repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
emon10005/scikit-image
doc/examples/plot_medial_transform.py
14
2220
""" =========================== Medial axis skeletonization =========================== The medial axis of an object is the set of all points having more than one closest point on the object's boundary. It is often called the **topological skeleton**, because it is a 1-pixel wide skeleton of the object, with the same connectivity as the original object. Here, we use the medial axis transform to compute the width of the foreground objects. As the function ``medial_axis`` (``skimage.morphology.medial_axis``) returns the distance transform in addition to the medial axis (with the keyword argument ``return_distance=True``), it is possible to compute the distance to the background for all points of the medial axis with this function. This gives an estimate of the local width of the objects. For a skeleton with fewer branches, there exists another skeletonization algorithm in ``skimage``: ``skimage.morphology.skeletonize``, that computes a skeleton by iterative morphological thinnings. """ import numpy as np from scipy import ndimage as ndi from skimage.morphology import medial_axis import matplotlib.pyplot as plt def microstructure(l=256): """ Synthetic binary data: binary microstructure with blobs. Parameters ---------- l: int, optional linear size of the returned image """ n = 5 x, y = np.ogrid[0:l, 0:l] mask = np.zeros((l, l)) generator = np.random.RandomState(1) points = l * generator.rand(2, n**2) mask[(points[0]).astype(np.int), (points[1]).astype(np.int)] = 1 mask = ndi.gaussian_filter(mask, sigma=l/(4.*n)) return mask > mask.mean() data = microstructure(l=64) # Compute the medial axis (skeleton) and the distance transform skel, distance = medial_axis(data, return_distance=True) # Distance to the background for pixels of the skeleton dist_on_skel = distance * skel fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4)) ax1.imshow(data, cmap=plt.cm.gray, interpolation='nearest') ax1.axis('off') ax2.imshow(dist_on_skel, cmap=plt.cm.spectral, interpolation='nearest') ax2.contour(data, [0.5], colors='w') ax2.axis('off') fig.subplots_adjust(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) plt.show()
bsd-3-clause
amanzi/ats-dev
tools/meshing_ats/meshing_ats/meshing_ats.py
1
34933
"""Extrudes a 2D mesh to generate an ExodusII 3D mesh. Works with and assumes all polyhedra cells (and polygon faces). To see usage, run: ------------------------------------------------------------ python meshing_ats.py -h Example distributed with this source, to run: ------------------------------------------------------------ $> cd four-polygon-test $> python ../meshing_ats.py -n 10 -d 1 ./four_polygon.vtk $> mkdir run0 $> cd run0 $> ats --xml_file=../test1-fv-four-polygon.xml Requires building the latest version of Exodus ------------------------------------------------------------ Note that this is typically done in your standard ATS installation, assuming you have built your Amanzi TPLs with shared libraries (the default through bootstrap). In that case, simply ensure that ${AMANZI_TPLS_DIR}/SEACAS/lib is in your PYTHONPATH. """ from __future__ import print_function import sys,os import numpy as np import collections import argparse try: import exodus except ImportError: sys.path.append(os.path.join(os.environ["SEACAS_DIR"],"lib")) import exodus class SideSet(object): def __init__(self, name, setid, elem_list, side_list): assert(type(setid) == int) assert(type(elem_list) == list or type(elem_list) == np.ndarray) assert(type(side_list) == list or type(side_list) == np.ndarray) self.name = name self.setid = setid self.elem_list = elem_list self.side_list = side_list class LabeledSet(object): def __init__(self, name, setid, entity, ent_ids): assert entity in ['CELL', 'FACE', 'NODE'] assert(type(setid) == int) assert(type(ent_ids) == list or type(ent_ids) == np.ndarray) self.name = name self.setid = setid self.entity = entity self.ent_ids = np.array(ent_ids) class Mesh2D(object): def __init__(self, coords, connectivity, labeled_sets=None, check_handedness=True): """ Creates a 2D mesh from coordinates and a list cell-to-node connectivity lists. coords : numpy array of shape (NCOORDS, NDIMS) connectivity : list of lists of integer indices into coords specifying a (clockwise OR counterclockwise) ordering of the nodes around the 2D cell labeled_sets : list of LabeledSet objects """ assert type(coords) == np.ndarray assert len(coords.shape) == 2 self.dim = coords.shape[1] self.coords = coords self.conn = connectivity if labeled_sets is not None: self.labeled_sets = labeled_sets else: self.labeled_sets = [] self.validate() self.edge_counts() if check_handedness: self.check_handedness() def validate(self): assert self.coords.shape[1] == 2 or self.coords.shape[1] == 3 assert type(self.conn) is list for f in self.conn: assert type(f) is list assert len(set(f)) == len(f) for i in f: assert i < self.coords.shape[0] for ls in self.labeled_sets: if ls.entity == "NODE": size = len(self.coords) elif ls.entity == "CELL": size = len(self.conn) for i in ls.ent_ids: assert i < size return True def num_cells(self): return len(self.conn) def num_nodes(self): return self.coords.shape[0] def num_edges(self): return len(self.edges()) @staticmethod def edge_hash(i,j): return tuple(sorted((i,j))) def edges(self): return self.edge_counts().keys() def edge_counts(self): try: return self._edges except AttributeError: self._edges = collections.Counter(self.edge_hash(f[i], f[(i+1)%len(f)]) for f in self.conn for i in range(len(f))) return self._edges def check_handedness(self): for conn in self.conn: points = np.array([self.coords[c] for c in conn]) cross = 0 for i in range(len(points)): im = i - 1 ip = i + 1 if ip == len(points): ip = 0 p = points[ip] - points[i] m = points[i] - points[im] cross = cross + p[1] * m[0] - p[0] * m[1] if cross < 0: conn.reverse() def plot(self, color=None, ax=None): if color is None: import colors cm = colors.cm_mapper(0,self.num_cells()-1) colors = [cm(i) for i in range(self.num_cells())] else: colors = color verts = [[self.coords[i,0:2] for i in f] for f in self.conn] from matplotlib import collections gons = collections.PolyCollection(verts, facecolors=colors) from matplotlib import pyplot as plt if ax is None: fig,ax = plt.subplots(1,1) ax.add_collection(gons) ax.autoscale_view() @classmethod def read_VTK(cls, filename): try: return cls.read_VTK_Simplices(filename) except AssertionError: return cls.read_VTK_Unstructured(filename) @classmethod def read_VTK_Unstructured(cls, filename): with open(filename,'r') as fid: points_found = False polygons_found = False while True: line = fid.readline().decode('utf-8') if not line: # EOF break line = line.strip() if len(line) == 0: continue split = line.split() section = split[0] if section == 'POINTS': ncoords = int(split[1]) points = np.fromfile(fid, count=ncoords*3, sep=' ', dtype='d') points = points.reshape(ncoords, 3) points_found = True elif section == 'POLYGONS': ncells = int(split[1]) n_to_read = int(split[2]) gons = [] data = np.fromfile(fid, count=n_to_read, sep=' ', dtype='i') idx = 0 for i in range(ncells): n_in_gon = data[idx] gon = list(data[idx+1:idx+1+n_in_gon]) # check handedness -- need normals to point up! cross = [] for i in range(len(gon)): if i == len(gon)-1: ip = 0 ipp = 1 elif i == len(gon)-2: ip = i+1 ipp = 0 else: ip = i+1 ipp = i+2 d2 = points[gon[ipp]] - points[gon[ip]] d1 = points[gon[i]] - points[gon[ip]] cross.append(np.cross(d2, d1)) if (np.array([c[2] for c in cross]).mean() < 0): gon.reverse() gons.append(gon) idx += n_in_gon + 1 assert(idx == n_to_read) polygons_found = True if not points_found: raise RuntimeError("Unstructured VTK must contain sections 'POINTS'") if not polygons_found: raise RuntimeError("Unstructured VTK must contain sections 'POLYGONS'") return cls(points, gons) @classmethod def read_VTK_Simplices(cls, filename): """Stolen from meshio, https://github.com/nschloe/meshio/blob/master/meshio/vtk_io.py""" import vtk_io with open(filename,'r') as fid: data = vtk_io.read_buffer(fid) points = data[0] if len(data[1]) != 1: raise RuntimeError("Simplex VTK file is readable by vtk_io but not by meshing_ats. Includes: %r"%data[1].keys()) gons = [v for v in data[1].itervalues()][0] gons = gons.tolist() # check handedness for gon in gons: cross = [] for i in range(len(gon)): if i == len(gon)-1: ip = 0 ipp = 1 elif i == len(gon)-2: ip = i+1 ipp = 0 else: ip = i+1 ipp = i+2 d2 = points[gon[ipp]] - points[gon[ip]] d1 = points[gon[i]] - points[gon[ip]] cross.append(np.cross(d2, d1)) if (np.array([c[2] for c in cross]).mean() < 0): gon.reverse() return cls(points, gons) @classmethod def from_Transect(cls, x, z, width=1): """Creates a 2D surface strip mesh from transect data""" # coordinates if (type(width) is list or type(width) is np.ndarray): variable_width = True y = np.array([0,1]) else: variable_width = False y = np.array([0,width]) Xc, Yc = np.meshgrid(x, y) if variable_width: assert(Yc.shape[1] == 2) assert(len(width) == Yc.shape[0]) assert(min(width) > 0.) Yc[:,0] = -width/2. Yc[:,1] = width/2. Xc = Xc.flatten() Yc = Yc.flatten() Zc = np.concatenate([z,z]) # connectivity nsurf_cells = len(x)-1 conn = [] for i in range(nsurf_cells): conn.append([i, i+1, nsurf_cells + i + 2, nsurf_cells + i + 1]) coords = np.array([Xc, Yc, Zc]) return cls(coords.transpose(), conn) @classmethod def from_Transect_Guide(cls, x, z, guide): """Creates a 2D surface strip mesh from transect data""" assert type(guide) == np.ndarray assert guide.shape[1] == 3 # coordinates Xc = x Yc = np.zeros_like(x) Zc = z nsteps = guide.shape[0] xnew = Xc ynew = Yc znew = Zc for i in range(nsteps): xnew = xnew + guide[i][0] ynew = ynew + guide[i][1] znew = znew + guide[i][2] Xc = np.concatenate([Xc, xnew]) Yc = np.concatenate([Yc, ynew]) Zc = np.concatenate([Zc, znew]) # y = np.array([0,1,2]) # Xc, Yc = np.meshgrid(x, y) # Xc = Xc.flatten() # Yc = Yc.flatten() # Zc = np.concatenate([z,z,z]) # connectivity ns = len(x) conn = [] for j in range(nsteps): for i in range(ns-1): conn.append([j*ns + i, j*ns + i + 1, (j+1)*ns + i + 1, (j+1)*ns + i ]) coords = np.array([Xc, Yc, Zc]) return cls(coords.transpose(), conn) @classmethod def from_Transect_GuideX(cls, x, z, guide, nsteps): """Creates a 2D surface strip mesh from transect data""" assert type(guide) == np.ndarray assert guide.shape[1] == 3 # coordinates Xc = x Yc = np.zeros_like(x) Zc = z nsteps = guide.shape[0] xnew = np.zeros_like(x) ynew = np.zeros(len(x)) znew = np.zeros_like(x) xnew[:] = Xc[:] ynew[:] = Yc[:] znew[:] = Zc[:] for i in range(nsteps): print(Yc) for j in range(len(x)): xnew[j] = xnew[j] + guide[j][0] ynew[j] = ynew[j] + guide[j][1] znew[j] = znew[j] + guide[j][2] Xc = np.concatenate([Xc, xnew]) Yc = np.concatenate([Yc, ynew]) Zc = np.concatenate([Zc, znew]) # y = np.array([0,1,2]) # Xc, Yc = np.meshgrid(x, y) # Xc = Xc.flatten() # Yc = Yc.flatten() # Zc = np.concatenate([z,z,z]) # connectivity ns = len(x) conn = [] for j in range(nsteps): for i in range(ns-1): conn.append([j*ns + i, j*ns + i + 1, (j+1)*ns + i + 1, (j+1)*ns + i ]) coords = np.array([Xc, Yc, Zc]) return cls(coords.transpose(), conn) class Mesh3D(object): def __init__(self, coords, face_to_node_conn, elem_to_face_conn, side_sets=None, labeled_sets=None, material_ids=None): """ Creates a 3D mesh from coordinates and connectivity lists. coords : numpy array of shape (NCOORDS, 3) face_to_node_conn : list of lists of integer indices into coords specifying an (clockwise OR counterclockwise) ordering of the nodes around the face elem_to_face_conn : list of lists of integer indices into face_to_node_conn specifying a list of faces that make up the elem """ assert type(coords) == np.ndarray assert len(coords.shape) == 2 assert coords.shape[1] == 3 self.dim = coords.shape[1] self.coords = coords self.face_to_node_conn = face_to_node_conn self.elem_to_face_conn = elem_to_face_conn if labeled_sets is not None: self.labeled_sets = labeled_sets else: self.labeled_sets = [] if side_sets is not None: self.side_sets = side_sets else: self.side_sets = [] if material_ids is not None: self.material_id_list = collections.Counter(material_ids).keys() self.material_ids = material_ids else: self.material_id_list = [10000,] self.material_ids = [10000,]*len(self.elem_to_face_conn) self.validate() def validate(self): assert self.coords.shape[1] == 3 assert type(self.face_to_node_conn) is list for f in self.face_to_node_conn: assert type(f) is list assert len(set(f)) == len(f) for i in f: assert i < self.coords.shape[0] assert type(self.elem_to_face_conn) is list for e in self.elem_to_face_conn: assert type(e) is list assert len(set(e)) == len(e) for i in e: assert i < len(self.face_to_node_conn) for ls in self.labeled_sets: if ls.entity == "NODE": size = self.num_nodes() if ls.entity == "FACE": size = self.num_faces() elif ls.entity == "CELL": size = self.num_cells() for i in ls.ent_ids: assert i < size for ss in self.side_sets: for j,i in zip(ss.elem_list, ss.side_list): assert j < self.num_cells() assert i < len(self.elem_to_face_conn[j]) def num_cells(self): return len(self.elem_to_face_conn) def num_faces(self): return len(self.face_to_node_conn) def num_nodes(self): return self.coords.shape[0] def write_exodus(self, filename, face_block_mode="one block"): """Write the 3D mesh to ExodusII using arbitrary polyhedra spec""" # put cells in with blocks, which renumbers the cells, so we have to track sidesets. # Therefore we keep a map of old cell to new cell ordering # # also, though not required by the spec, paraview and visit # seem to crash if num_face_blocks != num_elem_blocks. So # make face blocks here too, which requires renumbering the faces. # -- first pass, form all elem blocks and make the map from old-to-new new_to_old_elems = [] elem_blks = [] for i_m,m_id in enumerate(self.material_id_list): # split out elems of this material, save new_to_old map elems_tuple = [(i,c) for (i,c) in enumerate(self.elem_to_face_conn) if self.material_ids[i] == m_id] new_to_old_elems.extend([i for (i,c) in elems_tuple]) elems = [c for (i,c) in elems_tuple] elem_blks.append(elems) old_to_new_elems = sorted([(old,i) for (i,old) in enumerate(new_to_old_elems)], lambda a,b: int.__cmp__(a[0],b[0])) # -- deal with faces, form all face blocks and make the map from old-to-new face_blks = [] if face_block_mode == "one block": # no reordering of faces needed face_blks.append(self.face_to_node_conn) elif face_block_mode == "n blocks, not duplicated": used_faces = np.zeros((len(self.face_to_node_conn),),'bool') new_to_old_faces = [] for i_m,m_id in enumerate(self.material_id_list): # split out faces of this material, save new_to_old map def used(f): result = used_faces[f] used_faces[f] = True return result elem_blk = elem_blks[i_m] faces_tuple = [(f,self.face_to_node_conn[f]) for c in elem_blk for (j,f) in enumerate(c) if not used(f)] new_to_old_faces.extend([j for (j,f) in faces_tuple]) faces = [f for (j,f) in faces_tuple] face_blks.append(faces) # get the renumbering in the elems old_to_new_faces = sorted([(old,j) for (j,old) in enumerate(new_to_old_faces)], lambda a,b: int.__cmp__(a[0],b[0])) elem_blks = [[[old_to_new_faces[f][1] for f in c] for c in elem_blk] for elem_blk in elem_blks] elif face_block_mode == "n blocks, duplicated": elem_blks_new = [] offset = 0 for i_m, m_id in enumerate(self.material_id_list): used_faces = np.zeros((len(self.face_to_node_conn),),'bool') def used(f): result = used_faces[f] used_faces[f] = True return result elem_blk = elem_blks[i_m] tuple_old_f = [(f,self.face_to_node_conn[f]) for c in elem_blk for f in c if not used(f)] tuple_new_old_f = [(new,old,f) for (new,(old,f)) in enumerate(tuple_old_f)] old_to_new_blk = np.zeros((len(self.face_to_node_conn),),'i')-1 for new,old,f in tuple_new_old_f: old_to_new_blk[old] = new + offset elem_blk_new = [[old_to_new_blk[f] for f in c] for c in elem_blk] #offset = offset + len(ftuple_new) elem_blks_new.append(elem_blk_new) face_blks.append([f for i,j,f in tuple_new_old_f]) elem_blks = elem_blks_new elif face_block_mode == "one block, repeated": # no reordering of faces needed, just repeat for eblock in elem_blks: face_blks.append(self.face_to_node_conn) else: raise RuntimeError("Invalid face_block_mode: '%s', valid='one block', 'n blocks, duplicated', 'n blocks, not duplicated'"%face_block_mode) # open the mesh file num_elems = sum(len(elem_blk) for elem_blk in elem_blks) num_faces = sum(len(face_blk) for face_blk in face_blks) ep = exodus.ex_init_params(title=filename, num_dim=3, num_nodes=self.num_nodes(), num_face=num_faces, num_face_blk=len(face_blks), num_elem=num_elems, num_elem_blk=len(elem_blks), num_side_sets=len(self.side_sets)) e = exodus.exodus(filename, mode='w', array_type='numpy', init_params=ep) # put the coordinates e.put_coord_names(['coordX', 'coordY', 'coordZ']) e.put_coords(self.coords[:,0], self.coords[:,1], self.coords[:,2]) # put the face blocks for i_blk, face_blk in enumerate(face_blks): face_raveled = [n for f in face_blk for n in f] e.put_polyhedra_face_blk(i_blk+1, len(face_blk), len(face_raveled), 0) e.put_node_count_per_face(i_blk+1, np.array([len(f) for f in face_blk])) e.put_face_node_conn(i_blk+1, np.array(face_raveled)+1) # put the elem blocks assert len(elem_blks) == len(self.material_id_list) for i_blk, (m_id, elem_blk) in enumerate(zip(self.material_id_list, elem_blks)): elems_raveled = [f for c in elem_blk for f in c] e.put_polyhedra_elem_blk(m_id, len(elem_blk), len(elems_raveled), 0) e.put_elem_blk_name(m_id, "MATERIAL_ID_%d"%m_id) e.put_face_count_per_polyhedra(m_id, np.array([len(c) for c in elem_blk])) e.put_elem_face_conn(m_id, np.array(elems_raveled)+1) # add sidesets e.put_side_set_names([ss.name for ss in self.side_sets]) for ss in self.side_sets: for elem in ss.elem_list: assert old_to_new_elems[elem][0] == elem new_elem_list = [old_to_new_elems[elem][1] for elem in ss.elem_list] e.put_side_set_params(ss.setid, len(ss.elem_list), 0) e.put_side_set(ss.setid, np.array(new_elem_list)+1, np.array(ss.side_list)+1) # finish and close e.close() @classmethod def extruded_Mesh2D(cls, mesh2D, layer_types, layer_data, ncells_per_layer, mat_ids): """ Regularly extrude a 2D mesh to make a 3D mesh. mesh2D : a Mesh2D object layer_types : either a string (type) or list of strings (types) layer_data : array of data needed (specific to the type) ncells_per_layer : either a single integer (same number of cells in all : layers) or a list of number of cells in the layer mat_ids : either a single integer (one mat_id for all layers) : or a list of integers (mat_id for each layer) : or a 2D numpy array of integers (mat_id for each layer and each column: [layer_id, surface_cell_id]) types: - 'constant' : (data=float thickness) uniform thickness - 'function' : (data=function or functor) thickness as a function : of (x,y) - 'snapped' : (data=float z coordinate) snap the layer to : provided z coordinate, telescoping as needed - 'node' : thickness provided on each node of the surface domain - 'cell' : thickness provided on each cell of the surface domain, : interpolate to nodes NOTE: dz is uniform through the layer in all but the 'snapped' case NOTE: 2D mesh is always labeled 'surface', extrusion is always downwards """ # make the data all lists # --------------------------------- def is_list(data): if type(data) is str: return False try: len(data) except TypeError: return False else: return True if is_list(layer_types): if not is_list(layer_data): layer_data = [layer_data,]*len(layer_types) else: assert len(layer_data) == len(layer_types) if not is_list(ncells_per_layer): ncells_per_layer = [ncells_per_layer,]*len(layer_types) else: assert len(ncells_per_layer) == len(layer_types) elif is_list(layer_data): layer_types = [layer_types,]*len(layer_data) if not is_list(ncells_per_layer): ncells_per_layer = [ncells_per_layer,]*len(layer_data) else: assert len(ncells_per_layer) == len(layer_data) elif is_list(ncells_per_layer): layer_type = [layer_type,]*len(ncells_per_layer) layer_data = [layer_data,]*len(ncells_per_layer) else: layer_type = [layer_type,] layer_data = [layer_data,] ncells_per_layer = [ncells_per_layer,] # helper data and functions for mapping indices from 2D to 3D # ------------------------------------------------------------------ if min(ncells_per_layer) < 0: raise RuntimeError("Invalid number of cells, negative value provided.") ncells_tall = sum(ncells_per_layer) ncells_total = ncells_tall * mesh2D.num_cells() nfaces_total = (ncells_tall+1) * mesh2D.num_cells() + ncells_tall * mesh2D.num_edges() nnodes_total = (ncells_tall+1) * mesh2D.num_nodes() np_mat_ids = np.array(mat_ids, dtype=int) if np_mat_ids.size == np.size(np_mat_ids, 0): if np_mat_ids.size == 1: np_mat_ids = np.full((len(ncells_per_layer), mesh2D.num_cells()), mat_ids[0], dtype=int) else: np_mat_ids = np.empty((len(ncells_per_layer), mesh2D.num_cells()), dtype=int) for ilay in range(len(ncells_per_layer)): np_mat_ids[ilay, :] = np.full(mesh2D.num_cells(), mat_ids[ilay], dtype=int) def col_to_id(column, z_cell): """Maps 2D cell ID and index in the vertical to a 3D cell ID""" return z_cell + column * ncells_tall def node_to_id(node, z_node): """Maps 2D node ID and index in the vertical to a 3D node ID""" return z_node + node * (ncells_tall+1) def edge_to_id(edge, z_cell): """Maps 2D edge hash and index in the vertical to a 3D face ID of a vertical face""" return (ncells_tall + 1) * mesh2D.num_cells() + z_cell + edge * ncells_tall # create coordinates # --------------------------------- coords = np.zeros((mesh2D.coords.shape[0],ncells_tall+1, 3),'d') coords[:,:,0:2] = np.expand_dims(mesh2D.coords[:,0:2],1) if mesh2D.dim == 3: coords[:,0,2] = mesh2D.coords[:,2] # else the surface is at 0 depth cell_layer_start = 0 for layer_type, layer_datum, ncells in zip(layer_types, layer_data, ncells_per_layer): if layer_type.lower() == 'constant': dz = float(layer_datum) / ncells for i in range(1,ncells+1): coords[:,cell_layer_start+i,2] = coords[:,cell_layer_start,2] - i * dz else: # allocate an array of coordinates for the bottom of the layer layer_bottom = np.zeros((mesh2D.coords.shape[0],),'d') if layer_type.lower() == 'snapped': # layer bottom is uniform layer_bottom[:] = layer_datum elif layer_type.lower() == 'function': # layer thickness is given by a function evaluation of x,y for node_col in range(mesh2D.coords.shape[0]): layer_bottom[node_col] = coords[node_col,cell_layer_start,2] - layer_datum(coords[node_col,0,0], coords[node_col,0,1]) elif layer_type.lower() == 'node': # layer bottom specifically provided through thickness layer_bottom[:] = coords[:,cell_layer_start,2] - layer_datum elif layer_type.lower() == 'cell': # interpolate cell thicknesses to node thicknesses import scipy.interpolate centroids = mesh2D.cell_centroids() interp = scipy.interpolate.interp2d(centroids[:,0], centroids[:,1], layer_datum, kind='linear') layer_bottom[:] = coords[:,cell_layer_start,2] - interp(mesh2D.coords[:,0], mesh2D.coords[:,1]) else: raise RuntimeError("Unrecognized layer_type '%s'"%layer_type) # linspace from bottom of previous layer to bottom of this layer for node_col in range(mesh2D.coords.shape[0]): coords[node_col,cell_layer_start:cell_layer_start+ncells+1,2] = np.linspace(coords[node_col,cell_layer_start,2], layer_bottom[node_col], ncells+1) cell_layer_start = cell_layer_start + ncells # create faces, face sets, cells bottom = [] surface = [] faces = [] cells = [list() for c in range(ncells_total)] # -- loop over the columns, adding the horizontal faces for col in range(mesh2D.num_cells()): nodes_2 = mesh2D.conn[col] surface.append(col_to_id(col,0)) for z_face in range(ncells_tall + 1): i_f = len(faces) f = [node_to_id(n, z_face) for n in nodes_2] if z_face != ncells_tall: cells[col_to_id(col, z_face)].append(i_f) if z_face != 0: cells[col_to_id(col, z_face-1)].append(i_f) faces.append(f) bottom.append(col_to_id(col,ncells_tall-1)) # -- loop over the columns, adding the vertical faces added = dict() vertical_side_cells = [] vertical_side_indices = [] for col in range(mesh2D.num_cells()): nodes_2 = mesh2D.conn[col] for i in range(len(nodes_2)): edge = mesh2D.edge_hash(nodes_2[i], nodes_2[(i+1)%len(nodes_2)]) try: i_e = added[edge] except KeyError: # faces not yet added to facelist i_e = len(added.keys()) added[edge] = i_e for z_face in range(ncells_tall): i_f = len(faces) assert i_f == edge_to_id(i_e, z_face) f = [node_to_id(edge[0], z_face), node_to_id(edge[1], z_face), node_to_id(edge[1], z_face+1), node_to_id(edge[0], z_face+1)] faces.append(f) face_cell = col_to_id(col, z_face) cells[face_cell].append(i_f) # check if this is an external if mesh2D._edges[edge] == 1: vertical_side_cells.append(face_cell) vertical_side_indices.append(len(cells[face_cell])-1) else: # faces already added from previous column for z_face in range(ncells_tall): i_f = edge_to_id(i_e, z_face) cells[col_to_id(col, z_face)].append(i_f) # Do some idiot checking # -- check we got the expected number of faces assert len(faces) == nfaces_total # -- check every cell is at least a tet for c in cells: assert len(c) > 4 # -- check surface sideset has the right number of entries assert len(surface) == mesh2D.num_cells() # -- check bottom sideset has the right number of entries assert len(bottom) == mesh2D.num_cells() # -- len of vertical sides sideset is number of external edges * number of cells, no pinchouts here num_sides = ncells_tall * sum(1 for e,c in mesh2D.edge_counts().iteritems() if c == 1) assert num_sides == len(vertical_side_cells) assert num_sides == len(vertical_side_indices) # make the material ids material_ids = np.zeros((len(cells),),'i') for col in range(mesh2D.num_cells()): z_cell = 0 for ilay in range(len(ncells_per_layer)): ncells = ncells_per_layer[ilay] for i in range(z_cell, z_cell+ncells): material_ids[col_to_id(col, i)] = np_mat_ids[ilay, col] z_cell = z_cell + ncells # make the side sets side_sets = [] side_sets.append(SideSet("bottom", 1, bottom, [1,]*len(bottom))) side_sets.append(SideSet("surface", 2, surface, [0,]*len(surface))) side_sets.append(SideSet("external_sides", 3, vertical_side_cells, vertical_side_indices)) # reshape coords coords = coords.reshape(nnodes_total, 3) for e,s in zip(side_sets[0].elem_list, side_sets[0].side_list): face = cells[e][s] fz_coords = np.array([coords[n] for n in faces[face]]) #print "bottom centroid = ", np.mean(fz_coords, axis=0) for e,s in zip(side_sets[1].elem_list, side_sets[1].side_list): face = cells[e][s] fz_coords = np.array([coords[n] for n in faces[face]]) #print "surface centroid = ", np.mean(fz_coords, axis=0) # instantiate the mesh return cls(coords, faces, cells, side_sets=side_sets, material_ids=material_ids) def commandline_options(): parser = argparse.ArgumentParser(description='Extrude a 2D mesh to make a 3D mesh') parser.add_argument("-n", "--num-cells", default=10, type=int, help="number of cells to extrude") parser.add_argument("-d", "--depth", default=40.0, type=float, help="depth to extrude") parser.add_argument("-o", "--outfile", default=None, type=str, help="output filename") parser.add_argument("-p", "--plot", default=False, action="store_true", help="plot the 2D mesh") parser.add_argument("infile",metavar="INFILE", type=str, help="input filename of surface mesh") options = parser.parse_args() if options.outfile is None: options.outfile = ".".join(options.infile.split(".")[:-1])+".exo" if os.path.isfile(options.outfile): print('Output file "%s" exists, cowardly not overwriting.'%options.outfile) sys.exit(1) if not os.path.isfile(options.infile): print('No input file provided') parser.print_usage() sys.exit(1) return options if __name__ == "__main__": options = commandline_options() m2 = Mesh2D.read_VTK(options.infile) if options.plot: m2.plot() m3 = Mesh3D.extruded_Mesh2D(m2, [options.depth,], [options.num_cells,], [10000,]) m3.write_exodus(options.outfile)
bsd-3-clause
dimroc/tensorflow-mnist-tutorial
lib/python3.6/site-packages/tensorflow/contrib/learn/python/learn/dataframe/tensorflow_dataframe.py
75
29377
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlowDataFrame implements convenience functions using TensorFlow.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import numpy as np from tensorflow.contrib.learn.python.learn.dataframe import dataframe as df from tensorflow.contrib.learn.python.learn.dataframe.transforms import batch from tensorflow.contrib.learn.python.learn.dataframe.transforms import csv_parser from tensorflow.contrib.learn.python.learn.dataframe.transforms import example_parser from tensorflow.contrib.learn.python.learn.dataframe.transforms import in_memory_source from tensorflow.contrib.learn.python.learn.dataframe.transforms import reader_source from tensorflow.contrib.learn.python.learn.dataframe.transforms import sparsify from tensorflow.contrib.learn.python.learn.dataframe.transforms import split_mask from tensorflow.python.client import session as sess from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import ops from tensorflow.python.ops import io_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.training import coordinator from tensorflow.python.training import queue_runner as qr def _expand_file_names(filepatterns): """Takes a list of file patterns and returns a list of resolved file names.""" if not isinstance(filepatterns, (list, tuple, set)): filepatterns = [filepatterns] filenames = set() for filepattern in filepatterns: names = set(gfile.Glob(filepattern)) filenames |= names return list(filenames) def _dtype_to_nan(dtype): if dtype is dtypes.string: return b"" elif dtype.is_integer: return np.nan elif dtype.is_floating: return np.nan elif dtype is dtypes.bool: return np.nan else: raise ValueError("Can't parse type without NaN into sparse tensor: %s" % dtype) def _get_default_value(feature_spec): if isinstance(feature_spec, parsing_ops.FixedLenFeature): return feature_spec.default_value else: return _dtype_to_nan(feature_spec.dtype) class TensorFlowDataFrame(df.DataFrame): """TensorFlowDataFrame implements convenience functions using TensorFlow.""" def run(self, num_batches=None, graph=None, session=None, start_queues=True, initialize_variables=True, **kwargs): """Builds and runs the columns of the `DataFrame` and yields batches. This is a generator that yields a dictionary mapping column names to evaluated columns. Args: num_batches: the maximum number of batches to produce. If none specified, the returned value will iterate through infinite batches. graph: the `Graph` in which the `DataFrame` should be built. session: the `Session` in which to run the columns of the `DataFrame`. start_queues: if true, queues will be started before running and halted after producting `n` batches. initialize_variables: if true, variables will be initialized. **kwargs: Additional keyword arguments e.g. `num_epochs`. Yields: A dictionary, mapping column names to the values resulting from running each column for a single batch. """ if graph is None: graph = ops.get_default_graph() with graph.as_default(): if session is None: session = sess.Session() self_built = self.build(**kwargs) keys = list(self_built.keys()) cols = list(self_built.values()) if initialize_variables: if variables.local_variables(): session.run(variables.local_variables_initializer()) if variables.global_variables(): session.run(variables.global_variables_initializer()) if start_queues: coord = coordinator.Coordinator() threads = qr.start_queue_runners(sess=session, coord=coord) i = 0 while num_batches is None or i < num_batches: i += 1 try: values = session.run(cols) yield collections.OrderedDict(zip(keys, values)) except errors.OutOfRangeError: break if start_queues: coord.request_stop() coord.join(threads) def select_rows(self, boolean_series): """Returns a `DataFrame` with only the rows indicated by `boolean_series`. Note that batches may no longer have consistent size after calling `select_rows`, so the new `DataFrame` may need to be rebatched. For example: ''' filtered_df = df.select_rows(df["country"] == "jp").batch(64) ''' Args: boolean_series: a `Series` that evaluates to a boolean `Tensor`. Returns: A new `DataFrame` with the same columns as `self`, but selecting only the rows where `boolean_series` evaluated to `True`. """ result = type(self)() for key, col in self._columns.items(): try: result[key] = col.select_rows(boolean_series) except AttributeError as e: raise NotImplementedError(( "The select_rows method is not implemented for Series type {}. " "Original error: {}").format(type(col), e)) return result def split(self, index_series, proportion, batch_size=None): """Deterministically split a `DataFrame` into two `DataFrame`s. Note this split is only as deterministic as the underlying hash function; see `tf.string_to_hash_bucket_fast`. The hash function is deterministic for a given binary, but may change occasionally. The only way to achieve an absolute guarantee that the split `DataFrame`s do not change across runs is to materialize them. Note too that the allocation of a row to one partition or the other is evaluated independently for each row, so the exact number of rows in each partition is binomially distributed. Args: index_series: a `Series` of unique strings, whose hash will determine the partitioning; or the name in this `DataFrame` of such a `Series`. (This `Series` must contain strings because TensorFlow provides hash ops only for strings, and there are no number-to-string converter ops.) proportion: The proportion of the rows to select for the 'left' partition; the remaining (1 - proportion) rows form the 'right' partition. batch_size: the batch size to use when rebatching the left and right `DataFrame`s. If None (default), the `DataFrame`s are not rebatched; thus their batches will have variable sizes, according to which rows are selected from each batch of the original `DataFrame`. Returns: Two `DataFrame`s containing the partitioned rows. """ if isinstance(index_series, str): index_series = self[index_series] left_mask, = split_mask.SplitMask(proportion)(index_series) right_mask = ~left_mask left_rows = self.select_rows(left_mask) right_rows = self.select_rows(right_mask) if batch_size: left_rows = left_rows.batch(batch_size=batch_size, shuffle=False) right_rows = right_rows.batch(batch_size=batch_size, shuffle=False) return left_rows, right_rows def split_fast(self, index_series, proportion, batch_size, base_batch_size=1000): """Deterministically split a `DataFrame` into two `DataFrame`s. Note this split is only as deterministic as the underlying hash function; see `tf.string_to_hash_bucket_fast`. The hash function is deterministic for a given binary, but may change occasionally. The only way to achieve an absolute guarantee that the split `DataFrame`s do not change across runs is to materialize them. Note too that the allocation of a row to one partition or the other is evaluated independently for each row, so the exact number of rows in each partition is binomially distributed. Args: index_series: a `Series` of unique strings, whose hash will determine the partitioning; or the name in this `DataFrame` of such a `Series`. (This `Series` must contain strings because TensorFlow provides hash ops only for strings, and there are no number-to-string converter ops.) proportion: The proportion of the rows to select for the 'left' partition; the remaining (1 - proportion) rows form the 'right' partition. batch_size: the batch size to use when rebatching the left and right `DataFrame`s. If None (default), the `DataFrame`s are not rebatched; thus their batches will have variable sizes, according to which rows are selected from each batch of the original `DataFrame`. base_batch_size: the batch size to use for materialized data, prior to the split. Returns: Two `DataFrame`s containing the partitioned rows. """ if isinstance(index_series, str): index_series = self[index_series] left_mask, = split_mask.SplitMask(proportion)(index_series) right_mask = ~left_mask self["left_mask__"] = left_mask self["right_mask__"] = right_mask # TODO(soergel): instead of base_batch_size can we just do one big batch? # avoid computing the hashes twice m = self.materialize_to_memory(batch_size=base_batch_size) left_rows_df = m.select_rows(m["left_mask__"]) right_rows_df = m.select_rows(m["right_mask__"]) del left_rows_df[["left_mask__", "right_mask__"]] del right_rows_df[["left_mask__", "right_mask__"]] # avoid recomputing the split repeatedly left_rows_df = left_rows_df.materialize_to_memory(batch_size=batch_size) right_rows_df = right_rows_df.materialize_to_memory(batch_size=batch_size) return left_rows_df, right_rows_df def run_one_batch(self): """Creates a new 'Graph` and `Session` and runs a single batch. Returns: A dictionary mapping column names to numpy arrays that contain a single batch of the `DataFrame`. """ return list(self.run(num_batches=1))[0] def run_one_epoch(self): """Creates a new 'Graph` and `Session` and runs a single epoch. Naturally this makes sense only for DataFrames that fit in memory. Returns: A dictionary mapping column names to numpy arrays that contain a single epoch of the `DataFrame`. """ # batches is a list of dicts of numpy arrays batches = [b for b in self.run(num_epochs=1)] # first invert that to make a dict of lists of numpy arrays pivoted_batches = {} for k in batches[0].keys(): pivoted_batches[k] = [] for b in batches: for k, v in b.items(): pivoted_batches[k].append(v) # then concat the arrays in each column result = {k: np.concatenate(column_batches) for k, column_batches in pivoted_batches.items()} return result def materialize_to_memory(self, batch_size): unordered_dict_of_arrays = self.run_one_epoch() # there may already be an 'index' column, in which case from_ordereddict) # below will complain because it wants to generate a new one. # for now, just remove it. # TODO(soergel): preserve index history, potentially many levels deep del unordered_dict_of_arrays["index"] # the order of the columns in this dict is arbitrary; we just need it to # remain consistent. ordered_dict_of_arrays = collections.OrderedDict(unordered_dict_of_arrays) return TensorFlowDataFrame.from_ordereddict(ordered_dict_of_arrays, batch_size=batch_size) def batch(self, batch_size, shuffle=False, num_threads=1, queue_capacity=None, min_after_dequeue=None, seed=None): """Resize the batches in the `DataFrame` to the given `batch_size`. Args: batch_size: desired batch size. shuffle: whether records should be shuffled. Defaults to true. num_threads: the number of enqueueing threads. queue_capacity: capacity of the queue that will hold new batches. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` with `batch_size` rows. """ column_names = list(self._columns.keys()) if shuffle: batcher = batch.ShuffleBatch(batch_size, output_names=column_names, num_threads=num_threads, queue_capacity=queue_capacity, min_after_dequeue=min_after_dequeue, seed=seed) else: batcher = batch.Batch(batch_size, output_names=column_names, num_threads=num_threads, queue_capacity=queue_capacity) batched_series = batcher(list(self._columns.values())) dataframe = type(self)() dataframe.assign(**(dict(zip(column_names, batched_series)))) return dataframe @classmethod def _from_csv_base(cls, filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed): """Create a `DataFrame` from CSV files. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. get_default_values: a function that produces a list of default values for each column, given the column names. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ filenames = _expand_file_names(filepatterns) if not filenames: raise ValueError("No matching file names.") if column_names is None: if not has_header: raise ValueError("If column_names is None, has_header must be true.") with gfile.GFile(filenames[0]) as f: column_names = csv.DictReader(f).fieldnames if "index" in column_names: raise ValueError( "'index' is reserved and can not be used for a column name.") default_values = get_default_values(column_names) reader_kwargs = {"skip_header_lines": (1 if has_header else 0)} index, value = reader_source.TextFileSource( filenames, reader_kwargs=reader_kwargs, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, num_threads=num_threads, seed=seed)() parser = csv_parser.CSVParser(column_names, default_values) parsed = parser(value) column_dict = parsed._asdict() column_dict["index"] = index dataframe = cls() dataframe.assign(**column_dict) return dataframe @classmethod def from_csv(cls, filepatterns, default_values, has_header=True, column_names=None, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from CSV files. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. default_values: a list of default values for each column. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ def get_default_values(column_names): # pylint: disable=unused-argument return default_values return cls._from_csv_base(filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed) @classmethod def from_csv_with_feature_spec(cls, filepatterns, feature_spec, has_header=True, column_names=None, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from CSV files, given a feature_spec. If `has_header` is false, then `column_names` must be specified. If `has_header` is true and `column_names` are specified, then `column_names` overrides the names in the header. Args: filepatterns: a list of file patterns that resolve to CSV files. feature_spec: a dict mapping column names to `FixedLenFeature` or `VarLenFeature`. has_header: whether or not the CSV files have headers. column_names: a list of names for the columns in the CSV files. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed lines. min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with examples from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ def get_default_values(column_names): return [_get_default_value(feature_spec[name]) for name in column_names] dataframe = cls._from_csv_base(filepatterns, get_default_values, has_header, column_names, num_threads, enqueue_size, batch_size, queue_capacity, min_after_dequeue, shuffle, seed) # replace the dense columns with sparse ones in place in the dataframe for name in dataframe.columns(): if name != "index" and isinstance(feature_spec[name], parsing_ops.VarLenFeature): strip_value = _get_default_value(feature_spec[name]) (dataframe[name],) = sparsify.Sparsify(strip_value)(dataframe[name]) return dataframe @classmethod def from_examples(cls, filepatterns, features, reader_cls=io_ops.TFRecordReader, num_threads=1, enqueue_size=None, batch_size=32, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None): """Create a `DataFrame` from `tensorflow.Example`s. Args: filepatterns: a list of file patterns containing `tensorflow.Example`s. features: a dict mapping feature names to `VarLenFeature` or `FixedLenFeature`. reader_cls: a subclass of `tensorflow.ReaderBase` that will be used to read the `Example`s. num_threads: the number of readers that will work in parallel. enqueue_size: block size for each read operation. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. Returns: A `DataFrame` that has columns corresponding to `features` and is filled with `Example`s from `filepatterns`. Raises: ValueError: no files match `filepatterns`. ValueError: `features` contains the reserved name 'index'. """ filenames = _expand_file_names(filepatterns) if not filenames: raise ValueError("No matching file names.") if "index" in features: raise ValueError( "'index' is reserved and can not be used for a feature name.") index, record = reader_source.ReaderSource( reader_cls, filenames, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, num_threads=num_threads, seed=seed)() parser = example_parser.ExampleParser(features) parsed = parser(record) column_dict = parsed._asdict() column_dict["index"] = index dataframe = cls() dataframe.assign(**column_dict) return dataframe @classmethod def from_pandas(cls, pandas_dataframe, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="pandas_data"): """Create a `tf.learn.DataFrame` from a `pandas.DataFrame`. Args: pandas_dataframe: `pandas.DataFrame` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given `pandas_dataframe`. """ pandas_source = in_memory_source.PandasSource( pandas_dataframe, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(pandas_source()._asdict())) return dataframe @classmethod def from_numpy(cls, numpy_array, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="numpy_data"): """Creates a `tf.learn.DataFrame` from a `numpy.ndarray`. The returned `DataFrame` contains two columns: 'index' and 'value'. The 'value' column contains a row from the array. The 'index' column contains the corresponding row number. Args: numpy_array: `numpy.ndarray` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given array. """ numpy_source = in_memory_source.NumpySource( numpy_array, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(numpy_source()._asdict())) return dataframe @classmethod def from_ordereddict(cls, ordered_dict_of_arrays, num_threads=None, enqueue_size=None, batch_size=None, queue_capacity=None, min_after_dequeue=None, shuffle=True, seed=None, data_name="numpy_data"): """Creates a `tf.learn.DataFrame` from an `OrderedDict` of `numpy.ndarray`. The returned `DataFrame` contains a column for each key of the dict plus an extra 'index' column. The 'index' column contains the row number. Each of the other columns contains a row from the corresponding array. Args: ordered_dict_of_arrays: `OrderedDict` of `numpy.ndarray` that serves as a data source. num_threads: the number of threads to use for enqueueing. enqueue_size: the number of rows to enqueue per step. batch_size: desired batch size. queue_capacity: capacity of the queue that will store parsed `Example`s min_after_dequeue: minimum number of elements that can be left by a dequeue operation. Only used if `shuffle` is true. shuffle: whether records should be shuffled. Defaults to true. seed: passed to random shuffle operations. Only used if `shuffle` is true. data_name: a scope name identifying the data. Returns: A `tf.learn.DataFrame` that contains batches drawn from the given arrays. Raises: ValueError: `ordered_dict_of_arrays` contains the reserved name 'index'. """ numpy_source = in_memory_source.OrderedDictNumpySource( ordered_dict_of_arrays, num_threads=num_threads, enqueue_size=enqueue_size, batch_size=batch_size, queue_capacity=queue_capacity, shuffle=shuffle, min_after_dequeue=min_after_dequeue, seed=seed, data_name=data_name) dataframe = cls() dataframe.assign(**(numpy_source()._asdict())) return dataframe
apache-2.0
qrqiuren/sms-tools
lectures/03-Fourier-properties/plots-code/fft-zero-phase.py
24
1140
import matplotlib.pyplot as plt import numpy as np from scipy.fftpack import fft, fftshift import sys sys.path.append('../../../software/models/') import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') N = 512 M = 401 hN = N/2 hM = (M+1)/2 start = .8*fs xw = x[start-hM:start+hM-1] * np.hamming(M) plt.figure(1, figsize=(9.5, 6.5)) plt.subplot(411) plt.plot(np.arange(-hM, hM-1), xw, lw=1.5) plt.axis([-hN, hN-1, min(xw), max(xw)]) plt.title('x (oboe-A4.wav), M = 401') fftbuffer = np.zeros(N) fftbuffer[:hM] = xw[hM-1:] fftbuffer[N-hM+1:] = xw[:hM-1] plt.subplot(412) plt.plot(np.arange(0, N), fftbuffer, lw=1.5) plt.axis([0, N, min(xw), max(xw)]) plt.title('fftbuffer: N = 512') X = fftshift(fft(fftbuffer)) mX = 20 * np.log10(abs(X)/N) pX = np.unwrap(np.angle(X)) plt.subplot(413) plt.plot(np.arange(-hN, hN), mX, 'r', lw=1.5) plt.axis([-hN,hN-1,-100,max(mX)]) plt.title('mX') plt.subplot(414) plt.plot(np.arange(-hN, hN), pX, 'c', lw=1.5) plt.axis([-hN,hN-1,min(pX),max(pX)]) plt.title('pX') plt.tight_layout() plt.savefig('fft-zero-phase.png') plt.show()
agpl-3.0
leotrs/decu
test/notsosimple_project/src/script.py
1
1196
""" testscript.py ------------- This is a test script for decu. """ from decu import Script, experiment, figure, run_parallel import numpy as np import matplotlib.pyplot as plt class TestScript(Script): @experiment(data_param='data') def exp(self, data, param, param2): """Compute x**param for each data point.""" self.log.info('Working hard for {}..'.format(TestScript.exp.run)) return np.power(data, param) + param2 @figure() def plot_result(self, data, result): """Plot results of experiment.""" plt.plot(data, result) @figure() def plot_many_results(self, data, results): """Plot results of experiment.""" plt.figure() for res in results: plt.plot(data, res) def main(self): """Run some experiments and make some figures.""" data = np.arange(5) result1 = self.exp(data, param=4, param2=10) self.plot_result(data, result1) param_list = [(data, x, y) for x, y in zip(np.arange(5), np.arange(5, 10))] result2 = run_parallel(self.exp, param_list) self.plot_many_results(data, result2, suffix='parallel')
mit
MJuddBooth/pandas
pandas/tests/reshape/test_reshape.py
1
25248
# -*- coding: utf-8 -*- # pylint: disable-msg=W0612,E1101 from collections import OrderedDict import numpy as np from numpy import nan import pytest from pandas.compat import u from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import Categorical, DataFrame, Index, Series, get_dummies from pandas.core.sparse.api import SparseArray, SparseDtype import pandas.util.testing as tm from pandas.util.testing import assert_frame_equal class TestGetDummies(object): @pytest.fixture def df(self): return DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'b', 'c'], 'C': [1, 2, 3]}) @pytest.fixture(params=['uint8', 'i8', np.float64, bool, None]) def dtype(self, request): return np.dtype(request.param) @pytest.fixture(params=['dense', 'sparse']) def sparse(self, request): # params are strings to simplify reading test results, # e.g. TestGetDummies::test_basic[uint8-sparse] instead of [uint8-True] return request.param == 'sparse' def effective_dtype(self, dtype): if dtype is None: return np.uint8 return dtype def test_raises_on_dtype_object(self, df): with pytest.raises(ValueError): get_dummies(df, dtype='object') def test_basic(self, sparse, dtype): s_list = list('abc') s_series = Series(s_list) s_series_index = Series(s_list, list('ABC')) expected = DataFrame({'a': [1, 0, 0], 'b': [0, 1, 0], 'c': [0, 0, 1]}, dtype=self.effective_dtype(dtype)) if sparse: expected = expected.apply(pd.SparseArray, fill_value=0.0) result = get_dummies(s_list, sparse=sparse, dtype=dtype) assert_frame_equal(result, expected) result = get_dummies(s_series, sparse=sparse, dtype=dtype) assert_frame_equal(result, expected) expected.index = list('ABC') result = get_dummies(s_series_index, sparse=sparse, dtype=dtype) assert_frame_equal(result, expected) def test_basic_types(self, sparse, dtype): # GH 10531 s_list = list('abc') s_series = Series(s_list) s_df = DataFrame({'a': [0, 1, 0, 1, 2], 'b': ['A', 'A', 'B', 'C', 'C'], 'c': [2, 3, 3, 3, 2]}) expected = DataFrame({'a': [1, 0, 0], 'b': [0, 1, 0], 'c': [0, 0, 1]}, dtype=self.effective_dtype(dtype), columns=list('abc')) if sparse: if is_integer_dtype(dtype): fill_value = 0 elif dtype == bool: fill_value = False else: fill_value = 0.0 expected = expected.apply(SparseArray, fill_value=fill_value) result = get_dummies(s_list, sparse=sparse, dtype=dtype) tm.assert_frame_equal(result, expected) result = get_dummies(s_series, sparse=sparse, dtype=dtype) tm.assert_frame_equal(result, expected) result = get_dummies(s_df, columns=s_df.columns, sparse=sparse, dtype=dtype) if sparse: dtype_name = 'Sparse[{}, {}]'.format( self.effective_dtype(dtype).name, fill_value ) else: dtype_name = self.effective_dtype(dtype).name expected = Series({dtype_name: 8}) tm.assert_series_equal(result.get_dtype_counts(), expected) result = get_dummies(s_df, columns=['a'], sparse=sparse, dtype=dtype) expected_counts = {'int64': 1, 'object': 1} expected_counts[dtype_name] = 3 + expected_counts.get(dtype_name, 0) expected = Series(expected_counts).sort_index() tm.assert_series_equal(result.get_dtype_counts().sort_index(), expected) def test_just_na(self, sparse): just_na_list = [np.nan] just_na_series = Series(just_na_list) just_na_series_index = Series(just_na_list, index=['A']) res_list = get_dummies(just_na_list, sparse=sparse) res_series = get_dummies(just_na_series, sparse=sparse) res_series_index = get_dummies(just_na_series_index, sparse=sparse) assert res_list.empty assert res_series.empty assert res_series_index.empty assert res_list.index.tolist() == [0] assert res_series.index.tolist() == [0] assert res_series_index.index.tolist() == ['A'] def test_include_na(self, sparse, dtype): s = ['a', 'b', np.nan] res = get_dummies(s, sparse=sparse, dtype=dtype) exp = DataFrame({'a': [1, 0, 0], 'b': [0, 1, 0]}, dtype=self.effective_dtype(dtype)) if sparse: exp = exp.apply(pd.SparseArray, fill_value=0.0) assert_frame_equal(res, exp) # Sparse dataframes do not allow nan labelled columns, see #GH8822 res_na = get_dummies(s, dummy_na=True, sparse=sparse, dtype=dtype) exp_na = DataFrame({nan: [0, 0, 1], 'a': [1, 0, 0], 'b': [0, 1, 0]}, dtype=self.effective_dtype(dtype)) exp_na = exp_na.reindex(['a', 'b', nan], axis=1) # hack (NaN handling in assert_index_equal) exp_na.columns = res_na.columns if sparse: exp_na = exp_na.apply(pd.SparseArray, fill_value=0.0) assert_frame_equal(res_na, exp_na) res_just_na = get_dummies([nan], dummy_na=True, sparse=sparse, dtype=dtype) exp_just_na = DataFrame(Series(1, index=[0]), columns=[nan], dtype=self.effective_dtype(dtype)) tm.assert_numpy_array_equal(res_just_na.values, exp_just_na.values) def test_unicode(self, sparse): # See GH 6885 - get_dummies chokes on unicode values import unicodedata e = 'e' eacute = unicodedata.lookup('LATIN SMALL LETTER E WITH ACUTE') s = [e, eacute, eacute] res = get_dummies(s, prefix='letter', sparse=sparse) exp = DataFrame({'letter_e': [1, 0, 0], u('letter_%s') % eacute: [0, 1, 1]}, dtype=np.uint8) if sparse: exp = exp.apply(pd.SparseArray, fill_value=0) assert_frame_equal(res, exp) def test_dataframe_dummies_all_obj(self, df, sparse): df = df[['A', 'B']] result = get_dummies(df, sparse=sparse) expected = DataFrame({'A_a': [1, 0, 1], 'A_b': [0, 1, 0], 'B_b': [1, 1, 0], 'B_c': [0, 0, 1]}, dtype=np.uint8) if sparse: expected = pd.DataFrame({ "A_a": pd.SparseArray([1, 0, 1], dtype='uint8'), "A_b": pd.SparseArray([0, 1, 0], dtype='uint8'), "B_b": pd.SparseArray([1, 1, 0], dtype='uint8'), "B_c": pd.SparseArray([0, 0, 1], dtype='uint8'), }) assert_frame_equal(result, expected) def test_dataframe_dummies_mix_default(self, df, sparse, dtype): result = get_dummies(df, sparse=sparse, dtype=dtype) if sparse: arr = SparseArray typ = SparseDtype(dtype, 0) else: arr = np.array typ = dtype expected = DataFrame({'C': [1, 2, 3], 'A_a': arr([1, 0, 1], dtype=typ), 'A_b': arr([0, 1, 0], dtype=typ), 'B_b': arr([1, 1, 0], dtype=typ), 'B_c': arr([0, 0, 1], dtype=typ)}) expected = expected[['C', 'A_a', 'A_b', 'B_b', 'B_c']] assert_frame_equal(result, expected) def test_dataframe_dummies_prefix_list(self, df, sparse): prefixes = ['from_A', 'from_B'] result = get_dummies(df, prefix=prefixes, sparse=sparse) expected = DataFrame({'C': [1, 2, 3], 'from_A_a': [1, 0, 1], 'from_A_b': [0, 1, 0], 'from_B_b': [1, 1, 0], 'from_B_c': [0, 0, 1]}, dtype=np.uint8) expected[['C']] = df[['C']] cols = ['from_A_a', 'from_A_b', 'from_B_b', 'from_B_c'] expected = expected[['C'] + cols] typ = pd.SparseArray if sparse else pd.Series expected[cols] = expected[cols].apply(lambda x: typ(x)) assert_frame_equal(result, expected) def test_dataframe_dummies_prefix_str(self, df, sparse): # not that you should do this... result = get_dummies(df, prefix='bad', sparse=sparse) bad_columns = ['bad_a', 'bad_b', 'bad_b', 'bad_c'] expected = DataFrame([[1, 1, 0, 1, 0], [2, 0, 1, 1, 0], [3, 1, 0, 0, 1]], columns=['C'] + bad_columns, dtype=np.uint8) expected = expected.astype({"C": np.int64}) if sparse: # work around astyping & assigning with duplicate columns # https://github.com/pandas-dev/pandas/issues/14427 expected = pd.concat([ pd.Series([1, 2, 3], name='C'), pd.Series([1, 0, 1], name='bad_a', dtype='Sparse[uint8]'), pd.Series([0, 1, 0], name='bad_b', dtype='Sparse[uint8]'), pd.Series([1, 1, 0], name='bad_b', dtype='Sparse[uint8]'), pd.Series([0, 0, 1], name='bad_c', dtype='Sparse[uint8]'), ], axis=1) assert_frame_equal(result, expected) def test_dataframe_dummies_subset(self, df, sparse): result = get_dummies(df, prefix=['from_A'], columns=['A'], sparse=sparse) expected = DataFrame({'B': ['b', 'b', 'c'], 'C': [1, 2, 3], 'from_A_a': [1, 0, 1], 'from_A_b': [0, 1, 0]}, dtype=np.uint8) expected[['C']] = df[['C']] if sparse: cols = ['from_A_a', 'from_A_b'] expected[cols] = expected[cols].apply(lambda x: pd.SparseSeries(x)) assert_frame_equal(result, expected) def test_dataframe_dummies_prefix_sep(self, df, sparse): result = get_dummies(df, prefix_sep='..', sparse=sparse) expected = DataFrame({'C': [1, 2, 3], 'A..a': [1, 0, 1], 'A..b': [0, 1, 0], 'B..b': [1, 1, 0], 'B..c': [0, 0, 1]}, dtype=np.uint8) expected[['C']] = df[['C']] expected = expected[['C', 'A..a', 'A..b', 'B..b', 'B..c']] if sparse: cols = ['A..a', 'A..b', 'B..b', 'B..c'] expected[cols] = expected[cols].apply(lambda x: pd.SparseSeries(x)) assert_frame_equal(result, expected) result = get_dummies(df, prefix_sep=['..', '__'], sparse=sparse) expected = expected.rename(columns={'B..b': 'B__b', 'B..c': 'B__c'}) assert_frame_equal(result, expected) result = get_dummies(df, prefix_sep={'A': '..', 'B': '__'}, sparse=sparse) assert_frame_equal(result, expected) def test_dataframe_dummies_prefix_bad_length(self, df, sparse): with pytest.raises(ValueError): get_dummies(df, prefix=['too few'], sparse=sparse) def test_dataframe_dummies_prefix_sep_bad_length(self, df, sparse): with pytest.raises(ValueError): get_dummies(df, prefix_sep=['bad'], sparse=sparse) def test_dataframe_dummies_prefix_dict(self, sparse): prefixes = {'A': 'from_A', 'B': 'from_B'} df = DataFrame({'C': [1, 2, 3], 'A': ['a', 'b', 'a'], 'B': ['b', 'b', 'c']}) result = get_dummies(df, prefix=prefixes, sparse=sparse) expected = DataFrame({'C': [1, 2, 3], 'from_A_a': [1, 0, 1], 'from_A_b': [0, 1, 0], 'from_B_b': [1, 1, 0], 'from_B_c': [0, 0, 1]}) columns = ['from_A_a', 'from_A_b', 'from_B_b', 'from_B_c'] expected[columns] = expected[columns].astype(np.uint8) if sparse: expected[columns] = expected[columns].apply( lambda x: pd.SparseSeries(x) ) assert_frame_equal(result, expected) def test_dataframe_dummies_with_na(self, df, sparse, dtype): df.loc[3, :] = [np.nan, np.nan, np.nan] result = get_dummies(df, dummy_na=True, sparse=sparse, dtype=dtype).sort_index(axis=1) if sparse: arr = SparseArray typ = SparseDtype(dtype, 0) else: arr = np.array typ = dtype expected = DataFrame({'C': [1, 2, 3, np.nan], 'A_a': arr([1, 0, 1, 0], dtype=typ), 'A_b': arr([0, 1, 0, 0], dtype=typ), 'A_nan': arr([0, 0, 0, 1], dtype=typ), 'B_b': arr([1, 1, 0, 0], dtype=typ), 'B_c': arr([0, 0, 1, 0], dtype=typ), 'B_nan': arr([0, 0, 0, 1], dtype=typ) }).sort_index(axis=1) assert_frame_equal(result, expected) result = get_dummies(df, dummy_na=False, sparse=sparse, dtype=dtype) expected = expected[['C', 'A_a', 'A_b', 'B_b', 'B_c']] assert_frame_equal(result, expected) def test_dataframe_dummies_with_categorical(self, df, sparse, dtype): df['cat'] = pd.Categorical(['x', 'y', 'y']) result = get_dummies(df, sparse=sparse, dtype=dtype).sort_index(axis=1) if sparse: arr = SparseArray typ = SparseDtype(dtype, 0) else: arr = np.array typ = dtype expected = DataFrame({'C': [1, 2, 3], 'A_a': arr([1, 0, 1], dtype=typ), 'A_b': arr([0, 1, 0], dtype=typ), 'B_b': arr([1, 1, 0], dtype=typ), 'B_c': arr([0, 0, 1], dtype=typ), 'cat_x': arr([1, 0, 0], dtype=typ), 'cat_y': arr([0, 1, 1], dtype=typ) }).sort_index(axis=1) assert_frame_equal(result, expected) @pytest.mark.parametrize('get_dummies_kwargs,expected', [ ({'data': pd.DataFrame(({u'ä': ['a']}))}, pd.DataFrame({u'ä_a': [1]}, dtype=np.uint8)), ({'data': pd.DataFrame({'x': [u'ä']})}, pd.DataFrame({u'x_ä': [1]}, dtype=np.uint8)), ({'data': pd.DataFrame({'x': [u'a']}), 'prefix':u'ä'}, pd.DataFrame({u'ä_a': [1]}, dtype=np.uint8)), ({'data': pd.DataFrame({'x': [u'a']}), 'prefix_sep':u'ä'}, pd.DataFrame({u'xäa': [1]}, dtype=np.uint8))]) def test_dataframe_dummies_unicode(self, get_dummies_kwargs, expected): # GH22084 pd.get_dummies incorrectly encodes unicode characters # in dataframe column names result = get_dummies(**get_dummies_kwargs) assert_frame_equal(result, expected) def test_basic_drop_first(self, sparse): # GH12402 Add a new parameter `drop_first` to avoid collinearity # Basic case s_list = list('abc') s_series = Series(s_list) s_series_index = Series(s_list, list('ABC')) expected = DataFrame({'b': [0, 1, 0], 'c': [0, 0, 1]}, dtype=np.uint8) result = get_dummies(s_list, drop_first=True, sparse=sparse) if sparse: expected = expected.apply(pd.SparseArray, fill_value=0) assert_frame_equal(result, expected) result = get_dummies(s_series, drop_first=True, sparse=sparse) assert_frame_equal(result, expected) expected.index = list('ABC') result = get_dummies(s_series_index, drop_first=True, sparse=sparse) assert_frame_equal(result, expected) def test_basic_drop_first_one_level(self, sparse): # Test the case that categorical variable only has one level. s_list = list('aaa') s_series = Series(s_list) s_series_index = Series(s_list, list('ABC')) expected = DataFrame(index=np.arange(3)) result = get_dummies(s_list, drop_first=True, sparse=sparse) assert_frame_equal(result, expected) result = get_dummies(s_series, drop_first=True, sparse=sparse) assert_frame_equal(result, expected) expected = DataFrame(index=list('ABC')) result = get_dummies(s_series_index, drop_first=True, sparse=sparse) assert_frame_equal(result, expected) def test_basic_drop_first_NA(self, sparse): # Test NA handling together with drop_first s_NA = ['a', 'b', np.nan] res = get_dummies(s_NA, drop_first=True, sparse=sparse) exp = DataFrame({'b': [0, 1, 0]}, dtype=np.uint8) if sparse: exp = exp.apply(pd.SparseArray, fill_value=0) assert_frame_equal(res, exp) res_na = get_dummies(s_NA, dummy_na=True, drop_first=True, sparse=sparse) exp_na = DataFrame( {'b': [0, 1, 0], nan: [0, 0, 1]}, dtype=np.uint8).reindex(['b', nan], axis=1) if sparse: exp_na = exp_na.apply(pd.SparseArray, fill_value=0) assert_frame_equal(res_na, exp_na) res_just_na = get_dummies([nan], dummy_na=True, drop_first=True, sparse=sparse) exp_just_na = DataFrame(index=np.arange(1)) assert_frame_equal(res_just_na, exp_just_na) def test_dataframe_dummies_drop_first(self, df, sparse): df = df[['A', 'B']] result = get_dummies(df, drop_first=True, sparse=sparse) expected = DataFrame({'A_b': [0, 1, 0], 'B_c': [0, 0, 1]}, dtype=np.uint8) if sparse: expected = expected.apply(pd.SparseArray, fill_value=0) assert_frame_equal(result, expected) def test_dataframe_dummies_drop_first_with_categorical( self, df, sparse, dtype): df['cat'] = pd.Categorical(['x', 'y', 'y']) result = get_dummies(df, drop_first=True, sparse=sparse) expected = DataFrame({'C': [1, 2, 3], 'A_b': [0, 1, 0], 'B_c': [0, 0, 1], 'cat_y': [0, 1, 1]}) cols = ['A_b', 'B_c', 'cat_y'] expected[cols] = expected[cols].astype(np.uint8) expected = expected[['C', 'A_b', 'B_c', 'cat_y']] if sparse: for col in cols: expected[col] = pd.SparseSeries(expected[col]) assert_frame_equal(result, expected) def test_dataframe_dummies_drop_first_with_na(self, df, sparse): df.loc[3, :] = [np.nan, np.nan, np.nan] result = get_dummies(df, dummy_na=True, drop_first=True, sparse=sparse).sort_index(axis=1) expected = DataFrame({'C': [1, 2, 3, np.nan], 'A_b': [0, 1, 0, 0], 'A_nan': [0, 0, 0, 1], 'B_c': [0, 0, 1, 0], 'B_nan': [0, 0, 0, 1]}) cols = ['A_b', 'A_nan', 'B_c', 'B_nan'] expected[cols] = expected[cols].astype(np.uint8) expected = expected.sort_index(axis=1) if sparse: for col in cols: expected[col] = pd.SparseSeries(expected[col]) assert_frame_equal(result, expected) result = get_dummies(df, dummy_na=False, drop_first=True, sparse=sparse) expected = expected[['C', 'A_b', 'B_c']] assert_frame_equal(result, expected) def test_int_int(self): data = Series([1, 2, 1]) result = pd.get_dummies(data) expected = DataFrame([[1, 0], [0, 1], [1, 0]], columns=[1, 2], dtype=np.uint8) tm.assert_frame_equal(result, expected) data = Series(pd.Categorical(['a', 'b', 'a'])) result = pd.get_dummies(data) expected = DataFrame([[1, 0], [0, 1], [1, 0]], columns=pd.Categorical(['a', 'b']), dtype=np.uint8) tm.assert_frame_equal(result, expected) def test_int_df(self, dtype): data = DataFrame( {'A': [1, 2, 1], 'B': pd.Categorical(['a', 'b', 'a']), 'C': [1, 2, 1], 'D': [1., 2., 1.] } ) columns = ['C', 'D', 'A_1', 'A_2', 'B_a', 'B_b'] expected = DataFrame([ [1, 1., 1, 0, 1, 0], [2, 2., 0, 1, 0, 1], [1, 1., 1, 0, 1, 0] ], columns=columns) expected[columns[2:]] = expected[columns[2:]].astype(dtype) result = pd.get_dummies(data, columns=['A', 'B'], dtype=dtype) tm.assert_frame_equal(result, expected) def test_dataframe_dummies_preserve_categorical_dtype(self, dtype): # GH13854 for ordered in [False, True]: cat = pd.Categorical(list("xy"), categories=list("xyz"), ordered=ordered) result = get_dummies(cat, dtype=dtype) data = np.array([[1, 0, 0], [0, 1, 0]], dtype=self.effective_dtype(dtype)) cols = pd.CategoricalIndex(cat.categories, categories=cat.categories, ordered=ordered) expected = DataFrame(data, columns=cols, dtype=self.effective_dtype(dtype)) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('sparse', [True, False]) def test_get_dummies_dont_sparsify_all_columns(self, sparse): # GH18914 df = DataFrame.from_dict(OrderedDict([('GDP', [1, 2]), ('Nation', ['AB', 'CD'])])) df = get_dummies(df, columns=['Nation'], sparse=sparse) df2 = df.reindex(columns=['GDP']) tm.assert_frame_equal(df[['GDP']], df2) def test_get_dummies_duplicate_columns(self, df): # GH20839 df.columns = ["A", "A", "A"] result = get_dummies(df).sort_index(axis=1) expected = DataFrame([[1, 1, 0, 1, 0], [2, 0, 1, 1, 0], [3, 1, 0, 0, 1]], columns=['A', 'A_a', 'A_b', 'A_b', 'A_c'], dtype=np.uint8).sort_index(axis=1) expected = expected.astype({"A": np.int64}) tm.assert_frame_equal(result, expected) class TestCategoricalReshape(object): def test_reshaping_multi_index_categorical(self): # construct a MultiIndexed DataFrame formerly created # via `tm.makePanel().to_frame()` cols = ['ItemA', 'ItemB', 'ItemC'] data = {c: tm.makeTimeDataFrame() for c in cols} df = pd.concat({c: data[c].stack() for c in data}, axis='columns') df.index.names = ['major', 'minor'] df['str'] = 'foo' dti = df.index.levels[0] df['category'] = df['str'].astype('category') result = df['category'].unstack() c = Categorical(['foo'] * len(dti)) expected = DataFrame({'A': c.copy(), 'B': c.copy(), 'C': c.copy(), 'D': c.copy()}, columns=Index(list('ABCD'), name='minor'), index=dti) tm.assert_frame_equal(result, expected) class TestMakeAxisDummies(object): def test_preserve_categorical_dtype(self): # GH13854 for ordered in [False, True]: cidx = pd.CategoricalIndex(list("xyz"), ordered=ordered) midx = pd.MultiIndex(levels=[['a'], cidx], codes=[[0, 0], [0, 1]]) df = DataFrame([[10, 11]], index=midx) expected = DataFrame([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], index=midx, columns=cidx) from pandas.core.reshape.reshape import make_axis_dummies result = make_axis_dummies(df) tm.assert_frame_equal(result, expected) result = make_axis_dummies(df, transform=lambda x: x) tm.assert_frame_equal(result, expected)
bsd-3-clause
dhaitz/CalibFW
plotting/modules/plot_sandbox.py
1
75936
# -*- coding: utf-8 -*- """ plotting sanbox module for merlin. This module is to be used for testing or development work. """ import plotbase import copy import plot1d import getroot import math import plotresponse import plotfractions import plot2d import plot_tagging import fit import os def recogen_alpha_ptbins(files, opt): """ recogen vs alpha as well as Z pT vs alpha in pT bins. """ zptbins = [ "1", "zpt>30 && zpt<50", "zpt>50 && zpt<70", "zpt>70 && zpt<120", "zpt>120" ] texts = [ "$\mathrm{inclusive}$", "$30 < \mathrm{Z} p_\mathrm{T} < 50\ \mathrm{GeV}$", "$50 < \mathrm{Z} p_\mathrm{T} < 70\ \mathrm{GeV}$", "$70 < \mathrm{Z} p_\mathrm{T} < 120\ \mathrm{GeV}$", "$\mathrm{Z}\ p_\mathrm{T} > 120\ \mathrm{GeV}$", ] fig, axes = plotbase.newPlot(subplots = len(zptbins * 2), subplots_X = len(zptbins)) settings = plotbase.getSettings(opt, quantity='recogen_alpha') for ax1, ax2, selection, text in zip(axes[:(len(axes)/2)], axes[(len(axes)/2):], zptbins, texts): plot1d.datamcplot("recogen_alpha", files, opt, fig_axes = [fig, ax1], changes={ 'allalpha': True, 'y': [0.99, 1.1], 'subplot': True, 'nbins': 6, 'fit': 'slope', 'x': [0, 0.3], 'text': text, 'selection': [selection], } ) plot1d.datamcplot("zpt_alpha", files, opt, fig_axes = [fig, ax2], changes={ 'allalpha': True, 'y': [0, 300], 'subplot': True, 'nbins': 6, 'x': [0, 0.3], 'text': text, 'selection': [selection], } ) plotbase.Save(fig, settings) def corrs(files, opt): fig, ax = plotbase.newPlot() settings = plotbase.getSettings(opt, quantity='recogen_genpt') for quantity, marker, color, label in zip( ['raw/recogen_genpt', 'l1/recogen_genpt', 'l1l2l3/recogen_genpt'], ['o', 'D', '-'], ['black', '#7293cb', '#e1974c'], ['raw', 'L1', 'L1L2L3'] ): plot1d.datamcplot(quantity, files, opt, fig_axes = [fig, ax], changes={ 'algorithm': "", 'markers':[marker], 'colors':[color], 'labels':[label, ""], 'correction':"", 'subplot':True, 'grid': True, 'y': [0.9, 1.5], 'legloc': 'upper right', 'x': [20, 100], 'yname': 'recogen', 'xname':'genpt' }) settings['filename'] = plotbase.getDefaultFilename('recogen', opt, settings) plotbase.Save(fig, settings) def corrbins(files, opt): fig, ax = plotbase.newPlot() settings = plotbase.getSettings(opt, quantity='recogen') for quantity, marker, color, label, n in zip( ['l1l2l3/recogen3040', 'l1l2l3/recogen5080', 'l1l2l3/recogen100'], ['o', 'f', '-'], ['black', '#7293cb', '#e1974c'], ['pT 20-40', 'pT 50-80', 'pT >100'], range(10) ): plot1d.datamcplot(quantity, files, opt, fig_axes = [fig, ax], changes={ 'algorithm': "", 'markers':[marker], 'colors':[color], 'labels':[label, ""], 'correction':"", 'subplot':True, 'grid': True, 'fitlabel_offset':-0.07*n, 'legloc': 'upper right', 'x': [0, 2], 'xname':'recogen' }) settings['filename'] = plotbase.getDefaultFilename('recogen-bins', opt, settings) plotbase.Save(fig, settings) def zmassFitted(files, opt, changes=None, settings=None): """ Plots the FITTED Z mass peak position depending on pT, NPV, y.""" quantity = "zmass" # iterate over raw vs corr electrons for mode in ['raw', 'corr']: filenames = ['work/data_ee_%s.root' % mode, 'work/mc_ee_powheg_%s.root' % mode] files, opt = plotbase.openRootFiles(filenames, opt) # iterate over quantities for xq, xbins in zip( ['npv', 'zpt', 'zy'], [ [a - 0.5 for a, b in opt.npv] + [opt.npv[-1][1] - 0.5], opt.zbins, [(i/2.)-2. for i in range(0, 9)], ] ): # iterate over Z pt (inclusive/low,medium,high) for ptregion, ptselection, ptstring in zip(["_inclusivept", "_lowpt", "_mediumpt", "_highpt"], [ "1", "zpt<60", "zpt>60 && zpt < 120", "zpt>120", ], [ "", "Z $p_\mathrm{T}$ < 60 GeV", "60 < Z $p_\mathrm{T}$ < 120 GeV", "Z $p_\mathrm{T}$ > 120 GeV", ]): # iterate over electron eta regions for etaregion, etaselection, etastring in zip( ["_all", "_EBEB", "_EBEE", "_EEEE"], [ "1", "abs(eminuseta) < 1.5 && abs(epluseta) < 1.5", "((abs(eminuseta) < 1.5 && abs(epluseta) > 1.6) || (abs(epluseta) < 1.5 && abs(eminuseta) > 1.6))", "abs(eminuseta) > 1.6 && abs(epluseta) > 1.6", ], [ "", "EB-EB", "EB-EE & EE-EB", "EE-EE", ]): # we dont need pt-binned Z pT plots: if xq == 'zpt' and ptselection is not "1": continue rootobjects, rootobjects2 = [], [] fig = plotbase.plt.figure(figsize=[7, 10]) ax = plotbase.plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax.number = 1 ax2 = plotbase.plt.subplot2grid((3, 1), (2, 0)) ax2.number = 2 fig.add_axes(ax) fig.add_axes(ax2) # print the Z pt and electron eta region on the plot ax.text(0.98, 0.98, ptstring, va='top', ha='right', transform=ax.transAxes) ax.text(0.98, 0.9, etastring, va='top', ha='right', transform=ax.transAxes) changes = { 'y': [90.8, 94.8], 'yname': r'$m^{\mathrm{Z}}$ (peak position from Breit-Wigner fit) / GeV', 'legloc': 'upper left', 'title': mode + " electrons", 'labels': ['Data', 'Powheg'], } settings = plotbase.getSettings(opt, changes=changes, quantity=quantity + "_" + xq) # iterate over files markers = ['o', 'D'] ys, yerrs, xs = [], [], [] for i, f in enumerate(files): bins = xbins y, yerr, x = [], [], [] # iterate over bins for lower, upper in zip(bins[:-1], bins[1:]): changes = { 'selection': ['(%s > %s && %s < %s) && (%s) && (%s)' % (xq, lower, xq, upper, ptselection, etaselection)], 'nbins': 40, 'folder': 'zcuts', 'x': [71, 101], } local_settings = plotbase.getSettings(opt, changes, None, quantity) # get the zmass, fit, get the xq distribution; append to lists rootobjects += [getroot.histofromfile(quantity, f, local_settings, index=i)] p0, p0err, p1, p1err, p2, p2err, chi2, ndf, conf_intervals = fit.fitline2(rootobjects[-1], breitwigner=True, limits=local_settings['x']) y += [p1] yerr += [p1err] changes['x'] = [lower, upper] local_settings = plotbase.getSettings(opt, changes, None, quantity) rootobjects2 += [getroot.histofromfile(xq, f, local_settings, index=i)] x += [rootobjects2[-1].GetMean()] # fine line to indicate bin borders ax.add_line(plotbase.matplotlib.lines.Line2D((lower, upper), (y[-1],y[-1]), color='black', alpha=0.05)) ys.append(y) yerrs.append(yerr) xs.append(x) #plot ax.errorbar(x, y, yerr, drawstyle='steps-mid', color=settings['colors'][i], fmt=markers[i], capsize=0, label=settings['labels'][i]) # format and save if xq == 'zpt': settings['xlog'] = True settings['x'] = [30, 1000] settings['xticks'] = [30, 50, 70, 100, 200, 400, 1000] plot1d.formatting(ax, settings, opt, [], []) # calculate ratio values ratio_y = [d/m for d, m in zip(ys[0], ys[1])] ratio_yerrs = [math.sqrt((derr/d)**2 + (merr/m)**2)for d, derr, m, merr in zip(ys[0], yerrs[0], ys[1], yerrs[1])] ratio_x = [0.5 * (d + m) for d, m in zip(xs[0], xs[1])] #format ratio plot ax2.errorbar(ratio_x, ratio_y, ratio_yerrs, drawstyle='steps-mid', color='black', fmt='o', capsize=0, label='ratio') ax.axhline(1.0) fig.subplots_adjust(hspace=0.1) ax.set_xticklabels([]) ax.set_xlabel("") settings['ratio'] = True settings['legloc'] = None settings['xynames'][1] = 'ratio' plot1d.formatting(ax2, settings, opt, [], []) ax2.set_ylim(0.99, 1.01) settings['filename'] = plotbase.getDefaultFilename(quantity + "_" + xq + "_" + mode + ptregion + etaregion, opt, settings) plotbase.Save(fig, settings) def zmassEBEE(files, opt): """ Plot the Z mass depending on where the electrons are reconstructed. 3 bins: EB-EB, EB-EE, EE-EE """ selections = [ 'abs(eminuseta)<1.5 && abs(epluseta)<1.5', '(abs(eminuseta)>1.5 && abs(epluseta)<1.5) || abs(eminuseta)<1.5 && abs(epluseta)>1.5', 'abs(eminuseta)>1.5 && abs(epluseta)>1.5', ] filenames = ['zmass_ebeb', 'zmass_ebee', 'zmass_eeee'] titles = ['Barrel electrons only', 'One electron barrel, one endcap', 'Endcap electrons only'] for selection, filename, title in zip(selections, filenames, titles): plot1d.plot1dratiosubplot("zmass", files, opt, changes = { 'x': [81, 101], 'selection': [selection, "hlt * (%s)" % selection], 'fit': 'bw', 'nbins': 40, 'filename': filename, 'title': title, 'folder': 'zcuts', }) def eid(files, opt): quantity = 'mvaid' """changes = { 'x': [0, 1.0001], #'log': True, 'folder': 'electron_all', 'nbins':50, 'subplot':True, 'markers': ['f'], } settings = plotbase.getSettings(opt, quantity=quantity) fig, ax = plotbase.newPlot() for c, l, s in zip(['#236BB2', '#E5AD3D'], ['fake', 'true'], ['1', 'deltar < 0.3 && deltar>0']): changes.update({ 'labels': [l], 'colors': [c], 'selection': s, }) plot1d.datamcplot(quantity, files, opt, fig_axes = [fig, ax], changes=changes) settings['filename'] = plotbase.getDefaultFilename(quantity, opt, settings) plotbase.Save(fig, settings)""" ## id vs deltar for quantity in ["mvaid", "mvatrigid", "looseid", "mediumid", "tightid"]: plot1d.datamcplot("%s_deltar" % quantity, files, opt, changes = { 'folder': 'electron_all', 'nbins': 50, 'xynames': ['$\Delta$R(reco, gen)', quantity], 'x': [0, 0.5], 'legloc': None, }) def plots_2014_07_03(files, opt): """ Plots for JEC presentation 03.07. """ #### 2D histograms for obj, x, nbins in zip(['muon', 'jet', 'electron'], [[-2.5, 2.5], [-5.3, 5.3]]*2, [400, 1000, 300]): changes = { 'out': 'out/2014_07_03', 'y': [-3.2, 3.2], } changes.update({ 'folder': obj + "_all", 'nbins': nbins, 'x':x, 'filename': obj + '_phi_eta', 'xynames': ['%s eta' % obj, '%s phi' % obj, obj + 's'], }) if obj is 'electron': filenames = ["data_ee_noc", "mc_ee_corr_test"] else: filenames = ["data_noc", "mc_rundep_noc"] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] plot2d.twoD("phi_eta", files, opt, changes = changes) if obj is not 'electron': changes.update({ 'year': 2011, 'filename': obj + '_phi_eta_2011', 'lumi': 5.1, 'energy': 7, }) filenames = ["data11_noc"] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] plot2d.twoD("phi_eta", files, opt, changes = changes) ##### PU Jet ID filenames = ["dataPUJETID", "data"] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes = { 'normalize': False, 'ratiosubplot': 'True', 'ratiosubploty': [0.8, 1.2], 'out': 'out/2014_07_03', 'x': [30, 250], 'title': 'Data', 'labels': ['PUJetID applied', 'default'], } plot1d.datamcplot('zpt', files, opt, changes=changes) for typ in ['mpf', 'ptbalance']: plotresponse.responseratio(files, opt, over='zpt', types=[typ], changes={ 'labels': ['PUJetID applied', 'default'], 'out': 'out/2014_07_03', 'x': [30, 1000], 'xlog': True, }) ##### timedep filenames = ["data", "mc_rundep"] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes = { 'out': 'out/2014_07_03', 'filename': "timedep", } timedep(files, opt, changes=changes) ###### MPF fix filenames = [ "/storage/a/dhaitz/excalibur/artus/mc_rundep_2014-06-18_10-41/out.root", "/storage/a/dhaitz/excalibur/artus/mc_rundep_2014-06-06_14-26/out.root" ] files = [getroot.openfile(f) for f in filenames] plotresponse.responseratio(files, opt, over='zpt', types=['mpf'], changes={ 'labels': ['MCRD-fixed', 'MCRD'], 'xlog': True, 'filename': "mpf_zpt-fixed", 'out': 'out/2014_07_03', 'x': [30, 1000], 'xticks': [30, 50, 70, 100, 200, 400, 1000], }) # mpf slopes filenames = ["data", "mc_rundep"] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes = { 'filename': "mpfslopes-fixed", 'labels': ['data', 'MCRD'], 'out': 'out/2014_07_03', 'allalpha': True, 'selection': 'alpha<0.3', } mpfslopes(files, opt, changes) changes.update({ 'filename': "mpfslopes", 'labels': ['data', 'MCRD'], }) filenames = [ '/storage/a/dhaitz/excalibur/artus/data_2014-04-10_21-21/out.root', '/storage/a/dhaitz/excalibur/artus/mc_rundep_2014-06-06_14-26/out.root' ] files = [getroot.openfile(f) for f in filenames] mpfslopes(files, opt, changes) # SYNC os.system("rsync ${EXCALIBUR_BASE}/out/2014_07_03 ekplx26:plots -r") def timedep(files, opt, changes = None): """ Plots for the time dependence, requested by Mikko 2014-06-25.""" settings = plotbase.getSettings(opt, quantity="response_run", changes=changes) fig, ax = plotbase.newPlot() factor = 2e4 methods = ['mpf', 'ptbalance'] labels = ['MPF', '$p_T$ balance'] for q, c, l, m, in zip(methods, settings['colors'], labels, settings['markers']): slopes, serrs, x = [], [], [] for eta1, eta2 in zip(opt.eta[:-1], opt.eta[1:]): changes = { 'alleta': True, 'allalpha': True, 'selection': 'alpha<0.3 && abs(jet1eta) > %s && abs(jet1eta) < %s' % (eta1, eta2), 'fit': 'slope', } rootobject = getroot.histofromfile("%s_run" % q, files[0], settings, changes=changes) # get fit parameters slope, serr = fit.fitline2(rootobject)[2:4] slopes += [slope*factor] serrs += [serr*factor] changes['x'] = [0, 6] x += [getroot.histofromfile("abs(jet1eta)", files[0], settings, changes=changes).GetMean()] ax.errorbar(x, slopes, serrs, drawstyle='steps-mid', color=c, fmt='o', capsize=0, label=l) #formatting stuff settings['x'] = [0, 5] plotbase.setAxisLimits(ax, settings) plotbase.labels(ax, opt, settings) plotbase.axislabels(ax, 'Leading jet $\eta$', 'Response vs run: linear fit slope (muliplied with 20 000)', settings=settings) ax.set_ylim(-0.1, 0.05) ax.set_xlim(0, 5.25) ax.grid(True) ax.set_xticks([float("%1.2f" % eta) for eta in opt.eta]) for label in ax.get_xticklabels(): label.set_rotation(45) ax.axhline(0.0, color='black', linestyle='--') settings['filename'] = quantity="response_run" plotbase.Save(fig, settings) def npuplot(files, opt): """ Plots for the JEC paper that Mikko requested 24.4.: npv and rho in bins of npu.""" settings = plotbase.getSettings(opt, quantity='npv') settings['x'] = [-0.5, 99.5] settings['nbins'] = 100 tgraphs = [] for f in files: if files.index(f) == 0: # flag bad runs in data runs = "run!=191411 && run!=198049 && run!=198050 && run!=198063 && run!=201727 && run!=203830 && run!=203832 && run!=203833 && run!=203834 && run!=203835 && run!=203987 && run!=203992 && run!=203994 && run!=204100 && run!=204101 && run!=208509" else: runs = 1 npuhisto = getroot.histofromfile('nputruth', f, settings) for i in range(100): if npuhisto.GetBinContent(i) > 0: npu = i tgraph = ROOT.TGraphErrors() for n in range(npu): changes = {'selection': 'nputruth>%s && nputruth<%s && %s' % (n-0.5, n+0.5, runs)} npv = getroot.histofromfile('npv', f, settings, changes=changes).GetMean() npverr = getroot.histofromfile('npv', f, settings, changes=changes).GetMeanError() rho = getroot.histofromfile('rho', f, settings, changes=changes).GetMean() rhoerr = getroot.histofromfile('rho', f, settings, changes=changes).GetMeanError() tgraph.SetPoint(n, npv, rho) tgraph.SetPointError(n, npverr, rhoerr) tgraphs.append(tgraph) settings['root'] = settings['root'] or settings['filename'] getroot.saveasroot(tgraphs, opt, settings) def electronupdate(files, opt): """Plots for the Zee update 26.06.2014.""" # Reco/gen electron pt vs eta filenames = ['mc_ee_raw', 'mc_ee_corr'] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes={ 'x': [0, 2.5], 'y': [0.9, 1.1], 'nbins': 25, 'labels': ['raw', 'corrected'], 'markers': ['o', '-'], 'colors': ['maroon', 'blue'], 'folder':'zcuts', 'y': [0.94, 1.06], 'title': 'Madgraph', 'xynames': [ r"$|\eta_{e^{-}} \| $", r'$\mathrm{e}^{-} p_\mathrm{T}$ Reco/Gen' ] } plot1d.datamcplot('eminuspt/geneminuspt_abs(eminuseta)', files, opt, changes=changes) changes={ 'ratiosubplot': True, 'title': 'Madgraph', 'x': [0, 1000], 'log': True, 'labels': ['raw', 'corrected'], 'folder': 'all', 'ratiosubplotfit': 'chi2', } plot1d.datamcplot('zpt', files, opt, changes=changes) #LHE information fig, ax = plotbase.newPlot() fig2, ax2 = plotbase.newPlot() changes ={ 'folder':'all', 'x': [-4, 4], 'y': [0, 200000], 'subplot': True, 'nbins':50, 'normalize': False, 'xynames': ['Z rapidity', 'Events'], 'log':True, } for q, c, m, l in zip( ['zy', 'genzy', 'lhezy'], ['black', 'lightskyblue', 'FireBrick'], ['o', 'f', '-'], ['RecoZ', 'GenZ', 'LHE-Z'], ): changes['labels'] = [l] changes['markers'] = [m] changes['colors'] = [c] plot1d.datamcplot(q, files[1:], opt, changes=changes, fig_axes=[fig, ax]) settings = plotbase.getSettings(opt, None, None, 'rapidity') settings['filename'] = 'rapidity' plotbase.Save(fig, settings) # Data-MC comparisons ###################################################### # basic quantities filenames = ['data_ee_corr', 'mc_ee_corr'] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes = { 'x': [-3, 3], 'y': [-3.2, 3.2], 'folder': 'all', 'nbins': 200, } plot2d.twoD('eminusphi_eminuseta', files, opt, changes=changes) for q, c in zip(['eminuspt', 'eminuseta', 'zy', 'zpt', 'zmass'], [ {}, {'x': [-2.5, 2.5]}, {}, {'x': [0, 500], 'log':True}, {'x': [80, 102], 'ratiosubploty':[0.9, 1.1]}, ]): changes = { 'labels': ['Data', 'Madgraph'], 'ratiosubplot': True, 'folder':'zcuts', 'nbins': 50, } changes.update(c) plot1d.datamcplot(q, files, opt, changes=changes) # scale factors changes = { 'x': [0, 100], 'y': [0, 3], 'z': [0.8, 1.2], 'folder': 'all', 'nbins': 100, 'selection': 'sfminus>0', 'colormap': 'bwr', } plot2d.twoD('sfminus_abs(eminuseta)_eminuspt', files[1:], opt, changes=changes) # zpt in rapidities for ybin in [[i/2., (i+1)/2.] for i in range(5)]: changes = { 'x': [0, 600], 'nbins': 30, 'folder':'zcuts', 'title': "%s < $y_Z$ < %s" % tuple(ybin), 'log': 'True', 'ratiosubplot': True, 'selection': 'abs(zy)>%s && abs(zy)<%s' % (ybin[0], ybin[1]), 'filename': ('zpt_rap-%s-%s' % (ybin[0], ybin[1])).replace('.', '_'), } plot1d.datamcplot('zpt', files, opt, changes=changes) # scale factor changes = { 'labels': ['Madgraph'], 'ratiosubplot': True, 'xynames':['eminuspt', r"$|\eta_{e^{-}} \| $"], 'folder':'all', 'x': [0, 60], 'y': [0, 3], 'colormap': 'bwr', 'z': [0.5, 1], } q = 'sfminus_abs(eminuseta)_eminuspt' plot2d.twoD(q, files[1:], opt, changes=changes) ############## # Plot for ID acceptance fig, ax = plotbase.newPlot() changes ={ 'folder':'all', 'x': [0, 150], 'y': [0, 1], 'subplot': True, 'normalize': False, 'legloc': 'lower right', 'xynames': ['eminuspt', 'Acceptance'] } filenames = ['mc_ee_corr_noid'] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] for q, c, m, l in zip( ['eminusidtight', 'eminusidmedium', 'eminusidloose', 'eminusidveto', 'eminusid'], ['lightskyblue', 'FireBrick', 'green', 'black', 'blue'], ['f', '_', '-', "o", "*"], ['Tight ID', 'Medium ID', 'Loose ID', "Veto ID", "MVA ID"], ): changes['labels'] = [l] changes['markers'] = [m] changes['colors'] = [c] plot1d.datamcplot("%s_eminuspt" % q, files, opt, changes=changes, fig_axes=[fig, ax]) settings = plotbase.getSettings(opt, None, None, 'id') settings['filename'] = 'id' settings['title'] = 'MC' plotbase.Save(fig, settings) def mpfslopes(files, opt, changes=None): """ Plot the slope of a linear fit on MPF vs NPV, in Z pT bins.""" quantity="mpf_npv" settings = plotbase.getSettings(opt, quantity=quantity, changes=changes) settings['special_binning'] = True print opt.zbins fig, ax = plotbase.newPlot() for f, c, l, m, in zip(files, settings['colors'], settings['labels'], settings['markers']): slopes, serrs, x = [], [], [] # iterate over Z pT bins for ptlow, pthigh in zip(opt.zbins[:-1], opt.zbins[1:]): changes = {'selection':'zpt>%s && zpt<%s' % (ptlow, pthigh)} rootobject = getroot.histofromfile(quantity, f, settings, changes=changes) # get fit parameters and mean Z pT; append to lists slope, serr = fit.fitline2(rootobject)[2:4] slopes += [slope] serrs += [serr] x += [getroot.histofromfile("zpt", f, settings, changes=changes).GetMean()] ax.errorbar(x, slopes, serrs, drawstyle='steps-mid', color=c, fmt='o', capsize=0, label=l) #formatting stuff settings['x'] = [30, 100] plotbase.setAxisLimits(ax, settings) plotbase.labels(ax, opt, settings) ax.set_xscale('log') settings['xticks'] = opt.zbins plotbase.axislabels(ax, 'zpt', 'slope from fit on MPF vs NPV', settings=settings) ax.set_ylim(-0.002, 0.002) ax.grid(True) ax.axhline(0.0, color='black', linestyle='--') plotbase.Save(fig, settings) def pileup(files, opt): for ptlow, pthigh in zip(opt.zbins[:-1], opt.zbins[1:]): plotresponse.responseratio(files, opt, over='npv', types=['mpf'], changes={ 'allalpha':True, 'selection':'alpha<0.3 && zpt>%s && zpt<%s' % (ptlow, pthigh), 'filename': "mpf_npv_%s-%s" % (ptlow, pthigh) } ) def emucomparison(files, opt): values = [] valueerrs = [] for filenames in [['data', 'mc'], ['data_ee', 'mc_ee']]: files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] for quantity in ['mpf', 'ptbalance']: settings = plotbase.getSettings(opt, None, None, quantity) settings['nbins'] = 40 settings['correction'] = 'L1L2L3' if 'ee' in filenames[0]: if settings['selection']: settings['selection'] = 'abs(epluseta<1.0) && abs(eminuseta)<1.0 && %s' % settings['selection'] else: settings['selection'] = 'abs(epluseta<1.0) && abs(eminuseta)<1.0' datamc = [] rootobjects = [] fitvalues = [] for f in files: rootobjects += [getroot.histofromfile(quantity, f, settings)] p0, p0err, p1, p1err, p2, p2err, chi2, ndf, conf_intervals = fit.fitline2(rootobjects[-1], gauss=True, limits=[0, 2]) fitvalues += [p1, p1err] ratio = fitvalues[0] / fitvalues[2] ratioerr = math.sqrt(fitvalues[1] ** 2 + fitvalues[3] ** 2) values.append(ratio) valueerrs.append(ratioerr) fig, ax = plotbase.newPlot() ax.errorbar(range(4), values, valueerrs, drawstyle='steps-mid', color='black', fmt='o', capsize=0,) ax.set_xticks([0, 1, 2, 3]) ax.set_xticklabels(['Zmm\nMPF', 'Zmm\npT balance', 'Zee\nMPF', 'Zee\npT balance']) ax.set_xlim(-0.5, 3.5) ax.set_ylim(0.96, 1.001) ax.axhline(1.0, color='black', linestyle=':') ax.set_ylabel('Jet response Data/MC ratio', ha="right", x=1) plotbase.Save(fig, settings) def electrons(files, opt): """ Standard set of plots for the dielectron analysis. """ filenames = ['data_ee', 'mc_ee'] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] base_changes = { 'out': 'out/ee2014', 'folder': 'zcuts', # no additional restrictions on jets 'normalize': False, # no normalizing to check if the lumi reweighting works 'factor': 1., # on the fly lumi reweighting 'efficiency': 1., # no trigger reweighting for electrons 'ratiosubplot': True, } # zmass with fit changes = { 'legloc': 'center right', 'nbins': 50, 'fit': 'gauss' } changes.update(base_changes) plot1d.datamcplot('zmass', files, opt, changes=changes) #electron quantities for charge in ['plus', 'minus']: changes = { 'x': [0, 150], 'nbins': 40, } changes.update(base_changes) plot1d.datamcplot('e%spt' % charge, files, opt, changes=changes) changes['x'] = [-2.5, 2.5] plot1d.datamcplot('e%seta' % charge, files, opt, changes=changes) changes['x'] = None plot1d.datamcplot('e%sphi' % charge, files, opt, changes=changes) changes['legloc'] = 'center right' changes['filename'] = 'zmass_barrel' changes['selection'] = 'abs(epluseta)<1.0 && abs(eminuseta)<1.0' changes['title'] = '|eta(e)| < 1.0' changes['fit'] = 'gauss' plot1d.datamcplot('zmass', files, opt, changes=changes) changes['filename'] = 'zmass_endcap' changes['selection'] = 'abs(epluseta)>1.0 && abs(eminuseta)>1.0' changes['title'] = '|eta(e)| > 1.0' changes['fit'] = 'gauss' plot1d.datamcplot('zmass', files, opt, changes=changes) #electron quantities for charge in ['plus', 'minus']: changes = { 'x': [0, 150], 'nbins': 40, } changes.update(base_changes) plot1d.datamcplot('e%spt' % charge, files, opt, changes=changes) changes['x'] = [-2.5, 2.5] plot1d.datamcplot('e%seta' % charge, files, opt, changes=changes) changes['x'] = None plot1d.datamcplot('e%sphi' % charge, files, opt, changes=changes) # Z pT in rapidity bins rapbins = ['abs(zy)<1', 'abs(zy)>1 && abs(zy)<2', 'abs(zy)>2 && abs(zy)<3'] raplabels = ['|Y(Z)|<1', '1<|Y(Z)|<2', '2<|Y(Z)|<3'] rapname = ['0zy1', '1zy2', '2zy3'] for rbin, rlabel, rname in zip(rapbins, raplabels, rapname): changes = { 'selection': rbin, 'filename': 'zpt-%s' % rname, 'x': [30, 750], 'log': True, 'title': rlabel, 'nbins': 40, } changes.update(base_changes) plot1d.datamcplot('zpt', files, opt, changes=changes) #electron quantities for charge in ['plus', 'minus']: changes = { 'x': [0, 150], 'nbins': 40, } changes.update(base_changes) plot1d.datamcplot('e%spt' % charge, files, opt, changes=changes) changes['x'] = [-2.5, 2.5] plot1d.datamcplot('e%seta' % charge, files, opt, changes=changes) changes['x'] = None plot1d.datamcplot('e%sphi' % charge, files, opt, changes=changes) # npv changes = { 'folder': 'all', } changes.update(base_changes) changes['folder'] = 'all' plot1d.datamcplot('npv', files, opt, changes=changes) changes['noweighting'] = True changes['factor'] = 3503.71 / 30459503 * 1000 changes['filename'] = 'npv_noweights' plot1d.datamcplot('npv', files, opt, changes=changes) changes['noweighting'] = True changes['factor'] = 3503.71 / 30459503 * 1000 changes['filename'] = 'npv_noweights' plot1d.datamcplot('npv', files, opt, changes=changes) # z pt and rapidity changes = { 'nbins': 40, } changes.update(base_changes) plot1d.datamcplot('zy', files, opt, changes=changes) plot1d.datamcplot('zeta', files, opt, changes=changes) changes['x'] = [30, 750] changes['log'] = True plot1d.datamcplot('zpt', files, opt, changes=changes) #powheg comparison filenames = ['data_ee', 'mc_ee', 'mc_ee_powheg'] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes = { 'log': True, 'x': [30, 750], 'nbins': 40, 'filename': 'zpt_mad-pow', 'labels': ['Data', 'Madgraph', 'Powheg'], } changes.update(base_changes) plot1d.datamcplot('zpt', files, opt, changes=changes) changes = { 'nbins': 40, 'filename': 'zmass_mad-pow', 'labels': ['Data', 'Madgraph', 'Powheg'], } changes.update(base_changes) plot1d.datamcplot('zmass', files, opt, changes=changes) files = files[::2] filenames = filenames[::2] changes = { 'log':True, 'x': [30, 750], 'nbins': 40, 'filename': 'zpt_pow', 'labels':['Data', 'Powheg'], } changes.update(base_changes) plot1d.Datamcplot('zpt', files, opt, changes=changes) #backgrounds filenames = ['Data_ee', 'mc_ee', 'background_ee'] files = [getroot.openfile("%s/work/%s.root" % (plotbase.os.environ['EXCALIBUR_BASE'], f), opt.verbose) for f in filenames] changes = { 'log': True, 'x': [30, 750], 'filename': 'zpt_backgrounds', 'labels': ['Data', 'MC', 'Backgrounds'], 'markers': ['o', 'f', 'f'], 'stacked': True, 'ratiosubplot': False, } changes.update(base_changes) changes['ratiosubplot'] = False plot1d.datamcplot('zpt', files, opt, changes=changes) changes.pop('x', None) changes['filename'] = 'zmass_backgrounds' changes['log'] = False changes['ratiosubplot'] = False plot1d.datamcplot('zmass', files, opt, changes=changes) # sync the plots import subprocess subprocess.call(['rsync out/ee2014 dhaitz@ekplx26:plots/ -u -r --progress'], shell=True) """ merlin 2D_zmass_zpt --files $DATAEE $ARGS -x 0 50 --nbins 100 -y 80 100 -o $OUT merlin eemass -o $OUT --files $DATAEE $ARGS --nbins 100 -x 0 120 -C lightskyblue -m f --folder all merlin eemass -o $OUT --files $DATAEE $ARGS --nbins 100 -x 0 15 --filename eemass_low -C lightskyblue -m f --folder all merlin 2D_zpt_zy -o $OUT --files $DATAEE $ARGS -y 0 100 --nbins 100 """ def an(files, opt): """ Plots for the 2014 Z->mumu JEC AN.""" """ #MET for quantity in ['METpt', 'METphi']: plot1d.datamcplot(quantity, files, opt, changes = {'title': 'CMS preliminary'}) plot1d.datamcplot("npv", files, opt, changes = {'folder': 'all', 'title': 'CMS preliminary'}) for n in ['1', '2']: for quantity in ['pt', 'eta', 'phi']: plot1d.datamcplot('mu%s%s' % (n, quantity), files, opt, changes = {'title': 'CMS preliminary'}) if n is '2' and quantity is 'eta': plot1d.datamcplot('jet%s%s' % (n, quantity), files, opt, changes = {'nbins': 10, 'correction': 'L1L2L3', 'title': 'CMS preliminary'}) else: plot1d.datamcplot('jet%s%s' % (n, quantity), files, opt, changes = {'correction': 'L1L2L3', 'title': 'CMS preliminary'}) for quantity in ['zpt', 'zeta', 'zy', 'zphi', 'zmass']: plot1d.datamcplot(quantity, files, opt, changes = {'title': 'CMS preliminary'}) #response stuff plotresponse.responseratio(files, opt, over='zpt', types=['mpf'], changes={'y': [0.98, 1.03, 0.96, 1.03], 'x': [0, 400, 0, 400]}) plotresponse.responseratio(files, opt, over='jet1abseta', types=['mpf'], changes={'y': [0.95, 1.1, 0.93, 1.1]}) plotresponse.responseratio(files, opt, over='npv', types=['mpf'], changes={'y': [0.95, 1.05, 0.92, 1.03], 'x': [0, 35, 0, 35]}) plotresponse.responseratio(files, opt, over='zpt', types=['ptbalance'], changes={'y': [0.93, 1.01, 0.96, 1.03], 'x': [0, 400, 0, 400]}) plotresponse.responseratio(files, opt, over='jet1abseta', types=['ptbalance'], changes={'y': [0.91, 1.01, 0.93, 1.1]}) plotresponse.responseratio(files, opt, over='npv', types=['ptbalance'], changes={'y': [0.91, 1.01, 0.92, 1.03], 'x': [0, 35, 0, 35]}) """ for q in ['mpf', 'ptbalance']: plot1d.datamcplot(q, files, opt, changes={'correction': 'L1L2L3', 'legloc': 'center right', 'nbins': 100, 'fit': 'gauss'}) plotresponse.extrapol(files, opt, changes={'save_individually': True, 'correction': 'L1L2L3'}) """ plotfractions.fractions(files, opt, over='zpt', changes={'x': [0, 400], 'title': 'CMS preliminary'}) plotfractions.fractions(files, opt, over='jet1abseta', changes = {'title': 'CMS preliminary'}) plotfractions.fractions(files, opt, over='npv', changes = {'title': 'CMS preliminary'}) for changes in [{'rebin':10, 'title':'|$\eta^{\mathrm{jet}}$|<1.3'}, {'alleta':True, 'rebin':10, 'selection':'jet1abseta>2.5 && jet1abseta<2.964', 'title':'2.5<|$\eta^{\mathrm{jet}}$|<2.964'}]: if 'alleta' in changes: opt.out += '/ECOT' opt.user_options['out'] += '/ECOT' plotfractions.fractions_run(files, opt, diff=True, response=True, changes=changes, nbr=6) plotfractions.fractions_run(files, opt, diff=False, response=True, changes=changes, nbr=6) plotfractions.fractions_run(files, opt, diff=True, response=False, changes=changes, nbr=6) plotresponse.response_run(files, opt, changes=changes) opt.out = opt.out[:-5] opt.user_options['out'] = opt.user_options['out'][:-5] else: plotfractions.fractions_run(files, opt, diff=True, response=True, changes=changes) plotfractions.fractions_run(files, opt, diff=False, response=True, changes=changes) plotfractions.fractions_run(files, opt, diff=True, response=False, changes=changes) plotresponse.response_run(files, opt, changes=changes) changes['y'] = [0.84, 1.2] plot2d.twoD("qgtag_btag", files, opt, changes = {'title': 'CMS Preliminary', 'nbins':50} ) plot_tagging.tagging_response(files, opt) plot_tagging.tagging_response_corrected(files, opt) """ ## MCONLY if len(files) > 1: files = files[1:] """ # PF composition as function of mc flavour flavour_comp(files, opt, changes={'title': 'CMS Simulation','mconly':True}) # response vs flavour for var in [True, False]: plotresponse.response_physflavour(files, opt, changes={'title': 'CMS Simulation','mconly':True}, add_neutrinopt=var, restrict_neutrals=var, extrapolation=var) plotfractions.flavour_composition(files, opt, changes={'title': 'CMS Simulation','mconly':True}) plotfractions.flavour_composition_eta(files, opt, changes={'title': 'CMS Simulation','mconly':True, 'selection': 'zpt>95 && zpt<110'}) changes = {'cutlabel' : 'ptetaalpha', 'labels' : ['Pythia 6 Tune Z2*', 'Herwig++ Tune EE3C'], 'y' : [0.98, 1.05], 'markers' : ['o', 'd'], 'colors' : ['red', 'blue'], 'title' : 'CMS Simulation', 'mconly' : True, 'legloc' : 'lower