entry_point
stringlengths 1
30
| name
stringlengths 11
13
| prompt
stringlengths 115
1.36k
| prompt1a
stringlengths 143
1.34k
| prompt1c
stringlengths 114
1.36k
β | prompt1p
stringlengths 62
695
| prompt2ac
stringlengths 142
1.34k
β | prompt2ap
stringlengths 67
629
β | prompt2cp
stringlengths 82
525
β | prompt3acp
stringclasses 12
values | solution
stringlengths 132
1.99k
| test_case
stringlengths 96
19.6k
|
---|---|---|---|---|---|---|---|---|---|---|---|
make_a_pile | HumanEval/100 |
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""
|
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of 2*n or n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""
|
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 1, -1]
"""
|
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
"""
|
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of 2*n or n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 1, -1]
"""
|
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of 2*n or n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
"""
| null | null |
def make_a_pile(n):
"""
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a list, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
[3, 5, 7]
"""
return [n + 2*i for i in range(n)]
| [{'input': '3', 'output': '[3, 5, 7]', 'relation': '=='}, {'input': '4', 'output': '[4, 6, 8, 10]', 'relation': '=='}, {'input': '5', 'output': '[5, 7, 9, 11, 13]', 'relation': '=='}, {'input': '6', 'output': '[6, 8, 10, 12, 14, 16]', 'relation': '=='}, {'input': '8', 'output': '[8, 10, 12, 14, 16, 18, 20, 22]', 'relation': '=='}] |
words_string | HumanEval/101 |
def words_string(s):
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
"""
|
def words_string(s):
"""
You will be given a string of words separated by letters or commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
"""
|
def words_string(s):
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["John"]
words_string("One, two, three, four, five, six") == ["six"]
"""
|
def words_string(s):
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words.
"""
|
def words_string(s):
"""
You will be given a string of words separated by letters or commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["John"]
words_string("One, two, three, four, five, six") == ["six"]
"""
|
def words_string(s):
"""
You will be given a string of words separated by letters or commas or spaces. Your task is
to split the string into words.
"""
| null | null |
def words_string(s):
"""
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return an array of the words.
For example:
words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"]
words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"]
"""
if not s:
return []
s_list = []
for letter in s:
if letter == ',':
s_list.append(' ')
else:
s_list.append(letter)
s_list = "".join(s_list)
return s_list.split()
| [{'input': '"Hi, my name is John"', 'output': "['Hi', 'my', 'name', 'is', 'John']", 'relation': '=='}, {'input': '"One, two, three, four, five, six"', 'output': "['One', 'two', 'three', 'four', 'five', 'six']", 'relation': '=='}, {'input': '"Hi, my name"', 'output': "['Hi', 'my', 'name']", 'relation': '=='}, {'input': '"One,, two, three, four, five, six,"', 'output': "['One', 'two', 'three', 'four', 'five', 'six']", 'relation': '=='}, {'input': '""', 'output': '[]', 'relation': '=='}, {'input': '"ahmed , gamal"', 'output': "['ahmed', 'gamal']", 'relation': '=='}] |
choose_num | HumanEval/102 |
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""
|
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest odd or even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""
|
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 12
choose_num(13, 12) = 13
"""
|
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest even integer number
"""
|
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest odd or even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 12
choose_num(13, 12) = 13
"""
|
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest odd or even integer number
"""
| null | null |
def choose_num(x, y):
"""This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
"""
if x > y:
return -1
if y % 2 == 0:
return y
if x == y:
return -1
return y - 1
| [{'input': '12, 15', 'output': '14', 'relation': '=='}, {'input': '13, 12', 'output': '-1', 'relation': '=='}, {'input': '33, 12354', 'output': '12354', 'relation': '=='}, {'input': '5234, 5233', 'output': '-1', 'relation': '=='}, {'input': '6, 29', 'output': '28', 'relation': '=='}, {'input': '27, 10', 'output': '-1', 'relation': '=='}, {'input': '7, 7', 'output': '-1', 'relation': '=='}, {'input': '546, 546', 'output': '546', 'relation': '=='}] |
rounded_avg | HumanEval/103 |
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b11"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1111"
rounded_avg(20, 33) => "0b11010"
"""
|
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
max or average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b11"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1111"
rounded_avg(20, 33) => "0b11010"
"""
|
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b1"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1010"
rounded_avg(20, 33) => "0b10100"
"""
|
def candidate(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
"""
|
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
max or average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b1"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1010"
rounded_avg(20, 33) => "0b10100"
"""
|
def candidate(n, m):
"""You are given two positive integers n and m, and your task is to compute the
max or average of the integers from n through m (including n and m).
"""
| null | null |
def rounded_avg(n, m):
"""You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer and convert that to binary.
If n is greater than m, return -1.
Example:
rounded_avg(1, 5) => "0b11"
rounded_avg(7, 5) => -1
rounded_avg(10, 20) => "0b1111"
rounded_avg(20, 33) => "0b11010"
"""
if m < n:
return -1
summation = 0
for i in range(n, m+1):
summation += i
return bin(round(summation/(m - n + 1)))
| [{'input': '1, 5', 'output': '0b11', 'relation': '=='}, {'input': '7, 13', 'output': '0b1010', 'relation': '=='}, {'input': '964,977', 'output': '0b1111001010', 'relation': '=='}, {'input': '996,997', 'output': '0b1111100100', 'relation': '=='}, {'input': '560,851', 'output': '0b1011000010', 'relation': '=='}, {'input': '185,546', 'output': '0b101101110', 'relation': '=='}, {'input': '362,496', 'output': '0b110101101', 'relation': '=='}, {'input': '350,902', 'output': '0b1001110010', 'relation': '=='}, {'input': '197,233', 'output': '0b11010111', 'relation': '=='}, {'input': '7, 5', 'output': '-1', 'relation': '=='}, {'input': '5, 1', 'output': '-1', 'relation': '=='}, {'input': '5, 5', 'output': '0b101', 'relation': '=='}] |
unique_digits | HumanEval/104 |
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""
|
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any odd or even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""
|
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1422]
>>> unique_digits([152, 323, 1422, 10])
[323, 10]
"""
|
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any.
"""
|
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any odd or even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1422]
>>> unique_digits([152, 323, 1422, 10])
[323, 10]
"""
| null | null | null |
def unique_digits(x):
"""Given a list of positive integers x. return a sorted list of all
elements that hasn't any even digit.
Note: Returned list should be sorted in increasing order.
For example:
>>> unique_digits([15, 33, 1422, 1])
[1, 15, 33]
>>> unique_digits([152, 323, 1422, 10])
[]
"""
odd_digit_elements = []
for i in x:
if all (int(c) % 2 == 1 for c in str(i)):
odd_digit_elements.append(i)
return sorted(odd_digit_elements)
| [{'input': '[15, 33, 1422, 1]', 'output': '[1, 15, 33]', 'relation': '=='}, {'input': '[152, 323, 1422, 10]', 'output': '[]', 'relation': '=='}, {'input': '[12345, 2033, 111, 151]', 'output': '[111, 151]', 'relation': '=='}, {'input': '[135, 103, 31]', 'output': '[31, 135]', 'relation': '=='}] |
by_length | HumanEval/105 |
def by_length(arr):
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['One']
"""
|
def by_length(arr):
"""
Given an array of integers, sort the integers descendingly or ascendingly that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['One']
"""
|
def by_length(arr):
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['Minus One']
"""
|
def by_length(arr):
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"""
|
def by_length(arr):
"""
Given an array of integers, sort the integers descendingly or ascendingly that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['Minus One']
"""
|
def by_length(arr):
"""
Given an array of integers, sort the integers descendingly or ascendingly that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"""
| null | null |
def by_length(arr):
"""
Given an array of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting array, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = [2, 1, 1, 4, 5, 8, 2, 3]
-> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8]
-> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1]
return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"]
If the array is empty, return an empty array:
arr = []
return []
If the array has any strange number ignore it:
arr = [1, -1 , 55]
-> sort arr -> [-1, 1, 55]
-> reverse arr -> [55, 1, -1]
return = ['One']
"""
dic = {
1: "One",
2: "Two",
3: "Three",
4: "Four",
5: "Five",
6: "Six",
7: "Seven",
8: "Eight",
9: "Nine",
}
sorted_arr = sorted(arr, reverse=True)
new_arr = []
for var in sorted_arr:
try:
new_arr.append(dic[var])
except:
pass
return new_arr
| [{'input': '[2, 1, 1, 4, 5, 8, 2, 3]', 'output': "['Eight', 'Five', 'Four', 'Three', 'Two', 'Two', 'One', 'One']", 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, -1 , 55]', 'output': "['One']", 'relation': '=='}, {'input': '[1, -1, 3, 2]', 'output': "['Three', 'Two', 'One']", 'relation': '=='}, {'input': '[9, 4, 8]', 'output': "['Nine', 'Eight', 'Four']", 'relation': '=='}] |
f | HumanEval/106 |
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
"""
|
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is odd or even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
"""
|
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [15, 24, 6, 2, 1]
"""
|
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
"""
|
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is odd or even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [15, 24, 6, 2, 1]
"""
|
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is odd or even
"""
| null | null |
def f(n):
""" Implement the function f that takes n as a parameter,
and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == [1, 2, 6, 24, 15]
"""
ret = []
for i in range(1,n+1):
if i%2 == 0:
x = 1
for j in range(1,i+1): x *= j
ret += [x]
else:
x = 0
for j in range(1,i+1): x += j
ret += [x]
return ret
| [{'input': '5', 'output': '[1, 2, 6, 24, 15]', 'relation': '=='}, {'input': '7', 'output': '[1, 2, 6, 24, 15, 720, 28]', 'relation': '=='}, {'input': '1', 'output': '[1]', 'relation': '=='}, {'input': '3', 'output': '[1, 2, 6]', 'relation': '=='}] |
even_odd_palindrome | HumanEval/107 |
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
|
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, 2*n) or range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
|
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (2, 1)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (6, 4)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
|
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range, inclusive.
"""
|
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, 2*n) or range(1, n), inclusive.
