Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
entry_point
stringlengths
1
30
name
stringlengths
11
13
prompt
stringlengths
115
1.36k
prompt1a
stringlengths
143
1.34k
prompt1c
stringlengths
114
1.36k
βŒ€
prompt1p
stringlengths
62
695
prompt2ac
stringlengths
142
1.34k
βŒ€
prompt2ap
stringlengths
67
629
βŒ€
prompt2cp
stringlengths
82
525
βŒ€
prompt3acp
stringclasses
12 values
solution
stringlengths
132
1.99k
test_case
stringlengths
96
19.6k
has_close_elements
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def candidate(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers meeting a certain condition (e.g. closer to or larger than each other than given threshold). >>> candidate([1.0, 2.0, 3.0], 0.5) False >>> candidate([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers larger than each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def candidate(...) -> bool: """ Check given a list of number."""
from typing import List def candidate(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers meeting a certain condition (e.g. closer to or larger than each other than given threshold). >>> candidate([1.0, 2.0, 3.0], 0.5) True >>> candidate([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) False """
from typing import List def candidate(numbers: List[float], x: float) -> bool: """ given a list of number."""
null
null
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
[{'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3', 'output': 'True', 'relation': '=='}, {'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05', 'output': 'False', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0], 0.95', 'output': 'True', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0], 0.8', 'output': 'False', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1', 'output': 'True', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1], 1.0', 'output': 'True', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1], 0.5', 'output': 'False', 'relation': '=='}]
separate_paren_groups
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
from typing import List def candidate(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other Keep or ignore any spaces in the input string. >>> candidate('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['(', '(', '('] """
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to """
from typing import List def candidate(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other Keep or ignore any spaces in the input string. >>> candidate('( ) (( )) (( )( ))') ['(', '(', '('] """
from typing import List def candidate(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other """
null
null
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """ result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
[{'input': "'(()()) ((())) () ((())()())'", 'output': "['(()())', '((()))', '()', '((())()())']", 'relation': '=='}, {'input': "'() (()) ((())) (((())))'", 'output': "['()', '(())', '((()))', '(((())))']", 'relation': '=='}, {'input': "'(()(())((())))'", 'output': "['(()(())((())))']", 'relation': '=='}, {'input': "'( ) (( )) (( )( ))'", 'output': "['()', '(())', '(()())']", 'relation': '=='}]
truncate_number
HumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
def candidate(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return a certain part of the number (e.g. integer or decimal or another). >>> candidate(3.5) 0.5 """
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 3 """
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). """
def candidate(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return a certain part of the number (e.g. integer or decimal or another) >>> candidate(3.5) 3 """
def candidate(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). """
null
null
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
[{'input': '3.5', 'output': '0.5', 'relation': '=='}, {'input': '1.33', 'output': '1e-6', 'relation': 'abs(candidate(1.33) - 0.33) < 1e-6'}, {'input': '123.456', 'output': '1e-6', 'relation': 'abs(candidate(123.456) - 0.456) < 1e-6'}]
below_zero
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) False """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) True >>> below_zero([1, 2, -4, 5]) False """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero. """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) True >>> below_zero([1, 2, -4, 5]) False """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero. """
null
null
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ balance = 0 for op in operations: balance += op if balance < 0: return True return False
[{'input': '[]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, -3, 1, 2, -3]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, -4, 5, 6]', 'output': 'True', 'relation': '=='}, {'input': '[1, -1, 2, -2, 5, -5, 4, -4]', 'output': 'False', 'relation': '=='}, {'input': '[1, -1, 2, -2, 5, -5, 4, -5]', 'output': 'True', 'relation': '=='}, {'input': '[1, -2, 2, -2, 5, -5, 4, -4]', 'output': 'True', 'relation': '=='}]
mean_absolute_deviation
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around a certain attribute (e.g. max or mean or other) of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (e.g. max or mean in this case): MAD = average | x - (e.g. max or mean or other) | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation. """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around a certain attribute (e.g. max or mean or other) of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (e.g. max or mean in this case): MAD = average | x - (e.g. max or mean or other) | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation MAD = average | x - (e.g. max or mean or other) | """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation. >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation. >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """ mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
[{'input': '[1.0, 2.0, 3.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6'}]
intersperse
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
from typing import List def candidate(numbers: List[int], x: int) -> List[int]: """ Insert a number 'x' for a certain number of times in the input list `numbers' >>> candidate([], 4) [] >>> candidate([1, 2, 3], 4) [1, 4, 2, 4, 3] """
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [4] >>> intersperse([1, 2, 3], 4) [1, 2, 3, 4] """
from typing import List def candidate(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' """
from typing import List def candidate(numbers: List[int], x: int) -> List[int]: """ Insert a number 'x' for a certain number of times in the input list `numbers' >>> candidate([], 4) [4] >>> candidate([1, 2, 3], 4) [1, 2, 3, 4] """
null
null
null
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """ if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
[{'input': '[], 7', 'output': '[]', 'relation': '=='}, {'input': '[5, 6, 3, 2], 8', 'output': '[5, 8, 6, 8, 3, 8, 2]', 'relation': '=='}, {'input': '[2, 2, 2], 2', 'output': '[2, 2, 2, 2, 2]', 'relation': '=='}]
parse_nested_parens
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
from typing import List def candidate(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> candidate('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (() ()) has maximum two levels of nesting while ((( ))) has three. >>> parse_nested_parens('(()())((()))()((())()())') [2, 3, 1, 3] """
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output an integer """
from typing import List def candidate(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output the deepest level of nesting of parentheses. E.g. (() ()) has maximum two levels of nesting while ((( ))) has three. >>> candidate('(()())((()))()((())()())') [2, 3, 1, 3] """
from typing import List def candidate(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output an integer """
null
null
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """ def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
[{'input': "'(()()) ((())) () ((())()())'", 'output': '[2, 3, 1, 3]', 'relation': '=='}, {'input': "'() (()) ((())) (((())))'", 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': "'(()(())((())))'", 'output': '[4]', 'relation': '=='}]
filter_by_substring
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Process an input list of strings given string x >>> candidate([], 'a') [] >>> candidate(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') ['a'] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['cde'] """
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Process an input list of strings given string x >>> candidate([], 'a') ['a'] >>> candidate(['abc', 'bacd', 'cde', 'array'], 'a') ['cde'] """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Process an input list of strings """
null
null
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """ return [x for x in strings if substring in x]
[{'input': "[], 'john'", 'output': '[]', 'relation': '=='}, {'input': "['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'", 'output': "['xxx', 'xxxAAA', 'xxx']", 'relation': '=='}, {'input': "['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx'", 'output': "['xxx', 'aaaxxy', 'xxxAAA', 'xxx']", 'relation': '=='}, {'input': "['grunt', 'trumpet', 'prune', 'gruesome'], 'run'", 'output': "['grunt', 'prune']", 'relation': '=='}]
sum_product
HumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. Empty sum or product should be equal to either 0 or 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (1, 0) >>> sum_product([1, 2, 3, 4]) (24, 10) """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. Empty sum or product should be equal to either 0 or 1. >>> candidate([]) (1, 0) >>> candidate([1, 2, 3, 4]) (24, 10) """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. """
null
null
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """ sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
[{'input': '[]', 'output': '(0, 1)', 'relation': '=='}, {'input': '[1, 1, 1]', 'output': '(3, 1)', 'relation': '=='}, {'input': '[100, 0]', 'output': '(100, 0)', 'relation': '=='}, {'input': '[3, 5, 7]', 'output': '(15, 105)', 'relation': '=='}, {'input': '[10]', 'output': '(10, 10)', 'relation': '=='}]
rolling_max
HumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling certain type of element (minimal or maximum or other) found until given moment in the sequence. >>> candidate([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 1, 1, 1, 1, 1, 1] """
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling element. """
from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling certain type of element (minimal or maximum or other) found until given moment in the sequence. >>> candidate([1, 2, 3, 2, 3, 4, 2]) [1, 1, 1, 1, 1, 1, 1] """
from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling element. """
null
null
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """ running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': '[4, 3, 2, 1]', 'output': '[4, 4, 4, 4]', 'relation': '=='}, {'input': '[3, 2, 3, 100, 3]', 'output': '[3, 3, 3, 100, 100]', 'relation': '=='}]
make_palindrome
HumanEval/10
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def candidate(string: str) -> str: """ Find the longest or shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the shortest or longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> candidate('') '' >>> candidate('cat') 'catac' >>> candidate('cata') 'catac' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'ata' >>> make_palindrome('cata') 'ata' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome. """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def candidate(string: str) -> str: """ Find the longest or shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the shortest or longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> candidate('') '' >>> candidate('cat') 'ata' >>> candidate('cata') 'ata' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def candidate(string: str) -> str: """ Find the longest or shortest palindrome. """
null
null
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """ if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
[{'input': "''", 'output': '', 'relation': '=='}, {'input': "'x'", 'output': 'x', 'relation': '=='}, {'input': "'xyz'", 'output': 'xyzyx', 'relation': '=='}, {'input': "'xyx'", 'output': 'xyx', 'relation': '=='}, {'input': "'jerry'", 'output': 'jerryrrej', 'relation': '=='}]
string_xor
HumanEval/11
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """
from typing import List def candidate(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform certain bitwise operation on these inputs and return result also as a string. >>> candidate('010', '110') '100' """
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '011' """
from typing import List def candidate(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. """
