for d in data] return Bunch(data=data, filenames=filenames, target_names=target_names, target=target, DESCR=description) return Bunch(filenames=filenames, target_names=target_names, target=target, DESCR=description) def load_iris(): """Load and return the iris dataset (classification). The iris dataset is a classic and very easy multi-class classification dataset. ================= ============== Classes 3 Samples per class 50 Samples total 150 Dimensionality 4 Features real, positive ================= ============== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. Examples -------- Let's say you are interested in the samples 10, 25, and 50, and want to know their class name. >>> from sklearn.datasets import load_iris >>> data = load_iris() >>> data.target[[10, 25, 50]] array([0, 0, 1]) >>> list(data.target_names) ['setosa', 'versicolor', 'virginica'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'iris.csv')) as csv_file: data_file = csv.reader(csv_file) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) target_names = np.array(temp[2:]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for i, ir in enumerate(data_file): data[i] = np.asarray(ir[:-1], dtype=np.float64) target[i] = np.asarray(ir[-1], dtype=np.int) with open(join(module_path, 'descr', 'iris.rst')) as rst_file: fdescr = rst_file.read() return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']) def load_breast_cancer(): """Load and return the breast cancer wisconsin dataset (classification). The breast cancer dataset is a classic and very easy binary classification dataset. ================= ============== Classes 2 Samples per class 212(M),357(B) Samples total 569 Dimensionality 30 Features real, positive ================= ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'target_names', the meaning of the labels, 'feature_names', the meaning of the features, and 'DESCR', the full description of the dataset. The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is downloaded from: https://goo.gl/U2Uwz2 Examples -------- Let's say you are interested in the samples 10, 50, and 85, and want to know their class name. >>> from sklearn.datasets import load_breast_cancer >>> data = load_breast_cancer() >>> data.target[[10, 50, 85]] array([0, 1, 0]) >>> list(data.target_names) ['malignant', 'benign'] """ module_path = dirname(__file__) with open(join(module_path, 'data', 'breast_cancer.csv')) as csv_file: data_file = csv.reader(csv_file) first_line = next(data_file) n_samples = int(first_line[0]) n_features = int(first_line[1]) target_names = np.array(first_line[2:4]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,), dtype=np.int) for count, value in enumerate(data_file): data[count] = np.asarray(value[:-1], dtype=np.float64) target[count] = np.asarray(value[-1], dtype=np.int) with open(join(module_path, 'descr', 'breast_cancer.rst')) as rst_file: fdescr = rst_file.read() feature_names = np.array(['mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension']) return Bunch(data=data, target=target, target_names=target_names, DESCR=fdescr, feature_names=feature_names) def load_digits(n_class=10): """Load and return the digits dataset (classification). Each datapoint is a 8x8 image of a digit. ================= ============== Classes 10 Samples per class ~180 Samples total 1797 Dimensionality 64 Features integers 0-16 ================= ============== Read more in the :ref:`User Guide <datasets>`. Parameters ---------- n_class : integer, between 0 and 10, optional (default=10) The number of classes to return. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'images', the images corresponding to each sample, 'target', the classification labels for each sample, 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Examples -------- To load the data and visualize the images:: >>> from sklearn.datasets import load_digits >>> digits = load_digits() >>> print(digits.data.shape) (1797, 64) >>> import matplotlib.pyplot as plt #doctest: +SKIP >>> plt.gray() #doctest: +SKIP >>> plt.matshow(digits.images[0]) #doctest: +SKIP >>> plt.show() #doctest: +SKIP """ module_path = dirname(__file__) data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'), delimiter=',') with open(join(module_path, 'descr', 'digits.rst')) as f: descr = f.read() target = data[:, -1] flat_data = data[:, :-1] images = flat_data.view() images.shape = (-1, 8, 8) if n_class < 10: idx = target < n_class flat_data, target = flat_data[idx], target[idx] images = images[idx] return Bunch(data=flat_data, target=target.astype(np.int), target_names=np.arange(10), images=images, DESCR=descr) def load_diabetes(): """Load and return the diabetes dataset (regression). ============== ================== Samples total 442 Dimensionality 10 Features real, -.2 < x < .2 Targets integer 25 - 346 ============== ================== Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn and 'target', the regression target for each sample. """ base_dir = join(dirname(__file__), 'data') data = np.loadtxt(join(base_dir, 'diabetes_data.csv.gz')) target = np.loadtxt(join(base_dir, 'diabetes_target.csv.gz')) return Bunch(data=data, target=target) def load_linnerud(): """Load and return the linnerud dataset (multivariate regression). Samples total: 20 Dimensionality: 3 for both data and targets Features: integer Targets: integer Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data' and 'targets', the two multivariate datasets, with 'data' corresponding to the exercise and 'targets' corresponding to the physiological