left', 'filename': 'recogen_physflavour_pythia-herwig'} files += [getroot.openfile("/storage/a/dhaitz/excalibur/work/mc_herwig/out/closure.root")] plot1d.datamcplot("recogen_physflavour", files, opt, changes=changes) """ def eleven(files, opt): """ Summary of the plots for the response studies with 2011 rereco. """ runrange = [160000, 183000] plot1d.datamcplot('npv', files, opt, changes={'rebin': 1}) plot1d.datamcplot('zmass', files, opt, changes={'fit': 'vertical', 'legloc': 'center right'}) plotresponse.extrapol(files, opt) plotresponse.responseratio(files, opt, over='zpt', types=['mpf'], changes={'y': [0.98, 1.03, 0.96, 1.03], 'uncertaintyband': True, 'x': [0, 400, 0, 400]}) plotresponse.responseratio(files, opt, over='jet1abseta', types=['mpf'], changes={'y': [0.95, 1.1, 0.93, 1.1], 'uncertaintyband': True}) plotresponse.responseratio(files, opt, over='npv', types=['mpf'], changes={'y': [0.95, 1.05, 0.92, 1.03], 'uncertaintyband': True, 'x': [0, 18, 0, 18]}) plotresponse.responseratio(files, opt, over='zpt', types=['ptbalance'], changes={'y': [0.93, 1.01, 0.96, 1.03], 'x': [0, 400, 0, 400], 'uncertaintyband': True}) plotresponse.responseratio(files, opt, over='jet1abseta', types=['ptbalance'], changes={'y': [0.91, 1.01, 0.93, 1.1], 'uncertaintyband': True}) plotresponse.responseratio(files, opt, over='npv', types=['ptbalance'], changes={'y': [0.91, 1.01, 0.92, 1.03], 'x': [0, 18, 0, 18], 'uncertaintyband': True}) plot1d.datamcplot('npv_run', files, opt, changes={'x': runrange, 'y': [0, 15], 'run': True, 'fit': True}) plotfractions.fractions(files, opt, over='zpt', changes={'x': [0, 400]}) plotfractions.fractions(files, opt, over='jet1abseta') plotfractions.fractions(files, opt, over='npv', changes={'x': [-0.5, 24.5]}) for changes in [{'x': runrange, 'rebin':10, 'title':'|$\eta^{\mathrm{jet}}$|<1.3'}, {'x': runrange, 'alleta':True, 'rebin':10, 'selection':'jet1abseta>2.5 && jet1abseta<2.964', 'title':'2.5<|$\eta^{\mathrm{jet}}$|<2.964'}]: if 'alleta' in changes: opt.out += '/ECOT' opt.user_options['out'] += '/ECOT' plotfractions.fractions_run(files, opt, diff=True, response=True, changes=changes, nbr=6) plotfractions.fractions_run(files, opt, diff=False, response=True, changes=changes, nbr=6) plotfractions.fractions_run(files, opt, diff=True, response=False, changes=changes, nbr=6) else: plotfractions.fractions_run(files, opt, diff=True, response=True, changes=changes) plotfractions.fractions_run(files, opt, diff=False, response=True, changes=changes) plotfractions.fractions_run(files, opt, diff=True, response=False, changes=changes) changes['y'] = [0.84, 1.2] plotresponse.response_run(files, opt, changes=changes) def rootfile(files, opt): """Function for the rootfile sent to the JEC group in early August 2013.""" list_of_quantities = ['ptbalance_alpha', 'mpf_alpha', 'ptbalance', 'mpf', 'zpt', 'npv', 'zmass', 'zpt_alpha', 'npv_alpha', 'ptbalance_zpt', 'mpf_zpt', 'ptbalance_npv', 'mpf_npv', ] for muon in [["zmumu", "1"], ["zmumu_muoncuts", "(mupluspt>25 && muminuspt>25 && abs(mupluseta)<1.0 && abs(muminuseta)<1.0)"]]: for alpha in [[0, "alpha<0.2", "alpha0_2"], [1, "alpha<0.3", "alpha0_3"], [1, "alpha<0.4", "alpha0_4"]]: for quantity in list_of_quantities: changes = {'rebin': 1, 'out': 'out/root/', 'allalpha': True, 'root': "__".join([quantity, alpha[2]]), 'filename': muon[0], 'selection': "&&".join([alpha[1], muon[1]]), } if ("_zpt" in quantity) or ("_npv" in quantity): changes['special_binning'] = True if "alpha" in quantity: changes['rebin'] = 10 plot1d.datamcplot(quantity, files, opt, changes=changes) changes['ratio'] = True changes['labels'] = ['ratio'] plot1d.datamcplot(quantity, files, opt, changes=changes) def ineff(files, opt): settings = plotbase.getSettings(opt, changes=None, settings=None, quantity="flavour_zpt") fig, ax = plotbase.newPlot() labels = ["no matching partons", "two matching partons"] colors = ['red', 'blue'] markers = ['o', 'd'] changes = {'subplot': True, 'lumi': 0, 'xynames': ['zpt', 'physflavourfrac'], 'legloc': 'upper left', } for n, l, c, m in zip([0, 2], labels, colors, markers): quantity = "(nmatchingpartons3==%s)_zpt" % n changes['labels'] = [l] changes['colors'] = c changes['markers'] = m plot1d.datamcplot(quantity, files, opt, fig_axes=(fig, ax), changes=changes, settings=settings) settings['filename'] = plotbase.getDefaultFilename("physflavourfrac_zpt", opt, settings) plotbase.Save(fig, settings['filename'], opt) def flav(files, opt): etabins = [0, 1.3, 2.5, 3, 3.2, 5.2] etastrings = ['0-1_3', '1_3-2_5', '2_5-3', '3-3_2', '3_2-5_2'] flavourdefs = ["algoflavour", "physflavour"] flavourdefinitions = ["algorithmic", "physics"] flist = ["(flavour>0&&flavour<4)", "(flavour==1)", "(flavour==2)", "(flavour==3)", "(flavour==4)", "(flavour==5)", "(flavour==21)", "(flavour==0)"] q_names = ['uds', 'u', 'd', 's', 'c', 'b', 'gluon', 'unmatched'] changes = {} ############### FLAVOUR NOT 0!!!!! # barrel: """changes['rebin'] = 1 changes['filename']="flavour" changes['filename']="flavour" for f_id, quantity in zip(['uds','c','b','gluon'], flist): changes['root']=f_id plot1d.datamcplot("%s_zpt" % quantity, files, opt, changes=changes) """ for flavourdef, flavourdefinition in zip(flavourdefs, flavourdefinitions): # iterate over eta bins: for filename, selection in zip(etastrings, getroot.etacuts(etabins)): changes['filename'] = "_".join([filename, flavourdefinition]) changes['alleta'] = True changes['selection'] = "%s && %s" % (selection, "alpha<0.2") changes['rebin'] = 1 for f_id, quantity in zip(q_names, flist): changes['root'] = f_id plot1d.datamcplot("%s_zpt" % quantity.replace("flavour", flavourdef), files, opt, changes=changes) def gif(files, opt): local_opt = copy.deepcopy(opt) runlist = listofruns.runlist[::10] for run, number in zip(runlist, range(len(runlist))): local_opt.lumi = (run - 190456) * 19500 / (209465 - 190456) print plotbase.plot1d.datamcplot('balresp', files, local_opt, changes={'var': 'var_RunRange_0to%s' % run}, filename="%03d" % number) def closure(files, opt): def divide((a, a_err), (b, b_err)): if (b != 0.0): R = a / b else: R = 0 Rerr = R * math.sqrt((a_err / a) ** 2 + (b_err / b) ** 2) return R, Rerr def multiply((a, a_err), (b, b_err)): R = a * b Rerr = R * math.sqrt((a_err / a) ** 2 + (b_err / b) ** 2) return R, Rerr changes = {} changes = plotbase.getchanges(opt, changes) #get extrapol factors with alpha 035 #changes['var']='var_CutSecondLeadingToZPt_0_4' #changes['correction']='L1L2L3' balresp = (getroot.getobjectfromnick('balresp', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('balresp', files[0], changes, rebin=1).GetMeanError()) mpfresp = (getroot.getobjectfromnick('mpfresp', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('mpfresp', files[0], changes, rebin=1).GetMeanError()) genbal = (getroot.getobjectfromnick('genbal', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('genbal', files[0], changes, rebin=1).GetMeanError()) intercept, ierr, slope, serr, chi2, ndf, conf_intervals = getroot.fitline2(getroot.getobjectfromnick('ptbalance_alpha', files[0], changes, rebin=1)) balresp_extrapol = (intercept, conf_intervals[0]) extrapol_reco_factor = divide(balresp_extrapol, balresp) intercept2, ierr2, slope2, serr2, chi22, ndf2, conf_intervals2 = getroot.fitline2(getroot.getobjectfromnick('genbalance_genalpha', files[0], changes, rebin=1)) genbal_extrapol = (intercept2, conf_intervals2[0]) extrapol_gen_factor = divide(genbal_extrapol, genbal) intercept3, ierr3, slope3, serr3, chi23, ndf3, conf_intervals3 = getroot.fitline2(getroot.getobjectfromnick('mpf_alpha', files[0], changes, rebin=1)) mpf_extrapol = (intercept3, conf_intervals3[0]) extrapol_mpf_factor = divide(mpf_extrapol, mpfresp) #del changes['var'] #del changes['correction'] #other quantities with alpha 02 recogen = (getroot.getobjectfromnick('recogen', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('recogen', files[0], changes, rebin=1).GetMeanError()) zresp = (getroot.getobjectfromnick('zresp', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('zresp', files[0], changes, rebin=1).GetMeanError()) balresp = (getroot.getobjectfromnick('balresp', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('balresp', files[0], changes, rebin=1).GetMeanError()) mpfresp = (getroot.getobjectfromnick('mpfresp', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('mpfresp', files[0], changes, rebin=1).GetMeanError()) mpfresp_raw = (getroot.getobjectfromnick('mpfresp-raw', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('mpfresp-raw', files[0], changes, rebin=1).GetMeanError()) genbal = (getroot.getobjectfromnick('genbal', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('genbal', files[0], changes, rebin=1).GetMeanError()) balparton = (getroot.getobjectfromnick('balparton', files[0], changes, rebin=1).GetMean(), getroot.getobjectfromnick('balparton', files[0], changes, rebin=1).GetMeanError()) partoncorr = divide(balparton, genbal) format = "%1.4f" print changes print "" print (r"balresp reco %s +- %s" % (format, format)) % balresp print (r"mpf %s +- %s" % (format, format)) % mpfresp print (r"balparton %s +- %s" % (format, format)) % balparton print (r"zresp %s +- %s" % (format, format)) % zresp print (r"recogen %s +- %s" % (format, format)) % recogen print (r"extrapolReco_factor %s +- %s" % (format, format)) % extrapol_reco_factor print (r"extrapolGen_factor %s +- %s" % (format, format)) % extrapol_gen_factor print (r"extrapolMPF_factor %s +- %s" % (format, format)) % extrapol_mpf_factor print (r"parton/genjet %s +- %s" % (format, format)) % divide(balparton, genbal) print "" print (r"pTgenjet / pTgenZ %s +- %s" % (format, format)) % genbal genbal = multiply(genbal, extrapol_gen_factor) print (r"* gen Level extrapolation %s +- %s" % (format, format)) % genbal #genbal = multiply(genbal, partoncorr) #print (r"* pTparton/pTgenjet correction %s +- %s" % (format, format) ) % genbal #genbal = divide(genbal, balparton) #print (r"* pTparton/pTZ correction %s +- %s" % (format, format) ) % genbal reco_bal = divide(multiply(genbal, recogen), zresp) print (r"* GenToReco for Jet and Z %s +- %s" % (format, format)) % reco_bal print "" print (r"pTrecojet / pTrecoZ %s +- %s" % (format, format)) % balresp balresp = multiply(balresp, extrapol_reco_factor) print (r"* reco Level extrapolation %s +- %s" % (format, format)) % balresp print "" print (r"MPF (typeI) %s +- %s" % (format, format)) % mpfresp #mpfresp = divide(mpfresp, zresp) #print (r"MPF (GenZ) %s +- %s" % (format, format) ) % mpfresp mpfresp = multiply(mpfresp, extrapol_mpf_factor) print (r"MPF (extrapol) %s +- %s" % (format, format)) % mpfresp print (r"MPF (Raw) %s +- %s" % (format, format)) % mpfresp_raw def extrapola(files, opt): fig, ax = plotbase.newPlot() changes = {} changes['var'] = "_var_CutSecondLeadingToZPt_0_3" local_opt = copy.deepcopy(opt) rebin = 5 if opt.rebin is not None: rebin = opt.rebin plot1d.datamcplot('ptbalance_alpha', files, local_opt, legloc='upper center', changes=changes, rebin=rebin, subplot=True, subtext="", fig_axes=(fig, ax), fit='intercept', ratio=False) local_opt.colors = ['red', 'maroon'] plot1d.datamcplot('mpf_alpha', files, local_opt, legloc='upper center', changes=changes, rebin=rebin, subplot=True, xy_names=['alpha', 'response'], subtext="", fig_axes=(fig, ax), fit='intercept', ratio=False, fit_offset=-0.1) file_name = plotbase.getDefaultFilename("extrapolation_", opt, changes) plotbase.Save(fig, file_name, opt) # function for comparing old and new corrections def comparison(datamc, opt): """file_names = [ '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_L1Offset/out/closure.root' ]""" colors = ['red', 'blue', 'blue', 'red'] markers = ['*', 'o', 'o', '*'] #labels = [['MC_52xFast', 'data_52xFast'], ['MC_52xOff', 'data_52xOff'], ['MC_53xFast', 'data_53xFast'], ['MC_53xOff', 'data_53xOff']] rebin = 1 import copy file_names = [ '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_L1Offset/out/closure.root', ] labels = [['MC_52xFast', 'data_52xFast'], ['MC_53xFast', 'data_53xFast'], ['MC_52xOff', 'data_52xOff'], ['MC_53xOff', 'data_53xOff']] files = [] for f in file_names: files += [getroot.openfile(f, opt.verbose)] local_opt = copy.deepcopy(opt) local_opt.style = markers local_opt.colors = colors quantity = 'L1abs_npv' # ALL fig, axes = plotbase.newPlot(subplots=4) for a, f1, f2, l in zip(axes, files[::2], files[1::2], labels): local_opt.labels = l datamcplot(quantity, (f1, f2), local_opt, 'upper center', changes={'correction': ''}, fig_axes=(fig, a), rebin=rebin, subplot=True, subtext="") filename = "L1_all__" + opt.algorithm plotbase.Save(fig, filename, opt) """ #Fastjet vs Offset fig = plotbase.plt.figure(figsize=(14,7)) axes = [fig.add_subplot(1,2,n) for n in [1,2]] local_opt.labels = labels[0] local_opt.colors = ['blue', 'blue'] datamcplot(quantity, (files[0], files[1]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[0]), rebin=rebin, subplot=True, subtext="") local_opt.labels = labels[1] local_opt.colors = ['red', 'red'] datamcplot(quantity, (files[2], files[3]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[0]), rebin=rebin, subplot=True, subtext="") #53 local_opt.labels = labels[2] local_opt.colors = ['blue', 'blue'] datamcplot(quantity, (files[4], files[5]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[1]), rebin=rebin, subplot=True, subtext="") local_opt.labels = labels[3] local_opt.colors = ['red', 'red'] datamcplot(quantity, (files[6], files[7]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[1]), rebin=rebin, subplot=True, subtext="") filename = "L1_Fastjet_vs_Offset__"+opt.algorithm plotbase.Save(fig, filename, opt) #52X vs 53X fig = plotbase.plt.figure(figsize=(14,7)) axes = [fig.add_subplot(1,2,n) for n in [1,2]] local_opt.labels = labels[0] local_opt.colors = ['blue', 'blue'] datamcplot(quantity, (files[0], files[1]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[0]), rebin=rebin, subplot=True, subtext="") local_opt.labels = labels[2] local_opt.colors = ['red', 'red'] datamcplot(quantity, (files[4], files[5]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[0]), rebin=rebin, subplot=True, subtext="") local_opt.labels = labels[1] local_opt.colors = ['blue', 'blue'] datamcplot(quantity, (files[2], files[3]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[1]), rebin=rebin, subplot=True, subtext="") # local_opt.labels = labels[3] local_opt.colors = ['red', 'red'] datamcplot(quantity, (files[6], files[7]), local_opt, 'upper center', changes={'correction':''}, fig_axes=(fig,axes[1]), rebin=rebin, subplot=True, subtext="") filename = "L1_52X_vs_53X__"+opt.algorithm plotbase.Save(fig, filename, opt) import plotresponse file_names = [ '/storage/8/dhaitz/CalibFW/work/data_2012/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_L1Offset/out/closure.root', ] labels = [['data_52xFast', 'MC_52xFast'], [ 'data_53xFast', 'MC_53xFast'], [ 'data_52xOff', 'MC_52xOff'], ['data_53xOff', 'MC_53xOff']] files=[] for f in file_names: files += [getroot.openfile(f, opt.verbose)] for over, fit in zip(['zpt', 'jet1eta', 'npv'], [True, False, True]): fig, axes= plotbase.newPlot(subplots=4) fig2, axes2= plotbase.newPlot(subplots=4) for a1, a2, f1, f2, l in zip(axes, axes2, files[::2], files[1::2], labels): local_opt.labels = l changes ={}# {'correction':'L1L2L3'} plotresponse.responseplot((f1, f2), local_opt, ['bal', 'mpf'], over=over, changes=changes, figaxes=(fig,a1), subplot=True, subtext="") plotresponse.ratioplot((f1, f2), local_opt, ['bal', 'mpf'], over=over, changes=changes, figaxes=(fig2 ,a2), fit=fit, subplot=True, subtext="") filename = "Response_"+over+"_all__"+opt.algorithm plotbase.Save(fig, filename, opt) filename = "Ratio_"+over+"_all__"+opt.algorithm plotbase.Save(fig2, filename, opt)""" # function for 2d grid plots """def twoD_all_grid(quantity, datamc, opt): pt_thresholds = [12, 16, 20, 24, 28, 32, 36] var_list = ['var_JetPt_%1.fto%1.f' % (s1, s2) for (s1, s2) in zip(pt_thresholds, [1000, 1000, 1000, 1000, 1000, 1000, 1000])] var_list_2 = getroot.npvstrings(opt.npv) fig = plt.figure(figsize=(10.*len(var_list), 7.*len(var_list_2))) grid = AxesGrid(fig, 111, nrows_ncols = (len(var_list), len(var_list_2)), axes_pad = 0.4, share_all=True, label_mode = "L", #aspect = True, #cbar_pad = 0, #cbar_location = "right", #cbar_mode='single', ) for n1, var1 in enumerate(var_list): for n2, var2 in enumerate(var_list_2): change = {'var':var1+"_"+var2} index = len(var_list_2)*n1 + n2 change['incut']='allevents' twoD(quantity, datamc, opt, changes=change, fig_axes = [fig, grid[index]], subplot = True, axtitle = change['var'].replace('var_', '')) for grid_element, var_strings in zip(grid, opt.npv): text = r"$%s\leq\mathrm{NPV}\leq%s$" % var_strings grid_element.text(0.5, 5.5, text, ha='center', va='center', size ='40') for grid_element, pt_threshold in zip(grid[::len(var_list_2)], pt_thresholds): text = r"$p_\mathrm{T}^\mathrm{Jet1}$"+"\n"+r"$\geq%s\mathrm{GeV}$" % pt_threshold grid_element.text(-8.7, 0, text, ha='left', va='center', size ='30') #fig.suptitle("%s leading jet $\eta-\phi$ distribution ($before$ cuts) for %s %s" % (opt.labels[0], opt.algorithm, opt.correction), size='50') fig.suptitle("%s %s $\eta-\phi$ distribution ($before$ cuts) for %s %s" % (opt.labels[0], quantity[7:-16], opt.algorithm, opt.correction), size='30') file_name = "grid_"+opt.labels[0]+"_"+quantity +"_"+opt.algorithm + opt.correction fig.set_figwidth(fig.get_figwidth() * 1.2) plotbase.Save(fig, file_name, opt, crop=False, pad=1.5)""" def Fall12(files, opt): local_opt = copy.deepcopy(opt) filelist = [ ['/storage/8/dhaitz/CalibFW/work/data_2012/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_V4/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4/out/closure.root'] ] labellist = [['data_Summer12', 'MC_Summer12'], ['data_Fall12V1', 'MC_Fall12V1'], ['data_Fall12V4', 'MC_Fall12V4']] over = 'zpt' for over in ['zpt', 'npv', 'jet1eta']: fig = plotbase.plt.figure(figsize=[21, 14]) fig.suptitle(opt.title, size='xx-large') for typ, row in zip(['bal', 'mpf'], [0, 4]): for filenames, labels, col in zip(filelist, labellist, [0, 1, 2]): ax1 = plotbase.plt.subplot2grid((7, 3), (row, col), rowspan=2) ax2 = plotbase.plt.subplot2grid((7, 3), (row + 2, col)) fig.add_axes(ax1) fig.add_axes(ax2) if over == 'jet1eta' and typ == 'bal': legloc = 'upper right' else: legloc = 'lower left' local_opt.labels = labels files = [] for f in filenames: files += [getroot.openfile(f, opt.verbose)] plotresponse.responseplot(files, local_opt, [typ], over=over, figaxes=(fig, ax1), legloc=legloc, subplot=True) plotresponse.ratioplot(files, local_opt, [typ], binborders=True, fit=True, over=over, subplot=True, figaxes=(fig, ax2), ratiosubplot=True) fig.subplots_adjust(hspace=0.05) ax1.set_xticks([]) ax1.set_xlabel("") ax2.set_yticks([1.00, 0.95, 0.90]) if col > 0: ax1.set_ylabel("") ax2.set_ylabel("") title = "" # " Jet Response ($p_T$ balance / MPF) vs. Z $p_T$, $N_{vtx}$ , Jet $\eta$ (" +opt.algorithm+" "+opt.correction+")" fig.suptitle(title, size='x-large') file_name = "comparison_ALL_" + over + opt.algorithm + opt.correction plotbase.Save(fig, file_name, opt) def factors(files, opt): local_opt = copy.deepcopy(opt) filelist = [ ['/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_L1Offset/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC_V4/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4/out/closure.root', '/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC_V4_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4_L1Offset/out/closure.root'] ] labellist = [ ['Data FastJet V1', 'MC FastJet V1', 'Data Offset V1', 'MC Offset V1'], ['Data FastJet V4', 'MC FastJet V4', 'Data Offset V4', 'MC Offset V4']] """filelistt = [ ['/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC_V4/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/Data_2012_Fall12JEC_V4_L1Offset/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4_L1Offset/out/closure.root'] ] labellistt = ['Data FastJet V1', 'Data FastJet V4'], ['MC FastJet V1', 'MC FastJet V4'], ['Data Offset V1', 'Data Offset V4'], ['MC Offset V1','MC Offset V4' ]] names = ['DataV1', 'MCV1', 'DataV4', 'MCV4' ]""" files = [] #for sublist in filelist: # rootfiles = [getroot.openfile(f, opt.verbose) for f in sublist] # files.append( rootfiles) for sublist in filelist: files.append([getroot.openfile(f, opt.verbose) for f in sublist]) fit = None rebin = 1 # for files, labellist, name in zip(files, labellist, names) fig, axes = plotbase.newPlot(subplots=2) quantity = 'L1abs_npv' local_opt.style = ['o', '*', 'o', '*'] local_opt.labels = labellist[0] local_opt.colors = ['blue', 'blue', 'red', 'red'] plot1d.datamcplot(quantity, files[0], local_opt, 'upper center', changes={'correction': ''}, fig_axes=(fig, axes[0]), fit=fit, rebin=rebin, subplot=True, subtext="") local_opt.labels = labellist[1] plot1d.datamcplot(quantity, files[1], local_opt, 'upper center', changes={'correction': ''}, fig_axes=(fig, axes[1]), fit=fit, rebin=rebin, subplot=True, subtext="") file_name = "L1_comparison_" # +name plotbase.Save(fig, file_name, opt) def factors2(files, opt): local_opt = copy.deepcopy(opt) filelist = [ ['/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_V4/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/data_2012_Fall12JEC_V4_L1Offset/out/closure.root'], ['/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_L1Offset/out/closure.root', '/storage/8/dhaitz/CalibFW/work/mc_madgraphSummer12_Fall12JEC_V4_L1Offset/out/closure.root'] ] labellistt = [['data FastJet V1', 'data FastJet V4'], ['MC FastJet V1', 'MC FastJet V4'], ['data Offset V1', 'data Offset V4'], ['MC Offset V1', 'MC Offset V4'] ] names = ['dataV1', 'MCV1', 'dataV4', 'MCV4'] files = [] for sublist in filelist: rootfiles = [getroot.openfile(f, opt.verbose) for f in sublist] files.append(rootfiles) #print files fit = 'chi2_linear' rebin = 1 fit_offset = -0.1 for files, labellist, name in zip(files, labellistt, names): print labellist fig, axes = plotbase.newPlot(subplots=2) quantity = 'L1abs_npv' local_opt.style = ['o', '*', 'o', '*'] local_opt.labels = [labellist[0]] local_opt.colors = ['blue', 'blue', 'red', 'red'] plot1d.datamcplot(quantity, [files[0]], local_opt, 'upper center', changes={'correction': ''}, fig_axes=(fig, axes[0]), fit=fit, rebin=rebin, fit_offset=fit_offset, subplot=True, subtext="") local_opt.labels = [labellist[1]] plot1d.datamcplot(quantity, [files[1]], local_opt, 'upper center', changes={'correction': ''}, fig_axes=(fig, axes[1]), fit=fit, rebin=rebin, fit_offset=fit_offset, subplot=True, subtext="") file_name = "L1_comparison_" + name plotbase.Save(fig, file_name, opt) import ROOT def allpu(files, opt, truth=True): print files settings = plotbase.getSettings(opt, quantity='npu') #print settings print settings['folder'] name = "_".join([settings['folder'], settings['algorithm'] + settings['correction']]) print name, files[1] name = name.replace("Res", "") t = files[1].Get(name) if not t: print "no tree", name, t.GetName() exit(1) # raw wei data weight if truth: histos = [getroot.getobject("pileup", files[2])] else: histos = [getroot.getobject("pileup;2", files[2])] histos[-1].Rebin(10) print histos[-1].GetNbinsX(), "pu2" histos[0].SetTitle("Data") histos += [ROOT.TH1D("mcraw", "MC", 1600, 0, 80)] if truth: histos += [ROOT.TH1D("mcraw", "MC", 1600, 0, 80)] t.Project("mcraw", "nputruth") else: histos += [ROOT.TH1D("mcraw", "MC", 80, 0, 80)] t.Project("mcraw", "npu") if truth: histos += [ROOT.TH1D("mcwei", "MC'", 1600, 0, 80)] t.Project("mcwei", "nputruth", "weight") else: histos += [ROOT.TH1D("mcwei", "MC'", 80, 0, 80)] t.Project("mcwei", "npu") binning = [[0, 1, 2, 3.5, 5], range(45, 80)] for h in histos: if h.GetNbinsX() > 1000: h.Rebin() if h.GetNbinsX() > 82: print h.GetNbinsX(), ">82! in", h.GetTitle() if not truth: break print "rebin:", binning b = binning if histos.index(h) == 1: b = binning + [range(5, 46)] print b for l in b: for a, b in zip(l[:-1], l[1:]): x1 = h.FindBin(a) x2 = h.FindBin(b) sumh = sum([h.GetBinContent(i) for i in range(x1, x2)]) / (x2 - x1) for i in range(x1, x2): h.SetBinContent(i, sumh) if truth: f = histos[1].Integral() / histos[1].Integral(histos[1].FindBin(8), histos[1].FindBin(40)) for i in range(3 + 0 * len(histos)): #histos[i].Rebin(4) print i ff = f / histos[i].Integral(histos[i].FindBin(8), histos[i].FindBin(40)) ff = 1.0 / histos[i].Integral() histos[i].Scale(ff) histos += [histos[0].Clone("dataraw")] histos[-1].SetTitle("Data/MC") histos[-1].Divide(histos[1]) if len(files) > 3: histos += [getroot.getobject("pileup", files[3])] histos[-1].SetTitle("weight") histos += [histos[2].Clone("rawmc")] histos[-1].Divide(histos[1]) histos[-1].SetTitle("MC'/MC") histos += [histos[0].Clone("datamc")] histos[-1].Divide(histos[2]) histos[-1].SetTitle("Data/MC'") plots = [getroot.root2histo(h) for h in histos] fig, ax, ratio = plotbase.newPlot(ratio=True) fig = plotbase.plt.figure(figsize=[7, 10]) ax = plotbase.plt.subplot2grid((3, 1), (0, 0), rowspan=2) ax.number = 1 ratio = plotbase.plt.subplot2grid((3, 1), (2, 0)) ratio.number = 2 fig.add_axes(ax) fig.add_axes(ratio) fig.subplots_adjust(hspace=0.05) colors = ['black', 'navy', 'red', 'green'] for p, c in zip(plots[:3], colors): ax.errorbar(p.x, p.y, label=p.title, drawstyle='steps-post', color=c, lw=1.6) colors[1] = 'gray' for p, c in zip(plots[3:], colors): r = ratio.errorbar(p.x, p.y, label=p.title, drawstyle='steps-post', color=c, lw=1.6) plotbase.labels(ax, opt, settings, settings['subplot']) plotbase.axislabels(ax, r"$n_\mathrm{PU}", settings['xynames'][1], settings=settings) xaxistext = r"observed number of pile-up interactions $n_\mathrm{PU}$" if truth: xaxistext = xaxistext.replace("observed", "true") plotbase.axislabels(ratio, xaxistext, "ratio", settings=settings) print ratio.number, r plotbase.setAxisLimits(ax, settings) plotbase.labels(ratio, opt, settings, settings['subplot']) plotbase.setAxisLimits(ratio, settings) #handles, labels = ratio.get_legend_handles_labels() ratio.legend(bbox_to_anchor=[0.8, 1], loc='upper center') ax.set_xticklabels([]) ax.set_xlabel("") settings['filename'] = plotbase.getDefaultFilename("npus", opt, settings) plotbase.Save(fig, settings) def pu(files, opt): allpu(files, opt) def puobserved(files, opt): allpu(files, opt, False)
gpl-2.0
thypad/brew
skensemble/generation/bagging.py
3
2140
import numpy as np from sklearn.ensemble import BaggingClassifier from brew.base import Ensemble from brew.combination.combiner import Combiner import sklearn from .base import PoolGenerator class Bagging(PoolGenerator): def __init__(self, base_classifier=None, n_classifiers=100, combination_rule='majority_vote'): self.base_classifier = base_classifier self.n_classifiers = n_classifiers self.ensemble = None self.combiner = Combiner(rule=combination_rule) def fit(self, X, y): self.ensemble = Ensemble() for _ in range(self.n_classifiers): # bootstrap idx = np.random.choice(X.shape[0], X.shape[0], replace=True) data, target = X[idx, :], y[idx] classifier = sklearn.base.clone(self.base_classifier) classifier.fit(data, target) self.ensemble.add(classifier) return def predict(self, X): out = self.ensemble.output(X) return self.combiner.combine(out) class BaggingSK(PoolGenerator): """" This class should not be used, use brew.generation.bagging.Bagging instead. """ def __init__(self, base_classifier=None, n_classifiers=100, combination_rule='majority_vote'): self.base_classifier = base_classifier self.n_classifiers = n_classifiers # using the sklearn implementation of bagging for now self.sk_bagging = BaggingClassifier(base_estimator=base_classifier, n_estimators=n_classifiers, max_samples=1.0, max_features=1.0) self.ensemble = Ensemble() self.combiner = Combiner(rule=combination_rule) def fit(self, X, y): self.sk_bagging.fit(X, y) self.ensemble.add_classifiers(self.sk_bagging.estimators_) # self.classes_ = set(y) def predict(self, X): out = self.ensemble.output(X) return self.combiner.combine(out)
mit
steven-murray/pydftools
setup.py
1
2408
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages import io import os import re with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() requirements = [ "scipy", "numpy>=1.6.2", "Click>=6.0", "attrs>=17.0", "cached_property", "chainconsumer", "matplotlib" # TODO: put package requirements here ] def read(*names, **kwargs): with io.open( os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8"), ) as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setup_requirements = [ "pytest-runner", # TODO(steven-murray): put setup requirements (distutils extensions, etc.) here ] test_requirements = [ "pytest", # TODO: put package test requirements here ] setup( name="pydftools", version=find_version("pydftools", "__init__.py"), description="A pure-python port of the dftools R package.", long_description=readme + "\n\n" + history, author="Steven Murray", author_email="steven.murray@curtin.edu.au", url="https://github.com/steven-murray/pydftools", packages=find_packages(include=["pydftools"]), entry_points={"console_scripts": ["pydftools=pydftools.cli:main"]}, include_package_data=True, install_requires=requirements, license="MIT license", zip_safe=False, keywords="pydftools", classifiers=[ "Development Status :: 2 - Pre-Alpha", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", ], test_suite="tests", tests_require=test_requirements, setup_requires=setup_requirements, )
mit
mxjl620/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
wenhuchen/ETHZ-Bootstrapped-Captioning
visual-concepts/coco/PythonAPI/pycocotools/coco.py
1
16953
__author__ = 'tylin' __version__ = '2.0' # Interface for accessing the Microsoft COCO dataset. # Microsoft COCO is a large image dataset designed for object detection, # segmentation, and caption generation. pycocotools is a Python API that # assists in loading, parsing and visualizing the annotations in COCO. # Please visit http://mscoco.org/ for more information on COCO, including # for the data, paper, and tutorials. The exact format of the annotations # is also described on the COCO website. For example usage of the pycocotools # please see pycocotools_demo.ipynb. In addition to this API, please download both # the COCO images and annotations in order to run the demo. # An alternative to using the API is to load the annotations directly # into Python dictionary # Using the API provides additional utility functions. Note that this API # supports both *instance* and *caption* annotations. In the case of # captions not all functions are defined (e.g. categories are undefined). # The following API functions are defined: # COCO - COCO api class that loads COCO annotation file and prepare data structures. # decodeMask - Decode binary mask M encoded via run-length encoding. # encodeMask - Encode binary mask M using run-length encoding. # getAnnIds - Get ann ids that satisfy given filter conditions. # getCatIds - Get cat ids that satisfy given filter conditions. # getImgIds - Get img ids that satisfy given filter conditions. # loadAnns - Load anns with the specified ids. # loadCats - Load cats with the specified ids. # loadImgs - Load imgs with the specified ids. # segToMask - Convert polygon segmentation to binary mask. # showAnns - Display the specified annotations. # loadRes - Load algorithm results and create API for accessing them. # download - Download COCO images from mscoco.org server. # Throughout the API "ann"=annotation, "cat"=category, and "img"=image. # Help on each functions can be accessed by: "help COCO>function". # See also COCO>decodeMask, # COCO>encodeMask, COCO>getAnnIds, COCO>getCatIds, # COCO>getImgIds, COCO>loadAnns, COCO>loadCats, # COCO>loadImgs, COCO>segToMask, COCO>showAnns # Microsoft COCO Toolbox. version 2.0 # Data, paper, and tutorials available at: http://mscoco.org/ # Code written by Piotr Dollar and Tsung-Yi Lin, 2014. # Licensed under the Simplified BSD License [see bsd.txt] import json import time import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Polygon import numpy as np import urllib import copy import itertools import mask import os from collections import defaultdict class COCO: def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) if not annotation_file == None: print 'loading annotations into memory...' tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, "annotation file format %s not supported"%(type(dataset)) print 'Done (t=%0.2fs)'%(time.time()- tic) self.dataset = dataset self.createIndex() def createIndex(self): # create index print 'creating index...' anns,cats,imgs = dict(),dict(),dict() imgToAnns,catToImgs = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) print 'index created!' # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats def info(self): """ Print information about the annotation file. :return: """ for key, value in self.dataset['info'].items(): print '%s: %s'%(key, value) def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None): """ Get ann ids that satisfy given filter conditions. default skips that filter :param imgIds (int array) : get anns for given imgs catIds (int array) : get anns for given cats areaRng (float array) : get anns for given area range (e.g. [0 inf]) iscrowd (boolean) : get anns for given crowd label (False or True) :return: ids (int array) : integer array of ann ids """ imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == len(areaRng) == 0: anns = self.dataset['annotations'] else: if not len(imgIds) == 0: lists = [self.imgToAnns[imgId] for imgId in imgIds if imgId in self.imgToAnns] anns = list(itertools.chain.from_iterable(lists)) else: anns = self.dataset['annotations'] anns = anns if len(catIds) == 0 else [ann for ann in anns if ann['category_id'] in catIds] anns = anns if len(areaRng) == 0 else [ann for ann in anns if ann['area'] > areaRng[0] and ann['area'] < areaRng[1]] if not iscrowd == None: ids = [ann['id'] for ann in anns if ann['iscrowd'] == iscrowd] else: ids = [ann['id'] for ann in anns] return ids def getCatIds(self, catNms=[], supNms=[], catIds=[]): """ filtering parameters. default skips that filter. :param catNms (str array) : get cats for given cat names :param supNms (str array) : get cats for given supercategory names :param catIds (int array) : get cats for given cat ids :return: ids (int array) : integer array of cat ids """ catNms = catNms if type(catNms) == list else [catNms] supNms = supNms if type(supNms) == list else [supNms] catIds = catIds if type(catIds) == list else [catIds] if len(catNms) == len(supNms) == len(catIds) == 0: cats = self.dataset['categories'] else: cats = self.dataset['categories'] cats = cats if len(catNms) == 0 else [cat for cat in cats if cat['name'] in catNms] cats = cats if len(supNms) == 0 else [cat for cat in cats if cat['supercategory'] in supNms] cats = cats if len(catIds) == 0 else [cat for cat in cats if cat['id'] in catIds] ids = [cat['id'] for cat in cats] return ids def getImgIds(self, imgIds=[], catIds=[]): ''' Get img ids that satisfy given filter conditions. :param imgIds (int array) : get imgs for given ids :param catIds (int array) : get imgs with all given cats :return: ids (int array) : integer array of img ids ''' imgIds = imgIds if type(imgIds) == list else [imgIds] catIds = catIds if type(catIds) == list else [catIds] if len(imgIds) == len(catIds) == 0: ids = self.imgs.keys() else: ids = set(imgIds) for i, catId in enumerate(catIds): if i == 0 and len(ids) == 0: ids = set(self.catToImgs[catId]) else: ids &= set(self.catToImgs[catId]) return list(ids) def loadAnns(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying anns :return: anns (object array) : loaded ann objects """ if type(ids) == list: return [self.anns[id] for id in ids] elif type(ids) == int: return [self.anns[ids]] def loadCats(self, ids=[]): """ Load cats with the specified ids. :param ids (int array) : integer ids specifying cats :return: cats (object array) : loaded cat objects """ if type(ids) == list: return [self.cats[id] for id in ids] elif type(ids) == int: return [self.cats[ids]] def loadImgs(self, ids=[]): """ Load anns with the specified ids. :param ids (int array) : integer ids specifying img :return: imgs (object array) : loaded img objects """ if type(ids) == list: return [self.imgs[id] for id in ids] elif type(ids) == int: return [self.imgs[ids]] def showAnns(self, anns): """ Display the specified annotations. :param anns (array of object): annotations to display :return: None """ if len(anns) == 0: return 0 if 'segmentation' in anns[0] or 'keypoints' in anns[0]: datasetType = 'instances' elif 'caption' in anns[0]: datasetType = 'captions' else: raise Exception("datasetType not supported") if datasetType == 'instances': ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in anns: c = (np.random.random((1, 3))*0.6+0.4).tolist()[0] if 'segmentation' in ann: if type(ann['segmentation']) == list: # polygon for seg in ann['segmentation']: poly = np.array(seg).reshape((len(seg)/2, 2)) polygons.append(Polygon(poly)) color.append(c) else: # mask t = self.imgs[ann['image_id']] if type(ann['segmentation']['counts']) == list: rle = mask.frPyObjects([ann['segmentation']], t['height'], t['width']) else: rle = [ann['segmentation']] m = mask.decode(rle) img = np.ones( (m.shape[0], m.shape[1], 3) ) if ann['iscrowd'] == 1: color_mask = np.array([2.0,166.0,101.0])/255 if ann['iscrowd'] == 0: color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:,:,i] = color_mask[i] ax.imshow(np.dstack( (img, m*0.5) )) if 'keypoints' in ann and type(ann['keypoints']) == list: # turn skeleton into zero-based index sks = np.array(self.loadCats(ann['category_id'])[0]['skeleton'])-1 kp = np.array(ann['keypoints']) x = kp[0::3] y = kp[1::3] v = kp[2::3] for sk in sks: if np.all(v[sk]>0): plt.plot(x[sk],y[sk], linewidth=3, color=c) plt.plot(x[v>0], y[v>0],'o',markersize=8, markerfacecolor=c, markeredgecolor='k',markeredgewidth=2) plt.plot(x[v>1], y[v>1],'o',markersize=8, markerfacecolor=c, markeredgecolor=c, markeredgewidth=2) p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4) ax.add_collection(p) p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2) ax.add_collection(p) elif datasetType == 'captions': for ann in anns: print ann['caption'] def loadRes(self, resFile): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ res = COCO() res.dataset['images'] = [img for img in self.dataset['images']] print 'Loading and preparing results... ' tic = time.time() if type(resFile) == str or type(resFile) == unicode: anns = json.load(open(resFile)) elif type(resFile) == np.ndarray: anns = self.loadNumpyAnnotations(resFile) else: anns = resFile assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set([ann['image_id'] for ann in anns]) res.dataset['images'] = [img for img in res.dataset['images'] if img['id'] in imgIds] for id, ann in enumerate(anns): ann['id'] = id+1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0]+bb[2], bb[1], bb[1]+bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2]*bb[3] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results ann['area'] = mask.area([ann['segmentation']])[0] if not 'bbox' in ann: ann['bbox'] = mask.toBbox([ann['segmentation']])[0] ann['id'] = id+1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy(self.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0,x1,y0,y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1-x0)*(y1-y0) ann['id'] = id + 1 ann['bbox'] = [x0,y0,x1-x0,y1-y0] print 'DONE (t=%0.2fs)'%(time.time()- tic) res.dataset['annotations'] = anns res.createIndex() return res def download( self, tarDir = None, imgIds = [] ): ''' Download COCO images from mscoco.org server. :param tarDir (str): COCO results directory name imgIds (list): images to be downloaded :return: ''' if tarDir is None: print 'Please specify target directory' return -1 if len(imgIds) == 0: imgs = self.imgs.values() else: imgs = self.loadImgs(imgIds) N = len(imgs) if not os.path.exists(tarDir): os.makedirs(tarDir) for i, img in enumerate(imgs): tic = time.time() fname = os.path.join(tarDir, img['file_name']) if not os.path.exists(fname): urllib.urlretrieve(img['coco_url'], fname) print 'downloaded %d/%d images (t=%.1fs)'%(i, N, time.time()- tic) def loadNumpyAnnotations(self, data): """ Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class} :param data (numpy.ndarray) :return: annotations (python nested list) """ print("Converting ndarray to lists...") assert(type(data) == np.ndarray) print(data.shape) assert(data.shape[1] == 7) N = data.shape[0] ann = [] for i in range(N): if i % 1000000 == 0: print("%d/%d" % (i,N)) ann += [{ 'image_id' : int(data[i, 0]), 'bbox' : [ data[i, 1], data[i, 2], data[i, 3], data[i, 4] ], 'score' : data[i, 5], 'category_id': int(data[i, 6]), }] return ann
bsd-3-clause
wanggang3333/scikit-learn
examples/svm/plot_svm_anova.py
250
2000
""" ================================================= SVM-Anova: SVM with univariate feature selection ================================================= This example shows how to perform univariate feature before running a SVC (support vector classifier) to improve the classification scores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm, datasets, feature_selection, cross_validation from sklearn.pipeline import Pipeline ############################################################################### # Import some data to play with digits = datasets.load_digits() y = digits.target # Throw away data, to be in the curse of dimension settings y = y[:200] X = digits.data[:200] n_samples = len(y) X = X.reshape((n_samples, -1)) # add 200 non-informative features X = np.hstack((X, 2 * np.random.random((n_samples, 200)))) ############################################################################### # Create a feature-selection transform and an instance of SVM that we # combine together to have an full-blown estimator transform = feature_selection.SelectPercentile(feature_selection.f_classif) clf = Pipeline([('anova', transform), ('svc', svm.SVC(C=1.0))]) ############################################################################### # Plot the cross-validation score as a function of percentile of features score_means = list() score_stds = list() percentiles = (1, 3, 6, 10, 15, 20, 30, 40, 60, 80, 100) for percentile in percentiles: clf.set_params(anova__percentile=percentile) # Compute cross-validation score using all CPUs this_scores = cross_validation.cross_val_score(clf, X, y, n_jobs=1) score_means.append(this_scores.mean()) score_stds.append(this_scores.std()) plt.errorbar(percentiles, score_means, np.array(score_stds)) plt.title( 'Performance of the SVM-Anova varying the percentile of features selected') plt.xlabel('Percentile') plt.ylabel('Prediction rate') plt.axis('tight') plt.show()
bsd-3-clause
sammcveety/incubator-beam
sdks/python/apache_beam/examples/complete/juliaset/juliaset/juliaset.py
8
4457
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """A Julia set computing workflow: https://en.wikipedia.org/wiki/Julia_set. We use the quadratic polinomial f(z) = z*z + c, with c = -.62772 +.42193i """ from __future__ import absolute_import import argparse import apache_beam as beam from apache_beam.io import WriteToText def from_pixel(x, y, n): """Converts a NxN pixel position to a (-1..1, -1..1) complex number.""" return complex(2.0 * x / n - 1.0, 2.0 * y / n - 1.0) def get_julia_set_point_color(element, c, n, max_iterations): """Given an pixel, convert it into a point in our julia set.""" x, y = element z = from_pixel(x, y, n) for i in xrange(max_iterations): if z.real * z.real + z.imag * z.imag > 2.0: break z = z * z + c return x, y, i # pylint: disable=undefined-loop-variable def generate_julia_set_colors(pipeline, c, n, max_iterations): """Compute julia set coordinates for each point in our set.""" def point_set(n): for x in range(n): for y in range(n): yield (x, y) julia_set_colors = (pipeline | 'add points' >> beam.Create(point_set(n)) | beam.Map( get_julia_set_point_color, c, n, max_iterations)) return julia_set_colors def generate_julia_set_visualization(data, n, max_iterations): """Generate the pixel matrix for rendering the julia set as an image.""" import numpy as np # pylint: disable=wrong-import-order, wrong-import-position colors = [] for r in range(0, 256, 16): for g in range(0, 256, 16): for b in range(0, 256, 16): colors.append((r, g, b)) xy = np.zeros((n, n, 3), dtype=np.uint8) for x, y, iteration in data: xy[x, y] = colors[iteration * len(colors) / max_iterations] return xy def save_julia_set_visualization(out_file, image_array): """Save the fractal image of our julia set as a png.""" from matplotlib import pyplot as plt # pylint: disable=wrong-import-order, wrong-import-position plt.imsave(out_file, image_array, format='png') def run(argv=None): # pylint: disable=missing-docstring parser = argparse.ArgumentParser() parser.add_argument('--grid_size', dest='grid_size', default=1000, help='Size of the NxN matrix') parser.add_argument( '--coordinate_output', dest='coordinate_output', required=True, help='Output file to write the color coordinates of the image to.') parser.add_argument('--image_output', dest='image_output', default=None, help='Output file to write the resulting image to.') known_args, pipeline_args = parser.parse_known_args(argv) with beam.Pipeline(argv=pipeline_args) as p: n = int(known_args.grid_size) coordinates = generate_julia_set_colors(p, complex(-.62772, .42193), n, 100) # Group each coordinate triplet by its x value, then write the coordinates # to the output file with an x-coordinate grouping per line. # pylint: disable=expression-not-assigned (coordinates | 'x coord key' >> beam.Map(lambda (x, y, i): (x, (x, y, i))) | 'x coord' >> beam.GroupByKey() | 'format' >> beam.Map( lambda (k, coords): ' '.join('(%s, %s, %s)' % c for c in coords)) | WriteToText(known_args.coordinate_output)) # Optionally render the image and save it to a file. # TODO(silviuc): Add this functionality. # if p.options.image_output is not None: # julia_set_image = generate_julia_set_visualization( # file_with_coordinates, n, 100) # save_julia_set_visualization(p.options.image_output, julia_set_image)
apache-2.0
equialgo/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
73
2074
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, color='lightgreen', linewidth=2, label='Elastic net coefficients') plt.plot(lasso.coef_, color='gold', linewidth=2, label='Lasso coefficients') plt.plot(coef, '--', color='navy', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
massmutual/scikit-learn
examples/plot_kernel_approximation.py
262
8004
""" ================================================== Explicit feature map approximation for RBF kernels ================================================== An example illustrating the approximation of the feature map of an RBF kernel. .. currentmodule:: sklearn.kernel_approximation It shows how to use :class:`RBFSampler` and :class:`Nystroem` to approximate the feature map of an RBF kernel for classification with an SVM on the digits dataset. Results using a linear SVM in the original space, a linear SVM using the approximate mappings and using a kernelized SVM are compared. Timings and accuracy for varying amounts of Monte Carlo samplings (in the case of :class:`RBFSampler`, which uses random Fourier features) and different sized subsets of the training set (for :class:`Nystroem`) for the approximate mapping are shown. Please note that the dataset here is not large enough to show the benefits of kernel approximation, as the exact SVM is still reasonably fast. Sampling more dimensions clearly leads to better classification results, but comes at a greater cost. This means there is a tradeoff between runtime and accuracy, given by the parameter n_components. Note that solving the Linear SVM and also the approximate kernel SVM could be greatly accelerated by using stochastic gradient descent via :class:`sklearn.linear_model.SGDClassifier`. This is not easily possible for the case of the kernelized SVM. The second plot visualized the decision surfaces of the RBF kernel SVM and the linear SVM with approximate kernel maps. The plot shows decision surfaces of the classifiers projected onto the first two principal components of the data. This visualization should be taken with a grain of salt since it is just an interesting slice through the decision surface in 64 dimensions. In particular note that a datapoint (represented as a dot) does not necessarily be classified into the region it is lying in, since it will not lie on the plane that the first two principal components span. The usage of :class:`RBFSampler` and :class:`Nystroem` is described in detail in :ref:`kernel_approximation`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # Andreas Mueller <amueller@ais.uni-bonn.de> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt import numpy as np from time import time # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, pipeline from sklearn.kernel_approximation import (RBFSampler, Nystroem) from sklearn.decomposition import PCA # The digits dataset digits = datasets.load_digits(n_class=9) # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.data) data = digits.data / 16. data -= data.mean(axis=0) # We learn the digits on the first half of the digits data_train, targets_train = data[:n_samples / 2], digits.target[:n_samples / 2] # Now predict the value of the digit on the second half: data_test, targets_test = data[n_samples / 2:], digits.target[n_samples / 2:] #data_test = scaler.transform(data_test) # Create a classifier: a support vector classifier kernel_svm = svm.SVC(gamma=.2) linear_svm = svm.LinearSVC() # create pipeline from kernel approximation # and linear svm feature_map_fourier = RBFSampler(gamma=.2, random_state=1) feature_map_nystroem = Nystroem(gamma=.2, random_state=1) fourier_approx_svm = pipeline.Pipeline([("feature_map", feature_map_fourier), ("svm", svm.LinearSVC())]) nystroem_approx_svm = pipeline.Pipeline([("feature_map", feature_map_nystroem), ("svm", svm.LinearSVC())]) # fit and predict using linear and kernel svm: kernel_svm_time = time() kernel_svm.fit(data_train, targets_train) kernel_svm_score = kernel_svm.score(data_test, targets_test) kernel_svm_time = time() - kernel_svm_time linear_svm_time = time() linear_svm.fit(data_train, targets_train) linear_svm_score = linear_svm.score(data_test, targets_test) linear_svm_time = time() - linear_svm_time sample_sizes = 30 * np.arange(1, 10) fourier_scores = [] nystroem_scores = [] fourier_times = [] nystroem_times = [] for D in sample_sizes: fourier_approx_svm.set_params(feature_map__n_components=D) nystroem_approx_svm.set_params(feature_map__n_components=D) start = time() nystroem_approx_svm.fit(data_train, targets_train) nystroem_times.append(time() - start) start = time() fourier_approx_svm.fit(data_train, targets_train) fourier_times.append(time() - start) fourier_score = fourier_approx_svm.score(data_test, targets_test) nystroem_score = nystroem_approx_svm.score(data_test, targets_test) nystroem_scores.append(nystroem_score) fourier_scores.append(fourier_score) # plot the results: plt.figure(figsize=(8, 8)) accuracy = plt.subplot(211) # second y axis for timeings timescale = plt.subplot(212) accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel") timescale.plot(sample_sizes, nystroem_times, '--', label='Nystroem approx. kernel') accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel") timescale.plot(sample_sizes, fourier_times, '--', label='Fourier approx. kernel') # horizontal lines for exact rbf and linear kernels: accuracy.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_score, linear_svm_score], label="linear svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [linear_svm_time, linear_svm_time], '--', label='linear svm') accuracy.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_score, kernel_svm_score], label="rbf svm") timescale.plot([sample_sizes[0], sample_sizes[-1]], [kernel_svm_time, kernel_svm_time], '--', label='rbf svm') # vertical line for dataset dimensionality = 64 accuracy.plot([64, 64], [0.7, 1], label="n_features") # legends and labels accuracy.set_title("Classification accuracy") timescale.set_title("Training times") accuracy.set_xlim(sample_sizes[0], sample_sizes[-1]) accuracy.set_xticks(()) accuracy.set_ylim(np.min(fourier_scores), 1) timescale.set_xlabel("Sampling steps = transformed feature dimension") accuracy.set_ylabel("Classification accuracy") timescale.set_ylabel("Training time in seconds") accuracy.legend(loc='best') timescale.legend(loc='best') # visualize the decision surface, projected down to the first # two principal components of the dataset pca = PCA(n_components=8).fit(data_train) X = pca.transform(data_train) # Gemerate grid along first two principal components multiples = np.arange(-2, 2, 0.1) # steps along first component first = multiples[:, np.newaxis] * pca.components_[0, :] # steps along second component second = multiples[:, np.newaxis] * pca.components_[1, :] # combine grid = first[np.newaxis, :, :] + second[:, np.newaxis, :] flat_grid = grid.reshape(-1, data.shape[1]) # title for the plots titles = ['SVC with rbf kernel', 'SVC (linear kernel)\n with Fourier rbf feature map\n' 'n_components=100', 'SVC (linear kernel)\n with Nystroem rbf feature map\n' 'n_components=100'] plt.tight_layout() plt.figure(figsize=(12, 5)) # predict and plot for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)): # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. plt.subplot(1, 3, i + 1) Z = clf.predict(flat_grid) # Put the result into a color plot Z = Z.reshape(grid.shape[:-1]) plt.contourf(multiples, multiples, Z, cmap=plt.cm.Paired) plt.axis('off') # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=targets_train, cmap=plt.cm.Paired) plt.title(titles[i]) plt.tight_layout() plt.show()
bsd-3-clause
fspaolo/scikit-learn
sklearn/utils/extmath.py
3
18665
""" Extended math utilities. """ # Authors: G. Varoquaux, A. Gramfort, A. Passos, O. Grisel # License: BSD 3 clause import warnings import numpy as np from scipy import linalg from scipy.sparse import issparse from distutils.version import LooseVersion from . import check_random_state from .fixes import qr_economic from ._logistic_sigmoid import _log_logistic_sigmoid from ..externals.six.moves import xrange from .validation import array2d, NonBLASDotWarning def norm(v): v = np.asarray(v) __nrm2, = linalg.get_blas_funcs(['nrm2'], [v]) return __nrm2(v) def _fast_logdet(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(np.linalg.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ # XXX: Should be implemented as in numpy, using ATLAS # http://projects.scipy.org/numpy/browser/ \ # trunk/numpy/linalg/linalg.py#L1559 ld = np.sum(np.log(np.diag(A))) a = np.exp(ld / A.shape[0]) d = np.linalg.det(A / a) ld += np.log(d) if not np.isfinite(ld): return -np.inf return ld def _fast_logdet_numpy(A): """Compute log(det(A)) for A symmetric Equivalent to : np.log(nl.det(A)) but more robust. It returns -Inf if det(A) is non positive or is not defined. """ sign, ld = np.linalg.slogdet(A) if not sign > 0: return -np.inf return ld # Numpy >= 1.5 provides a fast logdet if hasattr(np.linalg, 'slogdet'): fast_logdet = _fast_logdet_numpy else: fast_logdet = _fast_logdet def _impose_f_order(X): """Helper Function""" # important to access flags instead of calling np.isfortran, # this catches corner cases. if X.flags.c_contiguous: return array2d(X.T, copy=False, order='F'), True else: return array2d(X, copy=False, order='F'), False def _fast_dot(A, B): """Compute fast dot products directly calling BLAS. This function calls BLAS directly while warranting Fortran contiguity. This helps avoiding extra copies `np.dot` would have created. For details see section `Linear Algebra on large Arrays`: http://wiki.scipy.org/PerformanceTips Parameters ---------- A, B: instance of np.ndarray input matrices. Matrices are supposed to be of the same types and to have exactly 2 dimensions. Currently only floats are supported. In case these requirements aren't met np.dot(A, B) is returned instead. To activate the related warning issued in this case execute the following lines of code: >> import warnings >> from sklearn.utils.validation import NonBLASDotWarning >> warnings.simplefilter('always', NonBLASDotWarning) """ if B.shape[0] != A.shape[A.ndim - 1]: # check adopted from '_dotblas.c' msg = ('Invalid array shapes: A.shape[%d] should be the same as ' 'B.shape[0]. Got A.shape=%r B.shape=%r' % (A.ndim - 1, A.shape, B.shape)) raise ValueError(msg) if A.dtype != B.dtype or any(x.dtype not in (np.float32, np.float64) for x in [A, B]): warnings.warn('Data must be of same type. Supported types ' 'are 32 and 64 bit float. ' 'Falling back to np.dot.', NonBLASDotWarning) return np.dot(A, B) if ((min(A.shape) == 1) or (min(B.shape) == 1) or (A.ndim != 2) or (B.ndim != 2)): warnings.warn('Data must be 2D with more than one colum / row.' 'Falling back to np.dot', NonBLASDotWarning) return np.dot(A, B) dot = linalg.get_blas_funcs('gemm', (A, B)) A, trans_a = _impose_f_order(A) B, trans_b = _impose_f_order(B) return dot(alpha=1.0, a=A, b=B, trans_a=trans_a, trans_b=trans_b) # only try to use fast_dot for older numpy versions. # the related issue has been tackled meanwhile. Also, depending on the build # the current numpy master's dot can about 3 times faster. if LooseVersion(np.__version__) < '1.7.2': # backported try: linalg.get_blas_funcs('gemm') fast_dot = _fast_dot except (ImportError, AttributeError): fast_dot = np.dot warnings.warn('Could not import BLAS, falling back to np.dot') else: fast_dot = np.dot def density(w, **kwargs): """Compute density of a sparse vector Return a value between 0 and 1 """ if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d def safe_sparse_dot(a, b, dense_output=False): """Dot product that handle the sparse matrix case correctly Uses BLAS GEMM as replacement for numpy.dot where possible to avoid unnecessary copies. """ from scipy import sparse if sparse.issparse(a) or sparse.issparse(b): ret = a * b if dense_output and hasattr(ret, "toarray"): ret = ret.toarray() return ret else: return fast_dot(a, b) def randomized_range_finder(A, size, n_iter, random_state=None): """Computes an orthonormal matrix whose range approximates the range of A. Parameters ---------- A: 2D array The input data matrix size: integer Size of the return array n_iter: integer Number of power iterations used to stabilize the result random_state: RandomState or an int seed (0 by default) A random number generator instance Returns ------- Q: 2D array A (size x size) projection matrix, the range of which approximates well the range of the input matrix A. Notes ----- Follows Algorithm 4.3 of Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 (arXiv:909) http://arxiv.org/pdf/0909.4061 """ random_state = check_random_state(random_state) # generating random gaussian vectors r with shape: (A.shape[1], size) R = random_state.normal(size=(A.shape[1], size)) # sampling the range of A using by linear projection of r Y = safe_sparse_dot(A, R) del R # perform power iterations with Y to further 'imprint' the top # singular vectors of A in Y for i in xrange(n_iter): Y = safe_sparse_dot(A, safe_sparse_dot(A.T, Y)) # extracting an orthonormal basis of the A range samples Q, R = qr_economic(Y) return Q def randomized_svd(M, n_components, n_oversamples=10, n_iter=0, transpose='auto', flip_sign=True, random_state=0, n_iterations=None): """Computes a truncated randomized SVD Parameters ---------- M: ndarray or sparse matrix Matrix to decompose n_components: int Number of singular values and vectors to extract. n_oversamples: int (default is 10) Additional number of random vectors to sample the range of M so as to ensure proper conditioning. The total number of random vectors used to find the range of M is n_components + n_oversamples. n_iter: int (default is 0) Number of power iterations (can be used to deal with very noisy problems). transpose: True, False or 'auto' (default) Whether the algorithm should be applied to M.T instead of M. The result should approximately be the same. The 'auto' mode will trigger the transposition if M.shape[1] > M.shape[0] since this implementation of randomized SVD tend to be a little faster in that case). flip_sign: boolean, (True by default) The output of a singular value decomposition is only unique up to a permutation of the signs of the singular vectors. If `flip_sign` is set to `True`, the sign ambiguity is resolved by making the largest loadings for each component in the left singular vectors positive. random_state: RandomState or an int seed (0 by default) A random number generator instance to make behavior Notes ----- This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. References ---------- * Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions Halko, et al., 2009 http://arxiv.org/abs/arXiv:0909.4061 * A randomized algorithm for the decomposition of matrices Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert """ if n_iterations is not None: warnings.warn("n_iterations was renamed to n_iter for consistency " "and will be removed in 0.16.", DeprecationWarning) n_iter = n_iterations random_state = check_random_state(random_state) n_random = n_components + n_oversamples n_samples, n_features = M.shape if transpose == 'auto' and n_samples > n_features: transpose = True if transpose: # this implementation is a bit faster with smaller shape[1] M = M.T Q = randomized_range_finder(M, n_random, n_iter, random_state) # project M to the (k + p) dimensional space using the basis vectors B = safe_sparse_dot(Q.T, M) # compute the SVD on the thin matrix: (k + p) wide Uhat, s, V = linalg.svd(B, full_matrices=False) del B U = np.dot(Q, Uhat) if flip_sign: U, V = svd_flip(U, V) if transpose: # transpose back the results according to the input convention return V[:n_components, :].T, s[:n_components], U[:, :n_components].T else: return U[:, :n_components], s[:n_components], V[:n_components, :] def logsumexp(arr, axis=0): """Computes the sum of arr assuming arr is in the log domain. Returns log(sum(exp(arr))) while minimizing the possibility of over/underflow. Examples -------- >>> import numpy as np >>> from sklearn.utils.extmath import logsumexp >>> a = np.arange(10) >>> np.log(np.sum(np.exp(a))) 9.4586297444267107 >>> logsumexp(a) 9.4586297444267107 """ arr = np.rollaxis(arr, axis) # Use the max to normalize, as with the log this is what accumulates # the less errors vmax = arr.max(axis=0) out = np.log(np.sum(np.exp(arr - vmax), axis=0)) out += vmax return out def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape) oldcounts = np.zeros(testshape) for score in scores: template = np.zeros(a.shape) ind = (a == score) template[ind] = w[ind] counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return mostfrequent, oldcounts def pinvh(a, cond=None, rcond=None, lower=True): """Compute the (Moore-Penrose) pseudo-inverse of a hermetian matrix. Calculate a generalized inverse of a symmetric matrix using its eigenvalue decomposition and including all 'large' eigenvalues. Parameters ---------- a : array, shape (N, N) Real symmetric or complex hermetian matrix to be pseudo-inverted cond, rcond : float or None Cutoff for 'small' eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered zero. If None or -1, suitable machine precision is used. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) Returns ------- B : array, shape (N, N) Raises ------ LinAlgError If eigenvalue does not converge Examples -------- >>> from numpy import * >>> a = random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> allclose(a, dot(a, dot(B, a))) True >>> allclose(B, dot(B, dot(a, B))) True """ a = np.asarray_chkfinite(a) s, u = linalg.eigh(a, lower=lower) if rcond is not None: cond = rcond if cond in [None, -1]: t = u.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps # unlike svd case, eigh can lead to negative eigenvalues above_cutoff = (abs(s) > cond * np.max(abs(s))) psigma_diag = np.zeros_like(s) psigma_diag[above_cutoff] = 1.0 / s[above_cutoff] return np.dot(u * psigma_diag, np.conjugate(u).T) def cartesian(arrays, out=None): """Generate a cartesian product of input arrays. Parameters ---------- arrays : list of array-like 1-D arrays to form the cartesian product of. out : ndarray Array to place the cartesian product in. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) References ---------- http://stackoverflow.com/q/1208118 """ arrays = [np.asarray(x).ravel() for x in arrays] dtype = arrays[0].dtype n = np.prod([x.size for x in arrays]) if out is None: out = np.empty([n, len(arrays)], dtype=dtype) m = n / arrays[0].size out[:, 0] = np.repeat(arrays[0], m) if arrays[1:]: cartesian(arrays[1:], out=out[0:m, 1:]) for j in xrange(1, arrays[0].size): out[j * m:(j + 1) * m, 1:] = out[0:m, 1:] return out def svd_flip(u, v): """Sign correction to ensure deterministic output from SVD Adjusts the columns of u and the rows of v such that the loadings in the columns in u that are largest in absolute value are always positive. Parameters ---------- u, v: arrays The output of `linalg.svd` or `sklearn.utils.extmath.randomized_svd`, with matching inner dimensions so one can compute `np.dot(u * s, v)`. Returns ------- u_adjusted, s, v_adjusted: arrays with the same dimensions as the input. """ max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, xrange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] return u, v def logistic_sigmoid(X, log=False, out=None): """ Implements the logistic function, ``1 / (1 + e ** -x)`` and its log. This implementation is more stable by splitting on positive and negative values and computing:: 1 / (1 + exp(-x_i)) if x_i > 0 exp(x_i) / (1 + exp(x_i)) if x_i <= 0 The log is computed using:: -log(1 + exp(-x_i)) if x_i > 0 x_i - log(1 + exp(x_i)) if x_i <= 0 Parameters ---------- X: array-like, shape (M, N) Argument to the logistic function log: boolean, default: False Whether to compute the logarithm of the logistic function. out: array-like, shape: (M, N), optional: Preallocated output array. Returns ------- out: array, shape (M, N) Value of the logistic function evaluated at every point in x Notes ----- See the blog post describing this implementation: http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/ """ is_1d = X.ndim == 1 X = array2d(X, dtype=np.float) n_samples, n_features = X.shape if out is None: out = np.empty_like(X) if log: _log_logistic_sigmoid(n_samples, n_features, X, out) else: # logistic(x) = (1 + tanh(x / 2)) / 2 out[:] = X out *= .5 np.tanh(out, out) out += 1 out *= .5 if is_1d: return np.squeeze(out) return out def safe_min(X): """Returns the minimum value of a dense or a CSR/CSC matrix. Adapated from http://stackoverflow.com/q/13426580 """ if issparse(X): if len(X.data) == 0: return 0 m = X.data.min() return m if X.getnnz() == X.size else min(m, 0) else: return X.min() def make_nonnegative(X, min_value=0): """Ensure `X.min()` >= `min_value`.""" min_ = safe_min(X) if min_ < min_value: if issparse(X): raise ValueError("Cannot make the data matrix" " nonnegative because it is sparse." " Adding a value to every entry would" " make it no longer sparse.") X = X + (min_value - min_) return X
bsd-3-clause
ishanic/scikit-learn
sklearn/metrics/metrics.py
233
1262
import warnings warnings.warn("sklearn.metrics.metrics is deprecated and will be removed in " "0.18. Please import from sklearn.metrics", DeprecationWarning) from .ranking import auc from .ranking import average_precision_score from .ranking import label_ranking_average_precision_score from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score
bsd-3-clause
barak/autograd
examples/fluidsim/wing.py
1
6136
from __future__ import absolute_import from __future__ import print_function import autograd.numpy as np from autograd import value_and_grad from scipy.optimize import minimize import matplotlib.pyplot as plt import os from builtins import range rows, cols = 40, 60 # Fluid simulation code based on # "Real-Time Fluid Dynamics for Games" by Jos Stam # http://www.intpowertechcorp.com/GDC03.pdf def occlude(f, occlusion): return f * (1 - occlusion) def project(vx, vy, occlusion): """Project the velocity field to be approximately mass-conserving, using a few iterations of Gauss-Seidel.""" p = np.zeros(vx.shape) div = -0.5 * (np.roll(vx, -1, axis=1) - np.roll(vx, 1, axis=1) + np.roll(vy, -1, axis=0) - np.roll(vy, 1, axis=0)) div = make_continuous(div, occlusion) for k in range(50): p = (div + np.roll(p, 1, axis=1) + np.roll(p, -1, axis=1) + np.roll(p, 1, axis=0) + np.roll(p, -1, axis=0))/4.0 p = make_continuous(p, occlusion) vx = vx - 0.5*(np.roll(p, -1, axis=1) - np.roll(p, 1, axis=1)) vy = vy - 0.5*(np.roll(p, -1, axis=0) - np.roll(p, 1, axis=0)) vx = occlude(vx, occlusion) vy = occlude(vy, occlusion) return vx, vy def advect(f, vx, vy): """Move field f according to x and y velocities (u and v) using an implicit Euler integrator.""" rows, cols = f.shape cell_xs, cell_ys = np.meshgrid(np.arange(cols), np.arange(rows)) center_xs = (cell_xs - vx).ravel() center_ys = (cell_ys - vy).ravel() # Compute indices of source cells. left_ix = np.floor(center_ys).astype(np.int) top_ix = np.floor(center_xs).astype(np.int) rw = center_ys - left_ix # Relative weight of right-hand cells. bw = center_xs - top_ix # Relative weight of bottom cells. left_ix = np.mod(left_ix, rows) # Wrap around edges of simulation. right_ix = np.mod(left_ix + 1, rows) top_ix = np.mod(top_ix, cols) bot_ix = np.mod(top_ix + 1, cols) # A linearly-weighted sum of the 4 surrounding cells. flat_f = (1 - rw) * ((1 - bw)*f[left_ix, top_ix] + bw*f[left_ix, bot_ix]) \ + rw * ((1 - bw)*f[right_ix, top_ix] + bw*f[right_ix, bot_ix]) return np.reshape(flat_f, (rows, cols)) def make_continuous(f, occlusion): non_occluded = 1 - occlusion num = np.roll(f, 1, axis=0) * np.roll(non_occluded, 1, axis=0)\ + np.roll(f, -1, axis=0) * np.roll(non_occluded, -1, axis=0)\ + np.roll(f, 1, axis=1) * np.roll(non_occluded, 1, axis=1)\ + np.roll(f, -1, axis=1) * np.roll(non_occluded, -1, axis=1) den = np.roll(non_occluded, 1, axis=0)\ + np.roll(non_occluded, -1, axis=0)\ + np.roll(non_occluded, 1, axis=1)\ + np.roll(non_occluded, -1, axis=1) return f * non_occluded + (1 - non_occluded) * num / ( den + 0.001) def sigmoid(x): return 0.5*(np.tanh(x) + 1.0) # Output ranges from 0 to 1. def simulate(vx, vy, num_time_steps, occlusion, ax=None, render=False): occlusion = sigmoid(occlusion) # Disallow occlusion outside a certain area. mask = np.zeros((rows, cols)) mask[10:30, 10:30] = 1.0 occlusion = occlusion * mask # Initialize smoke bands. red_smoke = np.zeros((rows, cols)) red_smoke[rows/4:rows/2] = 1 blue_smoke = np.zeros((rows, cols)) blue_smoke[rows/2:3*rows/4] = 1 print("Running simulation...") vx, vy = project(vx, vy, occlusion) for t in range(num_time_steps): plot_matrix(ax, red_smoke, occlusion, blue_smoke, t, render) vx_updated = advect(vx, vx, vy) vy_updated = advect(vy, vx, vy) vx, vy = project(vx_updated, vy_updated, occlusion) red_smoke = advect(red_smoke, vx, vy) red_smoke = occlude(red_smoke, occlusion) blue_smoke = advect(blue_smoke, vx, vy) blue_smoke = occlude(blue_smoke, occlusion) plot_matrix(ax, red_smoke, occlusion, blue_smoke, num_time_steps, render) return vx, vy def plot_matrix(ax, r, g, b, t, render=False): if ax: plt.cla() ax.imshow(np.concatenate((r[...,np.newaxis], g[...,np.newaxis], b[...,np.newaxis]), axis=2)) ax.set_xticks([]) ax.set_yticks([]) plt.draw() if render: plt.savefig('step{0:03d}.png'.format(t), bbox_inches='tight') plt.pause(0.001) if __name__ == '__main__': simulation_timesteps = 20 print("Loading initial and target states...") init_vx = np.ones((rows, cols)) init_vy = np.zeros((rows, cols)) # Initialize the occlusion to be a block. init_occlusion = -np.ones((rows, cols)) init_occlusion[15:25, 15:25] = 0.0 init_occlusion = init_occlusion.ravel() def drag(vx): return np.mean(init_vx - vx) def lift(vy): return np.mean(vy - init_vy) def objective(params): cur_occlusion = np.reshape(params, (rows, cols)) final_vx, final_vy = simulate(init_vx, init_vy, simulation_timesteps, cur_occlusion) return -lift(final_vy) / drag(final_vx) # Specify gradient of objective function using autograd. objective_with_grad = value_and_grad(objective) fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111, frameon=False) def callback(weights): cur_occlusion = np.reshape(weights, (rows, cols)) simulate(init_vx, init_vy, simulation_timesteps, cur_occlusion, ax) print("Rendering initial flow...") callback(init_occlusion) print("Optimizing initial conditions...") result = minimize(objective_with_grad, init_occlusion, jac=True, method='CG', options={'maxiter':50, 'disp':True}, callback=callback) print("Rendering optimized flow...") final_occlusion = np.reshape(result.x, (rows, cols)) simulate(init_vx, init_vy, simulation_timesteps, final_occlusion, ax, render=True) print("Converting frames to an animated GIF...") # Using imagemagick. os.system("convert -delay 5 -loop 0 step*.png " "-delay 250 step{0:03d}.png wing.gif".format(simulation_timesteps)) os.system("rm step*.png")
mit
alekz112/statsmodels
statsmodels/stats/anova.py
25
13433
from statsmodels.compat.python import lrange, lmap import numpy as np from scipy import stats from pandas import DataFrame, Index from statsmodels.formula.formulatools import (_remove_intercept_patsy, _has_intercept, _intercept_idx) def _get_covariance(model, robust): if robust is None: return model.cov_params() elif robust == "hc0": se = model.HC0_se return model.cov_HC0 elif robust == "hc1": se = model.HC1_se return model.cov_HC1 elif robust == "hc2": se = model.HC2_se return model.cov_HC2 elif robust == "hc3": se = model.HC3_se return model.cov_HC3 else: # pragma: no cover raise ValueError("robust options %s not understood" % robust) #NOTE: these need to take into account weights ! def anova_single(model, **kwargs): """ ANOVA table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model typ : int or str {1,2,3} or {"I","II","III"} Type of sum of squares to use. **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. """ test = kwargs.get("test", "F") scale = kwargs.get("scale", None) typ = kwargs.get("typ", 1) robust = kwargs.get("robust", None) if robust: robust = robust.lower() endog = model.model.endog exog = model.model.exog nobs = exog.shape[0] response_name = model.model.endog_names design_info = model.model.data.design_info exog_names = model.model.exog_names # +1 for resids n_rows = (len(design_info.terms) - _has_intercept(design_info) + 1) pr_test = "PR(>%s)" % test names = ['df', 'sum_sq', 'mean_sq', test, pr_test] table = DataFrame(np.zeros((n_rows, 5)), columns = names) if typ in [1,"I"]: return anova1_lm_single(model, endog, exog, nobs, design_info, table, n_rows, test, pr_test, robust) elif typ in [2, "II"]: return anova2_lm_single(model, design_info, n_rows, test, pr_test, robust) elif typ in [3, "III"]: return anova3_lm_single(model, design_info, n_rows, test, pr_test, robust) elif typ in [4, "IV"]: raise NotImplemented("Type IV not yet implemented") else: # pragma: no cover raise ValueError("Type %s not understood" % str(typ)) def anova1_lm_single(model, endog, exog, nobs, design_info, table, n_rows, test, pr_test, robust): """ ANOVA table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. """ #maybe we should rethink using pinv > qr in OLS/linear models? effects = getattr(model, 'effects', None) if effects is None: q,r = np.linalg.qr(exog) effects = np.dot(q.T, endog) arr = np.zeros((len(design_info.terms), len(design_info.column_names))) slices = [design_info.slice(name) for name in design_info.term_names] for i,slice_ in enumerate(slices): arr[i, slice_] = 1 sum_sq = np.dot(arr, effects**2) #NOTE: assumes intercept is first column idx = _intercept_idx(design_info) sum_sq = sum_sq[~idx] term_names = np.array(design_info.term_names) # want boolean indexing term_names = term_names[~idx] index = term_names.tolist() table.index = Index(index + ['Residual']) table.ix[index, ['df', 'sum_sq']] = np.c_[arr[~idx].sum(1), sum_sq] if test == 'F': table.ix[:n_rows, test] = ((table['sum_sq']/table['df'])/ (model.ssr/model.df_resid)) table.ix[:n_rows, pr_test] = stats.f.sf(table["F"], table["df"], model.df_resid) # fill in residual table.ix['Residual', ['sum_sq','df', test, pr_test]] = (model.ssr, model.df_resid, np.nan, np.nan) table['mean_sq'] = table['sum_sq'] / table['df'] return table #NOTE: the below is not agnostic about formula... def anova2_lm_single(model, design_info, n_rows, test, pr_test, robust): """ ANOVA type II table for one fitted linear model. Parameters ---------- model : fitted linear model results instance A fitted linear model **kwargs** scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". Notes ----- Use of this function is discouraged. Use anova_lm instead. Type II Sum of Squares compares marginal contribution of terms. Thus, it is not particularly useful for models with significant interaction terms. """ terms_info = design_info.terms[:] # copy terms_info = _remove_intercept_patsy(terms_info) names = ['sum_sq', 'df', test, pr_test] table = DataFrame(np.zeros((n_rows, 4)), columns = names) cov = _get_covariance(model, None) robust_cov = _get_covariance(model, robust) col_order = [] index = [] for i, term in enumerate(terms_info): # grab all varaibles except interaction effects that contain term # need two hypotheses matrices L1 is most restrictive, ie., term==0 # L2 is everything except term==0 cols = design_info.slice(term) L1 = lrange(cols.start, cols.stop) L2 = [] term_set = set(term.factors) for t in terms_info: # for the term you have other_set = set(t.factors) if term_set.issubset(other_set) and not term_set == other_set: col = design_info.slice(t) # on a higher order term containing current `term` L1.extend(lrange(col.start, col.stop)) L2.extend(lrange(col.start, col.stop)) L1 = np.eye(model.model.exog.shape[1])[L1] L2 = np.eye(model.model.exog.shape[1])[L2] if L2.size: LVL = np.dot(np.dot(L1,robust_cov),L2.T) from scipy import linalg orth_compl,_ = linalg.qr(LVL) r = L1.shape[0] - L2.shape[0] # L1|2 # use the non-unique orthogonal completion since L12 is rank r L12 = np.dot(orth_compl[:,-r:].T, L1) else: L12 = L1 r = L1.shape[0] #from IPython.core.debugger import Pdb; Pdb().set_trace() if test == 'F': f = model.f_test(L12, cov_p=robust_cov) table.ix[i, test] = test_value = f.fvalue table.ix[i, pr_test] = f.pvalue # need to back out SSR from f_test table.ix[i, 'df'] = r col_order.append(cols.start) index.append(term.name()) table.index = Index(index + ['Residual']) table = table.ix[np.argsort(col_order + [model.model.exog.shape[1]+1])] # back out sum of squares from f_test ssr = table[test] * table['df'] * model.ssr/model.df_resid table['sum_sq'] = ssr # fill in residual table.ix['Residual', ['sum_sq','df', test, pr_test]] = (model.ssr, model.df_resid, np.nan, np.nan) return table def anova3_lm_single(model, design_info, n_rows, test, pr_test, robust): n_rows += _has_intercept(design_info) terms_info = design_info.terms names = ['sum_sq', 'df', test, pr_test] table = DataFrame(np.zeros((n_rows, 4)), columns = names) cov = _get_covariance(model, robust) col_order = [] index = [] for i, term in enumerate(terms_info): # grab term, hypothesis is that term == 0 cols = design_info.slice(term) L1 = np.eye(model.model.exog.shape[1])[cols] L12 = L1 r = L1.shape[0] if test == 'F': f = model.f_test(L12, cov_p=cov) table.ix[i, test] = test_value = f.fvalue table.ix[i, pr_test] = f.pvalue # need to back out SSR from f_test table.ix[i, 'df'] = r #col_order.append(cols.start) index.append(term.name()) table.index = Index(index + ['Residual']) #NOTE: Don't need to sort because terms are an ordered dict now #table = table.ix[np.argsort(col_order + [model.model.exog.shape[1]+1])] # back out sum of squares from f_test ssr = table[test] * table['df'] * model.ssr/model.df_resid table['sum_sq'] = ssr # fill in residual table.ix['Residual', ['sum_sq','df', test, pr_test]] = (model.ssr, model.df_resid, np.nan, np.nan) return table def anova_lm(*args, **kwargs): """ ANOVA table for one or more fitted linear models. Parameters ---------- args : fitted linear model results instance One or more fitted linear models scale : float Estimate of variance, If None, will be estimated from the largest model. Default is None. test : str {"F", "Chisq", "Cp"} or None Test statistics to provide. Default is "F". typ : str or int {"I","II","III"} or {1,2,3} The type of ANOVA test to perform. See notes. robust : {None, "hc0", "hc1", "hc2", "hc3"} Use heteroscedasticity-corrected coefficient covariance matrix. If robust covariance is desired, it is recommended to use `hc3`. Returns ------- anova : DataFrame A DataFrame containing. Notes ----- Model statistics are given in the order of args. Models must have been fit using the formula api. See Also -------- model_results.compare_f_test, model_results.compare_lm_test Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.formula.api import ols >>> moore = sm.datasets.get_rdataset("Moore", "car", ... cache=True) # load data >>> data = moore.data >>> data = data.rename(columns={"partner.status" : ... "partner_status"}) # make name pythonic >>> moore_lm = ols('conformity ~ C(fcategory, Sum)*C(partner_status, Sum)', ... data=data).fit() >>> table = sm.stats.anova_lm(moore_lm, typ=2) # Type 2 ANOVA DataFrame >>> print table """ typ = kwargs.get('typ', 1) ### Farm Out Single model ANOVA Type I, II, III, and IV ### if len(args) == 1: model = args[0] return anova_single(model, **kwargs) try: assert typ in [1,"I"] except: raise ValueError("Multiple models only supported for type I. " "Got type %s" % str(typ)) ### COMPUTE ANOVA TYPE I ### # if given a single model if len(args) == 1: return anova_single(*args, **kwargs) # received multiple fitted models test = kwargs.get("test", "F") scale = kwargs.get("scale", None) n_models = len(args) model_formula = [] pr_test = "Pr(>%s)" % test names = ['df_resid', 'ssr', 'df_diff', 'ss_diff', test, pr_test] table = DataFrame(np.zeros((n_models, 6)), columns = names) if not scale: # assume biggest model is last scale = args[-1].scale table["ssr"] = lmap(getattr, args, ["ssr"]*n_models) table["df_resid"] = lmap(getattr, args, ["df_resid"]*n_models) table.ix[1:, "df_diff"] = -np.diff(table["df_resid"].values) table["ss_diff"] = -table["ssr"].diff() if test == "F": table["F"] = table["ss_diff"] / table["df_diff"] / scale table[pr_test] = stats.f.sf(table["F"], table["df_diff"], table["df_resid"]) # for earlier scipy - stats.f.sf(np.nan, 10, 2) -> 0 not nan table[pr_test][table['F'].isnull()] = np.nan return table if __name__ == "__main__": import pandas from statsmodels.formula.api import ols # in R #library(car) #write.csv(Moore, "moore.csv", row.names=FALSE) moore = pandas.read_table('moore.csv', delimiter=",", skiprows=1, names=['partner_status','conformity', 'fcategory','fscore']) moore_lm = ols('conformity ~ C(fcategory, Sum)*C(partner_status, Sum)', data=moore).fit() mooreB = ols('conformity ~ C(partner_status, Sum)', data=moore).fit() # for each term you just want to test vs the model without its # higher-order terms # using Monette-Fox slides and Marden class notes for linear algebra / # orthogonal complement # https://netfiles.uiuc.edu/jimarden/www/Classes/STAT324/ table = anova_lm(moore_lm, typ=2)
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/build/lib.linux-i686-2.7/matplotlib/table.py
2
17111
""" Place a table below the x-axis at location loc. The table consists of a grid of cells. The grid need not be rectangular and can have holes. Cells are added by specifying their row and column. For the purposes of positioning the cell at (0, 0) is assumed to be at the top left and the cell at (max_row, max_col) is assumed to be at bottom right. You can add additional cells outside this range to have convenient ways of positioning more interesting grids. Author : John Gill <jng@europe.renre.com> Copyright : 2004 John Gill and John Hunter License : matplotlib license """ from __future__ import division, print_function import warnings import artist from artist import Artist, allow_rasterization from patches import Rectangle from cbook import is_string_like from matplotlib import docstring from text import Text from transforms import Bbox class Cell(Rectangle): """ A cell is a Rectangle with some associated text. """ PAD = 0.1 # padding between text and rectangle def __init__(self, xy, width, height, edgecolor='k', facecolor='w', fill=True, text='', loc=None, fontproperties=None ): # Call base Rectangle.__init__(self, xy, width=width, height=height, edgecolor=edgecolor, facecolor=facecolor) self.set_clip_on(False) # Create text object if loc is None: loc = 'right' self._loc = loc self._text = Text(x=xy[0], y=xy[1], text=text, fontproperties=fontproperties) self._text.set_clip_on(False) def set_transform(self, trans): Rectangle.set_transform(self, trans) # the text does not get the transform! def set_figure(self, fig): Rectangle.set_figure(self, fig) self._text.set_figure(fig) def get_text(self): 'Return the cell Text intance' return self._text def set_fontsize(self, size): self._text.set_fontsize(size) def get_fontsize(self): 'Return the cell fontsize' return self._text.get_fontsize() def auto_set_font_size(self, renderer): """ Shrink font size until text fits. """ fontsize = self.get_fontsize() required = self.get_required_width(renderer) while fontsize > 1 and required > self.get_width(): fontsize -= 1 self.set_fontsize(fontsize) required = self.get_required_width(renderer) return fontsize @allow_rasterization def draw(self, renderer): if not self.get_visible(): return # draw the rectangle Rectangle.draw(self, renderer) # position the text self._set_text_position(renderer) self._text.draw(renderer) def _set_text_position(self, renderer): """ Set text up so it draws in the right place. Currently support 'left', 'center' and 'right' """ bbox = self.get_window_extent(renderer) l, b, w, h = bbox.bounds # draw in center vertically self._text.set_verticalalignment('center') y = b + (h / 2.0) # now position horizontally if self._loc == 'center': self._text.set_horizontalalignment('center') x = l + (w / 2.0) elif self._loc == 'left': self._text.set_horizontalalignment('left') x = l + (w * self.PAD) else: self._text.set_horizontalalignment('right') x = l + (w * (1.0 - self.PAD)) self._text.set_position((x, y)) def get_text_bounds(self, renderer): """ Get text bounds in axes co-ordinates. """ bbox = self._text.get_window_extent(renderer) bboxa = bbox.inverse_transformed(self.get_data_transform()) return bboxa.bounds def get_required_width(self, renderer): """ Get width required for this cell. """ l, b, w, h = self.get_text_bounds(renderer) return w * (1.0 + (2.0 * self.PAD)) def set_text_props(self, **kwargs): 'update the text properties with kwargs' self._text.update(kwargs) class Table(Artist): """ Create a table of cells. Table can have (optional) row and column headers. Each entry in the table can be either text or patches. Column widths and row heights for the table can be specifified. Return value is a sequence of text, line and patch instances that make up the table """ codes = {'best': 0, 'upper right': 1, # default 'upper left': 2, 'lower left': 3, 'lower right': 4, 'center left': 5, 'center right': 6, 'lower center': 7, 'upper center': 8, 'center': 9, 'top right': 10, 'top left': 11, 'bottom left': 12, 'bottom right': 13, 'right': 14, 'left': 15, 'top': 16, 'bottom': 17, } FONTSIZE = 10 AXESPAD = 0.02 # the border between the axes and table edge def __init__(self, ax, loc=None, bbox=None): Artist.__init__(self) if is_string_like(loc) and loc not in self.codes: warnings.warn('Unrecognized location %s. Falling back on ' 'bottom; valid locations are\n%s\t' % (loc, '\n\t'.join(self.codes.iterkeys()))) loc = 'bottom' if is_string_like(loc): loc = self.codes.get(loc, 1) self.set_figure(ax.figure) self._axes = ax self._loc = loc self._bbox = bbox # use axes coords self.set_transform(ax.transAxes) self._texts = [] self._cells = {} self._autoRows = [] self._autoColumns = [] self._autoFontsize = True self._cachedRenderer = None def add_cell(self, row, col, *args, **kwargs): """ Add a cell to the table. """ xy = (0, 0) cell = Cell(xy, *args, **kwargs) cell.set_figure(self.figure) cell.set_transform(self.get_transform()) cell.set_clip_on(False) self._cells[(row, col)] = cell def _approx_text_height(self): return (self.FONTSIZE / 72.0 * self.figure.dpi / self._axes.bbox.height * 1.2) @allow_rasterization def draw(self, renderer): # Need a renderer to do hit tests on mouseevent; assume the last one # will do if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') self._cachedRenderer = renderer if not self.get_visible(): return renderer.open_group('table') self._update_positions(renderer) keys = self._cells.keys() keys.sort() for key in keys: self._cells[key].draw(renderer) #for c in self._cells.itervalues(): # c.draw(renderer) renderer.close_group('table') def _get_grid_bbox(self, renderer): """Get a bbox, in axes co-ordinates for the cells. Only include those in the range (0,0) to (maxRow, maxCol)""" boxes = [self._cells[pos].get_window_extent(renderer) for pos in self._cells.iterkeys() if pos[0] >= 0 and pos[1] >= 0] bbox = Bbox.union(boxes) return bbox.inverse_transformed(self.get_transform()) def contains(self, mouseevent): """Test whether the mouse event occurred in the table. Returns T/F, {} """ if callable(self._contains): return self._contains(self, mouseevent) # TODO: Return index of the cell containing the cursor so that the user # doesn't have to bind to each one individually. if self._cachedRenderer is not None: boxes = [self._cells[pos].get_window_extent(self._cachedRenderer) for pos in self._cells.iterkeys() if pos[0] >= 0 and pos[1] >= 0] bbox = Bbox.union(boxes) return bbox.contains(mouseevent.x, mouseevent.y), {} else: return False, {} def get_children(self): 'Return the Artists contained by the table' return self._cells.values() get_child_artists = get_children # backward compatibility def get_window_extent(self, renderer): 'Return the bounding box of the table in window coords' boxes = [cell.get_window_extent(renderer) for cell in self._cells.values()] return Bbox.union(boxes) def _do_cell_alignment(self): """ Calculate row heights and column widths. Position cells accordingly. """ # Calculate row/column widths widths = {} heights = {} for (row, col), cell in self._cells.iteritems(): height = heights.setdefault(row, 0.0) heights[row] = max(height, cell.get_height()) width = widths.setdefault(col, 0.0) widths[col] = max(width, cell.get_width()) # work out left position for each column xpos = 0 lefts = {} cols = widths.keys() cols.sort() for col in cols: lefts[col] = xpos xpos += widths[col] ypos = 0 bottoms = {} rows = heights.keys() rows.sort() rows.reverse() for row in rows: bottoms[row] = ypos ypos += heights[row] # set cell positions for (row, col), cell in self._cells.iteritems(): cell.set_x(lefts[col]) cell.set_y(bottoms[row]) def auto_set_column_width(self, col): self._autoColumns.append(col) def _auto_set_column_width(self, col, renderer): """ Automagically set width for column. """ cells = [key for key in self._cells if key[1] == col] # find max width width = 0 for cell in cells: c = self._cells[cell] width = max(c.get_required_width(renderer), width) # Now set the widths for cell in cells: self._cells[cell].set_width(width) def auto_set_font_size(self, value=True): """ Automatically set font size. """ self._autoFontsize = value def _auto_set_font_size(self, renderer): if len(self._cells) == 0: return fontsize = self._cells.values()[0].get_fontsize() cells = [] for key, cell in self._cells.iteritems(): # ignore auto-sized columns if key[1] in self._autoColumns: continue size = cell.auto_set_font_size(renderer) fontsize = min(fontsize, size) cells.append(cell) # now set all fontsizes equal for cell in self._cells.itervalues(): cell.set_fontsize(fontsize) def scale(self, xscale, yscale): """ Scale column widths by xscale and row heights by yscale. """ for c in self._cells.itervalues(): c.set_width(c.get_width() * xscale) c.set_height(c.get_height() * yscale) def set_fontsize(self, size): """ Set the fontsize of the cell text ACCEPTS: a float in points """ for cell in self._cells.itervalues(): cell.set_fontsize(size) def _offset(self, ox, oy): 'Move all the artists by ox,oy (axes coords)' for c in self._cells.itervalues(): x, y = c.get_x(), c.get_y() c.set_x(x + ox) c.set_y(y + oy) def _update_positions(self, renderer): # called from renderer to allow more precise estimates of # widths and heights with get_window_extent # Do any auto width setting for col in self._autoColumns: self._auto_set_column_width(col, renderer) if self._autoFontsize: self._auto_set_font_size(renderer) # Align all the cells self._do_cell_alignment() bbox = self._get_grid_bbox(renderer) l, b, w, h = bbox.bounds if self._bbox is not None: # Position according to bbox rl, rb, rw, rh = self._bbox self.scale(rw / w, rh / h) ox = rl - l oy = rb - b self._do_cell_alignment() else: # Position using loc (BEST, UR, UL, LL, LR, CL, CR, LC, UC, C, TR, TL, BL, BR, R, L, T, B) = range(len(self.codes)) # defaults for center ox = (0.5 - w / 2) - l oy = (0.5 - h / 2) - b if self._loc in (UL, LL, CL): # left ox = self.AXESPAD - l if self._loc in (BEST, UR, LR, R, CR): # right ox = 1 - (l + w + self.AXESPAD) if self._loc in (BEST, UR, UL, UC): # upper oy = 1 - (b + h + self.AXESPAD) if self._loc in (LL, LR, LC): # lower oy = self.AXESPAD - b if self._loc in (LC, UC, C): # center x ox = (0.5 - w / 2) - l if self._loc in (CL, CR, C): # center y oy = (0.5 - h / 2) - b if self._loc in (TL, BL, L): # out left ox = - (l + w) if self._loc in (TR, BR, R): # out right ox = 1.0 - l if self._loc in (TR, TL, T): # out top oy = 1.0 - b if self._loc in (BL, BR, B): # out bottom oy = - (b + h) self._offset(ox, oy) def get_celld(self): 'return a dict of cells in the table' return self._cells def table(ax, cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): """ TABLE(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None) Factory function to generate a Table instance. Thanks to John Gill for providing the class and table. """ # Check we have some cellText if cellText is None: # assume just colours are needed rows = len(cellColours) cols = len(cellColours[0]) cellText = [[''] * rows] * cols rows = len(cellText) cols = len(cellText[0]) for row in cellText: assert len(row) == cols if cellColours is not None: assert len(cellColours) == rows for row in cellColours: assert len(row) == cols else: cellColours = ['w' * cols] * rows # Set colwidths if not given if colWidths is None: colWidths = [1.0 / cols] * cols # Check row and column labels rowLabelWidth = 0 if rowLabels is None: if rowColours is not None: rowLabels = [''] * cols rowLabelWidth = colWidths[0] elif rowColours is None: rowColours = 'w' * rows if rowLabels is not None: assert len(rowLabels) == rows offset = 0 if colLabels is None: if colColours is not None: colLabels = [''] * rows offset = 1 elif colColours is None: colColours = 'w' * cols offset = 1 if rowLabels is not None: assert len(rowLabels) == rows # Set up cell colours if not given if cellColours is None: cellColours = ['w' * cols] * rows # Now create the table table = Table(ax, loc, bbox) height = table._approx_text_height() # Add the cells for row in xrange(rows): for col in xrange(cols): table.add_cell(row + offset, col, width=colWidths[col], height=height, text=cellText[row][col], facecolor=cellColours[row][col], loc=cellLoc) # Do column labels if colLabels is not None: for col in xrange(cols): table.add_cell(0, col, width=colWidths[col], height=height, text=colLabels[col], facecolor=colColours[col], loc=colLoc) # Do row labels if rowLabels is not None: for row in xrange(rows): table.add_cell(row + offset, -1, width=rowLabelWidth or 1e-15, height=height, text=rowLabels[row], facecolor=rowColours[row], loc=rowLoc) if rowLabelWidth == 0: table.auto_set_column_width(-1) ax.add_table(table) return table docstring.interpd.update(Table=artist.kwdoc(Table))
mit
tienjunhsu/trading-with-python
sandbox/spreadCalculations.py
78
1496
''' Created on 28 okt 2011 @author: jev ''' from tradingWithPython import estimateBeta, Spread, returns, Portfolio, readBiggerScreener from tradingWithPython.lib import yahooFinance from pandas import DataFrame, Series import numpy as np import matplotlib.pyplot as plt import os symbols = ['SPY','IWM'] y = yahooFinance.HistData('temp.csv') y.startDate = (2007,1,1) df = y.loadSymbols(symbols,forceDownload=False) #df = y.downloadData(symbols) res = readBiggerScreener('CointPairs.csv') #---check with spread scanner #sp = DataFrame(index=symbols) # #sp['last'] = df.ix[-1,:] #sp['targetCapital'] = Series({'SPY':100,'IWM':-100}) #sp['targetShares'] = sp['targetCapital']/sp['last'] #print sp #The dollar-neutral ratio is about 1 * IWM - 1.7 * IWM. You will get the spread = zero (or probably very near zero) #s = Spread(symbols, histClose = df) #print s #s.value.plot() #print 'beta (returns)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='returns') #print 'beta (log)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='log') #print 'beta (standard)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='standard') #p = Portfolio(df) #p.setShares([1, -1.7]) #p.value.plot() quote = yahooFinance.getQuote(symbols) print quote s = Spread(symbols,histClose=df, estimateBeta = False) s.setLast(quote['last']) s.setShares(Series({'SPY':1,'IWM':-1.7})) print s #s.value.plot() #s.plot() fig = figure(2) s.plot()
bsd-3-clause
DTOcean/dtocean-core
tests/test_data_definitions_timetable.py
1
7507
import pytest from datetime import datetime, timedelta import numpy as np import pandas as pd import matplotlib.pyplot as plt from aneris.control.factory import InterfaceFactory from dtocean_core.core import (AutoFileInput, AutoFileOutput, AutoPlot, AutoQuery, Core) from dtocean_core.data import CoreMetaData from dtocean_core.data.definitions import TimeTable, TimeTableColumn def test_TimeTable_available(): new_core = Core() all_objs = new_core.control._store._structures assert "TimeTable" in all_objs.keys() def test_TimeTable(): dates = [] dt = datetime(2010, 12, 01) end = datetime(2010, 12, 02, 23, 59, 59) step = timedelta(seconds=3600) while dt < end: dates.append(dt) dt += step values = np.random.rand(len(dates)) raw = {"DateTime": dates, "a": values, "b": values} meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "labels": ["a", "b"], "units": ["kg", None]}) test = TimeTable() a = test.get_data(raw, meta) b = test.get_value(a) assert "a" in b assert len(b) == len(dates) assert len(b.resample('D').mean()) == 2 def test_get_None(): test = TimeTable() result = test.get_value(None) assert result is None @pytest.mark.parametrize("fext", [".csv", ".xls", ".xlsx"]) def test_TimeTable_auto_file(tmpdir, fext): test_path = tmpdir.mkdir("sub").join("test{}".format(fext)) test_path_str = str(test_path) dates = [] dt = datetime(2010, 12, 01) end = datetime(2010, 12, 02, 23, 59, 59) step = timedelta(seconds=3600) while dt < end: dates.append(dt) dt += step values = np.random.rand(len(dates)) raw = {"DateTime": dates, "a": values, "b": values} meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "labels": ["a", "b"], "units": ["kg", None]}) test = TimeTable() fout_factory = InterfaceFactory(AutoFileOutput) FOutCls = fout_factory(meta, test) fout = FOutCls() fout._path = test_path_str fout.data.result = test.get_data(raw, meta) fout.connect() assert len(tmpdir.listdir()) == 1 fin_factory = InterfaceFactory(AutoFileInput) FInCls = fin_factory(meta, test) fin = FInCls() fin._path = test_path_str fin.connect() result = test.get_data(fin.data.result, meta) assert "a" in result assert len(result) == len(dates) assert len(result.resample('D').mean()) == 2 def test_TimeTable_auto_plot(tmpdir): dates = [] dt = datetime(2010, 12, 01) end = datetime(2010, 12, 02, 23, 59, 59) step = timedelta(seconds=3600) while dt < end: dates.append(dt) dt += step values = np.random.rand(len(dates)) raw = {"DateTime": dates, "a": values, "b": values} meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "labels": ["a", "b"], "units": ["kg", None]}) test = TimeTable() fout_factory = InterfaceFactory(AutoPlot) PlotCls = fout_factory(meta, test) plot = PlotCls() plot.data.result = test.get_data(raw, meta) plot.meta.result = meta plot.connect() assert len(plt.get_fignums()) == 1 plt.close("all") def test_TimeTableColumn_available(): new_core = Core() all_objs = new_core.control._store._structures assert "TimeTableColumn" in all_objs.keys() def test_TimeTableColumn_auto_db(mocker): dates = [] dt = datetime(2010, 12, 01) end = datetime(2010, 12, 02, 23, 59, 59) step = timedelta(seconds=3600) while dt < end: dates.append(dt) dt += step values = np.random.rand(len(dates)) mock_dict = {"date": [x.date() for x in dates], "time": [x.time() for x in dates], "a": values, "b": values} mock_df = pd.DataFrame(mock_dict) mocker.patch('dtocean_core.data.definitions.get_table_df', return_value=mock_df, autospec=True) meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "labels": ["a", "b"], "units": ["kg", None], "tables": ["mock.mock", "date", "time", "a", "b"]}) test = TimeTableColumn() query_factory = InterfaceFactory(AutoQuery) QueryCls = query_factory(meta, test) query = QueryCls() query.meta.result = meta query.connect() result = test.get_data(query.data.result, meta) assert "a" in result assert len(result) == len(dates) assert len(result.resample('D').mean()) == 2 def test_TimeSeriesColumn_auto_db_empty(mocker): mock_dict = {"date": [], "time": [], "a": [], "b": []} mock_df = pd.DataFrame(mock_dict) mocker.patch('dtocean_core.data.definitions.get_table_df', return_value=mock_df, autospec=True) meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "labels": ["a", "b"], "units": ["kg", None], "tables": ["mock.mock", "date", "time", "a", "b"]}) test = TimeTableColumn() query_factory = InterfaceFactory(AutoQuery) QueryCls = query_factory(meta, test) query = QueryCls() query.meta.result = meta query.connect() assert query.data.result is None def test_TimeSeriesColumn_auto_db_none(mocker): dates = [] dt = datetime(2010, 12, 01) end = datetime(2010, 12, 02, 23, 59, 59) step = timedelta(seconds=3600) while dt < end: dates.append(dt) dt += step values = np.random.rand(len(dates)) mock_dict = {"date": [None] * len(dates), "time": [x.time() for x in dates], "a": values, "b": values} mock_df = pd.DataFrame(mock_dict) mocker.patch('dtocean_core.data.definitions.get_table_df', return_value=mock_df, autospec=True) meta = CoreMetaData({"identifier": "test", "structure": "test", "title": "test", "labels": ["a", "b"], "units": ["kg", None], "tables": ["mock.mock", "date", "time", "a", "b"]}) test = TimeTableColumn() query_factory = InterfaceFactory(AutoQuery) QueryCls = query_factory(meta, test) query = QueryCls() query.meta.result = meta query.connect() assert query.data.result is None
gpl-3.0
kevinyu98/spark
python/pyspark/sql/tests/test_pandas_map.py
8
4346
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import time import unittest if sys.version >= '3': unicode = str from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.testing.sqlutils import ReusedSQLTestCase, have_pandas, have_pyarrow, \ pandas_requirement_message, pyarrow_requirement_message if have_pandas: import pandas as pd @unittest.skipIf( not have_pandas or not have_pyarrow, pandas_requirement_message or pyarrow_requirement_message) class MapInPandasTests(ReusedSQLTestCase): @classmethod def setUpClass(cls): ReusedSQLTestCase.setUpClass() # Synchronize default timezone between Python and Java cls.tz_prev = os.environ.get("TZ", None) # save current tz if set tz = "America/Los_Angeles" os.environ["TZ"] = tz time.tzset() cls.sc.environment["TZ"] = tz cls.spark.conf.set("spark.sql.session.timeZone", tz) @classmethod def tearDownClass(cls): del os.environ["TZ"] if cls.tz_prev is not None: os.environ["TZ"] = cls.tz_prev time.tzset() ReusedSQLTestCase.tearDownClass() def test_map_partitions_in_pandas(self): def func(iterator): for pdf in iterator: assert isinstance(pdf, pd.DataFrame) assert pdf.columns == ['id'] yield pdf df = self.spark.range(10) actual = df.mapInPandas(func, 'id long').collect() expected = df.collect() self.assertEquals(actual, expected) def test_multiple_columns(self): data = [(1, "foo"), (2, None), (3, "bar"), (4, "bar")] df = self.spark.createDataFrame(data, "a int, b string") def func(iterator): for pdf in iterator: assert isinstance(pdf, pd.DataFrame) assert [d.name for d in list(pdf.dtypes)] == ['int32', 'object'] yield pdf actual = df.mapInPandas(func, df.schema).collect() expected = df.collect() self.assertEquals(actual, expected) def test_different_output_length(self): def func(iterator): for _ in iterator: yield pd.DataFrame({'a': list(range(100))}) df = self.spark.range(10) actual = df.repartition(1).mapInPandas(func, 'a long').collect() self.assertEquals(set((r.a for r in actual)), set(range(100))) def test_empty_iterator(self): def empty_iter(_): return iter([]) self.assertEqual( self.spark.range(10).mapInPandas(empty_iter, 'a int, b string').count(), 0) def test_empty_rows(self): def empty_rows(_): return iter([pd.DataFrame({'a': []})]) self.assertEqual( self.spark.range(10).mapInPandas(empty_rows, 'a int').count(), 0) def test_chain_map_partitions_in_pandas(self): def func(iterator): for pdf in iterator: assert isinstance(pdf, pd.DataFrame) assert pdf.columns == ['id'] yield pdf df = self.spark.range(10) actual = df.mapInPandas(func, 'id long').mapInPandas(func, 'id long').collect() expected = df.collect() self.assertEquals(actual, expected) if __name__ == "__main__": from pyspark.sql.tests.test_pandas_map import * try: import xmlrunner testRunner = xmlrunner.XMLTestRunner(output='target/test-reports', verbosity=2) except ImportError: testRunner = None unittest.main(testRunner=testRunner, verbosity=2)
apache-2.0
cpbl/cpblUtilities
matplotlib_utils.py
1
7242
#!/usr/bin/python import matplotlib.pyplot as plt def prepare_figure_for_publication(ax=None, width_cm=None, width_inches=None, height_cm=None, height_inches=None, fontsize=None, fontsize_labels=None, fontsize_ticklabels=None, fontsize_legend=None, fontsize_annotations =None, TeX = True, # Used for ax=None case (setup) ): """ Two ways to use this: (1) Before creating a figure, with ax=None (2) To fine-tune a figure, using ax One reasonable option for making compact figures like for Science/Nature is to create everything at double scale. This works a little more naturally with Matplotlib's default line/axis/etc sizes. Also, if you change sizes of, e.g. xticklabels and x-axis labels after they've been created, they will not necessarily be relocated appropriately. So you can call prepare_figure_for_publication with no ax/fig argument to set up figure defaults prior to creating the figure in the first place. Some wisdom on graphics: - 2015: How to produce PDFs of a given width, with chosen font size, etc: (1) Fix width to journal specifications from the beginning / early. Adjust height as you go, according to preferences for aspect ratio: figure(figsize=(11.4/2.54, chosen height)) (2) Do not use 'bbox_inches="tight"' in savefig('fn.pdf'). Instead, use the subplot_adjust options to manually adjust edges to get the figure content to fit in the PDF output (3) Be satisfied with that. If you must get something exactly tight and exactly the right size, you do this in Inkscape. But you cannot scale the content and bbox in the same step. Load PDF, select all, choose the units in the box at the top of the main menu bar, click on the lock htere, set the width. Then, in File Properties dialog, resize file to content. Save. """ if ax is None: # Set up plot settings, prior to creation fo a figure params = { 'axes.labelsize': fontsize_labels if fontsize_labels is not None else fontsize, 'font.size': fontsize, 'legend.fontsize': fontsize_legend if fontsize_legend is not None else fontsize, 'xtick.labelsize': fontsize_ticklabels if fontsize_ticklabels is not None else fontsize_labels if fontsize_labels is not None else fontsize, 'ytick.labelsize': fontsize_ticklabels if fontsize_ticklabels is not None else fontsize_labels if fontsize_labels is not None else fontsize, 'figure.figsize': (width_inches, height_inches), } if TeX: params.update({ 'text.usetex': TeX, 'text.latex.preamble': r'\usepackage{amsmath} \usepackage{amssymb}', 'text.latex.unicode': True, }) if not TeX: params.update({'text.latex.preamble':''}) plt.rcParams.update(params) return fig = ax.get_figure() if width_inches: fig.set_figwidth(width_inches) assert width_cm is None if height_inches: fig.set_figheight(height_inches) assert height_cm is None if width_cm: fig.set_figwidth(width_cm/2.54) assert width_inches is None if height_cm: fig.set_figheight(height_cm/2.54) assert height_inches is None #ax = plt.subplot(111, xlabel='x', ylabel='y', title='title') for item in fig.findobj(plt.Text) + [ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels(): if fontsize: item.set_fontsize(fontsize) def plot_diagonal(xdata=None, ydata=None, ax=None, **args): """ Plot a 45-degree line """ import pandas as pd if ax is None: ax = plt.gca() #LL = min(min(df[xv]), min(df[yv])), max(max(df[xv]), max(df[yv])) if xdata is None and ydata is None: xl, yl = ax.get_xlim(), ax.get_ylim() LL = max(min(xl), min(yl)), min(max(xl), max(yl)), elif xdata is not None and ydata is None: assert isinstance(xdata, pd.DataFrame) dd = xdata.dropna() LL = dd.min().max(), dd.max().min() else: assert xdata is not None assert ydata is not None #if isinstance(xdata, pd.Series): xdata = xdata.vlu xl, yl = xdata, ydata LL = max(min(xl), min(yl)), min(max(xl), max(yl)), ax.plot(LL, LL, **args) def figureFontSetup(uniform=12,figsize='paper', amsmath=True): """ This is deprecated. Use prepare_figure_for_publication Set font size settings for matplotlib figures so that they are reasonable for exporting to PDF to use in publications / presentations..... [different!] If not for paper, this is not yet useful. Here are some good sizes for paper: figure(468,figsize=(4.6,2)) # in inches figureFontSetup(uniform=12) # 12 pt font for a subplot(211) or for a single plot (?) figure(127,figsize=(4.6,4)) # in inches. Only works if figure is not open from last run! why does the following not work to deal with the bad bounding-box size problem?! inkscape -f GSSseries-happyLife-QC-bw.pdf --verb=FitCanvasToDrawing -A tmp.pdf .: Due to inkscape cli sucks! bug. --> See savefigall for an inkscape implementation. 2012 May: new matplotlib has tight_layout(). But it rejigs all subplots etc. My inkscape solution is much better, since it doesn't change the layout. Hoewever, it does mean that the original size is not respected! ... Still, my favourite way from now on to make figures is to append the font size setting to the name, ie to make one for a given intended final size, and to do no resaling in LaTeX. Use tight_layout() if it looks okay, but the inkscape solution in general. n.b. a clf() erases size settings on a figure! """ figsizelookup={'paper':(4.6,4),'quarter':(1.25,1) ,None:None} try: figsize=figsizelookup[figsize] except KeyError,TypeError: pass params = {#'backend': 'ps', 'axes.labelsize': 16, #'text.fontsize': 14, 'font.size': 14, 'legend.fontsize': 10, 'xtick.labelsize': 16, 'ytick.labelsize': 16, 'text.usetex': True, 'figure.figsize': figsize } #'figure.figsize': fig_size} if uniform is not None: assert isinstance(uniform,int) params = {#'backend': 'ps', 'axes.labelsize': uniform, #'text.fontsize': uniform, 'font.size': uniform, 'legend.fontsize': uniform, 'xtick.labelsize': uniform, 'ytick.labelsize': uniform, 'text.usetex': True, 'text.latex.unicode': True, 'text.latex.preamble':r'\usepackage{amsmath},\usepackage{amssymb}', 'figure.figsize': figsize } if not amsmath: params.update({'text.latex.preamble':''}) plt.rcParams.update(params) plt.rcParams['text.latex.unicode']=True #if figsize: # plt.rcParams[figure.figsize]={'paper':(4.6,4)}[figsize] return(params)
gpl-3.0
hayd/SimpleCV
SimpleCV/Features/Features.py
10
68992
# SimpleCV Feature library # # Tools return basic features in feature sets # # x = 0.00 # y = 0.00 # _mMaxX = None # _mMaxY = None # _mMinX = None # _mMinY = None # _mWidth = None # _mHeight = None # _mSrcImgW = None # mSrcImgH = None #load system libraries from SimpleCV.base import * from SimpleCV.Color import * import copy class FeatureSet(list): """ **SUMMARY** FeatureSet is a class extended from Python's list which has special functions so that it is useful for handling feature metadata on an image. In general, functions dealing with attributes will return numpy arrays, and functions dealing with sorting or filtering will return new FeatureSets. **EXAMPLE** >>> image = Image("/path/to/image.png") >>> lines = image.findLines() #lines are the feature set >>> lines.draw() >>> lines.x() >>> lines.crop() """ def __getitem__(self,key): """ **SUMMARY** Returns a FeatureSet when sliced. Previously used to return list. Now it is possible to use FeatureSet member functions on sub-lists """ if type(key) is types.SliceType: #Or can use 'try:' for speed return FeatureSet(list.__getitem__(self, key)) else: return list.__getitem__(self,key) def __getslice__(self, i, j): """ Deprecated since python 2.0, now using __getitem__ """ return self.__getitem__(slice(i,j)) def count(self): ''' This function returns the length / count of the all the items in the FeatureSet ''' return len(self) def draw(self, color = Color.GREEN,width=1, autocolor = False, alpha=-1): """ **SUMMARY** Call the draw() method on each feature in the FeatureSet. **PARAMETERS** * *color* - The color to draw the object. Either an BGR tuple or a member of the :py:class:`Color` class. * *width* - The width to draw the feature in pixels. A value of -1 usually indicates a filled region. * *autocolor* - If true a color is randomly selected for each feature. **RETURNS** Nada. Nothing. Zilch. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> feats.draw(color=Color.PUCE, width=3) >>> img.show() """ for f in self: if(autocolor): color = Color().getRandom() if alpha != -1: f.draw(color=color,width=width,alpha=alpha) else: f.draw(color=color,width=width) def show(self, color = Color.GREEN, autocolor = False,width=1): """ **EXAMPLE** This function will automatically draw the features on the image and show it. It is a basically a shortcut function for development and is the same as: **PARAMETERS** * *color* - The color to draw the object. Either an BGR tuple or a member of the :py:class:`Color` class. * *width* - The width to draw the feature in pixels. A value of -1 usually indicates a filled region. * *autocolor* - If true a color is randomly selected for each feature. **RETURNS** Nada. Nothing. Zilch. **EXAMPLE** >>> img = Image("logo") >>> feat = img.findBlobs() >>> if feat: feat.draw() >>> img.show() """ self.draw(color, width, autocolor) self[-1].image.show() def reassignImage(self, newImg): """ **SUMMARY** Return a new featureset where the features are assigned to a new image. **PARAMETERS** * *img* - the new image to which to assign the feature. .. Warning:: THIS DOES NOT PERFORM A SIZE CHECK. IF YOUR NEW IMAGE IS NOT THE EXACT SAME SIZE YOU WILL CERTAINLY CAUSE ERRORS. **EXAMPLE** >>> img = Image("lenna") >>> img2 = img.invert() >>> l = img.findLines() >>> l2 = img.reassignImage(img2) >>> l2.show() """ retVal = FeatureSet() for i in self: retVal.append(i.reassign(newImg)) return retVal def x(self): """ **SUMMARY** Returns a numpy array of the x (horizontal) coordinate of each feature. **RETURNS** A numpy array. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> xs = feats.x() >>> print xs """ return np.array([f.x for f in self]) def y(self): """ **SUMMARY** Returns a numpy array of the y (vertical) coordinate of each feature. **RETURNS** A numpy array. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> xs = feats.y() >>> print xs """ return np.array([f.y for f in self]) def coordinates(self): """ **SUMMARY** Returns a 2d numpy array of the x,y coordinates of each feature. This is particularly useful if you want to use Scipy's Spatial Distance module **RETURNS** A numpy array of all the positions in the featureset. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> xs = feats.coordinates() >>> print xs """ return np.array([[f.x, f.y] for f in self]) def center(self): return self.coordinates() def area(self): """ **SUMMARY** Returns a numpy array of the area of each feature in pixels. **RETURNS** A numpy array of all the positions in the featureset. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> xs = feats.area() >>> print xs """ return np.array([f.area() for f in self]) def sortArea(self): """ **SUMMARY** Returns a new FeatureSet, with the largest area features first. **RETURNS** A featureset sorted based on area. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> feats = feats.sortArea() >>> print feats[-1] # biggest blob >>> print feats[0] # smallest blob """ return FeatureSet(sorted(self, key = lambda f: f.area())) def sortX(self): """ **SUMMARY** Returns a new FeatureSet, with the smallest x coordinates features first. **RETURNS** A featureset sorted based on area. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> feats = feats.sortX() >>> print feats[-1] # biggest blob >>> print feats[0] # smallest blob """ return FeatureSet(sorted(self, key = lambda f: f.x)) def sortY(self): """ **SUMMARY** Returns a new FeatureSet, with the smallest y coordinates features first. **RETURNS** A featureset sorted based on area. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> feats = feats.sortY() >>> print feats[-1] # biggest blob >>> print feats[0] # smallest blob """ return FeatureSet(sorted(self, key = lambda f: f.y)) def distanceFrom(self, point = (-1, -1)): """ **SUMMARY** Returns a numpy array of the distance each Feature is from a given coordinate. Default is the center of the image. **PARAMETERS** * *point* - A point on the image from which we will calculate distance. **RETURNS** A numpy array of distance values. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> d = feats.distanceFrom() >>> d[0] #show the 0th blobs distance to the center. **TO DO** Make this accept other features to measure from. """ if (point[0] == -1 or point[1] == -1 and len(self)): point = self[0].image.size() return spsd.cdist(self.coordinates(), [point])[:,0] def sortDistance(self, point = (-1, -1)): """ **SUMMARY** Returns a sorted FeatureSet with the features closest to a given coordinate first. Default is from the center of the image. **PARAMETERS** * *point* - A point on the image from which we will calculate distance. **RETURNS** A numpy array of distance values. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> d = feats.sortDistance() >>> d[-1].show() #show the 0th blobs distance to the center. """ return FeatureSet(sorted(self, key = lambda f: f.distanceFrom(point))) def distancePairs(self): """ **SUMMARY** Returns the square-form of pairwise distances for the featureset. The resulting N x N array can be used to quickly look up distances between features. **RETURNS** A NxN np matrix of distance values. **EXAMPLE** >>> img = Image("lenna") >>> feats = img.findBlobs() >>> d = feats.distancePairs() >>> print d """ return spsd.squareform(spsd.pdist(self.coordinates())) def angle(self): """ **SUMMARY** Return a numpy array of the angles (theta) of each feature. Note that theta is given in degrees, with 0 being horizontal. **RETURNS** An array of angle values corresponding to the features. **EXAMPLE** >>> img = Image("lenna") >>> l = img.findLines() >>> angs = l.angle() >>> print angs """ return np.array([f.angle() for f in self]) def sortAngle(self, theta = 0): """ Return a sorted FeatureSet with the features closest to a given angle first. Note that theta is given in radians, with 0 being horizontal. **RETURNS** An array of angle values corresponding to the features. **EXAMPLE** >>> img = Image("lenna") >>> l = img.findLines() >>> l = l.sortAngle() >>> print angs """ return FeatureSet(sorted(self, key = lambda f: abs(f.angle() - theta))) def length(self): """ **SUMMARY** Return a numpy array of the length (longest dimension) of each feature. **RETURNS** A numpy array of the length, in pixels, of eatch feature object. **EXAMPLE** >>> img = Image("Lenna") >>> l = img.findLines() >>> lengt = l.length() >>> lengt[0] # length of the 0th element. """ return np.array([f.length() for f in self]) def sortLength(self): """ **SUMMARY** Return a sorted FeatureSet with the longest features first. **RETURNS** A sorted FeatureSet. **EXAMPLE** >>> img = Image("Lenna") >>> l = img.findLines().sortLength() >>> lengt[-1] # length of the 0th element. """ return FeatureSet(sorted(self, key = lambda f: f.length())) def meanColor(self): """ **SUMMARY** Return a numpy array of the average color of the area covered by each Feature. **RETURNS** Returns an array of RGB triplets the correspond to the mean color of the feature. **EXAMPLE** >>> img = Image("lenna") >>> kp = img.findKeypoints() >>> c = kp.meanColor() """ return np.array([f.meanColor() for f in self]) def colorDistance(self, color = (0, 0, 0)): """ **SUMMARY** Return a numpy array of the distance each features average color is from a given color tuple (default black, so colorDistance() returns intensity) **PARAMETERS** * *color* - The color to calculate the distance from. **RETURNS** The distance of the average color for the feature from given color as a numpy array. **EXAMPLE** >>> img = Image("lenna") >>> circs = img.findCircle() >>> d = circs.colorDistance(color=Color.BLUE) >>> print d """ return spsd.cdist(self.meanColor(), [color])[:,0] def sortColorDistance(self, color = (0, 0, 0)): """ Return a sorted FeatureSet with features closest to a given color first. Default is black, so sortColorDistance() will return darkest to brightest """ return FeatureSet(sorted(self, key = lambda f: f.colorDistance(color))) def filter(self, filterarray): """ **SUMMARY** Return a FeatureSet which is filtered on a numpy boolean array. This will let you use the attribute functions to easily screen Features out of return FeatureSets. **PARAMETERS** * *filterarray* - A numpy array, matching the size of the feature set, made of Boolean values, we return the true values and reject the False value. **RETURNS** The revised feature set. **EXAMPLE** Return all lines < 200px >>> my_lines.filter(my_lines.length() < 200) # returns all lines < 200px >>> my_blobs.filter(my_blobs.area() > 0.9 * my_blobs.length**2) # returns blobs that are nearly square >>> my_lines.filter(abs(my_lines.angle()) < numpy.pi / 4) #any lines within 45 degrees of horizontal >>> my_corners.filter(my_corners.x() - my_corners.y() > 0) #only return corners in the upper diagonal of the image """ return FeatureSet(list(np.array(self)[np.array(filterarray)])) def width(self): """ **SUMMARY** Returns a nparray which is the width of all the objects in the FeatureSet. **RETURNS** A numpy array of width values. **EXAMPLE** >>> img = Image("NotLenna") >>> l = img.findLines() >>> l.width() """ return np.array([f.width() for f in self]) def height(self): """ Returns a nparray which is the height of all the objects in the FeatureSet **RETURNS** A numpy array of width values. **EXAMPLE** >>> img = Image("NotLenna") >>> l = img.findLines() >>> l.height() """ return np.array([f.height() for f in self]) def crop(self): """ **SUMMARY** Returns a nparray with the cropped features as SimpleCV image. **RETURNS** A SimpleCV image cropped to each image. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> newImg = b.crop() >>> newImg.show() >>> time.sleep(1) """ return np.array([f.crop() for f in self]) def inside(self,region): """ **SUMMARY** Return only the features inside the region. where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that are inside the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> inside = lines.inside(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if(f.isContainedWithin(region)): fs.append(f) return fs def outside(self,region): """ **SUMMARY** Return only the features outside the region. where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that are outside the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> outside = lines.outside(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if(f.isNotContainedWithin(region)): fs.append(f) return fs def overlaps(self,region): """ **SUMMARY** Return only the features that overlap or the region. Where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that overlap the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> outside = lines.overlaps(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if( f.overlaps(region) ): fs.append(f) return fs def above(self,region): """ **SUMMARY** Return only the features that are above a region. Where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that are above the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> outside = lines.above(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if(f.above(region)): fs.append(f) return fs def below(self,region): """ **SUMMARY** Return only the features below the region. where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that are below the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> inside = lines.below(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if(f.below(region)): fs.append(f) return fs def left(self,region): """ **SUMMARY** Return only the features left of the region. where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that are left of the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> left = lines.left(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if(f.left(region)): fs.append(f) return fs def right(self,region): """ **SUMMARY** Return only the features right of the region. where region can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *region* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a featureset of features that are right of the region. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[-1] >>> lines = img.findLines() >>> right = lines.right(b) **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ fs = FeatureSet() for f in self: if(f.right(region)): fs.append(f) return fs def onImageEdge(self, tolerance=1): """ **SUMMARY** The method returns a feature set of features that are on or "near" the edge of the image. This is really helpful for removing features that are edge effects. **PARAMETERS** * *tolerance* - the distance in pixels from the edge at which a feature qualifies as being "on" the edge of the image. **RETURNS** Returns a featureset of features that are on the edge of the image. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> es = blobs.onImageEdge() >>> es.draw(color=Color.RED) >>> img.show() """ fs = FeatureSet() for f in self: if(f.onImageEdge(tolerance)): fs.append(f) return fs def notOnImageEdge(self, tolerance=1): """ **SUMMARY** The method returns a feature set of features that are not on or "near" the edge of the image. This is really helpful for removing features that are edge effects. **PARAMETERS** * *tolerance* - the distance in pixels from the edge at which a feature qualifies as being "on" the edge of the image. **RETURNS** Returns a featureset of features that are not on the edge of the image. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> es = blobs.notOnImageEdge() >>> es.draw(color=Color.RED) >>> img.show() """ fs = FeatureSet() for f in self: if(f.notOnImageEdge(tolerance)): fs.append(f) return fs def topLeftCorners(self): """ **SUMMARY** This method returns the top left corner of each feature's bounding box. **RETURNS** A numpy array of x,y position values. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> tl = img.topLeftCorners() >>> print tl[0] """ return np.array([f.topLeftCorner() for f in self]) def bottomLeftCorners(self): """ **SUMMARY** This method returns the bottom left corner of each feature's bounding box. **RETURNS** A numpy array of x,y position values. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> bl = img.bottomLeftCorners() >>> print bl[0] """ return np.array([f.bottomLeftCorner() for f in self]) def topLeftCorners(self): """ **SUMMARY** This method returns the top left corner of each feature's bounding box. **RETURNS** A numpy array of x,y position values. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> tl = img.bottomLeftCorners() >>> print tl[0] """ return np.array([f.topLeftCorner() for f in self]) def topRightCorners(self): """ **SUMMARY** This method returns the top right corner of each feature's bounding box. **RETURNS** A numpy array of x,y position values. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> tr = img.topRightCorners() >>> print tr[0] """ return np.array([f.topRightCorner() for f in self]) def bottomRightCorners(self): """ **SUMMARY** This method returns the bottom right corner of each feature's bounding box. **RETURNS** A numpy array of x,y position values. **EXAMPLE** >>> img = Image("./sampleimages/EdgeTest1.png") >>> blobs = img.findBlobs() >>> br = img.bottomRightCorners() >>> print br[0] """ return np.array([f.bottomRightCorner() for f in self]) def aspectRatios(self): """ **SUMMARY** Return the aspect ratio of all the features in the feature set, For our purposes aspect ration is max(width,height)/min(width,height). **RETURNS** A numpy array of the aspect ratio of the features in the featureset. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs.aspectRatio() """ return np.array([f.aspectRatio() for f in self]) def cluster(self,method="kmeans",properties=None,k=3): """ **SUMMARY** This function clusters the blobs in the featureSet based on the properties. Properties can be "color", "shape" or "position" of blobs. Clustering is done using K-Means or Hierarchical clustering(Ward) algorithm. **PARAMETERS** * *properties* - It should be a list with any combination of "color", "shape", "position". properties = ["color","position"]. properties = ["position","shape"]. properties = ["shape"] * *method* - if method is "kmeans", it will cluster using K-Means algorithm, if the method is "hierarchical", no need to spicify the number of clusters * *k* - The number of clusters(kmeans). **RETURNS** A list of featureset, each being a cluster itself. **EXAMPLE** >>> img = Image("lenna") >>> blobs = img.findBlobs() >>> clusters = blobs.cluster(method="kmeans",properties=["color"],k=5) >>> for i in clusters: >>> i.draw(color=Color.getRandom(),width=5) >>> img.show() """ try : from sklearn.cluster import KMeans, Ward from sklearn import __version__ except : logger.warning("install scikits-learning package") return X = [] #List of feature vector of each blob if not properties: properties = ['color','shape','position'] if k > len(self): logger.warning("Number of clusters cannot be greater then the number of blobs in the featureset") return for i in self: featureVector = [] if 'color' in properties: featureVector.extend(i.mAvgColor) if 'shape' in properties: featureVector.extend(i.mHu) if 'position' in properties: featureVector.extend(i.extents()) if not featureVector : logger.warning("properties parameter is not specified properly") return X.append(featureVector) if method == "kmeans": # Ignore minor version numbers. sklearn_version = re.search(r'\d+\.\d+', __version__).group() if (float(sklearn_version) > 0.11): k_means = KMeans(init='random', n_clusters=k, n_init=10).fit(X) else: k_means = KMeans(init='random', k=k, n_init=10).fit(X) KClusters = [ FeatureSet([]) for i in range(k)] for i in range(len(self)): KClusters[k_means.labels_[i]].append(self[i]) return KClusters if method == "hierarchical": ward = Ward(n_clusters=int(sqrt(len(self)))).fit(X) #n_clusters = sqrt(n) WClusters = [ FeatureSet([]) for i in range(int(sqrt(len(self))))] for i in range(len(self)): WClusters[ward.labels_[i]].append(self[i]) return WClusters @property def image(self): if not len(self): return None return self[0].image @image.setter def image(self, i): for f in self: f.image = i ### ---------------------------------------------------------------------------- ### ---------------------------------------------------------------------------- ### ----------------------------FEATURE CLASS----------------------------------- ### ---------------------------------------------------------------------------- ### ---------------------------------------------------------------------------- class Feature(object): """ **SUMMARY** The Feature object is an abstract class which real features descend from. Each feature object has: * a draw() method, * an image property, referencing the originating Image object * x and y coordinates * default functions for determining angle, area, meanColor, etc for FeatureSets * in the Feature class, these functions assume the feature is 1px """ x = 0.00 y = 0.00 _mMaxX = None _mMaxY = None _mMinX = None _mMinY = None _mWidth = None _mHeight = None _mSrcImgW = None _mSrcImgH = None # This is 2.0 refactoring mBoundingBox = None # THIS SHALT BE TOP LEFT (X,Y) THEN W H i.e. [X,Y,W,H] mExtents = None # THIS SHALT BE [MAXX,MINX,MAXY,MINY] points = None # THIS SHALT BE (x,y) tuples in the ORDER [(TopLeft),(TopRight),(BottomLeft),(BottomRight)] image = "" #parent image #points = [] #boundingBox = [] def __init__(self, i, at_x, at_y, points): #THE COVENANT IS THAT YOU PROVIDE THE POINTS IN THE SPECIFIED FORMAT AND ALL OTHER VALUES SHALT FLOW self.x = at_x self.y = at_y self.image = i self.points = points self._updateExtents(new_feature=True) def reassign(self, img): """ **SUMMARY** Reassign the image of this feature and return an updated copy of the feature. **PARAMETERS** * *img* - the new image to which to assign the feature. .. Warning:: THIS DOES NOT PERFORM A SIZE CHECK. IF YOUR NEW IMAGE IS NOT THE EXACT SAME SIZE YOU WILL CERTAINLY CAUSE ERRORS. **EXAMPLE** >>> img = Image("lenna") >>> img2 = img.invert() >>> l = img.findLines() >>> l2 = img.reassignImage(img2) >>> l2.show() """ retVal = copy.deepcopy(self) if( self.image.width != img.width or self.image.height != img.height ): warnings.warn("DON'T REASSIGN IMAGES OF DIFFERENT SIZES") retVal.image = img return retVal def corners(self): self._updateExtents() return self.points def coordinates(self): """ **SUMMARY** Returns the x,y position of the feature. This is usually the center coordinate. **RETURNS** Returns an (x,y) tuple of the position of the feature. **EXAMPLE** >>> img = Image("aerospace.png") >>> blobs = img.findBlobs() >>> for b in blobs: >>> print b.coordinates() """ return np.array([self.x, self.y]) def draw(self, color = Color.GREEN): """ **SUMMARY** This method will draw the feature on the source image. **PARAMETERS** * *color* - The color as an RGB tuple to render the image. **RETURNS** Nothing. **EXAMPLE** >>> img = Image("RedDog2.jpg") >>> blobs = img.findBlobs() >>> blobs[-1].draw() >>> img.show() """ self.image[self.x, self.y] = color def show(self, color = Color.GREEN): """ **SUMMARY** This function will automatically draw the features on the image and show it. **RETURNS** Nothing. **EXAMPLE** >>> img = Image("logo") >>> feat = img.findBlobs() >>> feat[-1].show() #window pops up. """ self.draw(color) self.image.show() def distanceFrom(self, point = (-1, -1)): """ **SUMMARY** Given a point (default to center of the image), return the euclidean distance of x,y from this point. **PARAMETERS** * *point* - The point, as an (x,y) tuple on the image to measure distance from. **RETURNS** The distance as a floating point value in pixels. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> blobs[-1].distanceFrom(blobs[-2].coordinates()) """ if (point[0] == -1 or point[1] == -1): point = np.array(self.image.size()) / 2 return spsd.euclidean(point, [self.x, self.y]) def meanColor(self): """ **SUMMARY** Return the average color within the feature as a tuple. **RETURNS** An RGB color tuple. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> if (b.meanColor() == color.WHITE): >>> print "Found a white thing" """ return self.image[self.x, self.y] def colorDistance(self, color = (0, 0, 0)): """ **SUMMARY** Return the euclidean color distance of the color tuple at x,y from a given color (default black). **PARAMETERS** * *color* - An RGB triplet to calculate from which to calculate the color distance. **RETURNS** A floating point color distance value. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> print b.colorDistance(color.WHITE): """ return spsd.euclidean(np.array(color), np.array(self.meanColor())) def angle(self): """ **SUMMARY** Return the angle (theta) in degrees of the feature. The default is 0 (horizontal). .. Warning:: This is not a valid operation for all features. **RETURNS** An angle value in degrees. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> if b.angle() == 0: >>> print "I AM HORIZONTAL." **TODO** Double check that values are being returned consistently. """ return 0 def length(self): """ **SUMMARY** This method returns the longest dimension of the feature (i.e max(width,height)). **RETURNS** A floating point length value. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> if b.length() > 200: >>> print "OH MY! - WHAT A BIG FEATURE YOU HAVE!" >>> print "---I bet you say that to all the features." **TODO** Should this be sqrt(x*x+y*y)? """ return float(np.max([self.width(),self.height()])) def distanceToNearestEdge(self): """ **SUMMARY** This method returns the distance, in pixels, from the nearest image edge. **RETURNS** The integer distance to the nearest edge. **EXAMPLE** >>> img = Image("../sampleimages/EdgeTest1.png") >>> b = img.findBlobs() >>> b[0].distanceToNearestEdge() """ w = self.image.width h = self.image.height return np.min([self._mMinX,self._mMinY, w-self._mMaxX,h-self._mMaxY]) def onImageEdge(self,tolerance=1): """ **SUMMARY** This method returns True if the feature is less than `tolerance` pixels away from the nearest edge. **PARAMETERS** * *tolerance* - the distance in pixels at which a feature qualifies as being on the image edge. **RETURNS** True if the feature is on the edge, False otherwise. **EXAMPLE** >>> img = Image("../sampleimages/EdgeTest1.png") >>> b = img.findBlobs() >>> if(b[0].onImageEdge()): >>> print "HELP! I AM ABOUT TO FALL OFF THE IMAGE" """ # this has to be one to deal with blob library weirdness that goes deep down to opencv return ( self.distanceToNearestEdge() <= tolerance ) def notOnImageEdge(self,tolerance=1): """ **SUMMARY** This method returns True if the feature is greate than `tolerance` pixels away from the nearest edge. **PARAMETERS** * *tolerance* - the distance in pixels at which a feature qualifies as not being on the image edge. **RETURNS** True if the feature is not on the edge of the image, False otherwise. **EXAMPLE** >>> img = Image("../sampleimages/EdgeTest1.png") >>> b = img.findBlobs() >>> if(b[0].notOnImageEdge()): >>> print "I am safe and sound." """ # this has to be one to deal with blob library weirdness that goes deep down to opencv return ( self.distanceToNearestEdge() > tolerance ) def aspectRatio(self): """ **SUMMARY** Return the aspect ratio of the feature, which for our purposes is max(width,height)/min(width,height). **RETURNS** A single floating point value of the aspect ration. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> b[0].aspectRatio() """ self._updateExtents() return self.mAspectRatio def area(self): """ **SUMMARY** Returns the area (number of pixels) covered by the feature. **RETURNS** An integer area of the feature. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> if b.area() > 200: >>> print b.area() """ return self.width() * self.height() def width(self): """ **SUMMARY** Returns the height of the feature. **RETURNS** An integer value for the feature's width. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> if b.width() > b.height(): >>> print "wider than tall" >>> b.draw() >>> img.show() """ self._updateExtents() return self._mWidth def height(self): """ **SUMMARY** Returns the height of the feature. **RETURNS** An integer value of the feature's height. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> for b in blobs: >>> if b.width() > b.height(): >>> print "wider than tall" >>> b.draw() >>> img.show() """ self._updateExtents() return self._mHeight def crop(self): """ **SUMMARY** This function crops the source image to the location of the feature and returns a new SimpleCV image. **RETURNS** A SimpleCV image that is cropped to the feature position and size. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> big = blobs[-1].crop() >>> big.show() """ return self.image.crop(self.x, self.y, self.width(), self.height(), centered = True) def __repr__(self): return "%s.%s at (%d,%d)" % (self.__class__.__module__, self.__class__.__name__, self.x, self.y) def _updateExtents(self, new_feature=False): # mBoundingBox = None # THIS SHALT BE TOP LEFT (X,Y) THEN W H i.e. [X,Y,W,H] # mExtents = None # THIS SHALT BE [MAXX,MINX,MAXY,MINY] # points = None # THIS SHALT BE (x,y) tuples in the ORDER [(TopLeft),(TopRight),(BottomLeft),(BottomRight)] max_x = self._mMaxX min_x = self._mMinX max_y = self._mMaxY min_y = self._mMinY width = self._mWidth height = self._mHeight extents = self.mExtents bounding_box = self.mBoundingBox #if new_feature or None in [self._mMaxX, self._mMinX, self._mMaxY, self._mMinY, # self._mWidth, self._mHeight, self.mExtents, self.mBoundingBox]: if new_feature or None in [max_x, min_x, max_y, min_y, width, height, extents, bounding_box]: max_x = max_y = float("-infinity") min_x = min_y = float("infinity") for p in self.points: if (p[0] > max_x): max_x = p[0] if (p[0] < min_x): min_x = p[0] if (p[1] > max_y): max_y = p[1] if (p[1] < min_y): min_y = p[1] width = max_x - min_x height = max_y - min_y if (width <= 0): width = 1 if (height <= 0): height = 1 self.mBoundingBox = [min_x, min_y, width, height] self.mExtents = [max_x, min_x, max_y, min_y] if width > height: self.mAspectRatio = float(width/height) else: self.mAspectRatio = float(height/width) self._mMaxX = max_x self._mMinX = min_x self._mMaxY = max_y self._mMinY = min_y self._mWidth = width self._mHeight = height def boundingBox(self): """ **SUMMARY** This function returns a rectangle which bounds the blob. **RETURNS** A list of [x, y, w, h] where (x, y) are the top left point of the rectangle and w, h are its width and height respectively. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].boundingBox() """ self._updateExtents() return self.mBoundingBox def extents(self): """ **SUMMARY** This function returns the maximum and minimum x and y values for the feature and returns them as a tuple. **RETURNS** A tuple of the extents of the feature. The order is (MaxX,MaxY,MinX,MinY). **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].extents() """ self._updateExtents() return self.mExtents def minY(self): """ **SUMMARY** This method return the minimum y value of the bounding box of the the feature. **RETURNS** An integer value of the minimum y value of the feature. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].minY() """ self._updateExtents() return self._mMinY def maxY(self): """ **SUMMARY** This method return the maximum y value of the bounding box of the the feature. **RETURNS** An integer value of the maximum y value of the feature. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].maxY() """ self._updateExtents() return self._mMaxY def minX(self): """ **SUMMARY** This method return the minimum x value of the bounding box of the the feature. **RETURNS** An integer value of the minimum x value of the feature. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].minX() """ self._updateExtents() return self._mMinX def maxX(self): """ **SUMMARY** This method return the minimum x value of the bounding box of the the feature. **RETURNS** An integer value of the maxium x value of the feature. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].maxX() """ self._updateExtents() return self._mMaxX def topLeftCorner(self): """ **SUMMARY** This method returns the top left corner of the bounding box of the blob as an (x,y) tuple. **RESULT** Returns a tupple of the top left corner. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].topLeftCorner() """ self._updateExtents() return (self._mMinX,self._mMinY) def bottomRightCorner(self): """ **SUMMARY** This method returns the bottom right corner of the bounding box of the blob as an (x,y) tuple. **RESULT** Returns a tupple of the bottom right corner. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].bottomRightCorner() """ self._updateExtents() return (self._mMaxX,self._mMaxY) def bottomLeftCorner(self): """ **SUMMARY** This method returns the bottom left corner of the bounding box of the blob as an (x,y) tuple. **RESULT** Returns a tupple of the bottom left corner. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].bottomLeftCorner() """ self._updateExtents() return (self._mMinX,self._mMaxY) def topRightCorner(self): """ **SUMMARY** This method returns the top right corner of the bounding box of the blob as an (x,y) tuple. **RESULT** Returns a tupple of the top right corner. **EXAMPLE** >>> img = Image("OWS.jpg") >>> blobs = img.findBlobs(128) >>> print blobs[-1].topRightCorner() """ self._updateExtents() return (self._mMaxX,self._mMinY) def above(self,object): """ **SUMMARY** Return true if the feature is above the object, where object can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *object* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature is above the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].above(b) ): >>> print "above the biggest blob" """ if( isinstance(object,Feature) ): return( self.maxY() < object.minY() ) elif( isinstance(object,tuple) or isinstance(object,np.ndarray) ): return( self.maxY() < object[1] ) elif( isinstance(object,float) or isinstance(object,int) ): return( self.maxY() < object ) else: logger.warning("SimpleCV did not recognize the input type to feature.above(). This method only takes another feature, an (x,y) tuple, or a ndarray type.") return None def below(self,object): """ **SUMMARY** Return true if the feature is below the object, where object can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *object* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature is below the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].below(b) ): >>> print "above the biggest blob" """ if( isinstance(object,Feature) ): return( self.minY() > object.maxY() ) elif( isinstance(object,tuple) or isinstance(object,np.ndarray) ): return( self.minY() > object[1] ) elif( isinstance(object,float) or isinstance(object,int) ): return( self.minY() > object ) else: logger.warning("SimpleCV did not recognize the input type to feature.below(). This method only takes another feature, an (x,y) tuple, or a ndarray type.") return None def right(self,object): """ **SUMMARY** Return true if the feature is to the right object, where object can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *object* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature is to the right object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].right(b) ): >>> print "right of the the blob" """ if( isinstance(object,Feature) ): return( self.minX() > object.maxX() ) elif( isinstance(object,tuple) or isinstance(object,np.ndarray) ): return( self.minX() > object[0] ) elif( isinstance(object,float) or isinstance(object,int) ): return( self.minX() > object ) else: logger.warning("SimpleCV did not recognize the input type to feature.right(). This method only takes another feature, an (x,y) tuple, or a ndarray type.") return None def left(self,object): """ **SUMMARY** Return true if the feature is to the left of the object, where object can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *object* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature is to the left of the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].left(b) ): >>> print "left of the biggest blob" """ if( isinstance(object,Feature) ): return( self.maxX() < object.minX() ) elif( isinstance(object,tuple) or isinstance(object,np.ndarray) ): return( self.maxX() < object[0] ) elif( isinstance(object,float) or isinstance(object,int) ): return( self.maxX() < object ) else: logger.warning("SimpleCV did not recognize the input type to feature.left(). This method only takes another feature, an (x,y) tuple, or a ndarray type.") return None def contains(self,other): """ **SUMMARY** Return true if the feature contains the object, where object can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *object* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature contains the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].contains(b) ): >>> print "this blob is contained in the biggest blob" **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ retVal = False bounds = self.points if( isinstance(other,Feature) ):# A feature retVal = True for p in other.points: # this isn't completely correct - only tests if points lie in poly, not edges. p2 = (int(p[0]),int(p[1])) retVal = self._pointInsidePolygon(p2,bounds) if( not retVal ): break # a single point elif( (isinstance(other,tuple) and len(other)==2) or ( isinstance(other,np.ndarray) and other.shape[0]==2) ): retVal = self._pointInsidePolygon(other,bounds) elif( isinstance(other,tuple) and len(other)==3 ): # A circle #assume we are in x,y, r format retVal = True rr = other[2]*other[2] x = other[0] y = other[1] for p in bounds: test = ((x-p[0])*(x-p[0]))+((y-p[1])*(y-p[1])) if( test < rr ): retVal = False break elif( isinstance(other,tuple) and len(other)==4 and ( isinstance(other[0],float) or isinstance(other[0],int))): retVal = ( self.maxX() <= other[0]+other[2] and self.minX() >= other[0] and self.maxY() <= other[1]+other[3] and self.minY() >= other[1] ) elif(isinstance(other,list) and len(other) >= 4): # an arbitrary polygon #everything else .... retVal = True for p in other: test = self._pointInsidePolygon(p,bounds) if(not test): retVal = False break else: logger.warning("SimpleCV did not recognize the input type to features.contains. This method only takes another blob, an (x,y) tuple, or a ndarray type.") return False return retVal def overlaps(self, other): """ **SUMMARY** Return true if the feature overlaps the object, where object can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *object* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature overlaps object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].overlaps(b) ): >>> print "This blob overlaps the biggest blob" Returns true if this blob contains at least one point, part of a collection of points, or any part of a blob. **NOTE** This currently performs a bounding box test, not a full polygon test for speed. """ retVal = False bounds = self.points if( isinstance(other,Feature) ):# A feature retVal = True for p in other.points: # this isn't completely correct - only tests if points lie in poly, not edges. retVal = self._pointInsidePolygon(p,bounds) if( retVal ): break elif( (isinstance(other,tuple) and len(other)==2) or ( isinstance(other,np.ndarray) and other.shape[0]==2) ): retVal = self._pointInsidePolygon(other,bounds) elif( isinstance(other,tuple) and len(other)==3 and not isinstance(other[0],tuple)): # A circle #assume we are in x,y, r format retVal = False rr = other[2]*other[2] x = other[0] y = other[1] for p in bounds: test = ((x-p[0])*(x-p[0]))+((y-p[1])*(y-p[1])) if( test < rr ): retVal = True break elif( isinstance(other,tuple) and len(other)==4 and ( isinstance(other[0],float) or isinstance(other[0],int))): retVal = ( self.contains( (other[0],other[1] ) ) or # see if we contain any corner self.contains( (other[0]+other[2],other[1] ) ) or self.contains( (other[0],other[1]+other[3] ) ) or self.contains( (other[0]+other[2],other[1]+other[3] ) ) ) elif(isinstance(other,list) and len(other) >= 3): # an arbitrary polygon #everything else .... retVal = False for p in other: test = self._pointInsidePolygon(p,bounds) if(test): retVal = True break else: logger.warning("SimpleCV did not recognize the input type to features.overlaps. This method only takes another blob, an (x,y) tuple, or a ndarray type.") return False return retVal def doesNotContain(self, other): """ **SUMMARY** Return true if the feature does not contain the other object, where other can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *other* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature does not contain the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].doesNotContain(b) ): >>> print "above the biggest blob" Returns true if all of features points are inside this point. """ return not self.contains(other) def doesNotOverlap( self, other): """ **SUMMARY** Return true if the feature does not overlap the object other, where other can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *other* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature does not Overlap the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].doesNotOverlap(b) ): >>> print "does not over overlap biggest blob" """ return not self.overlaps( other) def isContainedWithin(self,other): """ **SUMMARY** Return true if the feature is contained withing the object other, where other can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *other* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature is above the object, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].isContainedWithin(b) ): >>> print "inside the blob" """ retVal = True bounds = self.points if( isinstance(other,Feature) ): # another feature do the containment test retVal = other.contains(self) elif( isinstance(other,tuple) and len(other)==3 ): # a circle #assume we are in x,y, r format rr = other[2]*other[2] # radius squared x = other[0] y = other[1] for p in bounds: test = ((x-p[0])*(x-p[0]))+((y-p[1])*(y-p[1])) if( test > rr ): retVal = False break elif( isinstance(other,tuple) and len(other)==4 and # a bounding box ( isinstance(other[0],float) or isinstance(other[0],int))): # we assume a tuple of four is (x,y,w,h) retVal = ( self.maxX() <= other[0]+other[2] and self.minX() >= other[0] and self.maxY() <= other[1]+other[3] and self.minY() >= other[1] ) elif(isinstance(other,list) and len(other) > 2 ): # an arbitrary polygon #everything else .... retVal = True for p in bounds: test = self._pointInsidePolygon(p,other) if(not test): retVal = False break else: logger.warning("SimpleCV did not recognize the input type to features.contains. This method only takes another blob, an (x,y) tuple, or a ndarray type.") retVal = False return retVal def isNotContainedWithin(self,shape): """ **SUMMARY** Return true if the feature is not contained within the shape, where shape can be a bounding box, bounding circle, a list of tuples in a closed polygon, or any other featutres. **PARAMETERS** * *shape* * A bounding box - of the form (x,y,w,h) where x,y is the upper left corner * A bounding circle of the form (x,y,r) * A list of x,y tuples defining a closed polygon e.g. ((x,y),(x,y),....) * Any two dimensional feature (e.g. blobs, circle ...) **RETURNS** Returns a Boolean, True if the feature is not contained within the shape, False otherwise. **EXAMPLE** >>> img = Image("Lenna") >>> blobs = img.findBlobs() >>> b = blobs[0] >>> if( blobs[-1].isNotContainedWithin(b) ): >>> print "Not inside the biggest blob" """ return not self.isContainedWithin(shape) def _pointInsidePolygon(self,point,polygon): """ returns true if tuple point (x,y) is inside polygon of the form ((a,b),(c,d),...,(a,b)) the polygon should be closed """ # try: # import cv2 # except: # logger.warning("Unable to import cv2") # return False if( len(polygon) < 3 ): logger.warning("feature._pointInsidePolygon - this is not a valid polygon") return False if( not isinstance(polygon,list)): logger.warning("feature._pointInsidePolygon - this is not a valid polygon") return False #if( not isinstance(point,tuple) ): #if( len(point) == 2 ): # point = tuple(point) #else: # logger.warning("feature._pointInsidePolygon - this is not a valid point") # return False #if( cv2.__version__ == '$Rev:4557'): counter = 0 retVal = True p1 = None #print "point: " + str(point) poly = copy.deepcopy(polygon) poly.append(polygon[0]) #for p2 in poly: N = len(poly) p1 = poly[0] for i in range(1,N+1): p2 = poly[i%N] if( point[1] > np.min((p1[1],p2[1])) ): if( point[1] <= np.max((p1[1],p2[1])) ): if( point[0] <= np.max((p1[0],p2[0])) ): if( p1[1] != p2[1] ): test = float((point[1]-p1[1])*(p2[0]-p1[0]))/float(((p2[1]-p1[1])+p1[0])) if( p1[0] == p2[0] or point[0] <= test ): counter = counter + 1 p1 = p2 if( counter % 2 == 0 ): retVal = False return retVal return retVal #else: # result = cv2.pointPolygonTest(np.array(polygon,dtype='float32'),point,0) # return result > 0 def boundingCircle(self): """ **SUMMARY** This function calculates the minimum bounding circle of the blob in the image as an (x,y,r) tuple **RETURNS** An (x,y,r) tuple where (x,y) is the center of the circle and r is the radius **EXAMPLE** >>> img = Image("RatMask.png") >>> blobs = img.findBlobs() >>> print blobs[-1].boundingCircle() """ try: import cv2 except: logger.warning("Unable to import cv2") return None # contour of the blob in image contour = self.contour() points = [] # list of contour points converted to suitable format to pass into cv2.minEnclosingCircle() for pair in contour: points.append([[pair[0], pair[1]]]) points = np.array(points) (cen, rad) = cv2.minEnclosingCircle(points); return (cen[0], cen[1], rad) #---------------------------------------------
bsd-3-clause
rubikloud/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
calpeyser/google-cloud-python
monitoring/google/cloud/monitoring/client.py
2
23539
# Copyright 2016 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Client for interacting with the `Google Stackdriver Monitoring API (V3)`_. Example:: >>> from google.cloud import monitoring >>> client = monitoring.Client() >>> query = client.query(minutes=5) >>> print(query.as_dataframe()) # Requires pandas. At present, the client supports querying of time series, metric descriptors, and monitored resource descriptors. .. _Google Stackdriver Monitoring API (V3): https://cloud.google.com/monitoring/api/v3/ """ import datetime from google.cloud._helpers import _datetime_to_rfc3339 from google.cloud.client import ClientWithProject from google.cloud.monitoring._http import Connection from google.cloud.monitoring.group import Group from google.cloud.monitoring.metric import Metric from google.cloud.monitoring.metric import MetricDescriptor from google.cloud.monitoring.metric import MetricKind from google.cloud.monitoring.metric import ValueType from google.cloud.monitoring.query import Query from google.cloud.monitoring.resource import Resource from google.cloud.monitoring.resource import ResourceDescriptor from google.cloud.monitoring.timeseries import Point from google.cloud.monitoring.timeseries import TimeSeries _UTCNOW = datetime.datetime.utcnow # To be replaced by tests. class Client(ClientWithProject): """Client to bundle configuration needed for API requests. :type project: str :param project: The target project. If not passed, falls back to the default inferred from the environment. :type credentials: :class:`~google.auth.credentials.Credentials` :param credentials: (Optional) The OAuth2 Credentials to use for this client. If not passed (and if no ``_http`` object is passed), falls back to the default inferred from the environment. :type _http: :class:`~requests.Session` :param _http: (Optional) HTTP object to make requests. Can be any object that defines ``request()`` with the same interface as :meth:`requests.Session.request`. If not passed, an ``_http`` object is created that is bound to the ``credentials`` for the current object. This parameter should be considered private, and could change in the future. """ SCOPE = ('https://www.googleapis.com/auth/monitoring.read', 'https://www.googleapis.com/auth/monitoring', 'https://www.googleapis.com/auth/cloud-platform') """The scopes required for authenticating as a Monitoring consumer.""" def __init__(self, project=None, credentials=None, _http=None): super(Client, self).__init__( project=project, credentials=credentials, _http=_http) self._connection = Connection(self) def query(self, metric_type=Query.DEFAULT_METRIC_TYPE, end_time=None, days=0, hours=0, minutes=0): """Construct a query object for retrieving metric data. Example:: >>> query = client.query(minutes=5) >>> print(query.as_dataframe()) # Requires pandas. :type metric_type: str :param metric_type: The metric type name. The default value is :data:`Query.DEFAULT_METRIC_TYPE <google.cloud.monitoring.query.Query.DEFAULT_METRIC_TYPE>`, but please note that this default value is provided only for demonstration purposes and is subject to change. See the `supported metrics`_. :type end_time: :class:`datetime.datetime` :param end_time: (Optional) The end time (inclusive) of the time interval for which results should be returned, as a datetime object. The default is the start of the current minute. The start time (exclusive) is determined by combining the values of ``days``, ``hours``, and ``minutes``, and subtracting the resulting duration from the end time. It is also allowed to omit the end time and duration here, in which case :meth:`~google.cloud.monitoring.query.Query.select_interval` must be called before the query is executed. :type days: int :param days: The number of days in the time interval. :type hours: int :param hours: The number of hours in the time interval. :type minutes: int :param minutes: The number of minutes in the time interval. :rtype: :class:`~google.cloud.monitoring.query.Query` :returns: The query object. :raises: :exc:`ValueError` if ``end_time`` is specified but ``days``, ``hours``, and ``minutes`` are all zero. If you really want to specify a point in time, use :meth:`~google.cloud.monitoring.query.Query.select_interval`. .. _supported metrics: https://cloud.google.com/monitoring/api/metrics """ return Query(self, metric_type, end_time=end_time, days=days, hours=hours, minutes=minutes) def metric_descriptor(self, type_, metric_kind=MetricKind.METRIC_KIND_UNSPECIFIED, value_type=ValueType.VALUE_TYPE_UNSPECIFIED, labels=(), unit='', description='', display_name=''): """Construct a metric descriptor object. Metric descriptors specify the schema for a particular metric type. This factory method is used most often in conjunction with the metric descriptor :meth:`~google.cloud.monitoring.metric.MetricDescriptor.create` method to define custom metrics:: >>> descriptor = client.metric_descriptor( ... 'custom.googleapis.com/my_metric', ... metric_kind=MetricKind.GAUGE, ... value_type=ValueType.DOUBLE, ... description='This is a simple example of a custom metric.') >>> descriptor.create() Here is an example where the custom metric is parameterized by a metric label:: >>> label = LabelDescriptor('response_code', LabelValueType.INT64, ... description='HTTP status code') >>> descriptor = client.metric_descriptor( ... 'custom.googleapis.com/my_app/response_count', ... metric_kind=MetricKind.CUMULATIVE, ... value_type=ValueType.INT64, ... labels=[label], ... description='Cumulative count of HTTP responses.') >>> descriptor.create() :type type_: str :param type_: The metric type including a DNS name prefix. For example: ``"custom.googleapis.com/my_metric"`` :type metric_kind: str :param metric_kind: The kind of measurement. It must be one of :data:`MetricKind.GAUGE`, :data:`MetricKind.DELTA`, or :data:`MetricKind.CUMULATIVE`. See :class:`~google.cloud.monitoring.metric.MetricKind`. :type value_type: str :param value_type: The value type of the metric. It must be one of :data:`ValueType.BOOL`, :data:`ValueType.INT64`, :data:`ValueType.DOUBLE`, :data:`ValueType.STRING`, or :data:`ValueType.DISTRIBUTION`. See :class:`ValueType`. :type labels: list of :class:`~google.cloud.monitoring.label.LabelDescriptor` :param labels: A sequence of zero or more label descriptors specifying the labels used to identify a specific instance of this metric. :type unit: str :param unit: An optional unit in which the metric value is reported. :type description: str :param description: An optional detailed description of the metric. :type display_name: str :param display_name: An optional concise name for the metric. :rtype: :class:`MetricDescriptor` :returns: The metric descriptor created with the passed-in arguments. """ return MetricDescriptor( self, type_, metric_kind=metric_kind, value_type=value_type, labels=labels, unit=unit, description=description, display_name=display_name, ) @staticmethod def metric(type_, labels): """Factory for constructing metric objects. :class:`~google.cloud.monitoring.metric.Metric` objects are typically created to write custom metric values. The type should match the metric type specified in the :class:`~google.cloud.monitoring.metric.MetricDescriptor` used to create the custom metric:: >>> metric = client.metric('custom.googleapis.com/my_metric', ... labels={ ... 'status': 'successful', ... }) :type type_: str :param type_: The metric type name. :type labels: dict :param labels: A mapping from label names to values for all labels enumerated in the associated :class:`~.metric.MetricDescriptor`. :rtype: :class:`~google.cloud.monitoring.metric.Metric` :returns: The metric object. """ return Metric(type=type_, labels=labels) @staticmethod def resource(type_, labels): """Factory for constructing monitored resource objects. A monitored resource object ( :class:`~google.cloud.monitoring.resource.Resource`) is typically used to create a :class:`~google.cloud.monitoring.timeseries.TimeSeries` object. For a list of possible monitored resource types and their associated labels, see: https://cloud.google.com/monitoring/api/resources :type type_: str :param type_: The monitored resource type name. :type labels: dict :param labels: A mapping from label names to values for all labels enumerated in the associated :class:`~.resource.ResourceDescriptor`, except that ``project_id`` can and should be omitted when writing time series data. :rtype: :class:`~google.cloud.monitoring.resource.Resource` :returns: A monitored resource object. """ return Resource(type_, labels) @staticmethod def time_series(metric, resource, value, end_time=None, start_time=None): """Construct a time series object for a single data point. .. note:: While :class:`~google.cloud.monitoring.timeseries.TimeSeries` objects returned by the API typically have multiple data points, :class:`~google.cloud.monitoring.timeseries.TimeSeries` objects sent to the API must have at most one point. For example:: >>> timeseries = client.time_series(metric, resource, 1.23, ... end_time=end) For more information, see: https://cloud.google.com/monitoring/api/ref_v3/rest/v3/TimeSeries :type metric: :class:`~google.cloud.monitoring.metric.Metric` :param metric: A :class:`~google.cloud.monitoring.metric.Metric`. :type resource: :class:`~google.cloud.monitoring.resource.Resource` :param resource: A :class:`~google.cloud.monitoring.resource.Resource` object. :type value: bool, int, string, or float :param value: The value of the data point to create for the :class:`~google.cloud.monitoring.timeseries.TimeSeries`. .. note:: The Python type of the value will determine the :class:`~ValueType` sent to the API, which must match the value type specified in the metric descriptor. For example, a Python float will be sent to the API as a :data:`ValueType.DOUBLE`. :type end_time: :class:`~datetime.datetime` :param end_time: The end time for the point to be included in the time series. Assumed to be UTC if no time zone information is present. Defaults to the current time, as obtained by calling :meth:`datetime.datetime.utcnow`. :type start_time: :class:`~datetime.datetime` :param start_time: The start time for the point to be included in the time series. Assumed to be UTC if no time zone information is present. Defaults to None. If the start time is unspecified, the API interprets the start time to be the same as the end time. :rtype: :class:`~google.cloud.monitoring.timeseries.TimeSeries` :returns: A time series object. """ if end_time is None: end_time = _UTCNOW() end_time = _datetime_to_rfc3339(end_time, ignore_zone=False) if start_time: start_time = _datetime_to_rfc3339(start_time, ignore_zone=False) point = Point(value=value, start_time=start_time, end_time=end_time) return TimeSeries(metric=metric, resource=resource, metric_kind=None, value_type=None, points=[point]) def fetch_metric_descriptor(self, metric_type): """Look up a metric descriptor by type. Example:: >>> METRIC = 'compute.googleapis.com/instance/cpu/utilization' >>> print(client.fetch_metric_descriptor(METRIC)) :type metric_type: str :param metric_type: The metric type name. :rtype: :class:`~google.cloud.monitoring.metric.MetricDescriptor` :returns: The metric descriptor instance. :raises: :class:`google.cloud.exceptions.NotFound` if the metric descriptor is not found. """ return MetricDescriptor._fetch(self, metric_type) def list_metric_descriptors(self, filter_string=None, type_prefix=None): """List all metric descriptors for the project. Examples:: >>> for descriptor in client.list_metric_descriptors(): ... print(descriptor.type) >>> for descriptor in client.list_metric_descriptors( ... type_prefix='custom.'): ... print(descriptor.type) :type filter_string: str :param filter_string: (Optional) An optional filter expression describing the metric descriptors to be returned. See the `filter documentation`_. :type type_prefix: str :param type_prefix: (Optional) An optional prefix constraining the selected metric types. This adds ``metric.type = starts_with("<prefix>")`` to the filter. :rtype: list of :class:`~google.cloud.monitoring.metric.MetricDescriptor` :returns: A list of metric descriptor instances. .. _filter documentation: https://cloud.google.com/monitoring/api/v3/filters """ return MetricDescriptor._list(self, filter_string, type_prefix=type_prefix) def fetch_resource_descriptor(self, resource_type): """Look up a monitored resource descriptor by type. Example:: >>> print(client.fetch_resource_descriptor('gce_instance')) :type resource_type: str :param resource_type: The resource type name. :rtype: :class:`~google.cloud.monitoring.resource.ResourceDescriptor` :returns: The resource descriptor instance. :raises: :class:`google.cloud.exceptions.NotFound` if the resource descriptor is not found. """ return ResourceDescriptor._fetch(self, resource_type) def list_resource_descriptors(self, filter_string=None): """List all monitored resource descriptors for the project. Example:: >>> for descriptor in client.list_resource_descriptors(): ... print(descriptor.type) :type filter_string: str :param filter_string: (Optional) An optional filter expression describing the resource descriptors to be returned. See the `filter documentation`_. :rtype: list of :class:`~google.cloud.monitoring.resource.ResourceDescriptor` :returns: A list of resource descriptor instances. .. _filter documentation: https://cloud.google.com/monitoring/api/v3/filters """ return ResourceDescriptor._list(self, filter_string) def group(self, group_id=None, display_name=None, parent_id=None, filter_string=None, is_cluster=False): """Factory constructor for group object. .. note:: This will not make an HTTP request; it simply instantiates a group object owned by this client. :type group_id: str :param group_id: (Optional) The ID of the group. :type display_name: str :param display_name: (Optional) A user-assigned name for this group, used only for display purposes. :type parent_id: str :param parent_id: (Optional) The ID of the group's parent, if it has one. :type filter_string: str :param filter_string: (Optional) The filter string used to determine which monitored resources belong to this group. :type is_cluster: bool :param is_cluster: If true, the members of this group are considered to be a cluster. The system can perform additional analysis on groups that are clusters. :rtype: :class:`Group` :returns: The group created with the passed-in arguments. :raises: :exc:`ValueError` if both ``group_id`` and ``name`` are specified. """ return Group( self, group_id=group_id, display_name=display_name, parent_id=parent_id, filter_string=filter_string, is_cluster=is_cluster, ) def fetch_group(self, group_id): """Fetch a group from the API based on it's ID. Example:: >>> try: >>> group = client.fetch_group('1234') >>> except google.cloud.exceptions.NotFound: >>> print('That group does not exist!') :type group_id: str :param group_id: The ID of the group. :rtype: :class:`~google.cloud.monitoring.group.Group` :returns: The group instance. :raises: :class:`google.cloud.exceptions.NotFound` if the group is not found. """ return Group._fetch(self, group_id) def list_groups(self): """List all groups for the project. Example:: >>> for group in client.list_groups(): ... print((group.display_name, group.name)) :rtype: list of :class:`~google.cloud.monitoring.group.Group` :returns: A list of group instances. """ return Group._list(self) def write_time_series(self, timeseries_list): """Write a list of time series objects to the API. The recommended approach to creating time series objects is using the :meth:`~google.cloud.monitoring.client.Client.time_series` factory method. Example:: >>> client.write_time_series([ts1, ts2]) If you only need to write a single time series object, consider using the :meth:`~google.cloud.monitoring.client.Client.write_point` method instead. :type timeseries_list: list of :class:`~google.cloud.monitoring.timeseries.TimeSeries` :param timeseries_list: A list of time series object to be written to the API. Each time series must contain exactly one point. """ path = '/projects/{project}/timeSeries/'.format( project=self.project) timeseries_dict = [timeseries._to_dict() for timeseries in timeseries_list] self._connection.api_request(method='POST', path=path, data={'timeSeries': timeseries_dict}) def write_point(self, metric, resource, value, end_time=None, start_time=None): """Write a single point for a metric to the API. This is a convenience method to write a single time series object to the API. To write multiple time series objects to the API as a batch operation, use the :meth:`~google.cloud.monitoring.client.Client.time_series` factory method to create time series objects and the :meth:`~google.cloud.monitoring.client.Client.write_time_series` method to write the objects. Example:: >>> client.write_point(metric, resource, 3.14) :type metric: :class:`~google.cloud.monitoring.metric.Metric` :param metric: A :class:`~google.cloud.monitoring.metric.Metric` object. :type resource: :class:`~google.cloud.monitoring.resource.Resource` :param resource: A :class:`~google.cloud.monitoring.resource.Resource` object. :type value: bool, int, string, or float :param value: The value of the data point to create for the :class:`~google.cloud.monitoring.timeseries.TimeSeries`. .. note:: The Python type of the value will determine the :class:`~ValueType` sent to the API, which must match the value type specified in the metric descriptor. For example, a Python float will be sent to the API as a :data:`ValueType.DOUBLE`. :type end_time: :class:`~datetime.datetime` :param end_time: The end time for the point to be included in the time series. Assumed to be UTC if no time zone information is present. Defaults to the current time, as obtained by calling :meth:`datetime.datetime.utcnow`. :type start_time: :class:`~datetime.datetime` :param start_time: The start time for the point to be included in the time series. Assumed to be UTC if no time zone information is present. Defaults to None. If the start time is unspecified, the API interprets the start time to be the same as the end time. """ timeseries = self.time_series( metric, resource, value, end_time, start_time) self.write_time_series([timeseries])
apache-2.0
SpaceKatt/CSPLN
apps/scaffolding/mac/web2py/web2py.app/Contents/Resources/lib/python2.7/matplotlib/backends/backend_gtkcairo.py
3
2079
""" GTK+ Matplotlib interface using cairo (not GDK) drawing operations. Author: Steve Chaplin """ import gtk if gtk.pygtk_version < (2,7,0): import cairo.gtk from matplotlib.backends import backend_cairo from matplotlib.backends.backend_gtk import * backend_version = 'PyGTK(%d.%d.%d) ' % gtk.pygtk_version + \ 'Pycairo(%s)' % backend_cairo.backend_version _debug = False #_debug = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if _debug: print 'backend_gtkcairo.%s()' % fn_name() FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGTKCairo(thisFig) return FigureManagerGTK(canvas, num) class RendererGTKCairo (backend_cairo.RendererCairo): if gtk.pygtk_version >= (2,7,0): def set_pixmap (self, pixmap): self.gc.ctx = pixmap.cairo_create() else: def set_pixmap (self, pixmap): self.gc.ctx = cairo.gtk.gdk_cairo_create (pixmap) class FigureCanvasGTKCairo(backend_cairo.FigureCanvasCairo, FigureCanvasGTK): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(backend_cairo.FigureCanvasCairo.filetypes) def _renderer_init(self): """Override to use cairo (rather than GDK) renderer""" if _debug: print '%s.%s()' % (self.__class__.__name__, _fn_name()) self._renderer = RendererGTKCairo (self.figure.dpi) class FigureManagerGTKCairo(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbar (canvas, self.window) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKCairo (canvas, self.window) else: toolbar = None return toolbar class NavigationToolbar2Cairo(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKCairo(fig)
gpl-3.0
jdanbrown/pydatalab
solutionbox/structured_data/test_mltoolbox/test_datalab_e2e.py
5
7533
# Copyright 2017 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing permissions and limitations under # the License. """Test analyze, training, and prediction. """ from __future__ import absolute_import from __future__ import print_function import json import logging import os import pandas as pd import shutil import six import sys import tempfile import unittest from . import e2e_functions from tensorflow.python.lib.io import file_io sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '../../..'))) import mltoolbox.regression.linear as reglinear # noqa: E402 import google.datalab.ml as dlml # noqa: E402 class TestLinearRegression(unittest.TestCase): """Test linear regression works e2e locally. Note that there should be little need for testing the other scenarios (linear classification, dnn regression, dnn classification) as they should only differ at training time. The training coverage of task.py is already done in test_sd_trainer. """ def __init__(self, *args, **kwargs): super(TestLinearRegression, self).__init__(*args, **kwargs) # Log everything self._logger = logging.getLogger('TestStructuredDataLogger') self._logger.setLevel(logging.DEBUG) if not self._logger.handlers: self._logger.addHandler(logging.StreamHandler(stream=sys.stdout)) def _make_test_files(self): """Builds test files and folders""" # Make the output folders self._test_dir = tempfile.mkdtemp() self._preprocess_output = os.path.join(self._test_dir, 'preprocess') self._train_output = os.path.join(self._test_dir, 'train') self._batch_predict_output = os.path.join(self._test_dir, 'batch_predict') # Don't make train_output folder as it should not exist at training time. os.mkdir(self._preprocess_output) os.mkdir(self._batch_predict_output) # Make csv files self._csv_train_filename = os.path.join(self._test_dir, 'train_csv_data.csv') self._csv_eval_filename = os.path.join(self._test_dir, 'eval_csv_data.csv') self._csv_predict_filename = os.path.join(self._test_dir, 'predict_csv_data.csv') e2e_functions.make_csv_data(self._csv_train_filename, 100, 'regression', True) e2e_functions.make_csv_data(self._csv_eval_filename, 100, 'regression', True) self._predict_num_rows = 10 e2e_functions.make_csv_data(self._csv_predict_filename, self._predict_num_rows, 'regression', False) # Make schema file self._schema_filename = os.path.join(self._test_dir, 'schema.json') e2e_functions.make_preprocess_schema(self._schema_filename, 'regression') # Make feature file self._input_features_filename = os.path.join(self._test_dir, 'input_features_file.json') transforms = { "num1": {"transform": "scale"}, "num2": {"transform": "scale", "value": 4}, "str1": {"transform": "one_hot"}, "str2": {"transform": "embedding", "embedding_dim": 3}, "target": {"transform": "target"}, "key": {"transform": "key"}, } file_io.write_string_to_file( self._input_features_filename, json.dumps(transforms, indent=2)) def _run_analyze(self): reglinear.analyze( output_dir=self._preprocess_output, dataset=dlml.CsvDataSet( file_pattern=self._csv_train_filename, schema_file=self._schema_filename)) self.assertTrue(os.path.isfile( os.path.join(self._preprocess_output, 'stats.json'))) self.assertTrue(os.path.isfile( os.path.join(self._preprocess_output, 'vocab_str1.csv'))) def _run_train(self): reglinear.train( train_dataset=dlml.CsvDataSet( file_pattern=self._csv_train_filename, schema_file=self._schema_filename), eval_dataset=dlml.CsvDataSet( file_pattern=self._csv_eval_filename, schema_file=self._schema_filename), analysis_dir=self._preprocess_output, output_dir=self._train_output, features=self._input_features_filename, max_steps=100, train_batch_size=100) self.assertTrue(os.path.isfile( os.path.join(self._train_output, 'model', 'saved_model.pb'))) self.assertTrue(os.path.isfile( os.path.join(self._train_output, 'evaluation_model', 'saved_model.pb'))) def _run_predict(self): data = pd.read_csv(self._csv_predict_filename, header=None) df = reglinear.predict(data=data, training_dir=self._train_output) self.assertEqual(len(df.index), self._predict_num_rows) self.assertEqual(list(df), ['key', 'predicted']) def _run_batch_prediction(self, output_dir, use_target): reglinear.batch_predict( training_dir=self._train_output, prediction_input_file=(self._csv_eval_filename if use_target else self._csv_predict_filename), output_dir=output_dir, mode='evaluation' if use_target else 'prediction', batch_size=4, output_format='csv') # check errors file is empty errors = file_io.get_matching_files(os.path.join(output_dir, 'errors*')) self.assertEqual(len(errors), 1) self.assertEqual(os.path.getsize(errors[0]), 0) # check predictions files are not empty predictions = file_io.get_matching_files(os.path.join(output_dir, 'predictions*')) self.assertGreater(os.path.getsize(predictions[0]), 0) # check the schema is correct schema_file = os.path.join(output_dir, 'csv_schema.json') self.assertTrue(os.path.isfile(schema_file)) schema = json.loads(file_io.read_file_to_string(schema_file)) self.assertEqual(schema[0]['name'], 'key') self.assertEqual(schema[1]['name'], 'predicted') if use_target: self.assertEqual(schema[2]['name'], 'target') self.assertEqual(len(schema), 3) else: self.assertEqual(len(schema), 2) def _cleanup(self): shutil.rmtree(self._test_dir) def test_e2e(self): try: self._make_test_files() self._run_analyze() self._run_train() if six.PY2: # Dataflow is only supported by python 2. Prediction assumes Dataflow # is installed. self._run_predict() self._run_batch_prediction( os.path.join(self._batch_predict_output, 'with_target'), True) self._run_batch_prediction( os.path.join(self._batch_predict_output, 'without_target'), False) else: print('only tested analyze in TestLinearRegression') finally: self._cleanup() if __name__ == '__main__': unittest.main()
apache-2.0
eric-haibin-lin/mxnet
example/named_entity_recognition/src/ner.py
4
12663
# !/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # -*- coding: utf-8 -*- from collections import Counter import itertools import iterators import os import numpy as np import pandas as pd import mxnet as mx import argparse import pickle import logging logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser(description="Deep neural network for multivariate time series forecasting", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--data-dir', type=str, default='../data', help='relative path to input data') parser.add_argument('--output-dir', type=str, default='../results', help='directory to save model files to') parser.add_argument('--max-records', type=int, default=None, help='total records before data split') parser.add_argument('--train_fraction', type=float, default=0.8, help='fraction of data to use for training. remainder used for testing.') parser.add_argument('--batch-size', type=int, default=128, help='the batch size.') parser.add_argument('--buckets', type=str, default="", help='unique bucket sizes') parser.add_argument('--char-embed', type=int, default=25, help='Embedding size for each unique character.') parser.add_argument('--char-filter-list', type=str, default="3,4,5", help='unique filter sizes for char level cnn') parser.add_argument('--char-filters', type=int, default=20, help='number of each filter size') parser.add_argument('--word-embed', type=int, default=500, help='Embedding size for each unique character.') parser.add_argument('--word-filter-list', type=str, default="3,4,5", help='unique filter sizes for char level cnn') parser.add_argument('--word-filters', type=int, default=200, help='number of each filter size') parser.add_argument('--lstm-state-size', type=int, default=100, help='number of hidden units in each unrolled recurrent cell') parser.add_argument('--lstm-layers', type=int, default=1, help='number of recurrent layers') parser.add_argument('--gpus', type=str, default='', help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu. ') parser.add_argument('--optimizer', type=str, default='adam', help='the optimizer type') parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate') parser.add_argument('--dropout', type=float, default=0.2, help='dropout rate for network') parser.add_argument('--num-epochs', type=int, default=100, help='max num of epochs') parser.add_argument('--save-period', type=int, default=20, help='save checkpoint for every n epochs') parser.add_argument('--model_prefix', type=str, default='electricity_model', help='prefix for saving model params') def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) def save_model(): if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) return mx.callback.do_checkpoint(os.path.join(args.output_dir, "checkpoint"), args.save_period) def build_vocab(nested_list): """ :param nested_list: list of list of string :return: dictionary mapping from string to int, inverse of that dictionary """ # Build vocabulary word_counts = Counter(itertools.chain(*nested_list)) logging.info("build_vocab: word_counts=%d" % (len(word_counts))) # Mapping from index to label vocabulary_inv = [x[0] for x in word_counts.most_common()] # Mapping from label to index vocabulary = {x: i for i, x in enumerate(vocabulary_inv)} return vocabulary, vocabulary_inv def build_iters(data_dir, max_records, train_fraction, batch_size, buckets=None): """ Reads a csv of sentences/tag sequences into a pandas dataframe. Converts into X = array(list(int)) & Y = array(list(int)) Splits into training and test sets Builds dictionaries mapping from index labels to labels/ indexed features to features :param data_dir: directory to read in csv data from :param max_records: total number of records to randomly select from input data :param train_fraction: fraction of the data to use for training :param batch_size: records in mini-batches during training :param buckets: size of each bucket in the iterators :return: train_iter, val_iter, word_to_index, index_to_word, pos_to_index, index_to_pos """ # Read in data as numpy array df = pd.read_pickle(os.path.join(data_dir, "ner_data.pkl"))[:max_records] # Get feature lists entities=[list(array) for array in df["BILOU_tag"].values] sentences = [list(array) for array in df["token"].values] chars=[[[c for c in word] for word in sentence] for sentence in sentences] # Build vocabularies entity_to_index, index_to_entity = build_vocab(entities) word_to_index, index_to_word = build_vocab(sentences) char_to_index, index_to_char = build_vocab([np.array([c for c in word]) for word in index_to_word]) save_obj(entity_to_index, os.path.join(args.data_dir, "tag_to_index")) # Map strings to integer values indexed_entities=[list(map(entity_to_index.get, l)) for l in entities] indexed_tokens=[list(map(word_to_index.get, l)) for l in sentences] indexed_chars=[[list(map(char_to_index.get, word)) for word in sentence] for sentence in chars] # Split into training and testing data idx=int(len(indexed_tokens)*train_fraction) logging.info("Preparing train/test datasets splitting at idx %d on total %d sentences using a batchsize of %d", idx, len(indexed_tokens), batch_size) X_token_train, X_char_train, Y_train = indexed_tokens[:idx], indexed_chars[:idx], indexed_entities[:idx] X_token_test, X_char_test, Y_test = indexed_tokens[idx:], indexed_chars[idx:], indexed_entities[idx:] # build iterators to feed batches to network train_iter = iterators.BucketNerIter(sentences=X_token_train, characters=X_char_train, label=Y_train, max_token_chars=5, batch_size=batch_size, buckets=buckets) logging.info("Creating the val_iter using %d sentences", len(X_token_test)) val_iter = iterators.BucketNerIter(sentences=X_token_test, characters=X_char_test, label=Y_test, max_token_chars=train_iter.max_token_chars, batch_size=batch_size, buckets=train_iter.buckets) return train_iter, val_iter, word_to_index, char_to_index, entity_to_index def sym_gen(seq_len): """ Build NN symbol depending on the length of the input sequence """ sentence_shape = train_iter.provide_data[0][1] char_sentence_shape = train_iter.provide_data[1][1] entities_shape = train_iter.provide_label[0][1] X_sent = mx.symbol.Variable(train_iter.provide_data[0].name) X_char_sent = mx.symbol.Variable(train_iter.provide_data[1].name) Y = mx.sym.Variable(train_iter.provide_label[0].name) ############################### # Character embedding component ############################### char_embeddings = mx.sym.Embedding(data=X_char_sent, input_dim=len(char_to_index), output_dim=args.char_embed, name='char_embed') char_embeddings = mx.sym.reshape(data=char_embeddings, shape=(0,1,seq_len,-1,args.char_embed), name='char_embed2') char_cnn_outputs = [] for i, filter_size in enumerate(args.char_filter_list): # Kernel that slides over entire words resulting in a 1d output convi = mx.sym.Convolution(data=char_embeddings, kernel=(1, filter_size, args.char_embed), stride=(1, 1, 1), num_filter=args.char_filters, name="char_conv_layer_" + str(i)) acti = mx.sym.Activation(data=convi, act_type='tanh') pooli = mx.sym.Pooling(data=acti, pool_type='max', kernel=(1, char_sentence_shape[2] - filter_size + 1, 1), stride=(1, 1, 1), name="char_pool_layer_" + str(i)) pooli = mx.sym.transpose(mx.sym.Reshape(pooli, shape=(0, 0, 0)), axes=(0, 2, 1), name="cchar_conv_layer_" + str(i)) char_cnn_outputs.append(pooli) # combine features from all filters & apply dropout cnn_char_features = mx.sym.Concat(*char_cnn_outputs, dim=2, name="cnn_char_features") regularized_cnn_char_features = mx.sym.Dropout(data=cnn_char_features, p=args.dropout, mode='training', name='regularized charCnn features') ################################## # Combine char and word embeddings ################################## word_embeddings = mx.sym.Embedding(data=X_sent, input_dim=len(word_to_index), output_dim=args.word_embed, name='word_embed') rnn_features = mx.sym.Concat(*[word_embeddings, regularized_cnn_char_features], dim=2, name='rnn input') ############################## # Bidirectional LSTM component ############################## # unroll the lstm cell in time, merging outputs bi_cell.reset() output, states = bi_cell.unroll(length=seq_len, inputs=rnn_features, merge_outputs=True) # Map to num entity classes rnn_output = mx.sym.Reshape(output, shape=(-1, args.lstm_state_size * 2), name='r_output') fc = mx.sym.FullyConnected(data=rnn_output, num_hidden=len(entity_to_index), name='fc_layer') # reshape back to same shape as loss will be reshaped_fc = mx.sym.transpose(mx.sym.reshape(fc, shape=(-1, seq_len, len(entity_to_index))), axes=(0, 2, 1)) sm = mx.sym.SoftmaxOutput(data=reshaped_fc, label=Y, ignore_label=-1, use_ignore=True, multi_output=True, name='softmax') return sm, [v.name for v in train_iter.provide_data], [v.name for v in train_iter.provide_label] def train(train_iter, val_iter): import metrics devs = mx.cpu() if args.gpus is None or args.gpus is '' else [mx.gpu(int(i)) for i in args.gpus.split(',')] logging.info("train on device %s using optimizer %s at learningrate %f for %d epochs using %d records: lstm_state_size=%d ...", devs, args.optimizer, args.lr, args.num_epochs, args.max_records, args.lstm_state_size) module = mx.mod.BucketingModule(sym_gen, train_iter.default_bucket_key, context=devs) module.fit(train_data=train_iter, eval_data=val_iter, eval_metric=metrics.composite_classifier_metrics(), optimizer=args.optimizer, optimizer_params={'learning_rate': args.lr }, initializer=mx.initializer.Uniform(0.1), num_epoch=args.num_epochs, epoch_end_callback=save_model()) if __name__ == '__main__': # parse args args = parser.parse_args() args.buckets = list(map(int, args.buckets.split(','))) if len(args.buckets) > 0 else None args.char_filter_list = list(map(int, args.char_filter_list.split(','))) # Build data iterators train_iter, val_iter, word_to_index, char_to_index, entity_to_index = build_iters(args.data_dir, args.max_records, args.train_fraction, args.batch_size, args.buckets) logging.info("validation iterator: %s", val_iter) # Define the recurrent layer bi_cell = mx.rnn.SequentialRNNCell() for layer_num in range(args.lstm_layers): bi_cell.add(mx.rnn.BidirectionalCell( mx.rnn.LSTMCell(num_hidden=args.lstm_state_size, prefix="forward_layer_" + str(layer_num)), mx.rnn.LSTMCell(num_hidden=args.lstm_state_size, prefix="backward_layer_" + str(layer_num)))) bi_cell.add(mx.rnn.DropoutCell(args.dropout)) train(train_iter, val_iter)
apache-2.0
franblas/facialrecoChallenge
itml.py
1
3881
# -*- coding: utf-8 -*- """ Created on Thu Jun 18 19:04:51 2015 @author: Paco """ """ Information Theoretic Metric Learning, Kulis et al., ICML 2007 """ import numpy as np from sklearn.metrics import pairwise_distances from base_metric import BaseMetricLearner class ITML(BaseMetricLearner): """ Information Theoretic Metric Learning (ITML) """ def __init__(self, gamma=1., max_iters=1000, convergence_threshold=1e-3): """ gamma: value for slack variables """ self.gamma = gamma self.max_iters = max_iters self.convergence_threshold = convergence_threshold def _process_inputs(self, X, constraints, bounds, A0): self.X = X # check to make sure that no two constrained vectors are identical a,b,c,d = constraints ident = _vector_norm(self.X[a] - self.X[b]) > 1e-9 a, b = a[ident], b[ident] ident = _vector_norm(self.X[c] - self.X[d]) > 1e-9 c, d = c[ident], d[ident] # init bounds if bounds is None: self.bounds = np.percentile(pairwise_distances(X), (5, 95)) else: assert len(bounds) == 2 self.bounds = bounds # init metric if A0 is None: self.A = np.identity(X.shape[1]) else: self.A = A0 return a,b,c,d def fit(self, X, constraints, bounds=None, A0=None, verbose=False): """ X: (n x d) data matrix - each row corresponds to a single instance constraints: tuple of arrays: (a,b,c,d) indices into X, such that: d(X[a],X[b]) < d(X[c],X[d]) bounds: (pos,neg) pair of bounds on similarity, such that: d(X[a],X[b]) < pos d(X[c],X[d]) > neg A0: [optional] (d x d) initial regularization matrix, defaults to identity """ a,b,c,d = self._process_inputs(X, constraints, bounds, A0) gamma = self.gamma num_pos = len(a) num_neg = len(c) _lambda = np.zeros(num_pos + num_neg) lambdaold = np.zeros_like(_lambda) gamma_proj = 1. if gamma is np.inf else gamma/(gamma+1.) pos_bhat = np.zeros(num_pos) + self.bounds[0] neg_bhat = np.zeros(num_neg) + self.bounds[1] A = self.A for it in xrange(self.max_iters): # update positives vv = self.X[a] - self.X[b] for i,v in enumerate(vv): wtw = v.dot(A).dot(v) # scalar alpha = min(_lambda[i], gamma_proj*(1./wtw - 1./pos_bhat[i])) _lambda[i] -= alpha beta = alpha/(1 - alpha*wtw) pos_bhat[i] = 1./((1 / pos_bhat[i]) + (alpha / gamma)) A += beta * A.dot(np.outer(v,v)).dot(A) # update negatives vv = self.X[c] - self.X[d] for i,v in enumerate(vv): wtw = v.dot(A).dot(v) # scalar alpha = min(_lambda[i+num_pos],gamma_proj*(1./neg_bhat[i] - 1./wtw)) _lambda[i+num_pos] -= alpha beta = -alpha/(1 + alpha*wtw) neg_bhat[i] = 1./((1 / neg_bhat[i]) - (alpha / gamma)) A += beta * A.dot(np.outer(v,v)).dot(A) normsum = np.linalg.norm(_lambda) + np.linalg.norm(lambdaold) if normsum == 0: conv = np.inf break conv = np.abs(lambdaold - _lambda).sum() / normsum if conv < self.convergence_threshold: break lambdaold = _lambda.copy() if verbose: print 'itml iter: %d, conv = %f' % (it, conv) if verbose: print 'itml converged at iter: %d, conv = %f' % (it, conv) return self def metric(self): return self.A @classmethod def prepare_constraints(self, labels, num_points, num_constraints): ac,bd = np.random.randint(num_points, size=(2,num_constraints)) pos = labels[ac] == labels[bd] a,c = ac[pos], ac[~pos] b,d = bd[pos], bd[~pos] return a,b,c,d # hack around lack of axis kwarg in older numpy versions try: np.linalg.norm([[4]], axis=1) except TypeError: def _vector_norm(X): return np.apply_along_axis(np.linalg.norm, 1, X) else: def _vector_norm(X): return np.linalg.norm(X, axis=1)
mit
spallavolu/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
248
2588
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weigthts np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate") plt.plot(w, 'g-', label="Ground truth") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="lower left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
jmetzen/scikit-learn
examples/ensemble/plot_partial_dependence.py
3
4833
""" ======================== Partial Dependence Plots ======================== Partial dependence plots show the dependence between the target function [2]_ and a set of 'target' features, marginalizing over the values of all other features (the complement features). Due to the limits of human perception the size of the target feature set must be small (usually, one or two) thus the target features are usually chosen among the most important features (see :attr:`~sklearn.ensemble.GradientBoostingRegressor.feature_importances_`). This example shows how to obtain partial dependence plots from a :class:`~sklearn.ensemble.GradientBoostingRegressor` trained on the California housing dataset. The example is taken from [1]_. The plot shows four one-way and one two-way partial dependence plots. The target variables for the one-way PDP are: median income (`MedInc`), avg. occupants per household (`AvgOccup`), median house age (`HouseAge`), and avg. rooms per household (`AveRooms`). We can clearly see that the median house price shows a linear relationship with the median income (top left) and that the house price drops when the avg. occupants per household increases (top middle). The top right plot shows that the house age in a district does not have a strong influence on the (median) house price; so does the average rooms per household. The tick marks on the x-axis represent the deciles of the feature values in the training data. Partial dependence plots with two target features enable us to visualize interactions among them. The two-way partial dependence plot shows the dependence of median house price on joint values of house age and avg. occupants per household. We can clearly see an interaction between the two features: For an avg. occupancy greater than two, the house price is nearly independent of the house age, whereas for values less than two there is a strong dependence on age. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] For classification you can think of it as the regression score before the link function. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from six.moves.urllib.error import HTTPError from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble.partial_dependence import plot_partial_dependence from sklearn.ensemble.partial_dependence import partial_dependence from sklearn.datasets.california_housing import fetch_california_housing def main(): # fetch California housing dataset try: cal_housing = fetch_california_housing() except HTTPError: print("Failed downloading california housing data.") return # split 80/20 train-test X_train, X_test, y_train, y_test = train_test_split(cal_housing.data, cal_housing.target, test_size=0.2, random_state=1) names = cal_housing.feature_names print('_' * 80) print("Training GBRT...") clf = GradientBoostingRegressor(n_estimators=100, max_depth=4, learning_rate=0.1, loss='huber', random_state=1) clf.fit(X_train, y_train) print("done.") print('_' * 80) print('Convenience plot with ``partial_dependence_plots``') print features = [0, 5, 1, 2, (5, 1)] fig, axs = plot_partial_dependence(clf, X_train, features, feature_names=names, n_jobs=3, grid_resolution=50) fig.suptitle('Partial dependence of house value on nonlocation features\n' 'for the California housing dataset') plt.subplots_adjust(top=0.9) # tight_layout causes overlap with suptitle print('_' * 80) print('Custom 3d plot via ``partial_dependence``') print fig = plt.figure() target_feature = (1, 5) pdp, (x_axis, y_axis) = partial_dependence(clf, target_feature, X=X_train, grid_resolution=50) XX, YY = np.meshgrid(x_axis, y_axis) Z = pdp.T.reshape(XX.shape).T ax = Axes3D(fig) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu) ax.set_xlabel(names[target_feature[0]]) ax.set_ylabel(names[target_feature[1]]) ax.set_zlabel('Partial dependence') # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle('Partial dependence of house value on median age and ' 'average occupancy') plt.subplots_adjust(top=0.9) plt.show() if __name__ == "__main__": main()
bsd-3-clause
theoryno3/scikit-learn
sklearn/linear_model/tests/test_sgd.py
13
43295
import pickle import unittest import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import raises from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises_regexp from sklearn import linear_model, datasets, metrics from sklearn.base import clone from sklearn.linear_model import SGDClassifier, SGDRegressor from sklearn.preprocessing import LabelEncoder, scale, MinMaxScaler class SparseSGDClassifier(SGDClassifier): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).fit(X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).partial_fit(X, y, *args, **kw) def decision_function(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).decision_function(X) def predict_proba(self, X): X = sp.csr_matrix(X) return super(SparseSGDClassifier, self).predict_proba(X) class SparseSGDRegressor(SGDRegressor): def fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.fit(self, X, y, *args, **kw) def partial_fit(self, X, y, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.partial_fit(self, X, y, *args, **kw) def decision_function(self, X, *args, **kw): X = sp.csr_matrix(X) return SGDRegressor.decision_function(self, X, *args, **kw) # Test Data # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2; string class labels X2 = np.array([[-1, 1], [-0.75, 0.5], [-1.5, 1.5], [1, 1], [0.75, 0.5], [1.5, 1.5], [-1, -1], [0, -0.5], [1, -1]]) Y2 = ["one"] * 3 + ["two"] * 3 + ["three"] * 3 T2 = np.array([[-1.5, 0.5], [1, 2], [0, -2]]) true_result2 = ["one", "two", "three"] # test sample 3 X3 = np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 1, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0]]) Y3 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) # test sample 4 - two more or less redundent feature groups X4 = np.array([[1, 0.9, 0.8, 0, 0, 0], [1, .84, .98, 0, 0, 0], [1, .96, .88, 0, 0, 0], [1, .91, .99, 0, 0, 0], [0, 0, 0, .89, .91, 1], [0, 0, 0, .79, .84, 1], [0, 0, 0, .91, .95, 1], [0, 0, 0, .93, 1, 1]]) Y4 = np.array([1, 1, 1, 1, 2, 2, 2, 2]) iris = datasets.load_iris() # test sample 5 - test sample 1 as binary classification problem X5 = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) Y5 = [1, 1, 1, 2, 2, 2] true_result5 = [0, 1, 1] # Classification Test Case class CommonTest(object): def factory(self, **kwargs): if "random_state" not in kwargs: kwargs["random_state"] = 42 return self.factory_class(**kwargs) # a simple implementation of ASGD to use for testing # uses squared loss to find the gradient def asgd(self, X, y, eta, alpha, weight_init=None, intercept_init=0.0): if weight_init is None: weights = np.zeros(X.shape[1]) else: weights = weight_init average_weights = np.zeros(X.shape[1]) intercept = intercept_init average_intercept = 0.0 decay = 1.0 # sparse data has a fixed decay of .01 if (isinstance(self, SparseSGDClassifierTestCase) or isinstance(self, SparseSGDRegressorTestCase)): decay = .01 for i, entry in enumerate(X): p = np.dot(entry, weights) p += intercept gradient = p - y[i] weights *= 1.0 - (eta * alpha) weights += -(eta * gradient * entry) intercept += -(eta * gradient) * decay average_weights *= i average_weights += weights average_weights /= i + 1.0 average_intercept *= i average_intercept += intercept average_intercept /= i + 1.0 return average_weights, average_intercept def _test_warm_start(self, X, Y, lr): # Test that explicit warm restart... clf = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf.fit(X, Y) clf2 = self.factory(alpha=0.001, eta0=0.01, n_iter=5, shuffle=False, learning_rate=lr) clf2.fit(X, Y, coef_init=clf.coef_.copy(), intercept_init=clf.intercept_.copy()) # ... and implicit warm restart are equivalent. clf3 = self.factory(alpha=0.01, eta0=0.01, n_iter=5, shuffle=False, warm_start=True, learning_rate=lr) clf3.fit(X, Y) assert_equal(clf3.t_, clf.t_) assert_array_almost_equal(clf3.coef_, clf.coef_) clf3.set_params(alpha=0.001) clf3.fit(X, Y) assert_equal(clf3.t_, clf2.t_) assert_array_almost_equal(clf3.coef_, clf2.coef_) def test_warm_start_constant(self): self._test_warm_start(X, Y, "constant") def test_warm_start_invscaling(self): self._test_warm_start(X, Y, "invscaling") def test_warm_start_optimal(self): self._test_warm_start(X, Y, "optimal") def test_input_format(self): # Input format tests. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) Y_ = np.array(Y)[:, np.newaxis] Y_ = np.c_[Y_, Y_] assert_raises(ValueError, clf.fit, X, Y_) def test_clone(self): # Test whether clone works ok. clf = self.factory(alpha=0.01, n_iter=5, penalty='l1') clf = clone(clf) clf.set_params(penalty='l2') clf.fit(X, Y) clf2 = self.factory(alpha=0.01, n_iter=5, penalty='l2') clf2.fit(X, Y) assert_array_equal(clf.coef_, clf2.coef_) def test_plain_has_no_average_attr(self): clf = self.factory(average=True, eta0=.01) clf.fit(X, Y) assert_true(hasattr(clf, 'average_coef_')) assert_true(hasattr(clf, 'average_intercept_')) assert_true(hasattr(clf, 'standard_intercept_')) assert_true(hasattr(clf, 'standard_coef_')) clf = self.factory() clf.fit(X, Y) assert_false(hasattr(clf, 'average_coef_')) assert_false(hasattr(clf, 'average_intercept_')) assert_false(hasattr(clf, 'standard_intercept_')) assert_false(hasattr(clf, 'standard_coef_')) def test_late_onset_averaging_not_reached(self): clf1 = self.factory(average=600) clf2 = self.factory() for _ in range(100): if isinstance(clf1, SGDClassifier): clf1.partial_fit(X, Y, classes=np.unique(Y)) clf2.partial_fit(X, Y, classes=np.unique(Y)) else: clf1.partial_fit(X, Y) clf2.partial_fit(X, Y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16) assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16) def test_late_onset_averaging_reached(self): eta0 = .001 alpha = .0001 Y_encode = np.array(Y) Y_encode[Y_encode == 1] = -1.0 Y_encode[Y_encode == 2] = 1.0 clf1 = self.factory(average=7, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=2, shuffle=False) clf2 = self.factory(average=0, learning_rate="constant", loss='squared_loss', eta0=eta0, alpha=alpha, n_iter=1, shuffle=False) clf1.fit(X, Y_encode) clf2.fit(X, Y_encode) average_weights, average_intercept = \ self.asgd(X, Y_encode, eta0, alpha, weight_init=clf2.coef_.ravel(), intercept_init=clf2.intercept_) assert_array_almost_equal(clf1.coef_.ravel(), average_weights.ravel(), decimal=16) assert_almost_equal(clf1.intercept_, average_intercept, decimal=16) class DenseSGDClassifierTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDClassifier def test_sgd(self): # Check that SGD gives any results :-) for loss in ("hinge", "squared_hinge", "log", "modified_huber"): clf = self.factory(penalty='l2', alpha=0.01, fit_intercept=True, loss=loss, n_iter=10, shuffle=True) clf.fit(X, Y) # assert_almost_equal(clf.coef_[0], clf.coef_[1], decimal=7) assert_array_equal(clf.predict(T), true_result) @raises(ValueError) def test_sgd_bad_l1_ratio(self): # Check whether expected ValueError on bad l1_ratio self.factory(l1_ratio=1.1) @raises(ValueError) def test_sgd_bad_learning_rate_schedule(self): # Check whether expected ValueError on bad learning_rate self.factory(learning_rate="<unknown>") @raises(ValueError) def test_sgd_bad_eta0(self): # Check whether expected ValueError on bad eta0 self.factory(eta0=0, learning_rate="constant") @raises(ValueError) def test_sgd_bad_alpha(self): # Check whether expected ValueError on bad alpha self.factory(alpha=-.1) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") @raises(ValueError) def test_sgd_n_iter_param(self): # Test parameter validity check self.factory(n_iter=-10000) @raises(ValueError) def test_sgd_shuffle_param(self): # Test parameter validity check self.factory(shuffle="false") @raises(TypeError) def test_argument_coef(self): # Checks coef_init not allowed as model argument (only fit) # Provided coef_ does not match dataset. self.factory(coef_init=np.zeros((3,))).fit(X, Y) @raises(ValueError) def test_provide_coef(self): # Checks coef_init shape for the warm starts # Provided coef_ does not match dataset. self.factory().fit(X, Y, coef_init=np.zeros((3,))) @raises(ValueError) def test_set_intercept(self): # Checks intercept_ shape for the warm starts # Provided intercept_ does not match dataset. self.factory().fit(X, Y, intercept_init=np.zeros((3,))) def test_set_intercept_binary(self): # Checks intercept_ shape for the warm starts in binary case self.factory().fit(X5, Y5, intercept_init=0) def test_average_binary_computed_correctly(self): # Checks the SGDClassifier correctly computes the average weights eta = .1 alpha = 2. n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) # simple linear function without noise y = np.dot(X, w) y = np.sign(y) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) average_weights = average_weights.reshape(1, -1) assert_array_almost_equal(clf.coef_, average_weights, decimal=14) assert_almost_equal(clf.intercept_, average_intercept, decimal=14) def test_set_intercept_to_intercept(self): # Checks intercept_ shape consistency for the warm starts # Inconsistent intercept_ shape. clf = self.factory().fit(X5, Y5) self.factory().fit(X5, Y5, intercept_init=clf.intercept_) clf = self.factory().fit(X, Y) self.factory().fit(X, Y, intercept_init=clf.intercept_) @raises(ValueError) def test_sgd_at_least_two_labels(self): # Target must have at least two labels self.factory(alpha=0.01, n_iter=20).fit(X2, np.ones(9)) def test_partial_fit_weight_class_auto(self): # partial_fit with class_weight='auto' not supported assert_raises_regexp(ValueError, "class_weight 'auto' is not supported for " "partial_fit. In order to use 'auto' weights, " "use compute_class_weight\('auto', classes, y\). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.", self.factory(class_weight='auto').partial_fit, X, Y, classes=np.unique(Y)) def test_sgd_multiclass(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_average(self): eta = .001 alpha = .01 # Multi-class average test case clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) np_Y2 = np.array(Y2) clf.fit(X2, np_Y2) classes = np.unique(np_Y2) for i, cl in enumerate(classes): y_i = np.ones(np_Y2.shape[0]) y_i[np_Y2 != cl] = -1 average_coef, average_intercept = self.asgd(X2, y_i, eta, alpha) assert_array_almost_equal(average_coef, clf.coef_[i], decimal=16) assert_almost_equal(average_intercept, clf.intercept_[i], decimal=16) def test_sgd_multiclass_with_init_coef(self): # Multi-class test case clf = self.factory(alpha=0.01, n_iter=20) clf.fit(X2, Y2, coef_init=np.zeros((3, 2)), intercept_init=np.zeros(3)) assert_equal(clf.coef_.shape, (3, 2)) assert_true(clf.intercept_.shape, (3,)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_sgd_multiclass_njobs(self): # Multi-class test case with multi-core support clf = self.factory(alpha=0.01, n_iter=20, n_jobs=2).fit(X2, Y2) assert_equal(clf.coef_.shape, (3, 2)) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) pred = clf.predict(T2) assert_array_equal(pred, true_result2) def test_set_coef_multiclass(self): # Checks coef_init and intercept_init shape for for multi-class # problems # Provided coef_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, coef_init=np.zeros((2, 2))) # Provided coef_ does match dataset clf = self.factory().fit(X2, Y2, coef_init=np.zeros((3, 2))) # Provided intercept_ does not match dataset clf = self.factory() assert_raises(ValueError, clf.fit, X2, Y2, intercept_init=np.zeros((1,))) # Provided intercept_ does match dataset. clf = self.factory().fit(X2, Y2, intercept_init=np.zeros((3,))) def test_sgd_proba(self): # Check SGD.predict_proba # Hinge loss does not allow for conditional prob estimate. # We cannot use the factory here, because it defines predict_proba # anyway. clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=10).fit(X, Y) assert_false(hasattr(clf, "predict_proba")) assert_false(hasattr(clf, "predict_log_proba")) # log and modified_huber losses can output probability estimates # binary case for loss in ["log", "modified_huber"]: clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X, Y) p = clf.predict_proba([3, 2]) assert_true(p[0, 1] > 0.5) p = clf.predict_proba([-1, -1]) assert_true(p[0, 1] < 0.5) p = clf.predict_log_proba([3, 2]) assert_true(p[0, 1] > p[0, 0]) p = clf.predict_log_proba([-1, -1]) assert_true(p[0, 1] < p[0, 0]) # log loss multiclass probability estimates clf = self.factory(loss="log", alpha=0.01, n_iter=10).fit(X2, Y2) d = clf.decision_function([[.1, -.1], [.3, .2]]) p = clf.predict_proba([[.1, -.1], [.3, .2]]) assert_array_equal(np.argmax(p, axis=1), np.argmax(d, axis=1)) assert_almost_equal(p[0].sum(), 1) assert_true(np.all(p[0] >= 0)) p = clf.predict_proba([-1, -1]) d = clf.decision_function([-1, -1]) assert_array_equal(np.argsort(p[0]), np.argsort(d[0])) l = clf.predict_log_proba([3, 2]) p = clf.predict_proba([3, 2]) assert_array_almost_equal(np.log(p), l) l = clf.predict_log_proba([-1, -1]) p = clf.predict_proba([-1, -1]) assert_array_almost_equal(np.log(p), l) # Modified Huber multiclass probability estimates; requires a separate # test because the hard zero/one probabilities may destroy the # ordering present in decision_function output. clf = self.factory(loss="modified_huber", alpha=0.01, n_iter=10) clf.fit(X2, Y2) d = clf.decision_function([3, 2]) p = clf.predict_proba([3, 2]) if not isinstance(self, SparseSGDClassifierTestCase): assert_equal(np.argmax(d, axis=1), np.argmax(p, axis=1)) else: # XXX the sparse test gets a different X2 (?) assert_equal(np.argmin(d, axis=1), np.argmin(p, axis=1)) # the following sample produces decision_function values < -1, # which would cause naive normalization to fail (see comment # in SGDClassifier.predict_proba) x = X.mean(axis=0) d = clf.decision_function(x) if np.all(d < -1): # XXX not true in sparse test case (why?) p = clf.predict_proba(x) assert_array_almost_equal(p[0], [1 / 3.] * 3) def test_sgd_l1(self): # Test L1 regularization n = len(X4) rng = np.random.RandomState(13) idx = np.arange(n) rng.shuffle(idx) X = X4[idx, :] Y = Y4[idx] clf = self.factory(penalty='l1', alpha=.2, fit_intercept=False, n_iter=2000, shuffle=False) clf.fit(X, Y) assert_array_equal(clf.coef_[0, 1:-1], np.zeros((4,))) pred = clf.predict(X) assert_array_equal(pred, Y) # test sparsify with dense inputs clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) # pickle and unpickle with sparse coef_ clf = pickle.loads(pickle.dumps(clf)) assert_true(sp.issparse(clf.coef_)) pred = clf.predict(X) assert_array_equal(pred, Y) def test_class_weights(self): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False, class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) def test_equal_class_weight(self): # Test if equal class weights approx. equals no class weights. X = [[1, 0], [1, 0], [0, 1], [0, 1]] y = [0, 0, 1, 1] clf = self.factory(alpha=0.1, n_iter=1000, class_weight=None) clf.fit(X, y) X = [[1, 0], [0, 1]] y = [0, 1] clf_weighted = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5, 1: 0.5}) clf_weighted.fit(X, y) # should be similar up to some epsilon due to learning rate schedule assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2) @raises(ValueError) def test_wrong_class_weight_label(self): # ValueError due to not existing class label. clf = self.factory(alpha=0.1, n_iter=1000, class_weight={0: 0.5}) clf.fit(X, Y) @raises(ValueError) def test_wrong_class_weight_format(self): # ValueError due to wrong class_weight argument type. clf = self.factory(alpha=0.1, n_iter=1000, class_weight=[0.5]) clf.fit(X, Y) def test_weights_multiplied(self): # Tests that class_weight and sample_weight are multiplicative class_weights = {1: .6, 2: .3} sample_weights = np.random.random(Y4.shape[0]) multiplied_together = np.copy(sample_weights) multiplied_together[Y4 == 1] *= class_weights[1] multiplied_together[Y4 == 2] *= class_weights[2] clf1 = self.factory(alpha=0.1, n_iter=20, class_weight=class_weights) clf2 = self.factory(alpha=0.1, n_iter=20) clf1.fit(X4, Y4, sample_weight=sample_weights) clf2.fit(X4, Y4, sample_weight=multiplied_together) assert_almost_equal(clf1.coef_, clf2.coef_) def test_auto_weight(self): # Test class weights for imbalanced data # compute reference metrics on iris dataset that is quite balanced by # default X, y = iris.data, iris.target X = scale(X) idx = np.arange(X.shape[0]) rng = np.random.RandomState(6) rng.shuffle(idx) X = X[idx] y = y[idx] clf = self.factory(alpha=0.0001, n_iter=1000, class_weight=None, shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf.predict(X), average='weighted'), 0.96, decimal=1) # make the same prediction using automated class_weight clf_auto = self.factory(alpha=0.0001, n_iter=1000, class_weight="auto", shuffle=False).fit(X, y) assert_almost_equal(metrics.f1_score(y, clf_auto.predict(X), average='weighted'), 0.96, decimal=1) # Make sure that in the balanced case it does not change anything # to use "auto" assert_array_almost_equal(clf.coef_, clf_auto.coef_, 6) # build an very very imbalanced dataset out of iris data X_0 = X[y == 0, :] y_0 = y[y == 0] X_imbalanced = np.vstack([X] + [X_0] * 10) y_imbalanced = np.concatenate([y] + [y_0] * 10) # fit a model on the imbalanced data without class weight info clf = self.factory(n_iter=1000, class_weight=None, shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_less(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit a model with auto class_weight enabled clf = self.factory(n_iter=1000, class_weight="auto", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) # fit another using a fit parameter override clf = self.factory(n_iter=1000, class_weight="auto", shuffle=False) clf.fit(X_imbalanced, y_imbalanced) y_pred = clf.predict(X) assert_greater(metrics.f1_score(y, y_pred, average='weighted'), 0.96) def test_sample_weights(self): # Test weights on individual samples X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf.fit(X, y, sample_weight=[0.001] * 3 + [1] * 2) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) @raises(ValueError) def test_wrong_sample_weights(self): # Test if ValueError is raised if sample_weight has wrong shape clf = self.factory(alpha=0.1, n_iter=1000, fit_intercept=False) # provided sample_weight too long clf.fit(X, Y, sample_weight=np.arange(7)) @raises(ValueError) def test_partial_fit_exception(self): clf = self.factory(alpha=0.01) # classes was not specified clf.partial_fit(X3, Y3) def test_partial_fit_binary(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y) clf.partial_fit(X[:third], Y[:third], classes=classes) assert_equal(clf.coef_.shape, (1, X.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) y_pred = clf.predict(T) assert_array_equal(y_pred, true_result) def test_partial_fit_multiclass(self): third = X2.shape[0] // 3 clf = self.factory(alpha=0.01) classes = np.unique(Y2) clf.partial_fit(X2[:third], Y2[:third], classes=classes) assert_equal(clf.coef_.shape, (3, X2.shape[1])) assert_equal(clf.intercept_.shape, (3,)) assert_equal(clf.decision_function([0, 0]).shape, (1, 3)) id1 = id(clf.coef_.data) clf.partial_fit(X2[third:], Y2[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def test_fit_then_partial_fit(self): # Partial_fit should work after initial fit in the multiclass case. # Non-regression test for #2496; fit would previously produce a # Fortran-ordered coef_ that subsequent partial_fit couldn't handle. clf = self.factory() clf.fit(X2, Y2) clf.partial_fit(X2, Y2) # no exception here def _test_partial_fit_equal_fit(self, lr): for X_, Y_, T_ in ((X, Y, T), (X2, Y2, T2)): clf = self.factory(alpha=0.01, eta0=0.01, n_iter=2, learning_rate=lr, shuffle=False) clf.fit(X_, Y_) y_pred = clf.decision_function(T_) t = clf.t_ classes = np.unique(Y_) clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X_, Y_, classes=classes) y_pred2 = clf.decision_function(T_) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_regression_losses(self): clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.1, loss="squared_epsilon_insensitive") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, loss="huber") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) clf = self.factory(alpha=0.01, learning_rate="constant", eta0=0.01, loss="squared_loss") clf.fit(X, Y) assert_equal(1.0, np.mean(clf.predict(X) == Y)) def test_warm_start_multiclass(self): self._test_warm_start(X2, Y2, "optimal") def test_multiple_fit(self): # Test multiple calls of fit w/ different shaped inputs. clf = self.factory(alpha=0.01, n_iter=5, shuffle=False) clf.fit(X, Y) assert_true(hasattr(clf, "coef_")) # Non-regression test: try fitting with a different label set. y = [["ham", "spam"][i] for i in LabelEncoder().fit_transform(Y)] clf.fit(X[:, :-1], y) class SparseSGDClassifierTestCase(DenseSGDClassifierTestCase): """Run exactly the same tests using the sparse representation variant""" factory_class = SparseSGDClassifier ############################################################################### # Regression Test Case class DenseSGDRegressorTestCase(unittest.TestCase, CommonTest): """Test suite for the dense representation variant of SGD""" factory_class = SGDRegressor def test_sgd(self): # Check that SGD gives any results. clf = self.factory(alpha=0.1, n_iter=2, fit_intercept=False) clf.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) assert_equal(clf.coef_[0], clf.coef_[1]) @raises(ValueError) def test_sgd_bad_penalty(self): # Check whether expected ValueError on bad penalty self.factory(penalty='foobar', l1_ratio=0.85) @raises(ValueError) def test_sgd_bad_loss(self): # Check whether expected ValueError on bad loss self.factory(loss="foobar") def test_sgd_averaged_computed_correctly(self): # Tests the average regressor matches the naive implementation eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.fit(X, y) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_averaged_partial_fit(self): # Tests whether the partial fit yields the same average as the fit eta = .001 alpha = .01 n_samples = 20 n_features = 10 rng = np.random.RandomState(0) X = rng.normal(size=(n_samples, n_features)) w = rng.normal(size=n_features) # simple linear function without noise y = np.dot(X, w) clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) clf.partial_fit(X[:int(n_samples / 2)][:], y[:int(n_samples / 2)]) clf.partial_fit(X[int(n_samples / 2):][:], y[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X, y, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_[0], average_intercept, decimal=16) def test_average_sparse(self): # Checks the average weights on data with 0s eta = .001 alpha = .01 clf = self.factory(loss='squared_loss', learning_rate='constant', eta0=eta, alpha=alpha, fit_intercept=True, n_iter=1, average=True, shuffle=False) n_samples = Y3.shape[0] clf.partial_fit(X3[:int(n_samples / 2)][:], Y3[:int(n_samples / 2)]) clf.partial_fit(X3[int(n_samples / 2):][:], Y3[int(n_samples / 2):]) average_weights, average_intercept = self.asgd(X3, Y3, eta, alpha) assert_array_almost_equal(clf.coef_, average_weights, decimal=16) assert_almost_equal(clf.intercept_, average_intercept, decimal=16) def test_sgd_least_squares_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss='squared_loss', alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_sgd_epsilon_insensitive(self): xmin, xmax = -5, 5 n_samples = 100 X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.99) # simple linear function with noise y = 0.5 * X.ravel() \ + np.random.randn(n_samples, 1).ravel() clf = self.factory(loss='epsilon_insensitive', epsilon=0.01, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_true(score > 0.5) def test_sgd_huber_fit(self): xmin, xmax = -5, 5 n_samples = 100 rng = np.random.RandomState(0) X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1) # simple linear function without noise y = 0.5 * X.ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.99) # simple linear function with noise y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel() clf = self.factory(loss="huber", epsilon=0.1, alpha=0.1, n_iter=20, fit_intercept=False) clf.fit(X, y) score = clf.score(X, y) assert_greater(score, 0.5) def test_elasticnet_convergence(self): # Check that the SGD output is consistent with coordinate descent n_samples, n_features = 1000, 5 rng = np.random.RandomState(0) X = np.random.randn(n_samples, n_features) # ground_truth linear model that generate y from X and to which the # models should converge if the regularizer would be set to 0.0 ground_truth_coef = rng.randn(n_features) y = np.dot(X, ground_truth_coef) # XXX: alpha = 0.1 seems to cause convergence problems for alpha in [0.01, 0.001]: for l1_ratio in [0.5, 0.8, 1.0]: cd = linear_model.ElasticNet(alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) cd.fit(X, y) sgd = self.factory(penalty='elasticnet', n_iter=50, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=False) sgd.fit(X, y) err_msg = ("cd and sgd did not converge to comparable " "results for alpha=%f and l1_ratio=%f" % (alpha, l1_ratio)) assert_almost_equal(cd.coef_, sgd.coef_, decimal=2, err_msg=err_msg) def test_partial_fit(self): third = X.shape[0] // 3 clf = self.factory(alpha=0.01) clf.partial_fit(X[:third], Y[:third]) assert_equal(clf.coef_.shape, (X.shape[1], )) assert_equal(clf.intercept_.shape, (1,)) assert_equal(clf.decision_function([0, 0]).shape, (1, )) id1 = id(clf.coef_.data) clf.partial_fit(X[third:], Y[third:]) id2 = id(clf.coef_.data) # check that coef_ haven't been re-allocated assert_true(id1, id2) def _test_partial_fit_equal_fit(self, lr): clf = self.factory(alpha=0.01, n_iter=2, eta0=0.01, learning_rate=lr, shuffle=False) clf.fit(X, Y) y_pred = clf.predict(T) t = clf.t_ clf = self.factory(alpha=0.01, eta0=0.01, learning_rate=lr, shuffle=False) for i in range(2): clf.partial_fit(X, Y) y_pred2 = clf.predict(T) assert_equal(clf.t_, t) assert_array_almost_equal(y_pred, y_pred2, decimal=2) def test_partial_fit_equal_fit_constant(self): self._test_partial_fit_equal_fit("constant") def test_partial_fit_equal_fit_optimal(self): self._test_partial_fit_equal_fit("optimal") def test_partial_fit_equal_fit_invscaling(self): self._test_partial_fit_equal_fit("invscaling") def test_loss_function_epsilon(self): clf = self.factory(epsilon=0.9) clf.set_params(epsilon=0.1) assert clf.loss_functions['huber'][1] == 0.1 class SparseSGDRegressorTestCase(DenseSGDRegressorTestCase): # Run exactly the same tests using the sparse representation variant factory_class = SparseSGDRegressor def test_l1_ratio(): # Test if l1 ratio extremes match L1 and L2 penalty settings. X, y = datasets.make_classification(n_samples=1000, n_features=100, n_informative=20, random_state=1234) # test if elasticnet with l1_ratio near 1 gives same result as pure l1 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.9999999999, random_state=42).fit(X, y) est_l1 = SGDClassifier(alpha=0.001, penalty='l1', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l1.coef_) # test if elasticnet with l1_ratio near 0 gives same result as pure l2 est_en = SGDClassifier(alpha=0.001, penalty='elasticnet', l1_ratio=0.0000000001, random_state=42).fit(X, y) est_l2 = SGDClassifier(alpha=0.001, penalty='l2', random_state=42).fit(X, y) assert_array_almost_equal(est_en.coef_, est_l2.coef_) def test_underflow_or_overlow(): with np.errstate(all='raise'): # Generate some weird data with hugely unscaled features rng = np.random.RandomState(0) n_samples = 100 n_features = 10 X = rng.normal(size=(n_samples, n_features)) X[:, :2] *= 1e300 assert_true(np.isfinite(X).all()) # Use MinMaxScaler to scale the data without introducing a numerical # instability (computing the standard deviation naively is not possible # on this data) X_scaled = MinMaxScaler().fit_transform(X) assert_true(np.isfinite(X_scaled).all()) # Define a ground truth on the scaled data ground_truth = rng.normal(size=n_features) y = (np.dot(X_scaled, ground_truth) > 0.).astype(np.int32) assert_array_equal(np.unique(y), [0, 1]) model = SGDClassifier(alpha=0.1, loss='squared_hinge', n_iter=500) # smoke test: model is stable on scaled data model.fit(X_scaled, y) assert_true(np.isfinite(model.coef_).all()) # model is numerically unstable on unscaled data msg_regxp = (r"Floating-point under-/overflow occurred at epoch #.*" " Scaling input data with StandardScaler or MinMaxScaler" " might help.") assert_raises_regexp(ValueError, msg_regxp, model.fit, X, y) def test_numerical_stability_large_gradient(): # Non regression test case for numerical stability on scaled problems # where the gradient can still explode with some losses model = SGDClassifier(loss='squared_hinge', n_iter=10, shuffle=True, penalty='elasticnet', l1_ratio=0.3, alpha=0.01, eta0=0.001, random_state=0) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_true(np.isfinite(model.coef_).all()) def test_large_regularization(): # Non regression tests for numerical stability issues caused by large # regularization parameters for penalty in ['l2', 'l1', 'elasticnet']: model = SGDClassifier(alpha=1e5, learning_rate='constant', eta0=0.1, n_iter=5, penalty=penalty, shuffle=False) with np.errstate(all='raise'): model.fit(iris.data, iris.target) assert_array_almost_equal(model.coef_, np.zeros_like(model.coef_))
bsd-3-clause
michigraber/scikit-learn
sklearn/datasets/mldata.py
309
7838
"""Automatically download MLdata datasets.""" # Copyright (c) 2011 Pietro Berkes # License: BSD 3 clause import os from os.path import join, exists import re import numbers try: # Python 2 from urllib2 import HTTPError from urllib2 import quote from urllib2 import urlopen except ImportError: # Python 3+ from urllib.error import HTTPError from urllib.parse import quote from urllib.request import urlopen import numpy as np import scipy as sp from scipy import io from shutil import copyfileobj from .base import get_data_home, Bunch MLDATA_BASE_URL = "http://mldata.org/repository/data/download/matlab/%s" def mldata_filename(dataname): """Convert a raw name for a data set in a mldata.org filename.""" dataname = dataname.lower().replace(' ', '-') return re.sub(r'[().]', '', dataname) def fetch_mldata(dataname, target_name='label', data_name='data', transpose_data=True, data_home=None): """Fetch an mldata.org data set If the file does not exist yet, it is downloaded from mldata.org . mldata.org does not have an enforced convention for storing data or naming the columns in a data set. The default behavior of this function works well with the most common cases: 1) data values are stored in the column 'data', and target values in the column 'label' 2) alternatively, the first column stores target values, and the second data values 3) the data array is stored as `n_features x n_samples` , and thus needs to be transposed to match the `sklearn` standard Keyword arguments allow to adapt these defaults to specific data sets (see parameters `target_name`, `data_name`, `transpose_data`, and the examples below). mldata.org data sets may have multiple columns, which are stored in the Bunch object with their original name. Parameters ---------- dataname: Name of the data set on mldata.org, e.g.: "leukemia", "Whistler Daily Snowfall", etc. The raw name is automatically converted to a mldata.org URL . target_name: optional, default: 'label' Name or index of the column containing the target values. data_name: optional, default: 'data' Name or index of the column containing the data. transpose_data: optional, default: True If True, transpose the downloaded data array. data_home: optional, default: None Specify another download and cache folder for the data sets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'data', the data to learn, 'target', the classification labels, 'DESCR', the full description of the dataset, and 'COL_NAMES', the original names of the dataset columns. Examples -------- Load the 'iris' dataset from mldata.org: >>> from sklearn.datasets.mldata import fetch_mldata >>> import tempfile >>> test_data_home = tempfile.mkdtemp() >>> iris = fetch_mldata('iris', data_home=test_data_home) >>> iris.target.shape (150,) >>> iris.data.shape (150, 4) Load the 'leukemia' dataset from mldata.org, which needs to be transposed to respects the sklearn axes convention: >>> leuk = fetch_mldata('leukemia', transpose_data=True, ... data_home=test_data_home) >>> leuk.data.shape (72, 7129) Load an alternative 'iris' dataset, which has different names for the columns: >>> iris2 = fetch_mldata('datasets-UCI iris', target_name=1, ... data_name=0, data_home=test_data_home) >>> iris3 = fetch_mldata('datasets-UCI iris', ... target_name='class', data_name='double0', ... data_home=test_data_home) >>> import shutil >>> shutil.rmtree(test_data_home) """ # normalize dataset name dataname = mldata_filename(dataname) # check if this data set has been already downloaded data_home = get_data_home(data_home=data_home) data_home = join(data_home, 'mldata') if not exists(data_home): os.makedirs(data_home) matlab_name = dataname + '.mat' filename = join(data_home, matlab_name) # if the file does not exist, download it if not exists(filename): urlname = MLDATA_BASE_URL % quote(dataname) try: mldata_url = urlopen(urlname) except HTTPError as e: if e.code == 404: e.msg = "Dataset '%s' not found on mldata.org." % dataname raise # store Matlab file try: with open(filename, 'w+b') as matlab_file: copyfileobj(mldata_url, matlab_file) except: os.remove(filename) raise mldata_url.close() # load dataset matlab file with open(filename, 'rb') as matlab_file: matlab_dict = io.loadmat(matlab_file, struct_as_record=True) # -- extract data from matlab_dict # flatten column names col_names = [str(descr[0]) for descr in matlab_dict['mldata_descr_ordering'][0]] # if target or data names are indices, transform then into names if isinstance(target_name, numbers.Integral): target_name = col_names[target_name] if isinstance(data_name, numbers.Integral): data_name = col_names[data_name] # rules for making sense of the mldata.org data format # (earlier ones have priority): # 1) there is only one array => it is "data" # 2) there are multiple arrays # a) copy all columns in the bunch, using their column name # b) if there is a column called `target_name`, set "target" to it, # otherwise set "target" to first column # c) if there is a column called `data_name`, set "data" to it, # otherwise set "data" to second column dataset = {'DESCR': 'mldata.org dataset: %s' % dataname, 'COL_NAMES': col_names} # 1) there is only one array => it is considered data if len(col_names) == 1: data_name = col_names[0] dataset['data'] = matlab_dict[data_name] # 2) there are multiple arrays else: for name in col_names: dataset[name] = matlab_dict[name] if target_name in col_names: del dataset[target_name] dataset['target'] = matlab_dict[target_name] else: del dataset[col_names[0]] dataset['target'] = matlab_dict[col_names[0]] if data_name in col_names: del dataset[data_name] dataset['data'] = matlab_dict[data_name] else: del dataset[col_names[1]] dataset['data'] = matlab_dict[col_names[1]] # set axes to sklearn conventions if transpose_data: dataset['data'] = dataset['data'].T if 'target' in dataset: if not sp.sparse.issparse(dataset['target']): dataset['target'] = dataset['target'].squeeze() return Bunch(**dataset) # The following is used by nosetests to setup the docstring tests fixture def setup_module(module): # setup mock urllib2 module to avoid downloading from mldata.org from sklearn.utils.testing import install_mldata_mock install_mldata_mock({ 'iris': { 'data': np.empty((150, 4)), 'label': np.empty(150), }, 'datasets-uci-iris': { 'double0': np.empty((150, 4)), 'class': np.empty((150,)), }, 'leukemia': { 'data': np.empty((72, 7129)), }, }) def teardown_module(module): from sklearn.utils.testing import uninstall_mldata_mock uninstall_mldata_mock()
bsd-3-clause
jian-li/rpg_svo
svo_analysis/scripts/compare_results.py
17
6127
#!/usr/bin/python import os import sys import time import rospkg import numpy as np import matplotlib.pyplot as plt import yaml import argparse from matplotlib import rc # tell matplotlib to use latex font rc('font',**{'family':'serif','serif':['Cardo']}) rc('text', usetex=True) from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset def plot_trajectory(ax, filename, label, color, linewidth): file = open(filename) data = file.read() lines = data.replace(","," ").replace("\t"," ").split("\n") trajectory = np.array([[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"], dtype=np.float64) ax.plot(trajectory[:,1], trajectory[:,2], label=label, color=color, linewidth=linewidth) def compare_results(experiments, results_dir, comparison_dir, plot_scale_drift = False): # ------------------------------------------------------------------------------ # position error fig_poserr = plt.figure(figsize=(8,6)) ax_poserr_x = fig_poserr.add_subplot(311, ylabel='x-error [m]') ax_poserr_y = fig_poserr.add_subplot(312, ylabel='y-error [m]') ax_poserr_z = fig_poserr.add_subplot(313, ylabel='z-error [m]', xlabel='time [s]') for exp in experiments: # load dataset parameters params_stream = open(os.path.join(results_dir, exp, 'params.yaml')) params = yaml.load(params_stream) # plot translation error trans_error = np.loadtxt(os.path.join(results_dir, exp, 'translation_error.txt')) trans_error[:,0] = trans_error[:,0]-trans_error[0,0] ax_poserr_x.plot(trans_error[:,0], trans_error[:,1], label=params['experiment_label']) ax_poserr_y.plot(trans_error[:,0], trans_error[:,2]) ax_poserr_z.plot(trans_error[:,0], trans_error[:,3]) ax_poserr_x.set_xlim([0, trans_error[-1,0]+4]) ax_poserr_y.set_xlim([0, trans_error[-1,0]+4]) ax_poserr_z.set_xlim([0, trans_error[-1,0]+4]) ax_poserr_x.legend(bbox_to_anchor=[0, 0], loc='lower left', ncol=3) ax_poserr_x.grid() ax_poserr_y.grid() ax_poserr_z.grid() fig_poserr.tight_layout() fig_poserr.savefig(os.path.join(comparison_dir, 'translation_error.pdf')) # ------------------------------------------------------------------------------ # orientation error fig_roterr = plt.figure(figsize=(8,6)) ax_roterr_r = fig_roterr.add_subplot(311, ylabel='roll-error [rad]') ax_roterr_p = fig_roterr.add_subplot(312, ylabel='pitch-error [rad]') ax_roterr_y = fig_roterr.add_subplot(313, ylabel='yaw-error [rad]', xlabel='time [s]') for exp in experiments: # load dataset parameters params_stream = open(os.path.join(results_dir, exp, 'params.yaml')) params = yaml.load(params_stream) # plot translation error rot_error = np.loadtxt(os.path.join(results_dir, exp, 'orientation_error.txt')) rot_error[:,0] = rot_error[:,0]-rot_error[0,0] ax_roterr_r.plot(rot_error[:,0], rot_error[:,3], label=params['experiment_label']) ax_roterr_p.plot(rot_error[:,0], rot_error[:,2]) ax_roterr_y.plot(rot_error[:,0], rot_error[:,1]) ax_roterr_r.set_xlim([0, rot_error[-1,0]+4]) ax_roterr_p.set_xlim([0, rot_error[-1,0]+4]) ax_roterr_y.set_xlim([0, rot_error[-1,0]+4]) ax_roterr_r.legend(bbox_to_anchor=[0, 1], loc='upper left', ncol=3) ax_roterr_r.grid() ax_roterr_p.grid() ax_roterr_y.grid() fig_roterr.tight_layout() fig_roterr.savefig(os.path.join(comparison_dir, 'orientation_error.pdf')) # ------------------------------------------------------------------------------ # scale error if plot_scale_drift: fig_scale = plt.figure(figsize=(8,2.5)) ax_scale = fig_scale.add_subplot(111, xlabel='time [s]', ylabel='scale change [\%]') for exp in experiments: # load dataset parameters params = yaml.load(open(os.path.join(results_dir, exp, 'params.yaml'))) # plot translation error scale_drift = open(os.path.join(results_dir, exp, 'scale_drift.txt')) scale_drift[:,0] = scale_drift[:,0]-scale_drift[0,0] ax_scale.plot(scale_drift[:,0], scale_drift[:,1], label=params['experiment_label']) ax_scale.set_xlim([0, rot_error[-1,0]+4]) ax_scale.legend(bbox_to_anchor=[0, 1], loc='upper left', ncol=3) ax_scale.grid() fig_scale.tight_layout() fig_scale.savefig(os.path.join(comparison_dir, 'scale_drift.pdf')) # ------------------------------------------------------------------------------ # trajectory # fig_traj = plt.figure(figsize=(8,4.8)) # ax_traj = fig_traj.add_subplot(111, xlabel='x [m]', ylabel='y [m]', aspect='equal', xlim=[-3.1, 4], ylim=[-1.5, 2.6]) # # plotTrajectory(ax_traj, '/home/cforster/Datasets/asl_vicon_d2/groundtruth_filtered.txt', 'Groundtruth', 'k', 1.5) # plotTrajectory(ax_traj, results_dir+'/20130911_2229_nslam_i7_asl2_fast/traj_estimate_rotated.txt', 'Fast', 'g', 1) # plotTrajectory(ax_traj, results_dir+'/20130906_2149_ptam_i7_asl2/traj_estimate_rotated.txt', 'PTAM', 'r', 1) # # mark_inset(ax_traj, axins, loc1=2, loc2=4, fc="none", ec='b') # plt.draw() # plt.show() # ax_traj.legend(bbox_to_anchor=[1, 0], loc='lower right', ncol=3) # ax_traj.grid() # fig_traj.tight_layout() # fig_traj.savefig('../results/trajectory_asl.pdf') if __name__ == '__main__': default_name = time.strftime("%Y%m%d_%H%M", time.localtime())+'_comparison' parser = argparse.ArgumentParser(description='Compare results.') parser.add_argument('result_directories', nargs='+', help='list of result directories to compare') parser.add_argument('--name', help='name of the comparison', default=default_name) args = parser.parse_args() # create folder for comparison results results_dir = os.path.join(rospkg.RosPack().get_path('svo_analysis'), 'results') comparison_dir = os.path.join(results_dir, args.name) if not os.path.exists(comparison_dir): os.makedirs(comparison_dir) # run comparison compare_results(args.result_directories, results_dir, comparison_dir)
gpl-3.0
jdavidrcamacho/Tests_GP
02 - Programs being tested/RV_function.py
1
3615
# -*- coding: utf-8 -*- """ Created on Fri Feb 3 11:36:58 2017 @author: camacho """ import numpy as np import matplotlib.pyplot as pl pl.close("all") ##### RV FUNCTION 1 - circular orbit def RV_circular(P=365,K=0.1,T=0,gamma=0,time=100,space=20): #parameters #P = period in days #K = semi-amplitude of the signal #T = velocity at zero phase #gamma = average velocity of the star #time = time of the simulation #space => I want an observation every time/space days t=np.linspace(0,time,space) RV=[K*np.sin(2*np.pi*x/P - T) + gamma for x in t] RV=[x for x in RV] #m/s return [t,RV] ##### RV FUNCTION 2 - keplerian orbit def RV_kepler(P=365,e=0,K=0.1,T=0,gamma=0,w=np.pi,time=100,space=1000): #parameters #P = period in days #e = eccentricity #K = RV amplitude #gamma = constant system RV #T = zero phase #w = longitude of the periastron #time = time of the simulation #space => I want an observation every time/space days t=np.linspace(0,time,space) #mean anomaly Mean_anom=[2*np.pi*(x1-T)/P for x1 in t] #eccentric anomaly -> E0=M + e*sin(M) + 0.5*(e**2)*sin(2*M) E0=[x + e*np.sin(x) + 0.5*(e**2)*np.sin(2*x) for x in Mean_anom] #mean anomaly -> M0=E0 - e*sin(E0) M0=[x - e*np.sin(x) for x in E0] i=0 while i<100: #[x + y for x, y in zip(first, second)] calc_aux=[x2-y for x2,y in zip(Mean_anom,M0)] E1=[x3 + y/(1-e*np.cos(x3)) for x3,y in zip(E0,calc_aux)] M1=[x4 - e*np.sin(x4) for x4 in E0] i+=1 E0=E1 M0=M1 nu=[2*np.arctan(np.sqrt((1+e)/(1-e))*np.tan(x5/2)) for x5 in E0] RV=[ gamma + K*(e*np.cos(w)+np.cos(w+x6)) for x6 in nu] RV=[x for x in RV] #m/s return t,RV #Examples #a=RV_circular() #pl.figure('RV_circular with P=365') #pl.plot(a[0],a[1],':',) #pl.title('planet of 365 days orbit') #pl.xlabel('time') #pl.ylabel('RV (Km/s)') #b=RV_circular(P=100) #pl.figure('RV_circular with P=100') #pl.title('planet of 100 days orbit') #pl.plot(b[0],b[1],':',) #pl.xlabel('time') #pl.ylabel('RV (Km/s)') #c=RV_kepler(P=100,e=0,w=np.pi,time=100) #pl.figure() #pl.plot(c[0],c[1],':',) #pl.title('P=100, e=0, w=pi, time=100') #pl.xlabel('time') #pl.ylabel('RV (Km/s)') #d1=RV_kepler(P=100,e=0, w=0,time=500) #pl.figure() #pl.title('P=100, e=0, w=pi, time=25') #pl.plot(d[0],d[1],'-',) #pl.xlabel('time') #pl.ylabel('RV (Km/s)') #d2=RV_kepler(P=100,e=0, w=np.pi,time=500) #pl.figure() #pl.title('P=100, e=0, w=pi, time=25') #pl.plot(d[0],d[1],'-',) #pl.xlabel('time') #pl.ylabel('RV (Km/s)') #d3=RV_kepler(P=100,e=0.5, w=np.pi,time=500) #pl.figure() #pl.title('P=100, e=0, w=pi, time=25') #pl.plot(d[0],d[1],'-',) #pl.xlabel('time') #pl.ylabel('RV (Km/s)') #d4=RV_kepler(P=100,e=0.5, w=np.pi/2,time=500) #pl.figure() #pl.title('P=100, e=0, w=pi, time=25') #pl.plot(d[0],d[1],'-',) #pl.xlabel('time') #pl.ylabel('RV (Km/s)') d1=RV_kepler(P=100,e=0, w=0,time=500) d2=RV_kepler(P=100,e=0.5, w=0,time=500) d3=RV_kepler(P=100,e=0.5, w=np.pi,time=500) d4=RV_kepler(P=100,e=0.5, w=np.pi/2,time=500) # Four axes, returned as a 2-d array f, axarr = pl.subplots(2, 2) axarr[0, 0].plot(d1[0],d1[1]) axarr[0, 0].set_title('e=0 and w=0') axarr[0, 1].plot(d2[0],d2[1]) axarr[0, 1].set_title('e=0.5, w=0') axarr[1, 0].plot(d3[0],d3[1]) axarr[1, 0].set_title('e=0.5, w=pi') axarr[1, 1].plot(d4[0],d4[1]) axarr[1, 1].set_title('e=0.5, w=pi/2') #pl.setp(pl.xticks(fontsize = 18) for a in axarr[0,:])#pl.yticks(fontsize=18)) pl.setp([a.get_xticklabels() for a in axarr[0, :]], visible=False)
mit
IamJeffG/geopandas
geopandas/plotting.py
1
13216
from __future__ import print_function import warnings import numpy as np from six import next from six.moves import xrange from shapely.geometry import Polygon def plot_polygon(ax, poly, facecolor='red', edgecolor='black', alpha=0.5, linewidth=1.0, **kwargs): """ Plot a single Polygon geometry """ from descartes.patch import PolygonPatch a = np.asarray(poly.exterior) if poly.has_z: poly = Polygon(zip(*poly.exterior.xy)) # without Descartes, we could make a Patch of exterior ax.add_patch(PolygonPatch(poly, facecolor=facecolor, linewidth=0, alpha=alpha)) # linewidth=0 because boundaries are drawn separately ax.plot(a[:, 0], a[:, 1], color=edgecolor, linewidth=linewidth, **kwargs) for p in poly.interiors: x, y = zip(*p.coords) ax.plot(x, y, color=edgecolor, linewidth=linewidth) def plot_multipolygon(ax, geom, facecolor='red', edgecolor='black', alpha=0.5, linewidth=1.0, **kwargs): """ Can safely call with either Polygon or Multipolygon geometry """ if geom.type == 'Polygon': plot_polygon(ax, geom, facecolor=facecolor, edgecolor=edgecolor, alpha=alpha, linewidth=linewidth, **kwargs) elif geom.type == 'MultiPolygon': for poly in geom.geoms: plot_polygon(ax, poly, facecolor=facecolor, edgecolor=edgecolor, alpha=alpha, linewidth=linewidth, **kwargs) def plot_linestring(ax, geom, color='black', linewidth=1.0, **kwargs): """ Plot a single LineString geometry """ a = np.array(geom) ax.plot(a[:, 0], a[:, 1], color=color, linewidth=linewidth, **kwargs) def plot_multilinestring(ax, geom, color='red', linewidth=1.0, **kwargs): """ Can safely call with either LineString or MultiLineString geometry """ if geom.type == 'LineString': plot_linestring(ax, geom, color=color, linewidth=linewidth, **kwargs) elif geom.type == 'MultiLineString': for line in geom.geoms: plot_linestring(ax, line, color=color, linewidth=linewidth, **kwargs) def plot_point(ax, pt, marker='o', markersize=2, color='black', **kwargs): """ Plot a single Point geometry """ ax.plot(pt.x, pt.y, marker=marker, markersize=markersize, color=color, **kwargs) def gencolor(N, colormap='Set1'): """ Color generator intended to work with one of the ColorBrewer qualitative color scales. Suggested values of colormap are the following: Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3 (although any matplotlib colormap will work). """ from matplotlib import cm # don't use more than 9 discrete colors n_colors = min(N, 9) cmap = cm.get_cmap(colormap, n_colors) colors = cmap(range(n_colors)) for i in xrange(N): yield colors[i % n_colors] def plot_series(s, cmap='Set1', color=None, ax=None, linewidth=1.0, figsize=None, **color_kwds): """ Plot a GeoSeries Generate a plot of a GeoSeries geometry with matplotlib. Parameters ---------- Series The GeoSeries to be plotted. Currently Polygon, MultiPolygon, LineString, MultiLineString and Point geometries can be plotted. cmap : str (default 'Set1') The name of a colormap recognized by matplotlib. Any colormap will work, but categorical colormaps are generally recommended. Examples of useful discrete colormaps include: Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, Set3 color : str (default None) If specified, all objects will be colored uniformly. ax : matplotlib.pyplot.Artist (default None) axes on which to draw the plot linewidth : float (default 1.0) Line width for geometries. figsize : pair of floats (default None) Size of the resulting matplotlib.figure.Figure. If the argument ax is given explicitly, figsize is ignored. **color_kwds : dict Color options to be passed on to the actual plot function Returns ------- matplotlib axes instance """ if 'colormap' in color_kwds: warnings.warn("'colormap' is deprecated, please use 'cmap' instead " "(for consistency with matplotlib)", FutureWarning) cmap = color_kwds.pop('colormap') if 'axes' in color_kwds: warnings.warn("'axes' is deprecated, please use 'ax' instead " "(for consistency with pandas)", FutureWarning) ax = color_kwds.pop('axes') import matplotlib.pyplot as plt if ax is None: fig, ax = plt.subplots(figsize=figsize) ax.set_aspect('equal') color_generator = gencolor(len(s), colormap=cmap) for geom in s: if color is None: col = next(color_generator) else: col = color if geom.type == 'Polygon' or geom.type == 'MultiPolygon': if 'facecolor' in color_kwds: plot_multipolygon(ax, geom, linewidth=linewidth, **color_kwds) else: plot_multipolygon(ax, geom, facecolor=col, linewidth=linewidth, **color_kwds) elif geom.type == 'LineString' or geom.type == 'MultiLineString': plot_multilinestring(ax, geom, color=col, linewidth=linewidth, **color_kwds) elif geom.type == 'Point': plot_point(ax, geom, color=col, **color_kwds) plt.draw() return ax def plot_dataframe(s, column=None, cmap=None, color=None, linewidth=1.0, categorical=False, legend=False, ax=None, scheme=None, k=5, vmin=None, vmax=None, figsize=None, **color_kwds): """ Plot a GeoDataFrame Generate a plot of a GeoDataFrame with matplotlib. If a column is specified, the plot coloring will be based on values in that column. Otherwise, a categorical plot of the geometries in the `geometry` column will be generated. Parameters ---------- GeoDataFrame The GeoDataFrame to be plotted. Currently Polygon, MultiPolygon, LineString, MultiLineString and Point geometries can be plotted. column : str (default None) The name of the column to be plotted. categorical : bool (default False) If False, cmap will reflect numerical values of the column being plotted. For non-numerical columns (or if column=None), this will be set to True. cmap : str (default 'Set1') The name of a colormap recognized by matplotlib. color : str (default None) If specified, all objects will be colored uniformly. linewidth : float (default 1.0) Line width for geometries. legend : bool (default False) Plot a legend (Experimental; currently for categorical plots only) ax : matplotlib.pyplot.Artist (default None) axes on which to draw the plot scheme : pysal.esda.mapclassify.Map_Classifier Choropleth classification schemes (requires PySAL) k : int (default 5) Number of classes (ignored if scheme is None) vmin : None or float (default None) Minimum value of cmap. If None, the minimum data value in the column to be plotted is used. vmax : None or float (default None) Maximum value of cmap. If None, the maximum data value in the column to be plotted is used. figsize Size of the resulting matplotlib.figure.Figure. If the argument axes is given explicitly, figsize is ignored. **color_kwds : dict Color options to be passed on to the actual plot function Returns ------- matplotlib axes instance """ if 'colormap' in color_kwds: warnings.warn("'colormap' is deprecated, please use 'cmap' instead " "(for consistency with matplotlib)", FutureWarning) cmap = color_kwds.pop('colormap') if 'axes' in color_kwds: warnings.warn("'axes' is deprecated, please use 'ax' instead " "(for consistency with pandas)", FutureWarning) ax = color_kwds.pop('axes') import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.colors import Normalize from matplotlib import cm if column is None: return plot_series(s.geometry, cmap=cmap, color=color, ax=ax, linewidth=linewidth, figsize=figsize, **color_kwds) else: if s[column].dtype is np.dtype('O'): categorical = True if categorical: if cmap is None: cmap = 'Set1' categories = list(set(s[column].values)) categories.sort() valuemap = dict([(k, v) for (v, k) in enumerate(categories)]) values = [valuemap[k] for k in s[column]] else: values = s[column] if scheme is not None: binning = __pysal_choro(values, scheme, k=k) values = binning.yb # set categorical to True for creating the legend categorical = True binedges = [binning.yb.min()] + binning.bins.tolist() categories = ['{0:.2f} - {1:.2f}'.format(binedges[i], binedges[i+1]) for i in range(len(binedges)-1)] cmap = norm_cmap(values, cmap, Normalize, cm, vmin=vmin, vmax=vmax) if ax is None: fig, ax = plt.subplots(figsize=figsize) ax.set_aspect('equal') for geom, value in zip(s.geometry, values): if color is None: col = cmap.to_rgba(value) else: col = color if geom.type == 'Polygon' or geom.type == 'MultiPolygon': plot_multipolygon(ax, geom, facecolor=col, linewidth=linewidth, **color_kwds) elif geom.type == 'LineString' or geom.type == 'MultiLineString': plot_multilinestring(ax, geom, color=col, linewidth=linewidth, **color_kwds) elif geom.type == 'Point': plot_point(ax, geom, color=col, **color_kwds) if legend: if categorical: patches = [] for value, cat in enumerate(categories): patches.append(Line2D([0], [0], linestyle="none", marker="o", alpha=color_kwds.get('alpha', 0.5), markersize=10, markerfacecolor=cmap.to_rgba(value))) ax.legend(patches, categories, numpoints=1, loc='best') else: # TODO: show a colorbar raise NotImplementedError plt.draw() return ax def __pysal_choro(values, scheme, k=5): """ Wrapper for choropleth schemes from PySAL for use with plot_dataframe Parameters ---------- values Series to be plotted scheme pysal.esda.mapclassify classificatin scheme ['Equal_interval'|'Quantiles'|'Fisher_Jenks'] k number of classes (2 <= k <=9) Returns ------- binning Binning objects that holds the Series with values replaced with class identifier and the bins. """ try: from pysal.esda.mapclassify import Quantiles, Equal_Interval, Fisher_Jenks schemes = {} schemes['equal_interval'] = Equal_Interval schemes['quantiles'] = Quantiles schemes['fisher_jenks'] = Fisher_Jenks s0 = scheme scheme = scheme.lower() if scheme not in schemes: scheme = 'quantiles' warnings.warn('Unrecognized scheme "{0}". Using "Quantiles" ' 'instead'.format(s0), UserWarning, stacklevel=3) if k < 2 or k > 9: warnings.warn('Invalid k: {0} (2 <= k <= 9), setting k=5 ' '(default)'.format(k), UserWarning, stacklevel=3) k = 5 binning = schemes[scheme](values, k) return binning except ImportError: raise ImportError("PySAL is required to use the 'scheme' keyword") def norm_cmap(values, cmap, normalize, cm, vmin=None, vmax=None): """ Normalize and set colormap Parameters ---------- values Series or array to be normalized cmap matplotlib Colormap normalize matplotlib.colors.Normalize cm matplotlib.cm vmin Minimum value of colormap. If None, uses min(values). vmax Maximum value of colormap. If None, uses max(values). Returns ------- n_cmap mapping of normalized values to colormap (cmap) """ mn = min(values) if vmin is None else vmin mx = max(values) if vmax is None else vmax norm = normalize(vmin=mn, vmax=mx) n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap) return n_cmap
bsd-3-clause
markovmodel/molPX
molpx/_linkutils.py
1
18471
import numpy as _np from matplotlib.widgets import AxesWidget as _AxesWidget from matplotlib.colors import is_color_like as _is_color_like from matplotlib.axes import Axes as _mplAxes from matplotlib.figure import Figure as _mplFigure from IPython.display import display as _ipydisplay from pyemma.util.types import is_int as _is_int from scipy.spatial import cKDTree as _cKDTree from ._bmutils import get_ascending_coord_idx from mdtraj import Trajectory as _mdTrajectory from nglview import NGLWidget as _NGLwdg from ipywidgets import HBox as _HBox, VBox as _VBox def pts_per_axis_unit(mplax, pt_per_inch=72): r""" Return how many pt per axis unit of a given maptplotlib axis a figure has Parameters ---------- mplax : :obj:`matplotlib.axes._subplots.AxesSubplot` pt_per_inch : how many points are in an inch (this number should not change) Returns -------- pt_per_xunit, pt_per_yunit """ # matplotlib voodoo # Get bounding box bbox = mplax.get_window_extent().transformed(mplax.get_figure().dpi_scale_trans.inverted()) span_inch = _np.array([bbox.width, bbox.height], ndmin=2).T span_units = [mplax.get_xlim(), mplax.get_ylim()] span_units = _np.diff(span_units, axis=1) inch_per_unit = span_inch / span_units return inch_per_unit * pt_per_inch def update2Dlines(iline, x, y): """ provide a common interface to update objects on the plot to a new position (x,y) depending on whether they are hlines, vlines, dots etc Parameters ---------- iline: :obj:`matplotlib.lines.Line2D` object x : float with new position y : float with new position """ # TODO FIND OUT A CLEANER WAY TO DO THIS (dict or class) if not hasattr(iline,'whatisthis'): raise AttributeError("This method will only work if iline has the attribute 'whatsthis'") else: # TODO find cleaner way of distinguishing these 2Dlines if iline.whatisthis in ['dot']: iline.set_xdata((x)) iline.set_ydata((y)) elif iline.whatisthis in ['lineh']: iline.set_ydata((y,y)) elif iline.whatisthis in ['linev']: iline.set_xdata((x,x)) else: # TODO: FIND OUT WNY EXCEPTIONS ARE NOT BEING RAISED raise TypeError("what is this type of 2Dline?") class ClickOnAxisListener(object): def __init__(self, ngl_wdg, crosshairs, showclick_objs, ax, pos, list_mpl_objects_to_update): self.ngl_wdg = ngl_wdg self.crosshairs = crosshairs self.showclick_objs = showclick_objs self.ax = ax self.pos = pos self.list_mpl_objects_to_update = list_mpl_objects_to_update self.list_of_dots = [None]*self.pos.shape[0] self.fig_size = self.ax.figure.get_size_inches() self.kdtree = None def build_tree(self): # Use ax.transData to compute distance in pixels # regardelss of the axes units (http://matplotlib.org/users/transforms_tutorial.html) # Corresponds to the visual distance between clicked point and target point self.kdtree = _cKDTree(self.ax.transData.transform(self.pos)) @property def figure_changed_size(self): return not _np.allclose(self.fig_size, self.ax.figure.get_size_inches()) def __call__(self, event): # Wait for the first click or a a figsize change # to build the kdtree if self.figure_changed_size or self.kdtree is None: self.build_tree() self.fig_size = self.ax.figure.get_size_inches() # Was the click inside the bounding box? if self.ax.get_window_extent().contains(event.x, event.y): if self.crosshairs: for iline in self.showclick_objs: update2Dlines(iline, event.xdata, event.ydata) _, index = self.kdtree.query(x=[event.x, event.y], k=1) for idot in self.list_mpl_objects_to_update: update2Dlines(idot, self.pos[index, 0], self.pos[index, 1]) self.ngl_wdg.isClick = True if hasattr(self.ngl_wdg, '_GeomsInWid'): # We're in a sticky situation if event.button == 1: # Pressed left self.ngl_wdg._GeomsInWid[index].show() if self.list_of_dots[index] is None: # Plot and store the dot in case there wasn't self.list_of_dots[index] = self.ax.plot(self.pos[index, 0], self.pos[index, 1], 'o', c=self.ngl_wdg._GeomsInWid[index].color_dot, ms=7)[0] elif event.button in [2, 3]: # Pressed right or middle self.ngl_wdg._GeomsInWid[index].hide() # Delete dot if the geom is not visible anymore if not self.ngl_wdg._GeomsInWid[index].is_visible() and self.list_of_dots[index] is not None: self.list_of_dots[index].remove() self.list_of_dots[index] = None else: # We're not sticky, just go to the frame self.ngl_wdg.frame = index class MolPXBox(object): r""" Class created to be the parent class of MolPXHBox and MolPXVBox, which inherit from MolPXBox and the ipywidget classes HBox and VBox (*args and **kwargs are for these) The sole purpose of this class is to avoid monkey-patching elsewhere in the code, this class creates them as empty lists on instantiation. It also implements two methods: * self.display (=IPython.display(self) * append_if_existing """ def __init__(self, *args, **kwargs): self.linked_axes = [] self.linked_mdgeoms = [] self.linked_ngl_wdgs = [] self.linked_data_arrays = [] self.linked_ax_wdgs = [] self.linked_figs = [] def display(self): _ipydisplay(self) def append_if_existing(self, args0, startswith_arg="linked_"): r""" args0 is the tuple containing all widgets to be included in the MolPXBox this tuple can contain itself other MolPXWidget so we iterate through them and appending linked stuff """ for iarg in args0: for attrname in dir(iarg): if attrname.startswith(startswith_arg) and len(iarg.__dict__[attrname]) != 0: self.__dict__[attrname] += iarg.__dict__[attrname] def auto_append_these_mpx_attrs(iobj, *attrs): r""" The attribute s name is automatically derived from the attribute s type via a type:name dictionary *attrs : any number of unnamed objects of the types in type2attrname. If the object type is a list, it will be flattened prior to attempting """ attrs_flat_list = [] for sublist in attrs: if isinstance(sublist, list): for item in sublist: attrs_flat_list.append(item) else: attrs_flat_list.append(sublist) # Go through the arguments and assign them an attrname according to their types for iattr in attrs_flat_list: for attrname, itype in type2attrname.items(): if isinstance(iattr, itype): iobj.__dict__[attrname].append(iattr) break class MolPXHBox(_HBox, MolPXBox): def __init__(self, *args, **kwargs): super(MolPXHBox, self).__init__(*args, **kwargs) self.append_if_existing(args[0]) class MolPXVBox(_VBox, MolPXBox): def __init__(self, *args, **kwargs): super(MolPXVBox, self).__init__(*args, **kwargs) self.append_if_existing(args[0]) type2attrname = {"linked_axes": _mplAxes, "linked_mdgeoms": _mdTrajectory, "linked_ngl_wdgs": _NGLwdg, "linked_data_arrays": _np.ndarray, "linked_ax_wdgs": _AxesWidget, "linked_figs": _mplFigure, } class ChangeInNGLWidgetListener(object): def __init__(self, ngl_wdg, list_mpl_objects_to_update, pos): self.ngl_wdg = ngl_wdg self.list_mpl_objects_to_update = list_mpl_objects_to_update self.pos = pos def __call__(self, change): self.ngl_wdg.isClick = False _idx = change["new"] try: for idot in self.list_mpl_objects_to_update: update2Dlines(idot, self.pos[_idx, 0], self.pos[_idx, 1]) #print("caught index error with index %s (new=%s, old=%s)" % (_idx, change["new"], change["old"])) except IndexError as e: for idot in self.list_mpl_objects_to_update: update2Dlines(idot, self.pos[0, 0], self.pos[0, 1]) print("caught index error with index %s (new=%s, old=%s)" % (_idx, change["new"], change["old"])) #print("set xy = (%s, %s)" % (x[_idx], y[_idx])) class GeometryInNGLWidget(object): r""" returns an object that is aware of where its geometries are located in the NGLWidget their representation status The object exposes two methods, show and hide, to automagically know what to do """ def __init__(self, geom, ngl_wdg, list_of_repr_dicts=None, color_molecule_hex='Element', n_small=10): self.lives_at_components = [] self.geom = geom self.ngl_wdg = ngl_wdg self.have_repr = [] sticky_rep = 'cartoon' if self.geom[0].top.n_residues < n_small: sticky_rep = 'ball+stick' if list_of_repr_dicts is None: list_of_repr_dicts = [{'repr_type': sticky_rep, 'selection': 'all'}] self.list_of_repr_dicts = list_of_repr_dicts self.color_molecule_hex = color_molecule_hex self.color_dot = color_molecule_hex if isinstance(self.color_molecule_hex, str) and color_molecule_hex == 'Element': self.color_dot = 'red' def show(self): # Show can mean either # - add a whole new component (case 1) # - add the representation again to a representation-less component (case 2) # CASE 1 if self.is_empty() or self.all_reps_are_on(): if len(self.have_repr) == self.geom.n_frames: print("arrived at the end") component = None else: idx = len(self.have_repr) self.ngl_wdg.add_trajectory(self.geom[idx]) self.lives_at_components.append(len(self.ngl_wdg._ngl_component_ids) - 1) self.ngl_wdg.clear_representations(component=self.lives_at_components[-1]) self.have_repr.append(True) component = self.lives_at_components[-1] # CASE 2 elif self.any_rep_is_off(): # Some are living in the widget already but have no rep idx = _np.argwhere(~_np.array(self.have_repr))[0].squeeze() component = self.lives_at_components[idx] self.have_repr[idx] = True else: raise Exception("This situation should not arise. This is a bug") if component is not None: for irepr in self.list_of_repr_dicts: self.ngl_wdg.add_representation(irepr['repr_type'], selection=irepr['selection'], component=component, color=self.color_molecule_hex) def hide(self): if self.is_empty() or self.all_reps_are_off(): print("nothing to hide") pass elif self.any_rep_is_on(): # There's represented components already in the widget idx = _np.argwhere(self.have_repr)[-1].squeeze() self.ngl_wdg.clear_representations(component=self.lives_at_components[idx]) self.have_repr[idx] = False else: raise Exception("This situation should not arise. This is a bug") # Quickhand methods for knowing what's up def is_empty(self): if len(self.have_repr) == 0: return True else: return False def all_reps_are_off(self): if len(self.have_repr) == 0: return True else: return _np.all(~_np.array(self.have_repr)) def all_reps_are_on(self): if len(self.have_repr) == 0: return False else: return _np.all(self.have_repr) def any_rep_is_off(self): return _np.any(~_np.array(self.have_repr)) def any_rep_is_on(self): return _np.any(self.have_repr) def is_visible(self): if self.is_empty() or self.all_reps_are_off(): return False else: return True def link_ax_w_pos_2_nglwidget(ax, pos, ngl_wdg, crosshairs=True, dot_color='red', band_width=None, radius=False, directionality=None, exclude_coord=None, ): r""" Initial idea for this function comes from @arose, the rest is @gph82 Parameters ---------- ax : matplotlib axis object to be linked pos : ndarray of shape (N,2) with the positions of the geoms in the ngl_wdg crosshairs : Boolean or str If True, a crosshair will show where the mouse-click ocurred. If 'h' or 'v', only the horizontal or vertical line of the crosshair will be shown, respectively. If False, no crosshair will appear dot_color : Anything that yields matplotlib.colors.is_color_like(dot_color)==True Default is 'red'. dot_color='None' yields no dot band_width : None or iterable of len = 2 If band_width is not None, the method tries to figure out on its own if there is an ascending coordinate and will include a moving band on :obj:ax of this width (in units of the axis along which the band is plotted) If the method cannot find an ascending coordinate, an exception is thrown directionality : str or None, default is None If not None, directionality can be either 'a2w' or 'w2a', meaning that connectivity between axis and widget will be only established as * 'a2w' : action in axis triggers action in widget, but not the other way around * 'w2a' : action in widget triggers action in axis, but not the other way around exclude_coord : None or int , default is None The excluded coordinate will not be considered when computing the nearest-point-to-click. Typical use case is for visualize.traj to only compute distances horizontally along the time axis Returns ------- axes_widget : :obj:`matplotlib.Axes.Axeswidget` that has been linked to the NGLWidget """ assert directionality in [None, 'a2w', 'w2a'], "The directionality parameter has to be in [None, 'a2w', 'w2a'] " \ "not %s"%directionality assert crosshairs in [True, False, 'h', 'v'], "The crosshairs parameter has to be in [True, False, 'h','v'], " \ "not %s" % crosshairs ipos = _np.copy(pos) if _is_int(exclude_coord): ipos[:,exclude_coord] = 0 # Are we in a sticky situation? if hasattr(ngl_wdg, '_GeomsInWid'): sticky = True else: assert ngl_wdg.trajectory_0.n_frames == pos.shape[0], \ ("Mismatching frame numbers %u vs %u" % (ngl_wdg.trajectory_0.n_frames, pos.shape[0])) sticky = False # Basic interactive objects showclick_objs = [] if crosshairs in [True, 'h']: lineh = ax.axhline(ax.get_ybound()[0], c="black", ls='--') setattr(lineh, 'whatisthis', 'lineh') showclick_objs.append(lineh) if crosshairs in [True, 'v']: linev = ax.axvline(ax.get_xbound()[0], c="black", ls='--') setattr(linev, 'whatisthis', 'linev') showclick_objs.append(linev) if _is_color_like(dot_color): pass else: raise TypeError('dot_color should be a matplotlib color') dot = ax.plot(pos[0,0],pos[0,1], 'o', c=dot_color, ms=7, zorder=100)[0] setattr(dot,'whatisthis','dot') list_mpl_objects_to_update = [dot] # Other objects, related to smoothing options if band_width is not None: if radius: band_width_in_pts = int(_np.round(pts_per_axis_unit(ax).mean() * _np.mean(band_width))) rad = ax.plot(pos[0, 0], pos[0, 1], 'o', ms=_np.round(band_width_in_pts), c='green', alpha=.25, markeredgecolor='None')[0] setattr(rad, 'whatisthis', 'dot') if not sticky: list_mpl_objects_to_update.append(rad) else: # print("Band_width(x,y) is %s" % (band_width)) coord_idx = get_ascending_coord_idx(pos) if _np.ndim(coord_idx)>0 and len(coord_idx)==0: raise ValueError("Must have an ascending coordinate for band_width usage") band_width_in_pts = int(_np.round(pts_per_axis_unit(ax)[coord_idx] * band_width[coord_idx])) # print("Band_width in %s is %s pts"%('xy'[coord_idx], band_width_in_pts)) band_call = [ax.axvline, ax.axhline][coord_idx] band_init = [ax.get_xbound, ax.get_ybound][coord_idx] band_type = ['linev', 'lineh'][coord_idx] band = band_call(band_init()[0], lw=band_width_in_pts, c="green", ls='-', alpha=.25) setattr(band, 'whatisthis', band_type) list_mpl_objects_to_update.append(band) ngl_wdg.isClick = False CLA_listener = ClickOnAxisListener(ngl_wdg, crosshairs, showclick_objs, ax, pos, list_mpl_objects_to_update) NGL_listener = ChangeInNGLWidgetListener(ngl_wdg, list_mpl_objects_to_update, pos) # Connect axes to widget axes_widget = _AxesWidget(ax) if directionality in [None, 'a2w']: axes_widget.connect_event('button_release_event', CLA_listener) # Connect widget to axes if directionality in [None, 'w2a']: ngl_wdg.observe(NGL_listener, "frame", "change") ngl_wdg.center() return axes_widget
lgpl-3.0
Ziqi-Li/bknqgis
pandas/pandas/core/window.py
3
68731
""" provide a generic structure to support window functions, similar to how we have a Groupby object """ from __future__ import division import warnings import numpy as np from collections import defaultdict from datetime import timedelta from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ABCDateOffset) from pandas.core.dtypes.common import ( is_integer, is_bool, is_float_dtype, is_integer_dtype, needs_i8_conversion, is_timedelta64_dtype, is_list_like, _ensure_float64, is_scalar) from pandas.core.base import (PandasObject, SelectionMixin, GroupByMixin) import pandas.core.common as com import pandas._libs.window as _window from pandas import compat from pandas.compat.numpy import function as nv from pandas.util._decorators import (Substitution, Appender, cache_readonly) from pandas.core.generic import _shared_docs from textwrap import dedent _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- same type as input See also -------- pandas.Series.%(name)s pandas.DataFrame.%(name)s """ class _Window(PandasObject, SelectionMixin): _attributes = ['window', 'min_periods', 'freq', 'center', 'win_type', 'axis', 'on', 'closed'] exclusions = set() def __init__(self, obj, window=None, min_periods=None, freq=None, center=False, win_type=None, axis=0, on=None, closed=None, **kwargs): if freq is not None: warnings.warn("The freq kw is deprecated and will be removed in a " "future version. You can resample prior to passing " "to a window function", FutureWarning, stacklevel=3) self.__dict__.update(kwargs) self.blocks = [] self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.freq = freq self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self): return None @property def _on(self): return None @property def is_freq_type(self): return self.win_type == 'freq' def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not \ is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in \ ['right', 'both', 'left', 'neither']: raise ValueError("closed must be 'right', 'left', 'both' or " "'neither'") def _convert_freq(self, how=None): """ resample according to the how, return a new object """ obj = self._selected_obj index = None if (self.freq is not None and isinstance(obj, (ABCSeries, ABCDataFrame))): if how is not None: warnings.warn("The how kw argument is deprecated and removed " "in a future version. You can resample prior " "to passing to a window function", FutureWarning, stacklevel=6) obj = obj.resample(self.freq).aggregate(how or 'asfreq') return obj, index def _create_blocks(self, how): """ split data into blocks & return conformed data """ obj, index = self._convert_freq(how) if index is not None: index = self._on # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj.as_blocks(copy=False).values() return blocks, obj, index def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError("%r object has no attribute %r" % (type(self).__name__, attr)) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None): return self.window @property def _window_type(self): return self.__class__.__name__ def __unicode__(self): """ provide a nice str repr of our rolling object """ attrs = ["{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None] return "{klass} [{attrs}]".format(klass=self._window_type, attrs=','.join(attrs)) def _get_index(self, index=None): """ Return index as ndarrays Returns ------- tuple of (index, index_as_ndarray) """ if self.is_freq_type: if index is None: index = self._on return index, index.asi8 return index, index def _prep_values(self, values=None, kill_inf=True, how=None): if values is None: values = getattr(self._selected_obj, 'values', self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = _ensure_float64(values) elif is_integer_dtype(values.dtype): values = _ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError("ops for {action} for this " "dtype {dtype} are not " "implemented".format( action=self._window_type, dtype=values.dtype)) else: try: values = _ensure_float64(values) except (ValueError, TypeError): raise TypeError("cannot handle this type -> {0}" "".format(values.dtype)) if kill_inf: values = values.copy() values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None): """ wrap a single result """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): from pandas import to_timedelta result = to_timedelta( result.ravel(), unit='ns').values.reshape(result.shape) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj): """ wrap the results Paramters --------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) """ from pandas import Series, concat from pandas.core.index import _ensure_index final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = _ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) if not len(final): return obj.astype('float64') return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window): """ center the result in the window """ if self.axis > result.ndim - 1: raise ValueError("Requested axis is larger then no. of argument " "dimensions") offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: return self.apply(arg, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs['sum'] = dedent(""" %(name)s sum Parameters ---------- how : string, default None .. deprecated:: 0.18.0 Method for down- or re-sampling""") _shared_docs['mean'] = dedent(""" %(name)s mean Parameters ---------- how : string, default None .. deprecated:: 0.18.0 Method for down- or re-sampling""") class Window(_Window): """ Provides rolling window calculations. .. versionadded:: 0.18.0 Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. This is new in 0.19.0 min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, this will default to 1. freq : string or DateOffset object, optional (default None) .. deprecated:: 0.18.0 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. win_type : string, default None Provide a window type. See the notes below. on : string, optional For a DataFrame, column on which to calculate the rolling window, rather than the index closed : string, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 axis : int or string, default 0 Returns ------- a Window or Rolling sub-classed for the particular operation Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 1.0 2 2.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicity set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ....: index = [pd.Timestamp('20130101 09:00:00'), ....: pd.Timestamp('20130101 09:00:02'), ....: pd.Timestamp('20130101 09:00:03'), ....: pd.Timestamp('20130101 09:00:05'), ....: pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width). """ def validate(self): super(Window, self).validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window < 0: raise ValueError("window must be non-negative") try: import scipy.signal as sig except ImportError: raise ImportError('Please install scipy to generate window ' 'weight') if not isinstance(self.win_type, compat.string_types): raise ValueError('Invalid win_type {0}'.format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError('Invalid win_type {0}'.format(self.win_type)) else: raise ValueError('Invalid window {0}'.format(window)) def _prep_window(self, **kwargs): """ provide validation for our window type, return the window we have already been validated """ window = self._get_window() if isinstance(window, (list, tuple, np.ndarray)): return com._asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = {'kaiser': ['beta'], 'gaussian': ['std'], 'general_gaussian': ['power', 'width'], 'slepian': ['width']} if win_type in arg_map: return tuple([win_type] + _pop_args(win_type, arg_map[win_type], kwargs)) return win_type def _pop_args(win_type, arg_names, kwargs): msg = '%s window requires %%s' % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _apply_window(self, mean=True, how=None, **kwargs): """ Applies a moving window of type ``window_type`` on the data. Parameters ---------- mean : boolean, default True If True computes weighted mean, else weighted sum how : string, default to None .. deprecated:: 0.18.0 how to resample Returns ------- y : type of input argument """ window = self._prep_window(**kwargs) center = self.center blocks, obj, index = self._create_blocks(how=how) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, len(window)) return _window.roll_window(np.concatenate((arg, additional_nans)) if center else arg, window, minp, avg=mean) result = np.apply_along_axis(f, self.axis, values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, blocks, obj) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 See also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name='window') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_window_func('sum', args, kwargs) return self._apply_window(mean=False, **kwargs) @Substitution(name='window') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_window_func('mean', args, kwargs) return self._apply_window(mean=True, **kwargs) class _GroupByMixin(GroupByMixin): """ provide the groupby facilities """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop('parent', None) # noqa groupby = kwargs.pop('groupby', None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super(GroupByMixin, self).__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch('count') corr = GroupByMixin._dispatch('corr', other=None, pairwise=None) cov = GroupByMixin._dispatch('cov', other=None, pairwise=None) def _apply(self, func, name, window=None, center=None, check_minp=None, how=None, **kwargs): """ dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, compat.string_types): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling def _apply(self, func, name=None, window=None, center=None, check_minp=None, how=None, **kwargs): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : string/callable to apply name : string, optional name of this function window : int/array, default to _get_window() center : boolean, default to self.center check_minp : function, default to _use_window how : string, default to None .. deprecated:: 0.18.0 how to resample Returns ------- y : type of input """ if center is None: center = self.center if window is None: window = self._get_window() if check_minp is None: check_minp = _use_window blocks, obj, index = self._create_blocks(how=how) index, indexi = self._get_index(index=index) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, compat.string_types): cfunc = getattr(_window, func, None) if cfunc is None: raise ValueError("we do not support this function " "in _window.{0}".format(func)) def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) # ensure we are only rolling on floats arg = _ensure_float64(arg) return cfunc(arg, window, minp, indexi, closed, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func(np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed) else: def calc(x): return func(x, window, min_periods=self.min_periods, closed=self.closed) with np.errstate(all='ignore'): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, blocks, obj) class _Rolling_and_Expanding(_Rolling): _shared_docs['count'] = """%(name)s count of number of non-NaN observations inside provided window.""" def count(self): blocks, obj, index = self._create_blocks(how=None) index, indexi = self._get_index(index=index) window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor(result, window=window, min_periods=0, center=self.center, closed=self.closed).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs['apply'] = dedent(r""" %(name)s function apply Parameters ---------- func : function Must produce a single value from an ndarray input \*args and \*\*kwargs are passed to the function""") def apply(self, func, args=(), kwargs={}): # TODO: _level is unused? _level = kwargs.pop('_level', None) # noqa window = self._get_window() offset = _offset(window, self.center) index, indexi = self._get_index() def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) return _window.roll_generic(arg, window, minp, indexi, closed, offset, func, args, kwargs) return self._apply(f, func, args=args, kwargs=kwargs, center=False) def sum(self, *args, **kwargs): nv.validate_window_func('sum', args, kwargs) return self._apply('roll_sum', 'sum', **kwargs) _shared_docs['max'] = dedent(""" %(name)s maximum Parameters ---------- how : string, default 'max' .. deprecated:: 0.18.0 Method for down- or re-sampling""") def max(self, how=None, *args, **kwargs): nv.validate_window_func('max', args, kwargs) if self.freq is not None and how is None: how = 'max' return self._apply('roll_max', 'max', how=how, **kwargs) _shared_docs['min'] = dedent(""" %(name)s minimum Parameters ---------- how : string, default 'min' .. deprecated:: 0.18.0 Method for down- or re-sampling""") def min(self, how=None, *args, **kwargs): nv.validate_window_func('min', args, kwargs) if self.freq is not None and how is None: how = 'min' return self._apply('roll_min', 'min', how=how, **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func('mean', args, kwargs) return self._apply('roll_mean', 'mean', **kwargs) _shared_docs['median'] = dedent(""" %(name)s median Parameters ---------- how : string, default 'median' .. deprecated:: 0.18.0 Method for down- or re-sampling""") def median(self, how=None, **kwargs): if self.freq is not None and how is None: how = 'median' return self._apply('roll_median_c', 'median', how=how, **kwargs) _shared_docs['std'] = dedent(""" %(name)s standard deviation Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def std(self, ddof=1, *args, **kwargs): nv.validate_window_func('std', args, kwargs) window = self._get_window() index, indexi = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt(_window.roll_var(arg, window, minp, indexi, self.closed, ddof)) return self._apply(f, 'std', check_minp=_require_min_periods(1), ddof=ddof, **kwargs) _shared_docs['var'] = dedent(""" %(name)s variance Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def var(self, ddof=1, *args, **kwargs): nv.validate_window_func('var', args, kwargs) return self._apply('roll_var', 'var', check_minp=_require_min_periods(1), ddof=ddof, **kwargs) _shared_docs['skew'] = """Unbiased %(name)s skewness""" def skew(self, **kwargs): return self._apply('roll_skew', 'skew', check_minp=_require_min_periods(3), **kwargs) _shared_docs['kurt'] = """Unbiased %(name)s kurtosis""" def kurt(self, **kwargs): return self._apply('roll_kurt', 'kurt', check_minp=_require_min_periods(4), **kwargs) _shared_docs['quantile'] = dedent(""" %(name)s quantile Parameters ---------- quantile : float 0 <= quantile <= 1""") def quantile(self, quantile, **kwargs): window = self._get_window() index, indexi = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return _window.roll_max(arg, window, minp, indexi, self.closed) elif quantile == 0.0: return _window.roll_min(arg, window, minp, indexi, self.closed) else: return _window.roll_quantile(arg, window, minp, indexi, self.closed, quantile) return self._apply(f, 'quantile', quantile=quantile, **kwargs) _shared_docs['cov'] = dedent(""" %(name)s sample covariance Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements.""") def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype('float64') Y = Y.astype('float64') mean = lambda x: x.rolling(window, self.min_periods, center=self.center).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)) _shared_docs['corr'] = dedent(""" %(name)s sample correlation Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.""") def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling(window=window, min_periods=self.min_periods, freq=self.freq, center=self.center) b = b.rolling(window=window, min_periods=self.min_periods, freq=self.freq, center=self.center) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance(self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex)) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif (isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns): from pandas import Index return Index(self.obj[self.on]) else: raise ValueError("invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on)) def validate(self): super(Rolling, self).validate() # we allow rolling on a datetimelike index if ((self.obj.empty or self.is_datetimelike) and isinstance(self.window, (compat.string_types, ABCDateOffset, timedelta))): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError("center is not implemented " "for datetimelike and offset " "based windows") # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = 'freq' # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError("closed only implemented for datetimelike " "and offset based windows") def _validate_monotonic(self): """ validate on is monotonic """ if not self._on.is_monotonic: formatted = self.on or 'index' raise ValueError("{0} must be " "monotonic".format(formatted)) def _validate_freq(self): """ validate & return our freq """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError("passed window {0} in not " "compat with a datetimelike " "index".format(self.window)) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 See also -------- pandas.Series.rolling pandas.DataFrame.rolling """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(Rolling, self).aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['count']) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply('roll_count', 'count') return super(Rolling, self).count() @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['apply']) def apply(self, func, args=(), kwargs={}): return super(Rolling, self).apply(func, args=args, kwargs=kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_rolling_func('sum', args, kwargs) return super(Rolling, self).sum(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['max']) def max(self, *args, **kwargs): nv.validate_rolling_func('max', args, kwargs) return super(Rolling, self).max(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['min']) def min(self, *args, **kwargs): nv.validate_rolling_func('min', args, kwargs) return super(Rolling, self).min(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_rolling_func('mean', args, kwargs) return super(Rolling, self).mean(*args, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['median']) def median(self, **kwargs): return super(Rolling, self).median(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['std']) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func('std', args, kwargs) return super(Rolling, self).std(ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['var']) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func('var', args, kwargs) return super(Rolling, self).var(ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['skew']) def skew(self, **kwargs): return super(Rolling, self).skew(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['kurt']) def kurt(self, **kwargs): return super(Rolling, self).kurt(**kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['quantile']) def quantile(self, quantile, **kwargs): return super(Rolling, self).quantile(quantile=quantile, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['cov']) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super(Rolling, self).cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name='rolling') @Appender(_doc_template) @Appender(_shared_docs['corr']) def corr(self, other=None, pairwise=None, **kwargs): return super(Rolling, self).corr(other=other, pairwise=pairwise, **kwargs) class RollingGroupby(_GroupByMixin, Rolling): """ Provides a rolling groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return Rolling def _gotitem(self, key, ndim, subset=None): # we are setting the index on the actual object # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: self._groupby.obj = self._groupby.obj.set_index(self._on) self.on = None return super(RollingGroupby, self)._gotitem(key, ndim, subset=subset) def _validate_monotonic(self): """ validate that on is monotonic; we don't care for groupby.rolling because we have already validated at a higher level """ pass class Expanding(_Rolling_and_Expanding): """ Provides expanding transformations. .. versionadded:: 0.18.0 Parameters ---------- min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). freq : string or DateOffset object, optional (default None) .. deprecated:: 0.18.0 Frequency to conform the data to before computing the statistic. Specified as a frequency string or DateOffset object. center : boolean, default False Set the labels at the center of the window. axis : int or string, default 0 Returns ------- a Window sub-classed for the particular operation Examples -------- >>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0 Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). """ _attributes = ['min_periods', 'freq', 'center', 'axis'] def __init__(self, obj, min_periods=1, freq=None, center=False, axis=0, **kwargs): super(Expanding, self).__init__(obj=obj, min_periods=min_periods, freq=freq, center=center, axis=axis) @property def _constructor(self): return Expanding def _get_window(self, other=None): obj = self._selected_obj if other is None: return (max(len(obj), self.min_periods) if self.min_periods else len(obj)) return (max((len(obj) + len(obj)), self.min_periods) if self.min_periods else (len(obj) + len(obj))) _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 See also -------- pandas.DataFrame.expanding.aggregate pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(Expanding, self).aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['count']) def count(self, **kwargs): return super(Expanding, self).count(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['apply']) def apply(self, func, args=(), kwargs={}): return super(Expanding, self).apply(func, args=args, kwargs=kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['sum']) def sum(self, *args, **kwargs): nv.validate_expanding_func('sum', args, kwargs) return super(Expanding, self).sum(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['max']) def max(self, *args, **kwargs): nv.validate_expanding_func('max', args, kwargs) return super(Expanding, self).max(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['min']) def min(self, *args, **kwargs): nv.validate_expanding_func('min', args, kwargs) return super(Expanding, self).min(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['mean']) def mean(self, *args, **kwargs): nv.validate_expanding_func('mean', args, kwargs) return super(Expanding, self).mean(*args, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['median']) def median(self, **kwargs): return super(Expanding, self).median(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['std']) def std(self, ddof=1, *args, **kwargs): nv.validate_expanding_func('std', args, kwargs) return super(Expanding, self).std(ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['var']) def var(self, ddof=1, *args, **kwargs): nv.validate_expanding_func('var', args, kwargs) return super(Expanding, self).var(ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['skew']) def skew(self, **kwargs): return super(Expanding, self).skew(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['kurt']) def kurt(self, **kwargs): return super(Expanding, self).kurt(**kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['quantile']) def quantile(self, quantile, **kwargs): return super(Expanding, self).quantile(quantile=quantile, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['cov']) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super(Expanding, self).cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name='expanding') @Appender(_doc_template) @Appender(_shared_docs['corr']) def corr(self, other=None, pairwise=None, **kwargs): return super(Expanding, self).corr(other=other, pairwise=pairwise, **kwargs) class ExpandingGroupby(_GroupByMixin, Expanding): """ Provides a expanding groupby implementation .. versionadded:: 0.18.1 """ @property def _constructor(self): return Expanding _bias_template = """ Parameters ---------- bias : boolean, default False Use a standard estimation bias correction """ _pairwise_template = """ Parameters ---------- other : Series, DataFrame, or ndarray, optional if not supplied then will default to self and produce pairwise output pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. bias : boolean, default False Use a standard estimation bias correction """ class EWM(_Rolling): r""" Provides exponential weighted functions .. versionadded:: 0.18.0 Parameters ---------- com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com),\text{ for } com \geq 0` span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1),\text{ for } span \geq 1` halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - exp(log(0.5) / halflife),\text{ for } halflife > 0` alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1` .. versionadded:: 0.18.0 min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). freq : None or string alias / date offset object, default=None .. deprecated:: 0.18.0 Frequency to conform to before computing statistic adjust : boolean, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average) ignore_na : boolean, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior Returns ------- a Window sub-classed for the particular operation Examples -------- >>> df = DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 Notes ----- Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation. The `freq` keyword is used to conform time series data to a specified frequency by resampling the data. This is done with the default parameters of :meth:`~pandas.Series.resample` (i.e. using the `mean`). When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). More details can be found at http://pandas.pydata.org/pandas-docs/stable/computation.html#exponentially-weighted-windows """ _attributes = ['com', 'min_periods', 'freq', 'adjust', 'ignore_na', 'axis'] def __init__(self, obj, com=None, span=None, halflife=None, alpha=None, min_periods=0, freq=None, adjust=True, ignore_na=False, axis=0): self.obj = obj self.com = _get_center_of_mass(com, span, halflife, alpha) self.min_periods = min_periods self.freq = freq self.adjust = adjust self.ignore_na = ignore_na self.axis = axis self.on = None @property def _constructor(self): return EWM _agg_doc = dedent(""" Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 See also -------- pandas.DataFrame.rolling.aggregate """) @Appender(_agg_doc) @Appender(_shared_docs['aggregate'] % dict( versionadded='', klass='Series/DataFrame')) def aggregate(self, arg, *args, **kwargs): return super(EWM, self).aggregate(arg, *args, **kwargs) agg = aggregate def _apply(self, func, how=None, **kwargs): """Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : string/callable to apply how : string, default to None .. deprecated:: 0.18.0 how to resample Returns ------- y : type of input argument """ blocks, obj, index = self._create_blocks(how=how) results = [] for b in blocks: try: values = self._prep_values(b.values) except TypeError: results.append(b.values.copy()) continue if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, compat.string_types): cfunc = getattr(_window, func, None) if cfunc is None: raise ValueError("we do not support this function " "in _window.{0}".format(func)) def func(arg): return cfunc(arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods)) results.append(np.apply_along_axis(func, self.axis, values)) return self._wrap_results(results, blocks, obj) @Substitution(name='ewm') @Appender(_doc_template) def mean(self, *args, **kwargs): """exponential weighted moving average""" nv.validate_window_func('mean', args, kwargs) return self._apply('ewma', **kwargs) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_bias_template) def std(self, bias=False, *args, **kwargs): """exponential weighted moving stddev""" nv.validate_window_func('std', args, kwargs) return _zsqrt(self.var(bias=bias, **kwargs)) vol = std @Substitution(name='ewm') @Appender(_doc_template) @Appender(_bias_template) def var(self, bias=False, *args, **kwargs): """exponential weighted moving variance""" nv.validate_window_func('var', args, kwargs) def f(arg): return _window.ewmcov(arg, arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias)) return self._apply(f, **kwargs) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_pairwise_template) def cov(self, other=None, pairwise=None, bias=False, **kwargs): """exponential weighted sample covariance""" if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = _window.ewmcov(X._prep_values(), Y._prep_values(), self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias)) return X._wrap_result(cov) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise)) @Substitution(name='ewm') @Appender(_doc_template) @Appender(_pairwise_template) def corr(self, other=None, pairwise=None, **kwargs): """exponential weighted sample correlation""" if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_corr(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) def _cov(x, y): return _window.ewmcov(x, y, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), 1) x_values = X._prep_values() y_values = Y._prep_values() with np.errstate(all='ignore'): cov = _cov(x_values, y_values) x_var = _cov(x_values, x_values) y_var = _cov(y_values, y_values) corr = cov / _zsqrt(x_var * y_var) return X._wrap_result(corr) return _flex_binary_moment(self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise)) # Helper Funcs def _flex_binary_moment(arg1, arg2, f, pairwise=False): if not (isinstance(arg1, (np.ndarray, ABCSeries, ABCDataFrame)) and isinstance(arg2, (np.ndarray, ABCSeries, ABCDataFrame))): raise TypeError("arguments to moment function must be of type " "np.ndarray/Series/DataFrame") if (isinstance(arg1, (np.ndarray, ABCSeries)) and isinstance(arg2, (np.ndarray, ABCSeries))): X, Y = _prep_binary(arg1, arg2) return f(X, Y) elif isinstance(arg1, ABCDataFrame): from pandas import DataFrame def dataframe_from_int_dict(data, frame_template): result = DataFrame(data, index=frame_template.index) if len(result.columns) > 0: result.columns = frame_template.columns[result.columns] return result results = {} if isinstance(arg2, ABCDataFrame): if pairwise is False: if arg1 is arg2: # special case in order to handle duplicate column names for i, col in enumerate(arg1.columns): results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i]) return dataframe_from_int_dict(results, arg1) else: if not arg1.columns.is_unique: raise ValueError("'arg1' columns are not unique") if not arg2.columns.is_unique: raise ValueError("'arg2' columns are not unique") with warnings.catch_warnings(record=True): X, Y = arg1.align(arg2, join='outer') X = X + 0 * Y Y = Y + 0 * X with warnings.catch_warnings(record=True): res_columns = arg1.columns.union(arg2.columns) for col in res_columns: if col in X and col in Y: results[col] = f(X[col], Y[col]) return DataFrame(results, index=X.index, columns=res_columns) elif pairwise is True: results = defaultdict(dict) for i, k1 in enumerate(arg1.columns): for j, k2 in enumerate(arg2.columns): if j < i and arg2 is arg1: # Symmetric case results[i][j] = results[j][i] else: results[i][j] = f(*_prep_binary(arg1.iloc[:, i], arg2.iloc[:, j])) # TODO: not the most efficient (perf-wise) # though not bad code-wise from pandas import Panel, MultiIndex, concat with warnings.catch_warnings(record=True): p = Panel.from_dict(results).swapaxes('items', 'major') if len(p.major_axis) > 0: p.major_axis = arg1.columns[p.major_axis] if len(p.minor_axis) > 0: p.minor_axis = arg2.columns[p.minor_axis] if len(p.items): result = concat( [p.iloc[i].T for i in range(len(p.items))], keys=p.items) else: result = DataFrame( index=MultiIndex(levels=[arg1.index, arg1.columns], labels=[[], []]), columns=arg2.columns, dtype='float64') # reset our index names to arg1 names # reset our column names to arg2 names # careful not to mutate the original names result.columns = result.columns.set_names( arg2.columns.names) result.index = result.index.set_names( arg1.index.names + arg1.columns.names) return result else: raise ValueError("'pairwise' is not True/False") else: results = {} for i, col in enumerate(arg1.columns): results[i] = f(*_prep_binary(arg1.iloc[:, i], arg2)) return dataframe_from_int_dict(results, arg1) else: return _flex_binary_moment(arg2, arg1, f) def _get_center_of_mass(com, span, halflife, alpha): valid_count = len([x for x in [com, span, halflife, alpha] if x is not None]) if valid_count > 1: raise ValueError("com, span, halflife, and alpha " "are mutually exclusive") # Convert to center of mass; domain checks ensure 0 < alpha <= 1 if com is not None: if com < 0: raise ValueError("com must satisfy: com >= 0") elif span is not None: if span < 1: raise ValueError("span must satisfy: span >= 1") com = (span - 1) / 2. elif halflife is not None: if halflife <= 0: raise ValueError("halflife must satisfy: halflife > 0") decay = 1 - np.exp(np.log(0.5) / halflife) com = 1 / decay - 1 elif alpha is not None: if alpha <= 0 or alpha > 1: raise ValueError("alpha must satisfy: 0 < alpha <= 1") com = (1.0 - alpha) / alpha else: raise ValueError("Must pass one of com, span, halflife, or alpha") return float(com) def _offset(window, center): if not is_integer(window): window = len(window) offset = (window - 1) / 2. if center else 0 try: return int(offset) except: return offset.astype(int) def _require_min_periods(p): def _check_func(minp, window): if minp is None: return window else: return max(p, minp) return _check_func def _use_window(minp, window): if minp is None: return window else: return minp def _zsqrt(x): with np.errstate(all='ignore'): result = np.sqrt(x) mask = x < 0 if isinstance(x, ABCDataFrame): if mask.values.any(): result[mask] = 0 else: if mask.any(): result[mask] = 0 return result def _prep_binary(arg1, arg2): if not isinstance(arg2, type(arg1)): raise Exception('Input arrays must be of the same type!') # mask out values, this also makes a common index... X = arg1 + 0 * arg2 Y = arg2 + 0 * arg1 return X, Y # Top-level exports def rolling(obj, win_type=None, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) if win_type is not None: return Window(obj, win_type=win_type, **kwds) return Rolling(obj, **kwds) rolling.__doc__ = Window.__doc__ def expanding(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) return Expanding(obj, **kwds) expanding.__doc__ = Expanding.__doc__ def ewm(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError('invalid type: %s' % type(obj)) return EWM(obj, **kwds) ewm.__doc__ = EWM.__doc__
gpl-2.0
her0e1c1/pystock
stock/signals.py
1
2696
import pandas as pd from . import line, util def rolling_mean(series, period): """現在の株価(短期)と長期移動平均線(長期)のクロス""" slow = series.rolling(window=period, center=False).mean() return util.cross(series, slow) def rolling_mean_ratio(series, period, ratio): """長期移動平均線と現在の株価の最終日の差がratio乖離したら売買シグナル""" mean = series.rolling(window=period, center=False).mean() r = util.increment(util.last(series), util.last(mean)) return "BUY" if r > ratio else "SELL" if r < -ratio else None def increment_ratio(series, ratio=25): """前日に比べてratio乖離してたら売買シグナル(変動が大きいので戻りの可能性が高いと考える)""" curr = util.last(series) prev = util.last(series, offset_from_last=1) r = util.increment(curr, prev) return "BUY" if r < -ratio else "SELL" if r > ratio else None def rsi(series, period, buy, sell): """RSIは基本的に30%以下で売られ過ぎ, 70%で買われ過ぎ""" rsi = line.rsi(series, period) if rsi.empty: return None f = float(rsi[rsi.last_valid_index()]) return "BUY" if f < buy else "SELL" if f > sell else None def min_low(series, period, ratio): """指定期間中の最安値に近いたら買い. (底値が支えになって反発する可能性があると考える)""" m = float(series.tail(period).min()) if pd.isnull(m): return None last = series[series.last_valid_index()] return "BUY" if util.increment(last, m) < ratio else None def max_high(series, period, ratio): """min_lowの逆version""" m = float(series.tail(period).max()) if pd.isnull(m): return None last = series[series.last_valid_index()] return "SELL" if util.increment(m, last) < ratio else None def macd_signal(series, fast, slow, signal): """macd(短期)とsignal(長期)のクロス""" f = line.macd_line(series, fast, slow, signal) s = line.macd_signal(series, fast, slow, signal) return util.cross(f, s) def stochastic(series, k, d, sd): """ macd(短期)とsignal(長期)のクロス 一般的に次の値を利用する (k, d, sd) = (14, 3, 3) """ fast = line.stochastic_d(series, k=k, d=d) slow = line.stochastic_sd(series, k=k, d=d, sd=sd) return util.cross(fast, slow) def bollinger_band(series, period=20, ratio=3): """ 2sigmaを超えたら、買われすぎと判断してSELL -2sigmaを超えたら、売られ過ぎと判断してBUY """ s = util.sigma(series, period) return "BUY" if s <= -ratio else "SELL" if s >= ratio else None
gpl-3.0
JPFrancoia/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
84
7866
# Important note for the deprecation cleaning of 0.20 : # All the function and classes of this file have been deprecated in 0.18. # When you remove this file please also remove the related files # - 'sklearn/mixture/dpgmm.py' # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_gmm.py' import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.utils.testing import assert_warns_message, ignore_warnings from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.mixture.dpgmm import digamma, gammaln from sklearn.mixture.dpgmm import wishart_log_det, wishart_logz np.seterr(all='warn') @ignore_warnings(category=DeprecationWarning) def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) @ignore_warnings(category=DeprecationWarning) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_digamma(): assert_warns_message(DeprecationWarning, "The function digamma is" " deprecated in 0.18 and will be removed in 0.20. " "Use scipy.special.digamma instead.", digamma, 3) @ignore_warnings(category=DeprecationWarning) def test_gammaln(): assert_warns_message(DeprecationWarning, "The function gammaln" " is deprecated in 0.18 and will be removed" " in 0.20. Use scipy.special.gammaln instead.", gammaln, 3) @ignore_warnings(category=DeprecationWarning) def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) result = assert_warns_message(DeprecationWarning, "The function " "log_normalize is deprecated in 0.18 and" " will be removed in 0.20.", log_normalize, a) assert np.allclose(v, result, rtol=0.01) @ignore_warnings(category=DeprecationWarning) def test_wishart_log_det(): a = np.array([0.1, 0.8, 0.01, 0.09]) b = np.array([0.2, 0.7, 0.05, 0.1]) assert_warns_message(DeprecationWarning, "The function " "wishart_log_det is deprecated in 0.18 and" " will be removed in 0.20.", wishart_log_det, a, b, 2, 4) @ignore_warnings(category=DeprecationWarning) def test_wishart_logz(): assert_warns_message(DeprecationWarning, "The function " "wishart_logz is deprecated in 0.18 and " "will be removed in 0.20.", wishart_logz, 3, np.identity(3), 1, 3) @ignore_warnings(category=DeprecationWarning) def test_DPGMM_deprecation(): assert_warns_message( DeprecationWarning, "The `DPGMM` class is not working correctly and " "it's better to use `sklearn.mixture.BayesianGaussianMixture` class " "with parameter `weight_concentration_prior_type='dirichlet_process'` " "instead. DPGMM is deprecated in 0.18 and will be removed in 0.20.", DPGMM) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp def test_VBGMM_deprecation(): assert_warns_message( DeprecationWarning, "The `VBGMM` class is not working correctly and " "it's better to use `sklearn.mixture.BayesianGaussianMixture` class " "with parameter `weight_concentration_prior_type=" "'dirichlet_distribution'` instead. VBGMM is deprecated " "in 0.18 and will be removed in 0.20.", VBGMM) class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp def test_vbgmm_no_modify_alpha(): alpha = 2. n_components = 3 X, y = make_blobs(random_state=1) vbgmm = VBGMM(n_components=n_components, alpha=alpha, n_iter=1) assert_equal(vbgmm.alpha, alpha) assert_equal(vbgmm.fit(X).alpha_, float(alpha) / n_components)
bsd-3-clause
ofgulban/scikit-image
doc/examples/edges/plot_marching_cubes.py
2
2078
""" ============== Marching Cubes ============== Marching cubes is an algorithm to extract a 2D surface mesh from a 3D volume. This can be conceptualized as a 3D generalization of isolines on topographical or weather maps. It works by iterating across the volume, looking for regions which cross the level of interest. If such regions are found, triangulations are generated and added to an output mesh. The final result is a set of vertices and a set of triangular faces. The algorithm requires a data volume and an isosurface value. For example, in CT imaging Hounsfield units of +700 to +3000 represent bone. So, one potential input would be a reconstructed CT set of data and the value +700, to extract a mesh for regions of bone or bone-like density. This implementation also works correctly on anisotropic datasets, where the voxel spacing is not equal for every spatial dimension, through use of the `spacing` kwarg. """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection from skimage import measure from skimage.draw import ellipsoid # Generate a level set about zero of two identical ellipsoids in 3D ellip_base = ellipsoid(6, 10, 16, levelset=True) ellip_double = np.concatenate((ellip_base[:-1, ...], ellip_base[2:, ...]), axis=0) # Use marching cubes to obtain the surface mesh of these ellipsoids verts, faces, normals, values = measure.marching_cubes(ellip_double, 0) # Display resulting triangular mesh using Matplotlib. This can also be done # with mayavi or visvis (see skimage.measure.marching_cubes docstring). fig = plt.figure(figsize=(10, 12)) ax = fig.add_subplot(111, projection='3d') # Fancy indexing: `verts[faces]` to generate a collection of triangles mesh = Poly3DCollection(verts[faces]) ax.add_collection3d(mesh) ax.set_xlabel("x-axis: a = 6 per ellipsoid") ax.set_ylabel("y-axis: b = 10") ax.set_zlabel("z-axis: c = 16") ax.set_xlim(0, 24) # a = 6 (times two for 2nd ellipsoid) ax.set_ylim(0, 20) # b = 10 ax.set_zlim(0, 32) # c = 16 plt.show()
bsd-3-clause
postvakje/sympy
sympy/plotting/plot.py
7
65097
"""Plotting module for Sympy. A plot is represented by the ``Plot`` class that contains a reference to the backend and a list of the data series to be plotted. The data series are instances of classes meant to simplify getting points and meshes from sympy expressions. ``plot_backends`` is a dictionary with all the backends. This module gives only the essential. For all the fancy stuff use directly the backend. You can get the backend wrapper for every plot from the ``_backend`` attribute. Moreover the data series classes have various useful methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may be useful if you wish to use another plotting library. Especially if you need publication ready graphs and this module is not enough for you - just get the ``_backend`` attribute and add whatever you want directly to it. In the case of matplotlib (the common way to graph data in python) just copy ``_backend.fig`` which is the figure and ``_backend.ax`` which is the axis and work on them as you would on any other matplotlib object. Simplicity of code takes much greater importance than performance. Don't use it if you care at all about performance. A new backend instance is initialized every time you call ``show()`` and the old one is left to the garbage collector. """ from __future__ import print_function, division import inspect from collections import Callable import warnings import sys from sympy import sympify, Expr, Tuple, Dummy, Symbol from sympy.external import import_module from sympy.core.compatibility import range from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.iterables import is_sequence from .experimental_lambdify import (vectorized_lambdify, lambdify) # N.B. # When changing the minimum module version for matplotlib, please change # the same in the `SymPyDocTestFinder`` in `sympy/utilities/runtests.py` # Backend specific imports - textplot from sympy.plotting.textplot import textplot # Global variable # Set to False when running tests / doctests so that the plots don't show. _show = True def unset_show(): global _show _show = False ############################################################################## # The public interface ############################################################################## def _arity(f): """ Python 2 and 3 compatible version that do not raise a Deprecation warning. """ if sys.version_info < (3,): return len(inspect.getargspec(f)[0]) else: param = inspect.signature(f).parameters.values() return len([p for p in param if p.kind == p.POSITIONAL_OR_KEYWORD]) class Plot(object): """The central class of the plotting module. For interactive work the function ``plot`` is better suited. This class permits the plotting of sympy expressions using numerous backends (matplotlib, textplot, the old pyglet module for sympy, Google charts api, etc). The figure can contain an arbitrary number of plots of sympy expressions, lists of coordinates of points, etc. Plot has a private attribute _series that contains all data series to be plotted (expressions for lines or surfaces, lists of points, etc (all subclasses of BaseSeries)). Those data series are instances of classes not imported by ``from sympy import *``. The customization of the figure is on two levels. Global options that concern the figure as a whole (eg title, xlabel, scale, etc) and per-data series options (eg name) and aesthetics (eg. color, point shape, line type, etc.). The difference between options and aesthetics is that an aesthetic can be a function of the coordinates (or parameters in a parametric plot). The supported values for an aesthetic are: - None (the backend uses default values) - a constant - a function of one variable (the first coordinate or parameter) - a function of two variables (the first and second coordinate or parameters) - a function of three variables (only in nonparametric 3D plots) Their implementation depends on the backend so they may not work in some backends. If the plot is parametric and the arity of the aesthetic function permits it the aesthetic is calculated over parameters and not over coordinates. If the arity does not permit calculation over parameters the calculation is done over coordinates. Only cartesian coordinates are supported for the moment, but you can use the parametric plots to plot in polar, spherical and cylindrical coordinates. The arguments for the constructor Plot must be subclasses of BaseSeries. Any global option can be specified as a keyword argument. The global options for a figure are: - title : str - xlabel : str - ylabel : str - legend : bool - xscale : {'linear', 'log'} - yscale : {'linear', 'log'} - axis : bool - axis_center : tuple of two floats or {'center', 'auto'} - xlim : tuple of two floats - ylim : tuple of two floats - aspect_ratio : tuple of two floats or {'auto'} - autoscale : bool - margin : float in [0, 1] The per data series options and aesthetics are: There are none in the base series. See below for options for subclasses. Some data series support additional aesthetics or options: ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries, Parametric3DLineSeries support the following: Aesthetics: - line_color : function which returns a float. options: - label : str - steps : bool - integers_only : bool SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following: aesthetics: - surface_color : function which returns a float. """ def __init__(self, *args, **kwargs): super(Plot, self).__init__() # Options for the graph as a whole. # The possible values for each option are described in the docstring of # Plot. They are based purely on convention, no checking is done. self.title = None self.xlabel = None self.ylabel = None self.aspect_ratio = 'auto' self.xlim = None self.ylim = None self.axis_center = 'auto' self.axis = True self.xscale = 'linear' self.yscale = 'linear' self.legend = False self.autoscale = True self.margin = 0 # Contains the data objects to be plotted. The backend should be smart # enough to iterate over this list. self._series = [] self._series.extend(args) # The backend type. On every show() a new backend instance is created # in self._backend which is tightly coupled to the Plot instance # (thanks to the parent attribute of the backend). self.backend = DefaultBackend # The keyword arguments should only contain options for the plot. for key, val in kwargs.items(): if hasattr(self, key): setattr(self, key, val) def show(self): # TODO move this to the backend (also for save) if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.show() def save(self, path): if hasattr(self, '_backend'): self._backend.close() self._backend = self.backend(self) self._backend.save(path) def __str__(self): series_strs = [('[%d]: ' % i) + str(s) for i, s in enumerate(self._series)] return 'Plot object containing:\n' + '\n'.join(series_strs) def __getitem__(self, index): return self._series[index] def __setitem__(self, index, *args): if len(args) == 1 and isinstance(args[0], BaseSeries): self._series[index] = args def __delitem__(self, index): del self._series[index] @doctest_depends_on(modules=('numpy', 'matplotlib',)) def append(self, arg): """Adds an element from a plot's series to an existing plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot's first series object to the first, use the ``append`` method, like so: >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x) >>> p2 = plot(x) >>> p1.append(p2[0]) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) See Also ======== extend """ if isinstance(arg, BaseSeries): self._series.append(arg) else: raise TypeError('Must specify element of plot to append.') @doctest_depends_on(modules=('numpy', 'matplotlib',)) def extend(self, arg): """Adds all series from another plot. Examples ======== Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the second plot to the first, use the ``extend`` method, like so: >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') >>> p1 = plot(x*x) >>> p2 = plot(x) >>> p1.extend(p2) >>> p1 Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) [1]: cartesian line: x for x over (-10.0, 10.0) """ if isinstance(arg, Plot): self._series.extend(arg._series) elif is_sequence(arg): self._series.extend(arg) else: raise TypeError('Expecting Plot or sequence of BaseSeries') ############################################################################## # Data Series ############################################################################## #TODO more general way to calculate aesthetics (see get_color_array) ### The base class for all series class BaseSeries(object): """Base class for the data objects containing stuff to be plotted. The backend should check if it supports the data series that it's given. (eg TextBackend supports only LineOver1DRange). It's the backend responsibility to know how to use the class of data series that it's given. Some data series classes are grouped (using a class attribute like is_2Dline) according to the api they present (based only on convention). The backend is not obliged to use that api (eg. The LineOver1DRange belongs to the is_2Dline group and presents the get_points method, but the TextBackend does not use the get_points method). """ # Some flags follow. The rationale for using flags instead of checking base # classes is that setting multiple flags is simpler than multiple # inheritance. is_2Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dline = False # Some of the backends expect: # - get_points returning 1D np.arrays list_x, list_y, list_y # - get_segments returning np.array (done in Line2DBaseSeries) # - get_color_array returning 1D np.array (done in Line2DBaseSeries) # with the colors calculated at the points from get_points is_3Dsurface = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_contour = False # Some of the backends expect: # - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays) # - get_points an alias for get_meshes is_implicit = False # Some of the backends expect: # - get_meshes returning mesh_x (1D array), mesh_y(1D array, # mesh_z (2D np.arrays) # - get_points an alias for get_meshes #Different from is_contour as the colormap in backend will be #different is_parametric = False # The calculation of aesthetics expects: # - get_parameter_points returning one or two np.arrays (1D or 2D) # used for calculation aesthetics def __init__(self): super(BaseSeries, self).__init__() @property def is_3D(self): flags3D = [ self.is_3Dline, self.is_3Dsurface ] return any(flags3D) @property def is_line(self): flagslines = [ self.is_2Dline, self.is_3Dline ] return any(flagslines) ### 2D lines class Line2DBaseSeries(BaseSeries): """A base class for 2D lines. - adding the label, steps and only_integers options - making is_2Dline true - defining get_segments and get_color_array """ is_2Dline = True _dim = 2 def __init__(self): super(Line2DBaseSeries, self).__init__() self.label = None self.steps = False self.only_integers = False self.line_color = None def get_segments(self): np = import_module('numpy') points = self.get_points() if self.steps is True: x = np.array((points[0], points[0])).T.flatten()[1:] y = np.array((points[1], points[1])).T.flatten()[:-1] points = (x, y) points = np.ma.array(points).T.reshape(-1, 1, self._dim) return np.ma.concatenate([points[:-1], points[1:]], axis=1) def get_color_array(self): np = import_module('numpy') c = self.line_color if hasattr(c, '__call__'): f = np.vectorize(c) arity = _arity(c) if arity == 1 and self.is_parametric: x = self.get_parameter_points() return f(centers_of_segments(x)) else: variables = list(map(centers_of_segments, self.get_points())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: # only if the line is 3D (otherwise raises an error) return f(*variables) else: return c*np.ones(self.nb_of_points) class List2DSeries(Line2DBaseSeries): """Representation for a line consisting of list of points.""" def __init__(self, list_x, list_y): np = import_module('numpy') super(List2DSeries, self).__init__() self.list_x = np.array(list_x) self.list_y = np.array(list_y) self.label = 'list' def __str__(self): return 'list plot' def get_points(self): return (self.list_x, self.list_y) class LineOver1DRangeSeries(Line2DBaseSeries): """Representation for a line consisting of a SymPy expression over a range.""" def __init__(self, expr, var_start_end, **kwargs): super(LineOver1DRangeSeries, self).__init__() self.expr = sympify(expr) self.label = str(self.expr) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'cartesian line: %s for %s over %s' % ( str(self.expr), str(self.var), str((self.start, self.end))) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if self.only_integers or not self.adaptive: return super(LineOver1DRangeSeries, self).get_segments() else: f = lambdify([self.var], self.expr) list_segments = [] def sample(p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ np = import_module('numpy') #Randomly sample to avoid aliasing. random = 0.45 + np.random.rand() * 0.1 xnew = p[0] + random * (q[0] - p[0]) ynew = f(xnew) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif p[1] is None and q[1] is None: xarray = np.linspace(p[0], q[0], 10) yarray = list(map(f, xarray)) if any(y is not None for y in yarray): for i in range(len(yarray) - 1): if yarray[i] is not None or yarray[i + 1] is not None: sample([xarray[i], yarray[i]], [xarray[i + 1], yarray[i + 1]], depth + 1) #Sample further if one of the end points in None( i.e. a complex #value) or the three points are not almost collinear. elif (p[1] is None or q[1] is None or new_point[1] is None or not flat(p, new_point, q)): sample(p, new_point, depth + 1) sample(new_point, q, depth + 1) else: list_segments.append([p, q]) f_start = f(self.start) f_end = f(self.end) sample([self.start, f_start], [self.end, f_end], 0) return list_segments def get_points(self): np = import_module('numpy') if self.only_integers is True: list_x = np.linspace(int(self.start), int(self.end), num=int(self.end) - int(self.start) + 1) else: list_x = np.linspace(self.start, self.end, num=self.nb_of_points) f = vectorized_lambdify([self.var], self.expr) list_y = f(list_x) return (list_x, list_y) class Parametric2DLineSeries(Line2DBaseSeries): """Representation for a line consisting of two parametric sympy expressions over a range.""" is_parametric = True def __init__(self, expr_x, expr_y, var_start_end, **kwargs): super(Parametric2DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.adaptive = kwargs.get('adaptive', True) self.depth = kwargs.get('depth', 12) self.line_color = kwargs.get('line_color', None) def __str__(self): return 'parametric cartesian line: (%s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) list_x = fx(param) list_y = fy(param) return (list_x, list_y) def get_segments(self): """ Adaptively gets segments for plotting. The adaptive sampling is done by recursively checking if three points are almost collinear. If they are not collinear, then more points are added between those points. References ========== [1] Adaptive polygonal approximation of parametric curves, Luiz Henrique de Figueiredo. """ if not self.adaptive: return super(Parametric2DLineSeries, self).get_segments() f_x = lambdify([self.var], self.expr_x) f_y = lambdify([self.var], self.expr_y) list_segments = [] def sample(param_p, param_q, p, q, depth): """ Samples recursively if three points are almost collinear. For depth < 6, points are added irrespective of whether they satisfy the collinearity condition or not. The maximum depth allowed is 12. """ #Randomly sample to avoid aliasing. np = import_module('numpy') random = 0.45 + np.random.rand() * 0.1 param_new = param_p + random * (param_q - param_p) xnew = f_x(param_new) ynew = f_y(param_new) new_point = np.array([xnew, ynew]) #Maximum depth if depth > self.depth: list_segments.append([p, q]) #Sample irrespective of whether the line is flat till the #depth of 6. We are not using linspace to avoid aliasing. elif depth < 6: sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) #Sample ten points if complex values are encountered #at both ends. If there is a real value in between, then #sample those points further. elif ((p[0] is None and q[1] is None) or (p[1] is None and q[1] is None)): param_array = np.linspace(param_p, param_q, 10) x_array = list(map(f_x, param_array)) y_array = list(map(f_y, param_array)) if any(x is not None and y is not None for x, y in zip(x_array, y_array)): for i in range(len(y_array) - 1): if ((x_array[i] is not None and y_array[i] is not None) or (x_array[i + 1] is not None and y_array[i + 1] is not None)): point_a = [x_array[i], y_array[i]] point_b = [x_array[i + 1], y_array[i + 1]] sample(param_array[i], param_array[i], point_a, point_b, depth + 1) #Sample further if one of the end points in None( ie a complex #value) or the three points are not almost collinear. elif (p[0] is None or p[1] is None or q[1] is None or q[0] is None or not flat(p, new_point, q)): sample(param_p, param_new, p, new_point, depth + 1) sample(param_new, param_q, new_point, q, depth + 1) else: list_segments.append([p, q]) f_start_x = f_x(self.start) f_start_y = f_y(self.start) start = [f_start_x, f_start_y] f_end_x = f_x(self.end) f_end_y = f_y(self.end) end = [f_end_x, f_end_y] sample(self.start, self.end, start, end, 0) return list_segments ### 3D lines class Line3DBaseSeries(Line2DBaseSeries): """A base class for 3D lines. Most of the stuff is derived from Line2DBaseSeries.""" is_2Dline = False is_3Dline = True _dim = 3 def __init__(self): super(Line3DBaseSeries, self).__init__() class Parametric3DLineSeries(Line3DBaseSeries): """Representation for a 3D line consisting of two parametric sympy expressions and a range.""" def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs): super(Parametric3DLineSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.label = "(%s, %s)" % (str(self.expr_x), str(self.expr_y)) self.var = sympify(var_start_end[0]) self.start = float(var_start_end[1]) self.end = float(var_start_end[2]) self.nb_of_points = kwargs.get('nb_of_points', 300) self.line_color = kwargs.get('line_color', None) def __str__(self): return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var), str((self.start, self.end))) def get_parameter_points(self): np = import_module('numpy') return np.linspace(self.start, self.end, num=self.nb_of_points) def get_points(self): param = self.get_parameter_points() fx = vectorized_lambdify([self.var], self.expr_x) fy = vectorized_lambdify([self.var], self.expr_y) fz = vectorized_lambdify([self.var], self.expr_z) list_x = fx(param) list_y = fy(param) list_z = fz(param) return (list_x, list_y, list_z) ### Surfaces class SurfaceBaseSeries(BaseSeries): """A base class for 3D surfaces.""" is_3Dsurface = True def __init__(self): super(SurfaceBaseSeries, self).__init__() self.surface_color = None def get_color_array(self): np = import_module('numpy') c = self.surface_color if isinstance(c, Callable): f = np.vectorize(c) arity = _arity(c) if self.is_parametric: variables = list(map(centers_of_faces, self.get_parameter_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables) variables = list(map(centers_of_faces, self.get_meshes())) if arity == 1: return f(variables[0]) elif arity == 2: return f(*variables[:2]) else: return f(*variables) else: return c*np.ones(self.nb_of_points) class SurfaceOver2DRangeSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of a sympy expression and 2D range.""" def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs): super(SurfaceOver2DRangeSeries, self).__init__() self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.nb_of_points_x = kwargs.get('nb_of_points_x', 50) self.nb_of_points_y = kwargs.get('nb_of_points_y', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('cartesian surface: %s for' ' %s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) class ParametricSurfaceSeries(SurfaceBaseSeries): """Representation for a 3D surface consisting of three parametric sympy expressions and a range.""" is_parametric = True def __init__( self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v, **kwargs): super(ParametricSurfaceSeries, self).__init__() self.expr_x = sympify(expr_x) self.expr_y = sympify(expr_y) self.expr_z = sympify(expr_z) self.var_u = sympify(var_start_end_u[0]) self.start_u = float(var_start_end_u[1]) self.end_u = float(var_start_end_u[2]) self.var_v = sympify(var_start_end_v[0]) self.start_v = float(var_start_end_v[1]) self.end_v = float(var_start_end_v[2]) self.nb_of_points_u = kwargs.get('nb_of_points_u', 50) self.nb_of_points_v = kwargs.get('nb_of_points_v', 50) self.surface_color = kwargs.get('surface_color', None) def __str__(self): return ('parametric cartesian surface: (%s, %s, %s) for' ' %s over %s and %s over %s') % ( str(self.expr_x), str(self.expr_y), str(self.expr_z), str(self.var_u), str((self.start_u, self.end_u)), str(self.var_v), str((self.start_v, self.end_v))) def get_parameter_meshes(self): np = import_module('numpy') return np.meshgrid(np.linspace(self.start_u, self.end_u, num=self.nb_of_points_u), np.linspace(self.start_v, self.end_v, num=self.nb_of_points_v)) def get_meshes(self): mesh_u, mesh_v = self.get_parameter_meshes() fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x) fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y) fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z) return (fx(mesh_u, mesh_v), fy(mesh_u, mesh_v), fz(mesh_u, mesh_v)) ### Contours class ContourSeries(BaseSeries): """Representation for a contour plot.""" #The code is mostly repetition of SurfaceOver2DRange. #XXX: Presently not used in any of those functions. #XXX: Add contour plot and use this seties. is_contour = True def __init__(self, expr, var_start_end_x, var_start_end_y): super(ContourSeries, self).__init__() self.nb_of_points_x = 50 self.nb_of_points_y = 50 self.expr = sympify(expr) self.var_x = sympify(var_start_end_x[0]) self.start_x = float(var_start_end_x[1]) self.end_x = float(var_start_end_x[2]) self.var_y = sympify(var_start_end_y[0]) self.start_y = float(var_start_end_y[1]) self.end_y = float(var_start_end_y[2]) self.get_points = self.get_meshes def __str__(self): return ('contour: %s for ' '%s over %s and %s over %s') % ( str(self.expr), str(self.var_x), str((self.start_x, self.end_x)), str(self.var_y), str((self.start_y, self.end_y))) def get_meshes(self): np = import_module('numpy') mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x, num=self.nb_of_points_x), np.linspace(self.start_y, self.end_y, num=self.nb_of_points_y)) f = vectorized_lambdify((self.var_x, self.var_y), self.expr) return (mesh_x, mesh_y, f(mesh_x, mesh_y)) ############################################################################## # Backends ############################################################################## class BaseBackend(object): def __init__(self, parent): super(BaseBackend, self).__init__() self.parent = parent ## don't have to check for the success of importing matplotlib in each case; ## we will only be using this backend if we can successfully import matploblib class MatplotlibBackend(BaseBackend): def __init__(self, parent): super(MatplotlibBackend, self).__init__(parent) are_3D = [s.is_3D for s in self.parent._series] self.matplotlib = import_module('matplotlib', __import__kwargs={'fromlist': ['pyplot', 'cm', 'collections']}, min_module_version='1.1.0', catch=(RuntimeError,)) self.plt = self.matplotlib.pyplot self.cm = self.matplotlib.cm self.LineCollection = self.matplotlib.collections.LineCollection if any(are_3D) and not all(are_3D): raise ValueError('The matplotlib backend can not mix 2D and 3D.') elif not any(are_3D): self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111) self.ax.spines['left'].set_position('zero') self.ax.spines['right'].set_color('none') self.ax.spines['bottom'].set_position('zero') self.ax.spines['top'].set_color('none') self.ax.spines['left'].set_smart_bounds(True) self.ax.spines['bottom'].set_smart_bounds(False) self.ax.xaxis.set_ticks_position('bottom') self.ax.yaxis.set_ticks_position('left') elif all(are_3D): ## mpl_toolkits.mplot3d is necessary for ## projection='3d' mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) self.fig = self.plt.figure() self.ax = self.fig.add_subplot(111, projection='3d') def process_series(self): parent = self.parent for s in self.parent._series: # Create the collections if s.is_2Dline: collection = self.LineCollection(s.get_segments()) self.ax.add_collection(collection) elif s.is_contour: self.ax.contour(*s.get_meshes()) elif s.is_3Dline: # TODO too complicated, I blame matplotlib mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) art3d = mpl_toolkits.mplot3d.art3d collection = art3d.Line3DCollection(s.get_segments()) self.ax.add_collection(collection) x, y, z = s.get_points() self.ax.set_xlim((min(x), max(x))) self.ax.set_ylim((min(y), max(y))) self.ax.set_zlim((min(z), max(z))) elif s.is_3Dsurface: x, y, z = s.get_meshes() collection = self.ax.plot_surface(x, y, z, cmap=self.cm.jet, rstride=1, cstride=1, linewidth=0.1) elif s.is_implicit: #Smart bounds have to be set to False for implicit plots. self.ax.spines['left'].set_smart_bounds(False) self.ax.spines['bottom'].set_smart_bounds(False) points = s.get_raster() if len(points) == 2: #interval math plotting x, y = _matplotlib_list(points[0]) self.ax.fill(x, y, facecolor=s.line_color, edgecolor='None') else: # use contourf or contour depending on whether it is # an inequality or equality. #XXX: ``contour`` plots multiple lines. Should be fixed. ListedColormap = self.matplotlib.colors.ListedColormap colormap = ListedColormap(["white", s.line_color]) xarray, yarray, zarray, plot_type = points if plot_type == 'contour': self.ax.contour(xarray, yarray, zarray, contours=(0, 0), fill=False, cmap=colormap) else: self.ax.contourf(xarray, yarray, zarray, cmap=colormap) else: raise ValueError('The matplotlib backend supports only ' 'is_2Dline, is_3Dline, is_3Dsurface and ' 'is_contour objects.') # Customise the collections with the corresponding per-series # options. if hasattr(s, 'label'): collection.set_label(s.label) if s.is_line and s.line_color: if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable): color_array = s.get_color_array() collection.set_array(color_array) else: collection.set_color(s.line_color) if s.is_3Dsurface and s.surface_color: if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check warnings.warn('The version of matplotlib is too old to use surface coloring.') elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable): color_array = s.get_color_array() color_array = color_array.reshape(color_array.size) collection.set_array(color_array) else: collection.set_color(s.surface_color) # Set global options. # TODO The 3D stuff # XXX The order of those is important. mpl_toolkits = import_module('mpl_toolkits', __import__kwargs={'fromlist': ['mplot3d']}) Axes3D = mpl_toolkits.mplot3d.Axes3D if parent.xscale and not isinstance(self.ax, Axes3D): self.ax.set_xscale(parent.xscale) if parent.yscale and not isinstance(self.ax, Axes3D): self.ax.set_yscale(parent.yscale) if parent.xlim: self.ax.set_xlim(parent.xlim) else: if all(isinstance(s, LineOver1DRangeSeries) for s in parent._series): starts = [s.start for s in parent._series] ends = [s.end for s in parent._series] self.ax.set_xlim(min(starts), max(ends)) if parent.ylim: self.ax.set_ylim(parent.ylim) if not isinstance(self.ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check self.ax.set_autoscale_on(parent.autoscale) if parent.axis_center: val = parent.axis_center if isinstance(self.ax, Axes3D): pass elif val == 'center': self.ax.spines['left'].set_position('center') self.ax.spines['bottom'].set_position('center') elif val == 'auto': xl, xh = self.ax.get_xlim() yl, yh = self.ax.get_ylim() pos_left = ('data', 0) if xl*xh <= 0 else 'center' pos_bottom = ('data', 0) if yl*yh <= 0 else 'center' self.ax.spines['left'].set_position(pos_left) self.ax.spines['bottom'].set_position(pos_bottom) else: self.ax.spines['left'].set_position(('data', val[0])) self.ax.spines['bottom'].set_position(('data', val[1])) if not parent.axis: self.ax.set_axis_off() if parent.legend: if self.ax.legend(): self.ax.legend_.set_visible(parent.legend) if parent.margin: self.ax.set_xmargin(parent.margin) self.ax.set_ymargin(parent.margin) if parent.title: self.ax.set_title(parent.title) if parent.xlabel: self.ax.set_xlabel(parent.xlabel, position=(1, 0)) if parent.ylabel: self.ax.set_ylabel(parent.ylabel, position=(0, 1)) def show(self): self.process_series() #TODO after fixing https://github.com/ipython/ipython/issues/1255 # you can uncomment the next line and remove the pyplot.show() call #self.fig.show() if _show: self.plt.show() def save(self, path): self.process_series() self.fig.savefig(path) def close(self): self.plt.close(self.fig) class TextBackend(BaseBackend): def __init__(self, parent): super(TextBackend, self).__init__(parent) def show(self): if len(self.parent._series) != 1: raise ValueError( 'The TextBackend supports only one graph per Plot.') elif not isinstance(self.parent._series[0], LineOver1DRangeSeries): raise ValueError( 'The TextBackend supports only expressions over a 1D range') else: ser = self.parent._series[0] textplot(ser.expr, ser.start, ser.end) def close(self): pass class DefaultBackend(BaseBackend): def __new__(cls, parent): matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) if matplotlib: return MatplotlibBackend(parent) else: return TextBackend(parent) plot_backends = { 'matplotlib': MatplotlibBackend, 'text': TextBackend, 'default': DefaultBackend } ############################################################################## # Finding the centers of line segments or mesh faces ############################################################################## def centers_of_segments(array): np = import_module('numpy') return np.average(np.vstack((array[:-1], array[1:])), 0) def centers_of_faces(array): np = import_module('numpy') return np.average(np.dstack((array[:-1, :-1], array[1:, :-1], array[:-1, 1: ], array[:-1, :-1], )), 2) def flat(x, y, z, eps=1e-3): """Checks whether three points are almost collinear""" np = import_module('numpy') # Workaround plotting piecewise (#8577): # workaround for `lambdify` in `.experimental_lambdify` fails # to return numerical values in some cases. Lower-level fix # in `lambdify` is possible. vector_a = (x - y).astype(np.float) vector_b = (z - y).astype(np.float) dot_product = np.dot(vector_a, vector_b) vector_a_norm = np.linalg.norm(vector_a) vector_b_norm = np.linalg.norm(vector_b) cos_theta = dot_product / (vector_a_norm * vector_b_norm) return abs(cos_theta + 1) < eps def _matplotlib_list(interval_list): """ Returns lists for matplotlib ``fill`` command from a list of bounding rectangular intervals """ xlist = [] ylist = [] if len(interval_list): for intervals in interval_list: intervalx = intervals[0] intervaly = intervals[1] xlist.extend([intervalx.start, intervalx.start, intervalx.end, intervalx.end, None]) ylist.extend([intervaly.start, intervaly.end, intervaly.end, intervaly.start, None]) else: #XXX Ugly hack. Matplotlib does not accept empty lists for ``fill`` xlist.extend([None, None, None, None]) ylist.extend([None, None, None, None]) return xlist, ylist ####New API for plotting module #### # TODO: Add color arrays for plots. # TODO: Add more plotting options for 3d plots. # TODO: Adaptive sampling for 3D plots. @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot(*args, **kwargs): """ Plots a function of a single variable and returns an instance of the ``Plot`` class (also, see the description of the ``show`` keyword argument below). The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single Plot ``plot(expr, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot(expr1, expr2, ..., range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot((expr1, range), (expr2, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function of single variable ``range``: (x, 0, 5), A 3-tuple denoting the range of the free variable. Keyword Arguments ================= Arguments for ``plot`` function: ``show``: Boolean. The default value is set to ``True``. Set show to ``False`` and the function will not display the plot. The returned instance of the ``Plot`` class can then be used to save or display the plot by calling the ``save()`` and ``show()`` methods respectively. Arguments for ``LineOver1DRangeSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics options: ``line_color``: float. Specifies the color for the plot. See ``Plot`` to see how to set color for the plots. If there are multiple plots, then the same series series are applied to all the plots. If you want to set these options separately, you can index the ``Plot`` object returned and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. It is set to the latex representation of the expression, if the plot has only one expression. ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot >>> x = symbols('x') Single Plot >>> plot(x**2, (x, -5, 5)) Plot object containing: [0]: cartesian line: x**2 for x over (-5.0, 5.0) Multiple plots with single range. >>> plot(x, x**2, x**3, (x, -5, 5)) Plot object containing: [0]: cartesian line: x for x over (-5.0, 5.0) [1]: cartesian line: x**2 for x over (-5.0, 5.0) [2]: cartesian line: x**3 for x over (-5.0, 5.0) Multiple plots with different ranges. >>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5))) Plot object containing: [0]: cartesian line: x**2 for x over (-6.0, 6.0) [1]: cartesian line: x for x over (-5.0, 5.0) No adaptive sampling. >>> plot(x**2, adaptive=False, nb_of_points=400) Plot object containing: [0]: cartesian line: x**2 for x over (-10.0, 10.0) See Also ======== Plot, LineOver1DRangeSeries. """ args = list(map(sympify, args)) free = set() for a in args: if isinstance(a, Expr): free |= a.free_symbols if len(free) > 1: raise ValueError( 'The same variable should be used in all ' 'univariate expressions being plotted.') x = free.pop() if free else Symbol('x') kwargs.setdefault('xlabel', x.name) kwargs.setdefault('ylabel', 'f(%s)' % x.name) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 1) series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot_parametric(*args, **kwargs): """ Plots a 2D parametric plot. The plotting uses an adaptive algorithm which samples recursively to accurately plot the plot. The adaptive algorithm uses a random point near the midpoint of two points that has to be further sampled. Hence the same plots can appear slightly different. Usage ===== Single plot. ``plot_parametric(expr_x, expr_y, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with same range. ``plot_parametric((expr1_x, expr1_y), (expr2_x, expr2_y), range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot_parametric((expr_x, expr_y, range), ..., **kwargs)`` Range has to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``range``: (u, 0, 5), A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric2DLineSeries`` class: ``adaptive``: Boolean. The default value is set to True. Set adaptive to False and specify ``nb_of_points`` if uniform sampling is required. ``depth``: int Recursion depth of the adaptive algorithm. A depth of value ``n`` samples a maximum of `2^{n}` points. ``nb_of_points``: int. Used when the ``adaptive`` is set to False. The function is uniformly sampled at ``nb_of_points`` number of points. Aesthetics ---------- ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same Series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``xlabel`` : str. Label for the x-axis. ``ylabel`` : str. Label for the y-axis. ``xscale``: {'linear', 'log'} Sets the scaling of the x-axis. ``yscale``: {'linear', 'log'} Sets the scaling if the y-axis. ``axis_center``: tuple of two floats denoting the coordinates of the center or {'center', 'auto'} ``xlim`` : tuple of two floats, denoting the x-axis limits. ``ylim`` : tuple of two floats, denoting the y-axis limits. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot_parametric >>> u = symbols('u') Single Parametric plot >>> plot_parametric(cos(u), sin(u), (u, -5, 5)) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) Multiple parametric plot with single range. >>> plot_parametric((cos(u), sin(u)), (u, cos(u))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0) [1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0) Multiple parametric plots. >>> plot_parametric((cos(u), sin(u), (u, -5, 5)), ... (cos(u), u, (u, -5, 5))) Plot object containing: [0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0) [1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric2DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 2, 1) series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_line(*args, **kwargs): """ Plots a 3D parametric line plot. Usage ===== Single plot: ``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)`` If the range is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x`` : Expression representing the function along x. ``expr_y`` : Expression representing the function along y. ``expr_z`` : Expression representing the function along z. ``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter variable. Keyword Arguments ================= Arguments for ``Parametric3DLineSeries`` class. ``nb_of_points``: The range is uniformly sampled at ``nb_of_points`` number of points. Aesthetics: ``line_color``: function which returns a float. Specifies the color for the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class. ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_line >>> u = symbols('u') Single plot. >>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5)) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) Multiple plots. >>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)), ... (sin(u), u**2, u, (u, -5, 5))) Plot object containing: [0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0) [1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0) See Also ======== Plot, Parametric3DLineSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 1) series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d(*args, **kwargs): """ Plots a 3D surface plot. Usage ===== Single plot ``plot3d(expr, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plot with the same range. ``plot3d(expr1, expr2, range_x, range_y, **kwargs)`` If the ranges are not specified, then a default range of (-10, 10) is used. Multiple plots with different ranges. ``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr`` : Expression representing the function along x. ``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x variable. ``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y variable. Keyword Arguments ================= Arguments for ``SurfaceOver2DRangeSeries`` class: ``nb_of_points_x``: int. The x range is sampled uniformly at ``nb_of_points_x`` of points. ``nb_of_points_y``: int. The y range is sampled uniformly at ``nb_of_points_y`` of points. Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied to all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols >>> from sympy.plotting import plot3d >>> x, y = symbols('x y') Single plot >>> plot3d(x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with same range >>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5)) Plot object containing: [0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0) Multiple plots with different ranges. >>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)), ... (x*y, (x, -3, 3), (y, -3, 3))) Plot object containing: [0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0) [1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0) See Also ======== Plot, SurfaceOver2DRangeSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 1, 2) series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots @doctest_depends_on(modules=('numpy', 'matplotlib',)) def plot3d_parametric_surface(*args, **kwargs): """ Plots a 3D parametric surface plot. Usage ===== Single plot. ``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)`` If the ranges is not specified, then a default range of (-10, 10) is used. Multiple plots. ``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)`` Ranges have to be specified for every expression. Default range may change in the future if a more advanced default range detection algorithm is implemented. Arguments ========= ``expr_x``: Expression representing the function along ``x``. ``expr_y``: Expression representing the function along ``y``. ``expr_z``: Expression representing the function along ``z``. ``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u`` variable. ``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v variable. Keyword Arguments ================= Arguments for ``ParametricSurfaceSeries`` class: ``nb_of_points_u``: int. The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points ``nb_of_points_y``: int. The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points Aesthetics: ``surface_color``: Function which returns a float. Specifies the color for the surface of the plot. See ``sympy.plotting.Plot`` for more details. If there are multiple plots, then the same series arguments are applied for all the plots. If you want to set these options separately, you can index the returned ``Plot`` object and set it. Arguments for ``Plot`` class: ``title`` : str. Title of the plot. Examples ======== >>> from sympy import symbols, cos, sin >>> from sympy.plotting import plot3d_parametric_surface >>> u, v = symbols('u v') Single plot. >>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v, ... (u, -5, 5), (v, -5, 5)) Plot object containing: [0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0) See Also ======== Plot, ParametricSurfaceSeries """ args = list(map(sympify, args)) show = kwargs.pop('show', True) series = [] plot_expr = check_arguments(args, 3, 2) series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr] plots = Plot(*series, **kwargs) if show: plots.show() return plots def check_arguments(args, expr_len, nb_of_free_symbols): """ Checks the arguments and converts into tuples of the form (exprs, ranges) Examples ======== >>> from sympy import plot, cos, sin, symbols >>> from sympy.plotting.plot import check_arguments >>> x = symbols('x') >>> check_arguments([cos(x), sin(x)], 2, 1) [(cos(x), sin(x), (x, -10, 10))] >>> check_arguments([x, x**2], 1, 1) [(x, (x, -10, 10)), (x**2, (x, -10, 10))] """ if expr_len > 1 and isinstance(args[0], Expr): # Multiple expressions same range. # The arguments are tuples when the expression length is # greater than 1. if len(args) < expr_len: raise ValueError("len(args) should not be less than expr_len") for i in range(len(args)): if isinstance(args[i], Tuple): break else: i = len(args) + 1 exprs = Tuple(*args[:i]) free_symbols = list(set().union(*[e.free_symbols for e in exprs])) if len(args) == expr_len + nb_of_free_symbols: #Ranges given plots = [exprs + Tuple(*args[expr_len:])] else: default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) plots = [exprs + Tuple(*ranges)] return plots if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and len(args[0]) == expr_len and expr_len != 3): # Cannot handle expressions with number of expression = 3. It is # not possible to differentiate between expressions and ranges. #Series of plots with same range for i in range(len(args)): if isinstance(args[i], Tuple) and len(args[i]) != expr_len: break if not isinstance(args[i], Tuple): args[i] = Tuple(args[i]) else: i = len(args) + 1 exprs = args[:i] assert all(isinstance(e, Expr) for expr in exprs for e in expr) free_symbols = list(set().union(*[e.free_symbols for expr in exprs for e in expr])) if len(free_symbols) > nb_of_free_symbols: raise ValueError("The number of free_symbols in the expression " "is greater than %d" % nb_of_free_symbols) if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple): ranges = Tuple(*[range_expr for range_expr in args[ i:i + nb_of_free_symbols]]) plots = [expr + ranges for expr in exprs] return plots else: #Use default ranges. default_range = Tuple(-10, 10) ranges = [] for symbol in free_symbols: ranges.append(Tuple(symbol) + default_range) for i in range(len(free_symbols) - nb_of_free_symbols): ranges.append(Tuple(Dummy()) + default_range) ranges = Tuple(*ranges) plots = [expr + ranges for expr in exprs] return plots elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols: #Multiple plots with different ranges. for arg in args: for i in range(expr_len): if not isinstance(arg[i], Expr): raise ValueError("Expected an expression, given %s" % str(arg[i])) for i in range(nb_of_free_symbols): if not len(arg[i + expr_len]) == 3: raise ValueError("The ranges should be a tuple of " "length 3, got %s" % str(arg[i + expr_len])) return args
bsd-3-clause
mxjl620/scikit-learn
examples/manifold/plot_mds.py
261
2616
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) plt.scatter(X_true[:, 0], X_true[:, 1], c='r', s=20) plt.scatter(pos[:, 0], pos[:, 1], s=20, c='g') plt.scatter(npos[:, 0], npos[:, 1], s=20, c='b') plt.legend(('True position', 'MDS', 'NMDS'), loc='best') similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
cosmodesi/snsurvey
src/control.py
1
1120
#!/usr/bin/env python import numpy import sncosmo import scipy.optimize import matplotlib.pyplot as plt model=sncosmo.Model(source='salt2-extended') def f(t ,rlim): # print t, model.bandflux('desr',t, zp = rlim, zpsys='ab') return model.bandflux('desr',t, zp = rlim, zpsys='ab')-1. def controlTime(z,rlim): model.set(z=z, t0=55000.) model.set_source_peakabsmag(absmag=-19.3,band='bessellb',magsys='ab') pre = scipy.optimize.fsolve(f, 55000.-15*(1+z) ,args=(rlim),xtol=1e-8) post = scipy.optimize.fsolve(f, 55000.+20*(1+z) ,args=(rlim),xtol=1e-8) return max(post[0]-pre[0],0) # print scipy.optimize.fsolve(f, 55000.+40,args=(rlim),factor=1.,xtol=1e-8) def plot(): lmag = numpy.arange(19.5,21.6,0.5) zs = numpy.arange(0.02, 0.2501,0.02) ans = [] for lm in lmag: ans_=[] for z in zs: ans_.append(controlTime(z,lm)) ans.append(ans_) for lm, ct in zip(lmag, ans): plt.plot(zs, ct, label = '$r_{{lim}} = {}$'.format(str(lm))) plt.xlabel(r'$z$') plt.ylabel(r'control time (days)') plt.legend() plt.show()
bsd-3-clause
rajat1994/scikit-learn
examples/plot_kernel_ridge_regression.py
230
6222
""" ============================================= Comparison of kernel ridge regression and SVR ============================================= Both kernel ridge regression (KRR) and SVR learn a non-linear function by employing the kernel trick, i.e., they learn a linear function in the space induced by the respective kernel which corresponds to a non-linear function in the original space. They differ in the loss functions (ridge versus epsilon-insensitive loss). In contrast to SVR, fitting a KRR can be done in closed-form and is typically faster for medium-sized datasets. On the other hand, the learned model is non-sparse and thus slower than SVR at prediction-time. This example illustrates both methods on an artificial dataset, which consists of a sinusoidal target function and strong noise added to every fifth datapoint. The first figure compares the learned model of KRR and SVR when both complexity/regularization and bandwidth of the RBF kernel are optimized using grid-search. The learned functions are very similar; however, fitting KRR is approx. seven times faster than fitting SVR (both with grid-search). However, prediction of 100000 target values is more than tree times faster with SVR since it has learned a sparse model using only approx. 1/3 of the 100 training datapoints as support vectors. The next figure compares the time for fitting and prediction of KRR and SVR for different sizes of the training set. Fitting KRR is faster than SVR for medium- sized training sets (less than 1000 samples); however, for larger training sets SVR scales better. With regard to prediction time, SVR is faster than KRR for all sizes of the training set because of the learned sparse solution. Note that the degree of sparsity and thus the prediction time depends on the parameters epsilon and C of the SVR. """ # Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD 3 clause from __future__ import division import time import numpy as np from sklearn.svm import SVR from sklearn.grid_search import GridSearchCV from sklearn.learning_curve import learning_curve from sklearn.kernel_ridge import KernelRidge import matplotlib.pyplot as plt rng = np.random.RandomState(0) ############################################################################# # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() # Add noise to targets y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) X_plot = np.linspace(0, 5, 100000)[:, None] ############################################################################# # Fit regression model train_size = 100 svr = GridSearchCV(SVR(kernel='rbf', gamma=0.1), cv=5, param_grid={"C": [1e0, 1e1, 1e2, 1e3], "gamma": np.logspace(-2, 2, 5)}) kr = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) t0 = time.time() svr.fit(X[:train_size], y[:train_size]) svr_fit = time.time() - t0 print("SVR complexity and bandwidth selected and model fitted in %.3f s" % svr_fit) t0 = time.time() kr.fit(X[:train_size], y[:train_size]) kr_fit = time.time() - t0 print("KRR complexity and bandwidth selected and model fitted in %.3f s" % kr_fit) sv_ratio = svr.best_estimator_.support_.shape[0] / train_size print("Support vector ratio: %.3f" % sv_ratio) t0 = time.time() y_svr = svr.predict(X_plot) svr_predict = time.time() - t0 print("SVR prediction for %d inputs in %.3f s" % (X_plot.shape[0], svr_predict)) t0 = time.time() y_kr = kr.predict(X_plot) kr_predict = time.time() - t0 print("KRR prediction for %d inputs in %.3f s" % (X_plot.shape[0], kr_predict)) ############################################################################# # look at the results sv_ind = svr.best_estimator_.support_ plt.scatter(X[sv_ind], y[sv_ind], c='r', s=50, label='SVR support vectors') plt.scatter(X[:100], y[:100], c='k', label='data') plt.hold('on') plt.plot(X_plot, y_svr, c='r', label='SVR (fit: %.3fs, predict: %.3fs)' % (svr_fit, svr_predict)) plt.plot(X_plot, y_kr, c='g', label='KRR (fit: %.3fs, predict: %.3fs)' % (kr_fit, kr_predict)) plt.xlabel('data') plt.ylabel('target') plt.title('SVR versus Kernel Ridge') plt.legend() # Visualize training and prediction time plt.figure() # Generate sample data X = 5 * rng.rand(10000, 1) y = np.sin(X).ravel() y[::5] += 3 * (0.5 - rng.rand(X.shape[0]/5)) sizes = np.logspace(1, 4, 7) for name, estimator in {"KRR": KernelRidge(kernel='rbf', alpha=0.1, gamma=10), "SVR": SVR(kernel='rbf', C=1e1, gamma=10)}.items(): train_time = [] test_time = [] for train_test_size in sizes: t0 = time.time() estimator.fit(X[:train_test_size], y[:train_test_size]) train_time.append(time.time() - t0) t0 = time.time() estimator.predict(X_plot[:1000]) test_time.append(time.time() - t0) plt.plot(sizes, train_time, 'o-', color="r" if name == "SVR" else "g", label="%s (train)" % name) plt.plot(sizes, test_time, 'o--', color="r" if name == "SVR" else "g", label="%s (test)" % name) plt.xscale("log") plt.yscale("log") plt.xlabel("Train size") plt.ylabel("Time (seconds)") plt.title('Execution Time') plt.legend(loc="best") # Visualize learning curves plt.figure() svr = SVR(kernel='rbf', C=1e1, gamma=0.1) kr = KernelRidge(kernel='rbf', alpha=0.1, gamma=0.1) train_sizes, train_scores_svr, test_scores_svr = \ learning_curve(svr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) train_sizes_abs, train_scores_kr, test_scores_kr = \ learning_curve(kr, X[:100], y[:100], train_sizes=np.linspace(0.1, 1, 10), scoring="mean_squared_error", cv=10) plt.plot(train_sizes, test_scores_svr.mean(1), 'o-', color="r", label="SVR") plt.plot(train_sizes, test_scores_kr.mean(1), 'o-', color="g", label="KRR") plt.xlabel("Train size") plt.ylabel("Mean Squared Error") plt.title('Learning curves') plt.legend(loc="best") plt.show()
bsd-3-clause
Ektorus/bohrium
ve/cpu/tools/locate.py
1
8762
from __future__ import print_function ## 3D Lattice Boltzmann (BGK) model of a fluid. ## D3Q19 model. At each timestep, particle densities propagate ## outwards in the directions indicated in the figure. An ## equivalent 'equilibrium' density is found, and the densities ## relax towards that state, in a proportion governed by omega. ## Iain Haslam, March 2006. import util if util.Benchmark().bohrium: import bohrium as np else: import numpy as np def main(): B = util.Benchmark() nx = B.size[0] ny = B.size[1] nz = B.size[2] ITER = B.size[3] NO_OBST = 1 omega = 1.0 density = 1.0 deltaU = 1e-7 t1 = 1/3.0 t2 = 1/18.0 t3 = 1/36.0 B.start() F = np.ones((19, nx, ny, nz), dtype=np.float64) F[:] = density/19.0 FEQ = np.ones((19, nx, ny, nz), dtype=np.float64) FEQ[:] = density/19.0 T = np.zeros((19, nx, ny, nz), dtype=np.float64) #Create the scenery. BOUND = np.zeros((nx, ny, nz), dtype=np.float64) BOUNDi = np.ones((nx, ny, nz), dtype=np.float64) """ if not NO_OBST: for i in xrange(nx): for j in xrange(ny): for k in xrange(nz): if ((i-4)**2+(j-5)**2+(k-6)**2) < 6: BOUND[i,j,k] += 1.0 BOUNDi[i,j,k] += 0.0 BOUND[:,0,:] += 1.0 BOUNDi[:,0,:] *= 0.0 """ if util.Benchmark().bohrium: np.flush() for ts in xrange(0, ITER): ##Propagate / Streaming step T[:] = F #nearest-neighbours F[1,:,:,0] = T[1,:,:,-1] F[1,:,:,1:] = T[1,:,:,:-1] F[2,:,:,:-1] = T[2,:,:,1:] F[2,:,:,-1] = T[2,:,:,0] F[3,:,0,:] = T[3,:,-1,:] F[3,:,1:,:] = T[3,:,:-1,:] F[4,:,:-1,:] = T[4,:,1:,:] F[4,:,-1,:] = T[4,:,0,:] F[5,0,:,:] = T[5,-1,:,:] F[5,1:,:,:] = T[5,:-1,:,:] F[6,:-1,:,:] = T[6,1:,:,:] F[6,-1,:,:] = T[6,0,:,:] #next-nearest neighbours F[7,0 ,0 ,:] = T[7,-1 , -1,:] F[7,0 ,1:,:] = T[7,-1 ,:-1,:] F[7,1:,0 ,:] = T[7,:-1, -1,:] F[7,1:,1:,:] = T[7,:-1,:-1,:] F[8,0 ,:-1,:] = T[8,-1 ,1:,:] F[8,0 , -1,:] = T[8,-1 ,0 ,:] F[8,1:,:-1,:] = T[8,:-1,1:,:] F[8,1:, -1,:] = T[8,:-1,0 ,:] F[9,:-1,0 ,:] = T[9,1:, -1,:] F[9,:-1,1:,:] = T[9,1:,:-1,:] F[9,-1 ,0 ,:] = T[9,0 , 0,:] F[9,-1 ,1:,:] = T[9,0 ,:-1,:] F[10,:-1,:-1,:] = T[10,1:,1:,:] F[10,:-1, -1,:] = T[10,1:,0 ,:] F[10,-1 ,:-1,:] = T[10,0 ,1:,:] F[10,-1 , -1,:] = T[10,0 ,0 ,:] F[11,0 ,:,0 ] = T[11,0 ,:, -1] F[11,0 ,:,1:] = T[11,0 ,:,:-1] F[11,1:,:,0 ] = T[11,:-1,:, -1] F[11,1:,:,1:] = T[11,:-1,:,:-1] F[12,0 ,:,:-1] = T[12, -1,:,1:] F[12,0 ,:, -1] = T[12, -1,:,0 ] F[12,1:,:,:-1] = T[12,:-1,:,1:] F[12,1:,:, -1] = T[12,:-1,:,0 ] F[13,:-1,:,0 ] = T[13,1:,:, -1] F[13,:-1,:,1:] = T[13,1:,:,:-1] F[13, -1,:,0 ] = T[13,0 ,:, -1] F[13, -1,:,1:] = T[13,0 ,:,:-1] F[14,:-1,:,:-1] = T[14,1:,:,1:] F[14,:-1,:, -1] = T[14,1:,:,0 ] F[14,-1 ,:,:-1] = T[14,0 ,:,1:] F[14,-1 ,:, -1] = T[14,0 ,:,0 ] F[15,:,0 ,0 ] = T[15,:, -1, -1] F[15,:,0 ,1:] = T[15,:, -1,:-1] F[15,:,1:,0 ] = T[15,:,:-1, -1] F[15,:,1:,1:] = T[15,:,:-1,:-1] F[16,:,0 ,:-1] = T[16,:, -1,1:] F[16,:,0 , -1] = T[16,:, -1,0 ] F[16,:,1:,:-1] = T[16,:,:-1,1:] F[16,:,1:, -1] = T[16,:,:-1,0 ] F[17,:,:-1,0 ] = T[17,:,1:, -1] F[17,:,:-1,1:] = T[17,:,1:,:-1] F[17,:, -1,0 ] = T[17,:,0 , -1] F[17,:, -1,1:] = T[17,:,0 ,:-1] F[18,:,:-1,:-1] = T[18,:,1:,1:] F[18,:,:-1, -1] = T[18,:,1:,0 ] F[18,:,-1 ,:-1] = T[18,:,0 ,1:] F[18,:,-1 , -1] = T[18,:,0 ,0 ] #Densities bouncing back at next timestep BB = np.empty(F.shape) T[:] = F T[1:,:,:,:] *= BOUND[np.newaxis,:,:,:] BB[2 ,:,:,:] += T[1 ,:,:,:] BB[1 ,:,:,:] += T[2 ,:,:,:] BB[4 ,:,:,:] += T[3 ,:,:,:] BB[3 ,:,:,:] += T[4 ,:,:,:] BB[6 ,:,:,:] += T[5 ,:,:,:] BB[5 ,:,:,:] += T[6 ,:,:,:] BB[10,:,:,:] += T[7 ,:,:,:] BB[9 ,:,:,:] += T[8 ,:,:,:] BB[8 ,:,:,:] += T[9 ,:,:,:] BB[7 ,:,:,:] += T[10,:,:,:] BB[14,:,:,:] += T[11,:,:,:] BB[13,:,:,:] += T[12,:,:,:] BB[12,:,:,:] += T[13,:,:,:] BB[11,:,:,:] += T[14,:,:,:] BB[18,:,:,:] += T[15,:,:,:] BB[17,:,:,:] += T[16,:,:,:] BB[16,:,:,:] += T[17,:,:,:] BB[15,:,:,:] += T[18,:,:,:] # Relax calculate equilibrium state (FEQ) with equivalent speed and density to F DENSITY = np.add.reduce(F) #UX = F[5,:,:,:].copy() UX = np.ones(F[5,:,:,:].shape, dtype=np.float64) UX[:,:,:] = F[5,:,:,:] UX += F[7,:,:,:] UX += F[8,:,:,:] UX += F[11,:,:,:] UX += F[12,:,:,:] UX -= F[6,:,:,:] UX -= F[9,:,:,:] UX -= F[10,:,:,:] UX -= F[13,:,:,:] UX -= F[14,:,:,:] UX /=DENSITY #UY = F[3,:,:,:].copy() UY = np.ones(F[3,:,:,:].shape, dtype=np.float64) UY[:,:,:] = F[3,:,:,:] UY += F[7,:,:,:] UY += F[9,:,:,:] UY += F[15,:,:,:] UY += F[16,:,:,:] UY -= F[4,:,:,:] UY -= F[8,:,:,:] UY -= F[10,:,:,:] UY -= F[17,:,:,:] UY -= F[18,:,:,:] UY /=DENSITY #UZ = F[1,:,:,:].copy() UZ = np.ones(F[1,:,:,:].shape, dtype=np.float64) UZ[:,:,:] = F[1,:,:,:] UZ += F[11,:,:,:] UZ += F[13,:,:,:] UZ += F[15,:,:,:] UZ += F[17,:,:,:] UZ -= F[2,:,:,:] UZ -= F[12,:,:,:] UZ -= F[14,:,:,:] UZ -= F[16,:,:,:] UZ -= F[18,:,:,:] UZ /=DENSITY UX[0,:,:] += deltaU #Increase inlet pressure #Set bourderies to zero. UX[:,:,:] *= BOUNDi UY[:,:,:] *= BOUNDi UZ[:,:,:] *= BOUNDi DENSITY[:,:,:] *= BOUNDi U_SQU = UX**2 + UY**2 + UZ**2 # Calculate equilibrium distribution: stationary FEQ[0,:,:,:] = (t1*DENSITY)*(1.0-3.0*U_SQU/2.0) # nearest-neighbours T1 = 3.0/2.0*U_SQU tDENSITY = t2*DENSITY FEQ[1,:,:,:]=tDENSITY*(1.0 + 3.0*UZ + 9.0/2.0*UZ**2 - T1) FEQ[2,:,:,:]=tDENSITY*(1.0 - 3.0*UZ + 9.0/2.0*UZ**2 - T1) FEQ[3,:,:,:]=tDENSITY*(1.0 + 3.0*UY + 9.0/2.0*UY**2 - T1) FEQ[4,:,:,:]=tDENSITY*(1.0 - 3.0*UY + 9.0/2.0*UY**2 - T1) FEQ[5,:,:,:]=tDENSITY*(1.0 + 3.0*UX + 9.0/2.0*UX**2 - T1) FEQ[6,:,:,:]=tDENSITY*(1.0 - 3.0*UX + 9.0/2.0*UX**2 - T1) # next-nearest neighbours T1 = 3.0*U_SQU/2.0 tDENSITY = t3*DENSITY U8 = UX+UY FEQ[7,:,:,:] =tDENSITY*(1.0 + 3.0*U8 + 9.0/2.0*(U8)**2 - T1) U9 = UX-UY FEQ[8,:,:,:] =tDENSITY*(1.0 + 3.0*U9 + 9.0/2.0*(U9)**2 - T1) U10 = -UX+UY FEQ[9,:,:,:] =tDENSITY*(1.0 + 3.0*U10 + 9.0/2.0*(U10)**2 - T1) U8 *= -1.0 FEQ[10,:,:,:]=tDENSITY*(1.0 + 3.0*U8 + 9.0/2.0*(U8)**2 - T1) U12 = UX+UZ FEQ[11,:,:,:]=tDENSITY*(1.0 + 3.0*U12 + 9.0/2.0*(U12)**2 - T1) U12 *= 1.0 FEQ[14,:,:,:]=tDENSITY*(1.0 + 3.0*U12 + 9.0/2.0*(U12)**2 - T1) U13 = UX-UZ FEQ[12,:,:,:]=tDENSITY*(1.0 + 3.0*U13 + 9.0/2.0*(U13)**2 - T1) U13 *= -1.0 FEQ[13,:,:,:]=tDENSITY*(1.0 + 3.0*U13 + 9.0/2.0*(U13)**2 - T1) U16 = UY+UZ FEQ[15,:,:,:]=tDENSITY*(1.0 + 3.0*U16 + 9.0/2.0*(U16)**2 - T1) U17 = UY-UZ FEQ[16,:,:,:]=tDENSITY*(1.0 + 3.0*U17 + 9.0/2.0*(U17)**2 - T1) U17 *= -1.0 FEQ[17,:,:,:]=tDENSITY*(1.0 + 3.0*U17 + 9.0/2.0*(U17)**2 - T1) U16 *= -1.0 FEQ[18,:,:,:]=tDENSITY*(1.0 + 3.0*U16 + 9.0/2.0*(U16)**2 - T1) F *= (1.0-omega) F += omega * FEQ #Densities bouncing back at next timestep F[1:,:,:,:] *= BOUNDi[np.newaxis,:,:,:] F[1:,:,:,:] += BB[1:,:,:,:] del BB del T1 del UX, UY, UZ del U_SQU del DENSITY, tDENSITY del U8, U9, U10, U12, U13, U16, U17 if util.Benchmark().bohrium: np.flush() B.stop() B.pprint() if B.outputfn: B.tofile(B.outputfn, {'res': UX}) """ import matplotlib.pyplot as plt UX *= -1 plt.hold(True) plt.quiver(UY[:,:,4],UX[:,:,4], pivot='middle') plt.imshow(BOUND[:,:,4]) plt.show() """ if __name__ == "__main__": main()
lgpl-3.0
dmitriz/zipline
zipline/utils/tradingcalendar.py
6
11182
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import pytz from datetime import datetime from dateutil import rrule from functools import partial start = pd.Timestamp('1990-01-01', tz='UTC') end_base = pd.Timestamp('today', tz='UTC') # Give an aggressive buffer for logic that needs to use the next trading # day or minute. end = end_base + pd.Timedelta(days=365) def canonicalize_datetime(dt): # Strip out any HHMMSS or timezone info in the user's datetime, so that # all the datetimes we return will be 00:00:00 UTC. return datetime(dt.year, dt.month, dt.day, tzinfo=pytz.utc) def get_non_trading_days(start, end): non_trading_rules = [] start = canonicalize_datetime(start) end = canonicalize_datetime(end) weekends = rrule.rrule( rrule.YEARLY, byweekday=(rrule.SA, rrule.SU), cache=True, dtstart=start, until=end ) non_trading_rules.append(weekends) new_years = rrule.rrule( rrule.MONTHLY, byyearday=1, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years) new_years_sunday = rrule.rrule( rrule.MONTHLY, byyearday=2, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(new_years_sunday) mlk_day = rrule.rrule( rrule.MONTHLY, bymonth=1, byweekday=(rrule.MO(+3)), cache=True, dtstart=datetime(1998, 1, 1, tzinfo=pytz.utc), until=end ) non_trading_rules.append(mlk_day) presidents_day = rrule.rrule( rrule.MONTHLY, bymonth=2, byweekday=(rrule.MO(3)), cache=True, dtstart=start, until=end ) non_trading_rules.append(presidents_day) good_friday = rrule.rrule( rrule.DAILY, byeaster=-2, cache=True, dtstart=start, until=end ) non_trading_rules.append(good_friday) memorial_day = rrule.rrule( rrule.MONTHLY, bymonth=5, byweekday=(rrule.MO(-1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(memorial_day) july_4th = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=4, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th) july_4th_sunday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_sunday) july_4th_saturday = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(july_4th_saturday) labor_day = rrule.rrule( rrule.MONTHLY, bymonth=9, byweekday=(rrule.MO(1)), cache=True, dtstart=start, until=end ) non_trading_rules.append(labor_day) thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, byweekday=(rrule.TH(4)), cache=True, dtstart=start, until=end ) non_trading_rules.append(thanksgiving) christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=25, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas) christmas_sunday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.MO, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_sunday) # If Christmas is a Saturday then 24th, a Friday is observed. christmas_saturday = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=rrule.FR, cache=True, dtstart=start, until=end ) non_trading_rules.append(christmas_saturday) non_trading_ruleset = rrule.rruleset() for rule in non_trading_rules: non_trading_ruleset.rrule(rule) non_trading_days = non_trading_ruleset.between(start, end, inc=True) # Add September 11th closings # http://en.wikipedia.org/wiki/Aftermath_of_the_September_11_attacks # Due to the terrorist attacks, the stock market did not open on 9/11/2001 # It did not open again until 9/17/2001. # # September 2001 # Su Mo Tu We Th Fr Sa # 1 # 2 3 4 5 6 7 8 # 9 10 11 12 13 14 15 # 16 17 18 19 20 21 22 # 23 24 25 26 27 28 29 # 30 for day_num in range(11, 17): non_trading_days.append( datetime(2001, 9, day_num, tzinfo=pytz.utc)) # Add closings due to Hurricane Sandy in 2012 # http://en.wikipedia.org/wiki/Hurricane_sandy # # The stock exchange was closed due to Hurricane Sandy's # impact on New York. # It closed on 10/29 and 10/30, reopening on 10/31 # October 2012 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 # 7 8 9 10 11 12 13 # 14 15 16 17 18 19 20 # 21 22 23 24 25 26 27 # 28 29 30 31 for day_num in range(29, 31): non_trading_days.append( datetime(2012, 10, day_num, tzinfo=pytz.utc)) # Misc closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # National Days of Mourning # - President Richard Nixon non_trading_days.append(datetime(1994, 4, 27, tzinfo=pytz.utc)) # - President Ronald W. Reagan - June 11, 2004 non_trading_days.append(datetime(2004, 6, 11, tzinfo=pytz.utc)) # - President Gerald R. Ford - Jan 2, 2007 non_trading_days.append(datetime(2007, 1, 2, tzinfo=pytz.utc)) non_trading_days.sort() return pd.DatetimeIndex(non_trading_days) non_trading_days = get_non_trading_days(start, end) trading_day = pd.tseries.offsets.CDay(holidays=non_trading_days) def get_trading_days(start, end, trading_day=trading_day): return pd.date_range(start=start.date(), end=end.date(), freq=trading_day).tz_localize('UTC') trading_days = get_trading_days(start, end) def get_early_closes(start, end): # 1:00 PM close rules based on # http://quant.stackexchange.com/questions/4083/nyse-early-close-rules-july-4th-and-dec-25th # noqa # and verified against http://www.nyse.com/pdfs/closings.pdf # These rules are valid starting in 1993 start = canonicalize_datetime(start) end = canonicalize_datetime(end) start = max(start, datetime(1993, 1, 1, tzinfo=pytz.utc)) end = max(end, datetime(1993, 1, 1, tzinfo=pytz.utc)) # Not included here are early closes prior to 1993 # or unplanned early closes early_close_rules = [] day_after_thanksgiving = rrule.rrule( rrule.MONTHLY, bymonth=11, # 4th Friday isn't correct if month starts on Friday, so restrict to # day range: byweekday=(rrule.FR), bymonthday=range(23, 30), cache=True, dtstart=start, until=end ) early_close_rules.append(day_after_thanksgiving) christmas_eve = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=24, byweekday=(rrule.MO, rrule.TU, rrule.WE, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(christmas_eve) friday_after_christmas = rrule.rrule( rrule.MONTHLY, bymonth=12, bymonthday=26, byweekday=rrule.FR, cache=True, dtstart=start, # valid 1993-2007 until=min(end, datetime(2007, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(friday_after_christmas) day_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=(rrule.MO, rrule.TU, rrule.TH), cache=True, dtstart=start, until=end ) early_close_rules.append(day_before_independence_day) day_after_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=5, byweekday=rrule.FR, cache=True, dtstart=start, # starting in 2013: wednesday before independence day until=min(end, datetime(2012, 12, 31, tzinfo=pytz.utc)) ) early_close_rules.append(day_after_independence_day) wednesday_before_independence_day = rrule.rrule( rrule.MONTHLY, bymonth=7, bymonthday=3, byweekday=rrule.WE, cache=True, # starting in 2013 dtstart=max(start, datetime(2013, 1, 1, tzinfo=pytz.utc)), until=max(end, datetime(2013, 1, 1, tzinfo=pytz.utc)) ) early_close_rules.append(wednesday_before_independence_day) early_close_ruleset = rrule.rruleset() for rule in early_close_rules: early_close_ruleset.rrule(rule) early_closes = early_close_ruleset.between(start, end, inc=True) # Misc early closings from NYSE listing. # http://www.nyse.com/pdfs/closings.pdf # # New Year's Eve nye_1999 = datetime(1999, 12, 31, tzinfo=pytz.utc) if start <= nye_1999 and nye_1999 <= end: early_closes.append(nye_1999) early_closes.sort() return pd.DatetimeIndex(early_closes) early_closes = get_early_closes(start, end) def get_open_and_close(day, early_closes): market_open = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=9, minute=31), tz='US/Eastern').tz_convert('UTC') # 1 PM if early close, 4 PM otherwise close_hour = 13 if day in early_closes else 16 market_close = pd.Timestamp( datetime( year=day.year, month=day.month, day=day.day, hour=close_hour), tz='US/Eastern').tz_convert('UTC') return market_open, market_close def get_open_and_closes(trading_days, early_closes, get_open_and_close): open_and_closes = pd.DataFrame(index=trading_days, columns=('market_open', 'market_close')) get_o_and_c = partial(get_open_and_close, early_closes=early_closes) open_and_closes['market_open'], open_and_closes['market_close'] = \ zip(*open_and_closes.index.map(get_o_and_c)) return open_and_closes open_and_closes = get_open_and_closes(trading_days, early_closes, get_open_and_close)
apache-2.0
andrewnc/scikit-learn
examples/plot_isotonic_regression.py
303
1767
""" =================== Isotonic Regression =================== An illustration of the isotonic regression on generated data. The isotonic regression finds a non-decreasing approximation of a function while minimizing the mean squared error on the training data. The benefit of such a model is that it does not assume any form for the target function such as linearity. For comparison a linear regression is also presented. """ print(__doc__) # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) ############################################################################### # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression ############################################################################### # plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(0.5 * np.ones(n)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
bsd-3-clause
wzbozon/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
macks22/scikit-learn
examples/manifold/plot_mds.py
261
2616
""" ========================= Multi-dimensional scaling ========================= An illustration of the metric and non-metric MDS on generated noisy data. The reconstructed points using the metric MDS and non metric MDS are slightly shifted to avoid overlapping. """ # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # Licence: BSD print(__doc__) import numpy as np from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from sklearn import manifold from sklearn.metrics import euclidean_distances from sklearn.decomposition import PCA n_samples = 20 seed = np.random.RandomState(seed=3) X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float) X_true = X_true.reshape((n_samples, 2)) # Center the data X_true -= X_true.mean() similarities = euclidean_distances(X_true) # Add noise to the similarities noise = np.random.rand(n_samples, n_samples) noise = noise + noise.T noise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0 similarities += noise mds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed, dissimilarity="precomputed", n_jobs=1) pos = mds.fit(similarities).embedding_ nmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12, dissimilarity="precomputed", random_state=seed, n_jobs=1, n_init=1) npos = nmds.fit_transform(similarities, init=pos) # Rescale the data pos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum()) npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum()) # Rotate the data clf = PCA(n_components=2) X_true = clf.fit_transform(X_true) pos = clf.fit_transform(pos) npos = clf.fit_transform(npos) fig = plt.figure(1) ax = plt.axes([0., 0., 1., 1.]) plt.scatter(X_true[:, 0], X_true[:, 1], c='r', s=20) plt.scatter(pos[:, 0], pos[:, 1], s=20, c='g') plt.scatter(npos[:, 0], npos[:, 1], s=20, c='b') plt.legend(('True position', 'MDS', 'NMDS'), loc='best') similarities = similarities.max() / similarities * 100 similarities[np.isinf(similarities)] = 0 # Plot the edges start_idx, end_idx = np.where(pos) #a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[X_true[i, :], X_true[j, :]] for i in range(len(pos)) for j in range(len(pos))] values = np.abs(similarities) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, values.max())) lc.set_array(similarities.flatten()) lc.set_linewidths(0.5 * np.ones(len(segments))) ax.add_collection(lc) plt.show()
bsd-3-clause
justincassidy/scikit-learn
examples/mixture/plot_gmm_pdf.py
284
1528
""" ============================================= Density Estimation for a mixture of Gaussians ============================================= Plot the density estimation of a mixture of two Gaussians. Data is generated from two Gaussians with different centers and covariance matrices. """ import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm from sklearn import mixture n_samples = 300 # generate random sample, two components np.random.seed(0) # generate spherical data centered on (20, 20) shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data C = np.array([[0., -0.7], [3.5, .7]]) stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components clf = mixture.GMM(n_components=2, covariance_type='full') clf.fit(X_train) # display predicted scores by the model as a contour plot x = np.linspace(-20.0, 30.0) y = np.linspace(-20.0, 40.0) X, Y = np.meshgrid(x, y) XX = np.array([X.ravel(), Y.ravel()]).T Z = -clf.score_samples(XX)[0] Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0), levels=np.logspace(0, 3, 10)) CB = plt.colorbar(CS, shrink=0.8, extend='both') plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM') plt.axis('tight') plt.show()
bsd-3-clause
Silmathoron/nest-simulator
pynest/examples/spatial/grid_iaf_irr.py
20
1453
# -*- coding: utf-8 -*- # # grid_iaf_irr.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Create 12 freely placed iaf_psc_alpha neurons ----------------------------------------------- BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB """ import nest import matplotlib.pyplot as plt nest.ResetKernel() pos = nest.spatial.free([nest.random.uniform(-0.75, 0.75), nest.random.uniform(-0.5, 0.5)], extent=[2., 1.5]) l1 = nest.Create('iaf_psc_alpha', 12, positions=pos) nest.PrintNodes() nest.PlotLayer(l1, nodesize=50) # beautify plt.axis([-1.0, 1.0, -0.75, 0.75]) plt.axes().set_aspect('equal', 'box') plt.axes().set_xticks((-0.75, -0.25, 0.25, 0.75)) plt.axes().set_yticks((-0.5, 0, 0.5)) plt.grid(True) plt.xlabel('Extent: 2.0') plt.ylabel('Extent: 1.5') plt.show() # plt.savefig('grid_iaf_irr.png')
gpl-2.0
eickenberg/scikit-learn
sklearn/cluster/tests/test_mean_shift.py
19
2844
""" Testing for mean shift clustering methods """ import numpy as np from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_array_equal from sklearn.cluster import MeanShift from sklearn.cluster import mean_shift from sklearn.cluster import estimate_bandwidth from sklearn.cluster import get_bin_seeds from sklearn.datasets.samples_generator import make_blobs n_clusters = 3 centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10 X, _ = make_blobs(n_samples=300, n_features=2, centers=centers, cluster_std=0.4, shuffle=True, random_state=11) def test_estimate_bandwidth(): """Test estimate_bandwidth""" bandwidth = estimate_bandwidth(X, n_samples=200) assert_true(0.9 <= bandwidth <= 1.5) def test_mean_shift(): """ Test MeanShift algorithm """ bandwidth = 1.2 ms = MeanShift(bandwidth=bandwidth) labels = ms.fit(X).labels_ cluster_centers = ms.cluster_centers_ labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) cluster_centers, labels = mean_shift(X, bandwidth=bandwidth) labels_unique = np.unique(labels) n_clusters_ = len(labels_unique) assert_equal(n_clusters_, n_clusters) def test_meanshift_predict(): """Test MeanShift.predict""" ms = MeanShift(bandwidth=1.2) labels = ms.fit_predict(X) labels2 = ms.predict(X) assert_array_equal(labels, labels2) def test_unfitted(): """Non-regression: before fit, there should be not fitted attributes.""" ms = MeanShift() assert_false(hasattr(ms, "cluster_centers_")) assert_false(hasattr(ms, "labels_")) def test_bin_seeds(): """ Test the bin seeding technique which can be used in the mean shift algorithm """ # Data is just 6 points in the plane X = np.array([[1., 1.], [1.5, 1.5], [1.8, 1.2], [2., 1.], [2.1, 1.1], [0., 0.]]) # With a bin coarseness of 1.0 and min_bin_freq of 1, 3 bins should be # found ground_truth = set([(1., 1.), (2., 1.), (0., 0.)]) test_bins = get_bin_seeds(X, 1, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin coarseness of 1.0 and min_bin_freq of 2, 2 bins should be # found ground_truth = set([(1., 1.), (2., 1.)]) test_bins = get_bin_seeds(X, 1, 2) test_result = set([tuple(p) for p in test_bins]) assert_true(len(ground_truth.symmetric_difference(test_result)) == 0) # With a bin size of 0.01 and min_bin_freq of 1, 6 bins should be found test_bins = get_bin_seeds(X, 0.01, 1) test_result = set([tuple(p) for p in test_bins]) assert_true(len(test_result) == 6)
bsd-3-clause
aev3/trading-with-python
historicDataDownloader/historicDataDownloader.py
77
4526
''' Created on 4 aug. 2012 Copyright: Jev Kuznetsov License: BSD a module for downloading historic data from IB ''' import ib import pandas from ib.ext.Contract import Contract from ib.opt import ibConnection, message from time import sleep import tradingWithPython.lib.logger as logger from pandas import DataFrame, Index import datetime as dt from timeKeeper import TimeKeeper import time timeFormat = "%Y%m%d %H:%M:%S" class DataHandler(object): ''' handles incoming messages ''' def __init__(self,tws): self._log = logger.getLogger('DH') tws.register(self.msgHandler,message.HistoricalData) self.reset() def reset(self): self._log.debug('Resetting data') self.dataReady = False self._timestamp = [] self._data = {'open':[],'high':[],'low':[],'close':[],'volume':[],'count':[],'WAP':[]} def msgHandler(self,msg): #print '[msg]', msg if msg.date[:8] == 'finished': self._log.debug('Data recieved') self.dataReady = True return self._timestamp.append(dt.datetime.strptime(msg.date,timeFormat)) for k in self._data.keys(): self._data[k].append(getattr(msg, k)) @property def data(self): ''' return downloaded data as a DataFrame ''' df = DataFrame(data=self._data,index=Index(self._timestamp)) return df class Downloader(object): def __init__(self,debug=False): self._log = logger.getLogger('DLD') self._log.debug('Initializing data dwonloader. Pandas version={0}, ibpy version:{1}'.format(pandas.__version__,ib.version)) self.tws = ibConnection() self._dataHandler = DataHandler(self.tws) if debug: self.tws.registerAll(self._debugHandler) self.tws.unregister(self._debugHandler,message.HistoricalData) self._log.debug('Connecting to tws') self.tws.connect() self._timeKeeper = TimeKeeper() # keep track of past requests self._reqId = 1 # current request id def _debugHandler(self,msg): print '[debug]', msg def requestData(self,contract,endDateTime,durationStr='1800 S',barSizeSetting='1 secs',whatToShow='TRADES',useRTH=1,formatDate=1): self._log.debug('Requesting data for %s end time %s.' % (contract.m_symbol,endDateTime)) while self._timeKeeper.nrRequests(timeSpan=600) > 59: print 'Too many requests done. Waiting... ' time.sleep(1) self._timeKeeper.addRequest() self._dataHandler.reset() self.tws.reqHistoricalData(self._reqId,contract,endDateTime,durationStr,barSizeSetting,whatToShow,useRTH,formatDate) self._reqId+=1 #wait for data startTime = time.time() timeout = 3 while not self._dataHandler.dataReady and (time.time()-startTime < timeout): sleep(2) if not self._dataHandler.dataReady: self._log.error('Data timeout') print self._dataHandler.data return self._dataHandler.data def getIntradayData(self,contract, dateTuple ): ''' get full day data on 1-s interval date: a tuple of (yyyy,mm,dd) ''' openTime = dt.datetime(*dateTuple)+dt.timedelta(hours=16) closeTime = dt.datetime(*dateTuple)+dt.timedelta(hours=22) timeRange = pandas.date_range(openTime,closeTime,freq='30min') datasets = [] for t in timeRange: datasets.append(self.requestData(contract,t.strftime(timeFormat))) return pandas.concat(datasets) def disconnect(self): self.tws.disconnect() if __name__=='__main__': dl = Downloader(debug=True) c = Contract() c.m_symbol = 'SPY' c.m_secType = 'STK' c.m_exchange = 'SMART' c.m_currency = 'USD' df = dl.getIntradayData(c, (2012,8,6)) df.to_csv('test.csv') # df = dl.requestData(c, '20120803 22:00:00') # df.to_csv('test1.csv') # df = dl.requestData(c, '20120803 21:30:00') # df.to_csv('test2.csv') dl.disconnect() print 'Done.'
bsd-3-clause
michaelyin/code-for-blog
2008/wx_mpl_bars.py
12
7994
""" This demo demonstrates how to embed a matplotlib (mpl) plot into a wxPython GUI application, including: * Using the navigation toolbar * Adding data to the plot * Dynamically modifying the plot's properties * Processing mpl events * Saving the plot to a file from a menu The main goal is to serve as a basis for developing rich wx GUI applications featuring mpl plots (using the mpl OO API). Eli Bendersky (eliben@gmail.com) License: this code is in the public domain Last modified: 30.07.2008 """ import os import pprint import random import wx # The recommended way to use wx with mpl is with the WXAgg # backend. # import matplotlib matplotlib.use('WXAgg') from matplotlib.figure import Figure from matplotlib.backends.backend_wxagg import \ FigureCanvasWxAgg as FigCanvas, \ NavigationToolbar2WxAgg as NavigationToolbar class BarsFrame(wx.Frame): """ The main frame of the application """ title = 'Demo: wxPython with matplotlib' def __init__(self): wx.Frame.__init__(self, None, -1, self.title) self.data = [5, 6, 9, 14] self.create_menu() self.create_status_bar() self.create_main_panel() self.textbox.SetValue(' '.join(map(str, self.data))) self.draw_figure() def create_menu(self): self.menubar = wx.MenuBar() menu_file = wx.Menu() m_expt = menu_file.Append(-1, "&Save plot\tCtrl-S", "Save plot to file") self.Bind(wx.EVT_MENU, self.on_save_plot, m_expt) menu_file.AppendSeparator() m_exit = menu_file.Append(-1, "E&xit\tCtrl-X", "Exit") self.Bind(wx.EVT_MENU, self.on_exit, m_exit) menu_help = wx.Menu() m_about = menu_help.Append(-1, "&About\tF1", "About the demo") self.Bind(wx.EVT_MENU, self.on_about, m_about) self.menubar.Append(menu_file, "&File") self.menubar.Append(menu_help, "&Help") self.SetMenuBar(self.menubar) def create_main_panel(self): """ Creates the main panel with all the controls on it: * mpl canvas * mpl navigation toolbar * Control panel for interaction """ self.panel = wx.Panel(self) # Create the mpl Figure and FigCanvas objects. # 5x4 inches, 100 dots-per-inch # self.dpi = 100 self.fig = Figure((5.0, 4.0), dpi=self.dpi) self.canvas = FigCanvas(self.panel, -1, self.fig) # Since we have only one plot, we can use add_axes # instead of add_subplot, but then the subplot # configuration tool in the navigation toolbar wouldn't # work. # self.axes = self.fig.add_subplot(111) # Bind the 'pick' event for clicking on one of the bars # self.canvas.mpl_connect('pick_event', self.on_pick) self.textbox = wx.TextCtrl( self.panel, size=(200,-1), style=wx.TE_PROCESS_ENTER) self.Bind(wx.EVT_TEXT_ENTER, self.on_text_enter, self.textbox) self.drawbutton = wx.Button(self.panel, -1, "Draw!") self.Bind(wx.EVT_BUTTON, self.on_draw_button, self.drawbutton) self.cb_grid = wx.CheckBox(self.panel, -1, "Show Grid", style=wx.ALIGN_RIGHT) self.Bind(wx.EVT_CHECKBOX, self.on_cb_grid, self.cb_grid) self.slider_label = wx.StaticText(self.panel, -1, "Bar width (%): ") self.slider_width = wx.Slider(self.panel, -1, value=20, minValue=1, maxValue=100, style=wx.SL_AUTOTICKS | wx.SL_LABELS) self.slider_width.SetTickFreq(10, 1) self.Bind(wx.EVT_COMMAND_SCROLL_THUMBTRACK, self.on_slider_width, self.slider_width) # Create the navigation toolbar, tied to the canvas # self.toolbar = NavigationToolbar(self.canvas) # # Layout with box sizers # self.vbox = wx.BoxSizer(wx.VERTICAL) self.vbox.Add(self.canvas, 1, wx.LEFT | wx.TOP | wx.GROW) self.vbox.Add(self.toolbar, 0, wx.EXPAND) self.vbox.AddSpacer(10) self.hbox = wx.BoxSizer(wx.HORIZONTAL) flags = wx.ALIGN_LEFT | wx.ALL | wx.ALIGN_CENTER_VERTICAL self.hbox.Add(self.textbox, 0, border=3, flag=flags) self.hbox.Add(self.drawbutton, 0, border=3, flag=flags) self.hbox.Add(self.cb_grid, 0, border=3, flag=flags) self.hbox.AddSpacer(30) self.hbox.Add(self.slider_label, 0, flag=flags) self.hbox.Add(self.slider_width, 0, border=3, flag=flags) self.vbox.Add(self.hbox, 0, flag = wx.ALIGN_LEFT | wx.TOP) self.panel.SetSizer(self.vbox) self.vbox.Fit(self) def create_status_bar(self): self.statusbar = self.CreateStatusBar() def draw_figure(self): """ Redraws the figure """ str = self.textbox.GetValue() self.data = map(int, str.split()) x = range(len(self.data)) # clear the axes and redraw the plot anew # self.axes.clear() self.axes.grid(self.cb_grid.IsChecked()) self.axes.bar( left=x, height=self.data, width=self.slider_width.GetValue() / 100.0, align='center', alpha=0.44, picker=5) self.canvas.draw() def on_cb_grid(self, event): self.draw_figure() def on_slider_width(self, event): self.draw_figure() def on_draw_button(self, event): self.draw_figure() def on_pick(self, event): # The event received here is of the type # matplotlib.backend_bases.PickEvent # # It carries lots of information, of which we're using # only a small amount here. # box_points = event.artist.get_bbox().get_points() msg = "You've clicked on a bar with coords:\n %s" % box_points dlg = wx.MessageDialog( self, msg, "Click!", wx.OK | wx.ICON_INFORMATION) dlg.ShowModal() dlg.Destroy() def on_text_enter(self, event): self.draw_figure() def on_save_plot(self, event): file_choices = "PNG (*.png)|*.png" dlg = wx.FileDialog( self, message="Save plot as...", defaultDir=os.getcwd(), defaultFile="plot.png", wildcard=file_choices, style=wx.SAVE) if dlg.ShowModal() == wx.ID_OK: path = dlg.GetPath() self.canvas.print_figure(path, dpi=self.dpi) self.flash_status_message("Saved to %s" % path) def on_exit(self, event): self.Destroy() def on_about(self, event): msg = """ A demo using wxPython with matplotlib: * Use the matplotlib navigation bar * Add values to the text box and press Enter (or click "Draw!") * Show or hide the grid * Drag the slider to modify the width of the bars * Save the plot to a file using the File menu * Click on a bar to receive an informative message """ dlg = wx.MessageDialog(self, msg, "About", wx.OK) dlg.ShowModal() dlg.Destroy() def flash_status_message(self, msg, flash_len_ms=1500): self.statusbar.SetStatusText(msg) self.timeroff = wx.Timer(self) self.Bind( wx.EVT_TIMER, self.on_flash_status_off, self.timeroff) self.timeroff.Start(flash_len_ms, oneShot=True) def on_flash_status_off(self, event): self.statusbar.SetStatusText('') if __name__ == '__main__': app = wx.PySimpleApp() app.frame = BarsFrame() app.frame.Show() app.MainLoop()
unlicense
kenshay/ImageScript
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/core/ops.py
7
54105
""" Arithmetic operations for PandasObjects This is not a public API. """ # necessary to enforce truediv in Python 2.X from __future__ import division import operator import warnings import numpy as np import pandas as pd import datetime from pandas import compat, lib, tslib import pandas.index as _index from pandas.util.decorators import Appender import pandas.computation.expressions as expressions from pandas.lib import isscalar from pandas.tslib import iNaT from pandas.compat import bind_method import pandas.core.missing as missing import pandas.algos as _algos from pandas.core.common import (_values_from_object, _maybe_match_name, PerformanceWarning) from pandas.types.missing import notnull, isnull from pandas.types.common import (needs_i8_conversion, is_datetimelike_v_numeric, is_integer_dtype, is_categorical_dtype, is_object_dtype, is_timedelta64_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_bool_dtype, is_datetimetz, is_list_like, _ensure_object) from pandas.types.cast import _maybe_upcast_putmask, _find_common_type from pandas.types.generic import ABCSeries, ABCIndex, ABCPeriodIndex # ----------------------------------------------------------------------------- # Functions that add arithmetic methods to objects, given arithmetic factory # methods def _create_methods(arith_method, comp_method, bool_method, use_numexpr, special=False, default_axis='columns', have_divmod=False): # creates actual methods based upon arithmetic, comp and bool method # constructors. # NOTE: Only frame cares about default_axis, specifically: special methods # have default axis None, whereas flex methods have default axis 'columns' # if we're not using numexpr, then don't pass a str_rep if use_numexpr: op = lambda x: x else: op = lambda x: None if special: def names(x): if x[-1] == "_": return "__%s_" % x else: return "__%s__" % x else: names = lambda x: x # Inframe, all special methods have default_axis=None, flex methods have # default_axis set to the default (columns) # yapf: disable new_methods = dict( add=arith_method(operator.add, names('add'), op('+'), default_axis=default_axis), radd=arith_method(lambda x, y: y + x, names('radd'), op('+'), default_axis=default_axis), sub=arith_method(operator.sub, names('sub'), op('-'), default_axis=default_axis), mul=arith_method(operator.mul, names('mul'), op('*'), default_axis=default_axis), truediv=arith_method(operator.truediv, names('truediv'), op('/'), truediv=True, fill_zeros=np.inf, default_axis=default_axis), floordiv=arith_method(operator.floordiv, names('floordiv'), op('//'), default_axis=default_axis, fill_zeros=np.inf), # Causes a floating point exception in the tests when numexpr enabled, # so for now no speedup mod=arith_method(operator.mod, names('mod'), None, default_axis=default_axis, fill_zeros=np.nan), pow=arith_method(operator.pow, names('pow'), op('**'), default_axis=default_axis), # not entirely sure why this is necessary, but previously was included # so it's here to maintain compatibility rmul=arith_method(operator.mul, names('rmul'), op('*'), default_axis=default_axis, reversed=True), rsub=arith_method(lambda x, y: y - x, names('rsub'), op('-'), default_axis=default_axis, reversed=True), rtruediv=arith_method(lambda x, y: operator.truediv(y, x), names('rtruediv'), op('/'), truediv=True, fill_zeros=np.inf, default_axis=default_axis, reversed=True), rfloordiv=arith_method(lambda x, y: operator.floordiv(y, x), names('rfloordiv'), op('//'), default_axis=default_axis, fill_zeros=np.inf, reversed=True), rpow=arith_method(lambda x, y: y**x, names('rpow'), op('**'), default_axis=default_axis, reversed=True), rmod=arith_method(lambda x, y: y % x, names('rmod'), op('%'), default_axis=default_axis, fill_zeros=np.nan, reversed=True),) # yapf: enable new_methods['div'] = new_methods['truediv'] new_methods['rdiv'] = new_methods['rtruediv'] # Comp methods never had a default axis set if comp_method: new_methods.update(dict( eq=comp_method(operator.eq, names('eq'), op('==')), ne=comp_method(operator.ne, names('ne'), op('!='), masker=True), lt=comp_method(operator.lt, names('lt'), op('<')), gt=comp_method(operator.gt, names('gt'), op('>')), le=comp_method(operator.le, names('le'), op('<=')), ge=comp_method(operator.ge, names('ge'), op('>=')), )) if bool_method: new_methods.update( dict(and_=bool_method(operator.and_, names('and_'), op('&')), or_=bool_method(operator.or_, names('or_'), op('|')), # For some reason ``^`` wasn't used in original. xor=bool_method(operator.xor, names('xor'), op('^')), rand_=bool_method(lambda x, y: operator.and_(y, x), names('rand_'), op('&')), ror_=bool_method(lambda x, y: operator.or_(y, x), names('ror_'), op('|')), rxor=bool_method(lambda x, y: operator.xor(y, x), names('rxor'), op('^')))) if have_divmod: # divmod doesn't have an op that is supported by numexpr new_methods['divmod'] = arith_method( divmod, names('divmod'), None, default_axis=default_axis, construct_result=_construct_divmod_result, ) new_methods = dict((names(k), v) for k, v in new_methods.items()) return new_methods def add_methods(cls, new_methods, force, select, exclude): if select and exclude: raise TypeError("May only pass either select or exclude") methods = new_methods if select: select = set(select) methods = {} for key, method in new_methods.items(): if key in select: methods[key] = method if exclude: for k in exclude: new_methods.pop(k, None) for name, method in new_methods.items(): if force or name not in cls.__dict__: bind_method(cls, name, method) # ---------------------------------------------------------------------- # Arithmetic def add_special_arithmetic_methods(cls, arith_method=None, comp_method=None, bool_method=None, use_numexpr=True, force=False, select=None, exclude=None, have_divmod=False): """ Adds the full suite of special arithmetic methods (``__add__``, ``__sub__``, etc.) to the class. Parameters ---------- arith_method : function (optional) factory for special arithmetic methods, with op string: f(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs) comp_method : function, optional, factory for rich comparison - signature: f(op, name, str_rep) use_numexpr : bool, default True whether to accelerate with numexpr, defaults to True force : bool, default False if False, checks whether function is defined **on ``cls.__dict__``** before defining if True, always defines functions on class base select : iterable of strings (optional) if passed, only sets functions with names in select exclude : iterable of strings (optional) if passed, will not set functions with names in exclude have_divmod : bool, (optional) should a divmod method be added? this method is special because it returns a tuple of cls instead of a single element of type cls """ # in frame, special methods have default_axis = None, comp methods use # 'columns' new_methods = _create_methods(arith_method, comp_method, bool_method, use_numexpr, default_axis=None, special=True, have_divmod=have_divmod) # inplace operators (I feel like these should get passed an `inplace=True` # or just be removed def _wrap_inplace_method(method): """ return an inplace wrapper for this method """ def f(self, other): result = method(self, other) # this makes sure that we are aligned like the input # we are updating inplace so we want to ignore is_copy self._update_inplace(result.reindex_like(self, copy=False)._data, verify_is_copy=False) return self return f new_methods.update( dict(__iadd__=_wrap_inplace_method(new_methods["__add__"]), __isub__=_wrap_inplace_method(new_methods["__sub__"]), __imul__=_wrap_inplace_method(new_methods["__mul__"]), __itruediv__=_wrap_inplace_method(new_methods["__truediv__"]), __ipow__=_wrap_inplace_method(new_methods["__pow__"]), )) if not compat.PY3: new_methods["__idiv__"] = new_methods["__div__"] add_methods(cls, new_methods=new_methods, force=force, select=select, exclude=exclude) def add_flex_arithmetic_methods(cls, flex_arith_method, flex_comp_method=None, flex_bool_method=None, use_numexpr=True, force=False, select=None, exclude=None): """ Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``) to the class. Parameters ---------- flex_arith_method : function factory for special arithmetic methods, with op string: f(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs) flex_comp_method : function, optional, factory for rich comparison - signature: f(op, name, str_rep) use_numexpr : bool, default True whether to accelerate with numexpr, defaults to True force : bool, default False if False, checks whether function is defined **on ``cls.__dict__``** before defining if True, always defines functions on class base select : iterable of strings (optional) if passed, only sets functions with names in select exclude : iterable of strings (optional) if passed, will not set functions with names in exclude """ # in frame, default axis is 'columns', doesn't matter for series and panel new_methods = _create_methods(flex_arith_method, flex_comp_method, flex_bool_method, use_numexpr, default_axis='columns', special=False) new_methods.update(dict(multiply=new_methods['mul'], subtract=new_methods['sub'], divide=new_methods['div'])) # opt out of bool flex methods for now for k in ('ror_', 'rxor', 'rand_'): if k in new_methods: new_methods.pop(k) add_methods(cls, new_methods=new_methods, force=force, select=select, exclude=exclude) class _Op(object): """ Wrapper around Series arithmetic operations. Generally, you should use classmethod ``_Op.get_op`` as an entry point. This validates and coerces lhs and rhs depending on its dtype and based on op. See _TimeOp also. Parameters ---------- left : Series lhs of op right : object rhs of op name : str name of op na_op : callable a function which wraps op """ fill_value = np.nan wrap_results = staticmethod(lambda x: x) dtype = None def __init__(self, left, right, name, na_op): self.left = left self.right = right self.name = name self.na_op = na_op self.lvalues = left self.rvalues = right @classmethod def get_op(cls, left, right, name, na_op): """ Get op dispatcher, returns _Op or _TimeOp. If ``left`` and ``right`` are appropriate for datetime arithmetic with operation ``name``, processes them and returns a ``_TimeOp`` object that stores all the required values. Otherwise, it will generate either a ``_Op``, indicating that the operation is performed via normal numpy path. """ is_timedelta_lhs = is_timedelta64_dtype(left) is_datetime_lhs = (is_datetime64_dtype(left) or is_datetime64tz_dtype(left)) if not (is_datetime_lhs or is_timedelta_lhs): return _Op(left, right, name, na_op) else: return _TimeOp(left, right, name, na_op) class _TimeOp(_Op): """ Wrapper around Series datetime/time/timedelta arithmetic operations. Generally, you should use classmethod ``_Op.get_op`` as an entry point. """ fill_value = iNaT def __init__(self, left, right, name, na_op): super(_TimeOp, self).__init__(left, right, name, na_op) lvalues = self._convert_to_array(left, name=name) rvalues = self._convert_to_array(right, name=name, other=lvalues) # left self.is_offset_lhs = self._is_offset(left) self.is_timedelta_lhs = is_timedelta64_dtype(lvalues) self.is_datetime64_lhs = is_datetime64_dtype(lvalues) self.is_datetime64tz_lhs = is_datetime64tz_dtype(lvalues) self.is_datetime_lhs = (self.is_datetime64_lhs or self.is_datetime64tz_lhs) self.is_integer_lhs = left.dtype.kind in ['i', 'u'] self.is_floating_lhs = left.dtype.kind == 'f' # right self.is_offset_rhs = self._is_offset(right) self.is_datetime64_rhs = is_datetime64_dtype(rvalues) self.is_datetime64tz_rhs = is_datetime64tz_dtype(rvalues) self.is_datetime_rhs = (self.is_datetime64_rhs or self.is_datetime64tz_rhs) self.is_timedelta_rhs = is_timedelta64_dtype(rvalues) self.is_integer_rhs = rvalues.dtype.kind in ('i', 'u') self.is_floating_rhs = rvalues.dtype.kind == 'f' self._validate(lvalues, rvalues, name) self.lvalues, self.rvalues = self._convert_for_datetime(lvalues, rvalues) def _validate(self, lvalues, rvalues, name): # timedelta and integer mul/div if ((self.is_timedelta_lhs and (self.is_integer_rhs or self.is_floating_rhs)) or (self.is_timedelta_rhs and (self.is_integer_lhs or self.is_floating_lhs))): if name not in ('__div__', '__truediv__', '__mul__', '__rmul__'): raise TypeError("can only operate on a timedelta and an " "integer or a float for division and " "multiplication, but the operator [%s] was" "passed" % name) # 2 timedeltas elif ((self.is_timedelta_lhs and (self.is_timedelta_rhs or self.is_offset_rhs)) or (self.is_timedelta_rhs and (self.is_timedelta_lhs or self.is_offset_lhs))): if name not in ('__div__', '__rdiv__', '__truediv__', '__rtruediv__', '__add__', '__radd__', '__sub__', '__rsub__'): raise TypeError("can only operate on a timedeltas for " "addition, subtraction, and division, but the" " operator [%s] was passed" % name) # datetime and timedelta/DateOffset elif (self.is_datetime_lhs and (self.is_timedelta_rhs or self.is_offset_rhs)): if name not in ('__add__', '__radd__', '__sub__'): raise TypeError("can only operate on a datetime with a rhs of " "a timedelta/DateOffset for addition and " "subtraction, but the operator [%s] was " "passed" % name) elif (self.is_datetime_rhs and (self.is_timedelta_lhs or self.is_offset_lhs)): if name not in ('__add__', '__radd__', '__rsub__'): raise TypeError("can only operate on a timedelta/DateOffset " "with a rhs of a datetime for addition, " "but the operator [%s] was passed" % name) # 2 datetimes elif self.is_datetime_lhs and self.is_datetime_rhs: if name not in ('__sub__', '__rsub__'): raise TypeError("can only operate on a datetimes for" " subtraction, but the operator [%s] was" " passed" % name) # if tz's must be equal (same or None) if getattr(lvalues, 'tz', None) != getattr(rvalues, 'tz', None): raise ValueError("Incompatbile tz's on datetime subtraction " "ops") elif ((self.is_timedelta_lhs or self.is_offset_lhs) and self.is_datetime_rhs): if name not in ('__add__', '__radd__'): raise TypeError("can only operate on a timedelta/DateOffset " "and a datetime for addition, but the " "operator [%s] was passed" % name) else: raise TypeError('cannot operate on a series without a rhs ' 'of a series/ndarray of type datetime64[ns] ' 'or a timedelta') def _convert_to_array(self, values, name=None, other=None): """converts values to ndarray""" from pandas.tseries.timedeltas import to_timedelta ovalues = values supplied_dtype = None if not is_list_like(values): values = np.array([values]) # if this is a Series that contains relevant dtype info, then use this # instead of the inferred type; this avoids coercing Series([NaT], # dtype='datetime64[ns]') to Series([NaT], dtype='timedelta64[ns]') elif (isinstance(values, pd.Series) and (is_timedelta64_dtype(values) or is_datetime64_dtype(values))): supplied_dtype = values.dtype inferred_type = supplied_dtype or lib.infer_dtype(values) if (inferred_type in ('datetime64', 'datetime', 'date', 'time') or is_datetimetz(inferred_type)): # if we have a other of timedelta, but use pd.NaT here we # we are in the wrong path if (supplied_dtype is None and other is not None and (other.dtype in ('timedelta64[ns]', 'datetime64[ns]')) and isnull(values).all()): values = np.empty(values.shape, dtype='timedelta64[ns]') values[:] = iNaT # a datelike elif isinstance(values, pd.DatetimeIndex): values = values.to_series() # datetime with tz elif (isinstance(ovalues, datetime.datetime) and hasattr(ovalues, 'tzinfo')): values = pd.DatetimeIndex(values) # datetime array with tz elif is_datetimetz(values): if isinstance(values, ABCSeries): values = values._values elif not (isinstance(values, (np.ndarray, ABCSeries)) and is_datetime64_dtype(values)): values = tslib.array_to_datetime(values) elif inferred_type in ('timedelta', 'timedelta64'): # have a timedelta, convert to to ns here values = to_timedelta(values, errors='coerce', box=False) elif inferred_type == 'integer': # py3 compat where dtype is 'm' but is an integer if values.dtype.kind == 'm': values = values.astype('timedelta64[ns]') elif isinstance(values, pd.PeriodIndex): values = values.to_timestamp().to_series() elif name not in ('__truediv__', '__div__', '__mul__', '__rmul__'): raise TypeError("incompatible type for a datetime/timedelta " "operation [{0}]".format(name)) elif inferred_type == 'floating': if (isnull(values).all() and name in ('__add__', '__radd__', '__sub__', '__rsub__')): values = np.empty(values.shape, dtype=other.dtype) values[:] = iNaT return values elif self._is_offset(values): return values else: raise TypeError("incompatible type [{0}] for a datetime/timedelta" " operation".format(np.array(values).dtype)) return values def _convert_for_datetime(self, lvalues, rvalues): from pandas.tseries.timedeltas import to_timedelta mask = isnull(lvalues) | isnull(rvalues) # datetimes require views if self.is_datetime_lhs or self.is_datetime_rhs: # datetime subtraction means timedelta if self.is_datetime_lhs and self.is_datetime_rhs: if self.name in ('__sub__', '__rsub__'): self.dtype = 'timedelta64[ns]' else: self.dtype = 'datetime64[ns]' elif self.is_datetime64tz_lhs: self.dtype = lvalues.dtype elif self.is_datetime64tz_rhs: self.dtype = rvalues.dtype else: self.dtype = 'datetime64[ns]' # if adding single offset try vectorized path # in DatetimeIndex; otherwise elementwise apply def _offset(lvalues, rvalues): if len(lvalues) == 1: rvalues = pd.DatetimeIndex(rvalues) lvalues = lvalues[0] else: warnings.warn("Adding/subtracting array of DateOffsets to " "Series not vectorized", PerformanceWarning) rvalues = rvalues.astype('O') # pass thru on the na_op self.na_op = lambda x, y: getattr(x, self.name)(y) return lvalues, rvalues if self.is_offset_lhs: lvalues, rvalues = _offset(lvalues, rvalues) elif self.is_offset_rhs: rvalues, lvalues = _offset(rvalues, lvalues) else: # with tz, convert to UTC if self.is_datetime64tz_lhs: lvalues = lvalues.tz_localize(None) if self.is_datetime64tz_rhs: rvalues = rvalues.tz_localize(None) lvalues = lvalues.view(np.int64) rvalues = rvalues.view(np.int64) # otherwise it's a timedelta else: self.dtype = 'timedelta64[ns]' # convert Tick DateOffset to underlying delta if self.is_offset_lhs: lvalues = to_timedelta(lvalues, box=False) if self.is_offset_rhs: rvalues = to_timedelta(rvalues, box=False) lvalues = lvalues.astype(np.int64) if not self.is_floating_rhs: rvalues = rvalues.astype(np.int64) # time delta division -> unit less # integer gets converted to timedelta in np < 1.6 if ((self.is_timedelta_lhs and self.is_timedelta_rhs) and not self.is_integer_rhs and not self.is_integer_lhs and self.name in ('__div__', '__truediv__')): self.dtype = 'float64' self.fill_value = np.nan lvalues = lvalues.astype(np.float64) rvalues = rvalues.astype(np.float64) # if we need to mask the results if mask.any(): def f(x): # datetime64[ns]/timedelta64[ns] masking try: x = np.array(x, dtype=self.dtype) except TypeError: x = np.array(x, dtype='datetime64[ns]') np.putmask(x, mask, self.fill_value) return x self.wrap_results = f return lvalues, rvalues def _is_offset(self, arr_or_obj): """ check if obj or all elements of list-like is DateOffset """ if isinstance(arr_or_obj, pd.DateOffset): return True elif is_list_like(arr_or_obj) and len(arr_or_obj): return all(isinstance(x, pd.DateOffset) for x in arr_or_obj) return False def _align_method_SERIES(left, right, align_asobject=False): """ align lhs and rhs Series """ # ToDo: Different from _align_method_FRAME, list, tuple and ndarray # are not coerced here # because Series has inconsistencies described in #13637 if isinstance(right, ABCSeries): # avoid repeated alignment if not left.index.equals(right.index): if align_asobject: # to keep original value's dtype for bool ops left = left.astype(object) right = right.astype(object) left, right = left.align(right, copy=False) return left, right def _construct_result(left, result, index, name, dtype): return left._constructor(result, index=index, name=name, dtype=dtype) def _construct_divmod_result(left, result, index, name, dtype): """divmod returns a tuple of like indexed series instead of a single series. """ constructor = left._constructor return ( constructor(result[0], index=index, name=name, dtype=dtype), constructor(result[1], index=index, name=name, dtype=dtype), ) def _arith_method_SERIES(op, name, str_rep, fill_zeros=None, default_axis=None, construct_result=_construct_result, **eval_kwargs): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ def na_op(x, y): try: result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs) except TypeError: if isinstance(y, (np.ndarray, ABCSeries, pd.Index)): dtype = _find_common_type([x.dtype, y.dtype]) result = np.empty(x.size, dtype=dtype) mask = notnull(x) & notnull(y) result[mask] = op(x[mask], _values_from_object(y[mask])) elif isinstance(x, np.ndarray): result = np.empty(len(x), dtype=x.dtype) mask = notnull(x) result[mask] = op(x[mask], y) else: raise TypeError("{typ} cannot perform the operation " "{op}".format(typ=type(x).__name__, op=str_rep)) result, changed = _maybe_upcast_putmask(result, ~mask, np.nan) result = missing.fill_zeros(result, x, y, name, fill_zeros) return result def safe_na_op(lvalues, rvalues): try: with np.errstate(all='ignore'): return na_op(lvalues, rvalues) except Exception: if isinstance(rvalues, ABCSeries): if is_object_dtype(rvalues): # if dtype is object, try elementwise op return _algos.arrmap_object(rvalues, lambda x: op(lvalues, x)) else: if is_object_dtype(lvalues): return _algos.arrmap_object(lvalues, lambda x: op(x, rvalues)) raise def wrapper(left, right, name=name, na_op=na_op): if isinstance(right, pd.DataFrame): return NotImplemented left, right = _align_method_SERIES(left, right) converted = _Op.get_op(left, right, name, na_op) left, right = converted.left, converted.right lvalues, rvalues = converted.lvalues, converted.rvalues dtype = converted.dtype wrap_results = converted.wrap_results na_op = converted.na_op if isinstance(rvalues, ABCSeries): name = _maybe_match_name(left, rvalues) lvalues = getattr(lvalues, 'values', lvalues) rvalues = getattr(rvalues, 'values', rvalues) # _Op aligns left and right else: name = left.name if (hasattr(lvalues, 'values') and not isinstance(lvalues, pd.DatetimeIndex)): lvalues = lvalues.values result = wrap_results(safe_na_op(lvalues, rvalues)) return construct_result( left, result, index=left.index, name=name, dtype=dtype, ) return wrapper def _comp_method_OBJECT_ARRAY(op, x, y): if isinstance(y, list): y = lib.list_to_object_array(y) if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)): if not is_object_dtype(y.dtype): y = y.astype(np.object_) if isinstance(y, (ABCSeries, ABCIndex)): y = y.values result = lib.vec_compare(x, y, op) else: result = lib.scalar_compare(x, y, op) return result def _comp_method_SERIES(op, name, str_rep, masker=False): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ def na_op(x, y): # dispatch to the categorical if we have a categorical # in either operand if is_categorical_dtype(x): return op(x, y) elif is_categorical_dtype(y) and not isscalar(y): return op(y, x) if is_object_dtype(x.dtype): result = _comp_method_OBJECT_ARRAY(op, x, y) else: # we want to compare like types # we only want to convert to integer like if # we are not NotImplemented, otherwise # we would allow datetime64 (but viewed as i8) against # integer comparisons if is_datetimelike_v_numeric(x, y): raise TypeError("invalid type comparison") # numpy does not like comparisons vs None if isscalar(y) and isnull(y): if name == '__ne__': return np.ones(len(x), dtype=bool) else: return np.zeros(len(x), dtype=bool) # we have a datetime/timedelta and may need to convert mask = None if (needs_i8_conversion(x) or (not isscalar(y) and needs_i8_conversion(y))): if isscalar(y): mask = isnull(x) y = _index.convert_scalar(x, _values_from_object(y)) else: mask = isnull(x) | isnull(y) y = y.view('i8') x = x.view('i8') try: with np.errstate(all='ignore'): result = getattr(x, name)(y) if result is NotImplemented: raise TypeError("invalid type comparison") except AttributeError: result = op(x, y) if mask is not None and mask.any(): result[mask] = masker return result def wrapper(self, other, axis=None): # Validate the axis parameter if axis is not None: self._get_axis_number(axis) if isinstance(other, ABCSeries): name = _maybe_match_name(self, other) if not self._indexed_same(other): msg = 'Can only compare identically-labeled Series objects' raise ValueError(msg) return self._constructor(na_op(self.values, other.values), index=self.index, name=name) elif isinstance(other, pd.DataFrame): # pragma: no cover return NotImplemented elif isinstance(other, (np.ndarray, pd.Index)): # do not check length of zerodim array # as it will broadcast if (not lib.isscalar(lib.item_from_zerodim(other)) and len(self) != len(other)): raise ValueError('Lengths must match to compare') if isinstance(other, ABCPeriodIndex): # temp workaround until fixing GH 13637 # tested in test_nat_comparisons # (pandas.tests.series.test_operators.TestSeriesOperators) return self._constructor(na_op(self.values, other.asobject.values), index=self.index) return self._constructor(na_op(self.values, np.asarray(other)), index=self.index).__finalize__(self) elif isinstance(other, pd.Categorical): if not is_categorical_dtype(self): msg = ("Cannot compare a Categorical for op {op} with Series " "of dtype {typ}.\nIf you want to compare values, use " "'series <op> np.asarray(other)'.") raise TypeError(msg.format(op=op, typ=self.dtype)) if is_categorical_dtype(self): # cats are a special case as get_values() would return an ndarray, # which would then not take categories ordering into account # we can go directly to op, as the na_op would just test again and # dispatch to it. with np.errstate(all='ignore'): res = op(self.values, other) else: values = self.get_values() if isinstance(other, (list, np.ndarray)): other = np.asarray(other) with np.errstate(all='ignore'): res = na_op(values, other) if isscalar(res): raise TypeError('Could not compare %s type with Series' % type(other)) # always return a full value series here res = _values_from_object(res) res = pd.Series(res, index=self.index, name=self.name, dtype='bool') return res return wrapper def _bool_method_SERIES(op, name, str_rep): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ def na_op(x, y): try: result = op(x, y) except TypeError: if isinstance(y, list): y = lib.list_to_object_array(y) if isinstance(y, (np.ndarray, ABCSeries)): if (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)): result = op(x, y) # when would this be hit? else: x = _ensure_object(x) y = _ensure_object(y) result = lib.vec_binop(x, y, op) else: try: # let null fall thru if not isnull(y): y = bool(y) result = lib.scalar_binop(x, y, op) except: raise TypeError("cannot compare a dtyped [{0}] array with " "a scalar of type [{1}]".format( x.dtype, type(y).__name__)) return result def wrapper(self, other): is_self_int_dtype = is_integer_dtype(self.dtype) fill_int = lambda x: x.fillna(0) fill_bool = lambda x: x.fillna(False).astype(bool) self, other = _align_method_SERIES(self, other, align_asobject=True) if isinstance(other, ABCSeries): name = _maybe_match_name(self, other) is_other_int_dtype = is_integer_dtype(other.dtype) other = fill_int(other) if is_other_int_dtype else fill_bool(other) filler = (fill_int if is_self_int_dtype and is_other_int_dtype else fill_bool) return filler(self._constructor(na_op(self.values, other.values), index=self.index, name=name)) elif isinstance(other, pd.DataFrame): return NotImplemented else: # scalars, list, tuple, np.array filler = (fill_int if is_self_int_dtype and is_integer_dtype(np.asarray(other)) else fill_bool) return filler(self._constructor( na_op(self.values, other), index=self.index)).__finalize__(self) return wrapper _op_descriptions = {'add': {'op': '+', 'desc': 'Addition', 'reversed': False, 'reverse': 'radd'}, 'sub': {'op': '-', 'desc': 'Subtraction', 'reversed': False, 'reverse': 'rsub'}, 'mul': {'op': '*', 'desc': 'Multiplication', 'reversed': False, 'reverse': 'rmul'}, 'mod': {'op': '%', 'desc': 'Modulo', 'reversed': False, 'reverse': 'rmod'}, 'pow': {'op': '**', 'desc': 'Exponential power', 'reversed': False, 'reverse': 'rpow'}, 'truediv': {'op': '/', 'desc': 'Floating division', 'reversed': False, 'reverse': 'rtruediv'}, 'floordiv': {'op': '//', 'desc': 'Integer division', 'reversed': False, 'reverse': 'rfloordiv'}, 'divmod': {'op': 'divmod', 'desc': 'Integer division and modulo', 'reversed': False, 'reverse': None}, 'eq': {'op': '==', 'desc': 'Equal to', 'reversed': False, 'reverse': None}, 'ne': {'op': '!=', 'desc': 'Not equal to', 'reversed': False, 'reverse': None}, 'lt': {'op': '<', 'desc': 'Less than', 'reversed': False, 'reverse': None}, 'le': {'op': '<=', 'desc': 'Less than or equal to', 'reversed': False, 'reverse': None}, 'gt': {'op': '>', 'desc': 'Greater than', 'reversed': False, 'reverse': None}, 'ge': {'op': '>=', 'desc': 'Greater than or equal to', 'reversed': False, 'reverse': None}} _op_names = list(_op_descriptions.keys()) for k in _op_names: reverse_op = _op_descriptions[k]['reverse'] _op_descriptions[reverse_op] = _op_descriptions[k].copy() _op_descriptions[reverse_op]['reversed'] = True _op_descriptions[reverse_op]['reverse'] = k _flex_doc_SERIES = """ %s of series and other, element-wise (binary operator `%s`). Equivalent to ``%s``, but with support to substitute a fill_value for missing data in one of the inputs. Parameters ---------- other: Series or scalar value fill_value : None or float value, default None (NaN) Fill missing (NaN) values with this value. If both Series are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- result : Series See also -------- Series.%s """ def _flex_method_SERIES(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs): op_name = name.replace('__', '') op_desc = _op_descriptions[op_name] if op_desc['reversed']: equiv = 'other ' + op_desc['op'] + ' series' else: equiv = 'series ' + op_desc['op'] + ' other' doc = _flex_doc_SERIES % (op_desc['desc'], op_name, equiv, op_desc['reverse']) @Appender(doc) def flex_wrapper(self, other, level=None, fill_value=None, axis=0): # validate axis if axis is not None: self._get_axis_number(axis) if isinstance(other, ABCSeries): return self._binop(other, op, level=level, fill_value=fill_value) elif isinstance(other, (np.ndarray, list, tuple)): if len(other) != len(self): raise ValueError('Lengths must be equal') return self._binop(self._constructor(other, self.index), op, level=level, fill_value=fill_value) else: if fill_value is not None: self = self.fillna(fill_value) return self._constructor(op(self, other), self.index).__finalize__(self) flex_wrapper.__name__ = name return flex_wrapper series_flex_funcs = dict(flex_arith_method=_flex_method_SERIES, flex_comp_method=_flex_method_SERIES) series_special_funcs = dict(arith_method=_arith_method_SERIES, comp_method=_comp_method_SERIES, bool_method=_bool_method_SERIES, have_divmod=True) _arith_doc_FRAME = """ Binary operator %s with support to substitute a fill_value for missing data in one of the inputs Parameters ---------- other : Series, DataFrame, or constant axis : {0, 1, 'index', 'columns'} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Notes ----- Mismatched indices will be unioned together Returns ------- result : DataFrame """ _flex_doc_FRAME = """ %s of dataframe and other, element-wise (binary operator `%s`). Equivalent to ``%s``, but with support to substitute a fill_value for missing data in one of the inputs. Parameters ---------- other : Series, DataFrame, or constant axis : {0, 1, 'index', 'columns'} For Series input, axis to match Series index on fill_value : None or float value, default None Fill missing (NaN) values with this value. If both DataFrame locations are missing, the result will be missing level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level Notes ----- Mismatched indices will be unioned together Returns ------- result : DataFrame See also -------- DataFrame.%s """ def _align_method_FRAME(left, right, axis): """ convert rhs to meet lhs dims if input is list, tuple or np.ndarray """ def to_series(right): msg = 'Unable to coerce to Series, length must be {0}: given {1}' if axis is not None and left._get_axis_name(axis) == 'index': if len(left.index) != len(right): raise ValueError(msg.format(len(left.index), len(right))) right = left._constructor_sliced(right, index=left.index) else: if len(left.columns) != len(right): raise ValueError(msg.format(len(left.columns), len(right))) right = left._constructor_sliced(right, index=left.columns) return right if isinstance(right, (list, tuple)): right = to_series(right) elif isinstance(right, np.ndarray) and right.ndim: # skips np scalar if right.ndim == 1: right = to_series(right) elif right.ndim == 2: if left.shape != right.shape: msg = ("Unable to coerce to DataFrame, " "shape must be {0}: given {1}") raise ValueError(msg.format(left.shape, right.shape)) right = left._constructor(right, index=left.index, columns=left.columns) else: msg = 'Unable to coerce to Series/DataFrame, dim must be <= 2: {0}' raise ValueError(msg.format(right.shape, )) return right def _arith_method_FRAME(op, name, str_rep=None, default_axis='columns', fill_zeros=None, **eval_kwargs): def na_op(x, y): try: result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs) except TypeError: xrav = x.ravel() if isinstance(y, (np.ndarray, ABCSeries)): dtype = np.find_common_type([x.dtype, y.dtype], []) result = np.empty(x.size, dtype=dtype) yrav = y.ravel() mask = notnull(xrav) & notnull(yrav) xrav = xrav[mask] # we may need to manually # broadcast a 1 element array if yrav.shape != mask.shape: yrav = np.empty(mask.shape, dtype=yrav.dtype) yrav.fill(yrav.item()) yrav = yrav[mask] if np.prod(xrav.shape) and np.prod(yrav.shape): with np.errstate(all='ignore'): result[mask] = op(xrav, yrav) elif hasattr(x, 'size'): result = np.empty(x.size, dtype=x.dtype) mask = notnull(xrav) xrav = xrav[mask] if np.prod(xrav.shape): with np.errstate(all='ignore'): result[mask] = op(xrav, y) else: raise TypeError("cannot perform operation {op} between " "objects of type {x} and {y}".format( op=name, x=type(x), y=type(y))) result, changed = _maybe_upcast_putmask(result, ~mask, np.nan) result = result.reshape(x.shape) result = missing.fill_zeros(result, x, y, name, fill_zeros) return result if name in _op_descriptions: op_name = name.replace('__', '') op_desc = _op_descriptions[op_name] if op_desc['reversed']: equiv = 'other ' + op_desc['op'] + ' dataframe' else: equiv = 'dataframe ' + op_desc['op'] + ' other' doc = _flex_doc_FRAME % (op_desc['desc'], op_name, equiv, op_desc['reverse']) else: doc = _arith_doc_FRAME % name @Appender(doc) def f(self, other, axis=default_axis, level=None, fill_value=None): other = _align_method_FRAME(self, other, axis) if isinstance(other, pd.DataFrame): # Another DataFrame return self._combine_frame(other, na_op, fill_value, level) elif isinstance(other, ABCSeries): return self._combine_series(other, na_op, fill_value, axis, level) else: if fill_value is not None: self = self.fillna(fill_value) return self._combine_const(other, na_op) f.__name__ = name return f # Masker unused for now def _flex_comp_method_FRAME(op, name, str_rep=None, default_axis='columns', masker=False): def na_op(x, y): try: result = op(x, y) except TypeError: xrav = x.ravel() result = np.empty(x.size, dtype=x.dtype) if isinstance(y, (np.ndarray, ABCSeries)): yrav = y.ravel() mask = notnull(xrav) & notnull(yrav) result[mask] = op(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notnull(xrav) result[mask] = op(np.array(list(xrav[mask])), y) if op == operator.ne: # pragma: no cover np.putmask(result, ~mask, True) else: np.putmask(result, ~mask, False) result = result.reshape(x.shape) return result @Appender('Wrapper for flexible comparison methods %s' % name) def f(self, other, axis=default_axis, level=None): other = _align_method_FRAME(self, other, axis) if isinstance(other, pd.DataFrame): # Another DataFrame return self._flex_compare_frame(other, na_op, str_rep, level) elif isinstance(other, ABCSeries): return self._combine_series(other, na_op, None, axis, level) else: return self._combine_const(other, na_op) f.__name__ = name return f def _comp_method_FRAME(func, name, str_rep, masker=False): @Appender('Wrapper for comparison method %s' % name) def f(self, other): if isinstance(other, pd.DataFrame): # Another DataFrame return self._compare_frame(other, func, str_rep) elif isinstance(other, ABCSeries): return self._combine_series_infer(other, func) else: # straight boolean comparisions we want to allow all columns # (regardless of dtype to pass thru) See #4537 for discussion. res = self._combine_const(other, func, raise_on_error=False) return res.fillna(True).astype(bool) f.__name__ = name return f frame_flex_funcs = dict(flex_arith_method=_arith_method_FRAME, flex_comp_method=_flex_comp_method_FRAME) frame_special_funcs = dict(arith_method=_arith_method_FRAME, comp_method=_comp_method_FRAME, bool_method=_arith_method_FRAME) def _arith_method_PANEL(op, name, str_rep=None, fill_zeros=None, default_axis=None, **eval_kwargs): # copied from Series na_op above, but without unnecessary branch for # non-scalar def na_op(x, y): try: result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True, **eval_kwargs) except TypeError: # TODO: might need to find_common_type here? result = np.empty(len(x), dtype=x.dtype) mask = notnull(x) result[mask] = op(x[mask], y) result, changed = _maybe_upcast_putmask(result, ~mask, np.nan) result = missing.fill_zeros(result, x, y, name, fill_zeros) return result # work only for scalars def f(self, other): if not isscalar(other): raise ValueError('Simple arithmetic with %s can only be ' 'done with scalar values' % self._constructor.__name__) return self._combine(other, op) f.__name__ = name return f def _comp_method_PANEL(op, name, str_rep=None, masker=False): def na_op(x, y): try: result = expressions.evaluate(op, str_rep, x, y, raise_on_error=True) except TypeError: xrav = x.ravel() result = np.empty(x.size, dtype=bool) if isinstance(y, np.ndarray): yrav = y.ravel() mask = notnull(xrav) & notnull(yrav) result[mask] = op(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notnull(xrav) result[mask] = op(np.array(list(xrav[mask])), y) if op == operator.ne: # pragma: no cover np.putmask(result, ~mask, True) else: np.putmask(result, ~mask, False) result = result.reshape(x.shape) return result @Appender('Wrapper for comparison method %s' % name) def f(self, other, axis=None): # Validate the axis parameter if axis is not None: axis = self._get_axis_number(axis) if isinstance(other, self._constructor): return self._compare_constructor(other, na_op) elif isinstance(other, (self._constructor_sliced, pd.DataFrame, ABCSeries)): raise Exception("input needs alignment for this object [%s]" % self._constructor) else: return self._combine_const(other, na_op) f.__name__ = name return f panel_special_funcs = dict(arith_method=_arith_method_PANEL, comp_method=_comp_method_PANEL, bool_method=_arith_method_PANEL)
gpl-3.0
darcy0511/Dato-Core
src/unity/python/graphlab/test/test_io.py
13
15881
''' Copyright (C) 2015 Dato, Inc. All rights reserved. This software may be modified and distributed under the terms of the BSD license. See the DATO-PYTHON-LICENSE file for details. ''' import commands import json import logging import os import re import tempfile import unittest import pandas import graphlab import graphlab.connect.main as glconnect import graphlab.sys_util as _sys_util from graphlab.test.util import create_server, start_test_tcp_server from pandas.util.testing import assert_frame_equal def _test_save_load_object_helper(testcase, obj, url): """ Helper function to test save and load a server side object to a given url. """ def cleanup(url): """ Remove the saved file from temp directory. """ protocol = None path = None splits = url.split("://") if len(splits) > 1: protocol = splits[0] path = splits[1] else: path = url if not protocol or protocol is "local" or protocol is "remote": tempdir = tempfile.gettempdir() pattern = path + ".*" for f in os.listdir(tempdir): if re.search(pattern, f): os.remove(os.path.join(tempdir, f)) if isinstance(obj, graphlab.SGraph): obj.save(url + ".graph") newobj = graphlab.load_graph(url + ".graph") testcase.assertItemsEqual(obj.get_fields(), newobj.get_fields()) testcase.assertDictEqual(obj.summary(), newobj.summary()) elif isinstance(obj, graphlab.Model): obj.save(url + ".model") newobj = graphlab.load_model(url + ".model") testcase.assertItemsEqual(obj.list_fields(), newobj.list_fields()) testcase.assertEqual(type(obj), type(newobj)) elif isinstance(obj, graphlab.SFrame): obj.save(url + ".frame_idx") newobj = graphlab.load_sframe(url + ".frame_idx") testcase.assertEqual(obj.shape, newobj.shape) testcase.assertEqual(obj.column_names(), newobj.column_names()) testcase.assertEqual(obj.column_types(), newobj.column_types()) assert_frame_equal(obj.head(obj.num_rows()).to_dataframe(), newobj.head(newobj.num_rows()).to_dataframe()) else: raise TypeError cleanup(url) def create_test_objects(): vertices = pandas.DataFrame({'vid': ['1', '2', '3'], 'color': ['g', 'r', 'b'], 'vec': [[.1, .1, .1], [.1, .1, .1], [.1, .1, .1]]}) edges = pandas.DataFrame({'src_id': ['1', '2', '3'], 'dst_id': ['2', '3', '4'], 'weight': [0., 0.1, 1.]}) graph = graphlab.SGraph().add_vertices(vertices, 'vid').add_edges(edges, 'src_id', 'dst_id') sframe = graphlab.SFrame(edges) model = graphlab.pagerank.create(graph) return (graph, sframe, model) class LocalFSConnectorTests(unittest.TestCase): @classmethod def setUpClass(self): self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() def _test_read_write_helper(self, url, content): url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(url, content) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content) if os.path.exists(url): os.remove(url) def test_object_save_load(self): for prefix in ['', 'local://', 'remote://']: _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) def test_basic(self): self._test_read_write_helper(self.tempfile, 'hello world') self._test_read_write_helper("local://" + self.tempfile + ".csv", 'hello,world,woof') self._test_read_write_helper("remote://" + self.tempfile + ".csv", 'hello,world,woof') def test_gzip(self): self._test_read_write_helper(self.tempfile + ".gz", 'hello world') self._test_read_write_helper(self.tempfile + ".csv.gz", 'hello world') self._test_read_write_helper("local://" + self.tempfile + ".csv.gz", 'hello world') self._test_read_write_helper("remote://" + self.tempfile + ".csv.gz", 'hello world') def test_exception(self): self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("/root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("/root/tmp", '.....')) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("/root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("/root/tmp", '.....')) self.assertRaises(IOError, lambda: self.graph.save("/root/tmp.graph")) self.assertRaises(IOError, lambda: self.sframe.save("/root/tmp.frame_idx")) self.assertRaises(IOError, lambda: self.model.save("/root/tmp.model")) self.assertRaises(IOError, lambda: graphlab.load_graph("/root/tmp.graph")) self.assertRaises(IOError, lambda: graphlab.load_sframe("/root/tmp.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model("/root/tmp.model")) class RemoteFSConnectorTests(unittest.TestCase): @classmethod def setUpClass(self): glconnect.stop() auth_token = 'graphlab_awesome' self.server = start_test_tcp_server(auth_token=auth_token) glconnect.launch(self.server.get_server_addr(), auth_token=auth_token) self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() @classmethod def tearDownClass(self): glconnect.stop() self.server.stop() def _test_read_write_helper(self, url, content): url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(url, content) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content) def test_basic(self): self._test_read_write_helper("remote://" + self.tempfile, 'hello,world,woof') def test_gzip(self): self._test_read_write_helper("remote://" + self.tempfile + ".csv.gz", 'hello,world,woof') def test_object_save_load(self): prefix = "remote://" _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) def test_exception(self): self.assertRaises(ValueError, lambda: self._test_read_write_helper(self.tempfile, 'hello world')) self.assertRaises(ValueError, lambda: self._test_read_write_helper("local://" + self.tempfile + ".csv.gz", 'hello,world,woof')) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("remote:///root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("remote:///root/tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("remote:///root/tmp", '.....')) self.assertRaises(IOError, lambda: self.graph.save("remote:///root/tmp.graph")) self.assertRaises(IOError, lambda: self.sframe.save("remote:///root/tmp.frame_idx")) self.assertRaises(IOError, lambda: self.model.save("remote:///root/tmp.model")) self.assertRaises(IOError, lambda: graphlab.load_graph("remote:///root/tmp.graph")) self.assertRaises(IOError, lambda: graphlab.load_sframe("remote:///root/tmp.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model("remote:///root/tmp.model")) class HttpConnectorTests(unittest.TestCase): @classmethod def setUpClass(self): self.url = "http://s3-us-west-2.amazonaws.com/testdatasets/a_to_z.txt.gz" def _test_read_helper(self, url, content_expected): url = graphlab.util._make_internal_url(url) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content_expected) def test_read(self): expected = "\n".join([str(unichr(i + ord('a'))) for i in range(26)]) expected = expected + "\n" self._test_read_helper(self.url, expected) def test_exception(self): self.assertRaises(IOError, lambda: glconnect.get_unity().__write__(self.url, '.....')) @unittest.skip("Disabling HDFS Connector Tests") class HDFSConnectorTests(unittest.TestCase): # This test requires hadoop to be installed and avaiable in $PATH. # If not, the tests will be skipped. @classmethod def setUpClass(self): self.has_hdfs = len(_sys_util.get_hadoop_class_path()) > 0 self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() def _test_read_write_helper(self, url, content_expected): url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(url, content_expected) content_read = glconnect.get_unity().__read__(url) self.assertEquals(content_read, content_expected) # clean up the file we wrote status, output = commands.getstatusoutput('hadoop fs -test -e ' + url) if status is 0: commands.getstatusoutput('hadoop fs -rm ' + url) def test_basic(self): if self.has_hdfs: self._test_read_write_helper("hdfs://" + self.tempfile, 'hello,world,woof') else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") def test_gzip(self): if self.has_hdfs: self._test_read_write_helper("hdfs://" + self.tempfile + ".gz", 'hello,world,woof') self._test_read_write_helper("hdfs://" + self.tempfile + ".csv.gz", 'hello,world,woof') else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") def test_object_save_load(self): if self.has_hdfs: prefix = "hdfs://" _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") def test_exception(self): bad_url = "hdfs:///root/" if self.has_hdfs: self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("hdfs:///")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("hdfs:///tmp")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("hdfs://" + self.tempfile)) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__(bad_url + "/tmp", "somerandomcontent")) self.assertRaises(IOError, lambda: self.graph.save(bad_url + "x.graph")) self.assertRaises(IOError, lambda: self.sframe.save(bad_url + "x.frame_idx")) self.assertRaises(IOError, lambda: self.model.save(bad_url + "x.model")) self.assertRaises(IOError, lambda: graphlab.load_graph(bad_url + "mygraph")) self.assertRaises(IOError, lambda: graphlab.load_sframe(bad_url + "x.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model(bad_url + "x.model")) else: logging.getLogger(__name__).info("No hdfs avaiable. Test pass.") @unittest.skip("Disabling S3 Connector Tests") class S3ConnectorTests(unittest.TestCase): # This test requires aws cli to be installed. If not, the tests will be skipped. @classmethod def setUpClass(self): status, output = commands.getstatusoutput('aws s3api list-buckets') self.has_s3 = (status is 0) self.standard_bucket = None self.regional_bucket = None # Use aws cli s3api to find a bucket with "gl-testdata" in the name, and use it as out test bucket. # Temp files will be read from /written to the test bucket's /tmp folder and be cleared on exist. if self.has_s3: try: json_output = json.loads(output) bucket_list = [b['Name'] for b in json_output['Buckets']] assert 'gl-testdata' in bucket_list assert 'gl-testdata-oregon' in bucket_list self.standard_bucket = 'gl-testdata' self.regional_bucket = 'gl-testdata-oregon' self.tempfile = tempfile.NamedTemporaryFile().name (self.graph, self.sframe, self.model) = create_test_objects() except: logging.getLogger(__name__).warning("Fail parsing ioutput of s3api into json. Please check your awscli version.") self.has_s3 = False def _test_read_write_helper(self, url, content_expected): s3url = graphlab.util._make_internal_url(url) glconnect.get_unity().__write__(s3url, content_expected) content_read = glconnect.get_unity().__read__(s3url) self.assertEquals(content_read, content_expected) (status, output) = commands.getstatusoutput('aws s3 rm --region us-west-2 ' + url) if status is not 0: logging.getLogger(__name__).warning("Cannot remove file: " + url) def test_basic(self): if self.has_s3: for bucket in [self.standard_bucket, self.regional_bucket]: self._test_read_write_helper("s3://" + bucket + self.tempfile, 'hello,world,woof') else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.") def test_gzip(self): if self.has_s3: self._test_read_write_helper("s3://" + self.standard_bucket + self.tempfile + ".gz", 'hello,world,woof') else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.") def test_object_save_load(self): if self.has_s3: prefix = "s3://" + self.standard_bucket _test_save_load_object_helper(self, self.graph, prefix + self.tempfile) _test_save_load_object_helper(self, self.model, prefix + self.tempfile) _test_save_load_object_helper(self, self.sframe, prefix + self.tempfile) else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.") def test_exception(self): if self.has_s3: bad_bucket = "i_am_a_bad_bucket" prefix = "s3://" + bad_bucket self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("s3:///")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("s3://" + self.standard_bucket + "/somerandomfile")) self.assertRaises(IOError, lambda: glconnect.get_unity().__read__("s3://" + "/somerandomfile")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("s3://" + "/somerandomfile", "somerandomcontent")) self.assertRaises(IOError, lambda: glconnect.get_unity().__write__("s3://" + self.standard_bucket + "I'amABadUrl/", "somerandomcontent")) self.assertRaises(IOError, lambda: self.graph.save(prefix + "/x.graph")) self.assertRaises(IOError, lambda: self.sframe.save(prefix + "/x.frame_idx")) self.assertRaises(IOError, lambda: self.model.save(prefix + "/x.model")) self.assertRaises(IOError, lambda: graphlab.load_graph(prefix + "/x.graph")) self.assertRaises(IOError, lambda: graphlab.load_sframe(prefix + "/x.frame_idx")) self.assertRaises(IOError, lambda: graphlab.load_model(prefix + "/x.model")) else: logging.getLogger(__name__).info("No s3 bucket avaiable. Test pass.")
agpl-3.0
rhattersley/iris
lib/iris/tests/unit/plot/__init__.py
9
4522
# (C) British Crown Copyright 2014 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the :mod:`iris.plot` module.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests from iris.plot import _broadcast_2d as broadcast from iris.coords import AuxCoord from iris.tests.stock import simple_2d, lat_lon_cube @tests.skip_plot class TestGraphicStringCoord(tests.GraphicsTest): def setUp(self): super(TestGraphicStringCoord, self).setUp() self.cube = simple_2d(with_bounds=True) self.cube.add_aux_coord(AuxCoord(list('abcd'), long_name='str_coord'), 1) self.lat_lon_cube = lat_lon_cube() def tick_loc_and_label(self, axis_name, axes=None): # Intentional lazy import so that subclasses can have an opportunity # to change the backend. import matplotlib.pyplot as plt # Draw the plot to 'fix' the ticks. if axes: axes.figure.canvas.draw() else: axes = plt.gca() plt.draw() axis = getattr(axes, axis_name) locations = axis.get_majorticklocs() labels = [tick.get_text() for tick in axis.get_ticklabels()] return list(zip(locations, labels)) def assertBoundsTickLabels(self, axis, axes=None): actual = self.tick_loc_and_label(axis, axes) expected = [(-1.0, ''), (0.0, 'a'), (1.0, 'b'), (2.0, 'c'), (3.0, 'd'), (4.0, '')] self.assertEqual(expected, actual) def assertPointsTickLabels(self, axis, axes=None): actual = self.tick_loc_and_label(axis, axes) expected = [(0.0, 'a'), (1.0, 'b'), (2.0, 'c'), (3.0, 'd')] self.assertEqual(expected, actual) @tests.skip_plot class MixinCoords(object): """ Mixin class of common plotting tests providing 2-dimensional permutations of coordinates and anonymous dimensions. """ def _check(self, u, v, data=None): self.assertEqual(self.mpl_patch.call_count, 1) if data is not None: (actual_u, actual_v, actual_data), _ = self.mpl_patch.call_args self.assertArrayEqual(actual_data, data) else: (actual_u, actual_v), _ = self.mpl_patch.call_args self.assertArrayEqual(actual_u, u) self.assertArrayEqual(actual_v, v) def test_foo_bar(self): self.draw_func(self.cube, coords=('foo', 'bar')) u, v = broadcast(self.foo, self.bar) self._check(u, v, self.data) def test_bar_foo(self): self.draw_func(self.cube, coords=('bar', 'foo')) u, v = broadcast(self.bar, self.foo) self._check(u, v, self.dataT) def test_foo_0(self): self.draw_func(self.cube, coords=('foo', 0)) u, v = broadcast(self.foo, self.bar_index) self._check(u, v, self.data) def test_1_bar(self): self.draw_func(self.cube, coords=(1, 'bar')) u, v = broadcast(self.foo_index, self.bar) self._check(u, v, self.data) def test_1_0(self): self.draw_func(self.cube, coords=(1, 0)) u, v = broadcast(self.foo_index, self.bar_index) self._check(u, v, self.data) def test_0_foo(self): self.draw_func(self.cube, coords=(0, 'foo')) u, v = broadcast(self.bar_index, self.foo) self._check(u, v, self.dataT) def test_bar_1(self): self.draw_func(self.cube, coords=('bar', 1)) u, v = broadcast(self.bar, self.foo_index) self._check(u, v, self.dataT) def test_0_1(self): self.draw_func(self.cube, coords=(0, 1)) u, v = broadcast(self.bar_index, self.foo_index) self._check(u, v, self.dataT)
lgpl-3.0
ctogle/dilapidator
test/geometry/quat_tests.py
1
6809
from dilap.geometry.quat import quat from dilap.geometry.vec3 import vec3 import dilap.geometry.tools as dpr import matplotlib.pyplot as plt import unittest,numpy,math import pdb #python3 -m unittest discover -v ./ "*tests.py" class test_quat(unittest.TestCase): def test_av(self): a = 3*dpr.PI4 u1,u2,u3 = vec3(1,0,0),vec3(0,-1,0),vec3(0,0,1) q1,q2 = quat(0,0,0,0).av(a,u1),quat(0,0,0,0).av(a,u2) q3,q4 = quat(0,0,0,0).av(-a,u3),quat(0,0,0,0).av(-a,u2) self.assertTrue(q1.w > 0.1) self.assertTrue(q1.x > 0.1) self.assertTrue(dpr.isnear(q1.y,0)) self.assertTrue(dpr.isnear(q1.z,0)) self.assertTrue(q2.w > 0.1) self.assertTrue(dpr.isnear(q2.x,0)) self.assertTrue(q2.y < -0.1) self.assertTrue(dpr.isnear(q2.z,0)) self.assertTrue(q3.w > 0.1) self.assertTrue(dpr.isnear(q3.x,0)) self.assertTrue(dpr.isnear(q3.y,0)) self.assertTrue(q3.z < -0.1) self.assertFalse(q2 == q4.cp().flp()) self.assertTrue(q2 == q4.cnj()) def test_uu(self): u1,u2,u3 = vec3(1,0,0),vec3(0,-1,0),vec3(0,0,1) q1,q2 = quat(0,0,0,0).uu(u1,u2),quat(0,0,0,0).uu(u1,u3) q3,q4 = quat(0,0,0,0).uu(u2,u3),quat(0,0,0,0).uu(u3,u2) self.assertTrue(q1.w > 0.1) self.assertTrue(dpr.isnear(q1.x,0)) self.assertTrue(dpr.isnear(q1.y,0)) self.assertTrue(q1.z < -0.1) self.assertTrue(q2.w > 0.1) self.assertTrue(dpr.isnear(q2.x,0)) self.assertTrue(q2.y < -0.1) self.assertTrue(dpr.isnear(q2.z,0)) self.assertTrue(q3 == q4.cnj()) def test_toxy(self): q1 = quat(0,0,0,0).toxy(vec3(0,0,-1)) #print('toxy\v\t',q1) self.assertEqual(q1.w,0) self.assertEqual(q1.x,1) def test_cp(self): q1 = quat(1,2,3,4) self.assertTrue(q1 is q1) self.assertFalse(q1 is q1.cp()) self.assertTrue(q1 == q1.cp()) #def test_cpf(self): def test_isnear(self): q1,q2 = quat(1,1,1,0),quat(1,1,1,0.1) q3,q4 = quat(1,1,1,1),quat(1,1.000001,1,1) self.assertEqual(q1.isnear(q1),1) self.assertEqual(q3.isnear(q3),1) self.assertEqual(q1.isnear(q2),0) self.assertEqual(q2.isnear(q1),0) self.assertEqual(q1.isnear(q3),0) self.assertEqual(q2.isnear(q3),0) self.assertEqual(q2.isnear(q4),0) self.assertEqual(q3.isnear(q4),1) def test_mag2(self): q1,q2,q3 = quat(1,0,0,0),quat(1,1,1,0),quat(0,2,5,11) self.assertEqual(dpr.isnear(q1.mag2(),1),1) self.assertEqual(dpr.isnear(q2.mag2(),3),1) self.assertEqual(dpr.isnear(q3.mag2(),150),1) def test_mag(self): q1,q2,q3 = quat(1,0,0,0),quat(1,1,1,0),quat(0,2,5,11) self.assertEqual(dpr.isnear(q1.mag(),1),1) self.assertEqual(dpr.isnear(q2.mag(),math.sqrt(3)),1) self.assertEqual(dpr.isnear(q3.mag(),math.sqrt(150)),1) def test_nrm(self): q1,q2,q3 = quat(1,0,0,0),quat(1,1,1,0),quat(0,2,5,11) self.assertEqual(dpr.isnear(q1.cp().nrm().mag(),1),1) self.assertEqual(dpr.isnear(q2.cp().nrm().mag(),1),1) self.assertEqual(dpr.isnear(q3.cp().nrm().mag(),1),1) self.assertTrue(q1.cp().nrm().mag() == q1.mag()) self.assertTrue(q1.nrm() is q1) self.assertFalse(q2.cp().nrm().mag() == q2.mag()) self.assertTrue(q2.nrm() is q2) self.assertFalse(q3.cp().nrm().mag() == q3.mag()) self.assertTrue(q3.nrm() is q3) def test_flp(self): q1,q2 = quat(1,0,0,0),quat(1,1,1,0) q3,q4 = quat(0,2,5,11),quat(-1,1,1,0) self.assertFalse(q1.cp().flp() == q1) self.assertFalse(q2.cp().flp() == q2) self.assertTrue(q3.cp().flp() == q3) self.assertFalse(q4.cp().flp() == q4) self.assertTrue(q2.cp().flp() == q4) self.assertTrue(q1.flp() is q1) self.assertTrue(q2.flp() is q2) self.assertTrue(q3.flp() is q3) self.assertTrue(q4.flp() is q4) def test_uscl(self): q1,q2 = quat(1,0,0,0),quat(1,1,1,0) q3,q4 = quat(0,2,5,11),quat(0,1,2.5,5.5) self.assertTrue(q1.cp().uscl(1) == q1) self.assertFalse(q1.cp().uscl(3) == q1) self.assertTrue(q2.cp().uscl(1) == q2) self.assertFalse(q2.cp().uscl(3) == q2) self.assertTrue(q3.cp().uscl(0.5) == q4) self.assertTrue(q1.uscl(1) is q1) def test_cnj(self): q1,q2 = quat(1,0,0,0),quat(1,1,1,0) q3,q4 = quat(-1,2,5,11),quat(1,-2,-5,-11) self.assertTrue(q1.cp().cnj() == q1) self.assertTrue(q1.cnj() is q1) self.assertFalse(q2.cp().cnj() == q2) self.assertFalse(q3.cnj() == q4) def test_inv(self): a1,v1 = dpr.PI4,vec3(0,0,1) a2,v2 = dpr.threePI4,vec3(0,0,1) q1,q2 = quat(1,0,0,0).av(a1,v1),quat(1,1,1,0).av(a2,v2) self.assertEqual(q1.cp().cnj(),q1.inv()) self.assertEqual(q2.cp().cnj(),q2.inv()) self.assertFalse(q1.inv() is q1) def test_add(self): q1,q2 = quat(0.5,0.3,-2.2,3),quat(1,1.1,2,-0.5) q3 = quat(1.5,1.4,-0.2,2.5) self.assertEqual(q1.add(q2),q3) self.assertFalse(q1.add(q2) is q1) def test_sub(self): q1,q2 = quat(0.5,0.3,-2.2,3),quat(1,1.1,2,-0.5) q3 = quat(-0.5,-0.8,-4.2,3.5) self.assertEqual(q1.sub(q2),q3) self.assertFalse(q1.sub(q2) is q1) def test_mul(self): a1,v1 = dpr.PI4,vec3(0,0,1) a2,v2 = dpr.threePI4,vec3(0,0,1) q1,q2 = quat(1,0,0,0).av(a1,v1),quat(1,1,1,0).av(a2,v1) q3 = quat(0,1,0,0).av(a1+a2,v2) self.assertTrue(q1.mul(q2) == q3) self.assertFalse(q1.mul(q2) is q1) def test_rot(self): a1,v1 = dpr.PI4,vec3(0,0,1) a2,v2 = dpr.PI2,vec3(0,0,1) q1,q2 = quat(1,0,0,0).av(a1,v1),quat(1,1,1,0).av(a1,v1) q3 = quat(0,1,0,0).av(a2,v2) self.assertTrue(q1.rot(q2) == q3) self.assertTrue(q1.rot(q2) is q1) #def test_rotps(self): def test_dot(self): a1,v1 = dpr.PI4,vec3(0,0,1) a2,v2 = dpr.PI2,vec3(0,1,0) q1,q2 = quat(1,0,0,0).av(a1,v1),quat(1,1,1,0).av(a1,v1) q3 = quat(0,1,0,0).av(a2,v2) q4 = quat(0,1,0,0).av(0,v1) self.assertTrue(dpr.isnear(q1.dot(q2),q1.mag2())) self.assertFalse(dpr.isnear(q1.dot(q3),0)) self.assertTrue(dpr.isnear(q3.dot(q4),q3.w)) def test_slerp(self): a1,v1 = dpr.PI4,vec3(0,0,1) a2,v2 = dpr.PI,vec3(0,0,1) q1,q2 = quat(1,0,0,0).av(0,v1),quat(1,1,1,0).av(a1,v1) q3 = quat(0,1,0,0).av(a2,v2) self.assertEqual(q1.slerp(q3,0.25),q2) self.assertFalse(q1.slerp(q3,0.25) is q1) if __name__ == '__main__': unittest.main()
mit
Fireblend/scikit-learn
sklearn/decomposition/tests/test_pca.py
199
10949
import numpy as np from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn import datasets from sklearn.decomposition import PCA from sklearn.decomposition import RandomizedPCA from sklearn.decomposition.pca import _assess_dimension_ from sklearn.decomposition.pca import _infer_dimension_ iris = datasets.load_iris() def test_pca(): # PCA on dense arrays pca = PCA(n_components=2) X = iris.data X_r = pca.fit(X).transform(X) np.testing.assert_equal(X_r.shape[1], 2) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) pca = PCA() pca.fit(X) assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3) X_r = pca.transform(X) X_r2 = pca.fit_transform(X) assert_array_almost_equal(X_r, X_r2) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: pca.n_components = n_components pca.fit(X) cov = pca.get_covariance() precision = pca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12) def test_whitening(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 n_components = 30 rank = 50 # some low rank data with correlated features X = np.dot(rng.randn(n_samples, rank), np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features))) # the component-wise variance of the first 50 features is 3 times the # mean component-wise variance of the remaingin 30 features X[:, :50] *= 3 assert_equal(X.shape, (n_samples, n_features)) # the component-wise variance is thus highly varying: assert_almost_equal(X.std(axis=0).std(), 43.9, 1) for this_PCA, copy in [(x, y) for x in (PCA, RandomizedPCA) for y in (True, False)]: # whiten the data while projecting to the lower dim subspace X_ = X.copy() # make sure we keep an original across iterations. pca = this_PCA(n_components=n_components, whiten=True, copy=copy) # test fit_transform X_whitened = pca.fit_transform(X_.copy()) assert_equal(X_whitened.shape, (n_samples, n_components)) X_whitened2 = pca.transform(X_) assert_array_almost_equal(X_whitened, X_whitened2) assert_almost_equal(X_whitened.std(axis=0), np.ones(n_components)) assert_almost_equal(X_whitened.mean(axis=0), np.zeros(n_components)) X_ = X.copy() pca = this_PCA(n_components=n_components, whiten=False, copy=copy).fit(X_) X_unwhitened = pca.transform(X_) assert_equal(X_unwhitened.shape, (n_samples, n_components)) # in that case the output components still have varying variances assert_almost_equal(X_unwhitened.std(axis=0).std(), 74.1, 1) # we always center, so no test for non-centering. def test_explained_variance(): # Check that PCA output has unit-variance rng = np.random.RandomState(0) n_samples = 100 n_features = 80 X = rng.randn(n_samples, n_features) pca = PCA(n_components=2).fit(X) rpca = RandomizedPCA(n_components=2, random_state=42).fit(X) assert_array_almost_equal(pca.explained_variance_, rpca.explained_variance_, 1) assert_array_almost_equal(pca.explained_variance_ratio_, rpca.explained_variance_ratio_, 3) # compare to empirical variances X_pca = pca.transform(X) assert_array_almost_equal(pca.explained_variance_, np.var(X_pca, axis=0)) X_rpca = rpca.transform(X) assert_array_almost_equal(rpca.explained_variance_, np.var(X_rpca, axis=0)) def test_pca_check_projection(): # Test that the projection of data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = PCA(n_components=2).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_pca_inverse(): # Test that the projection of data can be inverted rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) pca = PCA(n_components=2).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) # same as above with whitening (approximate reconstruction) pca = PCA(n_components=2, whiten=True) pca.fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3) def test_pca_validation(): X = [[0, 1], [1, 0]] for n_components in [-1, 3]: assert_raises(ValueError, PCA(n_components).fit, X) def test_randomized_pca_check_projection(): # Test that the projection by RandomizedPCA on dense data is correct rng = np.random.RandomState(0) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) Yt = RandomizedPCA(n_components=2, random_state=0).fit(X).transform(Xt) Yt /= np.sqrt((Yt ** 2).sum()) assert_almost_equal(np.abs(Yt[0][0]), 1., 1) def test_randomized_pca_check_list(): # Test that the projection by RandomizedPCA on list data is correct X = [[1.0, 0.0], [0.0, 1.0]] X_transformed = RandomizedPCA(n_components=1, random_state=0).fit(X).transform(X) assert_equal(X_transformed.shape, (2, 1)) assert_almost_equal(X_transformed.mean(), 0.00, 2) assert_almost_equal(X_transformed.std(), 0.71, 2) def test_randomized_pca_inverse(): # Test that RandomizedPCA is inversible on dense data rng = np.random.RandomState(0) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed signal # (since the data is almost of rank n_components) pca = RandomizedPCA(n_components=2, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=2) # same as above with whitening (approximate reconstruction) pca = RandomizedPCA(n_components=2, whiten=True, random_state=0).fit(X) Y = pca.transform(X) Y_inverse = pca.inverse_transform(Y) relative_max_delta = (np.abs(X - Y_inverse) / np.abs(X).mean()).max() assert_almost_equal(relative_max_delta, 0.11, decimal=2) def test_pca_dim(): # Check automated dimensionality setting rng = np.random.RandomState(0) n, p = 100, 5 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) pca = PCA(n_components='mle').fit(X) assert_equal(pca.n_components, 'mle') assert_equal(pca.n_components_, 1) def test_infer_dim_1(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = (rng.randn(n, p) * .1 + rng.randn(n, 1) * np.array([3, 4, 5, 1, 2]) + np.array([1, 0, 7, 4, 6])) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ ll = [] for k in range(p): ll.append(_assess_dimension_(spect, k, n, p)) ll = np.array(ll) assert_greater(ll[1], ll.max() - .01 * n) def test_infer_dim_2(): # TODO: explain what this is testing # Or at least use explicit variable names... n, p = 1000, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 1) def test_infer_dim_3(): n, p = 100, 5 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5, 1, 2]) X[10:20] += np.array([6, 0, 7, 2, -1]) X[30:40] += 2 * np.array([-1, 1, -1, 1, -1]) pca = PCA(n_components=p) pca.fit(X) spect = pca.explained_variance_ assert_greater(_infer_dimension_(spect, n, p), 2) def test_infer_dim_by_explained_variance(): X = iris.data pca = PCA(n_components=0.95) pca.fit(X) assert_equal(pca.n_components, 0.95) assert_equal(pca.n_components_, 2) pca = PCA(n_components=0.01) pca.fit(X) assert_equal(pca.n_components, 0.01) assert_equal(pca.n_components_, 1) rng = np.random.RandomState(0) # more features than samples X = rng.rand(5, 20) pca = PCA(n_components=.5).fit(X) assert_equal(pca.n_components, 0.5) assert_equal(pca.n_components_, 2) def test_pca_score(): # Test that probabilistic PCA scoring yields a reasonable score n, p = 1000, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p np.testing.assert_almost_equal(ll1 / h, 1, 0) def test_pca_score2(): # Test that probabilistic PCA correctly separated different datasets n, p = 100, 3 rng = np.random.RandomState(0) X = rng.randn(n, p) * .1 + np.array([3, 4, 5]) pca = PCA(n_components=2) pca.fit(X) ll1 = pca.score(X) ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5])) assert_greater(ll1, ll2) # Test that it gives the same scores if whiten=True pca = PCA(n_components=2, whiten=True) pca.fit(X) ll2 = pca.score(X) assert_almost_equal(ll1, ll2) def test_pca_score3(): # Check that probabilistic PCA selects the right model n, p = 200, 3 rng = np.random.RandomState(0) Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])) ll = np.zeros(p) for k in range(p): pca = PCA(n_components=k) pca.fit(Xl) ll[k] = pca.score(Xt) assert_true(ll.argmax() == 1)
bsd-3-clause
deehzee/cs231n
assignment2/cs231n/classifiers/neural_net.py
2
13071
import numpy as np import matplotlib.pyplot as plt class TwoLayerNet(object): """ A two-layer fully-connected neural network. The net has an input dimension of N, a hidden layer dimension of H, and performs classification over C classes. We train the network with a softmax loss function and L2 regularization on the weight matrices. The network uses a ReLU nonlinearity after the first fully connected layer. In other words, the network has the following architecture: input - fully connected layer - ReLU - fully connected layer - - softmax The outputs of the second fully-connected layer are the scores for each class. """ def __init__(self, input_size, hidden_size, output_size, std=1e-4): """ Initialize the model. Weights are initialized to small random values and biases are initialized to zero. Weights and biases are stored in the variable self.params, which is a dictionary with the following keys: W1: First layer weights; has shape (D, H) b1: First layer biases; has shape (H,) W2: Second layer weights; has shape (H, C) b2: Second layer biases; has shape (C,) Inputs: - input_size: The dimension D of the input data. - hidden_size: The number of neurons H in the hidden layer. - output_size: The number of classes C. """ self.params = {} self.params['W1'] = std * np.random.randn( input_size, hidden_size) self.params['b1'] = np.zeros(hidden_size) self.params['W2'] = std * np.random.randn( hidden_size, output_size) self.params['b2'] = np.zeros(output_size) def loss(self, X, y=None, reg=0.0): """ Compute the loss and gradients for a two layer fully connected neural network. Inputs: - X: Input data of shape (N, D). Each X[i] is a training sample. - y: Vector of training labels. y[i] is the label for X[i], and each y[i] is an integer in the range 0 <= y[i] < C. This parameter is optional; if it is not passed then we only return scores, and if it is passed then we instead return the loss and gradients. - reg: Regularization strength. Returns: If y is None, return a matrix scores of shape (N, C) where scores[i, c] is the score for class c on input X[i]. If y is not None, instead return a tuple of: - loss: Loss (data loss and regularization loss) for this batch of training samples. - grads: Dictionary mapping parameter names to gradients of those parameters with respect to the loss function; has the same keys as self.params. """ # Unpack variables from the params dictionary W1, b1 = self.params['W1'], self.params['b1'] W2, b2 = self.params['W2'], self.params['b2'] N, D = X.shape H, C = W2.shape # Compute the forward pass scores = None ############################################################## # TODO: Perform the forward pass, computing the class scores # # for the input. Store the result in the scores variable, # # which should be an array of shape (N, C). # ############################################################## # X = Input (N x D) [input] # X1 = X.W1 + b1 (N x H) [FC] # X2 = ReLU(X1) (N x H) [ReLU] # X3 = X2.W2 + b2 (N x C) [FC] # X4 = softmax(X3) (N x C) [softmax] X1 = X.dot(W1) + b1 # output of layer1 (FC) X2 = np.maximum(0, X1) # output of layer2 (ReLU) X3 = X2.dot(W2) + b2 # output of layer3 (FC) scores = X3 ############################################################## # END OF YOUR CODE # ############################################################## # If the targets are not given then jump out, we're done if y is None: return scores # Compute the loss loss = None ############################################################## # TODO: Finish the forward pass, and compute the loss. This # # should include both the data loss and L2 regularization # # for W1 and W2. Store the result in the variable loss, # # which should be a scalar. Use the Softmax classifier loss. # # So that your results match ours, multiply the # # regularization loss by 0.5 # ############################################################## cs = -np.max(scores, axis=1, keepdims=True) # ^^ Needed for numerical stability exps = np.exp(scores + cs) expsum = np.sum(exps, axis=1, keepdims=True) probs = exps / expsum X4 = probs losses = -np.log(probs[np.arange(N), y]) loss = np.sum(losses) # Normalize loss loss /= N # Add regularization loss loss += 0.5 * reg * (np.sum(W1 * W1) + np.sum(W2 * W2)) ############################################################## # END OF YOUR CODE # ############################################################## # Backward pass: compute gradients grads = {} ############################################################## # TODO: Compute the backward pass, computing the derivatives # # of the weights and biases. Store the results in the grads # # dictionary. For example, grads['W1'] should store the # # gradient on W1, and be a matrix of same size # ############################################################## # X = Input (N x D) [input] # X1 = X.W1 + b1 (N x H) [FC] # X2 = ReLU(X1) (N x H) [ReLU] # X3 = X2.W2 + b2 (N x C) [FC] # X4 = softmax(X3) (N x C) [softmax] # dX3 := dL/dX3 (N x C) # dX3[i,j] = -(j==y[i]) + X4[i,j] indicator = np.zeros_like(X4) indicator[np.arange(N), y] += 1 dX3 = -indicator + X4 dX3 /= N # dW2 := dL/dW2 (H x C) # dW2 = X2^t . dX3 dW2 = np.dot(X2.T, dX3) # db2 := dL/db2 (1 x C) # db2 = [1, ..., 1] . dX3 db2 = np.sum(dX3, axis=0) # dX2 := dL/dX2 (N x H) # dL/dX2 = dL/dX3 . W2^t dX2 = np.dot(dX3, W2.T) # dX1 := dL/dX1 (N x H) # dX1 = (X1 > 0) * dX2 dX1 = (X1 > 0) * dX2 # dW1 := dL/dW1 (D x H) # dW1 = X^t . dX1 dW1 = np.dot(X.T, dX1) # db1 := dL/db1 (1 x H) # db1 = [1, ..., 1] . dX1 db1 = np.sum(dX1, axis=0) # Add regulariation to gradients dW1 += reg * W1 dW2 += reg * W2 # Put the results in the return dict grads = { 'W1': dW1, 'b1': db1, 'W2': dW2, 'b2': db2, } ############################################################## # END OF YOUR CODE # ############################################################## return loss, grads def train(self, X, y, X_val, y_val, learning_rate=1e-3, learning_rate_decay=0.95, reg=1e-5, num_iters=100, batch_size=200, verbose=False): """ Train this neural network using stochastic gradient descent. Inputs: - X: A numpy array of shape (N, D) giving training data. - y: A numpy array f shape (N,) giving training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - X_val: A numpy array of shape (N_val, D) giving validation data. - y_val: A numpy array of shape (N_val,) giving validation labels. - learning_rate: Scalar giving learning rate for optimization. - learning_rate_decay: Scalar giving factor used to decay the learning rate after each epoch. - reg: Scalar giving regularization strength. - num_iters: Number of steps to take when optimizing. - batch_size: Number of training examples to use per step. - verbose: boolean; if true print progress during optimization. """ num_train = X.shape[0] iterations_per_epoch = max(num_train // batch_size, 1) # Use SGD to optimize the parameters in self.model loss_history = [] train_acc_history = [] val_acc_history = [] for it in xrange(num_iters): X_batch = None y_batch = None ########################################################## # TODO: Create a random minibatch of training data and # # labels, storing them in X_batch and y_batch # # respectively. # ########################################################## batch_idxs = np.random.choice(num_train, batch_size) X_batch = X[batch_idxs] y_batch = y[batch_idxs] ########################################################## # END OF YOUR CODE # ########################################################## # Compute loss and gradients using the current minibatch loss, grads = self.loss(X_batch, y=y_batch, reg=reg) loss_history.append(loss) ########################################################## # TODO: Use the gradients in the grads dictionary to # # update the parameters of the network (stored in the # # dictionary self.params) using stochastic gradient # # descent. You'll need to use the gradients stored in # # the grads dictionary defined above. # ########################################################## self.params['W1'] -= learning_rate * grads['W1'] self.params['b1'] -= learning_rate * grads['b1'] self.params['W2'] -= learning_rate * grads['W2'] self.params['b2'] -= learning_rate * grads['b2'] ########################################################## # END OF YOUR CODE # ########################################################## if verbose and it % 100 == 0: print('iteration {}/{}: loss {:f}'.format( it, num_iters, loss)) # Every epoch, check train and val accuracy and decay # learning rate. if it % iterations_per_epoch == 0: # Check accuracy train_acc = (self.predict(X_batch) == y_batch).mean() val_acc = (self.predict(X_val) == y_val).mean() train_acc_history.append(train_acc) val_acc_history.append(val_acc) # Decay learning rate learning_rate *= learning_rate_decay return { 'loss_history': loss_history, 'train_acc_history': train_acc_history, 'val_acc_history': val_acc_history, } def predict(self, X): """ Use the trained weights of this two-layer network to predict labels for data points. For each data point we predict scores for each of the C classes, and assign each data point to the class with the highest score. Inputs: - X: A numpy array of shape (N, D) giving N D-dimensional data points to classify. Returns: - y_pred: A numpy array of shape (N,) giving predicted labels for each of the elements of X. For all i, y_pred[i] = c means that X[i] is predicted to have class c, where 0 <= c < C. """ y_pred = None ############################################################## # TODO: Implement this function; it should be VERY simple! # ############################################################## scores = self.loss(X) y_pred = np.argmax(scores, axis=1) ############################################################## # END OF YOUR CODE # ############################################################## return y_pred
mit
rvraghav93/scikit-learn
examples/calibration/plot_calibration_multiclass.py
95
6971
""" ================================================== Probability Calibration for 3-class classification ================================================== This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green: class 2, blue: class 3). The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800 training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical classifier, which was trained on 600 datapoints, with method='sigmoid' on the remaining 200 datapoints reduces the confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center. This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base estimators which would have resulted in a similar decrease in log-loss. """ print(__doc__) # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import log_loss np.random.seed(0) # Generate data X, y = make_blobs(n_samples=1000, n_features=2, random_state=42, cluster_std=5.0) X_train, y_train = X[:600], y[:600] X_valid, y_valid = X[600:800], y[600:800] X_train_valid, y_train_valid = X[:800], y[:800] X_test, y_test = X[800:], y[800:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) score = log_loss(y_test, clf_probs) # Train random forest classifier, calibrate on validation data and evaluate # on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit") sig_clf.fit(X_valid, y_valid) sig_clf_probs = sig_clf.predict_proba(X_test) sig_score = log_loss(y_test, sig_clf_probs) # Plot changes in predicted probabilities via arrows plt.figure(0) colors = ["r", "g", "b"] for i in range(clf_probs.shape[0]): plt.arrow(clf_probs[i, 0], clf_probs[i, 1], sig_clf_probs[i, 0] - clf_probs[i, 0], sig_clf_probs[i, 1] - clf_probs[i, 1], color=colors[y_test[i]], head_width=1e-2) # Plot perfect predictions plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1") plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2") plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3") # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") # Annotate points on the simplex plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)', xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.plot([1.0/3], [1.0/3], 'ko', ms=5) plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)', xy=(.5, .0), xytext=(.5, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)', xy=(.0, .5), xytext=(.1, .5), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)', xy=(.5, .5), xytext=(.6, .6), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $0$, $1$)', xy=(0, 0), xytext=(.1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($1$, $0$, $0$)', xy=(1, 0), xytext=(1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $1$, $0$)', xy=(0, 1), xytext=(.1, 1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') # Add grid plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Change of predicted probabilities after sigmoid calibration") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.legend(loc="best") print("Log-loss of") print(" * uncalibrated classifier trained on 800 datapoints: %.3f " % score) print(" * classifier trained on 600 datapoints and calibrated on " "200 datapoint: %.3f" % sig_score) # Illustrate calibrator plt.figure(1) # generate grid over 2-simplex p1d = np.linspace(0, 1, 20) p0, p1 = np.meshgrid(p1d, p1d) p2 = 1 - p0 - p1 p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()] p = p[p[:, 2] >= 0] calibrated_classifier = sig_clf.calibrated_classifiers_[0] prediction = np.vstack([calibrator.predict(this_p) for calibrator, this_p in zip(calibrated_classifier.calibrators_, p.T)]).T prediction /= prediction.sum(axis=1)[:, None] # Plot modifications of calibrator for i in range(prediction.shape[0]): plt.arrow(p[i, 0], p[i, 1], prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1], head_width=1e-2, color=colors[np.argmax(p[i])]) # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Illustration of sigmoid calibrator") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.show()
bsd-3-clause
xiaoxiamii/scikit-learn
examples/preprocessing/plot_function_transformer.py
161
1949
""" ========================================================= Using FunctionTransformer to select columns ========================================================= Shows how to use a function transformer in a pipeline. If you know your dataset's first principle component is irrelevant for a classification task, you can use the FunctionTransformer to select all but the first column of the PCA transformed data. """ import matplotlib.pyplot as plt import numpy as np from sklearn.cross_validation import train_test_split from sklearn.decomposition import PCA from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer def _generate_vector(shift=0.5, noise=15): return np.arange(1000) + (np.random.rand(1000) - shift) * noise def generate_dataset(): """ This dataset is two lines with a slope ~ 1, where one has a y offset of ~100 """ return np.vstack(( np.vstack(( _generate_vector(), _generate_vector() + 100, )).T, np.vstack(( _generate_vector(), _generate_vector(), )).T, )), np.hstack((np.zeros(1000), np.ones(1000))) def all_but_first_column(X): return X[:, 1:] def drop_first_component(X, y): """ Create a pipeline with PCA and the column selector and use it to transform the dataset. """ pipeline = make_pipeline( PCA(), FunctionTransformer(all_but_first_column), ) X_train, X_test, y_train, y_test = train_test_split(X, y) pipeline.fit(X_train, y_train) return pipeline.transform(X_test), y_test if __name__ == '__main__': X, y = generate_dataset() plt.scatter(X[:, 0], X[:, 1], c=y, s=50) plt.show() X_transformed, y_transformed = drop_first_component(*generate_dataset()) plt.scatter( X_transformed[:, 0], np.zeros(len(X_transformed)), c=y_transformed, s=50, ) plt.show()
bsd-3-clause
PepSalehi/scipy_2015_sklearn_tutorial
notebooks/figures/plot_digits_datasets.py
19
2750
# Taken from example in scikit-learn examples # Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Gael Varoquaux # License: BSD 3 clause (C) INRIA 2011 import numpy as np import matplotlib.pyplot as plt from matplotlib import offsetbox from sklearn import (manifold, datasets, decomposition, ensemble, lda, random_projection) def digits_plot(): digits = datasets.load_digits(n_class=6) n_digits = 500 X = digits.data[:n_digits] y = digits.target[:n_digits] n_samples, n_features = X.shape n_neighbors = 30 def plot_embedding(X, title=None): x_min, x_max = np.min(X, 0), np.max(X, 0) X = (X - x_min) / (x_max - x_min) plt.figure() ax = plt.subplot(111) for i in range(X.shape[0]): plt.text(X[i, 0], X[i, 1], str(digits.target[i]), color=plt.cm.Set1(y[i] / 10.), fontdict={'weight': 'bold', 'size': 9}) if hasattr(offsetbox, 'AnnotationBbox'): # only print thumbnails with matplotlib > 1.0 shown_images = np.array([[1., 1.]]) # just something big for i in range(X.shape[0]): dist = np.sum((X[i] - shown_images) ** 2, 1) if np.min(dist) < 1e5: # don't show points that are too close # set a high threshold to basically turn this off continue shown_images = np.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]) ax.add_artist(imagebox) plt.xticks([]), plt.yticks([]) if title is not None: plt.title(title) n_img_per_row = 10 img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row)) for i in range(n_img_per_row): ix = 10 * i + 1 for j in range(n_img_per_row): iy = 10 * j + 1 img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8)) plt.imshow(img, cmap=plt.cm.binary) plt.xticks([]) plt.yticks([]) plt.title('A selection from the 64-dimensional digits dataset') print("Computing PCA projection") pca = decomposition.PCA(n_components=2).fit(X) X_pca = pca.transform(X) plot_embedding(X_pca, "Principal Components projection of the digits") plt.figure() plt.matshow(pca.components_[0, :].reshape(8, 8), cmap="gray") plt.axis('off') plt.figure() plt.matshow(pca.components_[1, :].reshape(8, 8), cmap="gray") plt.axis('off') plt.show()
cc0-1.0
pkruskal/scikit-learn
examples/cluster/plot_agglomerative_clustering_metrics.py
402
4492
""" Agglomerative clustering with different metrics =============================================== Demonstrates the effect of different metrics on the hierarchical clustering. The example is engineered to show the effect of the choice of different metrics. It is applied to waveforms, which can be seen as high-dimensional vector. Indeed, the difference between metrics is usually more pronounced in high dimension (in particular for euclidean and cityblock). We generate data from three groups of waveforms. Two of the waveforms (waveform 1 and waveform 2) are proportional one to the other. The cosine distance is invariant to a scaling of the data, as a result, it cannot distinguish these two waveforms. Thus even with no noise, clustering using this distance will not separate out waveform 1 and 2. We add observation noise to these waveforms. We generate very sparse noise: only 6% of the time points contain noise. As a result, the l1 norm of this noise (ie "cityblock" distance) is much smaller than it's l2 norm ("euclidean" distance). This can be seen on the inter-class distance matrices: the values on the diagonal, that characterize the spread of the class, are much bigger for the Euclidean distance than for the cityblock distance. When we apply clustering to the data, we find that the clustering reflects what was in the distance matrices. Indeed, for the Euclidean distance, the classes are ill-separated because of the noise, and thus the clustering does not separate the waveforms. For the cityblock distance, the separation is good and the waveform classes are recovered. Finally, the cosine distance does not separate at all waveform 1 and 2, thus the clustering puts them in the same cluster. """ # Author: Gael Varoquaux # License: BSD 3-Clause or CC-0 import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import AgglomerativeClustering from sklearn.metrics import pairwise_distances np.random.seed(0) # Generate waveform data n_features = 2000 t = np.pi * np.linspace(0, 1, n_features) def sqr(x): return np.sign(np.cos(x)) X = list() y = list() for i, (phi, a) in enumerate([(.5, .15), (.5, .6), (.3, .2)]): for _ in range(30): phase_noise = .01 * np.random.normal() amplitude_noise = .04 * np.random.normal() additional_noise = 1 - 2 * np.random.rand(n_features) # Make the noise sparse additional_noise[np.abs(additional_noise) < .997] = 0 X.append(12 * ((a + amplitude_noise) * (sqr(6 * (t + phi + phase_noise))) + additional_noise)) y.append(i) X = np.array(X) y = np.array(y) n_clusters = 3 labels = ('Waveform 1', 'Waveform 2', 'Waveform 3') # Plot the ground-truth labelling plt.figure() plt.axes([0, 0, 1, 1]) for l, c, n in zip(range(n_clusters), 'rgb', labels): lines = plt.plot(X[y == l].T, c=c, alpha=.5) lines[0].set_label(n) plt.legend(loc='best') plt.axis('tight') plt.axis('off') plt.suptitle("Ground truth", size=20) # Plot the distances for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): avg_dist = np.zeros((n_clusters, n_clusters)) plt.figure(figsize=(5, 4.5)) for i in range(n_clusters): for j in range(n_clusters): avg_dist[i, j] = pairwise_distances(X[y == i], X[y == j], metric=metric).mean() avg_dist /= avg_dist.max() for i in range(n_clusters): for j in range(n_clusters): plt.text(i, j, '%5.3f' % avg_dist[i, j], verticalalignment='center', horizontalalignment='center') plt.imshow(avg_dist, interpolation='nearest', cmap=plt.cm.gnuplot2, vmin=0) plt.xticks(range(n_clusters), labels, rotation=45) plt.yticks(range(n_clusters), labels) plt.colorbar() plt.suptitle("Interclass %s distances" % metric, size=18) plt.tight_layout() # Plot clustering results for index, metric in enumerate(["cosine", "euclidean", "cityblock"]): model = AgglomerativeClustering(n_clusters=n_clusters, linkage="average", affinity=metric) model.fit(X) plt.figure() plt.axes([0, 0, 1, 1]) for l, c in zip(np.arange(model.n_clusters), 'rgbk'): plt.plot(X[model.labels_ == l].T, c=c, alpha=.5) plt.axis('tight') plt.axis('off') plt.suptitle("AgglomerativeClustering(affinity=%s)" % metric, size=20) plt.show()
bsd-3-clause
themrmax/scikit-learn
sklearn/ensemble/tests/test_weight_boosting.py
28
18031
"""Testing for the boost module (sklearn.ensemble.boost).""" import numpy as np from sklearn.utils.testing import assert_array_equal, assert_array_less from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal, assert_true, assert_greater from sklearn.utils.testing import assert_raises, assert_raises_regexp from sklearn.base import BaseEstimator from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import weight_boosting from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import coo_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.svm import SVC, SVR from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.utils import shuffle from sklearn import datasets # Common random state rng = np.random.RandomState(0) # Toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y_class = ["foo", "foo", "foo", 1, 1, 1] # test string class labels y_regr = [-1, -1, -1, 1, 1, 1] T = [[-1, -1], [2, 2], [3, 2]] y_t_class = ["foo", 1, 1] y_t_regr = [-1, 1, 1] # Load the iris dataset and randomly permute it iris = datasets.load_iris() perm = rng.permutation(iris.target.size) iris.data, iris.target = shuffle(iris.data, iris.target, random_state=rng) # Load the boston dataset and randomly permute it boston = datasets.load_boston() boston.data, boston.target = shuffle(boston.data, boston.target, random_state=rng) def test_samme_proba(): # Test the `_samme_proba` helper function. # Define some example (bad) `predict_proba` output. probs = np.array([[1, 1e-6, 0], [0.19, 0.6, 0.2], [-999, 0.51, 0.5], [1e-6, 1, 1e-9]]) probs /= np.abs(probs.sum(axis=1))[:, np.newaxis] # _samme_proba calls estimator.predict_proba. # Make a mock object so I can control what gets returned. class MockEstimator(object): def predict_proba(self, X): assert_array_equal(X.shape, probs.shape) return probs mock = MockEstimator() samme_proba = weight_boosting._samme_proba(mock, 3, np.ones_like(probs)) assert_array_equal(samme_proba.shape, probs.shape) assert_true(np.isfinite(samme_proba).all()) # Make sure that the correct elements come out as smallest -- # `_samme_proba` should preserve the ordering in each example. assert_array_equal(np.argmin(samme_proba, axis=1), [2, 0, 0, 2]) assert_array_equal(np.argmax(samme_proba, axis=1), [0, 1, 1, 1]) def test_oneclass_adaboost_proba(): # Test predict_proba robustness for one class label input. # In response to issue #7501 # https://github.com/scikit-learn/scikit-learn/issues/7501 y_t = np.ones(len(X)) clf = AdaBoostClassifier().fit(X, y_t) assert_array_equal(clf.predict_proba(X), np.ones((len(X), 1))) def test_classification_toy(): # Check classification on a toy dataset. for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, random_state=0) clf.fit(X, y_class) assert_array_equal(clf.predict(T), y_t_class) assert_array_equal(np.unique(np.asarray(y_t_class)), clf.classes_) assert_equal(clf.predict_proba(T).shape, (len(T), 2)) assert_equal(clf.decision_function(T).shape, (len(T),)) def test_regression_toy(): # Check classification on a toy dataset. clf = AdaBoostRegressor(random_state=0) clf.fit(X, y_regr) assert_array_equal(clf.predict(T), y_t_regr) def test_iris(): # Check consistency on dataset iris. classes = np.unique(iris.target) clf_samme = prob_samme = None for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(iris.data, iris.target) assert_array_equal(classes, clf.classes_) proba = clf.predict_proba(iris.data) if alg == "SAMME": clf_samme = clf prob_samme = proba assert_equal(proba.shape[1], len(classes)) assert_equal(clf.decision_function(iris.data).shape[1], len(classes)) score = clf.score(iris.data, iris.target) assert score > 0.9, "Failed with algorithm %s and score = %f" % \ (alg, score) # Check we used multiple estimators assert_greater(len(clf.estimators_), 1) # Check for distinct random states (see issue #7408) assert_equal(len(set(est.random_state for est in clf.estimators_)), len(clf.estimators_)) # Somewhat hacky regression test: prior to # ae7adc880d624615a34bafdb1d75ef67051b8200, # predict_proba returned SAMME.R values for SAMME. clf_samme.algorithm = "SAMME.R" assert_array_less(0, np.abs(clf_samme.predict_proba(iris.data) - prob_samme)) def test_boston(): # Check consistency on dataset boston house prices. reg = AdaBoostRegressor(random_state=0) reg.fit(boston.data, boston.target) score = reg.score(boston.data, boston.target) assert score > 0.85 # Check we used multiple estimators assert_true(len(reg.estimators_) > 1) # Check for distinct random states (see issue #7408) assert_equal(len(set(est.random_state for est in reg.estimators_)), len(reg.estimators_)) def test_staged_predict(): # Check staged predictions. rng = np.random.RandomState(0) iris_weights = rng.randint(10, size=iris.target.shape) boston_weights = rng.randint(10, size=boston.target.shape) # AdaBoost classification for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg, n_estimators=10) clf.fit(iris.data, iris.target, sample_weight=iris_weights) predictions = clf.predict(iris.data) staged_predictions = [p for p in clf.staged_predict(iris.data)] proba = clf.predict_proba(iris.data) staged_probas = [p for p in clf.staged_predict_proba(iris.data)] score = clf.score(iris.data, iris.target, sample_weight=iris_weights) staged_scores = [ s for s in clf.staged_score( iris.data, iris.target, sample_weight=iris_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_probas), 10) assert_array_almost_equal(proba, staged_probas[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) # AdaBoost regression clf = AdaBoostRegressor(n_estimators=10, random_state=0) clf.fit(boston.data, boston.target, sample_weight=boston_weights) predictions = clf.predict(boston.data) staged_predictions = [p for p in clf.staged_predict(boston.data)] score = clf.score(boston.data, boston.target, sample_weight=boston_weights) staged_scores = [ s for s in clf.staged_score( boston.data, boston.target, sample_weight=boston_weights)] assert_equal(len(staged_predictions), 10) assert_array_almost_equal(predictions, staged_predictions[-1]) assert_equal(len(staged_scores), 10) assert_array_almost_equal(score, staged_scores[-1]) def test_gridsearch(): # Check that base trees can be grid-searched. # AdaBoost classification boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier()) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2), 'algorithm': ('SAMME', 'SAMME.R')} clf = GridSearchCV(boost, parameters) clf.fit(iris.data, iris.target) # AdaBoost regression boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(), random_state=0) parameters = {'n_estimators': (1, 2), 'base_estimator__max_depth': (1, 2)} clf = GridSearchCV(boost, parameters) clf.fit(boston.data, boston.target) def test_pickle(): # Check pickability. import pickle # Adaboost classifier for alg in ['SAMME', 'SAMME.R']: obj = AdaBoostClassifier(algorithm=alg) obj.fit(iris.data, iris.target) score = obj.score(iris.data, iris.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(iris.data, iris.target) assert_equal(score, score2) # Adaboost regressor obj = AdaBoostRegressor(random_state=0) obj.fit(boston.data, boston.target) score = obj.score(boston.data, boston.target) s = pickle.dumps(obj) obj2 = pickle.loads(s) assert_equal(type(obj2), obj.__class__) score2 = obj2.score(boston.data, boston.target) assert_equal(score, score2) def test_importances(): # Check variable importances. X, y = datasets.make_classification(n_samples=2000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, shuffle=False, random_state=1) for alg in ['SAMME', 'SAMME.R']: clf = AdaBoostClassifier(algorithm=alg) clf.fit(X, y) importances = clf.feature_importances_ assert_equal(importances.shape[0], 10) assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(), True) def test_error(): # Test that it gives proper exception on deficient input. assert_raises(ValueError, AdaBoostClassifier(learning_rate=-1).fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier(algorithm="foo").fit, X, y_class) assert_raises(ValueError, AdaBoostClassifier().fit, X, y_class, sample_weight=np.asarray([-1])) def test_base_estimator(): # Test different base estimators. from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # XXX doesn't work with y_class because RF doesn't support classes_ # Shouldn't AdaBoost run a LabelBinarizer? clf = AdaBoostClassifier(RandomForestClassifier()) clf.fit(X, y_regr) clf = AdaBoostClassifier(SVC(), algorithm="SAMME") clf.fit(X, y_class) from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0) clf.fit(X, y_regr) clf = AdaBoostRegressor(SVR(), random_state=0) clf.fit(X, y_regr) # Check that an empty discrete ensemble fails in fit, not predict. X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]] y_fail = ["foo", "bar", 1, 2] clf = AdaBoostClassifier(SVC(), algorithm="SAMME") assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail, y_fail) def test_sample_weight_missing(): from sklearn.linear_model import LogisticRegression from sklearn.cluster import KMeans clf = AdaBoostClassifier(KMeans(), algorithm="SAMME") assert_raises(ValueError, clf.fit, X, y_regr) clf = AdaBoostRegressor(KMeans()) assert_raises(ValueError, clf.fit, X, y_regr) def test_sparse_classification(): # Check classification with sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVC, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_multilabel_classification(n_classes=1, n_samples=15, n_features=5, random_state=42) # Flatten y to a 1d array y = np.ravel(y) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = AdaBoostClassifier( base_estimator=CustomSVC(probability=True), random_state=1, algorithm="SAMME" ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # decision_function sparse_results = sparse_classifier.decision_function(X_test_sparse) dense_results = dense_classifier.decision_function(X_test) assert_array_equal(sparse_results, dense_results) # predict_log_proba sparse_results = sparse_classifier.predict_log_proba(X_test_sparse) dense_results = dense_classifier.predict_log_proba(X_test) assert_array_equal(sparse_results, dense_results) # predict_proba sparse_results = sparse_classifier.predict_proba(X_test_sparse) dense_results = dense_classifier.predict_proba(X_test) assert_array_equal(sparse_results, dense_results) # score sparse_results = sparse_classifier.score(X_test_sparse, y_test) dense_results = dense_classifier.score(X_test, y_test) assert_array_equal(sparse_results, dense_results) # staged_decision_function sparse_results = sparse_classifier.staged_decision_function( X_test_sparse) dense_results = dense_classifier.staged_decision_function(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_predict_proba sparse_results = sparse_classifier.staged_predict_proba(X_test_sparse) dense_results = dense_classifier.staged_predict_proba(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # staged_score sparse_results = sparse_classifier.staged_score(X_test_sparse, y_test) dense_results = dense_classifier.staged_score(X_test, y_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) # Verify sparsity of data is maintained during training types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sparse_regression(): # Check regression with sparse input. class CustomSVR(SVR): """SVR variant that records the nature of the training set.""" def fit(self, X, y, sample_weight=None): """Modification on fit caries data type for later verification.""" super(CustomSVR, self).fit(X, y, sample_weight=sample_weight) self.data_type_ = type(X) return self X, y = datasets.make_regression(n_samples=15, n_features=50, n_targets=1, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) for sparse_format in [csc_matrix, csr_matrix, lil_matrix, coo_matrix, dok_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) # Trained on sparse format sparse_classifier = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train_sparse, y_train) # Trained on dense format dense_classifier = dense_results = AdaBoostRegressor( base_estimator=CustomSVR(), random_state=1 ).fit(X_train, y_train) # predict sparse_results = sparse_classifier.predict(X_test_sparse) dense_results = dense_classifier.predict(X_test) assert_array_equal(sparse_results, dense_results) # staged_predict sparse_results = sparse_classifier.staged_predict(X_test_sparse) dense_results = dense_classifier.staged_predict(X_test) for sprase_res, dense_res in zip(sparse_results, dense_results): assert_array_equal(sprase_res, dense_res) types = [i.data_type_ for i in sparse_classifier.estimators_] assert all([(t == csc_matrix or t == csr_matrix) for t in types]) def test_sample_weight_adaboost_regressor(): """ AdaBoostRegressor should work without sample_weights in the base estimator The random weighted sampling is done internally in the _boost method in AdaBoostRegressor. """ class DummyEstimator(BaseEstimator): def fit(self, X, y): pass def predict(self, X): return np.zeros(X.shape[0]) boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3) boost.fit(X, y_regr) assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
bsd-3-clause
stemblab/intuitive-cs
py/recon.py
2
4493
#!puzlet import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import proj3d # Plot vector as line segement will ball at one end. def plot_vec(start,end,label,color): ax.plot([start[0],end[0]],[start[1],end[1]],[start[2],end[2]], label=label,color=color,linewidth=2) ax.scatter(end[0],end[1],end[2],marker='o',color=color) def set_axes(): ax.set_autoscale_on(False) ax.set_xlabel(r'$x_0$',fontsize=20) ax.set_ylabel(r'$x_1$',fontsize=20) ax.set_zlabel(r'$x_2$',fontsize=20) ax.set_xlim(-0.8, 1.2) ax.set_ylim(-0.2, 1.2) ax.set_zlim(0, 1.4) ax.set_xticks([-0.5,0,0.5,1]) ax.set_yticks([0,0.5,1]) ax.set_zticks([0,0.5,1]) fig = plt.figure() ax = fig.gca(projection='3d') set_axes() origin=[0,0,0] plot_vec(origin,[1,0,0],label='constant',color='blue') plot_vec(origin,[0,1,0],label='line',color='green') plot_vec(origin,[0,0,1],label='parabola',color='red') ax.legend() fig.savefig("recon1_1.svg", transparent=True, bbox_inches='tight', pad_inches=0.15) ax.text(1.3,0,0.9, r'$Ax=b$', backgroundcolor='#fcffc9', ha='center', va='bottom', size=18, zorder=10) # Ax=b A = np.array([[1, -1, 1], [1, 2, 4]]) b = np.array([1, 4]) # planes x0 = np.arange(-1, 1, 0.1) x1 = np.arange(-1, 1, 0.1) xx0, yy0 = np.meshgrid(x0, x1) ax.plot_surface(xx0, yy0, 1-xx0+yy0, rstride=2, cstride=2, alpha=0.1, color='y') ax.plot_surface(xx0, yy0, 1-xx0/4.-yy0/2., rstride=2, cstride=2, alpha=0.1,color='m') # solutuon to Ax=b pinvA = np.linalg.pinv(A) U = np.array([0,0,1]) # np.dot(pinvA,b) # One solution w = np.array([1.5, 0, 0]) # Arbitrary vector to get another solution N = np.dot((np.eye(3) - np.dot(pinvA,A)),w) ax.plot(*zip(U+N*2/3.,U-N*4/3.),color='k',linewidth=3, label=r'$x$ (not sparse)') ax.legend() fig.savefig("recon1_2.svg", transparent=True, bbox_inches='tight', pad_inches=0.15) ax.text(0,0,1.2, r'1-sparse $x$', backgroundcolor='#fcffc9', ha='center', va='bottom', size=16, zorder=10) ax.scatter(0,0,1,marker='*',s=400,color='r',label=r'$x$ (1-sparse)') ax.legend() fig.savefig("recon1_3.svg", transparent=True, bbox_inches='tight', pad_inches=0.15) def plot_norms(l, h, U): Nl = len(l) f, axarr = plt.subplots(Nl, 1) def plot(l, n): ax.set_title('$l_%s$-norm' % str(n)) ax.scatter(np.array(h), np.array(l)) # Show U value for minimum of norm #m = np.argmin(l) #l_min = l[m] #h_min = h[m] #U_min = U[m] #ax_lim = ax.axis() #offset = -0.05*(ax_lim[3] - ax_lim[2]) #v = lambda d: '{0:.2f}'.format(U_min[d]) #label = "U=[%s, %s, %s]" % (v(0), v(1), v(2)) #ax.text(h_min, l_min+offset, label, va='top') for n in range(Nl): ax = axarr[n] plot(l[n], n) plt.tight_layout() Np = 201 # number of points to plot (Must be odd to include 0!) h = np.array(np.linspace(-1, 1, Np)) # null vector multiplier Y=U.reshape(3,1)+np.dot(N.reshape(3,1),h.reshape(1,Np)) # 3xNp array of x candidates l=np.zeros((3,Np)) for n in range(3): l[n,:] = np.apply_along_axis(np.linalg.norm, 0, Y, n) # See: http://matplotlib.org/examples/axes_grid/demo_parasite_axes2.html from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA plt.clf() host = host_subplot(111, axes_class=AA.Axes) plt.subplots_adjust(right=0.75) par1 = host.twinx() par2 = host.twinx() offset = 60 new_fixed_axis = par2.get_grid_helper().new_fixed_axis par2.axis["right"] = new_fixed_axis(loc="right", axes=par2, offset=(offset, 0)) par2.axis["right"].toggle(all=True) host.set_xlim(-1, 1) host.set_ylim(1, 3.5) host.set_xlabel("Distance from Sparse Sorution ($d$)") host.set_ylabel(r"$\||x\||_0$") par1.set_ylabel(r"$\||x\||_1$") par2.set_ylabel(r"$\||x\||_2$") p1, = host.plot(h, l[0], label=r"$\||x\||_0$") p2, = par1.plot(h, l[1], label=r"$\||x\||_1$") p3, = par2.plot(h, l[2], label=r"$\||x\||_2$") par1.set_ylim(1, 3) par2.set_ylim(0, 2) host.legend() host.axis["left"].label.set_color(p1.get_color()) host.axis["left"].label.set_fontsize(20) par1.axis["right"].label.set_color(p2.get_color()) par1.axis["right"].label.set_fontsize(20) par2.axis["right"].label.set_color(p3.get_color()) par2.axis["right"].label.set_fontsize(20) fig.savefig("norms.svg", transparent=True, bbox_inches='tight', pad_inches=0.15)
mit
Crompulence/cpl-library
examples/interactive_plot_example/python/CFD_recv_and_plot_grid_interactive.py
1
3724
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider from mpi4py import MPI from cplpy import CPL from draw_grid import draw_grid #initialise MPI and CPL comm = MPI.COMM_WORLD CPL = CPL() CFD_COMM = CPL.init(CPL.CFD_REALM) nprocs_realm = CFD_COMM.Get_size() # Parameters of the cpu topology (cartesian grid) npxyz = np.array([1, 1, 1], order='F', dtype=np.int32) NProcs = np.product(npxyz) xyzL = np.array([10.0, 10.0, 10.0], order='F', dtype=np.float64) xyz_orig = np.array([0.0, 0.0, 0.0], order='F', dtype=np.float64) ncxyz = np.array([16, 6, 16], order='F', dtype=np.int32) if (nprocs_realm != NProcs): print("Non-coherent number of processes in CFD ", nprocs_realm, " no equal to ", npxyz[0], " X ", npxyz[1], " X ", npxyz[2]) MPI.Abort(errorcode=1) #Setup coupled simulation cart_comm = CFD_COMM.Create_cart([npxyz[0], npxyz[1], npxyz[2]]) CPL.setup_cfd(cart_comm, xyzL, xyz_orig, ncxyz) #Plot output fig, ax = plt.subplots(1,1) plt.subplots_adjust(bottom=0.25) axslider = plt.axes([0.25, 0.1, 0.65, 0.03]) freq = 1. sfreq = Slider(axslider, 'Freq', 0.1, 2.0, valinit=freq) def update(val): freq = sfreq.val global freq print("CHANGED", freq) sfreq.on_changed(update) plt.ion() plt.show() # === Plot both grids === dx = CPL.get("xl_cfd")/float(CPL.get("ncx")) dy = CPL.get("yl_cfd")/float(CPL.get("ncy")) dz = CPL.get("zl_cfd")/float(CPL.get("ncz")) ioverlap = (CPL.get("icmax_olap")-CPL.get("icmin_olap")+1) joverlap = (CPL.get("jcmax_olap")-CPL.get("jcmin_olap")+1) koverlap = (CPL.get("kcmax_olap")-CPL.get("kcmin_olap")+1) xoverlap = ioverlap*dx yoverlap = joverlap*dy zoverlap = koverlap*dz for time in range(100000): # recv data to plot olap_limits = CPL.get_olap_limits() portion = CPL.my_proc_portion(olap_limits) [ncxl, ncyl, nczl] = CPL.get_no_cells(portion) recv_array = np.zeros((1, ncxl, ncyl, nczl), order='F', dtype=np.float64) recv_array, ierr = CPL.recv(recv_array, olap_limits) #Plot CFD and coupler Grid draw_grid(ax, nx=CPL.get("ncx"), ny=CPL.get("ncy"), nz=CPL.get("ncz"), px=CPL.get("npx_cfd"), py=CPL.get("npy_cfd"), pz=CPL.get("npz_cfd"), xmin=CPL.get("x_orig_cfd"), ymin=CPL.get("y_orig_cfd"), zmin=CPL.get("z_orig_cfd"), xmax=(CPL.get("icmax_olap")+1)*dx, ymax=CPL.get("yl_cfd"), zmax=(CPL.get("kcmax_olap")+1)*dz, lc = 'r', label='CFD') #Plot MD domain draw_grid(ax, nx=1, ny=1, nz=1, px=CPL.get("npx_md"), py=CPL.get("npy_md"), pz=CPL.get("npz_md"), xmin=CPL.get("x_orig_md"), ymin=-CPL.get("yl_md")+yoverlap, zmin=CPL.get("z_orig_md"), xmax=(CPL.get("icmax_olap")+1)*dx, ymax=yoverlap, zmax=(CPL.get("kcmax_olap")+1)*dz, label='MD') #Plot x component on grid x = np.linspace(CPL.get("x_orig_cfd")+.5*dx,xoverlap-.5*dx,ioverlap) z = np.linspace(CPL.get("z_orig_cfd")+.5*dz,zoverlap-.5*dz,koverlap) for j in range(joverlap): ax.plot(x, 0.5*dy*(recv_array[0,:,j,0]+1.+2*j), 's-') ax.set_xlabel('$x$') ax.set_ylabel('$y$') print(time, freq) plt.pause(0.1) ax.cla() # send data to update olap_limits = CPL.get_olap_limits() portion = CPL.my_proc_portion(olap_limits) [ncxl, ncyl, nczl] = CPL.get_no_cells(portion) send_array = freq*np.ones((1, ncxl, ncyl, nczl), order='F', dtype=np.float64) CPL.send(send_array, olap_limits) CPL.finalize() MPI.Finalize()
gpl-3.0
mfjb/scikit-learn
sklearn/decomposition/tests/test_nmf.py
130
6059
import numpy as np from scipy import linalg from sklearn.decomposition import nmf from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import raises from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less random_state = np.random.mtrand.RandomState(0) @raises(ValueError) def test_initialize_nn_input(): # Test NNDSVD behaviour on negative input nmf._initialize_nmf(-np.ones((2, 2)), 2) def test_initialize_nn_output(): # Test that NNDSVD does not return negative values data = np.abs(random_state.randn(10, 10)) for var in (None, 'a', 'ar'): W, H = nmf._initialize_nmf(data, 10, random_state=0) assert_false((W < 0).any() or (H < 0).any()) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. A = np.abs(random_state.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10) error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert_true(error <= sdev) def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'a' and 'ar' differ from basic NNDSVD only where # the basic version has zeros. data = np.abs(random_state.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, variant=None) Wa, Ha = nmf._initialize_nmf(data, 10, variant='a') War, Har = nmf._initialize_nmf(data, 10, variant='ar', random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_true(np.allclose(evl[ref != 0], ref[ref != 0])) @raises(ValueError) def test_projgrad_nmf_fit_nn_input(): # Test model fit behaviour on negative input A = -np.ones((2, 2)) m = nmf.ProjectedGradientNMF(n_components=2, init=None, random_state=0) m.fit(A) def test_projgrad_nmf_fit_nn_output(): # Test that the decomposition does not contain negative values A = np.c_[5 * np.ones(5) - np.arange(1, 6), 5 * np.ones(5) + np.arange(1, 6)] for init in (None, 'nndsvd', 'nndsvda', 'nndsvdar'): model = nmf.ProjectedGradientNMF(n_components=2, init=init, random_state=0) transf = model.fit_transform(A) assert_false((model.components_ < 0).any() or (transf < 0).any()) def test_projgrad_nmf_fit_close(): # Test that the fit is not too far away pnmf = nmf.ProjectedGradientNMF(5, init='nndsvda', random_state=0) X = np.abs(random_state.randn(6, 5)) assert_less(pnmf.fit(X).reconstruction_err_, 0.05) def test_nls_nn_output(): # Test that NLS solver doesn't return negative values A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, -A), A.T, A, 0.001, 100) assert_false((Ap < 0).any()) def test_nls_close(): # Test that the NLS results should be close A = np.arange(1, 5).reshape(1, -1) Ap, _, _ = nmf._nls_subproblem(np.dot(A.T, A), A.T, np.zeros_like(A), 0.001, 100) assert_true((np.abs(Ap - A) < 0.01).all()) def test_projgrad_nmf_transform(): # Test that NMF.transform returns close values # (transform uses scipy.optimize.nnls for now) A = np.abs(random_state.randn(6, 5)) m = nmf.ProjectedGradientNMF(n_components=5, init='nndsvd', random_state=0) transf = m.fit_transform(A) assert_true(np.allclose(transf, m.transform(A), atol=1e-2, rtol=0)) def test_n_components_greater_n_features(): # Smoke test for the case of more components than features. A = np.abs(random_state.randn(30, 10)) nmf.ProjectedGradientNMF(n_components=15, sparseness='data', random_state=0).fit(A) def test_projgrad_nmf_sparseness(): # Test sparseness # Test that sparsity constraints actually increase sparseness in the # part where they are applied. A = np.abs(random_state.randn(10, 10)) m = nmf.ProjectedGradientNMF(n_components=5, random_state=0).fit(A) data_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='data', random_state=0).fit(A).data_sparseness_ comp_sp = nmf.ProjectedGradientNMF(n_components=5, sparseness='components', random_state=0).fit(A).comp_sparseness_ assert_greater(data_sp, m.data_sparseness_) assert_greater(comp_sp, m.comp_sparseness_) def test_sparse_input(): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix A = np.abs(random_state.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 T1 = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999).fit_transform(A) A_sparse = csc_matrix(A) pg_nmf = nmf.ProjectedGradientNMF(n_components=5, init='random', random_state=999) T2 = pg_nmf.fit_transform(A_sparse) assert_array_almost_equal(pg_nmf.reconstruction_err_, linalg.norm(A - np.dot(T2, pg_nmf.components_), 'fro')) assert_array_almost_equal(T1, T2) # same with sparseness T2 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A_sparse) T1 = nmf.ProjectedGradientNMF( n_components=5, init='random', sparseness='data', random_state=999).fit_transform(A) def test_sparse_transform(): # Test that transform works on sparse data. Issue #2124 from scipy.sparse import csc_matrix A = np.abs(random_state.randn(5, 4)) A[A > 1.0] = 0 A = csc_matrix(A) model = nmf.NMF(random_state=42) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) # This solver seems pretty inconsistent assert_array_almost_equal(A_fit_tr, A_tr, decimal=2)
bsd-3-clause
meprogrammerguy/pyMadness
scrape_stats.py
1
2098
#!/usr/bin/env python3 from urllib.request import urlopen from bs4 import BeautifulSoup import pandas as pd import html5lib import pdb from collections import OrderedDict import json import csv import contextlib url = "https://kenpom.com/index.php" #url = "https://kenpom.com/index.php?y=2017" #past year testing override print ("Scrape Statistics Tool") print ("**************************") print ("data is from {0}".format(url)) print ("**************************") with contextlib.closing(urlopen(url)) as page: soup = BeautifulSoup(page, "html5lib") ratings_table=soup.find('table', id='ratings-table') IDX=[] A=[] B=[] C=[] D=[] E=[] F=[] G=[] H=[] I=[] J=[] K=[] L=[] M=[] index=0 for row in ratings_table.findAll("tr"): col=row.findAll('td') if len(col)>0: index+=1 IDX.append(index) A.append(col[0].find(text=True)) B.append(col[1].find(text=True)) C.append(col[2].find(text=True)) D.append(col[3].find(text=True)) E.append(col[4].find(text=True)) F.append(col[5].find(text=True)) G.append(col[7].find(text=True)) H.append(col[9].find(text=True)) I.append(col[11].find(text=True)) J.append(col[13].find(text=True)) K.append(col[15].find(text=True)) L.append(col[17].find(text=True)) M.append(col[19].find(text=True)) df=pd.DataFrame(IDX,columns=['Index']) df['Rank']=A df['Team']=B df['Conf']=C df['W-L']=D df['AdjEM']=E df['AdjO']=F df['AdjD']=G df['AdjT']=H df['Luck']=I df['AdjEMSOS']=J df['OppOSOS']=K df['OppDSOS']=L df['AdjEMNCSOS']=M with open('stats.json', 'w') as f: f.write(df.to_json(orient='index')) with open("stats.json") as stats_json: dict_stats = json.load(stats_json, object_pairs_hook=OrderedDict) stats_sheet = open('stats.csv', 'w', newline='') csvwriter = csv.writer(stats_sheet) count = 0 for row in dict_stats.values(): #pdb.set_trace() if (count == 0): header = row.keys() csvwriter.writerow(header) count += 1 csvwriter.writerow(row.values()) stats_sheet.close() print ("done.")
mit
berkeley-stat159/project-alpha
code/utils/scripts/glm_script.py
1
3957
""" Script for GLM functions. Run with: python glm_script.py """ # Loading modules. from __future__ import absolute_import, division, print_function import numpy as np import matplotlib.pyplot as plt import nibabel as nib import os import sys # Relative paths to subject 1 data. project_path = "../../../" pathtodata = project_path + "data/ds009/sub001/" condition_location = pathtodata+"model/model001/onsets/task001_run001/" location_of_images = project_path+"images/" location_of_functions = project_path+"code/utils/functions/" sys.path.append(location_of_functions) # Load events2neural from the stimuli module. from stimuli import events2neural from event_related_fMRI_functions import hrf_single, convolution_specialized # Load our GLM functions. from glm import glm, glm_diagnostics, glm_multiple # Load the image data for subject 1. img = nib.load(pathtodata+"BOLD/task001_run001/bold.nii.gz") data = img.get_data() data = data[...,6:] # Knock off the first 6 observations. cond1=np.loadtxt(condition_location+"cond001.txt") cond2=np.loadtxt(condition_location+"cond002.txt") cond3=np.loadtxt(condition_location+"cond003.txt") ####################### # a. (my) convolution # ####################### all_stimuli=np.array(sorted(list(cond2[:,0])+list(cond3[:,0])+list(cond1[:,0]))) # could also just x_s_array my_hrf = convolution_specialized(all_stimuli,np.ones(len(all_stimuli)),hrf_single,np.linspace(0,239*2-2,239)) ################## # b. np.convolve # ################## # initial needed values TR = 2 tr_times = np.arange(0, 30, TR) hrf_at_trs = np.array([hrf_single(x) for x in tr_times]) n_vols=data.shape[-1] # creating the .txt file for the events2neural function cond_all=np.row_stack((cond1,cond2,cond3)) cond_all=sorted(cond_all,key= lambda x:x[0]) np.savetxt(condition_location+"cond_all.txt",cond_all) neural_prediction = events2neural(condition_location+"cond_all.txt",TR,n_vols) convolved = np.convolve(neural_prediction, hrf_at_trs) # hrf_at_trs sample data N = len(neural_prediction) # N == n_vols == 173 M = len(hrf_at_trs) # M == 12 np_hrf=convolved[:N] ############################# ############################# # Analysis and diagonistics # ############################# ############################# ####################### # a. (my) convolution # ####################### # Now get the estimated coefficients and design matrix for doing # regression on the convolved time course. B_my, X_my = glm(data, my_hrf) # Some diagnostics. MRSS_my, fitted_my, residuals_my = glm_diagnostics(B_my, X_my, data) # Print out the mean MRSS. print("MRSS using 'my' convolution function: "+str(np.mean(MRSS_my))) # Plot the time course for a single voxel with the fitted values. # Looks pretty bad. plt.plot(data[41, 47, 2]) #change from cherry-picking plt.plot(fitted_my[41, 47, 2]) plt.savefig(location_of_images+"glm_plot_my.png") plt.close() ################## # b. np.convolve # ################## # Now get the estimated coefficients and design matrix for doing # regression on the convolved time course. B_np, X_np = glm(data, np_hrf) # Some diagnostics. MRSS_np, fitted_np, residuals_np = glm_diagnostics(B_np, X_np, data) # Print out the mean MRSS. print("MRSS using np convolution function: "+str(np.mean(MRSS_np))) # Plot the time course for a single voxel with the fitted values. # Looks pretty bad. plt.plot(data[41, 47, 2]) plt.plot(fitted_np[41, 47, 2]) plt.savefig(location_of_images+"glm_plot_np.png") plt.close() X_my3=np.ones((data.shape[-1],4)) for i in range(2): X_my3[:,i+1]=my_hrf**(i+1) B_my3, X_my3 = glm_multiple(data, X_my3) MRSS_my3, fitted_my3, residuals_my3 = glm_diagnostics(B_my3, X_my3, data) print("MRSS using 'my' convolution function, 3rd degree polynomial: "+str(np.mean(MRSS_my3))+ ", but the chart looks better") plt.plot(data[41, 47, 2]) plt.plot(fitted_my3[41, 47, 2]) plt.savefig(location_of_images+"glm_plot_my3.png") plt.close()
bsd-3-clause
jundongl/scikit-feature
skfeature/function/sparse_learning_based/NDFS.py
3
4908
import numpy as np import sys import math import sklearn.cluster from skfeature.utility.construct_W import construct_W def ndfs(X, **kwargs): """ This function implement unsupervised feature selection using nonnegative spectral analysis, i.e., min_{F,W} Tr(F^T L F) + alpha*(||XW-F||_F^2 + beta*||W||_{2,1}) + gamma/2 * ||F^T F - I||_F^2 s.t. F >= 0 Input ----- X: {numpy array}, shape (n_samples, n_features) input data kwargs: {dictionary} W: {sparse matrix}, shape {n_samples, n_samples} affinity matrix alpha: {float} Parameter alpha in objective function beta: {float} Parameter beta in objective function gamma: {float} a very large number used to force F^T F = I F0: {numpy array}, shape (n_samples, n_clusters) initialization of the pseudo label matirx F, if not provided n_clusters: {int} number of clusters verbose: {boolean} True if user want to print out the objective function value in each iteration, false if not Output ------ W: {numpy array}, shape(n_features, n_clusters) feature weight matrix Reference: Li, Zechao, et al. "Unsupervised Feature Selection Using Nonnegative Spectral Analysis." AAAI. 2012. """ # default gamma is 10e8 if 'gamma' not in kwargs: gamma = 10e8 else: gamma = kwargs['gamma'] # use the default affinity matrix if 'W' not in kwargs: W = construct_W(X) else: W = kwargs['W'] if 'alpha' not in kwargs: alpha = 1 else: alpha = kwargs['alpha'] if 'beta' not in kwargs: beta = 1 else: beta = kwargs['beta'] if 'F0' not in kwargs: if 'n_clusters' not in kwargs: print >>sys.stderr, "either F0 or n_clusters should be provided" else: # initialize F n_clusters = kwargs['n_clusters'] F = kmeans_initialization(X, n_clusters) else: F = kwargs['F0'] if 'verbose' not in kwargs: verbose = False else: verbose = kwargs['verbose'] n_samples, n_features = X.shape # initialize D as identity matrix D = np.identity(n_features) I = np.identity(n_samples) # build laplacian matrix L = np.array(W.sum(1))[:, 0] - W max_iter = 1000 obj = np.zeros(max_iter) for iter_step in range(max_iter): # update W T = np.linalg.inv(np.dot(X.transpose(), X) + beta * D + 1e-6*np.eye(n_features)) W = np.dot(np.dot(T, X.transpose()), F) # update D temp = np.sqrt((W*W).sum(1)) temp[temp < 1e-16] = 1e-16 temp = 0.5 / temp D = np.diag(temp) # update M M = L + alpha * (I - np.dot(np.dot(X, T), X.transpose())) M = (M + M.transpose())/2 # update F denominator = np.dot(M, F) + gamma*np.dot(np.dot(F, F.transpose()), F) temp = np.divide(gamma*F, denominator) F = F*np.array(temp) temp = np.diag(np.sqrt(np.diag(1 / (np.dot(F.transpose(), F) + 1e-16)))) F = np.dot(F, temp) # calculate objective function obj[iter_step] = np.trace(np.dot(np.dot(F.transpose(), M), F)) + gamma/4*np.linalg.norm(np.dot(F.transpose(), F)-np.identity(n_clusters), 'fro') if verbose: print('obj at iter {0}: {1}'.format(iter_step+1, obj[iter_step])) if iter_step >= 1 and math.fabs(obj[iter_step] - obj[iter_step-1]) < 1e-3: break return W def kmeans_initialization(X, n_clusters): """ This function uses kmeans to initialize the pseudo label Input ----- X: {numpy array}, shape (n_samples, n_features) input data n_clusters: {int} number of clusters Output ------ Y: {numpy array}, shape (n_samples, n_clusters) pseudo label matrix """ n_samples, n_features = X.shape kmeans = sklearn.cluster.KMeans(n_clusters=n_clusters, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances=True, verbose=0, random_state=None, copy_x=True, n_jobs=1) kmeans.fit(X) labels = kmeans.labels_ Y = np.zeros((n_samples, n_clusters)) for row in range(0, n_samples): Y[row, labels[row]] = 1 T = np.dot(Y.transpose(), Y) F = np.dot(Y, np.sqrt(np.linalg.inv(T))) F = F + 0.02*np.ones((n_samples, n_clusters)) return F def calculate_obj(X, W, F, L, alpha, beta): """ This function calculates the objective function of NDFS """ # Tr(F^T L F) T1 = np.trace(np.dot(np.dot(F.transpose(), L), F)) T2 = np.linalg.norm(np.dot(X, W) - F, 'fro') T3 = (np.sqrt((W*W).sum(1))).sum() obj = T1 + alpha*(T2 + beta*T3) return obj
gpl-2.0
SISC2014/JobAnalysis
MongoRetrieval/src/EfficiencyHistogram.py
1
6076
''' Created on Jun 19, 2014 @author: Erik Halperin List of Keys _id JobStartDate Requirements TransferInput TotalSuspensions LastJobStatus BufferBlockSize OrigMaxHosts RequestMemory WantRemoteSyscalls LastHoldReasonCode ExitStatus Args JobFinishedHookDone JobCurrentStartDate CompletionDate JobLeaseDuration Err RemoteWallClockTime JobUniverse RequestCpus RemoveReason StreamErr Rank WantRemoteIO LocalSysCpu UsedOCWrapper CumulativeSlotTime TransferIn MachineAttrCpus0 CondorPlatform CurrentTime ExitReason StreamOut WantCheckpoint GlobalJobId TransferInputSizeMB JobStatus LastPublicClaimId MemoryUsage NumSystemHolds TransferOutput PeriodicRemove NumShadowStarts LastHoldReasonSubCode LastSuspensionTime ShouldTransferFiles QDate RemoteSysCpu ImageSize_RAW LastRemoteHost CondorVersion DiskUsage_RAW PeriodicRelease NumCkpts_RAW JobCurrentStartExecutingDate ProjectName CoreSize RemoteUserCpu BytesSent Owner BytesRecvd ExitCode NumJobStarts ExecutableSize_RAW Notification ExecutableSize Environment StartdPrincipal RootDir MinHosts CumulativeSuspensionTime JOBGLIDEIN_ResourceName ProcId MATCH_EXP_JOBGLIDEIN_ResourceName OnExitRemove User UserLog CommittedSuspensionTime NumRestarts JobCoreDumped Cmd NumJobMatches DiskUsage LastRemotePool CommittedSlotTime ResidentSetSize WhenToTransferOutput ExitBySignal Out RequestDisk ImageSize NumCkpts LastJobLeaseRenewal MachineAttrSlotWeight0 ResidentSetSize_RAW JobPrio JobRunCount PeriodicHold ClusterId NiceUser MyType LocalUserCpu BufferSize LastHoldReason CurrentHosts LeaveJobInQueue OnExitHold EnteredCurrentStatus MaxHosts CommittedTime LastMatchTime In JobNotification ''' import re import matplotlib.pyplot as plt from pymongo import MongoClient #takes a list of dictionaries and returns a list of floats def parseList(l): l = map(str, l) newlist = [] for k in l: newlist.append(re.sub('[RemoteWallClockTimeUsrpu_id\"\'{}: ]', '', k)) newlist = map(float, newlist) return list(newlist) #returns a list of dictionaries #item is from list of keys, username: "example@login01.osgconnect.net", cluster: "123456", site: "phys.ucconn.edu", #coll: MongoDB collection #username/cluster/site may be None, in which case they will not be used #item should be _id def dbFindItemFromUser(item, username, cluster, site, coll): mylist = [] rgx = "$regex" if(username != None): username = '\"' + username + '\"' dicU = {'User': username } else: dicU = {} if(cluster != None): dicC = { 'ClusterId': cluster } else: dicC = {} if(site != None): dicS = { 'LastRemoteHost': { rgx: site } } else: dicS = {} dicU.update(dicC) dicU.update(dicS) pr = { item: 1, '_id': 0 } for condor_history in coll.find(dicU, pr): mylist.append(condor_history) return mylist #returns a list of dictionaries #username and coll are same as above def dbFindIdFromUser(username, coll): mylist = [] username = '\"' + username + '\"' cr = { 'User': username } pr = { '_id': 1 } for condor_history in coll.find(cr, pr): mylist.append(condor_history) return mylist #creates a scatterplot of two items def plotScatter(item1, item2, username, cluster, coll, xlab, ylab, title): lst1 = parseList(dbFindItemFromUser(item1, username, cluster, coll)) lst2 = parseList(dbFindItemFromUser(item2, username, cluster, coll)) plt.plot(lst1, lst2, 'bo') plt.xlabel(xlab) plt.ylabel(ylab) plt.title(title) plt.show() #creates a histogram of a list #l: list to plot, bs: number of bins def plotHist(l, bs, xlab, ylab, title): plt.hist(l, bins=bs) plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.show() def getEfficiency(username, cluster, site, coll): ruc = parseList(dbFindItemFromUser("RemoteUserCpu", username, cluster, site, coll)) rwct = parseList(dbFindItemFromUser("RemoteWallClockTime", username, cluster, site, coll)) efflist = [] totcount = 0 goodcount = 0 #certain efficiency values are >1 due to a condor error. these values are discarded zerocount = 0 #testing possible condor bug where RemoteUserCpu is 0 but RemoteWallClockTime is quite large for x,y in zip(ruc, rwct): if(y == 0): totcount += 1 elif(x/y > 1): totcount += 1 else: if(x == 0): zerocount +=1 efflist.append(x/y) totcount += 1 goodcount +=1 return [efflist, goodcount, totcount] #Given at least one input for username/cluster/site, creates a histogram of the RemoteUserCpu/RemoteWallClockTime for the results def efficiencyHistogram(username, cluster, site, coll, bins, xlab, ylab, title): retlist = getEfficiency(username, cluster, site, coll) #0: efflist, 1: goodcount, 2: totcount print("Jobs Plotted:", retlist[1], "/", retlist[2]) plotHist(retlist[0], bins, xlab, ylab, title) def fourEffHists(lst1, lst2, lst3, lst4, lab1, lab2, lab3, lab4, bs, xlab, ylab, title): plt.hist(lst1, bins=bs, histtype='stepfilled', label=lab1) plt.hist(lst2, bins=bs, histtype='stepfilled', label=lab2) plt.hist(lst3, bins=bs, histtype='stepfilled', label=lab3) plt.hist(lst4, bins=bs, histtype='stepfilled', label=lab4) plt.title(title) plt.xlabel(xlab) plt.ylabel(ylab) plt.legend() plt.show() def mainEH(host, port): client = MongoClient(host, port) db = client.condor_history coll = db.history_records #sites: uc.mwt2.org, phys.uconn.edu, hpc.smu.edu, usatlas.bnl.gov #names (@login01.osgconnect.net): lfzhao, sthapa, echism, wcatino, bamitchell str_name = "bamitchell@login01.osgconnect.net" efficiencyHistogram(str_name, None, None, coll, 75, "UserCPU/WallClockTime", "Frequency", "Efficiencies for " + str_name) mainEH('mc.mwt2.org', 27017)
mit
pmediano/ComputationalNeurodynamics
Fall2016/Exercise_1/Solutions/IzNeuronRK4.py
1
1897
""" Computational Neurodynamics Exercise 1 Simulates Izhikevich's neuron model using the Runge-Kutta 4 method. Parameters for regular spiking, fast spiking and bursting neurons extracted from: http://www.izhikevich.org/publications/spikes.htm (C) Murray Shanahan et al, 2016 """ import numpy as np import matplotlib.pyplot as plt # Create time points Tmin = 0 Tmax = 200 # Simulation time dt = 0.01 # Step size T = np.arange(Tmin, Tmax+dt, dt) # Base current I = 10 ## Parameters of Izhikevich's model (regular spiking) a = 0.02 b = 0.2 c = -65 d = 8 ## Parameters of Izhikevich's model (fast spiking) # a = 0.02 # b = 0.25 # c = -65 # d = 2 ## Parameters of Izhikevich's model (bursting) # a = 0.02 # b = 0.2 # c = -50 # d = 2 ## Make a state vector that has a (v, u) pair for each timestep s = np.zeros((len(T), 2)) ## Initial values s[0, 0] = -65 s[0, 1] = -1 # Note that s1[0] is v, s1[1] is u. This is Izhikevich equation in vector form def s_dt(s1, I): v_dt = 0.04*(s1[0]**2) + 5*s1[0] + 140 - s1[1] + I u_dt = a*(b*s1[0] - s1[1]) return np.array([v_dt, u_dt]) ## SIMULATE for t in range(len(T)-1): # Calculate the four constants of Runge-Kutta method k_1 = s_dt(s[t], I) k_2 = s_dt(s[t] + 0.5*dt*k_1, I) k_3 = s_dt(s[t] + 0.5*dt*k_2, I) k_4 = s_dt(s[t] + dt*k_3, I) s[t+1] = s[t] + (1.0/6)*dt*(k_1 + 2*k_2 + 2*k_3 + k_4) # Reset the neuron if it has spiked if s[t+1, 0] >= 30: s[t, 0] = 30 # Add a Dirac pulse for visualisation s[t+1, 0] = c # Reset to resting potential s[t+1, 1] += d # Update recovery variable v = s[:, 0] u = s[:, 1] ## Plot the membrane potential plt.subplot(211) plt.plot(T, v) plt.xlabel('Time (ms)') plt.ylabel('Membrane potential v (mV)') plt.title('Izhikevich Neuron') # Plot the reset variable plt.subplot(212) plt.plot(T, u) plt.xlabel('Time (ms)') plt.ylabel('Reset variable u') plt.show()
gpl-3.0
ningchi/scikit-learn
sklearn/mixture/tests/test_gmm.py
7
17493
import unittest import copy import sys from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raise_message from sklearn.metrics.cluster import adjusted_rand_score from sklearn.externals.six.moves import cStringIO as StringIO rng = np.random.RandomState(0) def test_sample_gaussian(): # Test sample generation from mixture.sample_gaussian where covariance # is diagonal, spherical and full n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): # test a slow and naive implementation of lmvnpdf and # compare it to the vectorized version (mixture.lmvnpdf) to test # for correctness n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_lvmpdf_full_cv_non_positive_definite(): n_features, n_samples = 2, 10 rng = np.random.RandomState(0) X = rng.randint(10) * rng.rand(n_samples, n_features) mu = np.mean(X, 0) cv = np.array([[[-1, 0], [0, 1]]]) expected_message = "'covars' must be symmetric, positive-definite" assert_raise_message(ValueError, expected_message, mixture.log_multivariate_normal_density, X, mu, cv, 'full') def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): # Train on degenerate data with 0 in some dimensions # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): # Train on 1-D data # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) # X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): # Test that multiple inits does not much worse than a single one X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): # Test that the right number of parameters is estimated n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): # Test all of the covariance_types return the same BIC score for # 1-dimensional, 1 component fits. n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def assert_fit_predict_correct(model, X): model2 = copy.deepcopy(model) predictions_1 = model.fit(X).predict(X) predictions_2 = model2.fit_predict(X) assert adjusted_rand_score(predictions_1, predictions_2) == 1.0 def test_fit_predict(): """ test that gmm.fit_predict is equivalent to gmm.fit + gmm.predict """ lrng = np.random.RandomState(101) n_samples, n_dim, n_comps = 100, 2, 2 mu = np.array([[8, 8]]) component_0 = lrng.randn(n_samples, n_dim) component_1 = lrng.randn(n_samples, n_dim) + mu X = np.vstack((component_0, component_1)) for m_constructor in (mixture.GMM, mixture.VBGMM, mixture.DPGMM): model = m_constructor(n_components=n_comps, covariance_type='full', min_covar=1e-7, n_iter=5, random_state=np.random.RandomState(0)) assert_fit_predict_correct(model, X) model = mixture.GMM(n_components=n_comps, n_iter=0) z = model.fit_predict(X) assert np.all(z == 0), "Quick Initialization Failed!" def test_aic(): # Test the aic and bic criteria n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) def check_positive_definite_covars(covariance_type): r"""Test that covariance matrices do not become non positive definite Due to the accumulation of round-off errors, the computation of the covariance matrices during the learning phase could lead to non-positive definite covariance matrices. Namely the use of the formula: .. math:: C = (\sum_i w_i x_i x_i^T) - \mu \mu^T instead of: .. math:: C = \sum_i w_i (x_i - \mu)(x_i - \mu)^T while mathematically equivalent, was observed a ``LinAlgError`` exception, when computing a ``GMM`` with full covariance matrices and fixed mean. This function ensures that some later optimization will not introduce the problem again. """ rng = np.random.RandomState(1) # we build a dataset with 2 2d component. The components are unbalanced # (respective weights 0.9 and 0.1) X = rng.randn(100, 2) X[-10:] += (3, 3) # Shift the 10 last points gmm = mixture.GMM(2, params="wc", covariance_type=covariance_type, min_covar=1e-3) # This is a non-regression test for issue #2640. The following call used # to trigger: # numpy.linalg.linalg.LinAlgError: 2-th leading minor not positive definite gmm.fit(X) if covariance_type == "diag" or covariance_type == "spherical": assert_greater(gmm.covars_.min(), 0) else: if covariance_type == "tied": covs = [gmm.covars_] else: covs = gmm.covars_ for c in covs: assert_greater(np.linalg.det(c), 0) def test_positive_definite_covars(): # Check positive definiteness for all covariance types for covariance_type in ["full", "tied", "diag", "spherical"]: yield check_positive_definite_covars, covariance_type def test_verbose_first_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout def test_verbose_second_level(): # Create sample data X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, n_init=2, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: g.fit(X) finally: sys.stdout = old_stdout if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
gems-uff/noworkflow
capture/noworkflow/resources/demo/annual_precipitation/step4/precipitation.py
4
2619
#!/usr/bin/python2 import csv import numpy as np import matplotlib.pyplot as plt import time from itertools import chain from collections import defaultdict def read(filename): result = defaultdict(list) with open(filename, "r") as c: reader = csv.reader(c, delimiter=";") for row in reader: month = int(row[1].split("/")[1]) precipitation = float(row[3]) result[month].append(precipitation) return result def write(filename, data, year): with open(filename, "w") as c: writer = csv.writer(c, delimiter=";") for month in sorted(data.keys()): for day, value in enumerate(data[month]): writer.writerow([ 83743, "{:02}/{:02}/{}".format(day + 1, month, year), 1200, value]) def remove_outliers(data, thresh=2.5): full_data = np.asarray(tuple(chain.from_iterable(data[i] for i in sorted(data.keys())))) non_zeros = full_data != 0 median = np.median(full_data[non_zeros]) result = {} for month in data: values = np.asarray(data[month])[:, None] diff = np.sum((values - median)**2, axis=-1) diff = np.sqrt(diff) med_abs_deviation = np.median(diff) modified_z_score = 0.6745 * diff / med_abs_deviation outliers = modified_z_score > thresh non_outliers = modified_z_score <= thresh new_data = np.zeros(len(values)) new_data[non_outliers] = np.transpose(values[non_outliers])[0] new_data[outliers] = median result[month] = new_data.tolist() return result def prepare(series, months, names, div=.1, colors=["b", "g", "r"]): fig, ax = plt.subplots() ax.set_ylabel("Precipitation (mm)") ax.set_xlabel("Month") ax.set_title("Precipitation by Month") ax.set_xticks(months + .5) ax.set_xticklabels(list(map(str, months))) ax.set_ylim([0, 400]) half_div = div / 2.0 width = (1.0 - div) / len(series) bars = [] for i, data in enumerate(series): bars.append(ax.bar(months + half_div + i * width, data, width, color=colors[i])) ax.legend(bars, names) def create_bargraph(output, months, years, *prec): prepare(prec, months, years) plt.savefig(output) def sum_by_month(data, months): time.sleep(1) return [sum(data[i]) for i in months] __VERSION__ = "1.1.0" if __name__ == "__main__": import sys filename = sys.argv[1] month = sys.argv[2] data = read(filename) print(";".join(map(str, data[int(month)])))
mit
yanchen036/tensorflow
tensorflow/contrib/learn/python/learn/estimators/multioutput_test.py
136
1696
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Multi-output tests.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import numpy as np from tensorflow.contrib.learn.python import learn from tensorflow.contrib.learn.python.learn.estimators._sklearn import mean_squared_error from tensorflow.python.platform import test class MultiOutputTest(test.TestCase): """Multi-output tests.""" def testMultiRegression(self): random.seed(42) rng = np.random.RandomState(1) x = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(x).ravel(), np.pi * np.cos(x).ravel()]).T regressor = learn.LinearRegressor( feature_columns=learn.infer_real_valued_columns_from_input(x), label_dimension=2) regressor.fit(x, y, steps=100) score = mean_squared_error(np.array(list(regressor.predict_scores(x))), y) self.assertLess(score, 10, "Failed with score = {0}".format(score)) if __name__ == "__main__": test.main()
apache-2.0
sk413025/tilitools
latentsvdd.py
1
3222
from cvxopt import matrix,spmatrix,sparse,uniform,normal,setseed from cvxopt.blas import dot,dotu from cvxopt.solvers import qp from cvxopt.lapack import syev import numpy as np import math as math from kernel import Kernel from svdd import SVDD from ocsvm import OCSVM import pylab as pl import matplotlib.pyplot as plt class LatentSVDD: """ Latent variable support vector data description. Written by Nico Goernitz, TU Berlin, 2014 For more information see: 'Learning and Evaluation with non-i.i.d Label Noise' Goernitz et al., AISTATS & JMLR W&CP, 2014 """ PRECISION = 10**-3 # important: effects the threshold, support vectors and speed! C = 1.0 # (scalar) the regularization constant > 0 sobj = [] # structured object contains various functions # i.e. get_num_dims(), get_num_samples(), get_sample(i), argmin(sol,i) sol = [] # (vector) solution vector (after training, of course) def __init__(self, sobj, C=1.0): self.C = C self.sobj = sobj def train_dc(self, max_iter=50): """ Solve the LatentSVDD optimization problem with a sequential convex programming/DC-programming approach: Iteratively, find the most likely configuration of the latent variables and then, optimize for the model parameter using fixed latent states. """ N = self.sobj.get_num_samples() DIMS = self.sobj.get_num_dims() # intermediate solutions # latent variables latent = [0]*N sol = 10.0*normal(DIMS,1) psi = matrix(0.0, (DIMS,N)) # (dim x exm) old_psi = matrix(0.0, (DIMS,N)) # (dim x exm) threshold = 0 obj = -1 iter = 0 # terminate if objective function value doesn't change much while iter<max_iter and (iter<2 or sum(sum(abs(np.array(psi-old_psi))))>=0.001): print('Starting iteration {0}.'.format(iter)) print(sum(sum(abs(np.array(psi-old_psi))))) iter += 1 old_psi = matrix(psi) # 1. linearize # for the current solution compute the # most likely latent variable configuration for i in range(N): # min_z ||sol - Psi(x,z)||^2 = ||sol||^2 + min_z -2<sol,Psi(x,z)> + ||Psi(x,z)||^2 # Hence => ||sol||^2 - max_z 2<sol,Psi(x,z)> - ||Psi(x,z)||^2 (foo, latent[i], psi[:,i]) = self.sobj.argmax(sol, i, opt_type='quadratic') # 2. solve the intermediate convex optimization problem kernel = Kernel.get_kernel(psi,psi) svdd = SVDD(kernel, self.C) svdd.train_dual() threshold = svdd.get_threshold() inds = svdd.get_support_dual() alphas = svdd.get_support_dual_values() sol = psi[:,inds]*alphas self.sol = sol self.latent = latent return (sol, latent, threshold) def apply(self, pred_sobj): """ Application of the LatentSVDD: anomaly_score = min_z ||c*-\Psi(x,z)||^2 latent_state = argmin_z ||c*-\Psi(x,z)||^2 """ N = pred_sobj.get_num_samples() norm2 = self.sol.trans()*self.sol vals = matrix(0.0, (1,N)) lats = matrix(0.0, (1,N)) for i in range(N): # min_z ||sol - Psi(x,z)||^2 = ||sol||^2 + min_z -2<sol,Psi(x,z)> + ||Psi(x,z)||^2 # Hence => ||sol||^2 - max_z 2<sol,Psi(x,z)> - ||Psi(x,z)||^2 (max_obj, lats[i], foo) = pred_sobj.argmax(self.sol, i, opt_type='quadratic') vals[i] = norm2 - max_obj return (vals, lats)
mit
xfaxca/pymlkit
pymlkit/models/regressors.py
1
4199
""" Module for custom regression model classes. """ from sklearn.base import BaseEstimator, RegressorMixin """ Rolling todo: 1. For AvgReg: Modify how parameters are used. Put them all into a dict. Also change X_train, y_train to just X,y """ class AveragingRegressor(BaseEstimator, RegressorMixin): """ Summary: A Meta-regressor that averages all predictions of it's consituent regressors. Analogous to a majority vote classifer, but for regressoion Attributes: ------------- - regs: Base/Constituent regressors from which the average predictions are calculated - reg_names: Names of the constituent regressors - params: Optionally user-supplied initialization parameters for the - base_predictions: Predictions of the constituent classifiers. This attribute is None until the predict method is called - avg_predictions: Average predictions calculated from the predictions of the constituent regressors. """ def __init__(self, regressors=None, regressor_names=None, init_parameters=None, verbose=0): """ Initialization :param regressors: (obj list) - Constituent regressors of AveragingRegressor :param regressor_names: (str list) - Names of the constituent regressors :param init_parameters: (dict list) - initialization parameters for the corresponding regressors. These must be passed as a list of dictionaries s.t. the parameters in each index are the corresponding paramters for the regressor at the same index in the 'regressors' parameter. Can provide a partial list, containing parameter dictionaries only for the first few regressors. """ self.params = {'regressors': regressors, 'regressor_names': regressor_names, 'init_parameters': init_parameters, 'verbose': verbose} self.regs = regressors self.reg_names = regressor_names self.reg_params = init_parameters self.verbose = verbose self.base_predictions = None self.avg_predictions = None super().__init__() super().set_params(**self.params) # Return error if no constituent regressors are supplied if regressors is None: raise TypeError("Parameter 'regressors' should be a list of estimators with base scikit-learn regressor" " methods.") # Initialize constituent regressors with custom parameters if they are provided if init_parameters is not None: for i in range(len(self.reg_params)): self.regs[i] = self.regs[i](**self.reg_params[i]) def fit(self, X_train, y_train=None): """ Method to fit all Regressors :param X_train: (pandas df) - Training features :param y_train: (pandas series) - Training target variable :return: None """ print('=> Fitting AveragingRegressor:') for i in range(len(self.regs)): if self.verbose > 0: print('==> Fitting %s' % self.reg_names[i]) self.regs[i].fit(X_train, y_train) def predict(self, X_test): """ Method to predict target variable values. Final results are the average of all predictions :param X_test: (pandas df) - Test features :return: self.avg_predictions: (np.array) Average target variable predictions """ predictions = {} average_predictions = np.zeros(shape=(len(X_test)), dtype=np.float64) if len(self.reg_names) == len(self.regs): add_names = True for i in range(len(self.regs)): y_pred = self.regs[i].predict(X_test) average_predictions += y_pred name = self.reg_names[i] if add_names else ('Regressor%i' % i) predictions.setdefault(name, y_pred) average_predictions /= float(len(self.regs)) predictions.setdefault('Average', average_predictions) self.base_predictions = predictions self.avg_predictions = average_predictions return self.avg_predictions
gpl-3.0
JungeAlexander/cocoscore
setup.py
1
2522
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import io import re from glob import glob from os.path import basename from os.path import dirname from os.path import join from os.path import splitext from setuptools import find_packages from setuptools import setup def read(*names, **kwargs): with io.open( join(dirname(__file__), *names), encoding=kwargs.get('encoding', 'utf8') ) as fh: return fh.read() setup( name='cocoscore', version='1.0.0', license='MIT license', description='CoCoScore: context-aware co-occurrence scores for text mining applications', long_description='%s\n%s' % ( re.compile('^.. start-badges.*^.. end-badges', re.M | re.S).sub('', read('README.rst')), re.sub(':[a-z]+:`~?(.*?)`', r'``\1``', read('CHANGELOG.rst')) ), author='Alexander Junge', author_email='alexander.junge@posteo.net', url='https://github.com/JungeAlexander/cocoscore', packages=find_packages('src'), package_dir={'': 'src'}, py_modules=[splitext(basename(path))[0] for path in glob('src/*.py')], include_package_data=True, zip_safe=False, classifiers=[ # complete classifier list: http://pypi.python.org/pypi?%3Aaction=list_classifiers 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', # uncomment if you test on these interpreters: # 'Programming Language :: Python :: Implementation :: IronPython', # 'Programming Language :: Python :: Implementation :: Jython', # 'Programming Language :: Python :: Implementation :: Stackless', 'Topic :: Utilities', ], keywords=[ # eg: 'keyword1', 'keyword2', 'keyword3', ], install_requires=[ # eg: 'aspectlib==1.1.1', 'six>=1.7', 'pandas>=0.23.3', 'scikit-learn>=0.20.1', ], extras_require={ # eg: # 'rst': ['docutils>=0.11'], # ':python_version=="2.6"': ['argparse'], }, )
mit
hlin117/scikit-learn
examples/ensemble/plot_forest_iris.py
18
6190
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline plt.scatter(X[:, 0], X[:, 1], c=y, cmap=ListedColormap(['r', 'y', 'b'])) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
mediaProduct2017/learn_NeuralNet
neural_network_design.py
1
1568
""" In order to decide how many hidden nodes the hidden layer should have, split up the data set into training and testing data and create networks with various hidden node counts (5, 10, 15, ... 45), testing the performance for each. The best-performing node count is used in the actual system. If multiple counts perform similarly, choose the smallest count for a smaller network with fewer computations. """ import numpy as np from ocr import OCRNeuralNetwork from sklearn.cross_validation import train_test_split def test(data_matrix, data_labels, test_indices, nn): avg_sum = 0 for j in xrange(100): correct_guess_count = 0 for i in test_indices: test = data_matrix[i] prediction = nn.predict(test) if data_labels[i] == prediction: correct_guess_count += 1 avg_sum += (correct_guess_count / float(len(test_indices))) return avg_sum / 100 # Load data samples and labels into matrix data_matrix = np.loadtxt(open('data.csv', 'rb'), delimiter = ',').tolist() data_labels = np.loadtxt(open('dataLabels.csv', 'rb')).tolist() # Create training and testing sets. train_indices, test_indices = train_test_split(list(range(5000))) print "PERFORMANCE" print "-----------" # Try various number of hidden nodes and see what performs best for i in xrange(5, 50, 5): nn = OCRNeuralNetwork(i, data_matrix, data_labels, train_indices, False) performance = str(test(data_matrix, data_labels, test_indices, nn)) print "{i} Hidden Nodes: {val}".format(i=i, val=performance)
mit
bioinformatics-IBCH/logloss-beraf
logloss_beraf/model_ops/trainer.py
1
12714
# coding=utf-8 import copy import logging import os # https://github.com/matplotlib/matplotlib/issues/3466/#issuecomment-195899517 import itertools import matplotlib matplotlib.use('agg') import numpy as np import pandas from sklearn import ( preprocessing, model_selection, ) from sklearn.cross_validation import ( LeaveOneOut, StratifiedKFold, ) from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import RandomizedLogisticRegression import cPickle as pickle from utils.constants import ( PREFILTER_PCA_PLOT_NAME, POSTFILTER_PCA_PLOT_NAME, FEATURE_IMPORTANCE_PLOT_NAME, FEATURE_COLUMN, FEATURE_IMPORTANCE_COLUMN, TRAINED_MODEL_NAME, ) from visualization.plotting import plot_pca_by_annotation logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') from settings import logger class LLBModelTrainer(object): """ Class implementing main steps of the algorithm: 1. Initial regions filtering with a user-specified delta beta-values threshold 2. Applying randomized logistic regression in order to additionally pre-filter input regions 3. Extracting highly correlated sites 4. Reconstructing logloss function on the interval of user specified limit of number of sites 5. Detecting optimal panel of regions and training final model Also does some visualizations """ def __init__(self, threads=0, max_num_of_features=20, cv_method="SKFold", class_weights="balanced", final_clf_estimators_num=3000, intermediate_clf_estimators_num=1000, logloss_estimates=50, min_beta_threshold=0.2, rr_iterations=5000, correlation_threshold=0.85, output_folder=None): """ :param threads: :type threads: int :param max_num_of_features: maximum number of features a model can contain :type max_num_of_features: int :param cv_method: Supported cross-validation methods: "LOO", "SKFold" :type cv_method: str :param class_weights: Class balancing strategy :type class_weights: dict, str :param final_clf_estimators_num: number of estimators used in a final classifier :type final_clf_estimators_num: int :param intermediate_clf_estimators_num: number of estimators used in intermediate classifiers :type intermediate_clf_estimators_num: int :param logloss_estimates: Number of LogLoss estimates on number of sites limited interval :type logloss_estimates: int :param min_beta_threshold: Minimum beta-values difference threshold :type min_beta_threshold: float :param rr_iterations: Number of randomized regression iterations """ self.threads = threads self.max_num_of_features = max_num_of_features self.min_beta_threshold = min_beta_threshold # train process configuration self.cv_method = cv_method self.class_weights = class_weights self.final_clf_estimators_num = final_clf_estimators_num self.intermediate_clf_estimators_num = intermediate_clf_estimators_num self.rr_iterations = rr_iterations self.logloss_estimates = logloss_estimates # common self.correlation_threshold = correlation_threshold self.output_folder = output_folder if output_folder is not None else "results" if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) def _run_randomized_regression(self, feature_df, annotation, clinical_column, sample_fraction=0.7): annotation = copy.deepcopy(annotation) # Encode labels of the classes le = preprocessing.LabelEncoder() annotation[clinical_column] = le.fit_transform(annotation[clinical_column]) clf = RandomizedLogisticRegression( n_resampling=self.rr_iterations, sample_fraction=sample_fraction, n_jobs=1, verbose=1, ).fit(feature_df, annotation[clinical_column]) selected_features = feature_df.T[clf.scores_ != 0].index logger.info("Number of selected features: %d", len(selected_features)) return selected_features, clf def _train_clf(self, X, y, n_estimators=10): clf = RandomForestClassifier(n_estimators, n_jobs=self.threads, class_weight=self.class_weights) scores = scores_accuracy = np.array([0]) cv_algo = None if self.cv_method is not None: if self.cv_method == "LOO": cv_algo = LeaveOneOut(len(y)) elif self.cv_method == "SKFold": cv_algo = StratifiedKFold(y) logger.info("Running cross-validation...") scores = model_selection.cross_val_score( clf, X, y, cv=cv_algo, scoring='neg_log_loss', n_jobs=self.threads, verbose=1, ) clf.fit(X, y) return clf, scores.mean(), scores.std() def _describe_and_filter_regions(self, basic_region_df, annotation, clinical_column, sample_name_column): logger.info("Initial number of regions: {0}".format(basic_region_df.shape)) # Initial filtering based on min_beta_threshold class_combinations = itertools.combinations(annotation[clinical_column].unique(), 2) for combination in class_combinations: first_class_samples = annotation[annotation[clinical_column] == combination[0]][sample_name_column] second_class_samples = annotation[annotation[clinical_column] == combination[1]][sample_name_column] mean_difference = (basic_region_df.loc[first_class_samples].mean() - basic_region_df.loc[second_class_samples].mean()) basic_region_df = basic_region_df[mean_difference[abs(mean_difference) > self.min_beta_threshold].index.tolist()] basic_region_df = basic_region_df.dropna(how="any", axis=1) logger.info("Number of features after initial filtration: {0}".format(basic_region_df.shape)) plot_pca_by_annotation( basic_region_df, annotation, clinical_column, sample_name_column, outfile=os.path.join(self.output_folder, PREFILTER_PCA_PLOT_NAME), ) logger.info("Starting feature selection with RLR...") selected_features, model = self._run_randomized_regression( basic_region_df, annotation, clinical_column, ) plot_pca_by_annotation( basic_region_df[selected_features], annotation, clinical_column, sample_name_column, outfile=os.path.join(self.output_folder, POSTFILTER_PCA_PLOT_NAME), ) return selected_features, model def plot_fi_distribution(self, feature_importances): ax = feature_importances[FEATURE_IMPORTANCE_COLUMN].hist() ax.set_xlabel("Feature Importance") ax.set_ylabel("Number of features") fig = ax.get_figure() fig.savefig(os.path.join(self.output_folder, FEATURE_IMPORTANCE_PLOT_NAME)) def _apply_feature_imp_thresh(self, features, feature_imp, thresh): return [ feature[0] for feature in zip(features.values, feature_imp) if feature[1] > thresh ] def get_threshold(self, logloss_df): # Standard error ll_se = logloss_df["mean"].std() / np.sqrt(len(logloss_df["mean"])) # Restricting search to desired number of features. logloss_df = logloss_df[logloss_df["len"] <= int(self.max_num_of_features)] ll_max = logloss_df[logloss_df["mean"] == logloss_df["mean"].max()].iloc[0] ll_interval = logloss_df[logloss_df["mean"] > (ll_max["mean"] - 0.5 * ll_se)] res = ll_interval[ll_interval["len"] == ll_interval["len"].min()].iloc[0] return res def train(self, train_regions, anndf, sample_class_column, sample_name_column): """ Main functionality :param train_regions: input dataframe with all regions methylation :type train_regions: pandas.DataFrame :param anndf: annotation dataframe, containing at least sample name and sample class :type anndf: pandas.DataFrame :param sample_class_column: name of the sample class column :type sample_class_column: str :param sample_name_column: name of the sample name column :type sample_name_column: str :return: """ # train_regions = train_regions.T # First sort both train_regions and annotation according to sample names train_regions = train_regions.sort_index(ascending=True) # Ensure annotation contains only samples from the train_regions anndf = anndf[anndf[sample_name_column].isin(train_regions.index.tolist())].sort_values( by=[sample_name_column], ascending=True ).dropna(subset=[sample_name_column]) train_regions = train_regions.ix[anndf[sample_name_column].tolist()] assert anndf[sample_name_column].tolist() == train_regions.index.tolist(), \ "Samples in the annotations table are diferrent from those in feature table" # Prefilter regions selected_regions, clf = self._describe_and_filter_regions( train_regions, anndf, sample_class_column, sample_name_column, ) # Estimate feature importances (FI) first_clf, mean, std = self._train_clf( train_regions[selected_regions.values], anndf[sample_class_column], n_estimators=self.final_clf_estimators_num, ) feature_importances = pandas.DataFrame.from_records( zip(selected_regions.values, first_clf.feature_importances_), columns=[FEATURE_COLUMN, FEATURE_IMPORTANCE_COLUMN], ) # Visualizing feature importance distribution self.plot_fi_distribution(feature_importances) # Extracting correlated site feature_importances = feature_importances[ abs(feature_importances[FEATURE_IMPORTANCE_COLUMN]) > 0 ] corr_matrix = train_regions[feature_importances[FEATURE_COLUMN]].corr().applymap( lambda x: 1 if abs(x) >= self.correlation_threshold else 0 ) logloss_df_cols = ["thresh", "mean", "std", "len"] logloss_di = pandas.DataFrame(columns=logloss_df_cols) for thresh in np.arange( feature_importances[FEATURE_IMPORTANCE_COLUMN].quantile(0.99), feature_importances[FEATURE_IMPORTANCE_COLUMN].max(), ( feature_importances[FEATURE_IMPORTANCE_COLUMN].max() - feature_importances[FEATURE_IMPORTANCE_COLUMN].min() ) / self.logloss_estimates ): selected_features = self._apply_feature_imp_thresh(selected_regions, first_clf.feature_importances_, thresh) if len(selected_features) < 2: continue logger.info( "Estimating %d features on feature importance threshold %f", len(selected_features), thresh ) clf, mean, std = self._train_clf( train_regions[selected_features], anndf[sample_class_column], n_estimators=self.intermediate_clf_estimators_num, ) logloss_di = logloss_di.append( pandas.Series([thresh, mean, std, len(selected_features)], index=logloss_df_cols), ignore_index=True, ) logger.info("LogLoss mean=%f, std=%f on threshold %f", mean, std, thresh) logger.info("Detecting optimal feature subset...") thresh = self.get_threshold(logloss_di) logger.info("Selected threshold") logger.info(thresh) selected_features = self._apply_feature_imp_thresh( selected_regions, first_clf.feature_importances_, thresh["thresh"], ) logger.info("Trainig final model...") clf, mean, std = self._train_clf( train_regions[selected_features], anndf[sample_class_column], n_estimators=self.final_clf_estimators_num, ) logger.info("Selected features: {0}".format(selected_features)) pickle.dump((clf, selected_features), open(os.path.join(self.output_folder, TRAINED_MODEL_NAME), 'w')) return selected_features, clf, mean, std
gpl-3.0
tomlof/scikit-learn
sklearn/utils/tests/test_linear_assignment.py
421
1349
# Author: Brian M. Clapper, G Varoquaux # License: BSD import numpy as np # XXX we should be testing the public API here from sklearn.utils.linear_assignment_ import _hungarian def test_hungarian(): matrices = [ # Square ([[400, 150, 400], [400, 450, 600], [300, 225, 300]], 850 # expected cost ), # Rectangular variant ([[400, 150, 400, 1], [400, 450, 600, 2], [300, 225, 300, 3]], 452 # expected cost ), # Square ([[10, 10, 8], [9, 8, 1], [9, 7, 4]], 18 ), # Rectangular variant ([[10, 10, 8, 11], [9, 8, 1, 1], [9, 7, 4, 10]], 15 ), # n == 2, m == 0 matrix ([[], []], 0 ), ] for cost_matrix, expected_total in matrices: cost_matrix = np.array(cost_matrix) indexes = _hungarian(cost_matrix) total_cost = 0 for r, c in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost indexes = _hungarian(cost_matrix.T) total_cost = 0 for c, r in indexes: x = cost_matrix[r, c] total_cost += x assert expected_total == total_cost
bsd-3-clause
thomasgibson/tabula-rasa
verification/LDGH/LDGH.py
1
14704
""" This module runs a convergence history for a hybridized-DG discretization of a model elliptic problem (detailed in the main function). The method used is the LDG-H method. """ from firedrake import * from firedrake.petsc import PETSc from firedrake import COMM_WORLD import numpy as np import pandas as pd def run_LDG_H_problem(r, degree, tau_order, write=False): """ Solves the Dirichlet problem for the elliptic equation: -div(grad(u)) = f in [0, 1]^2, u = g on the domain boundary. The source function f and g are chosen such that the analytic solution is: u(x, y) = sin(x*pi)*sin(y*pi). This problem was crafted so that we can test the theoretical convergence rates for the hybridized DG method: LDG-H. This is accomplished by introducing the numerical fluxes: u_hat = lambda, q_hat = q + tau*(u - u_hat). The Slate DLS in Firedrake is used to perform the static condensation of the full LDG-H formulation of the Poisson problem to a single system for the trace u_hat (lambda) on the mesh skeleton: S * Lambda = E. The resulting linear system is solved via a direct method (LU) to ensure an accurate approximation to the trace variable. Once the trace is solved, the Slate DSL is used again to solve the elemental systems for the scalar solution u and its flux q. Post-processing of the scalar variable, as well as its flux, is performed using Slate to form and solve the elemental-systems for new approximations u*, q*. Depending on the choice of tau, these new solutions have superconvergent properties. The post-processed scalar u* superconverges at a rate of k+2 when two conditions are satisfied: (1) q converges at a rate of k+1, and (2) the cell average of u, ubar, superconverges at a rate of k+2. The choice of tau heavily influences these two conditions. For all tau > 0, the post-processed flux q* has enhanced convervation properties! The new solution q* has the following three properties: (1) q* converges at the same rate as q. However, (2) q* is in H(Div), meaning that the interior jump of q* is zero! And lastly, (3) div(q - q*) converges at a rate of k+1. The expected (theoretical) rates for the LDG-H method are summarized below for various orders of tau: ----------------------------------------------------------------- u q ubar u* q* div(p*) ----------------------------------------------------------------- tau = O(1) (k>0) k+1 k+1 k+2 k+2 k+1 k+1 tau = O(h) (k>0) k k+1 k+2 k+2 k+1 k+1 tau = O(1/h) (k>0) k+1 k k+1 k+1 k k+1 ----------------------------------------------------------------- Note that the post-processing used for the flux q only holds for simplices (triangles and tetrahedra). If someone knows of a local post-processing method valid for quadrilaterals, please contact me! For these numerical results, we chose the following values of tau: tau = O(1) -> tau = 1, tau = O(h) -> tau = h, tau = O(1/h) -> tau = 1/h, where h here denotes the facet area. This demo was written by: Thomas H. Gibson (t.gibson15@imperial.ac.uk) """ if tau_order is None or tau_order not in ("1", "1/h", "h"): raise ValueError( "Must specify tau to be of order '1', '1/h', or 'h'" ) assert degree > 0, "Provide a degree >= 1" # Set up problem domain mesh = UnitSquareMesh(2**r, 2**r, quadrilateral=False) x = SpatialCoordinate(mesh) n = FacetNormal(mesh) # Set up function spaces U = VectorFunctionSpace(mesh, "DG", degree) V = FunctionSpace(mesh, "DG", degree) T = FunctionSpace(mesh, "HDiv Trace", degree) # Mixed space and test/trial functions W = U * V * T s = Function(W, name="solutions").assign(0.0) q, u, uhat = split(s) v, w, mu = TestFunctions(W) # Analytical solutions for u and q V_a = FunctionSpace(mesh, "DG", degree + 3) U_a = VectorFunctionSpace(mesh, "DG", degree + 3) u_a = Function(V_a, name="Analytic Scalar") a_scalar = sin(pi*x[0])*sin(pi*x[1]) u_a.interpolate(a_scalar) q_a = Function(U_a, name="Analytic Flux") a_flux = -grad(a_scalar) q_a.project(a_flux) Vh = FunctionSpace(mesh, "DG", degree + 3) f = Function(Vh).interpolate(-div(grad(a_scalar))) # Determine stability parameter tau if tau_order == "1": tau = Constant(1) elif tau_order == "1/h": tau = 1/FacetArea(mesh) elif tau_order == "h": tau = FacetArea(mesh) else: raise ValueError("Invalid choice of tau") # Numerical flux qhat = q + tau*(u - uhat)*n # Formulate the LDG-H method in UFL a = ((dot(v, q) - div(v)*u)*dx + uhat('+')*jump(v, n=n)*dS + uhat*dot(v, n)*ds - dot(grad(w), q)*dx + jump(qhat, n=n)*w('+')*dS + dot(qhat, n)*w*ds # Transmission condition + mu('+')*jump(qhat, n=n)*dS) L = w*f*dx F = a - L PETSc.Sys.Print("Solving using static condensation.\n") params = {'snes_type': 'ksponly', 'mat_type': 'matfree', 'pmat_type': 'matfree', 'ksp_type': 'preonly', 'pc_type': 'python', # Use the static condensation PC for hybridized problems # and use a direct solve on the reduced system for u_hat 'pc_python_type': 'firedrake.SCPC', 'pc_sc_eliminate_fields': '0, 1', 'condensed_field': {'ksp_type': 'preonly', 'pc_type': 'lu', 'pc_factor_mat_solver_type': 'mumps'}} bcs = DirichletBC(W.sub(2), Constant(0.0), "on_boundary") problem = NonlinearVariationalProblem(F, s, bcs=bcs) solver = NonlinearVariationalSolver(problem, solver_parameters=params) solver.solve() PETSc.Sys.Print("Solver finished.\n") # Computed flux, scalar, and trace q_h, u_h, uhat_h = s.split() # Now we compute the various metrics. First we # simply compute the L2 error between the analytic # solutions and the computed ones. scalar_error = errornorm(a_scalar, u_h, norm_type="L2") flux_error = errornorm(a_flux, q_h, norm_type="L2") # We keep track of all metrics using a Python dictionary error_dictionary = {"scalar_error": scalar_error, "flux_error": flux_error} # Now we use Slate to perform element-wise post-processing # Scalar post-processing: # This gives an approximation in DG(k+1) via solving for # the solution of the local Neumman data problem: # # (grad(u), grad(w))*dx = -(q_h, grad(w))*dx # m(u) = m(u_h) for all elements K, where # # m(v) := measure(K)^-1 * int_K v dx. # NOTE: It is currently not possible to correctly formulate this # in UFL. However, we can introduce a Lagrange multiplier and # transform the local problem above into a local mixed system: # # find (u, psi) in DG(k+1) * DG(0) such that: # # (grad(u), grad(w))*dx + (psi, grad(w))*dx = -(q_h, grad(w))*dx # (u, phi)*dx = (u_h, phi)*dx, # # for all w, phi in DG(k+1) * DG(0). DGk1 = FunctionSpace(mesh, "DG", degree + 1) DG0 = FunctionSpace(mesh, "DG", 0) Wpp = DGk1 * DG0 up, psi = TrialFunctions(Wpp) wp, phi = TestFunctions(Wpp) # Create mixed tensors: K = Tensor((inner(grad(up), grad(wp)) + inner(psi, wp) + inner(up, phi))*dx) F = Tensor((-inner(q_h, grad(wp)) + inner(u_h, phi))*dx) E = K.inv * F PETSc.Sys.Print("Local post-processing of the scalar variable.\n") u_pp = Function(DGk1, name="Post-processed scalar") assemble(E.blocks[0], tensor=u_pp) # Now we compute the error in the post-processed solution # and update our error dictionary scalar_pp_error = errornorm(a_scalar, u_pp, norm_type="L2") error_dictionary.update({"scalar_pp_error": scalar_pp_error}) # Post processing of the flux: # This is a modification of the local Raviart-Thomas projector. # We solve the local problem: find 'q_pp' in RT(k+1)(K) such that # # (q_pp, v)*dx = (q_h, v)*dx, # (q_pp.n, gamma)*dS = (qhat.n, gamma)*dS # # for all v, gamma in DG(k-1) * DG(k)|_{trace}. The post-processed # solution q_pp converges at the same rate as q_h, but is HDiv # conforming. For all LDG-H methods, # div(q_pp) converges at the rate k+1. This is a way to obtain a # flux with better conservation properties. For tau of order 1/h, # div(q_pp) converges faster than q_h. qhat_h = q_h + tau*(u_h - uhat_h)*n local_RT = FiniteElement("RT", triangle, degree + 1) RTd = FunctionSpace(mesh, BrokenElement(local_RT)) DGkn1 = VectorFunctionSpace(mesh, "DG", degree - 1) # Use the trace space already defined Npp = DGkn1 * T n_p = TrialFunction(RTd) vp, mu = TestFunctions(Npp) # Assemble the local system and invert using Slate A = Tensor(inner(n_p, vp)*dx + jump(n_p, n=n)*mu*dS + dot(n_p, n)*mu*ds) B = Tensor(inner(q_h, vp)*dx + jump(qhat_h, n=n)*mu*dS + dot(qhat_h, n)*mu*ds) PETSc.Sys.Print("Local post-processing of the flux.\n") q_pp = assemble(A.inv * B) # And check the error in our new flux flux_pp_error = errornorm(a_flux, q_pp, norm_type="L2") # To verify our new flux is HDiv conforming, we also # evaluate its jump over mesh interiors. This should be # approximately zero if everything worked correctly. flux_pp_jump = assemble(jump(q_pp, n=n)*dS) error_dictionary.update({"flux_pp_error": flux_pp_error}) error_dictionary.update({"flux_pp_jump": np.abs(flux_pp_jump)}) PETSc.Sys.Print("Post-processing finished.\n") PETSc.Sys.Print("Finished test case for h=1/2^%d.\n" % r) # If write specified, then write output if write: if tau_order == "1/h": o = "hneg1" else: o = tau_order File("results/LDGH_tauO%s_deg%d.pvd" % (o, degree)).write(q_a, u_a, q_h, u_h, u_pp) # Return all error metrics return error_dictionary, mesh def compute_conv_rates(u): """Computes the convergence rate for this particular test case :arg u: a list of errors. Returns a list of convergence rates. Note the first element of the list will be empty, as there is no previous computation to compare with. '---' will be inserted into the first component. """ u_array = np.array(u) rates = list(np.log2(u_array[:-1] / u_array[1:])) rates.insert(0, '---') return rates def run_single_test(r, degree, tau_order, write=False): # Run a quick test given a degree, tau order, and resolution resolution_param = r PETSc.Sys.Print("Running LDG-H method (triangles) of degree %d with tau=O('%s') " "and mesh parameter h=1/2^%d." % (degree, tau_order, resolution_param)) error_dict, _ = run_LDG_H_problem(r=resolution_param, degree=degree, tau_order=tau_order, write=write) PETSc.Sys.Print("Error in scalar: %0.8f" % error_dict["scalar_error"]) PETSc.Sys.Print("Error in post-processed scalar: %0.8f" % error_dict["scalar_pp_error"]) PETSc.Sys.Print("Error in flux: %0.8f" % error_dict["flux_error"]) PETSc.Sys.Print("Error in post-processed flux: %0.8f" % error_dict["flux_pp_error"]) PETSc.Sys.Print("Interior jump of post-processed flux: %0.8f" % np.abs(error_dict["flux_pp_jump"])) def run_LDG_H_convergence(degree, tau_order, start, end): PETSc.Sys.Print("Running convergence test for LDG-H method (triangles) " "of degree %d with tau order '%s'" % (degree, tau_order)) # Create arrays to write to CSV file r_array = [] scalar_errors = [] scalar_pp_errors = [] flux_errors = [] flux_pp_errors = [] flux_pp_jumps = [] num_cells = [] # Run over mesh parameters and collect error metrics for r in range(start, end + 1): r_array.append(r) error_dict, mesh = run_LDG_H_problem(r=r, degree=degree, tau_order=tau_order, write=False) # Extract errors and metrics scalar_errors.append(error_dict["scalar_error"]) scalar_pp_errors.append(error_dict["scalar_pp_error"]) flux_errors.append(error_dict["flux_error"]) flux_pp_errors.append(error_dict["flux_pp_error"]) flux_pp_jumps.append(error_dict["flux_pp_jump"]) num_cells.append(mesh.num_cells()) # Now that all error metrics are collected, we can compute the rates: scalar_rates = compute_conv_rates(scalar_errors) scalar_pp_rates = compute_conv_rates(scalar_pp_errors) flux_rates = compute_conv_rates(flux_errors) flux_pp_rates = compute_conv_rates(flux_pp_errors) PETSc.Sys.Print("Error in scalar: %0.13f" % scalar_errors[-1]) PETSc.Sys.Print("Error in post-processed scalar: %0.13f" % scalar_pp_errors[-1]) PETSc.Sys.Print("Error in flux: %0.13f" % flux_errors[-1]) PETSc.Sys.Print("Error in post-processed flux: %0.13f" % flux_pp_errors[-1]) PETSc.Sys.Print("Interior jump of post-processed flux: %0.13f" % np.abs(flux_pp_jumps[-1])) if COMM_WORLD.rank == 0: degrees = [degree] * len(r_array) data = {"Mesh": r_array, "Degree": degrees, "NumCells": num_cells, "ScalarErrors": scalar_errors, "ScalarConvRates": scalar_rates, "PostProcessedScalarErrors": scalar_pp_errors, "PostProcessedScalarRates": scalar_pp_rates, "FluxErrors": flux_errors, "FluxConvRates": flux_rates, "PostProcessedFluxErrors": flux_pp_errors, "PostProcessedFluxRates": flux_pp_rates} if tau_order == "1/h": o = "hneg1" else: o = tau_order df = pd.DataFrame(data) result = "results/LDG-H-d%d-tau_order-%s.csv" % (degree, o) df.to_csv(result, index=False, mode="w")
mit
molly24Huang/Cents_trip
Recommendation/attr_food_distance.py
1
2978
import pandas as pd from math import sin, cos, sqrt, asin, radians #import ibm_db def cal_dist(lon1, lat1, lon2, lat2): lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 c = 2 * asin(sqrt(a)) distance = 6378.137 * c return distance food = 'D:\\Dropbox\\Mcomp\\CS5224\\Project\\Cents_trip-master\\dataset\\food.csv' tourism_attractions = 'D:\\Dropbox\\Mcomp\\CS5224\\Project\\Cents_trip-master\\dataset\\TOURISM_ATTRACTIONS.csv' food_df = pd.read_csv(food) tourism_attractions_df = pd.read_csv(tourism_attractions) food_data = food_df.iloc[:,[0,6,7]] tourism_attractions_data = tourism_attractions_df.iloc[:,[0,2,3]] foodid = food_data['FOODID'].as_matrix() #print(len(roomid)) lat_food = food_data['LATITUDE'].as_matrix() lng_food = food_data['LONGITUDE'].as_matrix() attractionid = tourism_attractions_data['ATTRACTIONID'].as_matrix() #print(attractionid) lat_attractions = tourism_attractions_data['LATITUDE'].as_matrix() lng_attractions = tourism_attractions_data['LONGITUDE'].as_matrix() distances = [] # conn = ibm_db.connect("DATABASE=BLUDB;HOSTNAME=dashdb-entry-yp-dal09-09.services.dal.bluemix.net;\ # PORT=50000;PROTOCOL=TCPIP;UID=dash9787;\ # PWD=X_c03EeYTe#u;", "", "") for i in range(len(tourism_attractions_data)): for k in range(len(food_data)): distance = cal_dist(lng_attractions[i], lat_attractions[i], lng_food[k], lat_food[k]) # print(distance) distances.append(distance) output = open('rating.txt','w') k = 1 for i in range(len(tourism_attractions_data)): for j in range(len(food_data)): this_attractid = str(attractionid[i]) this_foodid = str(foodid[j]) this_distance = str(distances[(i + 1)* j]) output.write(this_attractid) output.write('\t') output.write(this_foodid) output.write('\t') output.write(this_distance) output.write('\n') output.close() #print(len(distances)) # k = 1 # for i in range(len(tourism_attractions_data)): # for j in range(len(food_data)): # this_attractid = attractionid[i] # this_foodid = foodid[j] # this_distance = distances[(i + 1)* j] # sql = r'INSERT INTO DISTANCE_FOOD_ATTRACTION(ATTRACTIONID, FOODID, DISTANCE) VALUES({attractionID}, {foodID}, {distance})'.format( # attractionID=this_attractid, foodID=this_foodid, distance=this_distance # ) # print(sql, '>>') # try: # stmt = ibm_db.exec_immediate(conn, sql) # except Exception as e: # print(e) # print("Inserting couldn't be completed.") # ibm_db.rollback(conn) # else: # ibm_db.commit(conn) # print("Inserting complete.") # print('-----' + str(k) + '-----') # k += 1 # #
apache-2.0
timqian/sms-tools
lectures/3-Fourier-properties/plots-code/zero-padding.py
26
1083
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming from scipy.fftpack import fft, fftshift plt.figure(1, figsize=(9.5, 6)) M = 8 N1 = 8 N2 = 16 N3 = 32 x = np.cos(2*np.pi*2/M*np.arange(M)) * np.hanning(M) plt.subplot(4,1,1) plt.title('x, M=8') plt.plot(np.arange(-M/2.0,M/2), x, 'b', marker='x', lw=1.5) plt.axis([-M/2,M/2-1,-1,1]) mX = 20 * np.log10(np.abs(fftshift(fft(x, N1)))) plt.subplot(4,1,2) plt.plot(np.arange(-N1/2.0,N1/2), mX, marker='x', color='r', lw=1.5) plt.axis([-N1/2,N1/2-1,-20,max(mX)+1]) plt.title('magnitude spectrum: mX1, N=8') mX = 20 * np.log10(np.abs(fftshift(fft(x, N2)))) plt.subplot(4,1,3) plt.plot(np.arange(-N2/2.0,N2/2),mX,marker='x',color='r', lw=1.5) plt.axis([-N2/2,N2/2-1,-20,max(mX)+1]) plt.title('magnitude spectrum: mX2, N=16') mX = 20 * np.log10(np.abs(fftshift(fft(x, N3)))) plt.subplot(4,1,4) plt.plot(np.arange(-N3/2.0,N3/2),mX,marker='x',color='r', lw=1.5) plt.axis([-N3/2,N3/2-1,-20,max(mX)+1]) plt.title('magnitude spectrum: mX3, N=32') plt.tight_layout() plt.savefig('zero-padding.png') plt.show()
agpl-3.0
CforED/Machine-Learning
sklearn/exceptions.py
18
4332
""" The :mod:`sklearn.exceptions` module includes all custom warnings and error classes used across scikit-learn. """ __all__ = ['NotFittedError', 'ChangedBehaviorWarning', 'ConvergenceWarning', 'DataConversionWarning', 'DataDimensionalityWarning', 'EfficiencyWarning', 'FitFailedWarning', 'NonBLASDotWarning', 'UndefinedMetricWarning'] class NotFittedError(ValueError, AttributeError): """Exception class to raise if estimator is used before fitting. This class inherits from both ValueError and AttributeError to help with exception handling and backward compatibility. Examples -------- >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import NotFittedError >>> try: ... LinearSVC().predict([[1, 2], [2, 3], [3, 4]]) ... except NotFittedError as e: ... print(repr(e)) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS NotFittedError('This LinearSVC instance is not fitted yet',) """ class ChangedBehaviorWarning(UserWarning): """Warning class used to notify the user of any change in the behavior.""" class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataConversionWarning(UserWarning): """Warning used to notify implicit data conversions happening in the code. This warning occurs when some input data needs to be converted or interpreted in a way that may not match the user's expectations. For example, this warning may occur when the the user - passes an integer array to a function which expects float input and will convert the input - requests a non-copying operation, but a copy is required to meet the implementation's data-type expectations; - passes an input whose shape can be interpreted ambiguously. """ class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality. For example, in random projection, this warning is raised when the number of components, which quantifes the dimensionality of the target projection space, is higher than the number of features, which quantifies the dimensionality of the original source space, to imply that the dimensionality of the problem will not be reduced. """ class EfficiencyWarning(UserWarning): """Warning used to notify the user of inefficient computation. This warning notifies the user that the efficiency may not be optimal due to some reason which may be included as a part of the warning message. This may be subclassed into a more specific Warning class. """ class FitFailedWarning(RuntimeWarning): """Warning class used if there is an error while fitting the estimator. This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV and the cross-validation helper function cross_val_score to warn when there is an error while fitting the estimator. Examples -------- >>> from sklearn.model_selection import GridSearchCV >>> from sklearn.svm import LinearSVC >>> from sklearn.exceptions import FitFailedWarning >>> import warnings >>> warnings.simplefilter('always', FitFailedWarning) >>> gs = GridSearchCV(LinearSVC(), {'C': [-1, -2]}, error_score=0) >>> X, y = [[1, 2], [3, 4], [5, 6], [7, 8], [8, 9]], [0, 0, 0, 1, 1] >>> with warnings.catch_warnings(record=True) as w: ... try: ... gs.fit(X, y) # This will raise a ValueError since C is < 0 ... except ValueError: ... pass ... print(repr(w[-1].message)) ... # doctest: +NORMALIZE_WHITESPACE FitFailedWarning("Classifier fit failed. The score on this train-test partition for these parameters will be set to 0.000000. Details: \\nValueError('Penalty term must be positive; got (C=-2)',)",) """ class NonBLASDotWarning(EfficiencyWarning): """Warning used when the dot operation does not use BLAS. This warning is used to notify the user that BLAS was not used for dot operation and hence the efficiency may be affected. """ class UndefinedMetricWarning(UserWarning): """Warning used when the metric is invalid"""
bsd-3-clause
proyan/sot-torque-control
python/dynamic_graph/sot/torque_control/identification/identify_motor_acc.py
1
2771
# -*- coding: utf-8 -*- """ Created on Tue Sep 12 18:47:50 2017 @author: adelpret """ from scipy import signal import numpy as np from scipy import ndimage import matplotlib.pyplot as plt from identification_utils import solve1stOrderLeastSquare def identify_motor_acc(dt, dq, ddq, current, tau, Kt_p, Kv_p, ZERO_VELOCITY_THRESHOLD_SMALL, ZERO_JERK_THRESHOLD, SHOW_THRESHOLD_EFFECT): #Filter current***************************************************** win = signal.hann(10) filtered_current = signal.convolve(current, win, mode='same') / sum(win) current = filtered_current # Mask valid data*************************************************** #~ # remove high jerk dddq = np.gradient(ddq,1)/dt maskConstAcc = (abs (dddq)<ZERO_JERK_THRESHOLD) #~ # erode to get only steady phases where acceleration is constant maskConstAcc=ndimage.morphology.binary_erosion(maskConstAcc,None,100) maskPosVel=(dq> ZERO_VELOCITY_THRESHOLD_SMALL) maskNegVel=(dq<-ZERO_VELOCITY_THRESHOLD_SMALL) maskConstPosAcc=np.logical_and( maskConstAcc ,maskPosVel ) maskConstNegAcc=np.logical_and( maskConstAcc ,maskNegVel ) if SHOW_THRESHOLD_EFFECT : plt.figure() plt.plot(ddq); plt.ylabel('ddq') ddq_const=ddq.copy() ddq_const[np.logical_not(maskConstAcc)]=np.nan plt.plot(ddq_const); plt.ylabel('ddq_const') plt.show() #~ y = a. x + b #~ i-Kt.tau-Kv.dq = Ka.ddq + Kf #~ # Identification *************************************************** y = current-Kt_p*tau - Kv_p*dq y[maskConstPosAcc] = current[maskConstPosAcc]-Kt_p*tau[maskConstPosAcc] - Kv_p*dq[maskConstPosAcc] y[maskConstNegAcc] = current[maskConstNegAcc]-Kt_p*tau[maskConstNegAcc] - Kv_p*dq[maskConstNegAcc] y_label = r'$i(t)-{K_t}{\tau(t)}-{K_v}{\dot{q}(t)}$' x = ddq x_label = r'$\ddot{q}(t)$' (Kap,Kfp)=solve1stOrderLeastSquare(x[maskConstPosAcc],y[maskConstPosAcc]) (Kan,b)=solve1stOrderLeastSquare(x[maskConstNegAcc],y[maskConstNegAcc]) Kfn=-b # Plot ************************************************************* plt.figure() plt.axhline(0, color='black',lw=1) plt.axvline(0, color='black',lw=1) plt.plot(x ,y ,'.' ,lw=3,markersize=1,c='0.5'); plt.plot(x[maskConstPosAcc],y[maskConstPosAcc],'rx',lw=3,markersize=1); plt.plot(x[maskConstNegAcc],y[maskConstNegAcc],'bx',lw=3,markersize=1); #plot identified lin model plt.plot([min(x),max(x)],[Kap*min(x)+Kfp ,Kap*max(x)+Kfp],'g:',lw=3) plt.plot([min(x),max(x)],[Kan*min(x)-Kfn ,Kan*max(x)-Kfn],'g:',lw=3) plt.ylabel(y_label) plt.xlabel(x_label) plt.show() return (Kap, Kan, Kfp, Kfn)
gpl-3.0
bjackman/trappy
trappy/utils.py
2
3208
# Copyright 2015-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Generic functions that can be used in multiple places in trappy """ def listify(to_select): """Utitlity function to handle both single and list inputs """ if not isinstance(to_select, list): to_select = [to_select] return to_select def handle_duplicate_index(data, max_delta=0.000001): """Handle duplicate values in index :param data: The timeseries input :type data: :mod:`pandas.Series` :param max_delta: Maximum interval adjustment value that will be added to duplicate indices :type max_delta: float Consider the following case where a series needs to be reindexed to a new index (which can be required when different series need to be combined and compared): :: import pandas values = [0, 1, 2, 3, 4] index = [0.0, 1.0, 1.0, 6.0, 7.0] series = pandas.Series(values, index=index) new_index = [0.0, 1.0, 2.0, 3.0, 4.0, 6.0, 7.0] series.reindex(new_index) The above code fails with: :: ValueError: cannot reindex from a duplicate axis The function :func:`handle_duplicate_axis` changes the duplicate values to :: >>> import pandas >>> from trappy.utils import handle_duplicate_index >>> values = [0, 1, 2, 3, 4] index = [0.0, 1.0, 1.0, 6.0, 7.0] series = pandas.Series(values, index=index) series = handle_duplicate_index(series) print series.index.values >>> [ 0. 1. 1.000001 6. 7. ] """ index = data.index new_index = index.values dups = index.get_duplicates() for dup in dups: # Leave one of the values intact dup_index_left = index.searchsorted(dup, side="left") dup_index_right = index.searchsorted(dup, side="right") - 1 num_dups = dup_index_right - dup_index_left + 1 # Calculate delta that needs to be added to each duplicate # index try: delta = (index[dup_index_right + 1] - dup) / num_dups except IndexError: # dup_index_right + 1 is outside of the series (i.e. the # dup is at the end of the series). delta = max_delta # Clamp the maximum delta added to max_delta if delta > max_delta: delta = max_delta # Add a delta to the others dup_index_left += 1 while dup_index_left <= dup_index_right: new_index[dup_index_left] += delta delta += delta dup_index_left += 1 return data.reindex(new_index)
apache-2.0
stylianos-kampakis/scikit-learn
examples/exercises/plot_cv_diabetes.py
231
2527
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import cross_validation, datasets, linear_model diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = linear_model.Lasso() alphas = np.logspace(-4, -.5, 30) scores = list() scores_std = list() for alpha in alphas: lasso.alpha = alpha this_scores = cross_validation.cross_val_score(lasso, X, y, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) plt.figure(figsize=(4, 3)) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores plt.semilogx(alphas, np.array(scores) + np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.semilogx(alphas, np.array(scores) - np.array(scores_std) / np.sqrt(len(X)), 'b--') plt.ylabel('CV score') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = linear_model.LassoCV(alphas=alphas) k_fold = cross_validation.KFold(len(X), 3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
jviada/QuantEcon.py
quantecon/models/solow/impulse_response.py
7
10840
""" Classes for generating and plotting impulse response functions. @author : David R. Pugh @date : 2014-10-06 """ from __future__ import division from textwrap import dedent import matplotlib.pyplot as plt import numpy as np class ImpulseResponse(object): """Base class representing an impulse response function for a Model.""" # number of points to use for "padding" N = 10 # length of impulse response T = 100 def __init__(self, model): """ Create an instance of the ImpulseResponse class. Parameters ---------- model : model.Model Instance of the model.Model class representing a Solow model. """ self.model = model def __repr__(self): """Machine readable summary of a ImpulseResponse instance.""" return self.__str__() def __str__(self): """Human readable summary of a ImpulseResponse instance.""" m = """ Impulse response function (IRF): - N (number of points used for padding) : {N:d} - T (length of the impulse response) : {T:d} """ formatted_str = dedent(m.format(N=self.N, T=self.T)) return formatted_str @property def _padding(self): """ Impulse response functions are "padded" for pretty plotting. :getter: Return the current "padding" values. :type: numpy.ndarray """ return np.hstack((self._padding_time, self._padding_variables)) @property def _padding_scaling_factor(self): """ Scaling factor used in constructing the impulse response function "padding". :getter: Return the current scaling factor. :type: numpy.ndarray """ # extract the relevant parameters A0 = self.model.params['A0'] L0 = self.model.params['L0'] g = self.model.params['g'] n = self.model.params['n'] if self.kind == 'per_capita': factor = A0 * np.exp(g * self._padding_time) elif self.kind == 'levels': factor = A0 * L0 * np.exp((g + n) * self._padding_time) else: factor = np.ones(self.N) return factor.reshape((self.N, 1)) @property def _padding_time(self): """ The independent variable, time, is "padded" using values from -N to -1. :getter: Return the current "padding" values. :type: numpy.ndarray """ return np.linspace(-self.N, -1, self.N).reshape((self.N, 1)) @property def _padding_variables(self): """ Impulse response functions for endogenous variables are "padded" with N periods of steady state values. :getter: Return current "padding" values. :kind: numpy.ndarray """ # economy is initial in steady state k0 = self.model.steady_state y0 = self.model.evaluate_intensive_output(k0) c0 = self.model.evaluate_consumption(k0) i0 = self.model.evaluate_actual_investment(k0) intitial_condition = np.array([[k0, y0, c0, i0]]) return self._padding_scaling_factor * intitial_condition @property def _response(self): """ Response functions combined independent and endogenous variables. :getter: Return the current response values. :type: numpy.ndarray """ return np.hstack((self._response_time, self._response_variables)) @property def _response_time(self): """ The independent variable, time, for the response ranges from 0 to T. :getter: Return the current resonse time values. :type: numpy.ndarray """ return np.linspace(0, self.T, self.T + 1).reshape((self.T + 1, 1)) @property def _response_variables(self): """ Response of endogenous variables to exogenous impulse. :getter: Return the current response. :type: numpy.ndarray """ # economy is initial in steady state k0 = self.model.steady_state # apply the impulse...force validate params! tmp_params = self.model.params.copy() tmp_params.update(self.impulse) self.model.params = tmp_params # ...and generate the response soln = self.model.ivp.solve(t0=0.0, y0=k0, h=1.0, T=self.T, integrator='dop853') # gather the results k = soln[:, 1][:, np.newaxis] y = self.model.evaluate_intensive_output(k) c = self.model.evaluate_consumption(k) i = self.model.evaluate_actual_investment(k) return self._response_scaling_factor * np.hstack((k, y, c, i)) @property def _response_scaling_factor(self): """ Scaling factor used in constructing the impulse response. :getter: Return the current scaling factor. :type: numpy.ndarray """ # extract the relevant parameters A0 = self.model.params['A0'] L0 = self.model.params['L0'] g = self.model.params['g'] n = self.model.params['n'] if self.kind == 'per_capita': factor = A0 * np.exp(g * self._response_time) elif self.kind == 'levels': factor = A0 * L0 * np.exp((g + n) * self._response_time) else: factor = np.ones(self.T + 1) return factor.reshape((self.T + 1, 1)) @property def impulse(self): """ Dictionary of new parameter values representing an impulse. :getter: Return the current impulse dictionary. :setter: Set a new impulse dictionary. :type: dictionary """ return self._impulse @property def kind(self): """ The kind of impulse response function to generate. Must be one of: 'levels', 'per_capita', 'efficiency_units'. :getter: Return the current kind of impulse responses. :setter: Set a new value for the kind of impulse responses. :type: str """ return self._kind @property def impulse_response(self): """ Impulse response functions generated by a shock to model parameter(s). :getter: Return the current impulse response functions. :type: numpy.ndarray """ orig_params = self.model.params.copy() # create the irf tmp_irf = np.vstack((self._padding, self._response)) # reset the model parameters self.model.params = orig_params return tmp_irf @impulse.setter def impulse(self, params): """Set a new impulse dictionary.""" self._impulse = self._validate_impulse(params) @kind.setter def kind(self, value): """Set a new value for the kind attribute.""" self._kind = self._validate_kind(value) def _validate_impulse(self, params): """Validates the impulse attribute.""" if not isinstance(params, dict): mesg = "ImpulseResponse.impulse must have type dict, not {}." raise AttributeError(mesg.format(params.__class__)) elif not set(params.keys()) <= set(self.model.params.keys()): mesg = "Invalid parameter included in the impulse dictionary.""" raise AttributeError(mesg) else: return params @staticmethod def _validate_kind(value): """Validates the kind attribute.""" valid_kinds = ['levels', 'per_capita', 'efficiency_units'] if value not in valid_kinds: mesg = "The 'kind' attribute must be in {}." raise AttributeError(mesg.format(valid_kinds)) else: return value def plot_impulse_response(self, ax, variable, log=False): """ Plot an impulse response function. Parameters ---------- ax : `matplotlib.axes.AxesSubplot` An instance of `matplotlib.axes.AxesSubplot`. variable : str Variable whose impulse response functions you wish to plot. impulse : dict Dictionary of new parameter values representing the impulse whose model response you wish to plot. kind : str (default='efficiency_units') Whether you want impulse response functions in 'levels', 'per_capita', or 'efficiency_units'. log : boolean (default=False) Whether or not to have logarithmic scales on the vertical axes. Useful when plotting impulse response functions with kind='per_capita' or kind='levels'. Returns ------- A list containing: irf_line : maplotlib.lines.Line2D A Line2D object representing the impulse response for the requested variable. bgp_line : maplotlib.lines.Line2D A Line2D object representing the pre-impulse balanced growth path for the model. """ # create a mapping from variables to column indices irf = self.impulse_response irf_dict = {'capital': irf[:, [0, 1]], 'output': irf[:, [0, 2]], 'consumption': irf[:, [0, 3]], 'investment': irf[:, [0, 4]], } # create the plot traj = irf_dict[variable] irf_line = ax.plot(traj[:, 0], traj[:, 1]) # add the old balanced growth path g = self.model.params['g'] n = self.model.params['n'] t = self.N + traj[:, 0] if self.kind == 'per_capita': bgp_line = ax.plot(traj[:, 0], traj[0, 1] * np.exp(g * t), 'k--', label='Original BGP') ax.set_ylabel(variable.title() + ' (per capita)', fontsize=15, family='serif') elif self.kind == 'levels': bgp_line = ax.plot(traj[:, 0], traj[0, 1] * np.exp((g + n) * t), 'k--', label='Original BGP') ax.set_ylabel(variable.title(), fontsize=15, family='serif') else: bgp_line = ax.axhline(traj[0, 1], linestyle='dashed', color='k', label='Original BGP') ax.set_ylabel(variable.title() + ' (per unit effective labor)', fontsize=15, family='serif') # format axes, labels, title, legend, etc ax.set_xlabel('Time', fontsize=15, family='serif') ax.set_ylim(0.95 * traj[:, 1].min(), 1.05 * traj[:, 1].max()) if log is True: ax.set_yscale('log') ax.set_title('Impulse response function', fontsize=20, family='serif') ax.grid('on') ax.legend(loc=0, frameon=False, bbox_to_anchor=(1.0, 1.0), prop={'family': 'serif'}) return [irf_line, bgp_line]
bsd-3-clause
Fokko/incubator-airflow
airflow/hooks/hive_hooks.py
1
39213
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import contextlib import os import re import socket import subprocess import time from collections import OrderedDict from tempfile import NamedTemporaryFile import unicodecsv as csv from airflow.configuration import conf from airflow.exceptions import AirflowException from airflow.hooks.base_hook import BaseHook from airflow.security import utils from airflow.utils.file import TemporaryDirectory from airflow.utils.helpers import as_flattened_list from airflow.utils.operator_helpers import AIRFLOW_VAR_NAME_FORMAT_MAPPING HIVE_QUEUE_PRIORITIES = ['VERY_HIGH', 'HIGH', 'NORMAL', 'LOW', 'VERY_LOW'] def get_context_from_env_var(): """ Extract context from env variable, e.g. dag_id, task_id and execution_date, so that they can be used inside BashOperator and PythonOperator. :return: The context of interest. """ return {format_map['default']: os.environ.get(format_map['env_var_format'], '') for format_map in AIRFLOW_VAR_NAME_FORMAT_MAPPING.values()} class HiveCliHook(BaseHook): """Simple wrapper around the hive CLI. It also supports the ``beeline`` a lighter CLI that runs JDBC and is replacing the heavier traditional CLI. To enable ``beeline``, set the use_beeline param in the extra field of your connection as in ``{ "use_beeline": true }`` Note that you can also set default hive CLI parameters using the ``hive_cli_params`` to be used in your connection as in ``{"hive_cli_params": "-hiveconf mapred.job.tracker=some.jobtracker:444"}`` Parameters passed here can be overridden by run_cli's hive_conf param The extra connection parameter ``auth`` gets passed as in the ``jdbc`` connection string as is. :param mapred_queue: queue used by the Hadoop Scheduler (Capacity or Fair) :type mapred_queue: str :param mapred_queue_priority: priority within the job queue. Possible settings include: VERY_HIGH, HIGH, NORMAL, LOW, VERY_LOW :type mapred_queue_priority: str :param mapred_job_name: This name will appear in the jobtracker. This can make monitoring easier. :type mapred_job_name: str """ def __init__( self, hive_cli_conn_id="hive_cli_default", run_as=None, mapred_queue=None, mapred_queue_priority=None, mapred_job_name=None): conn = self.get_connection(hive_cli_conn_id) self.hive_cli_params = conn.extra_dejson.get('hive_cli_params', '') self.use_beeline = conn.extra_dejson.get('use_beeline', False) self.auth = conn.extra_dejson.get('auth', 'noSasl') self.conn = conn self.run_as = run_as if mapred_queue_priority: mapred_queue_priority = mapred_queue_priority.upper() if mapred_queue_priority not in HIVE_QUEUE_PRIORITIES: raise AirflowException( "Invalid Mapred Queue Priority. Valid values are: " "{}".format(', '.join(HIVE_QUEUE_PRIORITIES))) self.mapred_queue = mapred_queue or conf.get('hive', 'default_hive_mapred_queue') self.mapred_queue_priority = mapred_queue_priority self.mapred_job_name = mapred_job_name def _get_proxy_user(self): """ This function set the proper proxy_user value in case the user overwtire the default. """ conn = self.conn proxy_user_value = conn.extra_dejson.get('proxy_user', "") if proxy_user_value == "login" and conn.login: return "hive.server2.proxy.user={0}".format(conn.login) if proxy_user_value == "owner" and self.run_as: return "hive.server2.proxy.user={0}".format(self.run_as) if proxy_user_value != "": # There is a custom proxy user return "hive.server2.proxy.user={0}".format(proxy_user_value) return proxy_user_value # The default proxy user (undefined) def _prepare_cli_cmd(self): """ This function creates the command list from available information """ conn = self.conn hive_bin = 'hive' cmd_extra = [] if self.use_beeline: hive_bin = 'beeline' jdbc_url = "jdbc:hive2://{host}:{port}/{schema}".format( host=conn.host, port=conn.port, schema=conn.schema) if conf.get('core', 'security') == 'kerberos': template = conn.extra_dejson.get( 'principal', "hive/_HOST@EXAMPLE.COM") if "_HOST" in template: template = utils.replace_hostname_pattern( utils.get_components(template)) proxy_user = self._get_proxy_user() jdbc_url += ";principal={template};{proxy_user}".format( template=template, proxy_user=proxy_user) elif self.auth: jdbc_url += ";auth=" + self.auth jdbc_url = '"{}"'.format(jdbc_url) cmd_extra += ['-u', jdbc_url] if conn.login: cmd_extra += ['-n', conn.login] if conn.password: cmd_extra += ['-p', conn.password] hive_params_list = self.hive_cli_params.split() return [hive_bin] + cmd_extra + hive_params_list @staticmethod def _prepare_hiveconf(d): """ This function prepares a list of hiveconf params from a dictionary of key value pairs. :param d: :type d: dict >>> hh = HiveCliHook() >>> hive_conf = {"hive.exec.dynamic.partition": "true", ... "hive.exec.dynamic.partition.mode": "nonstrict"} >>> hh._prepare_hiveconf(hive_conf) ["-hiveconf", "hive.exec.dynamic.partition=true",\ "-hiveconf", "hive.exec.dynamic.partition.mode=nonstrict"] """ if not d: return [] return as_flattened_list( zip(["-hiveconf"] * len(d), ["{}={}".format(k, v) for k, v in d.items()]) ) def run_cli(self, hql, schema=None, verbose=True, hive_conf=None): """ Run an hql statement using the hive cli. If hive_conf is specified it should be a dict and the entries will be set as key/value pairs in HiveConf :param hive_conf: if specified these key value pairs will be passed to hive as ``-hiveconf "key"="value"``. Note that they will be passed after the ``hive_cli_params`` and thus will override whatever values are specified in the database. :type hive_conf: dict >>> hh = HiveCliHook() >>> result = hh.run_cli("USE airflow;") >>> ("OK" in result) True """ conn = self.conn schema = schema or conn.schema if schema: hql = "USE {schema};\n{hql}".format(schema=schema, hql=hql) with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir) as f: hql = hql + '\n' f.write(hql.encode('UTF-8')) f.flush() hive_cmd = self._prepare_cli_cmd() env_context = get_context_from_env_var() # Only extend the hive_conf if it is defined. if hive_conf: env_context.update(hive_conf) hive_conf_params = self._prepare_hiveconf(env_context) if self.mapred_queue: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.queuename={}' .format(self.mapred_queue), '-hiveconf', 'mapred.job.queue.name={}' .format(self.mapred_queue), '-hiveconf', 'tez.queue.name={}' .format(self.mapred_queue) ]) if self.mapred_queue_priority: hive_conf_params.extend( ['-hiveconf', 'mapreduce.job.priority={}' .format(self.mapred_queue_priority)]) if self.mapred_job_name: hive_conf_params.extend( ['-hiveconf', 'mapred.job.name={}' .format(self.mapred_job_name)]) hive_cmd.extend(hive_conf_params) hive_cmd.extend(['-f', f.name]) if verbose: self.log.info("%s", " ".join(hive_cmd)) sp = subprocess.Popen( hive_cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=tmp_dir, close_fds=True) self.sp = sp stdout = '' while True: line = sp.stdout.readline() if not line: break stdout += line.decode('UTF-8') if verbose: self.log.info(line.decode('UTF-8').strip()) sp.wait() if sp.returncode: raise AirflowException(stdout) return stdout def test_hql(self, hql): """ Test an hql statement using the hive cli and EXPLAIN """ create, insert, other = [], [], [] for query in hql.split(';'): # naive query_original = query query = query.lower().strip() if query.startswith('create table'): create.append(query_original) elif query.startswith(('set ', 'add jar ', 'create temporary function')): other.append(query_original) elif query.startswith('insert'): insert.append(query_original) other = ';'.join(other) for query_set in [create, insert]: for query in query_set: query_preview = ' '.join(query.split())[:50] self.log.info("Testing HQL [%s (...)]", query_preview) if query_set == insert: query = other + '; explain ' + query else: query = 'explain ' + query try: self.run_cli(query, verbose=False) except AirflowException as e: message = e.args[0].split('\n')[-2] self.log.info(message) error_loc = re.search(r'(\d+):(\d+)', message) if error_loc and error_loc.group(1).isdigit(): lst = int(error_loc.group(1)) begin = max(lst - 2, 0) end = min(lst + 3, len(query.split('\n'))) context = '\n'.join(query.split('\n')[begin:end]) self.log.info("Context :\n %s", context) else: self.log.info("SUCCESS") def load_df( self, df, table, field_dict=None, delimiter=',', encoding='utf8', pandas_kwargs=None, **kwargs): """ Loads a pandas DataFrame into hive. Hive data types will be inferred if not passed but column names will not be sanitized. :param df: DataFrame to load into a Hive table :type df: pandas.DataFrame :param table: target Hive table, use dot notation to target a specific database :type table: str :param field_dict: mapping from column name to hive data type. Note that it must be OrderedDict so as to keep columns' order. :type field_dict: collections.OrderedDict :param delimiter: field delimiter in the file :type delimiter: str :param encoding: str encoding to use when writing DataFrame to file :type encoding: str :param pandas_kwargs: passed to DataFrame.to_csv :type pandas_kwargs: dict :param kwargs: passed to self.load_file """ def _infer_field_types_from_df(df): DTYPE_KIND_HIVE_TYPE = { 'b': 'BOOLEAN', # boolean 'i': 'BIGINT', # signed integer 'u': 'BIGINT', # unsigned integer 'f': 'DOUBLE', # floating-point 'c': 'STRING', # complex floating-point 'M': 'TIMESTAMP', # datetime 'O': 'STRING', # object 'S': 'STRING', # (byte-)string 'U': 'STRING', # Unicode 'V': 'STRING' # void } d = OrderedDict() for col, dtype in df.dtypes.iteritems(): d[col] = DTYPE_KIND_HIVE_TYPE[dtype.kind] return d if pandas_kwargs is None: pandas_kwargs = {} with TemporaryDirectory(prefix='airflow_hiveop_') as tmp_dir: with NamedTemporaryFile(dir=tmp_dir, mode="w") as f: if field_dict is None: field_dict = _infer_field_types_from_df(df) df.to_csv(path_or_buf=f, sep=delimiter, header=False, index=False, encoding=encoding, date_format="%Y-%m-%d %H:%M:%S", **pandas_kwargs) f.flush() return self.load_file(filepath=f.name, table=table, delimiter=delimiter, field_dict=field_dict, **kwargs) def load_file( self, filepath, table, delimiter=",", field_dict=None, create=True, overwrite=True, partition=None, recreate=False, tblproperties=None): """ Loads a local file into Hive Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param filepath: local filepath of the file to load :type filepath: str :param table: target Hive table, use dot notation to target a specific database :type table: str :param delimiter: field delimiter in the file :type delimiter: str :param field_dict: A dictionary of the fields name in the file as keys and their Hive types as values. Note that it must be OrderedDict so as to keep columns' order. :type field_dict: collections.OrderedDict :param create: whether to create the table if it doesn't exist :type create: bool :param overwrite: whether to overwrite the data in table or partition :type overwrite: bool :param partition: target partition as a dict of partition columns and values :type partition: dict :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param tblproperties: TBLPROPERTIES of the hive table being created :type tblproperties: dict """ hql = '' if recreate: hql += "DROP TABLE IF EXISTS {table};\n".format(table=table) if create or recreate: if field_dict is None: raise ValueError("Must provide a field dict when creating a table") fields = ",\n ".join( ['`{k}` {v}'.format(k=k.strip('`'), v=v) for k, v in field_dict.items()]) hql += "CREATE TABLE IF NOT EXISTS {table} (\n{fields})\n".format( table=table, fields=fields) if partition: pfields = ",\n ".join( [p + " STRING" for p in partition]) hql += "PARTITIONED BY ({pfields})\n".format(pfields=pfields) hql += "ROW FORMAT DELIMITED\n" hql += "FIELDS TERMINATED BY '{delimiter}'\n".format(delimiter=delimiter) hql += "STORED AS textfile\n" if tblproperties is not None: tprops = ", ".join( ["'{0}'='{1}'".format(k, v) for k, v in tblproperties.items()]) hql += "TBLPROPERTIES({tprops})\n".format(tprops=tprops) hql += ";" self.log.info(hql) self.run_cli(hql) hql = "LOAD DATA LOCAL INPATH '{filepath}' ".format(filepath=filepath) if overwrite: hql += "OVERWRITE " hql += "INTO TABLE {table} ".format(table=table) if partition: pvals = ", ".join( ["{0}='{1}'".format(k, v) for k, v in partition.items()]) hql += "PARTITION ({pvals})".format(pvals=pvals) # As a workaround for HIVE-10541, add a newline character # at the end of hql (AIRFLOW-2412). hql += ';\n' self.log.info(hql) self.run_cli(hql) def kill(self): if hasattr(self, 'sp'): if self.sp.poll() is None: print("Killing the Hive job") self.sp.terminate() time.sleep(60) self.sp.kill() class HiveMetastoreHook(BaseHook): """ Wrapper to interact with the Hive Metastore""" # java short max val MAX_PART_COUNT = 32767 def __init__(self, metastore_conn_id='metastore_default'): self.conn_id = metastore_conn_id self.metastore = self.get_metastore_client() def __getstate__(self): # This is for pickling to work despite the thirft hive client not # being pickable d = dict(self.__dict__) del d['metastore'] return d def __setstate__(self, d): self.__dict__.update(d) self.__dict__['metastore'] = self.get_metastore_client() def get_metastore_client(self): """ Returns a Hive thrift client. """ import hmsclient from thrift.transport import TSocket, TTransport from thrift.protocol import TBinaryProtocol ms = self._find_valid_server() if ms is None: raise AirflowException("Failed to locate the valid server.") auth_mechanism = ms.extra_dejson.get('authMechanism', 'NOSASL') if conf.get('core', 'security') == 'kerberos': auth_mechanism = ms.extra_dejson.get('authMechanism', 'GSSAPI') kerberos_service_name = ms.extra_dejson.get('kerberos_service_name', 'hive') conn_socket = TSocket.TSocket(ms.host, ms.port) if conf.get('core', 'security') == 'kerberos' \ and auth_mechanism == 'GSSAPI': try: import saslwrapper as sasl except ImportError: import sasl def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr("host", ms.host) sasl_client.setAttr("service", kerberos_service_name) sasl_client.init() return sasl_client from thrift_sasl import TSaslClientTransport transport = TSaslClientTransport(sasl_factory, "GSSAPI", conn_socket) else: transport = TTransport.TBufferedTransport(conn_socket) protocol = TBinaryProtocol.TBinaryProtocol(transport) return hmsclient.HMSClient(iprot=protocol) def _find_valid_server(self): conns = self.get_connections(self.conn_id) for conn in conns: host_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.log.info("Trying to connect to %s:%s", conn.host, conn.port) if host_socket.connect_ex((conn.host, conn.port)) == 0: self.log.info("Connected to %s:%s", conn.host, conn.port) host_socket.close() return conn else: self.log.info("Could not connect to %s:%s", conn.host, conn.port) def get_conn(self): return self.metastore def check_for_partition(self, schema, table, partition): """ Checks whether a partition exists :param schema: Name of hive schema (database) @table belongs to :type schema: str :param table: Name of hive table @partition belongs to :type schema: str :partition: Expression that matches the partitions to check for (eg `a = 'b' AND c = 'd'`) :type schema: str :rtype: bool >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_partition('airflow', t, "ds='2015-01-01'") True """ with self.metastore as client: partitions = client.get_partitions_by_filter( schema, table, partition, 1) if partitions: return True else: return False def check_for_named_partition(self, schema, table, partition_name): """ Checks whether a partition with a given name exists :param schema: Name of hive schema (database) @table belongs to :type schema: str :param table: Name of hive table @partition belongs to :type schema: str :partition: Name of the partitions to check for (eg `a=b/c=d`) :type schema: str :rtype: bool >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> hh.check_for_named_partition('airflow', t, "ds=2015-01-01") True >>> hh.check_for_named_partition('airflow', t, "ds=xxx") False """ with self.metastore as client: return client.check_for_named_partition(schema, table, partition_name) def get_table(self, table_name, db='default'): """Get a metastore table object >>> hh = HiveMetastoreHook() >>> t = hh.get_table(db='airflow', table_name='static_babynames') >>> t.tableName 'static_babynames' >>> [col.name for col in t.sd.cols] ['state', 'year', 'name', 'gender', 'num'] """ if db == 'default' and '.' in table_name: db, table_name = table_name.split('.')[:2] with self.metastore as client: return client.get_table(dbname=db, tbl_name=table_name) def get_tables(self, db, pattern='*'): """ Get a metastore table object """ with self.metastore as client: tables = client.get_tables(db_name=db, pattern=pattern) return client.get_table_objects_by_name(db, tables) def get_databases(self, pattern='*'): """ Get a metastore table object """ with self.metastore as client: return client.get_databases(pattern) def get_partitions( self, schema, table_name, filter=None): """ Returns a list of all partitions in a table. Works only for tables with less than 32767 (java short max val). For subpartitioned table, the number might easily exceed this. >>> hh = HiveMetastoreHook() >>> t = 'static_babynames_partitioned' >>> parts = hh.get_partitions(schema='airflow', table_name=t) >>> len(parts) 1 >>> parts [{'ds': '2015-01-01'}] """ with self.metastore as client: table = client.get_table(dbname=schema, tbl_name=table_name) if len(table.partitionKeys) == 0: raise AirflowException("The table isn't partitioned") else: if filter: parts = client.get_partitions_by_filter( db_name=schema, tbl_name=table_name, filter=filter, max_parts=HiveMetastoreHook.MAX_PART_COUNT) else: parts = client.get_partitions( db_name=schema, tbl_name=table_name, max_parts=HiveMetastoreHook.MAX_PART_COUNT) pnames = [p.name for p in table.partitionKeys] return [dict(zip(pnames, p.values)) for p in parts] @staticmethod def _get_max_partition_from_part_specs(part_specs, partition_key, filter_map): """ Helper method to get max partition of partitions with partition_key from part specs. key:value pair in filter_map will be used to filter out partitions. :param part_specs: list of partition specs. :type part_specs: list :param partition_key: partition key name. :type partition_key: str :param filter_map: partition_key:partition_value map used for partition filtering, e.g. {'key1': 'value1', 'key2': 'value2'}. Only partitions matching all partition_key:partition_value pairs will be considered as candidates of max partition. :type filter_map: map :return: Max partition or None if part_specs is empty. """ if not part_specs: return None # Assuming all specs have the same keys. if partition_key not in part_specs[0].keys(): raise AirflowException("Provided partition_key {} " "is not in part_specs.".format(partition_key)) if filter_map: is_subset = set(filter_map.keys()).issubset(set(part_specs[0].keys())) if filter_map and not is_subset: raise AirflowException("Keys in provided filter_map {} " "are not subset of part_spec keys: {}" .format(', '.join(filter_map.keys()), ', '.join(part_specs[0].keys()))) candidates = [p_dict[partition_key] for p_dict in part_specs if filter_map is None or all(item in p_dict.items() for item in filter_map.items())] if not candidates: return None else: return max(candidates).encode('utf-8') def max_partition(self, schema, table_name, field=None, filter_map=None): """ Returns the maximum value for all partitions with given field in a table. If only one partition key exist in the table, the key will be used as field. filter_map should be a partition_key:partition_value map and will be used to filter out partitions. :param schema: schema name. :type schema: str :param table_name: table name. :type table_name: str :param field: partition key to get max partition from. :type field: str :param filter_map: partition_key:partition_value map used for partition filtering. :type filter_map: map >>> hh = HiveMetastoreHook() >>> filter_map = {'ds': '2015-01-01', 'ds': '2014-01-01'} >>> t = 'static_babynames_partitioned' >>> hh.max_partition(schema='airflow',\ ... table_name=t, field='ds', filter_map=filter_map) '2015-01-01' """ with self.metastore as client: table = client.get_table(dbname=schema, tbl_name=table_name) key_name_set = {key.name for key in table.partitionKeys} if len(table.partitionKeys) == 1: field = table.partitionKeys[0].name elif not field: raise AirflowException("Please specify the field you want the max " "value for.") elif field not in key_name_set: raise AirflowException("Provided field is not a partition key.") if filter_map and not set(filter_map.keys()).issubset(key_name_set): raise AirflowException("Provided filter_map contains keys " "that are not partition key.") part_names = \ client.get_partition_names(schema, table_name, max_parts=HiveMetastoreHook.MAX_PART_COUNT) part_specs = [client.partition_name_to_spec(part_name) for part_name in part_names] return HiveMetastoreHook._get_max_partition_from_part_specs(part_specs, field, filter_map) def table_exists(self, table_name, db='default'): """ Check if table exists >>> hh = HiveMetastoreHook() >>> hh.table_exists(db='airflow', table_name='static_babynames') True >>> hh.table_exists(db='airflow', table_name='does_not_exist') False """ try: self.get_table(table_name, db) return True except Exception: return False class HiveServer2Hook(BaseHook): """ Wrapper around the pyhive library Notes: * the default authMechanism is PLAIN, to override it you can specify it in the ``extra`` of your connection in the UI * the default for run_set_variable_statements is true, if you are using impala you may need to set it to false in the ``extra`` of your connection in the UI """ def __init__(self, hiveserver2_conn_id='hiveserver2_default'): self.hiveserver2_conn_id = hiveserver2_conn_id def get_conn(self, schema=None): """ Returns a Hive connection object. """ db = self.get_connection(self.hiveserver2_conn_id) auth_mechanism = db.extra_dejson.get('authMechanism', 'NONE') if auth_mechanism == 'NONE' and db.login is None: # we need to give a username username = 'airflow' kerberos_service_name = None if conf.get('core', 'security') == 'kerberos': auth_mechanism = db.extra_dejson.get('authMechanism', 'KERBEROS') kerberos_service_name = db.extra_dejson.get('kerberos_service_name', 'hive') # pyhive uses GSSAPI instead of KERBEROS as a auth_mechanism identifier if auth_mechanism == 'GSSAPI': self.log.warning( "Detected deprecated 'GSSAPI' for authMechanism " "for %s. Please use 'KERBEROS' instead", self.hiveserver2_conn_id ) auth_mechanism = 'KERBEROS' from pyhive.hive import connect return connect( host=db.host, port=db.port, auth=auth_mechanism, kerberos_service_name=kerberos_service_name, username=db.login or username, password=db.password, database=schema or db.schema or 'default') def _get_results(self, hql, schema='default', fetch_size=None, hive_conf=None): from pyhive.exc import ProgrammingError if isinstance(hql, str): hql = [hql] previous_description = None with contextlib.closing(self.get_conn(schema)) as conn, \ contextlib.closing(conn.cursor()) as cur: cur.arraysize = fetch_size or 1000 # not all query services (e.g. impala AIRFLOW-4434) support the set command db = self.get_connection(self.hiveserver2_conn_id) if db.extra_dejson.get('run_set_variable_statements', True): env_context = get_context_from_env_var() if hive_conf: env_context.update(hive_conf) for k, v in env_context.items(): cur.execute("set {}={}".format(k, v)) for statement in hql: cur.execute(statement) # we only get results of statements that returns lowered_statement = statement.lower().strip() if (lowered_statement.startswith('select') or lowered_statement.startswith('with') or lowered_statement.startswith('show') or (lowered_statement.startswith('set') and '=' not in lowered_statement)): description = [c for c in cur.description] if previous_description and previous_description != description: message = '''The statements are producing different descriptions: Current: {} Previous: {}'''.format(repr(description), repr(previous_description)) raise ValueError(message) elif not previous_description: previous_description = description yield description try: # DB API 2 raises when no results are returned # we're silencing here as some statements in the list # may be `SET` or DDL yield from cur except ProgrammingError: self.log.debug("get_results returned no records") def get_results(self, hql, schema='default', fetch_size=None, hive_conf=None): """ Get results of the provided hql in target schema. :param hql: hql to be executed. :type hql: str or list :param schema: target schema, default to 'default'. :type schema: str :param fetch_size: max size of result to fetch. :type fetch_size: int :param hive_conf: hive_conf to execute alone with the hql. :type hive_conf: dict :return: results of hql execution, dict with data (list of results) and header :rtype: dict """ results_iter = self._get_results(hql, schema, fetch_size=fetch_size, hive_conf=hive_conf) header = next(results_iter) results = { 'data': list(results_iter), 'header': header } return results def to_csv( self, hql, csv_filepath, schema='default', delimiter=',', lineterminator='\r\n', output_header=True, fetch_size=1000, hive_conf=None): """ Execute hql in target schema and write results to a csv file. :param hql: hql to be executed. :type hql: str or list :param csv_filepath: filepath of csv to write results into. :type csv_filepath: str :param schema: target schema, default to 'default'. :type schema: str :param delimiter: delimiter of the csv file, default to ','. :type delimiter: str :param lineterminator: lineterminator of the csv file. :type lineterminator: str :param output_header: header of the csv file, default to True. :type output_header: bool :param fetch_size: number of result rows to write into the csv file, default to 1000. :type fetch_size: int :param hive_conf: hive_conf to execute alone with the hql. :type hive_conf: dict """ results_iter = self._get_results(hql, schema, fetch_size=fetch_size, hive_conf=hive_conf) header = next(results_iter) message = None i = 0 with open(csv_filepath, 'wb') as file: writer = csv.writer(file, delimiter=delimiter, lineterminator=lineterminator, encoding='utf-8') try: if output_header: self.log.debug('Cursor description is %s', header) writer.writerow([c[0] for c in header]) for i, row in enumerate(results_iter, 1): writer.writerow(row) if i % fetch_size == 0: self.log.info("Written %s rows so far.", i) except ValueError as exception: message = str(exception) if message: # need to clean up the file first os.remove(csv_filepath) raise ValueError(message) self.log.info("Done. Loaded a total of %s rows.", i) def get_records(self, hql, schema='default', hive_conf=None): """ Get a set of records from a Hive query. :param hql: hql to be executed. :type hql: str or list :param schema: target schema, default to 'default'. :type schema: str :param hive_conf: hive_conf to execute alone with the hql. :type hive_conf: dict :return: result of hive execution :rtype: list >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> len(hh.get_records(sql)) 100 """ return self.get_results(hql, schema=schema, hive_conf=hive_conf)['data'] def get_pandas_df(self, hql, schema='default'): """ Get a pandas dataframe from a Hive query :param hql: hql to be executed. :type hql: str or list :param schema: target schema, default to 'default'. :type schema: str :return: result of hql execution :rtype: DataFrame >>> hh = HiveServer2Hook() >>> sql = "SELECT * FROM airflow.static_babynames LIMIT 100" >>> df = hh.get_pandas_df(sql) >>> len(df.index) 100 :return: pandas.DateFrame """ import pandas as pd res = self.get_results(hql, schema=schema) df = pd.DataFrame(res['data']) df.columns = [c[0] for c in res['header']] return df
apache-2.0
rbooth200/DiscEvolution
DiscEvolution/driver.py
1
12630
# driver.py # # Author: R. Booth # Date: 17 - Nov - 2016 # # Combined model for dust, gas and chemical evolution ################################################################################ from __future__ import print_function import numpy as np import os from .photoevaporation import FixedExternalEvaporation from .constants import yr from . import io class DiscEvolutionDriver(object): """Driver class for full evolution model. Required Arguments: disc : Disc model to update Optional Physics update: dust : Update the dust, i.e. radial drift gas : Update due to gas effects, i.e. Viscous evolution diffusion : Seperate diffusion update internal_photo : Remove gas by internal photoevaporation photoevaporation : Remove gas by external photoevaporation chemistry : Solver for the chemical evolution History: history : Tracks values of key parameters over time Note: Diffusion is usually handled in the dust dynamics module Other options: t0 : Starting time, default = 0, code units t_out:Previous output times, default = None, years """ def __init__(self, disc, gas=None, dust=None, diffusion=None, chemistry=None, ext_photoevaporation=None, int_photoevaporation=None, history=None, t0=0.): self._disc = disc self._gas = gas self._dust = dust self._diffusion = diffusion self._chemistry = chemistry self._external_photo = ext_photoevaporation self._internal_photo = int_photoevaporation self._history = history self._t = t0 self._nstep = 0 def __call__(self, tmax): """Evolve the disc for a single timestep args: dtmax : Upper limit to time-step returns: dt : Time step taken """ disc = self._disc # Compute the maximum time-step dt = tmax - self.t if self._gas: dt = min(dt, self._gas.max_timestep(self._disc)) if self._dust: v_visc = self._gas.viscous_velocity(disc) dt = min(dt, self._dust.max_timestep(self._disc, v_visc)) if self._dust._diffuse: dt = min(dt, self._dust._diffuse.max_timestep(self._disc)) if self._diffusion: dt = min(dt, self._diffusion.max_timestep(self._disc)) if self._external_photo and hasattr(self._external_photo,"_density"): # If we are using density to calculate mass loss rates, we need to limit the time step based on photoevaporation (dM_dot, dM_gas) = self._external_photo.optically_thin_weighting(disc) Dt = dM_gas[(dM_dot>0)] / dM_dot[(dM_dot>0)] Dt_min = np.min(Dt) dt = min(dt,Dt_min) # Determine tracers for dust step gas_chem, ice_chem = None, None dust = None try: gas_chem = disc.chem.gas.data ice_chem = disc.chem.ice.data except AttributeError: pass # Do dust evolution if self._dust: self._dust(dt, disc, gas_tracers=gas_chem, dust_tracers=ice_chem, v_visc=v_visc) # Determine tracers for gas steps try: gas_chem = disc.chem.gas.data ice_chem = disc.chem.ice.data except AttributeError: pass try: dust = disc.dust_frac except AttributeError: pass # Do Advection-diffusion update if self._gas: self._gas(dt, disc, [dust, gas_chem, ice_chem]) if self._diffusion: if gas_chem is not None: gas_chem[:] += dt * self._diffusion(disc, gas_chem) if ice_chem is not None: ice_chem[:] += dt * self._diffusion(disc, ice_chem) if dust is not None: dust[:] += dt * self._diffusion(disc, dust) # Do external photoevaporation if self._external_photo: self._external_photo(disc, dt) # Do internal photoevaporation if self._internal_photo: self._internal_photo(disc, dt/yr, self._external_photo) # Pin the values to >= 0 and <=1: disc.Sigma[:] = np.maximum(disc.Sigma, 0) try: disc.dust_frac[:] = np.maximum(disc.dust_frac, 0) disc.dust_frac[:] /= np.maximum(disc.dust_frac.sum(0), 1.0) except AttributeError: pass try: disc.chem.gas.data[:] = np.maximum(disc.chem.gas.data, 0) disc.chem.ice.data[:] = np.maximum(disc.chem.ice.data, 0) except AttributeError: pass # Chemistry if self._chemistry: rho = disc.midplane_gas_density eps = disc.dust_frac.sum(0) grain_size = disc.grain_size[-1] T = disc.T self._chemistry.update(dt, T, rho, eps, disc.chem, grain_size=grain_size) # If we have dust, we should update it now the ice fraction has # changed disc.update_ices(disc.chem.ice) # Now we should update the auxillary properties, do grain growth etc disc.update(dt) self._t += dt self._nstep += 1 return dt @property def disc(self): return self._disc @property def t(self): return self._t @property def num_steps(self): return self._nstep @property def gas(self): return self._gas @property def dust(self): return self._dust @property def diffusion(self): return self._diffusion @property def chemistry(self): return self._chemistry @property def photoevaporation_external(self): return self._external_photo @property def photoevaporation_internal(self): return self._internal_photo @property def history(self): return self._history def dump_ASCII(self, filename): """Write the current state to a file, including header information""" # Put together a header containing information about the physics # included head = '' if self._gas: head += self._gas.ASCII_header() + '\n' if self._dust: head += self._dust.ASCII_header() + '\n' if self._diffusion: head += self._diffusion.ASCII_header() + '\n' if self._chemistry: head += self._chemistry.ASCII_header() + '\n' if self._external_photo: head += self._external_photo.ASCII_header() + '\n' if self._internal_photo: head += self._internal_photo.ASCII_header() + '\n' # Write it all to disc io.dump_ASCII(filename, self._disc, self.t, head) def dump_hdf5(self, filename): """Write the current state in HDF5 format, with header information""" headers = [] if self._gas: headers.append(self._gas.HDF5_attributes()) if self._dust: headers.append(self._dust.HDF5_attributes()) if self._diffusion: headers.append(self._diffusion.HDF5_attributes()) if self._chemistry: headers.append(self._chemistry.HDF5_attributes()) if self._external_photo: headers.append(self._external_photo.HDF5_attributes()) if self._internal_photo: headers.append(self._internal_photo.HDF5_attributes()) io.dump_hdf5(filename, self._disc, self.t, headers) if __name__ == "__main__": from .star import SimpleStar from .grid import Grid from .eos import IrradiatedEOS from .viscous_evolution import ViscousEvolution from .dust import DustGrowthTwoPop, SingleFluidDrift from .opacity import Zhu2012, Tazzari2016 from .diffusion import TracerDiffusion from .chemistry import TimeDepCOChemOberg, SimpleCOAtomAbund from .constants import Msun, AU from .disc_utils import mkdir_p import matplotlib.pyplot as plt alpha = 1e-3 Mdot = 1e-8 Rd = 100. #kappa = Zhu2012 kappa = Tazzari2016() N_cell = 250 R_in = 0.1 R_out = 500. yr = 2*np.pi output_dir = 'test_DiscEvo' output_times = np.arange(0, 4) * 1e6 * yr plot_times = np.array([0, 1e4, 1e5, 5e5, 1e6, 3e6])*yr # Setup the initial conditions Mdot *= (Msun / yr) / AU**2 grid = Grid(R_in, R_out, N_cell, spacing='natural') star = SimpleStar(M=1, R=2.5, T_eff=4000.) # Initial guess for Sigma: R = grid.Rc Sigma = (Mdot / (0.1 * alpha * R**2 * star.Omega_k(R))) * np.exp(-R/Rd) # Iterate until constant Mdot eos = IrradiatedEOS(star, alpha, kappa=kappa) eos.set_grid(grid) eos.update(0, Sigma) for i in range(100): Sigma = 0.5 * (Sigma + (Mdot / (3 * np.pi * eos.nu)) * np.exp(-R/Rd)) eos.update(0, Sigma) # Create the disc object disc = DustGrowthTwoPop(grid, star, eos, 0.01, Sigma=Sigma) # Setup the chemistry chemistry = TimeDepCOChemOberg(a=1e-5) # Setup the dust-to-gas ratio from the chemistry solar_abund = SimpleCOAtomAbund(N_cell) solar_abund.set_solar_abundances() # Iterate ice fractions to get the dust-to-gas ratio: for i in range(10): chem = chemistry.equilibrium_chem(disc.T, disc.midplane_gas_density, disc.dust_frac.sum(0), solar_abund) disc.initialize_dust_density(chem.ice.total_abund) disc.chem = chem # Setup the dynamics modules: gas = ViscousEvolution() dust = SingleFluidDrift(TracerDiffusion()) evo = DiscEvolutionDriver(disc, gas=gas, dust=dust, chemistry=chemistry) # Setup the IO controller IO = io.Event_Controller(save=output_times, plot=plot_times) # Run the model! while not IO.finished(): ti = IO.next_event_time() while evo.t < ti: dt = evo(ti) if (evo.num_steps % 1000) == 0: print('Nstep: {}'.format(evo.num_steps)) print('Time: {} yr'.format(evo.t / yr)) print('dt: {} yr'.format(dt / yr)) if IO.check_event(evo.t, 'save'): from .disc_utils import mkdir_p mkdir_p(output_dir) snap_name = 'disc_{:04d}.dat'.format(IO.event_number('save')) evo.dump_ASCII(os.path.join(output_dir, snap_name)) snap_name = 'disc_{:04d}.h5'.format(IO.event_number('save')) evo.dump_hdf5(os.path.join(output_dir, snap_name)) if IO.check_event(evo.t, 'plot'): err_state = np.seterr(all='warn') print('Nstep: {}'.format(evo.num_steps)) print('Time: {} yr'.format(evo.t / (2 * np.pi))) plt.subplot(321) l, = plt.loglog(grid.Rc, evo.disc.Sigma_G) plt.loglog(grid.Rc, evo.disc.Sigma_D.sum(0), '--', c=l.get_color()) plt.xlabel('$R$') plt.ylabel('$\Sigma_\mathrm{G, D}$') plt.subplot(322) plt.loglog(grid.Rc, evo.disc.dust_frac.sum(0)) plt.xlabel('$R$') plt.ylabel('$\epsilon$') plt.subplot(323) plt.loglog(grid.Rc, evo.disc.Stokes()[1]) plt.xlabel('$R$') plt.ylabel('$St$') plt.subplot(324) plt.loglog(grid.Rc, evo.disc.grain_size[1]) plt.xlabel('$R$') plt.ylabel('$a\,[\mathrm{cm}]$') plt.subplot(325) gCO = evo.disc.chem.gas.atomic_abundance() sCO = evo.disc.chem.ice.atomic_abundance() gCO.data[:] /= solar_abund.data sCO.data[:] /= solar_abund.data c = l.get_color() plt.semilogx(grid.Rc, gCO['C'], '-', c=c, linewidth=1) plt.semilogx(grid.Rc, gCO['O'], '-', c=c, linewidth=2) plt.semilogx(grid.Rc, sCO['C'], ':', c=c, linewidth=1) plt.semilogx(grid.Rc, sCO['O'], ':', c=c, linewidth=2) plt.xlabel('$R\,[\mathrm{au}}$') plt.ylabel('$[X]_\mathrm{solar}$') plt.subplot(326) plt.semilogx(grid.Rc, gCO['C'] / gCO['O'], '-', c=c) plt.semilogx(grid.Rc, sCO['C'] / sCO['O'], ':', c=c) plt.xlabel('$R\,[\mathrm{au}}$') plt.ylabel('$[C/O]_\mathrm{solar}$') np.seterr(**err_state) IO.pop_events(evo.t) if len(plot_times) > 0: plt.show()
gpl-3.0
mosbys/Clone
Cloning_v1/drive.py
1
3838
import argparse import base64 import json import numpy as np import socketio import eventlet import eventlet.wsgi import time from PIL import Image from PIL import ImageOps from flask import Flask, render_template from io import BytesIO from random import randint from keras.models import model_from_json from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array import cv2 # Fix error with Keras and TensorFlow import tensorflow as tf import matplotlib.pyplot as plt tf.python.control_flow_ops = tf sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None iDebug = 0 def preprocess(image, top_offset=.375, bottom_offset=.125): """ Applies preprocessing pipeline to an image: crops `top_offset` and `bottom_offset` portions of image, resizes to 32x128 px and scales pixel values to [0, 1]. """ top = int(top_offset * image.shape[0]) bottom = int(bottom_offset * image.shape[0]) image = image[top:-bottom, :] newShape = image.shape image= cv2.resize(image,(int(newShape[1]/2), int(newShape[0]/2)), interpolation = cv2.INTER_CUBIC) return image @sio.on('telemetry') def telemetry(sid, data): # The current steering angle of the car steering_angle = data["steering_angle"] # The current throttle of the car throttle = data["throttle"] # The current speed of the car speed = data["speed"] # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) image_array = np.asarray(image) image_array=preprocess(image_array) newShape = image_array.shape #image_array=cv2.resize(image_array,(newShape[1], newShape[0]),interpolation=cv2.INTER_CUBIC) transformed_image_array = image_array[None, :, :, :] if (iDebug==1): plt.imshow(image_array) plt.show() #transformed_image_array2 = np.zeros([1,2*64,64,3]) #transformed_image_array2[0]=cv2.resize(transformed_image_array[0],(2*64, 64),interpolation=cv2.INTER_CUBIC) # This model currently assumes that the features of the model are just the images. Feel free to change this. steering_angle = float(model.predict(transformed_image_array, batch_size=1)) # The driving model currently just outputs a constant throttle. Feel free to edit this. #steering_angle = randint(0,100)/100*randint(-1,1); throttle = 0.2 print(steering_angle, throttle) send_control(steering_angle, throttle) @sio.on('connect') def connect(sid, environ): print("connect ", sid) send_control(0, 0) def send_control(steering_angle, throttle): sio.emit("steer", data={ 'steering_angle': steering_angle.__str__(), 'throttle': throttle.__str__() }, skip_sid=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument('model', type=str, help='Path to model definition json. Model weights should be on the same path.') args = parser.parse_args() with open(args.model, 'r') as jfile: # NOTE: if you saved the file by calling json.dump(model.to_json(), ...) # then you will have to call: # # model = model_from_json(json.loads(jfile.read()))\ # # instead. #model = model_from_json(jfile.read()) model = model_from_json(json.loads(jfile.read())) model.compile("adam", "mse") weights_file = args.model.replace('json', 'h5') model.load_weights(weights_file) # wrap Flask application with engineio's middleware app = socketio.Middleware(sio, app) # deploy as an eventlet WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app)
gpl-2.0
phoebe-project/phoebe2-docs
development/tutorials/general_concepts.py
2
14093
#!/usr/bin/env python # coding: utf-8 # General Concepts: The PHOEBE Bundle # ====================== # # **HOW TO RUN THIS FILE**: if you're running this in a Jupyter notebook or Google Colab session, you can click on a cell and then shift+Enter to run the cell and automatically select the next cell. Alt+Enter will run a cell and create a new cell below it. Ctrl+Enter will run a cell but keep it selected. To restart from scratch, restart the kernel/runtime. # # # All of these tutorials assume basic comfort with Python in general - particularly with the concepts of lists, dictionaries, and objects as well as basic comfort with using the numpy and matplotlib packages. This tutorial introduces all the general concepts of accessing parameters within the Bundle. # # Setup # ---------------------------------------------- # # Let's first make sure we have the latest version of PHOEBE 2.3 installed (uncomment this line if running in an online notebook session such as colab). # In[1]: #!pip install -I "phoebe>=2.3,<2.4" # Let's get started with some basic imports: # In[2]: import phoebe from phoebe import u # units # If running in IPython notebooks, you may see a "ShimWarning" depending on the version of Jupyter you are using - this is safe to ignore. # # PHOEBE 2 uses constants defined in the IAU 2015 Resolution which conflict with the constants defined in astropy. As a result, you'll see the warnings as phoebe.u and phoebe.c "hijacks" the values in astropy.units and astropy.constants. # # Whenever providing units, please make sure to use `phoebe.u` instead of `astropy.units`, otherwise the conversions may be inconsistent. # ### Logger # # Before starting any script, it is a good habit to initialize a logger and define which levels of information you want printed to the command line (clevel) and dumped to a file (flevel). A convenience function is provided at the top-level via [phoebe.logger](../api/phoebe.logger.md) to initialize the logger with any desired level. # # The levels from most to least information are: # # * DEBUG # * INFO # * WARNING # * ERROR # * CRITICAL # # In[3]: logger = phoebe.logger(clevel='WARNING') # All of these arguments are optional and will default to clevel='WARNING' if not provided. There is therefore no need to provide a filename if you don't provide a value for flevel. # # So with this logger, anything with INFO, WARNING, ERROR, or CRITICAL levels will be printed to the screen. All messages of any level will be written to a file named 'tutorial.log' in the current directory. # # Note: the logger messages are not included in the outputs shown below. # # ## Overview # # As a quick overview of what's to come, here is a quick preview of some of the steps used when modeling a binary system with PHOEBE. Each of these steps will be explained in more detail throughout these tutorials. # # First we need to create our binary system. For the sake of most of these tutorials, we'll use the default detached binary available through the [phoebe.default_binary](../api/phoebe.default_binary.md) constructor. # In[4]: b = phoebe.default_binary() # This object holds all the parameters and their respective values. We'll see in this tutorial and the next tutorial on [constraints](constraints.ipynb) how to search through these parameters and set their values. # In[5]: b.set_value(qualifier='teff', component='primary', value=6500) # Next, we need to define our datasets via [b.add_dataset](../api/phoebe.frontend.bundle.Bundle.add_dataset.md). This will be the topic of the following tutorial on [datasets](datasets.ipynb). # In[6]: b.add_dataset('lc', compute_times=phoebe.linspace(0,1,101)) # We'll then want to run our forward model to create a synthetic model of the observables defined by these datasets using [b.run_compute](../api/phoebe.frontend.bundle.Bundle.run_compute.md), which will be the topic of the [computing observables](compute.ipynb) tutorial. # In[7]: b.run_compute() # We can access the value of any parameter, including the arrays in the synthetic model just generated. To export arrays to a file, we could call [b.export_arrays](../api/phoebe.parameters.ParameterSet.export_arrays.md) # In[8]: print(b.get_value(qualifier='fluxes', context='model')) # We can then plot the resulting model with [b.plot](../api/phoebe.parameters.ParameterSet.plot.md), which will be covered in the [plotting](plotting.ipynb) tutorial. # In[9]: afig, mplfig = b.plot(show=True) # And then lastly, if we wanted to solve the inverse problem and "fit" parameters to observational data, we may want to add [distributions](distributions.ipynb) to our system so that we can run [estimators, optimizers, or samplers](solver.ipynb). # ## Default Binary Bundle # For this tutorial, let's start over and discuss this `b` object in more detail and how to access and change the values of the input parameters. # # Everything for our system will be stored in this single Python object that we call the [Bundle](../api/phoebe.frontend.bundle.Bundle.md) which we'll call `b` (short for bundle). # In[10]: b = phoebe.default_binary() # The Bundle is just a collection of [Parameter](../api/phoebe.parameters.Parameter.md) objects along with some callable methods. Here we can see that the default binary Bundle consists of over 100 individual parameters. # In[11]: b # If we want to view or edit a Parameter in the Bundle, we first need to know how to access it. Each Parameter object has a number of tags which can be used to [filter](../api/phoebe.parameters.ParameterSet.filter.md) (similar to a database query). When filtering the Bundle, a [ParameterSet](../api/phoebe.parameters.ParameterSet.md) is returned - this is essentially just a subset of the Parameters in the Bundle and can be further filtered until eventually accessing a single Parameter. # In[12]: b.filter(context='compute') # Here we filtered on the context tag for all Parameters with `context='compute'` (i.e. the options for computing a model). If we want to see all the available options for this tag in the Bundle, we can use the plural form of the tag as a property on the Bundle or any ParameterSet. # In[13]: b.contexts # Although there is no strict hierarchy or order to the tags, it can be helpful to think of the context tag as the top-level tag and is often very helpful to filter by the appropriate context first. # # Other tags currently include: # * kind # * figure # * component # * feature # * dataset # * distribution # * compute # * model # * solver # * solution # * time # * qualifier # Accessing the plural form of the tag as an attribute also works on a filtered ParameterSet # In[14]: b.filter(context='compute').components # This then tells us what can be used to filter further. # In[15]: b.filter(context='compute').filter(component='primary') # The qualifier tag is the shorthand name of the Parameter itself. If you don't know what you're looking for, it is often useful to list all the qualifiers of the Bundle or a given ParameterSet. # In[16]: b.filter(context='compute', component='primary').qualifiers # Now that we know the options for the qualifier within this filter, we can choose to filter on one of those. Let's look filter by the 'ntriangles' qualifier. # In[17]: b.filter(context='compute', component='primary', qualifier='ntriangles') # Once we filter far enough to get to a single Parameter, we can use [get_parameter](../api/phoebe.parameters.ParameterSet.get_parameter.md) to return the Parameter object itself (instead of a ParameterSet). # In[18]: b.filter(context='compute', component='primary', qualifier='ntriangles').get_parameter() # As a shortcut, get_parameter also takes filtering keywords. So the above line is also equivalent to the following: # In[19]: b.get_parameter(context='compute', component='primary', qualifier='ntriangles') # Each Parameter object contains several keys that provide information about that Parameter. The keys "description" and "value" are always included, with additional keys available depending on the type of Parameter. # In[20]: b.get_parameter(context='compute', component='primary', qualifier='ntriangles').get_value() # In[21]: b.get_parameter(context='compute', component='primary', qualifier='ntriangles').get_description() # We can also see a top-level view of the filtered parameters and descriptions (note: the syntax with @ symbols will be explained further in the section on twigs below. # In[22]: print(b.filter(context='compute', component='primary').info) # Since the Parameter for `ntriangles` is a FloatParameter, it also includes a key for the allowable limits. # In[23]: b.get_parameter(context='compute', component='primary', qualifier='ntriangles').get_limits() # In this case, we're looking at the Parameter called `ntriangles` with the component tag set to 'primary'. This Parameter therefore defines how many triangles should be created when creating the mesh for the star named 'primary'. By default, this is set to 1500 triangles, with allowable values above 100. # # If we wanted a finer mesh, we could change the value. # In[24]: b.get_parameter(context='compute', component='primary', qualifier='ntriangles').set_value(2000) # In[25]: b.get_parameter(context='compute', component='primary', qualifier='ntriangles') # If we choose the `distortion_method` qualifier from that same ParameterSet, we'll see that it has a few different keys in addition to description and value. # In[26]: b.get_parameter(context='compute', component='primary', qualifier='distortion_method') # In[27]: b.get_parameter(context='compute', component='primary', qualifier='distortion_method').get_value() # In[28]: b.get_parameter(context='compute', component='primary', qualifier='distortion_method').get_description() # Since the distortion_method Parameter is a [ChoiceParameter](../api/phoebe.parameters.ChoiceParameter.md), it contains a key for the allowable choices. # In[29]: b.get_parameter(context='compute', component='primary', qualifier='distortion_method').get_choices() # We can only set a value if it is contained within this list - if you attempt to set a non-valid value, an error will be raised. # In[30]: try: b.get_parameter(context='compute', component='primary', qualifier='distortion_method').set_value('blah') except Exception as e: print(e) # In[31]: b.get_parameter(context='compute', component='primary', qualifier='distortion_method').set_value('rotstar') # In[32]: b.get_parameter(context='compute', component='primary', qualifier='distortion_method').get_value() # [Parameter](../api/phoebe.parameters.Parameter.md) types include: # * [IntParameter](../api/phoebe.parameters.IntParameter.md) # * [FloatParameter](../api/phoebe.parameters.FloatParameter.md) # * [FloatArrayParameter](../api/phoebe.parameters.FloatArrayParameter.md) # * [BoolParameter](../api/phoebe.parameters.BoolParameter.md) # * [StringParameter](../api/phoebe.parameters.StringParameter.md) # * [ChoiceParameter](../api/phoebe.parameters.ChoiceParameter.md) # * [SelectParameter](../api/phoebe.parameters.SelectParameter.md) # * [DictParameter](../api/phoebe.parameters.DictParameter.md) # * [ConstraintParameter](../api/phoebe.parameters.ConstraintParameter.md) # * [DistributionParameter](../api/phoebe.parameters.DistributionParameter.md) # * [HierarchyParameter](../api/phoebe.parameters.HierarchyParameter.md) # * [UnitParameter](../api/phoebe.parameters.UnitParameter.md) # * [JobParameter](../api/phoebe.parameters.JobParameter.md) # # these Parameter types and their available options are all described in great detail in [Advanced: Parameter Types](parameters.ipynb) # ### Twigs # As a shortcut to needing to filter by all these tags, the Bundle and ParameterSets can be filtered through what we call "twigs" (as in a Bundle of twigs). These are essentially a single string-representation of the tags, separated by `@` symbols. # # This is very useful as a shorthand when working in an interactive Python console, but somewhat obfuscates the names of the tags and can make it difficult if you use them in a script and make changes earlier in the script. # # For example, the following lines give identical results: # In[33]: b.filter(context='compute', component='primary') # In[34]: b['primary@compute'] # In[35]: b['compute@primary'] # However, this dictionary-style twig access will never return a ParameterSet with a single Parameter, instead it will return the Parameter itself. This can be seen in the different output between the following two lines: # In[36]: b.filter(context='compute', component='primary', qualifier='distortion_method') # In[37]: b['distortion_method@primary@compute'] # Because of this, this dictionary-style twig access can also set the value directly: # In[38]: b['distortion_method@primary@compute'] = 'roche' # In[39]: print(b['distortion_method@primary@compute']) # And can even provide direct access to the keys/attributes of the Parameter (value, description, limits, etc) # In[40]: print(b['value@distortion_method@primary@compute']) # In[41]: print(b['description@distortion_method@primary@compute']) # As with the tags, you can call .twigs on any ParameterSet to see the "smallest unique twigs" of the contained Parameters # In[42]: b['compute'].twigs # Since the more verbose method without twigs is a bit clearer to read, most of the tutorials will show that syntax, but feel free to use twigs if they make more sense to you. # Next # ---------- # # Next up: let's learn about [constraints](constraints.ipynb). # # Or look at any of the following advanced topics: # * [Advanced: Parameter Types](parameters.ipynb) # * [Advanced: Parameter Units](units.ipynb) # * [Advanced: Building a System](building_a_system.ipynb) # * [Advanced: Contact Binary Hierarchy](contact_binary_hierarchy.ipynb) # * [Advanced: Saving, Loading, and Exporting](saving_and_loading.ipynb)
gpl-3.0
jayflo/scikit-learn
sklearn/utils/graph.py
289
6239
""" Graph utilities and algorithms Graphs are represented with their adjacency matrices, preferably using sparse matrices. """ # Authors: Aric Hagberg <hagberg@lanl.gov> # Gael Varoquaux <gael.varoquaux@normalesup.org> # Jake Vanderplas <vanderplas@astro.washington.edu> # License: BSD 3 clause import numpy as np from scipy import sparse from .validation import check_array from .graph_shortest_path import graph_shortest_path ############################################################################### # Path and connected component analysis. # Code adapted from networkx def single_source_shortest_path_length(graph, source, cutoff=None): """Return the shortest path length from source to all reachable nodes. Returns a dictionary of shortest path lengths keyed by target. Parameters ---------- graph: sparse matrix or 2D array (preferably LIL matrix) Adjacency matrix of the graph source : node label Starting node for path cutoff : integer, optional Depth to stop the search - only paths of length <= cutoff are returned. Examples -------- >>> from sklearn.utils.graph import single_source_shortest_path_length >>> import numpy as np >>> graph = np.array([[ 0, 1, 0, 0], ... [ 1, 0, 1, 0], ... [ 0, 1, 0, 1], ... [ 0, 0, 1, 0]]) >>> single_source_shortest_path_length(graph, 0) {0: 0, 1: 1, 2: 2, 3: 3} >>> single_source_shortest_path_length(np.ones((6, 6)), 2) {0: 1, 1: 1, 2: 0, 3: 1, 4: 1, 5: 1} """ if sparse.isspmatrix(graph): graph = graph.tolil() else: graph = sparse.lil_matrix(graph) seen = {} # level (number of hops) when seen in BFS level = 0 # the current level next_level = [source] # dict of nodes to check at next level while next_level: this_level = next_level # advance to next level next_level = set() # and start a new list (fringe) for v in this_level: if v not in seen: seen[v] = level # set the level of vertex v next_level.update(graph.rows[v]) if cutoff is not None and cutoff <= level: break level += 1 return seen # return all path lengths as dictionary if hasattr(sparse, 'connected_components'): connected_components = sparse.connected_components else: from .sparsetools import connected_components ############################################################################### # Graph laplacian def graph_laplacian(csgraph, normed=False, return_diag=False): """ Return the Laplacian matrix of a directed graph. For non-symmetric graphs the out-degree is used in the computation. Parameters ---------- csgraph : array_like or sparse matrix, 2 dimensions compressed-sparse graph, with shape (N, N). normed : bool, optional If True, then compute normalized Laplacian. return_diag : bool, optional If True, then return diagonal as well as laplacian. Returns ------- lap : ndarray The N x N laplacian matrix of graph. diag : ndarray The length-N diagonal of the laplacian matrix. diag is returned only if return_diag is True. Notes ----- The Laplacian matrix of a graph is sometimes referred to as the "Kirchoff matrix" or the "admittance matrix", and is useful in many parts of spectral graph theory. In particular, the eigen-decomposition of the laplacian matrix can give insight into many properties of the graph. For non-symmetric directed graphs, the laplacian is computed using the out-degree of each node. """ if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]: raise ValueError('csgraph must be a square matrix or array') if normed and (np.issubdtype(csgraph.dtype, np.int) or np.issubdtype(csgraph.dtype, np.uint)): csgraph = check_array(csgraph, dtype=np.float64, accept_sparse=True) if sparse.isspmatrix(csgraph): return _laplacian_sparse(csgraph, normed=normed, return_diag=return_diag) else: return _laplacian_dense(csgraph, normed=normed, return_diag=return_diag) def _laplacian_sparse(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] if not graph.format == 'coo': lap = (-graph).tocoo() else: lap = -graph.copy() diag_mask = (lap.row == lap.col) if not diag_mask.sum() == n_nodes: # The sparsity pattern of the matrix has holes on the diagonal, # we need to fix that diag_idx = lap.row[diag_mask] diagonal_holes = list(set(range(n_nodes)).difference(diag_idx)) new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))]) new_row = np.concatenate([lap.row, diagonal_holes]) new_col = np.concatenate([lap.col, diagonal_holes]) lap = sparse.coo_matrix((new_data, (new_row, new_col)), shape=lap.shape) diag_mask = (lap.row == lap.col) lap.data[diag_mask] = 0 w = -np.asarray(lap.sum(axis=1)).squeeze() if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap.data /= w[lap.row] lap.data /= w[lap.col] lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype( lap.data.dtype) else: lap.data[diag_mask] = w[lap.row[diag_mask]] if return_diag: return lap, w return lap def _laplacian_dense(graph, normed=False, return_diag=False): n_nodes = graph.shape[0] lap = -np.asarray(graph) # minus sign leads to a copy # set diagonal to zero lap.flat[::n_nodes + 1] = 0 w = -lap.sum(axis=0) if normed: w = np.sqrt(w) w_zeros = (w == 0) w[w_zeros] = 1 lap /= w lap /= w[:, np.newaxis] lap.flat[::n_nodes + 1] = (1 - w_zeros).astype(lap.dtype) else: lap.flat[::n_nodes + 1] = w.astype(lap.dtype) if return_diag: return lap, w return lap
bsd-3-clause
snurkabill/pydeeplearn
code/lib/ann.py
2
21874
""" Implementation of a simple ANN. """ __author__ = "Mihaela Rosca" __contact__ = "mihaela.c.rosca@gmail.com" import numpy as np import theano from theano import tensor as T from theano.tensor.shared_randomstreams import RandomStreams import matplotlib.pyplot as plt theanoFloat = theano.config.floatX """In all the above topLayer does not mean the top most layer, but rather the layer above the current one.""" # TODO: different activation function and try relu # and fix this from common import * from debug import * DEBUG = False class MiniBatchTrainer(object): # TODO: maybe creating the ring here might be better? def __init__(self, input, nrLayers, initialWeights, initialBiases, visibleDropout, hiddenDropout): self.input = input # Let's initialize the fields # The weights and biases, make them shared variables self.weights = [] self.biases = [] nrWeights = nrLayers - 1 for i in xrange(nrWeights): w = theano.shared(value=np.asarray(initialWeights[i], dtype=theanoFloat), name='W') self.weights.append(w) b = theano.shared(value=np.asarray(initialBiases[i], dtype=theanoFloat), name='b') self.biases.append(b) # Set the parameters of the object # Do not set more than this, these will be used for differentiation in the # gradient self.params = self.weights + self.biases # Required for setting the norm constraint # Note that only the hidden units have norm constraint # The last layer (softmax) does not have it self.hasNormConstraint = [True] * (nrWeights - 1) + [False] * (nrWeights + 1) # Required for momentum # The updates that were performed in the last batch # It is important that the order in which # we add the oldUpdates is the same as which we add the params # TODO: add an assertion for this self.oldUpdates = [] for i in xrange(nrWeights): oldDw = theano.shared(value=np.zeros(shape=initialWeights[i].shape, dtype=theanoFloat), name='oldDw') self.oldUpdates.append(oldDw) for i in xrange(nrWeights): oldDb = theano.shared(value=np.zeros(shape=initialBiases[i].shape, dtype=theanoFloat), name='oldDb') self.oldUpdates.append(oldDb) # Rmsprop # The old mean that were performed in the last batch self.oldMeanSquare = [] for i in xrange(nrWeights): oldDw = theano.shared(value=np.zeros(shape=initialWeights[i].shape, dtype=theanoFloat), name='oldDw') self.oldMeanSquare.append(oldDw) for i in xrange(nrWeights): oldDb = theano.shared(value=np.zeros(shape=initialBiases[i].shape, dtype=theanoFloat), name='oldDb') self.oldMeanSquare.append(oldDb) # Create a theano random number generator # Required to sample units for dropout # If it is not shared, does it update when we do the # when we go to another function call? self.theano_rng = RandomStreams(seed=np.random.randint(1, 1000)) # Sample from the visible layer # Get the mask that is used for the visible units dropout_mask = self.theano_rng.binomial(n=1, p=visibleDropout, size=self.input.shape, dtype=theanoFloat) currentLayerValues = self.input * dropout_mask for stage in xrange(nrWeights -1): w = self.weights[stage] b = self.biases[stage] linearSum = T.dot(currentLayerValues, w) + b # TODO: make this a function that you pass around # it is important to make the classification activation functions outside # Also check the Stamford paper again to what they did to average out # the results with softmax and regression layers? # Use hiddenDropout: give the next layer only some of the units # from this layer dropout_mask = self.theano_rng.binomial(n=1, p=hiddenDropout, size=linearSum.shape, dtype=theanoFloat) currentLayerValues = dropout_mask * T.nnet.sigmoid(linearSum) # Last layer operations w = self.weights[nrWeights - 1] b = self.biases[nrWeights - 1] linearSum = T.dot(currentLayerValues, w) + b # Do not use theano's softmax, it is numerically unstable # and it causes Nans to appear # Note that semantically this is the same e_x = T.exp(linearSum - linearSum.max(axis=1, keepdims=True)) currentLayerValues = e_x / e_x.sum(axis=1, keepdims=True) self.output = currentLayerValues def cost(self, y): return T.nnet.categorical_crossentropy(self.output, y) """ Class that implements an artificial neural network.""" class ANN(object): """ Arguments: nrLayers: the number of layers of the network. In case of discriminative traning, also contains the classifcation layer (the last softmax layer) type: integer layerSizes: the sizes of the individual layers. type: list of integers of size nrLayers """ def __init__(self, nrLayers, layerSizes, supervisedLearningRate=0.05, nesterovMomentum=True, rmsprop=True, miniBatchSize=10, hiddenDropout=0.5, visibleDropout=0.8, normConstraint=None): self.nrLayers = nrLayers self.layerSizes = layerSizes assert len(layerSizes) == nrLayers self.hiddenDropout = hiddenDropout self.visibleDropout = visibleDropout self.miniBatchSize = miniBatchSize self.supervisedLearningRate = supervisedLearningRate self.nesterovMomentum = nesterovMomentum self.rmsprop = rmsprop self.normConstraint = normConstraint def initialize(self, data): self.weights = [None] * (self.nrLayers - 1) self.biases = [None] * (self.nrLayers - 1) for i in xrange(self.nrLayers - 2): self.weights[i] = np.asarray(np.random.normal(0, 0.01, (self.layerSizes[i], self.layerSizes[i+1])), dtype=theanoFloat) self.biases[i] = np.zeros(shape=(self.layerSizes[i+1]), dtype=theanoFloat) lastLayerWeights = np.zeros(shape=(self.layerSizes[-2], self.layerSizes[-1]), dtype=theanoFloat) lastLayerBiases = np.zeros(shape=(self.layerSizes[-1]), dtype=theanoFloat) self.weights[-1] = lastLayerWeights self.biases[-1] = lastLayerBiases assert len(self.weights) == self.nrLayers - 1 assert len(self.biases) == self.nrLayers - 1 """ Choose a percentage (percentValidation) of the data given to be validation data, used for early stopping of the model. """ def train(self, data, labels, maxEpochs, validation=True, percentValidation=0.1): if validation: nrInstances = len(data) validationIndices = np.random.choice(xrange(nrInstances), percentValidation * nrInstances) trainingIndices = list(set(xrange(nrInstances)) - set(validationIndices)) trainingData = data[trainingIndices, :] trainingLabels = labels[trainingIndices, :] validationData = data[validationIndices, :] validationLabels = labels[validationIndices, :] self.trainWithGivenValidationSet(trainingData, trainingLabels, validation, validationData, validationLabels, maxEpochs) else: trainingData = data trainingLabels = labels self.trainNoValidation(trainingData, trainingLabels, maxEpochs) def trainWithGivenValidationSet(self, data, labels, validationData, validationLabels, maxEpochs): sharedData = theano.shared(np.asarray(data, dtype=theanoFloat)) sharedLabels = theano.shared(np.asarray(labels, dtype=theanoFloat)) self.initialize(data) self.nrMiniBatches = len(data) / self.miniBatchSize sharedValidationData = theano.shared(np.asarray(validationData, dtype=theanoFloat)) sharedValidationLabels = theano.shared(np.asarray(validationLabels, dtype=theanoFloat)) # Does backprop for the data and a the end sets the weights self.fineTune(sharedData, sharedLabels, validation, sharedValidationData, sharedValidationLabels, maxEpochs) # Get the classification weights self.classifcationWeights = map(lambda x: x * self.hiddenDropout, self.weights) self.classifcationBiases = self.biases def trainNoValidation(self, data, labels, maxEpochs): sharedData = theano.shared(np.asarray(data, dtype=theanoFloat)) sharedLabels = theano.shared(np.asarray(labels, dtype=theanoFloat)) self.initialize(data) self.nrMiniBatches = len(data) / self.miniBatchSize # Does backprop for the data and a the end sets the weights self.fineTune(sharedData, sharedLabels, False, None, None, maxEpochs) # Get the classification weights self.classifcationWeights = map(lambda x: x * self.hiddenDropout, self.weights) self.classifcationBiases = self.biases """Fine tunes the weigths and biases using backpropagation. data and labels are shared Arguments: data: The data used for traning and fine tuning data has to be a theano variable for it to work in the current version labels: A numpy nd array. Each label should be transformed into a binary base vector before passed into this function. miniBatch: The number of instances to be used in a miniBatch epochs: The number of epochs to use for fine tuning """ def fineTune(self, data, labels, validation, validationData, validationLabels, maxEpochs): print "supervisedLearningRate" print self.supervisedLearningRate batchLearningRate = self.supervisedLearningRate / self.miniBatchSize batchLearningRate = np.float32(batchLearningRate) # Let's build the symbolic graph which takes the data trough the network # allocate symbolic variables for the data # index of a mini-batch miniBatchIndex = T.lscalar() momentum = T.fscalar() # The mini-batch data is a matrix x = T.matrix('x', dtype=theanoFloat) # labels[start:end] this needs to be a matrix because we output probabilities y = T.matrix('y', dtype=theanoFloat) batchTrainer = MiniBatchTrainer(input=x, nrLayers=self.nrLayers, initialWeights=self.weights, initialBiases=self.biases, visibleDropout=0.8, hiddenDropout=0.5) # the error is the sum of the errors in the individual cases error = T.sum(batchTrainer.cost(y)) if DEBUG: mode = theano.compile.MonitorMode(post_func=detect_nan).excluding( 'local_elemwise_fusion', 'inplace') else: mode = None if self.nesterovMomentum: preDeltaUpdates, updates = self.buildUpdatesNesterov(batchTrainer, momentum, batchLearningRate, error) momentum_step = theano.function( inputs=[momentum], outputs=[], updates=preDeltaUpdates, mode = mode) update_params = theano.function( inputs =[miniBatchIndex, momentum], outputs=error, updates=updates, givens={ x: data[miniBatchIndex * self.miniBatchSize:(miniBatchIndex + 1) * self.miniBatchSize], y: labels[miniBatchIndex * self.miniBatchSize:(miniBatchIndex + 1) * self.miniBatchSize]}, mode=mode) def trainModel(miniBatchIndex, momentum): momentum_step(momentum) return update_params(miniBatchIndex, momentum) else: updates = self.buildUpdatesSimpleMomentum(batchTrainer, momentum, batchLearningRate, error) trainModel = theano.function( inputs=[miniBatchIndex, momentum], outputs=error, updates=updates, givens={ x: data[miniBatchIndex * self.miniBatchSize:(miniBatchIndex + 1) * self.miniBatchSize], y: labels[miniBatchIndex * self.miniBatchSize:(miniBatchIndex + 1) * self.miniBatchSize]}) theano.printing.pydotprint(trainModel) if validation: # Let's create the function that validates the model! validateModel = theano.function(inputs=[], outputs=batchTrainer.cost(y), givens={x: validationData, y: validationLabels}) self.trainLoopWithValidation(trainModel, validateModel, maxEpochs) else: if validationData is not None or validationLabels is not None: raise Exception(("You provided validation data but requested a train method " "that does not need validation")) self.trainLoopModelFixedEpochs(batchTrainer, trainModel, maxEpochs) # Set up the weights in the dbn object for i in xrange(len(self.weights)): self.weights[i] = batchTrainer.weights[i].get_value() print self.weights for i in xrange(len(self.biases)): self.biases[i] = batchTrainer.biases[i].get_value() print self.biases def trainLoopModelFixedEpochs(self, batchTrainer, trainModel, maxEpochs): for epoch in xrange(maxEpochs): print "epoch " + str(epoch) momentum = np.float32(min(np.float32(0.5) + epoch * np.float32(0.01), np.float32(0.99))) for batchNr in xrange(self.nrMiniBatches): trainModel(batchNr, momentum) for i in xrange(self.nrLayers - 2): assert np.all(np.linalg.norm(batchTrainer.weights[i].get_value(), axis=0) <= self.normConstraint + 1e-8) print "number of epochs" print epoch def trainLoopWithValidation(self, trainModel, validateModel, maxEpochs): lastValidationError = np.inf count = 0 epoch = 0 validationErrors = [] while epoch < maxEpochs and count < 8: print "epoch " + str(epoch) momentum = np.float32(min(np.float32(0.5) + epoch * np.float32(0.01), np.float32(0.99))) for batchNr in xrange(self.nrMiniBatches): trainModel(batchNr, momentum) meanValidation = np.mean(validateModel(), axis=0) validationErrors += [meanValidation] if meanValidation > lastValidationError: count +=1 else: count = 0 lastValidationError = meanValidation epoch +=1 try: plt.plot(validationErrors) plt.show() except e: print "validation error plot not made" print "number of epochs" print epoch # A very greedy approach to training # Probably not the best idea but worth trying # A more mild version would be to actually take 3 conescutive ones # that give the best average (to ensure you are not in a luck place) # and take the best of them def trainModelGetBestWeights(self, trainModel, validateModel, maxEpochs): bestValidationError = np.inf validationErrors = [] bestWeights = None bestBiases = None for epoch in xrange(maxEpochs): print "epoch " + str(epoch) momentum = np.float32(min(np.float32(0.5) + epoch * np.float32(0.01), np.float32(0.99))) for batchNr in xrange(self.nrMiniBatches): trainModel(batchNr, momentum) meanValidation = np.mean(validateModel(), axis=0) validationErrors += [meanValidation] if meanValidation < bestValidationError: bestValidationError = meanValidation # Save the weights which are the best ones bestWeights = batchTrainer.weights bestBiases = biases.biases # If we have improved at all during training if bestWeights is not None and bestBiases is not None: batchTrainer.weights = bestWeights batchTrainer.biases = bestBiases try: plt.plot(validationErrors) plt.show() except e: print "validation error plot not made" print "number of epochs" print epoch def trainModelPatience(self, trainModel, validateModel, maxEpochs): bestValidationError = np.inf epoch = 0 doneTraining = False improvmentTreshold = 0.995 patience = 10 # do at least 10 passes trough the data no matter what while (epoch < maxEpochs) and not doneTraining: # Train the net with all data print "epoch " + str(epoch) momentum = np.float32(min(np.float32(0.5) + epoch * np.float32(0.01), np.float32(0.99))) for batchNr in xrange(self.nrMiniBatches): trainModel(batchNr, momentum) # why axis = 0? this should be a number?! meanValidation = np.mean(validateModel, maxEpochs()) print 'meanValidation' print meanValidation if meanValidation < bestValidationError: # If we have improved well enough, then increase the patience if meanValidation < bestValidationError * improvmentTreshold: print "increasing patience" patience = max(patience, epoch * 2) bestValidationError = meanValidation if patience <= epoch: doneTraining = True epoch += 1 print "number of epochs" print epoch def buildUpdatesNesterov(self, batchTrainer, momentum, batchLearningRate, error): preDeltaUpdates = [] for param, oldUpdate in zip(batchTrainer.params, batchTrainer.oldUpdates): preDeltaUpdates.append((param, param + momentum * oldUpdate)) # specify how to update the parameters of the model as a list of # (variable, update expression) pairs deltaParams = T.grad(error, batchTrainer.params) updates = [] parametersTuples = zip(batchTrainer.params, deltaParams, batchTrainer.oldUpdates, batchTrainer.oldMeanSquare, batchTrainer.hasNormConstraint) for param, delta, oldUpdate, oldMeanSquare, hasNormConstraint in parametersTuples: if self.rmsprop: meanSquare = 0.9 * oldMeanSquare + 0.1 * delta ** 2 paramUpdate = - batchLearningRate * delta / T.sqrt(meanSquare + 1e-8) updates.append((oldMeanSquare, meanSquare)) else: paramUpdate = - batchLearningRate * delta newParam = param + paramUpdate if self.normConstraint is not None and hasNormConstraint: norms = SquaredElementWiseNorm(newParam) rescaled = norms > self.normConstraint factors = T.ones(norms.shape, dtype=theanoFloat) / T.sqrt(norms) * np.sqrt(self.normConstraint, dtype='float32') - 1.0 replaceNewParam = (factors * rescaled) * newParam replaceNewParam += newParam newParam = replaceNewParam # paramUpdate = newParam - param updates.append((param, newParam)) updates.append((oldUpdate, momentum * oldUpdate + paramUpdate)) return preDeltaUpdates, updates def buildUpdatesSimpleMomentum(self, batchTrainer, momentum, batchLearningRate, error): deltaParams = T.grad(error, batchTrainer.params) updates = [] parametersTuples = zip(batchTrainer.params, deltaParams, batchTrainer.oldUpdates, batchTrainer.oldMeanSquare, batchTrainer.hasNormConstraint) for param, delta, oldUpdate, oldMeanSquare, hasNormConstraint in parametersTuples: paramUpdate = momentum * oldUpdate if self.rmsprop: meanSquare = 0.9 * oldMeanSquare + 0.1 * delta ** 2 paramUpdate += - batchLearningRate * delta / T.sqrt(meanSquare + 1e-8) updates.append((oldMeanSquare, meanSquare)) else: paramUpdate += - batchLearningRate * delta newParam = param + paramUpdate if self.normConstraint is not None and hasNormConstraint: norms = SquaredElementWiseNorm(newParam) rescaled = norms > self.normConstraint factors = T.ones(norms.shape, dtype=theanoFloat) / T.sqrt(norms) * np.sqrt(self.normConstraint, dtype='float32') - 1.0 replaceNewParam = (factors * rescaled) * newParam replaceNewParam += newParam newParam = replaceNewParam # paramUpdate = newParam - param updates.append((param, newParam)) updates.append((oldUpdate, paramUpdate)) return updates def classify(self, dataInstaces): dataInstacesConverted = np.asarray(dataInstaces, dtype=theanoFloat) x = T.matrix('x', dtype=theanoFloat) # Use the classification weights because now we have hiddenDropout # Ensure that you have no hiddenDropout in classification # TODO: are the variables still shared? or can we make a new one? batchTrainer = MiniBatchTrainer(input=x, nrLayers=self.nrLayers, initialWeights=self.classifcationWeights, initialBiases=self.classifcationBiases, visibleDropout=1, hiddenDropout=1) classify = theano.function( inputs=[], outputs=batchTrainer.output, updates={}, givens={x: dataInstacesConverted}) lastLayers = classify() return lastLayers, np.argmax(lastLayers, axis=1) # Element wise norm of the columns of a matrix def SquaredElementWiseNorm(x): return T.sum(T.sqr(x), axis=0)
bsd-3-clause