from typing import List def candidate(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform certain bitwise operation on these inputs and return result also as a string. >>> candidate('010', '110') '011' """
null
null
null
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """ def xor(i, j): if i == j: return '0' else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
[{'input': "'111000', '101010'", 'output': '010010', 'relation': '=='}, {'input': "'1', '1'", 'output': '0', 'relation': '=='}, {'input': "'0101', '0000'", 'output': '0101', 'relation': '=='}]
longest
HumanEval/12
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """
from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """ Out of list of strings, return a certain one (the shortest or longest or another). Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> candidate([]) >>> candidate(['a', 'b', 'c']) 'a' >>> candidate(['a', 'bb', 'ccc']) 'ccc' """
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'c' >>> longest(['a', 'bb', 'ccc']) 'a' """
from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """ Out of list of strings, return one of them. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. """
from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """ Out of list of strings, return a certain one (the shortest or longest or another). Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> candidate([]) >>> candidate(['a', 'b', 'c']) 'c' >>> candidate(['a', 'bb', 'ccc']) 'a' """
null
null
null
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """ if not strings: return None maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
[{'input': '[]', 'output': 'None', 'relation': '=='}, {'input': "['x', 'y', 'z']", 'output': 'x', 'relation': '=='}, {'input': "['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']", 'output': 'zzzz', 'relation': '=='}]
greatest_common_divisor
HumanEval/13
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """
def candidate(a: int, b: int) -> int: """ Return a common divisor of two integers a and b >>> candidate(3, 5) 1 >>> candidate(25, 15) 5 """
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 3 >>> greatest_common_divisor(25, 15) 15 """
def candidate(...) -> int: """ Return a greatest common divisor """
def candidate(a: int, b: int) -> int: """ Return a common divisor of two integers a and b >>> candidate(3, 5) 3 >>> candidate(25, 15) 15 """
def candidate(...) -> int: """ Return a common divisor """
null
null
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """ while b: a, b = b, a % b return a
[{'input': '3, 7', 'output': '1', 'relation': '=='}, {'input': '10, 15', 'output': '5', 'relation': '=='}, {'input': '49, 14', 'output': '7', 'relation': '=='}, {'input': '144, 60', 'output': '12', 'relation': '=='}]
all_prefixes
HumanEval/14
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """
from typing import List def candidate(string: str) -> List[str]: """ Return list of a certain pattern (suffixes or prefixes or other types of substring) from shortest to longest of the input string >>> candidate('abc') ['a', 'ab', 'abc'] """
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['abc', 'ab', 'a'] """
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes """
from typing import List def candidate(string: str) -> List[str]: """ Return list of a certain pattern (suffixes or prefixes or other types of substring) from shortest to longest of the input string >>> candidate('abc') ['abc', 'ab', 'a'] """
from typing import List def candidate(string: str) -> List[str]: """ Return list of a certain patter """
null
null
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """ result = [] for i in range(len(string)): result.append(string[:i+1]) return result
[{'input': "''", 'output': '[]', 'relation': '=='}, {'input': "'asdfgh'", 'output': "['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']", 'relation': '=='}, {'input': "'WWW'", 'output': "['W', 'WW', 'WWW']", 'relation': '=='}]
string_sequence
HumanEval/15
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
def string_sequence(n: int) -> str: """ Return a string containing dot or space-delimited numbers starting from 0 upto a certain number inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0.1.2.3.4.5' """
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers.
def string_sequence(n: int) -> str: """ Return a string containing dot or space-delimited numbers starting from 0 upto a certain number inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0.1.2.3.4.5' """
def string_sequence(n: int) -> str: """ Return a string containing dot or space-delimited numbers.
null
null
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """ return ' '.join([str(x) for x in range(n + 1)])
[{'input': '0', 'output': '0', 'relation': '=='}, {'input': '3', 'output': '0 1 2 3', 'relation': '=='}, {'input': '10', 'output': '0 1 2 3 4 5 6 7 8 9 10', 'relation': '=='}]
count_distinct_characters
HumanEval/16
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """
def candidate(string: str) -> int: """ Given a string, find out how many characters (regardless of case) does it consist of >>> candidate('xyzXYZ') 3 >>> candidate('Jerry') 4 """
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 6 >>> count_distinct_characters('Jerry') 5 """
def candidate(string: str) -> int: """ Given a string, find out how many distinct characters does it consist of """
def candidate(string: str) -> int: """ Given a string, find out how many characters (regardless of case) does it consist of >>> candidate('xyzXYZ') 6 >>> candidate('Jerry') 5 """
def candidate(string: str) -> int: """ Given a string, find out how many characters (regardless of case) does it consist of """
null
null
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """ return len(set(string.lower()))
[{'input': "''", 'output': '0', 'relation': '=='}, {'input': "'abcde'", 'output': '5', 'relation': '=='}, {'input': "'abcde' + 'cade' + 'CADE'", 'output': '5', 'relation': '=='}, {'input': "'aaaaAAAAaaaa'", 'output': '1', 'relation': '=='}, {'input': "'Jerry jERRY JeRRRY'", 'output': '5', 'relation': '=='}]
parse_music
HumanEval/17
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts A beats 'o|' - half note, lasts B beats '.|' - quater note, lasts C beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [1, 4, 2, 4, 4, 2, 2, 2, 2, 1, 1] """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts A beats 'o|' - half note, lasts B beats '.|' - quater note, lasts C beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [1, 4, 2, 4, 4, 2, 2, 2, 2, 1, 1] """
null
null
null
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """ note_map = {'o': 4, 'o|': 2, '.|': 1} return [note_map[x] for x in music_string.split(' ') if x]
[{'input': "''", 'output': '[]', 'relation': '=='}, {'input': "'o o o o'", 'output': '[4, 4, 4, 4]', 'relation': '=='}, {'input': "'.| .| .| .|'", 'output': '[1, 1, 1, 1]', 'relation': '=='}, {'input': "'o| o| .| .| o o o o'", 'output': '[2, 2, 1, 1, 4, 4, 4, 4]', 'relation': '=='}, {'input': "'o| .| o| .| o o| o o|'", 'output': '[2, 1, 2, 1, 4, 2, 4, 2]', 'relation': '=='}]
how_many_times
HumanEval/18
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
def candidate(a: str, b: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 2 """
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. """
def candidate(a: str, b: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> canidate('', 'a') 0 >>> candidate('aaa', 'a') 3 >>> candidate('aaaa', 'aa') 2 """
def candidate(a: str, b: str) -> int: """ Find how many times a given substring can be found in the original string. """
null
null
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """ times = 0 for i in range(len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1 return times
[{'input': "'', 'x'", 'output': '0', 'relation': '=='}, {'input': "'xyxyxyx', 'x'", 'output': '4', 'relation': '=='}, {'input': "'cacacacac', 'cac'", 'output': '4', 'relation': '=='}, {'input': "'john doe', 'john'", 'output': '1', 'relation': '=='}]
sort_numbers
HumanEval/19
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """
from typing import List def candidate(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers in a certain order (sorted descendingly or ascendingly or another order) >>> candidate('three one five') 'one three five' """
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'five three one' """
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals. """
from typing import List def candidate(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers in a certain order (sorted descendingly or ascendingly or another order) >>> candidate('three one five') 'five three one' """
from typing import List def candidate(numbers: str) -> str: """ Input is a space-delimited string of numberals. """
null
null
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """ value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
[{'input': "''", 'output': '', 'relation': '=='}, {'input': "'three'", 'output': 'three', 'relation': '=='}, {'input': "'three five nine'", 'output': 'three five nine', 'relation': '=='}, {'input': "'five zero four seven nine eight'", 'output': 'zero four five seven eight nine', 'relation': '=='}, {'input': "'six five four three two one zero'", 'output': 'zero one two three four five six', 'relation': '=='}]
find_closest_elements
HumanEval/20
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order (smaller number, larger number). >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (1.0, 5.0) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (1.0, 5.0) """
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order. """
from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order (smaller number, larger number). >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (1.0, 5.0) >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (1.0, 5.0) """
from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order. """
null
null
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """ closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
[{'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2]', 'output': '(3.9, 4.0)', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0]', 'output': '(5.0, 5.9)', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]', 'output': '(2.0, 2.2)', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]', 'output': '(2.0, 2.0)', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1]', 'output': '(2.2, 3.1)', 'relation': '=='}]
rescale_to_unit
HumanEval/21
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
from typing import List def rescale(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the one number will become 0 and another will become 1 >>> rescale([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [1.0, 0.75, 0.5, 0.25, 0.0] """
from typing import List def rescale(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list """
from typing import List def rescale(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the one number will become 0 and another will become 1 >>> rescale([1.0, 2.0, 3.0, 4.0, 5.0]) [1.0, 0.75, 0.5, 0.25, 0.0] """
null
null
null
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """ min_number = min(numbers) max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
[{'input': '[2.0, 49.9]', 'output': '[0.0, 1.0]', 'relation': '=='}, {'input': '[100.0, 49.9]', 'output': '[1.0, 0.0]', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '[0.0, 0.25, 0.5, 0.75, 1.0]', 'relation': '=='}, {'input': '[2.0, 1.0, 5.0, 3.0, 4.0]', 'output': '[0.25, 0.0, 1.0, 0.5, 0.75]', 'relation': '=='}, {'input': '[12.0, 11.0, 15.0, 13.0, 14.0]', 'output': '[0.25, 0.0, 1.0, 0.5, 0.75]', 'relation': '=='}]
filter_integers
HumanEval/22
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
from typing import List, Any def candidate(values: List[Any]) -> List[int]: """ Filter given list of any python values only for certain types >>> candidate(['a', 3.14, 5]) [5] >>> candidate([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) ['a'] >>> filter_integers([1, 2, 3, 'abc', {}, []]) ['abc'] """
from typing import List, Any def candidate(values: List[Any]) -> List[int]: """ Filter given list of any python values """
from typing import List, Any def candidate(values: List[Any]) -> List[int]: """ Filter given list of any python values only for certain types >>> candidate(['a', 3.14, 5]) ['a'] >>> candidate([1, 2, 3, 'abc', {}, []]) ['abc'] """
null
null
null
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """ return [x for x in values if isinstance(x, int)]
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': "[4, {}, [], 23.2, 9, 'adasd']", 'output': '[4, 9]', 'relation': '=='}, {'input': "[3, 'c', 3, 3, 'a', 'b']", 'output': '[3, 3, 3]', 'relation': '=='}]
strlen
HumanEval/23
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """
def candidate(string: str) -> int: """ Return length or length of Longest Palindrome Substring of the given string >>> candidate('') 0 >>> candidate('abc') 3 """