measurements, as well as 'feature_names' and 'target_names'. """ base_dir = join(dirname(__file__), 'data/') # Read data data_exercise = np.loadtxt(base_dir + 'linnerud_exercise.csv', skiprows=1) data_physiological = np.loadtxt(base_dir + 'linnerud_physiological.csv', skiprows=1) # Read header with open(base_dir + 'linnerud_exercise.csv') as f: header_exercise = f.readline().split() with open(base_dir + 'linnerud_physiological.csv') as f: header_physiological = f.readline().split() with open(dirname(__file__) + '/descr/linnerud.rst') as f: descr = f.read() return Bunch(data=data_exercise, feature_names=header_exercise, target=data_physiological, target_names=header_physiological, DESCR=descr) def load_boston(): """Load and return the boston house-prices dataset (regression). ============== ============== Samples total 506 Dimensionality 13 Features real, positive Targets real 5. - 50. ============== ============== Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the regression targets, and 'DESCR', the full description of the dataset. Examples -------- >>> from sklearn.datasets import load_boston >>> boston = load_boston() >>> print(boston.data.shape) (506, 13) """ module_path = dirname(__file__) fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst') with open(fdescr_name) as f: descr_text = f.read() data_file_name = join(module_path, 'data', 'boston_house_prices.csv') with open(data_file_name) as f: data_file = csv.reader(f) temp = next(data_file) n_samples = int(temp[0]) n_features = int(temp[1]) data = np.empty((n_samples, n_features)) target = np.empty((n_samples,)) temp = next(data_file) # names of features feature_names = np.array(temp) for i, d in enumerate(data_file): data[i] = np.asarray(d[:-1], dtype=np.float64) target[i] = np.asarray(d[-1], dtype=np.float64) return Bunch(data=data, target=target, # last column is target value feature_names=feature_names[:-1], DESCR=descr_text) def load_sample_images(): """Load sample images for image manipulation. Loads both, ``china`` and ``flower``. Returns ------- data : Bunch Dictionary-like object with the following attributes : 'images', the two sample images, 'filenames', the file names for the images, and 'DESCR' the full description of the dataset. Examples -------- To load the data and visualize the images: >>> from sklearn.datasets import load_sample_images >>> dataset = load_sample_images() #doctest: +SKIP >>> len(dataset.images) #doctest: +SKIP 2 >>> first_img_data = dataset.images[0] #doctest: +SKIP >>> first_img_data.shape #doctest: +SKIP (427, 640, 3) >>> first_img_data.dtype #doctest: +SKIP dtype('uint8') """ # Try to import imread from scipy. We do this lazily here to prevent # this module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread except ImportError: raise ImportError("The Python Imaging Library (PIL) " "is required to load data from jpeg files") module_path = join(dirname(__file__), "images") with open(join(module_path, 'README.txt')) as f: descr = f.read() filenames = [join(module_path, filename) for filename in os.listdir(module_path) if filename.endswith(".jpg")] # Load image data for each image in the source folder. images = [imread(filename) for filename in filenames] return Bunch(images=images, filenames=filenames, DESCR=descr) def load_sample_image(image_name): """Load the numpy array of a single sample image Parameters ----------- image_name: {`china.jpg`, `flower.jpg`} The name of the sample image loaded Returns ------- img: 3D array The image as a numpy array: height x width x color Examples --------- >>> from sklearn.datasets import load_sample_image >>> china = load_sample_image('china.jpg') # doctest: +SKIP >>> china.dtype # doctest: +SKIP dtype('uint8') >>> china.shape # doctest: +SKIP (427, 640, 3) >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP >>> flower.dtype # doctest: +SKIP dtype('uint8') >>> flower.shape # doctest: +SKIP (427, 640, 3) """ images = load_sample_images() index = None for i, filename in enumerate(images.filenames): if filename.endswith(image_name): index = i break if index is None: raise AttributeError("Cannot find sample image: %s" % image_name) return images.images[index] def _pkl_filepath(*args, **kwargs): """Ensure different filenames for Python 2 and Python 3 pickles An object pickled under Python 3 cannot be loaded under Python 2. An object pickled under Python 2 can sometimes not be loaded loaded correctly under Python 3 because some Python 2 strings are decoded as Python 3 strings which can be problematic for objects that use Python 2 strings as byte buffers for numerical data instead of "real" strings. Therefore, dataset loaders in scikit-learn use different files for pickles manages by Python 2 and Python 3 in the same SCIKIT_LEARN_DATA folder so as to avoid conflicts. args[-1] is expected to be the ".pkl" filename. Under Python 3, a suffix is inserted before the extension to s _pkl_filepath('/path/to/folder', 'filename.pkl') returns: - /path/to/folder/filename.pkl under Python 2 - /path/to/folder/filename_py3.pkl under Python 3+ """ py3_suffix = kwargs.get("py3_suffix", "_py3") basename, ext = splitext(args[-1]) if sys.version_info[0] >= 3: basename += py3_suffix new_args = args[:-1] + (basename + ext,) return join(*new_args)
bsd-3-clause
tdhopper/scikit-learn
sklearn/manifold/tests/test_mds.py
324
1862
import numpy as np from numpy.testing import assert_array_almost_equal from nose.tools import assert_raises from sklearn.manifold import mds def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause