Files changed (1) hide show
  1. README.md +93 -3
README.md CHANGED
@@ -1,3 +1,93 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - text-classification
5
+ - translation
6
+ - summarization
7
+ - text-generation
8
+ language:
9
+ - en
10
+ tags:
11
+ - scrapy
12
+ - pandas
13
+ - datasets
14
+ size_categories:
15
+ - n<1K
16
+ ---
17
+ ## Dataset Summary
18
+ This dataset contains information about the largest banks globally, including their rank, name, and total assets (in US$ billion as of 2023). The data was scraped from [Wikipedia's List of Largest Banks](https://en.wikipedia.org/wiki/List_of_largest_banks). It can be used for financial analysis, market research, and educational purposes.
19
+
20
+ ## Dataset Structure
21
+ ### Columns
22
+ - **Rank**: The rank of the bank based on total assets.
23
+ - **Bank Name**: The name of the bank.
24
+ - **Total Assets (2023, US$ billion)**: The total assets of the bank in billions of US dollars as of 2023.
25
+
26
+ ### Example
27
+ | Rank | Bank Name | Total Assets (2023, US$ billion) |
28
+ |------|--------------------|-----------------------------------|
29
+ | 1 | Industrial & Commercial Bank of China (ICBC) | 5,000 |
30
+ | 2 | China Construction Bank | 4,500 |
31
+
32
+ ## Source
33
+ The data was scraped from [Wikipedia's List of Largest Banks](https://en.wikipedia.org/wiki/List_of_largest_banks) using Python and Scrapy.
34
+
35
+ ## Usage
36
+ This dataset can be used for:
37
+ - Financial market research.
38
+ - Trend analysis in global banking.
39
+ - Educational purposes and data visualization.
40
+
41
+ ## Licensing
42
+ The data is publicly available under [Wikipedia's Terms of Use](https://foundation.wikimedia.org/wiki/Terms_of_Use).
43
+
44
+ ## Limitations
45
+ - The data may not reflect real-time changes as it was scraped from a static page.
46
+ - Possible inaccuracies due to updates or inconsistencies on the source page.
47
+
48
+ ## Acknowledgements
49
+ Thanks to Wikipedia and the contributors of the "List of Largest Banks" page.
50
+
51
+ ## Citation
52
+ If you use this dataset, please cite it as:
53
+ ```
54
+ @misc{largestbanks2023,
55
+ author = {Your Name or Organization},
56
+ title = {Largest Banks Dataset},
57
+ year = {2023},
58
+ publisher = {Hugging Face},
59
+ url = {https://huggingface.co/datasets/your-dataset-name}
60
+ }
61
+ ```
62
+ ## Who are the source Data producers ?
63
+ The data is machine-generated (using web scraping) and subjected to human additional treatment.
64
+
65
+ below, I provide the script I created to scrape the data (as well as my additional treatment):
66
+
67
+ import scrapy
68
+
69
+ class LargestBanksSpider(scrapy.Spider):
70
+ name = "largest_banks"
71
+ start_urls = ["https://en.wikipedia.org/wiki/List_of_largest_banks"]
72
+
73
+ def parse(self, response):
74
+ # Locate the table containing the data
75
+ table = response.xpath("//table[contains(@class, 'wikitable')]")
76
+
77
+ # Extract rows from the table
78
+ rows = table.xpath(".//tr")
79
+
80
+ for row in rows[1:]: # Skip the header row
81
+ rank = row.xpath(".//td[1]//text()").get()
82
+ bank_name = row.xpath(".//td[2]//a/text() | .//td[2]//text()")
83
+ total_assets = row.xpath(".//td[3]//text()").get()
84
+
85
+ # Extract all text nodes for bank name and join them
86
+ bank_name = ''.join(bank_name.getall()).strip() if bank_name else None
87
+
88
+ if rank and bank_name and total_assets:
89
+ yield {
90
+ "Rank": rank.strip(),
91
+ "Bank Name": bank_name,
92
+ "Total Assets (2023, US$ billion)": total_assets.strip()
93
+ }