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 1 """
def candidate(string: str) -> int: """ Return length """
def candidate(string: str) -> int: """ Return length or length of Longest Palindrome Substring of the given string >>> candidate('') 0 >>> candidate('abc') 1 """
def candidate(string: str) -> int: """ Return length or length of Longest Palindrome Substring """
null
null
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """ return len(string)
[{'input': "''", 'output': '0', 'relation': '=='}, {'input': "'x'", 'output': '1', 'relation': '=='}, {'input': "'asdasnakj'", 'output': '9', 'relation': '=='}]
largest_divisor
HumanEval/24
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """
def candidate(n: int) -> int: """ For a given number n, find the smallest or largest number that divides n evenly, smaller than n >>> candidate(15) 5 """
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 1 """
def candidate(n: int) -> int: """ For a given number n, find the largest number that divides n evenly """
def candidate(n: int) -> int: """ For a given number n, find the smallest or largest number that divides n evenly, smaller than n >>> candidate(15) 1 """
def candidate(n: int) -> int: """ For a given number n, find the smallest or largest number that divides n evenly """
null
null
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """ for i in reversed(range(n)): if n % i == 0: return i
[{'input': '3', 'output': '1', 'relation': '=='}, {'input': '7', 'output': '1', 'relation': '=='}, {'input': '10', 'output': '5', 'relation': '=='}, {'input': '100', 'output': '50', 'relation': '=='}, {'input': '49', 'output': '7', 'relation': '=='}]
factorize
HumanEval/25
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """
from typing import List def candidate(n: int) -> List[int]: """ Return list of factors of given integer in the descending or ascending order. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> candidate(8) [2, 2, 2] >>> candidate(25) [5, 5] >>> candidate(70) [2, 5, 7] """
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 4, 8] >>> factorize(25) [5, 25] >>> factorize(70) [2, 10, 70] """
from typing import List def candidate(n: int) -> List[int]: """ Return list of prime factors of given integer. """
from typing import List def candidate(n: int) -> List[int]: """ Return list of factors of given integer in the descending or ascending order. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> candidate(8) [2, 4, 8] >>> candidate(25) [5, 25] >>> candidate(70) [2, 10, 70] """
from typing import List def candidate(n: int) -> List[int]: """ Return list of factors of given integer. """
null
null
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """ import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact
[{'input': '2', 'output': '[2]', 'relation': '=='}, {'input': '4', 'output': '[2, 2]', 'relation': '=='}, {'input': '8', 'output': '[2, 2, 2]', 'relation': '=='}, {'input': '3 * 19', 'output': '[3, 19]', 'relation': '=='}, {'input': '3 * 19 * 3 * 19', 'output': '[3, 3, 19, 19]', 'relation': '=='}, {'input': '3 * 19 * 3 * 19 * 3 * 19', 'output': '[3, 3, 3, 19, 19, 19]', 'relation': '=='}, {'input': '3 * 19 * 19 * 19', 'output': '[3, 19, 19, 19]', 'relation': '=='}, {'input': '3 * 2 * 3', 'output': '[2, 3, 3]', 'relation': '=='}]
remove_duplicates
HumanEval/26
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur K time(s). Keep order of elements left the same as in the input. >>> candidate([1, 2, 3, 2, 4]) [1, 3, 4] """
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 2, 3, 4] """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur. """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur K time(s). Keep order of elements left the same as in the input. >>> candidate([1, 2, 3, 2, 4]) [1, 2, 3, 4] """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur K time(s). """
null
null
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """ import collections c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': '[1, 2, 3, 2, 4, 3, 5]', 'output': '[1, 4, 5]', 'relation': '=='}]
flip_case
HumanEval/27
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """
def candidate(string: str) -> str: """ For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. >>> candidate('Hello') 'hELLO' """
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hello' """
def candidate(string: str) -> str: """ For a given string, flip lowercase characters to uppercase. """
def candidate(string: str) -> str: """ For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. >>> candidate('Hello') 'hello' """
def candidate(string: str) -> str: """ For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. """
null
null
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """ return string.swapcase()
[{'input': "''", 'output': '', 'relation': '=='}, {'input': "'Hello!'", 'output': 'hELLO!', 'relation': '=='}, {'input': "'These violent delights have violent ends'", 'output': 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS', 'relation': '=='}]
concatenate
HumanEval/28
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """
from typing import List def candidate(strings: List[str]) -> str: """ Concatenate list of strings into a single string with space or without space >>> candidate([]) '' >>> candidate(['a', 'b', 'c']) 'abc' """
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'c b a' """
from typing import List def candidate(strings: List[str]) -> str: """ Concatenate """
from typing import List def candidate(strings: List[str]) -> str: """ Concatenate list of strings into a single string with space or without space >>> candidate([]) '' >>> candidate(['a', 'b', 'c']) 'c b a' """
null
null
null
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """ return ''.join(strings)
[{'input': '[]', 'output': '', 'relation': '=='}, {'input': "['x', 'y', 'z']", 'output': 'xyz', 'relation': '=='}, {'input': "['x', 'y', 'z', 'w', 'k']", 'output': 'xyzwk', 'relation': '=='}]
filter_by_prefix
HumanEval/29
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
from typing import List def candidate(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that satisfy certain condition with a given prefix. >>> candidate([], 'a') [] >>> candidate(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['bcd', 'cde'] """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Filter an input list of strings only for ones. """
from typing import List def candidate(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that satisfy certain condition with a given prefix. >>> candidate([], 'a') [] >>> candidate(['abc', 'bcd', 'cde', 'array'], 'a') ['bcd', 'cde'] """
null
null
null
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """ return [x for x in strings if x.startswith(prefix)]
[{'input': "[], 'john'", 'output': '[]', 'relation': '=='}, {'input': "['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'", 'output': "['xxx', 'xxxAAA', 'xxx']", 'relation': '=='}]
get_positive
HumanEval/30
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def candidate(l: list): """Return only negative or positive numbers in the list. >>> candidate([-1, 2, -4, 5, 6]) [2, 5, 6] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [-1, -4] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """
def candidate(l: list): """ >>> candidate([-1, 2, -4, 5, 6]) [2, 5, 6] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def candidate(l: list): """Return only negative or positive numbers in the list. >>> candidate([-1, 2, -4, 5, 6]) [-1, -4] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """
null
def candidate(l: list): """ >>> candidate([-1, 2, -4, 5, 6]) [-1, -4] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """
null
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """ return [e for e in l if e > 0]
[{'input': '[-1, -2, 4, 5, 6]', 'output': '[4, 5, 6]', 'relation': '=='}, {'input': '[5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]', 'output': '[5, 3, 2, 3, 3, 9, 123, 1]', 'relation': '=='}, {'input': '[-1, -2]', 'output': '[]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}]
is_prime
HumanEval/31
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """
def candidate(n): """Return true if a given number is composite or prime, and false otherwise. >>> candidate(6) False >>> candidate(101) True >>> candidate(11) True >>> candidate(13441) True >>> candidate(61) True >>> candidate(4) False >>> candidate(1) False """
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) True >>> is_prime(101) False >>> is_prime(11) False >>> is_prime(13441) False >>> is_prime(61) False >>> is_prime(4) True >>> is_prime(1) True """
def candidate(n): """Return true, and false otherwise. """
def candidate(n): """Return true if a given number is composite or prime, and false otherwise. >>> candidate(6) True >>> candidate(101) False >>> candidate(11) False >>> candidate(13441) False >>> candidate(61) False >>> candidate(4) True >>> candidate(1) True """
null
null
null
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """ if n < 2: return False for k in range(2, n - 1): if n % k == 0: return False return True
[{'input': '6', 'output': 'False', 'relation': '=='}, {'input': '101', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'True', 'relation': '=='}, {'input': '13441', 'output': 'True', 'relation': '=='}, {'input': '61', 'output': 'True', 'relation': '=='}, {'input': '4', 'output': 'False', 'relation': '=='}, {'input': '1', 'output': 'False', 'relation': '=='}, {'input': '5', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'True', 'relation': '=='}, {'input': '17', 'output': 'True', 'relation': '=='}, {'input': '5 * 17', 'output': 'False', 'relation': '=='}, {'input': '11 * 7', 'output': 'False', 'relation': '=='}, {'input': '13441 * 19', 'output': 'False', 'relation': '=='}]
find_zero
HumanEval/32
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def candidate(xs: list): """ xs are coefficients of a polynomial. candidate find x such that poly(x) is positive or negative or 0. candidate returns only only zero point, even if there are many. Moreover, candidate only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(candidate([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(candidate([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -3.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 0.0 """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x. """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def candidate(xs: list): """ xs are coefficients of a polynomial. candidate find x such that poly(x) is positive or negative or 0. candidate returns only only zero point, even if there are many. Moreover, candidate only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(candidate([1, 2]), 2) # f(x) = 1 + 2x -3.5 >>> round(candidate([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 0.0 """
null
null
null
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """ begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
[{'input': [-10, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -6, -7, 7], 'output': 9.76619674020185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 6, 9, -10], 'output': 1.337379096355562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7, 3, -3], 'output': 1.3840022461408807e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -2, -10, -5, 3, 1, -2, -6], 'output': 6.92455426332117e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -7, -8, 2], 'output': 2.1342083655895294e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 4, 7, -7, 2, -8], 'output': 1.1405965061328516e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 9, 1, 8, -4, -8], 'output': 4.0877967677488414e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 4, 10, 1, -5, 1, 1, -4], 'output': 4.5996983999430086e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, -8, 9, 10, -5, 7], 'output': 4.412106235918145e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 2, -2], 'output': 7.292131343206165e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9, -3, -9], 'output': 1.7145054993783493e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -2, -8, -4, 8, 1], 'output': 3.6866111552402714e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 5, 2, 10], 'output': 1.015466821741029e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2, -6, -3, 7, 7, -2, 8], 'output': 2.469873194854699e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 2, 1, -3, -6, 6, 5, -8], 'output': 4.654125973502232e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -6], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 9, -8, 2], 'output': 4.748736473492166e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 4, 6, -2, 7, -10, -7, 7], 'output': 1.0656506788109255e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 1, -7, -1, 3, -5], 'output': 6.19443163429878e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -2, 6, -5, 6, -7, 10, -1], 'output': 1.039987151951749e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, 1, -5, 7], 'output': 