Example 1:
Input: 3
Output: (2, 1)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (6, 4)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
| null | null | null |
def even_odd_palindrome(n):
"""
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
"""
def is_palindrome(n):
return str(n) == str(n)[::-1]
even_palindrome_count = 0
odd_palindrome_count = 0
for i in range(1, n+1):
if i%2 == 1 and is_palindrome(i):
odd_palindrome_count += 1
elif i%2 == 0 and is_palindrome(i):
even_palindrome_count += 1
return (even_palindrome_count, odd_palindrome_count)
| [{'input': '123', 'output': '(8, 13)', 'relation': '=='}, {'input': '12', 'output': '(4, 6)', 'relation': '=='}, {'input': '3', 'output': '(1, 2)', 'relation': '=='}, {'input': '63', 'output': '(6, 8)', 'relation': '=='}, {'input': '25', 'output': '(5, 6)', 'relation': '=='}, {'input': '19', 'output': '(4, 6)', 'relation': '=='}, {'input': '9', 'output': '(4, 5)', 'relation': '=='}, {'input': '1', 'output': '(0, 1)', 'relation': '=='}] |
count_nums | HumanEval/108 |
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 1
>>> count_nums([1, 1, 2]) == 3
"""
|
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is positive or negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 1
>>> count_nums([1, 1, 2]) == 3
"""
|
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 2
>>> count_nums([1, 1, 2]) == 0
"""
|
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of
"""
|
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is positive or negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 2
>>> count_nums([1, 1, 2]) == 0
"""
| null | null | null |
def count_nums(arr):
"""
Write a function count_nums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums([]) == 0
>>> count_nums([-1, 11, -11]) == 1
>>> count_nums([1, 1, 2]) == 3
"""
def digits_sum(n):
neg = 1
if n < 0: n, neg = -1 * n, -1
n = [int(i) for i in str(n)]
n[0] = n[0] * neg
return sum(n)
return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
| [{'input': '[]', 'output': '0', 'relation': '=='}, {'input': '[-1, -2, 0]', 'output': '0', 'relation': '=='}, {'input': '[1, 1, 2, -2, 3, 4, 5]', 'output': '6', 'relation': '=='}, {'input': '[1, 6, 9, -6, 0, 1, 5]', 'output': '5', 'relation': '=='}, {'input': '[1, 100, 98, -7, 1, -1]', 'output': '4', 'relation': '=='}, {'input': '[12, 23, 34, -45, -56, 0]', 'output': '5', 'relation': '=='}, {'input': '[-0, 1**0]', 'output': '1', 'relation': '=='}, {'input': '[1]', 'output': '1', 'relation': '=='}] |
move_one_ball | HumanEval/109 |
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
|
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-increasing or non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
|
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>False
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>True
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
|
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered.
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
"""
|
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-increasing or non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>False
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>True
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
| null | null | null |
def move_one_ball(arr):
"""We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The
numbers in the array will be randomly ordered. Your task is to determine if
it is possible to get an array sorted in non-decreasing order by performing
the following operation on the given array:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the array by one
position in the right direction. The last element of the array will be moved to
the starting position in the array i.e. 0th index.
If it is possible to obtain the sorted array by performing the above operation
then return True else return False.
If the given array is empty then return True.
Note: The given list is guaranteed to have unique elements.
For Example:
move_one_ball([3, 4, 5, 1, 2])==>True
Explanation: By performin 2 right shift operations, non-decreasing order can
be achieved for the given array.
move_one_ball([3, 5, 4, 1, 2])==>False
Explanation:It is not possible to get non-decreasing order for the given
array by performing any number of right shift operations.
"""
if len(arr)==0:
return True
sorted_array=sorted(arr)
my_arr=[]
min_value=min(arr)
min_index=arr.index(min_value)
my_arr=arr[min_index:]+arr[0:min_index]
for i in range(len(arr)):
if my_arr[i]!=sorted_array[i]:
return False
return True
| [{'input': '[3, 4, 5, 1, 2]', 'output': 'True', 'relation': '=='}, {'input': '[3, 5, 10, 1, 2]', 'output': 'True', 'relation': '=='}, {'input': '[4, 3, 1, 2]', 'output': 'False', 'relation': '=='}, {'input': '[3, 5, 4, 1, 2]', 'output': 'False', 'relation': '=='}, {'input': '[]', 'output': 'True', 'relation': '=='}] |
exchange | HumanEval/110 |
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO"
It is assumed that the input lists will be non-empty.
"""
|
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only odd or even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO"
It is assumed that the input lists will be non-empty.
"""
|
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "NO"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "YES"
It is assumed that the input lists will be non-empty.
"""
|
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them
"""
|
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only odd or even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "NO"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "YES"
It is assumed that the input lists will be non-empty.
"""
| null | null | null |
def exchange(lst1, lst2):
"""In this problem, you will implement a function that takes two lists of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a list of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES"
exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO"
It is assumed that the input lists will be non-empty.
"""
odd = 0
even = 0
for i in lst1:
if i%2 == 1:
odd += 1
for i in lst2:
if i%2 == 0:
even += 1
if even >= odd:
return "YES"
return "NO"
| [{'input': '[1, 2, 3, 4], [1, 2, 3, 4]', 'output': 'YES', 'relation': '=='}, {'input': '[1, 2, 3, 4], [1, 5, 3, 4]', 'output': 'NO', 'relation': '=='}, {'input': '[1, 2, 3, 4], [2, 1, 4, 3]', 'output': 'YES', 'relation': '=='}, {'input': '[5, 7, 3], [2, 6, 4]', 'output': 'YES', 'relation': '=='}, {'input': '[5, 7, 3], [2, 6, 3]', 'output': 'NO', 'relation': '=='}, {'input': '[3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]', 'output': 'NO', 'relation': '=='}, {'input': '[100, 200], [200, 200]', 'output': 'YES', 'relation': '=='}] |
histogram | HumanEval/111 |
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}
histogram('a b b a') == {'a': 2, 'b': 2}
histogram('a b c a b') == {'a': 2, 'b': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
|
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the least or most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}
histogram('a b b a') == {'a': 2, 'b': 2}
histogram('a b c a b') == {'a': 2, 'b': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
|
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1}
histogram('a b b a') == {'a': 2}
histogram('a b c a b') == {'a': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
|
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter
"""
|
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the least or most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1}
histogram('a b b a') == {'a': 2}
histogram('a b c a b') == {'a': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
| null | null | null |
def histogram(test):
"""Given a string representing a space separated lowercase letters, return a dictionary
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram('a b c') == {'a': 1, 'b': 1, 'c': 1}
histogram('a b b a') == {'a': 2, 'b': 2}
histogram('a b c a b') == {'a': 2, 'b': 2}
histogram('b b b b a') == {'b': 4}
histogram('') == {}
"""
dict1={}
list1=test.split(" ")
t=0
for i in list1:
if(list1.count(i)>t) and i!='':
t=list1.count(i)
if t>0:
for i in list1:
if(list1.count(i)==t):
dict1[i]=t
return dict1
| [{'input': "'a b b a'", 'output': "{'a': 2, 'b': 2}", 'relation': '=='}, {'input': "'a b c a b'", 'output': "{'a': 2, 'b': 2}", 'relation': '=='}, {'input': "'a b c d g'", 'output': "{'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}", 'relation': '=='}, {'input': "'r t g'", 'output': "{'r': 1, 't': 1, 'g': 1}", 'relation': '=='}, {'input': "'b b b b a'", 'output': "{'b': 4}", 'relation': '=='}, {'input': "''", 'output': '{}', 'relation': '=='}, {'input': "'a'", 'output': "{'a': 1}", 'relation': '=='}] |
reverse_delete | HumanEval/112 |
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('bcd',False)
For s = "abcdef", c = "b" the result should be ('acdef',False)
For s = "abcdedcba", c = "ab", the result should be ('cdedc',True)
"""
|
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are related to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('bcd',False)
For s = "abcdef", c = "b" the result should be ('acdef',False)
For s = "abcdedcba", c = "ab", the result should be ('cdedc',True)
"""
|
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('abcde',True)
For s = "abcdef", c = "b" the result should be ('abcdef',True)
For s = "abcdedcba", c = "ab", the result should be ('abcdedcba',False)
"""
|
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is .
"""
|
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are related to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('abcde',True)
For s = "abcdef", c = "b" the result should be ('abcdef',True)
For s = "abcdedcba", c = "ab", the result should be ('abcdedcba',False)
"""
|
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are related to any character in c
then check if the result string is .
"""
| null | null |
def reverse_delete(s,c):
"""Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a tuple containing the result string and True/False for the check.
Example
For s = "abcde", c = "ae", the result should be ('bcd',False)
For s = "abcdef", c = "b" the result should be ('acdef',False)
For s = "abcdedcba", c = "ab", the result should be ('cdedc',True)
"""
s = ''.join([char for char in s if char not in c])
return (s,s[::-1] == s)
| [{'input': '"abcde","ae"', 'output': "('bcd', False)", 'relation': '=='}, {'input': '"abcdef", "b"', 'output': "('acdef', False)", 'relation': '=='}, {'input': '"abcdedcba","ab"', 'output': "('cdedc', True)", 'relation': '=='}, {'input': '"dwik","w"', 'output': "('dik', False)", 'relation': '=='}, {'input': '"a","a"', 'output': "('', True)", 'relation': '=='}, {'input': '"abcdedcba",""', 'output': "('abcdedcba', True)", 'relation': '=='}, {'input': '"abcdedcba","v"', 'output': "('abcdedcba', True)", 'relation': '=='}, {'input': '"vabba","v"', 'output': "('abba', True)", 'relation': '=='}, {'input': '"mamma", "mia"', 'output': "('', True)", 'relation': '=='}] |
odd_count | HumanEval/113 |
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 4n the str4ng 4 of the 4nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 1n the str1ng 1 of the 1nput.",
"the number of odd elements 8n the str8ng 8 of the 8nput."]
"""
|
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of even or odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 4n the str4ng 4 of the 4nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 1n the str1ng 1 of the 1nput.",
"the number of odd elements 8n the str8ng 8 of the 8nput."]
"""
|
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 14n the str14ng 14 of the 14nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 11n the str11ng 11 of the 11nput.",
"the number of odd elements 18n the str18ng 18 of the 18nput."]
"""
|
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by
"""
|
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of even or odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 14n the str14ng 14 of the 14nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 11n the str11ng 11 of the 11nput.",
"the number of odd elements 18n the str18ng 18 of the 18nput."]
"""
| null | null | null |
def odd_count(lst):
"""Given a list of strings, where each string consists of only digits, return a list.
Each element i of the output should be "the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count(['1234567'])
["the number of odd elements 4n the str4ng 4 of the 4nput."]
>>> odd_count(['3',"11111111"])
["the number of odd elements 1n the str1ng 1 of the 1nput.",
"the number of odd elements 8n the str8ng 8 of the 8nput."]
"""
res = []
for arr in lst:
n = sum(int(d)%2==1 for d in arr)
res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.")
return res
| [{'input': "['1234567']", 'output': "['the number of odd elements 4n the str4ng 4 of the 4nput.']", 'relation': '=='}, {'input': "['3','11111111']", 'output': "['the number of odd elements 1n the str1ng 1 of the 1nput.', 'the number of odd elements 8n the str8ng 8 of the 8nput.']", 'relation': '=='}, {'input': "['271', '137', '314']", 'output': "['the number of odd elements 2n the str2ng 2 of the 2nput.', 'the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.']", 'relation': '=='}] |
minSubArraySum | HumanEval/114 |
def minSubArraySum(nums):
"""
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6
"""
|
def candidate(nums):
"""
Given an array of integers nums, find a certain sum of any non-empty sub-array
of nums.
Example
candidate([2, 3, 4, 1, 2, 4]) == 1
candidate([-1, -2, -3]) == -6
"""
|
def minSubArraySum(nums):
"""
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 3
minSubArraySum([-1, -2, -3]) == -5
"""
|
def candidate(nums):
"""
Given an array of integers nums, find the minimum sum
"""
|
def candidate(nums):
"""
Given an array of integers nums, find a certain sum of any non-empty sub-array
of nums.
Example
candidate([2, 3, 4, 1, 2, 4]) == 3
candidate([-1, -2, -3]) == -5
"""
|
def candidate(nums):
"""
Given an array of integers nums, find a certain sum
"""
| null | null |
def minSubArraySum(nums):
"""
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6
"""
max_sum = 0
s = 0
for num in nums:
s += -num
if (s < 0):
s = 0
max_sum = max(s, max_sum)
if max_sum == 0:
max_sum = max(-i for i in nums)
min_sum = -max_sum
return min_sum
| [{'input': '[2, 3, 4, 1, 2, 4]', 'output': '1', 'relation': '=='}, {'input': '[-1, -2, -3]', 'output': '-6', 'relation': '=='}, {'input': '[-1, -2, -3, 2, -10]', 'output': '-14', 'relation': '=='}, {'input': '[-9999999999999999]', 'output': '-9999999999999999', 'relation': '=='}, {'input': '[0, 10, 20, 1000000]', 'output': '0', 'relation': '=='}, {'input': '[-1, -2, -3, 10, -5]', 'output': '-6', 'relation': '=='}, {'input': '[100, -1, -2, -3, 10, -5]', 'output': '-6', 'relation': '=='}, {'input': '[10, 11, 13, 8, 3, 4]', 'output': '3', 'relation': '=='}, {'input': '[100, -33, 32, -1, 0, -2]', 'output': '-33', 'relation': '=='}, {'input': '[-10]', 'output': '-10', 'relation': '=='}, {'input': '[7]', 'output': '7', 'relation': '=='}, {'input': '[1, -1]', 'output': '-1', 'relation': '=='}] |
max_fill | HumanEval/115 |
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
"""
|
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 0 or 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output something to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
"""
|
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 3
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 2
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 3
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
"""
|
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
"""
|
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 0 or 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output something to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 3
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 2
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 3
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
"""
|
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 0 or 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
"""
| null | null |
def max_fill(grid, capacity):
import math
"""
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]]
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]]
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : [[0,0,0], [0,0,0]]
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid[:,1].length <= 10^2
* grid[i][j] -> 0 | 1
* 1 <= capacity <= 10
"""
return sum([math.ceil(sum(arr)/capacity) for arr in grid])
| [{'input': '[[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1', 'output': '6', 'relation': '=='}, {'input': '[[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2', 'output': '5', 'relation': '=='}, {'input': '[[0,0,0], [0,0,0]], 5', 'output': '0', 'relation': '=='}, {'input': '[[1,1,1,1], [1,1,1,1]], 2', 'output': '4', 'relation': '=='}, {'input': '[[1,1,1,1], [1,1,1,1]], 9', 'output': '2', 'relation': '=='}] |
sort_array | HumanEval/116 |
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
"""
|
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their Hexadecimal or binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
"""
|
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in descending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
"""
|
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their
"""
|
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their Hexadecimal or binary representation in descending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
"""
| null | null | null |
def sort_array(arr):
"""
In this Kata, you have to sort an array of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5]
>>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2]
>>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4]
"""
return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))
| [{'input': '[1,5,2,3,4]', 'output': '[1, 2, 4, 3, 5]', 'relation': '=='}, {'input': '[-2,-3,-4,-5,-6]', 'output': '[-4, -2, -6, -5, -3]', 'relation': '=='}, {'input': '[1,0,2,3,4]', 'output': '[0, 1, 2, 4, 3]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[2,5,77,4,5,3,5,7,2,3,4]', 'output': '[2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77]', 'relation': '=='}, {'input': '[3,6,44,12,32,5]', 'output': '[32, 3, 5, 6, 12, 44]', 'relation': '=='}, {'input': '[2,4,8,16,32]', 'output': '[2, 4, 8, 16, 32]', 'relation': '=='}, {'input': '[2,4,8,16,32]', 'output': '[2, 4, 8, 16, 32]', 'relation': '=='}] |
select_words | HumanEval/117 |
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["little"]
select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"]
select_words("simple white space", 2) ==> []
select_words("Hello world", 4) ==> ["world"]
select_words("Uncle sam", 3) ==> ["Uncle"]
"""
|
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain certain
consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["little"]
select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"]
select_words("simple white space", 2) ==> []
select_words("Hello world", 4) ==> ["world"]
select_words("Uncle sam", 3) ==> ["Uncle"]
"""
|
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["had"]
select_words("Mary had a little lamb", 3) ==> ["lamb"]
select_words("simple white space", 2) ==> ["white"]
select_words("Hello world", 4) ==> ["Hello"]
select_words("Uncle sam", 3) ==> ["sam"]
"""
|
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
"""
|
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain certain
consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["had"]
select_words("Mary had a little lamb", 3) ==> ["lamb"]
select_words("simple white space", 2) ==> ["white"]
select_words("Hello world", 4) ==> ["Hello"]
select_words("Uncle sam", 3) ==> ["sam"]
"""
|
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain certain
"""
| null | null |
def select_words(s, n):
"""Given a string s and a natural number n, you have been tasked to implement
a function that returns a list of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty list.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> ["little"]
select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"]
select_words("simple white space", 2) ==> []
select_words("Hello world", 4) ==> ["world"]
select_words("Uncle sam", 3) ==> ["Uncle"]
"""
result = []
for word in s.split():
n_consonants = 0
for i in range(0, len(word)):
if word[i].lower() not in ["a","e","i","o","u"]:
n_consonants += 1
if n_consonants == n:
result.append(word)
return result
| [{'input': '"Mary had a little lamb", 4', 'output': "['little']", 'relation': '=='}, {'input': '"Mary had a little lamb", 3', 'output': "['Mary', 'lamb']", 'relation': '=='}, {'input': '"simple white space", 2', 'output': '[]', 'relation': '=='}, {'input': '"Hello world", 4', 'output': "['world']", 'relation': '=='}, {'input': '"Uncle sam", 3', 'output': "['Uncle']", 'relation': '=='}, {'input': '"", 4', 'output': '[]', 'relation': '=='}, {'input': '"a b c d e f", 1', 'output': "['b', 'c', 'd', 'f']", 'relation': '=='}] |
get_closest_vowel | HumanEval/118 |
def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> ""
"""
|
def candidate(word):
"""You are given a word. Your task is to find the farthest or closest vowel that stands between
two consonants from the left or right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
candidate("yogurt") ==> "u"
candidate("FULL") ==> "U"
candidate("quick") ==> ""
candidate("ab") ==> ""
"""
|
def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "g"
get_closest_vowel("FULL") ==> "F"
get_closest_vowel("quick") ==> "i"
get_closest_vowel("ab") ==> "a"
"""
|
def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands
"""
|
def candidate(word):
"""You are given a word. Your task is to find the farthest or closest vowel that stands between
two consonants from the left or right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
candidate("yogurt") ==> "g"
candidate("FULL") ==> "F"
candidate("quick") ==> "i"
candidate("ab") ==> "a"
"""
|
def candidate(word):
"""You are given a word. Your task is to find the farthest or closest vowel that stands
"""
| null | null |
def get_closest_vowel(word):
"""You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> ""
"""
if len(word) < 3:
return ""
vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'}
for i in range(len(word)-2, 0, -1):
if word[i] in vowels:
if (word[i+1] not in vowels) and (word[i-1] not in vowels):
return word[i]
return ""
| [{'input': '"yogurt"', 'output': 'u', 'relation': '=='}, {'input': '"full"', 'output': 'u', 'relation': '=='}, {'input': '"easy"', 'output': '', 'relation': '=='}, {'input': '"eAsy"', 'output': '', 'relation': '=='}, {'input': '"ali"', 'output': '', 'relation': '=='}, {'input': '"bad"', 'output': 'a', 'relation': '=='}, {'input': '"most"', 'output': 'o', 'relation': '=='}, {'input': '"ab"', 'output': '', 'relation': '=='}, {'input': '"ba"', 'output': '', 'relation': '=='}, {'input': '"quick"', 'output': '', 'relation': '=='}, {'input': '"anime"', 'output': 'i', 'relation': '=='}, {'input': '"Asia"', 'output': '', 'relation': '=='}, {'input': '"Above"', 'output': 'o', 'relation': '=='}] |
match_parens | HumanEval/119 |
def match_parens(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
match_parens(['()(', ')']) == 'Yes'
match_parens([')', ')']) == 'No'
'''
|
def candidate(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to process the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
candidate(['()(', ')']) == 'Yes'
candidate([')', ')']) == 'No'
'''
|
def match_parens(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
match_parens(['()(', ')']) == 'No'
match_parens([')', ')']) == 'Yes'
'''
|
def candidate(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
'''
|
def candidate(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to process the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
candidate(['()(', ')']) == 'No'
candidate([')', ')']) == 'Yes'
'''
|
def candidate(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to process the two strings in
some order, that the resulting string will be good.
'''
| null | null |
def match_parens(lst):
'''
You are given a list of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string '(())()' is good, while the string
'())' is not.
Return 'Yes' if there's a way to make a good string, and return 'No' otherwise.
Examples:
match_parens(['()(', ')']) == 'Yes'
match_parens([')', ')']) == 'No'
'''
def check(s):
val = 0
for i in s:
if i == '(':
val = val + 1
else:
val = val - 1
if val < 0:
return False
return True if val == 0 else False
S1 = lst[0] + lst[1]
S2 = lst[1] + lst[0]
return 'Yes' if check(S1) or check(S2) else 'No'
| [{'input': "['()(', ')']", 'output': 'Yes', 'relation': '=='}, {'input': "[')', ')']", 'output': 'No', 'relation': '=='}, {'input': "['(()(())', '())())']", 'output': 'No', 'relation': '=='}, {'input': "[')())', '(()()(']", 'output': 'Yes', 'relation': '=='}, {'input': "['(())))', '(()())((']", 'output': 'Yes', 'relation': '=='}, {'input': "['()', '())']", 'output': 'No', 'relation': '=='}, {'input': "['(()(', '()))()']", 'output': 'Yes', 'relation': '=='}, {'input': "['((((', '((())']", 'output': 'No', 'relation': '=='}, {'input': "[')(()', '(()(']", 'output': 'No', 'relation': '=='}, {'input': "[')(', ')(']", 'output': 'No', 'relation': '=='}, {'input': "['(', ')']", 'output': 'Yes', 'relation': '=='}, {'input': "[')', '(']", 'output': 'Yes', 'relation': '=='}] |
maximum | HumanEval/120 |
def maximum(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4, 4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
|
def candidate(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the minimum or maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4, 4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
|
def maximum(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: []
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
|
def maximum(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with
"""
|
def candidate(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the minimum or maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: []
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
|
def candidate(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with
"""
| null | null |
def maximum(arr, k):
"""
Given an array arr of integers and a positive integer k, return a sorted list
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = [-3, -4, 5], k = 3
Output: [-4, -3, 5]
Example 2:
Input: arr = [4, -4, 4], k = 2
Output: [4, 4]
Example 3:
Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1
Output: [2]
Note:
1. The length of the array will be in the range of [1, 1000].
2. The elements in the array will be in the range of [-1000, 1000].
3. 0 <= k <= len(arr)
"""
if k == 0:
return []
arr.sort()
ans = arr[-k:]
return ans
| [{'input': '[-3, -4, 5], 3', 'output': '[-4, -3, 5]', 'relation': '=='}, {'input': '[4, -4, 4], 2', 'output': '[4, 4]', 'relation': '=='}, {'input': '[-3, 2, 1, 2, -1, -2, 1], 1', 'output': '[2]', 'relation': '=='}, {'input': '[123, -123, 20, 0 , 1, 2, -3], 3', 'output': '[2, 20, 123]', 'relation': '=='}, {'input': '[-123, 20, 0 , 1, 2, -3], 4', 'output': '[0, 1, 2, 20]', 'relation': '=='}, {'input': '[5, 15, 0, 3, -13, -8, 0], 7', 'output': '[-13, -8, 0, 0, 3, 5, 15]', 'relation': '=='}, {'input': '[-1, 0, 2, 5, 3, -10], 2', 'output': '[3, 5]', 'relation': '=='}, {'input': '[1, 0, 5, -7], 1', 'output': '[5]', 'relation': '=='}, {'input': '[4, -4], 2', 'output': '[-4, 4]', 'relation': '=='}, {'input': '[-10, 10], 2', 'output': '[-10, 10]', 'relation': '=='}, {'input': '[1, 2, 3, -23, 243, -400, 0], 0', 'output': '[]', 'relation': '=='}] |
solution | HumanEval/121 |
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution([5, 8, 7, 1]) ==> 12
solution([3, 3, 3, 3, 3]) ==> 9
solution([30, 13, 24, 321]) ==>0
"""
|
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the even or odd elements that are in even or odd positions.
Examples
solution([5, 8, 7, 1]) ==> 12
solution([3, 3, 3, 3, 3]) ==> 9
solution([30, 13, 24, 321]) ==>0
"""
|
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution([5, 8, 7, 1]) ==> 1
solution([3, 3, 3, 3, 3]) ==> 3
solution([30, 13, 24, 321]) ==>30
"""
|
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements that are
"""
|
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the even or odd elements that are in even or odd positions.
Examples
solution([5, 8, 7, 1]) ==> 1
solution([3, 3, 3, 3, 3]) ==> 3
solution([30, 13, 24, 321]) ==>30
"""
|
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the even or odd elements that are
"""
| null | null |
def solution(lst):
"""Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution([5, 8, 7, 1]) ==> 12
solution([3, 3, 3, 3, 3]) ==> 9
solution([30, 13, 24, 321]) ==>0
"""
return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])
| [{'input': '[3, 3, 3, 3, 3]', 'output': '9', 'relation': '=='}, {'input': '[30, 13, 24, 321]', 'output': '0', 'relation': '=='}, {'input': '[5, 9]', 'output': '5', 'relation': '=='}, {'input': '[2, 4, 8]', 'output': '0', 'relation': '=='}, {'input': '[30, 13, 23, 32]', 'output': '23', 'relation': '=='}, {'input': '[3, 13, 2, 9]', 'output': '3', 'relation': '=='}] |
add_elements | HumanEval/122 |
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
"""
|
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the product or sum of the elements with at most two digits from the last or first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
"""
|
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 12 # sum of 9 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
"""
|
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from
"""
|
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the product or sum of the elements with at most two digits from the last or first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 12 # sum of 9 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
"""
|
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the product or sum of the elements with at most two digits from
"""
| null | null |
def add_elements(arr, k):
"""
Given a non-empty array of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
"""
return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)
| [{'input': '[1,-2,-3,41,57,76,87,88,99], 3', 'output': '-4', 'relation': '=='}, {'input': '[111,121,3,4000,5,6], 2', 'output': '0', 'relation': '=='}, {'input': '[11,21,3,90,5,6,7,8,9], 4', 'output': '125', 'relation': '=='}, {'input': '[111,21,3,4000,5,6,7,8,9], 4', 'output': '24', 'relation': '=='}, {'input': '[1], 1', 'output': '1', 'relation': '=='}] |
get_odd_collatz | HumanEval/123 |
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
"""
|
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even or odd, the next term is one half of
the previous term. If the previous term is even or odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
"""
|
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 2.
"""
|
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n.
"""
|
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even or odd, the next term is one half of
the previous term. If the previous term is even or odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 2.
"""
| null | null | null |
def get_odd_collatz(n):
"""
Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is [1].
2. returned list sorted in increasing order.
For example:
get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5.
"""
if n%2==0:
odd_collatz = []
else:
odd_collatz = [n]
while n > 1:
if n % 2 == 0:
n = n/2
else:
n = n*3 + 1
if n%2 == 1:
odd_collatz.append(int(n))
return sorted(odd_collatz)
| [{'input': '14', 'output': '[1, 5, 7, 11, 13, 17]', 'relation': '=='}, {'input': '5', 'output': '[1, 5]', 'relation': '=='}, {'input': '12', 'output': '[1, 3, 5]', 'relation': '=='}, {'input': '1', 'output': '[1]', 'relation': '=='}] |
valid_date | HumanEval/124 |
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date('03-11-2000') => True
valid_date('15-01-2012') => False
valid_date('04-0-2040') => False
valid_date('06-04-2020') => True
valid_date('06/04/2020') => False
"""
|
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: dd-mm-yyyy or mm-dd-yyyy
for example:
valid_date('03-11-2000') => True
valid_date('15-01-2012') => False
valid_date('04-0-2040') => False
valid_date('06-04-2020') => True
valid_date('06/04/2020') => False
"""
|
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date('03-11-2000') => False
valid_date('15-01-2012') => True
valid_date('04-0-2040') => True
valid_date('06-04-2020') => False
valid_date('06/04/2020') => True
"""
|
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1.
"""
|
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: dd-mm-yyyy or mm-dd-yyyy
for example:
valid_date('03-11-2000') => False
valid_date('15-01-2012') => True
valid_date('04-0-2040') => True
valid_date('06-04-2020') => False
valid_date('06/04/2020') => True
"""
| null | null | null |
def valid_date(date):
"""You have to write a function which validates a given date string and
returns True if the date is valid otherwise False.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date('03-11-2000') => True
valid_date('15-01-2012') => False
valid_date('04-0-2040') => False
valid_date('06-04-2020') => True
valid_date('06/04/2020') => False
"""
try:
date = date.strip()
month, day, year = date.split('-')
month, day, year = int(month), int(day), int(year)
if month < 1 or month > 12:
return False
if month in [1,3,5,7,8,10,12] and day < 1 or day > 31:
return False
if month in [4,6,9,11] and day < 1 or day > 30:
return False
if month == 2 and day < 1 or day > 29:
return False
except:
return False
return True
| [{'input': "'03-11-2000'", 'output': 'True', 'relation': '=='}, {'input': "'15-01-2012'", 'output': 'False', 'relation': '=='}, {'input': "'04-0-2040'", 'output': 'False', 'relation': '=='}, {'input': "'06-04-2020'", 'output': 'True', 'relation': '=='}, {'input': "'01-01-2007'", 'output': 'True', 'relation': '=='}, {'input': "'03-32-2011'", 'output': 'False', 'relation': '=='}, {'input': "''", 'output': 'False', 'relation': '=='}, {'input': "'04-31-3000'", 'output': 'False', 'relation': '=='}, {'input': "'06-06-2005'", 'output': 'True', 'relation': '=='}, {'input': "'21-31-2000'", 'output': 'False', 'relation': '=='}, {'input': "'04-12-2003'", 'output': 'True', 'relation': '=='}, {'input': "'04122003'", 'output': 'False', 'relation': '=='}, {'input': "'20030412'", 'output': 'False', 'relation': '=='}, {'input': "'2003-04'", 'output': 'False', 'relation': '=='}, {'input': "'2003-04-12'", 'output': 'False', 'relation': '=='}, {'input': "'04-2003'", 'output': 'False', 'relation': '=='}] |
split_words | HumanEval/125 |
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
split_words("Hello world!") β ["Hello", "world!"]
split_words("Hello,world!") β ["Hello", "world!"]
split_words("abcdef") == 3
'''
|
def split_words(txt):
'''
Given a string of words, return a list of words split on characters, if no characters exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
split_words("Hello world!") β ["Hello", "world!"]
split_words("Hello,world!") β ["Hello", "world!"]
split_words("abcdef") == 3
'''
|
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 10, ord('b') = 11, ... ord('z') = 125
Examples
split_words("Hello world!") β ["Hello"]
split_words("Hello,world!") β ["world!"]
split_words("abcdef") == 3
'''
|
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of
'''
|
def split_words(txt):
'''
Given a string of words, return a list of words split on characters, if no characters exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 10, ord('b') = 11, ... ord('z') = 125
Examples
split_words("Hello world!") β ["Hello"]
split_words("Hello,world!") β ["world!"]
split_words("abcdef") == 3
'''
|
def split_words(txt):
'''
Given a string of words, return a list of words split on characters, if no characters exists in the text you
should split on commas ',' if no commas exists you should return the number of
'''
| null | null |
def split_words(txt):
'''
Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the
alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25
Examples
split_words("Hello world!") β ["Hello", "world!"]
split_words("Hello,world!") β ["Hello", "world!"]
split_words("abcdef") == 3
'''
if " " in txt:
return txt.split()
elif "," in txt:
return txt.replace(',',' ').split()
else:
return len([i for i in txt if i.islower() and ord(i)%2 == 0])
| [{'input': '"Hello world!"', 'output': "['Hello', 'world!']", 'relation': '=='}, {'input': '"Hello,world!"', 'output': "['Hello', 'world!']", 'relation': '=='}, {'input': '"Hello world,!"', 'output': "['Hello', 'world,!']", 'relation': '=='}, {'input': '"Hello,Hello,world !"', 'output': "['Hello,Hello,world', '!']", 'relation': '=='}, {'input': '"abcdef"', 'output': '3', 'relation': '=='}, {'input': '"aaabb"', 'output': '2', 'relation': '=='}, {'input': '"aaaBb"', 'output': '1', 'relation': '=='}, {'input': '""', 'output': '0', 'relation': '=='}] |
is_sorted | HumanEval/126 |
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) β True
is_sorted([1, 2, 3, 4, 5]) β True
is_sorted([1, 3, 2, 4, 5]) β False
is_sorted([1, 2, 3, 4, 5, 6]) β True
is_sorted([1, 2, 3, 4, 5, 6, 7]) β True
is_sorted([1, 3, 2, 4, 5, 6, 7]) β False
is_sorted([1, 2, 2, 3, 3, 4]) β True
is_sorted([1, 2, 2, 2, 3, 4]) β False
'''
|
def candidate(lst):
'''
Given a list of numbers, return whether or not they are sorted
in a specific order. If list has certain duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
candidate([5]) β True
candidate([1, 2, 3, 4, 5]) β True
candidate([1, 3, 2, 4, 5]) β False
candidate([1, 2, 3, 4, 5, 6]) β True
candidate([1, 2, 3, 4, 5, 6, 7]) β True
candidate([1, 3, 2, 4, 5, 6, 7]) β False
candidate([1, 2, 2, 3, 3, 4]) β True
candidate([1, 2, 2, 2, 3, 4]) β False
'''
|
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) β False
is_sorted([1, 2, 3, 4, 5]) β False
is_sorted([1, 3, 2, 4, 5]) β True
is_sorted([1, 2, 3, 4, 5, 6]) β False
is_sorted([1, 2, 3, 4, 5, 6, 7]) β False
is_sorted([1, 3, 2, 4, 5, 6, 7]) β True
is_sorted([1, 2, 2, 3, 3, 4]) β False
is_sorted([1, 2, 2, 2, 3, 4]) β True
'''
|
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number,
'''
|
def candidate(lst):
'''
Given a list of numbers, return whether or not they are sorted
in a specific order. If list has certain duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
candidate([5]) β False
candidate([1, 2, 3, 4, 5]) β False
candidate([1, 3, 2, 4, 5]) β True
candidate([1, 2, 3, 4, 5, 6]) β False
candidate([1, 2, 3, 4, 5, 6, 7]) β False
candidate([1, 3, 2, 4, 5, 6, 7]) β True
candidate([1, 2, 2, 3, 3, 4]) β False
candidate([1, 2, 2, 2, 3, 4]) β True
'''
|
def candidate(lst):
'''
Given a list of numbers, return whether or not they are sorted
in a specific order. If list has certain duplicate of the same
number,
'''
| null | null |
def is_sorted(lst):
'''
Given a list of numbers, return whether or not they are sorted
in ascending order. If list has more than 1 duplicate of the same
number, return False. Assume no negative numbers and only integers.
Examples
is_sorted([5]) β True
is_sorted([1, 2, 3, 4, 5]) β True
is_sorted([1, 3, 2, 4, 5]) β False
is_sorted([1, 2, 3, 4, 5, 6]) β True
is_sorted([1, 2, 3, 4, 5, 6, 7]) β True
is_sorted([1, 3, 2, 4, 5, 6, 7]) β False
is_sorted([1, 2, 2, 3, 3, 4]) β True
is_sorted([1, 2, 2, 2, 3, 4]) β False
'''
count_digit = dict([(i, 0) for i in lst])
for i in lst:
count_digit[i]+=1
if any(count_digit[i] > 2 for i in lst):
return False
if all(lst[i-1] <= lst[i] for i in range(1, len(lst))):
return True
else:
return False
| [{'input': '[5]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5]', 'output': 'True', 'relation': '=='}, {'input': '[1, 3, 2, 4, 5]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5, 6]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5, 6, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1, 3, 2, 4, 5, 6, 7]', 'output': 'False', 'relation': '=='}, {'input': '[]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'True', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 2, 2, 3, 4]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 3, 3, 4]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 2, 3, 3, 4]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': 'True', 'relation': '=='}] |
intersection | HumanEval/127 |
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "NO"
intersection((-1, 1), (0, 4)) ==> "NO"
intersection((-3, -1), (-5, 5)) ==> "YES"
"""
|
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is an even or odd or prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "NO"
intersection((-1, 1), (0, 4)) ==> "NO"
intersection((-3, -1), (-5, 5)) ==> "YES"
"""
|
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "YES"
intersection((-1, 1), (0, 4)) ==> "YES"
intersection((-3, -1), (-5, 5)) ==> "NO"
"""
|
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether
"""
|
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is an even or odd or prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "YES"
intersection((-1, 1), (0, 4)) ==> "YES"
intersection((-3, -1), (-5, 5)) ==> "NO"
"""
| null | null | null |
def intersection(interval1, interval2):
"""You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
[input/output] samples:
intersection((1, 2), (2, 3)) ==> "NO"
intersection((-1, 1), (0, 4)) ==> "NO"
intersection((-3, -1), (-5, 5)) ==> "YES"
"""
def is_prime(num):
if num == 1 or num == 0:
return False
if num == 2:
return True
for i in range(2, num):
if num%i == 0:
return False
return True
l = max(interval1[0], interval2[0])
r = min(interval1[1], interval2[1])
length = r - l
if length > 0 and is_prime(length):
return "YES"
return "NO"
| [{'input': '(1, 2), (2, 3)', 'output': 'NO', 'relation': '=='}, {'input': '(-1, 1), (0, 4)', 'output': 'NO', 'relation': '=='}, {'input': '(-3, -1), (-5, 5)', 'output': 'YES', 'relation': '=='}, {'input': '(-2, 2), (-4, 0)', 'output': 'YES', 'relation': '=='}, {'input': '(-11, 2), (-1, -1)', 'output': 'NO', 'relation': '=='}, {'input': '(1, 2), (3, 5)', 'output': 'NO', 'relation': '=='}, {'input': '(1, 2), (1, 2)', 'output': 'NO', 'relation': '=='}, {'input': '(-2, -2), (-3, -2)', 'output': 'NO', 'relation': '=='}] |
prod_signs | HumanEval/128 |
def prod_signs(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4]) == -9
>>> prod_signs([0, 1]) == 0
>>> prod_signs([]) == None
"""
|
def candidate(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by result of certain signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> candidate([1, 2, 2, -4]) == -9
>>> candidate([0, 1]) == 0
>>> candidate([]) == None
"""
|
def prod_signs(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4]) == 1
>>> prod_signs([0, 1]) == 1
>>> prod_signs([]) == None
"""
|
def candidate(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by
"""
|
def candidate(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by result of certain signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> candidate([1, 2, 2, -4]) == 1
>>> candidate([0, 1]) == 1
>>> candidate([]) == None
"""
| null | null | null |
def prod_signs(arr):
"""
You are given an array arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the array, represented by 1, -1 or 0.
Note: return None for empty arr.
Example:
>>> prod_signs([1, 2, 2, -4]) == -9
>>> prod_signs([0, 1]) == 0
>>> prod_signs([]) == None
"""
if not arr: return None
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr)))
return prod * sum([abs(i) for i in arr])
| [{'input': '[1, 2, 2, -4]', 'output': '-9', 'relation': '=='}, {'input': '[0, 1]', 'output': '0', 'relation': '=='}, {'input': '[1, 1, 1, 2, 3, -1, 1]', 'output': '-10', 'relation': '=='}, {'input': '[]', 'output': 'None', 'relation': '=='}, {'input': '[2, 4,1, 2, -1, -1, 9]', 'output': '20', 'relation': '=='}, {'input': '[-1, 1, -1, 1]', 'output': '4', 'relation': '=='}, {'input': '[-1, 1, 1, 1]', 'output': '-4', 'relation': '=='}, {'input': '[-1, 1, 1, 0]', 'output': '0', 'relation': '=='}] |
minPath | HumanEval/129 |
def minPath(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
"""
|
def path(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
"""
|
def minPath(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [9, 8, 7]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [9]
"""
|
def minPath(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
"""
|
def path(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [9, 8, 7]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [9]
"""
|
def path(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
"""
| null | null |
def minPath(grid, k):
"""
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
"""
n = len(grid)
val = n * n + 1
for i in range(n):
for j in range(n):
if grid[i][j] == 1:
temp = []
if i != 0:
temp.append(grid[i - 1][j])
if j != 0:
temp.append(grid[i][j - 1])
if i != n - 1:
temp.append(grid[i + 1][j])
if j != n - 1:
temp.append(grid[i][j + 1])
val = min(temp)
ans = []
for i in range(k):
if i % 2 == 0:
ans.append(1)
else:
ans.append(val)
return ans
| [{'input': '[[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3', 'output': '[1, 2, 1]', 'relation': '=='}, {'input': '[[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1', 'output': '[1]', 'relation': '=='}, {'input': '[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4', 'output': '[1, 2, 1, 2]', 'relation': '=='}, {'input': '[[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7', 'output': '[1, 10, 1, 10, 1, 10, 1]', 'relation': '=='}, {'input': '[[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5', 'output': '[1, 7, 1, 7, 1]', 'relation': '=='}, {'input': '[[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9', 'output': '[1, 6, 1, 6, 1, 6, 1, 6, 1]', 'relation': '=='}, {'input': '[[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12', 'output': '[1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6]', 'relation': '=='}, {'input': '[[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8', 'output': '[1, 3, 1, 3, 1, 3, 1, 3]', 'relation': '=='}, {'input': '[[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8', 'output': '[1, 5, 1, 5, 1, 5, 1, 5]', 'relation': '=='}, {'input': '[[1, 2], [3, 4]], 10', 'output': '[1, 2, 1, 2, 1, 2, 1, 2, 1, 2]', 'relation': '=='}, {'input': '[[1, 3], [3, 2]], 10', 'output': '[1, 3, 1, 3, 1, 3, 1, 3, 1, 3]', 'relation': '=='}] |
tri | HumanEval/130 |
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""
|
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is odd or even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd or even.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""
|
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 1, 2, 3]
"""
|
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
"""
|
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is odd or even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd or even.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 1, 2, 3]
"""
|
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is odd or even.
"""
| null | null |
def tri(n):
"""Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a list of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = [1, 3, 2, 8]
"""
if n == 0:
return [1]
my_tri = [1, 3]
for i in range(2, n + 1):
if i % 2 == 0:
my_tri.append(i / 2 + 1)
else:
my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2)
return my_tri
| [{'input': '3', 'output': '[1, 3, 2.0, 8.0]', 'relation': '=='}, {'input': '4', 'output': '[1, 3, 2.0, 8.0, 3.0]', 'relation': '=='}, {'input': '5', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0]', 'relation': '=='}, {'input': '6', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0]', 'relation': '=='}, {'input': '7', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0]', 'relation': '=='}, {'input': '8', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0]', 'relation': '=='}, {'input': '9', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0]', 'relation': '=='}, {'input': '20', 'output': '[1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0]', 'relation': '=='}, {'input': '0', 'output': '[1]', 'relation': '=='}, {'input': '1', 'output': '[1, 3]', 'relation': '=='}] |
digits | HumanEval/131 |
def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
"""
|
def digits(n):
"""Given a positive integer n, return the sum or product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
"""
|
def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 4
digits(235) == 30
"""
|
def digits(n):
"""Given a positive integer n, return the product
"""
|
def digits(n):
"""Given a positive integer n, return the sum or product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 4
digits(235) == 30
"""
|
def digits(n):
"""Given a positive integer n, return the sum or product
"""
| null | null |
def digits(n):
"""Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
"""
product = 1
odd_count = 0
for digit in str(n):
int_digit = int(digit)
if int_digit%2 == 1:
product= product*int_digit
odd_count+=1
if odd_count ==0:
return 0
else:
return product
| [{'input': '5', 'output': '5', 'relation': '=='}, {'input': '54', 'output': '5', 'relation': '=='}, {'input': '5014', 'output': '5', 'relation': '=='}, {'input': '98765', 'output': '315', 'relation': '=='}, {'input': '5576543', 'output': '2625', 'relation': '=='}, {'input': '2468', 'output': '0', 'relation': '=='}] |
is_nested | HumanEval/132 |
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested('[[]]') β True
is_nested('[]]]]]]][[[[[]') β False
is_nested('[][]') β False
is_nested('[]') β False
is_nested('[[][]]') β True
is_nested('[[]][[') β True
'''
|
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where at least three or two or one brackets in the subsequence is nested.
is_nested('[[]]') β True
is_nested('[]]]]]]][[[[[]') β False
is_nested('[][]') β False
is_nested('[]') β False
is_nested('[[][]]') β True
is_nested('[[]][[') β True
'''
|
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested('[[]]') β False
is_nested('[]]]]]]][[[[[]') β True
is_nested('[][]') β True
is_nested('[]') β True
is_nested('[[][]]') β False
is_nested('[[]][[') β False
'''
|
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where
'''
|
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where at least three or two or one bracket in the subsequence is nested.
is_nested('[[]]') β False
is_nested('[]]]]]]][[[[[]') β True
is_nested('[][]') β True
is_nested('[]') β True
is_nested('[[][]]') β False
is_nested('[[]][[') β False
'''
| null | null | null |
def is_nested(string):
'''
Create a function that takes a string as input which contains only square brackets.
The function should return True if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested('[[]]') β True
is_nested('[]]]]]]][[[[[]') β False
is_nested('[][]') β False
is_nested('[]') β False
is_nested('[[][]]') β True
is_nested('[[]][[') β True
'''
opening_bracket_index = []
closing_bracket_index = []
for i in range(len(string)):
if string[i] == '[':
opening_bracket_index.append(i)
else:
closing_bracket_index.append(i)
closing_bracket_index.reverse()
cnt = 0
i = 0
l = len(closing_bracket_index)
for idx in opening_bracket_index:
if i < l and idx < closing_bracket_index[i]:
cnt += 1
i += 1
return cnt >= 2
| [{'input': "'[[]]'", 'output': 'True', 'relation': '=='}, {'input': "'[]]]]]]][[[[[]'", 'output': 'False', 'relation': '=='}, {'input': "'[][]'", 'output': 'False', 'relation': '=='}, {'input': "('[]')", 'output': 'False', 'relation': '=='}, {'input': "'[[[[]]]]'", 'output': 'True', 'relation': '=='}, {'input': "'[]]]]]]]]]]'", 'output': 'False', 'relation': '=='}, {'input': "'[][][[]]'", 'output': 'True', 'relation': '=='}, {'input': "'[[]'", 'output': 'False', 'relation': '=='}, {'input': "'[]]'", 'output': 'False', 'relation': '=='}, {'input': "'[[]][['", 'output': 'True', 'relation': '=='}, {'input': "'[[][]]'", 'output': 'True', 'relation': '=='}, {'input': "''", 'output': 'False', 'relation': '=='}, {'input': "'[[[[[[[['", 'output': 'False', 'relation': '=='}, {'input': "']]]]]]]]'", 'output': 'False', 'relation': '=='}] |
sum_squares | HumanEval/133 |
def sum_squares(lst):
"""You are given a list of numbers.
You need to return the sum of squared numbers in the given list,
round each element in the list to the upper int(Ceiling) first.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [1,4,9] the output should be 98
For lst = [1,3,5,7] the output should be 84
For lst = [1.4,4.2,0] the output should be 29
For lst = [-2.4,1,1] the output should be 6
"""
|
def candidate(lst):
"""You are given a list of numbers.
You need to return the product or sum of squared numbers in the given list,
round each element in the list to the upper int(Ceiling) first.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [1,4,9] the output should be 98
For lst = [1,3,5,7] the output should be 84
For lst = [1.4,4.2,0] the output should be 29
For lst = [-2.4,1,1] the output should be 6
"""
|
def sum_squares(lst):
"""You are given a list of numbers.
You need to return the sum of squared numbers in the given list,
round each element in the list to the upper int(Ceiling) first.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [1,4,9] the output should be 14
For lst = [1,3,5,7] the output should be 16
For lst = [1.4,4.2,0] the output should be 5.6
For lst = [-2.4,1,1] the output should be -0.4
"""
|
def candidate(lst):
"""You are given a list of numbers.
You need to return the sum of squared
"""
|
def candidate(lst):
"""You are given a list of numbers.
You need to return the product or sum of squared numbers in the given list,
round each element in the list to the upper int(Ceiling) first.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [1,4,9] the output should be 14
For lst = [1,3,5,7] the output should be 16
For lst = [1.4,4.2,0] the output should be 5.6
For lst = [-2.4,1,1] the output should be -0.4
"""
| null | null | null |
def sum_squares(lst):
"""You are given a list of numbers.
You need to return the sum of squared numbers in the given list,
round each element in the list to the upper int(Ceiling) first.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [1,4,9] the output should be 98
For lst = [1,3,5,7] the output should be 84
For lst = [1.4,4.2,0] the output should be 29
For lst = [-2.4,1,1] the output should be 6
"""
import math
squared = 0
for i in lst:
squared += math.ceil(i)**2
return squared
| [{'input': '[1, 2, 3]', 'output': '14', 'relation': '=='}, {'input': '[1.0, 2, 3]', 'output': '14', 'relation': '=='}, {'input': '[1,3,5,7]', 'output': '84', 'relation': '=='}, {'input': '[1.4,4.2,0]', 'output': '29', 'relation': '=='}, {'input': '[-2.4,1,1]', 'output': '6', 'relation': '=='}, {'input': '[100,1,15,2]', 'output': '10230', 'relation': '=='}, {'input': '[10000,10000]', 'output': '200000000', 'relation': '=='}, {'input': '[-1.4,4.6,6.3]', 'output': '75', 'relation': '=='}, {'input': '[-1.4,17.9,18.9,19.9]', 'output': '1086', 'relation': '=='}, {'input': '[0]', 'output': '0', 'relation': '=='}, {'input': '[-1]', 'output': '1', 'relation': '=='}, {'input': '[-1,1,0]', 'output': '2', 'relation': '=='}] |
check_if_last_char_is_a_letter | HumanEval/134 |
def check_if_last_char_is_a_letter(txt):
'''
Create a function that returns True if the last character
of a given string is an alphabetical character and is not
a part of a word, and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter("apple pie") β False
check_if_last_char_is_a_letter("apple pi e") β True
check_if_last_char_is_a_letter("apple pi e ") β False
check_if_last_char_is_a_letter("") β False
'''
|
def candidate(txt):
'''
Create a function that returns True if the character with given position
of a given string is an alphabetical character and is not
a part of a word, and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
candidate("apple pie") β False
candidate("apple pi e") β True
candidate("apple pi e ") β False
candidate("") β False
'''
|
def check_if_last_char_is_a_letter(txt):
'''
Create a function that returns True if the last character
of a given string is an alphabetical character and is not
a part of a word, and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter("apple pie") β True
check_if_last_char_is_a_letter("apple pi e") β False
check_if_last_char_is_a_letter("apple pi e ") β True
check_if_last_char_is_a_letter("") β True
'''
|
def candidate(txt):
'''
Create a function that returns True if the last character
of a given string is , and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
candidate("apple pie") β False
candidate("apple pi e") β True
candidate("apple pi e ") β False
candidate("") β False
'''
|
def candidate(txt):
'''
Create a function that returns True if the character with given position
of a given string is an alphabetical character and is not
a part of a word, and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
candidate("apple pie") β True
candidate("apple pi e") β False
candidate("apple pi e ") β True
candidate("") β True
'''
|
def candidate(txt):
'''
Create a function that returns True if the character with given position
of a given string is , and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
candidate("apple pie") β False
candidate("apple pi e") β True
candidate("apple pi e ") β False
candidate("") β False
'''
|
def candidate(txt):
'''
Create a function that returns True if the last character
of a given string is , and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
candidate("apple pie") β True
candidate("apple pi e") β False
candidate("apple pi e ") β True
candidate("") β True
'''
|
def candidate(txt):
'''
Create a function that returns True if the character with given position
of a given string is , and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
candidate("apple pie") β True
candidate("apple pi e") β False
candidate("apple pi e ") β True
candidate("") β True
'''
|
def check_if_last_char_is_a_letter(txt):
'''
Create a function that returns True if the last character
of a given string is an alphabetical character and is not
a part of a word, and False otherwise.
Note: "word" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter("apple pie") β False
check_if_last_char_is_a_letter("apple pi e") β True
check_if_last_char_is_a_letter("apple pi e ") β False
check_if_last_char_is_a_letter("") β False
'''
check = txt.split(' ')[-1]
return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False
| [{'input': '"apple"', 'output': 'False', 'relation': '=='}, {'input': '"apple pi e"', 'output': 'True', 'relation': '=='}, {'input': '"eeeee"', 'output': 'False', 'relation': '=='}, {'input': '"A"', 'output': 'True', 'relation': '=='}, {'input': '"Pumpkin pie "', 'output': 'False', 'relation': '=='}, {'input': '"Pumpkin pie 1"', 'output': 'False', 'relation': '=='}, {'input': '""', 'output': 'False', 'relation': '=='}, {'input': '"eeeee e "', 'output': 'False', 'relation': '=='}, {'input': '"apple pie"', 'output': 'False', 'relation': '=='}, {'input': '"apple pi e "', 'output': 'False', 'relation': '=='}] |
can_arrange | HumanEval/135 |
def can_arrange(arr):
"""Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1
"""
|
def can_arrange(arr):
"""Create a function which returns the smallest or largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1
"""
|
def can_arrange(arr):
"""Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
can_arrange([1,2,4,3,5]) = 2
can_arrange([1,2,3]) = 2
"""
|
def can_arrange(arr):
"""Create a function which returns the largest index of an element which
is not greater than or equal to
"""
|
def can_arrange(arr):
"""Create a function which returns the smallest or largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
can_arrange([1,2,4,3,5]) = 2
can_arrange([1,2,3]) = 2
"""
|
def can_arrange(arr):
"""Create a function which returns the smallest or largest index of an element which
is not greater than or equal to
"""
| null | null |
def can_arrange(arr):
"""Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given array will not contain
duplicate values.
Examples:
can_arrange([1,2,4,3,5]) = 3
can_arrange([1,2,3]) = -1
"""
ind=-1
i=1
while i<len(arr):
if arr[i]<arr[i-1]:
ind=i
i+=1
return ind
| [{'input': '[1,2,4,3,5]', 'output': '3', 'relation': '=='}, {'input': '[1,2,4,5]', 'output': '-1', 'relation': '=='}, {'input': '[1,4,2,5,6,7,8,9,10]', 'output': '2', 'relation': '=='}, {'input': '[4,8,5,7,3]', 'output': '4', 'relation': '=='}, {'input': '[]', 'output': '-1', 'relation': '=='}] |
largest_smallest_integers | HumanEval/136 |
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in a list.