8.558842523598287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, 1, -1, -3, -9, -3, 8], 'output': 9.059419880941277e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 5], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -6], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 7, -5, -2], 'output': 3.864730757641155e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 7, -4, -1, 2, 10, 1, 4], 'output': 1.152398176884617e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -3, -3, -8, 1, -10, 8, 7], 'output': 1.1465629556894896e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -3, -10, -8], 'output': 8.052962741089686e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 5, -4, 7], 'output': 2.8748137204104296e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 5, -3], 'output': 7.751452812954085e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -4, -7, -7, 3, 1, 3, 3], 'output': 3.0882091502093534e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 10, 10, -7, -9, 2, 1, -7], 'output': 2.323840675444444e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, -4, 7, 4], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -5, -2, 4], 'output': 2.471778337564956e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 4, 7, -7], 'output': 5.787530454881562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 5, 5, -4], 'output': 4.028066769024008e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -5, 2, -10, 2, -2, 4, -1], 'output': 1.2186199688235533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 5, -6, -4, -1, -4, -9, 8], 'output': 7.55201901014857e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 5], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 6, -8, -5], 'output': 7.17989223630866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -7, 8, -3], 'output': 1.2934986415302774e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 6, 1, -2, -4, 1, -3], 'output': 8.968825682131865e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -6, 10, -1, 4, 1], 'output': 1.2246800906723365e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, 4], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 7], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, -2, -6, 1], 'output': 4.1145209461745935e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 7, -1, 9, 10], 'output': 2.8451518918615193e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 7], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -1, 9, -4], 'output': 5.314582107729393e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 10, -2, 6, 5, -2], 'output': 5.341000801351026e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 10], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, -10, 1, -6, 10, -2, -5], 'output': 1.4370016288012266e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 3, 7, -10, -7, -8, -6, 7], 'output': 1.0816925133383393e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -6, -9, -1], 'output': 4.090063773776187e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 1, -4, -3, -7, 1], 'output': 6.964910426177084e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -6, -3, -5, -5, 3, -10, -5], 'output': 1.3005894139439533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -3, -2, -5, -7, 2], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 1, -1, -3], 'output': 1.2522427539352066e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -4, 2, 1], 'output': 7.0775918459276e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -2, 1, 10, 6, 2], 'output': 1.0347153134304676e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, -2, -5, 8, -2], 'output': 4.458877711499554e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 9], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 3, 9, 6, -7, 2, 8], 'output': 6.708447131131834e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, 3, -10], 'output': 1.3271347909515896e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 3, -8, 1], 'output': 9.151792171313566e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -1, 6, -1, 3, 1], 'output': 9.165997960636219e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, 7, -6, -4, 3, 2, -5, 9], 'output': 1.2270528522298832e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, 7, -10, -1, -1, -4], 'output': 8.104050763790838e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 9, 10, 1, 4, 4, 4, -4], 'output': 2.9445686777762603e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, -8, -1, 6, 10, 9, 1, -8], 'output': 2.796114451086851e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3, -4, -6], 'output': 8.562428543967826e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -3], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8, 4, 3, 10, 8, -4, 2], 'output': 4.614358672938579e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -3, -6, 10, -10, -7, 3, -3], 'output': 2.5733340805467186e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 4, -9, 7], 'output': 4.689382215872229e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 4, -6, 4], 'output': 9.2210683533267e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 9, 6, 3, 7, 4], 'output': 2.5149304860860866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 4, -2, -3], 'output': 1.9339907453286287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 5, 10, -3, -2, 4], 'output': 1.9849579757647007e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 7, -8, -6, -6], 'output': 4.970059919173764e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}]
sort_third
HumanEval/33
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [1, 2, 3] >>> candidate([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [3, 2, 1] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [9, 8, 6, 5, 4, 3, 2] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l. """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [3, 2, 1] >>> candidate([5, 6, 3, 4, 8, 9, 2]) [9, 8, 6, 5, 4, 3, 2] """
null
null
null
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """ l = list(l) l[::3] = sorted(l[::3]) return l
[{'input': '[5, 6, 3, 4, 8, 9, 2]', 'output': '[2, 6, 3, 4, 8, 9, 5]', 'relation': '=='}, {'input': '[5, 8, 3, 4, 6, 9, 2]', 'output': '[2, 8, 3, 4, 6, 9, 5]', 'relation': '=='}, {'input': '[5, 6, 9, 4, 8, 3, 2]', 'output': '[2, 6, 9, 4, 8, 3, 5]', 'relation': '=='}, {'input': '[5, 6, 3, 4, 8, 9, 2, 1]', 'output': '[2, 6, 3, 4, 8, 9, 5, 1]', 'relation': '=='}]
unique
HumanEval/34
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
def candidate(l: list): """Return descending or ascending sorted unique elements in a list >>> candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [3, 5, 9, 123] """
def candidate(l: list): """Return elements in a list """
def candidate(l: list): """Return descending or ascending sorted unique elements in a list >>> candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) [3, 5, 9, 123] """
null
null
null
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """ return sorted(list(set(l)))
[{'input': '[5, 3, 5, 2, 3, 3, 9, 0, 123]', 'output': '[0, 2, 3, 5, 9, 123]', 'relation': '=='}]
max_element
HumanEval/35
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
def candidate(l: list): """Return a certain element in the list. >>> candidate([1, 2, 3]) 3 >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 1 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) -10 """
def candidate(l: list): """Return element in the list. """
def candidate(l: list): """Return a certain element in the list. >>> candidate([1, 2, 3]) 1 >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) -10 """
null
null
null
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """ m = l[0] for e in l: if e > m: m = e return m
[{'input': '[1, 2, 3]', 'output': '3', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]', 'output': '124', 'relation': '=='}]
fizz_buzz
HumanEval/36
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """
def candidate(n: int): """Return the number of times the digit 7 appears in integers less than k or n*n or n which are divisible by 11 or 13. >>> candidate(50) 0 >>> candidate(78) 2 >>> candidate(79) 3 """
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 2 >>> fizz_buzz(78) 4 >>> fizz_buzz(79) 4 """
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible. """
def candidate(n: int): """Return the number of times the digit 7 appears in integers less than k or n*n or n which are divisible by 11 or 13. >>> candidate(50) 2 >>> candidate(78) 4 >>> candidate(79) 4 """
null
null
null
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """ ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
[{'input': '50', 'output': '0', 'relation': '=='}, {'input': '78', 'output': '2', 'relation': '=='}, {'input': '79', 'output': '3', 'relation': '=='}, {'input': '100', 'output': '3', 'relation': '=='}, {'input': '200', 'output': '6', 'relation': '=='}, {'input': '4000', 'output': '192', 'relation': '=='}, {'input': '10000', 'output': '639', 'relation': '=='}, {'input': '100000', 'output': '8026', 'relation': '=='}]
sort_even
HumanEval/37
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [1, 2, 3] >>> candidate([5, 6, 3, 4]) [3, 6, 5, 4] """
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [3, 2, 1] >>> sort_even([5, 6, 3, 4]) [6, 5, 4, 3] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l. """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [3, 2, 1] >>> candidate([5, 6, 3, 4]) [6, 5, 4, 3] """
null
null
null
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """ evens = l[::2] odds = l[1::2] evens.sort() ans = [] for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
[{'input': '[1, 2, 3]', 'output': '[1, 2, 3]', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]', 'output': '[-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]', 'relation': '=='}, {'input': '[5, 8, -12, 4, 23, 2, 3, 11, 12, -10]', 'output': '[-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]', 'relation': '=='}]
decode_cyclic
HumanEval/38
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def candidate(s: str): """ takes as input string encoded with encode_cyclic function. Returns encoded or decoded string. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string decoded with encode_cyclic function. Returns encoded string. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def candidate(s: str): """ takes as input string encoded with encode_cyclic function. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def candidate(s: str): """ takes as input string decoded with encode_cyclic function. Returns encoded or decoded string. """
null
null
null
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """ return encode_cyclic(encode_cyclic(s))
[{'input': "'axdhhixdexrvsncacbgh'", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': "'artwugrnwoshzaizfy'", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': "'iekykgcmdlldiztb'", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': "'dmrrjctlugwsbvchy'", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': "'hdciomlfulglvi'", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': "'ctufruhfxmiowruvkhyy'", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': "'bzhmikgscw'", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': "'upguomieexrhixr'", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': "'smnhelpcqbdyufevnzt'", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': "'mtmqioavrxd'", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': "'yirukyjndoafxixyfqqd'", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': "'uqjgetyflyqrtkaadplz'", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': "'bhhccspcxryyee'", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': "'rfpqtigrnxwywjgvumlo'", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': "'dhockhsrashhcwabhu'", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': "'kcbhiqpgvre'", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': "'phspzzgdnvndnnlxbov'", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': "'dbuxkmdhzgrgenoiofhc'", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': "'rdzurbcyafnhpgpmb'", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': "'ammzzijnoxzw'", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': "'wpvgjebsgrbxkbxspb'", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': "'fbqcfqtcchmvshdtbs'", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': "'nvcsqsigkwkvimhvuej'", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': "'yckotadcsgqrelich'", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': "'fojwjrzutavqjvr'", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': "'idexrdijetg'", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': "'vugqpibciniuakb'", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': "'ifuorxnrwdca'", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': "'blrresebnlzj'", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': "'gvlvdhyrln'", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': "'ehxzzfnafxkfnzzxzvh'", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': "'zwfmbdhgpljozh'", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': "'vgakimyicuqlm'", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': "'karifdibstndxzlntkqd'", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': "'giswnbqzavxrxvxg'", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': "'cvntkkdxvqjjnkv'", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': "'jrwgnemvvftxjmsr'", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': "'jgjzsnukto'", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': "'vgopzqxfzcjvvuqtk'", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': "'hvyhzjeagbh'", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': "'yctnuogwsmpwhemuw'", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': "'ydynhyzwfq'", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': "'rhboedovzrtqyoktx'", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': "'ronxpfiyouihyqyuhp'", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': "'cwohijkrkeechm'", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': "'gcwnknonrgnb'", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': "'swyysapamjylnrmx'", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': "'thzhippankvmzmvfox'", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': "'ratssmacvneu'", 'output': 'tramssvacune', 'relation': '=='}, {'input': "'bifkgmkkomiyniycp'", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': "'rbxhulyucb'", 'output': 'xrblhucyub', 'relation': '=='}, {'input': "'gahehtpved'", 'output': 'hgatehepvd', 'relation': '=='}, {'input': "'owgylittfwdxfjysadj'", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': "'mmvgcwwusdwhjvyzdtz'", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': "'blznvrcqlkaupdnluno'", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': "'fxnuiqzrtpoy'", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': "'sixhckohiosyvmtk'", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': "'kfpglpikzi'", 'output': 'pkfpglziki', 'relation': '=='}, {'input': "'irwqgahxcprnhwyuwpp'", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': "'aczhmjhjwslvrqpln'", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': "'lwkijohdigkxxrdwfy'", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': "'xpgxsiqtydgjj'", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': "'fjlwraiberjbw'", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': "'ypuasdppjkfo'", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': "'pdimpcsucv'", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': "'ezejcsdrhy'", 'output': 'eezsjchdry', 'relation': '=='}, {'input': "'tzthytmoqjsojsnt'", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': "'xdtguyivgc'", 'output': 'txdygugivc', 'relation': '=='}, {'input': "'frhfacownpjt'", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': "'jwhwojvhci'", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': "'vzsndghurieebfcjtzxs'", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': "'doojwwiqmporct'", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': "'xkniathvcs'", 'output': 'nxktiachvs', 'relation': '=='}, {'input': "'yvasbiyfyqupifonusp'", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': "'lnpkvkfkdnw'", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': "'vmjrbyckokdimqyav'", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': "'nboqlgyptoyugibejr'", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': "'pdwutahwzjrfrnach'", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': "'duopweqwjin'", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': "'hopemrtqgecxyzink'", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': "'ajijsxvpsorelkpyrr'", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': "'kgohswhymbknpwxz'", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': "'vzmepueqbkdsdqoo'", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': "'enxecuzipk'", 'output': 'xenuecpzik', 'relation': '=='}, {'input': "'muwkvcmkrwyurbpchtu'", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': "'hxjndcuwyofdjawkzbbj'", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': "'nelqnhvzsffftmc'", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': "'hpvehsuioivozoavrjf'", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': "'lsounjiowjg'", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': "'dhpslmjwsavjiams'", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': "'xbyxptyzjtzhhultigvy'", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': "'euvuudjzbbsoxeljkcxn'", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': "'ezglqrifqpzi'", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': "'kzxocdyhexvvmz'", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': "'czlaimdorvxlisvulm'", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': "'hpvtrathkuc'", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': "'wjondubbepdjhrdmoelv'", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': "'sxnenxdpunitwlboog'", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': "'dvlrulbmlgdio'", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': "'guvtauzkbhe'", 'output': 'vguutabzkhe', 'relation': '=='}]
prime_fib
HumanEval/39
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """
def candidate(n: int): """ candidate returns n-th number that is a Fibonacci number and it's also prime or composite. >>> candidate(1) 2 >>> candidate(2) 3 >>> candidate(3) 5 >>> candidate(4) 13 >>> candidate(5) 89 """
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 20 >>> prime_fib(2) 30 >>> prime_fib(3) 50 >>> prime_fib(4) 130 >>> prime_fib(5) 890 """
def candidate(n: int): """ candidate returns n-th number that is a Fibonacci number. """
def candidate(n: int): """ candidate returns n-th number that is a Fibonacci number and it's also prime or composite. >>> candidate(1) 20 >>> candidate(2) 30 >>> candidate(3) 50 >>> candidate(4) 130 >>> candidate(5) 890 """
null
null
null
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """ import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
[{'input': '1', 'output': '2', 'relation': '=='}, {'input': '2', 'output': '3', 'relation': '=='}, {'input': '3', 'output': '5', 'relation': '=='}, {'input': '4', 'output': '13', 'relation': '=='}, {'input': '5', 'output': '89', 'relation': '=='}, {'input': '6', 'output': '233', 'relation': '=='}, {'input': '7', 'output': '1597', 'relation': '=='}, {'input': '8', 'output': '28657', 'relation': '=='}, {'input': '9', 'output': '514229', 'relation': '=='}, {'input': '10', 'output': '433494437', 'relation': '=='}]
triples_sum_to_zero
HumanEval/40
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """
def candidate(l: list): """ candidate takes a list of integers as an input. it returns True if there are three elements in a list that sum to zero and meet a certain condition (such as they are distinct, they are odd, they are prime, or another condition), and False otherwise. >>> candidate([1, 3, 5, 0]) False >>> candidate([1, 3, -2, 1]) True >>> candidate([1, 2, 3, 7]) False >>> candidate([2, 4, -5, 3, 9, 7]) True >>> candidate([1]) False """
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) False >>> triples_sum_to_zero([1, 2, 3, 7]) True >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) False >>> triples_sum_to_zero([1]) True """
def candidate(l: list): """ candidate takes a list of integers as an input. it returns True if there are three distinct elements in the list, and False otherwise. """
def candidate(l: list): """ candidate takes a list of integers as an input. it returns True if there are three elements in a list that sum to zero and meet a certain condition (such as they are distinct, they are odd, they are prime, or another condition), and False otherwise. >>> candidate([1, 3, 5, 0]) True >>> candidate([1, 3, -2, 1]) False >>> candidate([1, 2, 3, 7]) True >>> candidate([2, 4, -5, 3, 9, 7]) False >>> candidate([1]) True """
null
null
null
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """ for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True return False
[{'input': '[1, 3, 5, 0]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, 5, -1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, -2, 1]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 7]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 5, 7]', 'output': 'False', 'relation': '=='}, {'input': '[2, 4, -5, 3, 9, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, 5, -100]', 'output': 'False', 'relation': '=='}, {'input': '[100, 3, 5, -100]', 'output': 'False', 'relation': '=='}]
car_race_collision
HumanEval/41
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def candidate(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def candidate(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """ return n**2
[{'input': '2', 'output': '4', 'relation': '=='}, {'input': '3', 'output': '9', 'relation': '=='}, {'input': '4', 'output': '16', 'relation': '=='}, {'input': '8', 'output': '64', 'relation': '=='}, {'input': '10', 'output': '100', 'relation': '=='}]
incr_list
HumanEval/42
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
def incr_list(l: list): """Return list with elements incremented by a number. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [3, 4, 5] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [7, 5, 7, 4, 5, 5, 11, 2, 125] """
def incr_list(l: list): """Return list with elements incremented. """
def incr_list(l: list): """Return list with elements incremented by a number. >>> incr_list([1, 2, 3]) [3, 4, 5] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [7, 5, 7, 4, 5, 5, 11, 2, 125] """
null
null
null
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """ return [(e + 1) for e in l]
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': '[4, 3, 2]', 'relation': '=='}, {'input': '[5, 2, 5, 2, 3, 3, 9, 0, 123]', 'output': '[6, 3, 6, 3, 4, 4, 10, 1, 124]', 'relation': '=='}]
pairs_sum_to_zero
HumanEval/43
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """
def candidate(l): """ candidate takes a list of integers as an input. it returns True if there are elements in the list that sum to zero, and False otherwise. >>> candidate([1, 3, 5, 0]) False >>> candidate([1, 3, -2, 1]) False >>> candidate([1, 2, 3, 7]) False >>> candidate([2, 4, -5, 3, 5, 7]) True >>> candidate([1]) False """
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) True >>> pairs_sum_to_zero([1, 3, -2, 1]) True >>> pairs_sum_to_zero([1, 2, 3, 7]) True >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) False >>> pairs_sum_to_zero([1]) True """
def candidate(l): """ candidate takes a list of integers as an input. it returns True if there are two distinct elements in the list that """
def candidate(l): """ candidate takes a list of integers as an input. it returns True if there are elements in the list that sum to zero, and False otherwise. >>> candidate([1, 3, 5, 0]) True >>> candidate([1, 3, -2, 1]) True >>> candidate([1, 2, 3, 7]) True >>> candidate([2, 4, -5, 3, 5, 7]) False >>> candidate([1]) True """
null
null
null
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """ for i, l1 in enumerate(l): for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True return False
[{'input': '[1, 3, 5, 0]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, -2, 1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 7]', 'output': 'False', 'relation': '=='}, {'input': '[2, 4, -5, 3, 5, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'False', 'relation': '=='}, {'input': '[-3, 9, -1, 3, 2, 30]', 'output': 'True', 'relation': '=='}, {'input': '[-3, 9, -1, 3, 2, 31]', 'output': 'True', 'relation': '=='}, {'input': '[-3, 9, -1, 4, 2, 30]', 'output': 'False', 'relation': '=='}, {'input': '[-3, 9, -1, 4, 2, 31]', 'output': 'False', 'relation': '=='}]
change_base
HumanEval/44
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """
def candidate(x: int, y: int): """Change numerical base of input number x or y to base. return string representation after the conversion. base numbers are less than 10. >>> candidate(8, 3) '22' >>> candidate(8, 2) '1000' >>> candidate(7, 2) '111' """
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '8' >>> change_base(8, 2) '8' >>> change_base(7, 2) '7' """
def candidate(x: int, y: int): """Change numerical base of input number x to base. """
def candidate(x: int, y: int): """Change numerical base of input number x or y to base. return string representation after the conversion. base numbers are less than 10. >>> candidate(8, 3) '8' >>> candidate(8, 2) '8' >>> candidate(7, 2) '7' """
null
null
null
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """ ret = "" while x > 0: ret = str(x % base) + ret x //= base return ret
[{'input': '8, 3', 'output': '22', 'relation': '=='}, {'input': '9, 3', 'output': '100', 'relation': '=='}, {'input': '234, 2', 'output': '11101010', 'relation': '=='}, {'input': '16, 2', 'output': '10000', 'relation': '=='}, {'input': '8, 2', 'output': '1000', 'relation': '=='}, {'input': '7, 2', 'output': '111', 'relation': '=='}, {'input': '2, 3', 'output': '2', 'relation': '=='}, {'input': '3, 4', 'output': '3', 'relation': '=='}, {'input': '4, 5', 'output': '4', 'relation': '=='}, {'input': '5, 6', 'output': '5', 'relation': '=='}, {'input': '6, 7', 'output': '6', 'relation': '=='}, {'input': '7, 8', 'output': '7', 'relation': '=='}]
triangle_area
HumanEval/45
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """
def candidate(x, y): """Given length of a side and high return perimeter or area for a triangle. >>> candidate(5, 3) 7.5 """
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 15 """
def triangle_area(a, h): """Given length of a side and high, return. """
def candidate(x, y): """Given length of a side and high return perimeter or area for a triangle. >>> candidate(5, 3) 15 """
null
null
null
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """ return a * h / 2.0
[{'input': '5, 3', 'output': '7.5', 'relation': '=='}, {'input': '2, 2', 'output': '2.0', 'relation': '=='}, {'input': '10, 8', 'output': '40.0', 'relation': '=='}]
fib4
HumanEval/46
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) +/- fib4(n-2) +/- fib4(n-3) +/- fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 2 >>> fib4(6) 4 >>> fib4(7) 6 """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 0 >>> fib4(6) 0 >>> fib4(7) 2 """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) +/- fib4(n-2) +/- fib4(n-3) +/- fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 2 >>> fib4(6) 4 >>> fib4(7) 6 """
null
null
null
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """ results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
[{'input': '5', 'output': '4', 'relation': '=='}, {'input': '8', 'output': '28', 'relation': '=='}, {'input': '10', 'output': '104', 'relation': '=='}, {'input': '12', 'output': '386', 'relation': '=='}]
median
HumanEval/47
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """
def candidate(l: list): """Return max or median of elements in the list l. >>> candidate([3, 1, 2, 4, 5]) 3 >>> candidate([-10, 4, 6, 1000, 10, 20]) 15.0 """
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 5 >>> median([-10, 4, 6, 1000, 10, 20]) 1000 """
def candidate(l: list): """Return of elements in the list l. """
def candidate(l: list): """Return max or median of elements in the list l. >>> candidate([3, 1, 2, 4, 5]) 5 >>> candidate([-10, 4, 6, 1000, 10, 20]) 1000 """
null
null
null
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """ l = sorted(l) if len(l) % 2 == 1: return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
[{'input': '[3, 1, 2, 4, 5]', 'output': '3', 'relation': '=='}, {'input': '[-10, 4, 6, 1000, 10, 20]', 'output': '8.0', 'relation': '=='}, {'input': '[5]', 'output': '5', 'relation': '=='}, {'input': '[6, 5]', 'output': '5.5', 'relation': '=='}, {'input': '[8, 1, 3, 9, 9, 2, 7]', 'output': '7 ', 'relation': '=='}]
is_palindrome
HumanEval/48
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """
def candidate(text: str): """ Checks if given string is an Isogram/Palindrome or not >>> candidate('') True >>> candidate('aba') True >>> candidate('aaaaa') True >>> candidate('zbcd') False """
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') False >>> is_palindrome('aba') False >>> is_palindrome('aaaaa') False >>> is_palindrome('zbcd') True """
def candidate(text: str): """ Checks if given string is a """
def candidate(text: str): """ Checks if given string is an Isogram/Palindrome or not >>> candidate('') False >>> candidate('aba') False >>> candidate('aaaaa') False >>> candidate('zbcd') True """
null
null
null
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """ for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: return False return True
[{'input': "''", 'output': 'True', 'relation': '=='}, {'input': "'aba'", 'output': 'True', 'relation': '=='}, {'input': "'aaaaa'", 'output': 'True', 'relation': '=='}, {'input': "'zbcd'", 'output': 'False', 'relation': '=='}, {'input': "'xywyx'", 'output': 'True', 'relation': '=='}, {'input': "'xywyz'", 'output': 'False', 'relation': '=='}, {'input': "'xywzx'", 'output': 'False', 'relation': '=='}]
modp
HumanEval/49
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """
def candidate(x: int, y: int): """Return 2^n modulo p (be aware of numerics). >>> candidate(3, 5) 3 >>> candidate(1101, 101) 2 >>> candidate(0, 101) 1 >>> candidate(3, 11) 8 >>> candidate(100, 101) 1 """
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 5 >>> modp(1101, 101) 101 >>> modp(0, 101) 101 >>> modp(3, 11) 11 >>> modp(100, 101) 101 """
def modp(n: int, p: int): """Return 2^n modulo. """
def candidate(x: int, y: int): """Return 2^n modulo p (be aware of numerics). >>> candidate(3, 5) 5 >>> candidate(1101, 101) 101 >>> candidate(0, 101) 101 >>> candidate(3, 11) 11 >>> candidate(100, 101) 101 """
def candidate(x: int, y: int): """Return 2^n modulo. """
null
null
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """ ret = 1 for i in range(n): ret = (2 * ret) % p return ret
[{'input': '3, 5', 'output': '3', 'relation': '=='}, {'input': '1101, 101', 'output': '2', 'relation': '=='}, {'input': '0, 101', 'output': '1', 'relation': '=='}, {'input': '3, 11', 'output': '8', 'relation': '=='}, {'input': '100, 101', 'output': '1', 'relation': '=='}, {'input': '30, 5', 'output': '4', 'relation': '=='}, {'input': '31, 5', 'output': '3', 'relation': '=='}]
decode_shift
HumanEval/50
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function. Returns decoded or encoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function which shifts every character by 3. Returns decoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string encoded with encode_shift function. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function which shifts every character by 3. Returns decoded or encoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string encoded with encode_shift function which shifts every character by 3. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function which shifts every character by 3. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """ return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
[{'input': "'ifcnmmjciacwhxsgfhlm'", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': "'yfwlbzbwsmtxnefdek'", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': "'pnjldpihriqqyneg'", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': "'wirhwozyqxlbhgamd'", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': "'hmirntzqkqqlan'", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': "'zhyzkwcmktrnzbwmapdd'", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': "'mgeprnhlxb'", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': "'lzurztjnjmcwwnc'", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': "'sxrqmjvuhdgijzkeasy'", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': "'rrytvnwfaci'", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': "'wdndzpiosktfccnvdkvi'", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': "'ozvyljqdkwdvfypufiqe'", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': "'mgmxhhcuhdwdjj'", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': "'uwknvyslwdcblborazqt'", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': "'timmhpfxwmxmfhbzgm'", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': "'gphvmnaulwj'", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': "'xumeuesliiasqsstcga'", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': "'zigrcpeimllwtjskntmh'", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': "'ewigzwfhdmksuulrg'", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': "'rfrneetosbce'", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': "'abujlolgxcwgcpggxu'", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': "'vkgvhkhyhamrixmxyg'", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': "'hsaxxvpnlabpmnrjazo'", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': "'pdhftyxihwlvnjqhm'", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': "'oktwboyezvfawoa'", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': "'jniicwjnoyl'", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': "'laznvunghzsngfp'", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': "'znkctwbswfih'", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': "'wgqxwjsjgoqe'", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': "'qlamaiqdws'", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': "'cjmkeeksfkcpeseacem'", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': "'kebirgumltqoem'", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': "'falrpnhdnqzvr'", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': "'wpfinkxngiysqcepsyvi'", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': "'xlngbsfvewacccal'", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': "'shapypaicovoasp'", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': "'bowjlsarackyxorw'", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': "'oolsexyzpt'", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': "'talvueeckahovazyp'", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': "'dmaomeljfgm'", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': "'ydhtszxlbbrurmjzb'", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': "'ddidsmkebv'", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': "'gwmitjetavwypdtyc'", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': "'swtkcutndmznddvuzm'", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': "'thbomnppwhjjmr'", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': "'blhsspwtsgls'", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': "'dxbfdxrufqodrswc'", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': "'eymumnsufrpaaerckt'", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': "'ywfrxxafhzsj'", 'output': 'tramssvacune', 'relation': '=='}, {'input': "'kgnrpltppdrndsnhu'", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': "'cwgqmzhdzg'", 'output': 'xrblhucyub', 'relation': '=='}, {'input': "'mlfyjmjuai'", 'output': 'hgatehepvd', 'relation': '=='}, {'input': "'ltbndqkyycbidkoixfo'", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': "'arrblhxbzmibdoayeie'", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': "'egqwsaqhvzpfsuisqzt'", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': "'skcvznyewdut'", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': "'cxnpmhntmdtxyarp'", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': "'upkulqenpn'", 'output': 'pkfpglziki', 'relation': '=='}, {'input': "'bnwfvlhmcsuwdmbuzbu'", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': "'efhomrbmoaxquwvqs'", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': "'pqbtnonmiclpicwdbk'", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': "'lcuncxdvyoilo'", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': "'qkofbwjnggwob'", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': "'zduifxouutpk'", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': "'nuihruhxza'", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': "'jjexohmiwd'", 'output': 'eezsjchdry', 'relation': '=='}, {'input': "'yyeymdvrttoxsoxy'", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': "'ycidlzlnah'", 'output': 'txdygugivc', 'relation': '=='}, {'input': "'mkwhkfstbyuo'", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': "'mobobthamn'", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': "'xaelsiwmzjnjhgkeoycx'", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': "'titbobrnvwuthy'", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': "'scpynfhmax'", 'output': 'nxktiachvs', 'relation': '=='}, {'input': "'fdanxgddkuvztnkxszu'", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': "'uqsppaikpsb'", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': "'oardwgthpnpidrvfa'", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': "'tsglvqyduztdglnwjo'", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': "'buifzyembkowfwshm'", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': "'tizjubovbns'", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': "'umtwjrlyvcjhndesp'", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': "'nfocoxxaujtwuqpwdw'", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': "'tplbmxrmdsgpcube'", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': "'raezjugjvxpitivt'", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': "'cjszjhuenp'", 'output': 'xenuecpzik', 'relation': '=='}, {'input': "'brzhpawrpzbduwgyhmz'", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': "'omchsidzbitkbofgpego'", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': "'qsjmvsxaekkkhyr'", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': "'amuxjmtzntnafetoawk'", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': "'tqxozsbntol'", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': "'uimrxqxobofarnfx'", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': "'dcgycuodemyeqmzlynad'", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': "'ajzizzgoetgxqcjhopcs'", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': "'ljewqvvnknue'", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': "'cpeithjdmacare'", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': "'qherfnwitqacanxrzq'", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': "'amufywpymzh'", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': "'tbozsijggouiimwjrtqa'", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': "'sxccjsziuysngbqltt'", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': "'qiaqwzqgrnlit'", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': "'alzzyfgepmj'", 'output': 'vguutabzkhe', 'relation': '=='}]
remove_vowels
HumanEval/51
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """
def candidate(text): """ candidate is a function that takes string and returns string with or without vowels. >>> candidate('') '' >>> candidate("abcdef\nghijklm") 'bcdf\nghjklm' >>> candidate('abcdef') 'bcdf' >>> candidate('aaaaa') 'aaaaa' >>> candidate('aaBAA') 'B' >>> candidate('zbcd') 'zbcd' """
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'aei' >>> remove_vowels('abcdef') 'ae' >>> remove_vowels('aaaaa') 'aaaaa' >>> remove_vowels('aaBAA') 'aaAA' >>> remove_vowels('zbcd') '' """
def candidate(text): """ candidate is a function that takes string and returns string without. """
def candidate(text): """ candidate is a function that takes string and returns string with or without vowels. >>> candidate('') '' >>> candidate("abcdef\nghijklm") 'aei' >>> candidate('abcdef') 'ae' >>> candidate('aaaaa') 'aaaaa' >>> candidate('aaBAA') 'aaAA' >>> candidate('zbcd') '' """
null
null
null
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """ return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
[{'input': "''", 'output': '', 'relation': '=='}, {'input': '"abcdef\\nghijklm"', 'output': 'bcdf\nghjklm', 'relation': '=='}, {'input': "'fedcba'", 'output': 'fdcb', 'relation': '=='}, {'input': "'eeeee'", 'output': '', 'relation': '=='}, {'input': "'acBAA'", 'output': 'cB', 'relation': '=='}, {'input': "'EcBOO'", 'output': 'cB', 'relation': '=='}, {'input': "'ybcd'", 'output': 'ybcd', 'relation': '=='}]
below_threshold
HumanEval/52
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """
def candidate(l: list, t: int): """Return True if numbers in the list l are around threshold t. >>> candidate([1, 2, 4, 10], 100) True >>> candidate([1, 20, 4, 10], 5) False """
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) False >>> below_threshold([1, 20, 4, 10], 5) True """
def candidate(l: list, t: int): """Return True if all numbers in the list l are below. """
def candidate(l: list, t: int): """Return True if numbers in the list l are around threshold t. >>> candidate([1, 2, 4, 10], 100) False >>> candidate([1, 20, 4, 10], 5) True """
null
null
null
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """ for e in l: if e >= t: return False return True
[{'input': '[1, 2, 4, 10], 100', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 5', 'output': 'False', 'relation': '=='}, {'input': '[1, 20, 4, 10], 21', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 22', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 11', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 10', 'output': 'False', 'relation': '=='}]
add
HumanEval/53
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """
def candidate(x: int, y: int): """Add or multiply or subtract two numbers x and y >>> candidate(2, 3) 5 >>> candidate(5, 7) 12 """
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 1 >>> add(5, 7) 2 """
def candidate(x: int, y: int): """ two numbers x and y """
def candidate(x: int, y: int): """Add or multiply or subtract two numbers x and y >>> candidate(2, 3) 1 >>> candidate(5, 7) 2 """
null
null
null
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """ return x + y
[{'input': '0, 1', 'output': '1', 'relation': '=='}, {'input': '1, 0', 'output': '1', 'relation': '=='}, {'input': '2, 3', 'output': '5', 'relation': '=='}, {'input': '5, 7', 'output': '12', 'relation': '=='}, {'input': '7, 5', 'output': '12', 'relation': '=='}, {'input': '654, 114', 'output': '768', 'relation': '=='}, {'input': '25, 759', 'output': '784', 'relation': '=='}, {'input': '281, 250', 'output': '531', 'relation': '=='}, {'input': '228, 142', 'output': '370', 'relation': '=='}, {'input': '754, 104', 'output': '858', 'relation': '=='}, {'input': '692, 758', 'output': '1450', 'relation': '=='}, {'input': '913, 558', 'output': '1471', 'relation': '=='}, {'input': '89, 604', 'output': '693', 'relation': '=='}, {'input': '432, 32', 'output': '464', 'relation': '=='}, {'input': '30, 95', 'output': '125', 'relation': '=='}, {'input': '223, 238', 'output': '461', 'relation': '=='}, {'input': '517, 616', 'output': '1133', 'relation': '=='}, {'input': '27, 574', 'output': '601', 'relation': '=='}, {'input': '203, 733', 'output': '936', 'relation': '=='}, {'input': '665, 718', 'output': '1383', 'relation': '=='}, {'input': '558, 429', 'output': '987', 'relation': '=='}, {'input': '225, 459', 'output': '684', 'relation': '=='}, {'input': '603, 284', 'output': '887', 'relation': '=='}, {'input': '828, 890', 'output': '1718', 'relation': '=='}, {'input': '6, 777', 'output': '783', 'relation': '=='}, {'input': '825, 163', 'output': '988', 'relation': '=='}, {'input': '714, 432', 'output': '1146', 'relation': '=='}, {'input': '348, 284', 'output': '632', 'relation': '=='}, {'input': '159, 220', 'output': '379', 'relation': '=='}, {'input': '980, 781', 'output': '1761', 'relation': '=='}, {'input': '344, 104', 'output': '448', 'relation': '=='}, {'input': '94, 389', 'output': '483', 'relation': '=='}, {'input': '99, 367', 'output': '466', 'relation': '=='}, {'input': '867, 352', 'output': '1219', 'relation': '=='}, {'input': '618, 270', 'output': '888', 'relation': '=='}, {'input': '826, 44', 'output': '870', 'relation': '=='}, {'input': '747, 470', 'output': '1217', 'relation': '=='}, {'input': '549, 127', 'output': '676', 'relation': '=='}, {'input': '996, 944', 'output': '1940', 'relation': '=='}, {'input': '387, 80', 'output': '467', 'relation': '=='}, {'input': '565, 300', 'output': '865', 'relation': '=='}, {'input': '849, 643', 'output': '1492', 'relation': '=='}, {'input': '633, 906', 'output': '1539', 'relation': '=='}, {'input': '882, 370', 'output': '1252', 'relation': '=='}, {'input': '591, 196', 'output': '787', 'relation': '=='}, {'input': '721, 71', 'output': '792', 'relation': '=='}, {'input': '46, 677', 'output': '723', 'relation': '=='}, {'input': '233, 791', 'output': '1024', 'relation': '=='}, {'input': '296, 81', 'output': '377', 'relation': '=='}, {'input': '875, 238', 'output': '1113', 'relation': '=='}, {'input': '887, 103', 'output': '990', 'relation': '=='}, {'input': '389, 284', 'output': '673', 'relation': '=='}, {'input': '464, 650', 'output': '1114', 'relation': '=='}, {'input': '854, 373', 'output': '1227', 'relation': '=='}, {'input': '166, 379', 'output': '545', 'relation': '=='}, {'input': '363, 214', 'output': '577', 'relation': '=='}, {'input': '686, 273', 'output': '959', 'relation': '=='}, {'input': '718, 959', 'output': '1677', 'relation': '=='}, {'input': '699, 663', 'output': '1362', 'relation': '=='}, {'input': '73, 623', 'output': '696', 'relation': '=='}, {'input': '650, 175', 'output': '825', 'relation': '=='}, {'input': '546, 746', 'output': '1292', 'relation': '=='}, {'input': '250, 167', 'output': '417', 'relation': '=='}, {'input': '473, 388', 'output': '861', 'relation': '=='}, {'input': '276, 947', 'output': '1223', 'relation': '=='}, {'input': '655, 704', 'output': '1359', 'relation': '=='}, {'input': '570, 224', 'output': '794', 'relation': '=='}, {'input': '701, 332', 'output': '1033', 'relation': '=='}, {'input': '863, 786', 'output': '1649', 'relation': '=='}, {'input': '794, 57', 'output': '851', 'relation': '=='}, {'input': '234, 841', 'output': '1075', 'relation': '=='}, {'input': '32, 824', 'output': '856', 'relation': '=='}, {'input': '323, 410', 'output': '733', 'relation': '=='}, {'input': '274, 67', 'output': '341', 'relation': '=='}, {'input': '216, 935', 'output': '1151', 'relation': '=='}, {'input': '965, 580', 'output': '1545', 'relation': '=='}, {'input': '897, 735', 'output': '1632', 'relation': '=='}, {'input': '322, 217', 'output': '539', 'relation': '=='}, {'input': '671, 511', 'output': '1182', 'relation': '=='}, {'input': '405, 905', 'output': '1310', 'relation': '=='}, {'input': '936, 658', 'output': '1594', 'relation': '=='}, {'input': '469, 146', 'output': '615', 'relation': '=='}, {'input': '271, 142', 'output': '413', 'relation': '=='}, {'input': '252, 762', 'output': '1014', 'relation': '=='}, {'input': '574, 551', 'output': '1125', 'relation': '=='}, {'input': '269, 764', 'output': '1033', 'relation': '=='}, {'input': '598, 438', 'output': '1036', 'relation': '=='}, {'input': '919, 597', 'output': '1516', 'relation': '=='}, {'input': '408, 370', 'output': '778', 'relation': '=='}, {'input': '224, 141', 'output': '365', 'relation': '=='}, {'input': '521, 505', 'output': '1026', 'relation': '=='}, {'input': '93, 773', 'output': '866', 'relation': '=='}, {'input': '48, 881', 'output': '929', 'relation': '=='}, {'input': '112, 156', 'output': '268', 'relation': '=='}, {'input': '642, 163', 'output': '805', 'relation': '=='}, {'input': '811, 696', 'output': '1507', 'relation': '=='}, {'input': '432, 610', 'output': '1042', 'relation': '=='}, {'input': '65, 394', 'output': '459', 'relation': '=='}, {'input': '390, 610', 'output': '1000', 'relation': '=='}, {'input': '479, 541', 'output': '1020', 'relation': '=='}, {'input': '257, 994', 'output': '1251', 'relation': '=='}, {'input': '566, 881', 'output': '1447', 'relation': '=='}, {'input': '965, 11', 'output': '976', 'relation': '=='}, {'input': '696, 738', 'output': '1434', 'relation': '=='}, {'input': '117, 698', 'output': '815', 'relation': '=='}]
same_chars
HumanEval/54
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def candidate(s0: str, s1: str): """ Check if two words satisfy a specific condition (such as having the same length, having the same characters, or meeting another specific condition). >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') False >>> same_chars('abcd', 'dddddddabc') False >>> same_chars('dddddddabc', 'abcd') False >>> same_chars('eabcd', 'dddddddabc') True >>> same_chars('abcd', 'dddddddabce') True >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') True """
def candidate(s0: str, s1: str): """ >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def candidate(s0: str, s1: str): """ Check if two words satisfy a specific condition (such as having the same length, having the same characters, or meeting another specific condition). >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') False >>> candidate('abcd', 'dddddddabc') False >>> candidate('dddddddabc', 'abcd') False >>> candidate('eabcd', 'dddddddabc') True >>> candidate('abcd', 'dddddddabce') True >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') True """
null
def candidate(s0: str, s1: str): """ >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """
null
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """ return set(s0) == set(s1)
[{'input': "'eabcdzzzz', 'dddzzzzzzzddeddabc'", 'output': 'True', 'relation': '=='}, {'input': "'abcd', 'dddddddabc'", 'output': 'True', 'relation': '=='}, {'input': "'dddddddabc', 'abcd'", 'output': 'True', 'relation': '=='}, {'input': "'eabcd', 'dddddddabc'", 'output': 'False', 'relation': '=='}, {'input': "'abcd', 'dddddddabcf'", 'output': 'False', 'relation': '=='}, {'input': "'eabcdzzzz', 'dddzzzzzzzddddabc'", 'output': 'False', 'relation': '=='}, {'input': "'aabb', 'aaccc'", 'output': 'False', 'relation': '=='}]
fib
HumanEval/55
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """
def candidate(n: int): """Return a number that satisfies a specific condition (such as being n-th Prime number, being n-th Fibonacci number, or meeting another specific condition). >>> candidate(10) 55 >>> candidate(1) 1 >>> candidate(8) 21 """
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 550 >>> fib(1) 10 >>> fib(8) 210 """
def candidate(n: int): """ >>> candidate(10) 55 >>> candidate(1) 1 >>> candidate(8) 21 """
def candidate(n: int): """Return a number that satisfies a specific condition (such as being n-th Prime number, being n-th Fibonacci number, or meeting another specific condition). >>> candidate(10) 550 >>> candidate(1) 10 >>> candidate(8) 210 """
null
def candidate(n: int): """ >>> candidate(10) 550 >>> candidate(1) 10 >>> candidate(8) 210 """
null
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """ if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2)
[{'input': '10', 'output': '55', 'relation': '=='}, {'input': '1', 'output': '1', 'relation': '=='}, {'input': '8', 'output': '21', 'relation': '=='}, {'input': '11', 'output': '89', 'relation': '=='}, {'input': '12', 'output': '144', 'relation': '=='}]