If there is no negative or positive integers, return them as None.
Examples:
largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1)
largest_smallest_integers([]) == (None, None)
largest_smallest_integers([0]) == (None, None)
'''
|
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
one of negative integers, and 'b' is one
of positive integers in a list.
If there is no negative or positive integers, return them as None.
Examples:
largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1)
largest_smallest_integers([]) == (None, None)
largest_smallest_integers([0]) == (None, None)
'''
|
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in a list.
If there is no negative or positive integers, return them as None.
Examples:
largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (7, 1)
largest_smallest_integers([]) == (None, None)
largest_smallest_integers([0]) == (0, 0)
'''
|
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers
'''
|
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
one of negative integers, and 'b' is one
of positive integers in a list.
If there is no negative or positive integers, return them as None.
Examples:
largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (7, 1)
largest_smallest_integers([]) == (None, None)
largest_smallest_integers([0]) == (0, 0)
'''
|
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
one of negative integers
'''
| null | null |
def largest_smallest_integers(lst):
'''
Create a function that returns a tuple (a, b), where 'a' is
the largest of negative integers, and 'b' is the smallest
of positive integers in a list.
If there is no negative or positive integers, return them as None.
Examples:
largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1)
largest_smallest_integers([]) == (None, None)
largest_smallest_integers([0]) == (None, None)
'''
smallest = list(filter(lambda x: x < 0, lst))
largest = list(filter(lambda x: x > 0, lst))
return (max(smallest) if smallest else None, min(largest) if largest else None)
| [{'input': '[2, 4, 1, 3, 5, 7]', 'output': '(None, 1)', 'relation': '=='}, {'input': '[2, 4, 1, 3, 5, 7, 0]', 'output': '(None, 1)', 'relation': '=='}, {'input': '[1, 3, 2, 4, 5, 6, -2]', 'output': '(-2, 1)', 'relation': '=='}, {'input': '[4, 5, 3, 6, 2, 7, -7]', 'output': '(-7, 2)', 'relation': '=='}, {'input': '[7, 3, 8, 4, 9, 2, 5, -9]', 'output': '(-9, 2)', 'relation': '=='}, {'input': '[]', 'output': '(None, None)', 'relation': '=='}, {'input': '[0]', 'output': '(None, None)', 'relation': '=='}, {'input': '[-1, -3, -5, -6]', 'output': '(-1, None)', 'relation': '=='}, {'input': '[-1, -3, -5, -6, 0]', 'output': '(-1, None)', 'relation': '=='}, {'input': '[-6, -4, -4, -3, 1]', 'output': '(-3, 1)', 'relation': '=='}, {'input': '[-6, -4, -4, -3, -100, 1]', 'output': '(-3, 1)', 'relation': '=='}] |
compare_one | HumanEval/137 |
def compare_one(a, b):
"""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) β 2.5
compare_one(1, "2,3") β "2,3"
compare_one("5,1", "6") β "6"
compare_one("1", 1) β None
"""
|
def compare_one(a, b):
"""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the smaller or larger variable in its given variable type.
Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) β 2.5
compare_one(1, "2,3") β "2,3"
compare_one("5,1", "6") β "6"
compare_one("1", 1) β None
"""
|
def compare_one(a, b):
"""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) β 1
compare_one(1, "2,3") β "1"
compare_one("5,1", "6") β "5,1"
compare_one("1", 1) β "1"
"""
|
def compare_one(a, b):
"""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the
"""
|
def compare_one(a, b):
"""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the smaller or larger variable in its given variable type.
Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) β 1
compare_one(1, "2,3") β "1"
compare_one("5,1", "6") β "5,1"
compare_one("1", 1) β "1"
"""
| null | null | null |
def compare_one(a, b):
"""
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return None if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) β 2.5
compare_one(1, "2,3") β "2,3"
compare_one("5,1", "6") β "6"
compare_one("1", 1) β None
"""
temp_a, temp_b = a, b
if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')
if isinstance(temp_b, str): temp_b = temp_b.replace(',','.')
if float(temp_a) == float(temp_b): return None
return a if float(temp_a) > float(temp_b) else b
| [{'input': '1, 2', 'output': '2', 'relation': '=='}, {'input': '1, 2.5', 'output': '2.5', 'relation': '=='}, {'input': '2, 3', 'output': '3', 'relation': '=='}, {'input': '5, 6', 'output': '6', 'relation': '=='}, {'input': '1, "2,3"', 'output': '2,3', 'relation': '=='}, {'input': '"5,1", "6"', 'output': '6', 'relation': '=='}, {'input': '"1", "2"', 'output': '2', 'relation': '=='}, {'input': '"1", 1', 'output': 'None', 'relation': '=='}] |
is_equal_to_sum_even | HumanEval/138 |
def is_equal_to_sum_even(n):
"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == False
is_equal_to_sum_even(6) == False
is_equal_to_sum_even(8) == True
"""
|
def candidate(n):
"""Evaluate whether the given number n can be written as the sum of 4 numbers
Example
candidate(4) == False
candidate(6) == False
candidate(8) == True
"""
|
def is_equal_to_sum_even(n):
"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == True
is_equal_to_sum_even(6) == True
is_equal_to_sum_even(8) == False
"""
|
def is_equal_to_sum_even(n):
"""Evaluate whether the given number n can be written as the sum of exactly 4
"""
|
def candidate(n):
"""Evaluate whether the given number n can be written as the sum of 4 numbers
Example
candidate(4) == True
candidate(6) == True
candidate(8) == False
"""
| null | null | null |
def is_equal_to_sum_even(n):
"""Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == False
is_equal_to_sum_even(6) == False
is_equal_to_sum_even(8) == True
"""
return n%2 == 0 and n >= 8
| [{'input': '4', 'output': 'False', 'relation': '=='}, {'input': '6', 'output': 'False', 'relation': '=='}, {'input': '8', 'output': 'True', 'relation': '=='}, {'input': '10', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'False', 'relation': '=='}, {'input': '12', 'output': 'True', 'relation': '=='}, {'input': '13', 'output': 'False', 'relation': '=='}, {'input': '16', 'output': 'True', 'relation': '=='}] |
special_factorial | HumanEval/139 |
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
|
def candidate(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n!, or, brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> candidate(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
|
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
2
The function will receive an integer as input and should return the special
factorial of this integer.
"""
|
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) =
"""
|
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n!, or, brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
2
The function will receive an integer as input and should return the special
factorial of this integer.
"""
| null | null | null |
def special_factorial(n):
"""The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
"""
fact_i = 1
special_fact = 1
for i in range(1, n+1):
fact_i *= i
special_fact *= fact_i
return special_fact
| [{'input': '4', 'output': '288', 'relation': '=='}, {'input': '5', 'output': '34560', 'relation': '=='}, {'input': '7', 'output': '125411328000', 'relation': '=='}, {'input': '1', 'output': '1', 'relation': '=='}] |
fix_spaces | HumanEval/140 |
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
"""
|
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has certain consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
"""
|
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "_Example"
fix_spaces("Example 1") == "Example-1"
fix_spaces(" Example 2") == "-Example-2"
fix_spaces(" Example 3") == "-Example_3"
"""
|
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then
"""
|
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has certain consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "_Example"
fix_spaces("Example 1") == "Example-1"
fix_spaces(" Example 2") == "-Example-2"
fix_spaces(" Example 3") == "-Example_3"
"""
|
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has certain consecutive spaces,
then
"""
| null | null |
def fix_spaces(text):
"""
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
"""
new_text = ""
i = 0
start, end = 0, 0
while i < len(text):
if text[i] == " ":
end += 1
else:
if end - start > 2:
new_text += "-"+text[i]
elif end - start > 0:
new_text += "_"*(end - start)+text[i]
else:
new_text += text[i]
start, end = i+1, i+1
i+=1
if end - start > 2:
new_text += "-"
elif end - start > 0:
new_text += "_"
return new_text
| [{'input': '"Example"', 'output': 'Example', 'relation': '=='}, {'input': '"Mudasir Hanif "', 'output': 'Mudasir_Hanif_', 'relation': '=='}, {'input': '"Yellow Yellow Dirty Fellow"', 'output': 'Yellow_Yellow__Dirty__Fellow', 'relation': '=='}, {'input': '"Exa mple"', 'output': 'Exa-mple', 'relation': '=='}, {'input': '" Exa 1 2 2 mple"', 'output': '-Exa_1_2_2_mple', 'relation': '=='}] |
file_name_check | HumanEval/141 |
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
file_name_check("example.txt") # => 'Yes'
file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter)
"""
|
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There may not be less than or more than or exactly three digits ('0'-'9') in the file's name.
- The file's name may contain less than or more than or exactly one dot '.'
- The substring before the dot should not be empty, and it ends or starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring before or after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
file_name_check("example.txt") # => 'Yes'
file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter)
"""
|
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
file_name_check("example.txt") # => 'No'
file_name_check("1example.dll") # => 'Yes' (the name should start with a latin alphapet letter)
"""
|
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
Examples:
file_name_check("example.txt") # => 'Yes'
file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter)
"""
|
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be less than or more than or exactly three digits ('0'-'9') in the file's name.
- The file's name contains less than or more than or exactly one dot '.'
- The substring before the dot should not be empty, and it ends or starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring before or after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
file_name_check("example.txt") # => 'No'
file_name_check("1example.dll") # => 'Yes' (the name should start with a latin alphapet letter)
"""
| null |
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
Examples:
file_name_check("example.txt") # => 'No'
file_name_check("1example.dll") # => 'Yes' (the name should start with a latin alphapet letter)
"""
| null |
def file_name_check(file_name):
"""Create a function which takes a string representing a file's name, and returns
'Yes' if the the file's name is valid, and returns 'No' otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot '.'