HumanEvalComm: Benchmarking the Communication Skills of Code Generation for LLMs and LLM Agent

πŸ“„ Paper β€’ πŸ’» GitHub Repository β€’ πŸ€— Dataset Viewer

Dataset Description

HumanEvalComm is a benchmark dataset for evaluating the communication skills of Large Language Models (LLMs) in code generation tasks. It is built upon the widely used HumanEval benchmark. HumanEvalComm contains 762 modified problem descriptions based on the 164 problems in the HumanEval dataset. The modifications are created by applying one or a combination of the aforementioned clarification types. Each modified problem description is manually verified to ensure it triggers clarifying questions. The goal of HumanEvalComm is to evaluate the ability of LLMs to ask clarifying questions when faced with incomplete, inconsistent, or ambiguous requirements in coding problems:

  • Ambiguity: Statements in the problem descriptions are modified to have multiple interpretations. For example, changing "sort the array descendingly" to "sort the array (descendingly or ascendingly)".
  • Inconsistency: Modifications are made to create contradictions between the problem description and examples. For instance, changing the output of test examples to contradict the provided textual description.
  • Incompleteness: Parts of the problem description are removed to make it incomplete, requiring the model to ask questions to recover the missing content.
Clarification Category Ambiguity Inconsistency Incompleteness Count
1a βœ”οΈ 164
1c βœ”οΈ 164
1p βœ”οΈ 164
2ac βœ”οΈ βœ”οΈ 162
2cp βœ”οΈ βœ”οΈ 34
2ap βœ”οΈ βœ”οΈ 74
Total -- -- -- 762
*Note*: The smaller size for 2ac (same applies for 2cp and 2ap) is because we directly applied a combination of two clarification types from 1a, 1c strictly, and we create a new modified problem as 2ac only if applying a combination of 1a and 1c leads to a new problem description that is different from either 1a or 1c. 2cp and 2ap have smaller counts because the ambiguous (a) or inconsistent (c) parts are removed in (p) for a large number of problems.

Dataset Structure

The fields are the same as the fields in HumanEval benchmark, except the following fields:

  • prompt1a: Coding problem description with 1a clarification type (Ambiguity)
  • prompt1c: Coding problem description with 1a clarification type (Inconsistency)
  • prompt1p: Coding problem description with 1a clarification type (Incompleteness)
  • prompt2ac: Coding problem description with 1a clarification type (Ambiguity and Inconsistency)
  • prompt2cp: Coding problem description with 1a clarification type (Inconsistency and Incompleteness)
  • prompt2ap: Coding problem description with 1a clarification type (Ambiguity and Incompleteness)

Prompt Format

Each task is formatted with a clear instruction and provided function signature to guide the model in generating the responses. There are two rounds where the model is prompted with input:

  1. Round one:
You are an expert software developer who writes high quality code. With below information, please either generate Python3 code (Respond directly with code only with markdown), or ask clarifying questions: 
{code_problem} (field prompt{1a,1c,1p,2ac,2cp,2ap})
  1. Round two:
{code_problem}
{clarifying questions}
{answers to clarifying questions}
Given above conversations, generate Python code directly (Markdown) to solve the coding problem:

Usage

You can easily load the dataset using the Hugging Face datasets library. See more details of the usage in our github repo.

from datasets import load_dataset
humanevalcomm = load_dataset("jie-jw-wu/HumanEvalComm", split="test")

Citation

@article{wu2024benchmarking,
  title={Benchmarking the Communication Competence of Code Generation for LLMs and LLM Agent},
  author={Wu, Jie JW and Fard, Fatemeh H},
  journal={arXiv preprint arXiv:2406.00215},
  year={2024}
}
Downloads last month
49