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: ['txt', 'exe', 'dll']
Examples:
file_name_check("example.txt") # => 'Yes'
file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter)
"""
suf = ['txt', 'exe', 'dll']
lst = file_name.split(sep='.')
if len(lst) != 2:
return 'No'
if not lst[1] in suf:
return 'No'
if len(lst[0]) == 0:
return 'No'
if not lst[0][0].isalpha():
return 'No'
t = len([x for x in lst[0] if x.isdigit()])
if t > 3:
return 'No'
return 'Yes'
| [{'input': '"example.txt"', 'output': 'Yes', 'relation': '=='}, {'input': '"1example.dll"', 'output': 'No', 'relation': '=='}, {'input': "'s1sdf3.asd'", 'output': 'No', 'relation': '=='}, {'input': "'K.dll'", 'output': 'Yes', 'relation': '=='}, {'input': "'MY16FILE3.exe'", 'output': 'Yes', 'relation': '=='}, {'input': "'His12FILE94.exe'", 'output': 'No', 'relation': '=='}, {'input': "'_Y.txt'", 'output': 'No', 'relation': '=='}, {'input': "'?aREYA.exe'", 'output': 'No', 'relation': '=='}, {'input': "'/this_is_valid.dll'", 'output': 'No', 'relation': '=='}, {'input': "'this_is_valid.wow'", 'output': 'No', 'relation': '=='}, {'input': "'this_is_valid.txt'", 'output': 'Yes', 'relation': '=='}, {'input': "'this_is_valid.txtexe'", 'output': 'No', 'relation': '=='}, {'input': "'#this2_i4s_5valid.ten'", 'output': 'No', 'relation': '=='}, {'input': "'@this1_is6_valid.exe'", 'output': 'No', 'relation': '=='}, {'input': "'this_is_12valid.6exe4.txt'", 'output': 'No', 'relation': '=='}, {'input': "'all.exe.txt'", 'output': 'No', 'relation': '=='}, {'input': "'I563_No.exe'", 'output': 'Yes', 'relation': '=='}, {'input': "'Is3youfault.txt'", 'output': 'Yes', 'relation': '=='}, {'input': "'no_one#knows.dll'", 'output': 'Yes', 'relation': '=='}, {'input': "'1I563_Yes3.exe'", 'output': 'No', 'relation': '=='}, {'input': "'I563_Yes3.txtt'", 'output': 'No', 'relation': '=='}, {'input': "'final..txt'", 'output': 'No', 'relation': '=='}, {'input': "'final132'", 'output': 'No', 'relation': '=='}, {'input': "'_f4indsartal132.'", 'output': 'No', 'relation': '=='}, {'input': "'.txt'", 'output': 'No', 'relation': '=='}, {'input': "'s.'", 'output': 'No', 'relation': '=='}] |
sum_squares | HumanEval/142 |
def sum_squares(lst):
""""
This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be -126
"""
|
def sum_squares(lst):
""""
This function will take a list of integers. For all entries in the list, the function shall cube or square the integer entry if its index is a
multiple of 3 and will cube or square the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be -126
"""
|
def sum_squares(lst):
""""
This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be 4
"""
|
def sum_squares(lst):
""""
This function will take a list of integers. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be -126
"""
|
def sum_squares(lst):
""""
This function will take a list of integers. For all entries in the list, the function shall cube or square the integer entry if its index is a
multiple of 3 and will cube or square the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be 4
"""
| null |
def sum_squares(lst):
""""
This function will take a list of integers. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 14
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be 4
"""
| null |
def sum_squares(lst):
""""
This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = [1,2,3] the output should be 6
For lst = [] the output should be 0
For lst = [-1,-5,2,-1,-5] the output should be -126
"""
result =[]
for i in range(len(lst)):
if i %3 == 0:
result.append(lst[i]**2)
elif i % 4 == 0 and i%3 != 0:
result.append(lst[i]**3)
else:
result.append(lst[i])
return sum(result)
| [{'input': '[1,2,3]', 'output': '6', 'relation': '=='}, {'input': '[1,4,9]', 'output': '14', 'relation': '=='}, {'input': '[]', 'output': '0', 'relation': '=='}, {'input': '[1,1,1,1,1,1,1,1,1]', 'output': '9', 'relation': '=='}, {'input': '[-1,-1,-1,-1,-1,-1,-1,-1,-1]', 'output': '-3', 'relation': '=='}, {'input': '[0]', 'output': '0', 'relation': '=='}, {'input': '[-1,-5,2,-1,-5]', 'output': '-126', 'relation': '=='}, {'input': '[-56,-99,1,0,-2]', 'output': '3030', 'relation': '=='}, {'input': '[-1,0,0,0,0,0,0,0,-1]', 'output': '0', 'relation': '=='}, {'input': '[-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]', 'output': '-14196', 'relation': '=='}, {'input': '[-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]', 'output': '-1448', 'relation': '=='}] |
words_in_sentence | HumanEval/143 |
def words_in_sentence(sentence):
"""
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
|
def words_in_sentence(sentence):
"""
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are certain numbers,
the order of the words in the new string should be the same as or different from the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
|
def words_in_sentence(sentence):
"""
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "test"
Example 2:
Input: sentence = "lets go for swimming"
Output: "swimming"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
|
def words_in_sentence(sentence):
"""
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
|
def words_in_sentence(sentence):
"""
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are certain numbers,
the order of the words in the new string should be the same as or different from the original one.
Example 1:
Input: sentence = "This is a test"
Output: "test"
Example 2:
Input: sentence = "lets go for swimming"
Output: "swimming"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
| null |
def words_in_sentence(sentence):
"""
Example 1:
Input: sentence = "This is a test"
Output: "test"
Example 2:
Input: sentence = "lets go for swimming"
Output: "swimming"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
| null |
def words_in_sentence(sentence):
"""
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
"""
new_lst = []
for word in sentence.split():
flg = 0
if len(word) == 1:
flg = 1
for i in range(2, len(word)):
if len(word)%i == 0:
flg = 1
if flg == 0 or len(word) == 2:
new_lst.append(word)
return " ".join(new_lst)
| [{'input': '"This is a test"', 'output': 'is', 'relation': '=='}, {'input': '"lets go for swimming"', 'output': 'go for', 'relation': '=='}, {'input': '"there is no place available here"', 'output': 'there is no place', 'relation': '=='}, {'input': '"Hi I am Hussein"', 'output': 'Hi am Hussein', 'relation': '=='}, {'input': '"go for it"', 'output': 'go for it', 'relation': '=='}, {'input': '"here"', 'output': '', 'relation': '=='}, {'input': '"here is"', 'output': 'is', 'relation': '=='}] |
simplify | HumanEval/144 |
def simplify(x, n):
"""Your task is to implement a function that will simplify the expression
x * n. The function returns True if x * n evaluates to a whole number and False
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = True
simplify("1/6", "2/1") = False
simplify("7/10", "10/2") = False
"""
|
def simplify(a, b):
"""Your task is to implement a function that will simplify the expression
x * n, or x + n. The function returns True if x * n or x + n evaluates to a whole number and False
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = True
simplify("1/6", "2/1") = False
simplify("7/10", "10/2") = False
"""
|
def simplify(x, n):
"""Your task is to implement a function that will simplify the expression
x * n. The function returns True if x * n evaluates to a whole number and False
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = False
simplify("1/6", "2/1") = True
simplify("7/10", "10/2") = True
"""
|
def simplify(x, n):
"""Your task is to implement a function that will simplify the expression
You can assume that x, and n are valid fractions, and do not have zero as denominator.
"""
|
def simplify(a, b):
"""Your task is to implement a function that will simplify the expression
x * n, or x + n. The function returns True if x * n or x + n evaluates to a whole number and False
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = False
simplify("1/6", "2/1") = True
simplify("7/10", "10/2") = True
"""
| null | null | null |
def simplify(x, n):
"""Your task is to implement a function that will simplify the expression
x * n. The function returns True if x * n evaluates to a whole number and False
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = True
simplify("1/6", "2/1") = False
simplify("7/10", "10/2") = False
"""
a, b = x.split("/")
c, d = n.split("/")
numerator = int(a) * int(c)
denom = int(b) * int(d)
if (numerator/denom == int(numerator/denom)):
return True
return False
| [{'input': '"1/5", "5/1"', 'output': 'True', 'relation': '=='}, {'input': '"1/6", "2/1"', 'output': 'False', 'relation': '=='}, {'input': '"5/1", "3/1"', 'output': 'True', 'relation': '=='}, {'input': '"7/10", "10/2"', 'output': 'False', 'relation': '=='}, {'input': '"2/10", "50/10"', 'output': 'True', 'relation': '=='}, {'input': '"7/2", "4/2"', 'output': 'True', 'relation': '=='}, {'input': '"11/6", "6/1"', 'output': 'True', 'relation': '=='}, {'input': '"2/3", "5/2"', 'output': 'False', 'relation': '=='}, {'input': '"5/2", "3/5"', 'output': 'False', 'relation': '=='}, {'input': '"2/4", "8/4"', 'output': 'True', 'relation': '=='}, {'input': '"2/4", "4/2"', 'output': 'True', 'relation': '=='}, {'input': '"1/5", "5/1"', 'output': 'True', 'relation': '=='}, {'input': '"1/5", "1/5"', 'output': 'False', 'relation': '=='}] |
order_by_points | HumanEval/145 |
def order_by_points(nums):
"""
Write a function which sorts the given list of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
>>> order_by_points([]) == []
"""
|
def candidate(nums):
"""
Write a function which sorts the given list of integers
in descending or ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
>>> candidate([]) == []
"""
|
def order_by_points(nums):
"""
Write a function which sorts the given list of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> order_by_points([1, 11, -1, -11, -12]) == [1, 11, -1, -12, -11]
>>> order_by_points([]) == []
"""
|
def candidate(nums):
"""
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
>>> candidate([]) == []
"""
|
def candidate(nums):
"""
Write a function which sorts the given list of integers
in descending or ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> candidate([1, 11, -1, -11, -12]) == [1, 11, -1, -12, -11]
>>> candidate([]) == []
"""
| null |
def candidate(nums):
"""
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> candidate([1, 11, -1, -11, -12]) == [1, 11, -1, -12, -11]
>>> candidate([]) == []
"""
| null |
def order_by_points(nums):
"""
Write a function which sorts the given list of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original list.
For example:
>>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
>>> order_by_points([]) == []
"""
def digits_sum(n):
neg = 1
if n < 0: n, neg = -1 * n, -1
n = [int(i) for i in str(n)]
n[0] = n[0] * neg
return sum(n)
return sorted(nums, key=digits_sum)
| [{'input': '[1, 11, -1, -11, -12]', 'output': '[-1, -11, 1, -12, 11]', 'relation': '=='}, {'input': '[1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]', 'output': '[0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, -11, -32, 43, 54, -98, 2, -3]', 'output': '[-3, -32, -98, -11, 1, 2, 43, 54]', 'relation': '=='}, {'input': '[1,2,3,4,5,6,7,8,9,10,11]', 'output': '[1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9]', 'relation': '=='}, {'input': '[0,6,6,-76,-21,23,4]', 'output': '[-76, -21, 0, 4, 23, 6, 6]', 'relation': '=='}] |
specialFilter | HumanEval/146 |
def specialFilter(nums):
"""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""
|
def specialFilter(nums):
"""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are less than or greater than or exactly 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9) or even (0, 2, 4, 6, 8).
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""
|
def specialFilter(nums):
"""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter([15, -73, 14, -15]) => 15
specialFilter([33, -2, -3, 45, 21, 109]) => 45
"""
|
def specialFilter(nums):
"""Write a function that takes an array of numbers as input.
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""
|
def specialFilter(nums):
"""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are less than or greater than or exactly 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9) or even (0, 2, 4, 6, 8).
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""
| null |
def specialFilter(nums):
"""Write a function that takes an array of numbers as input.
For example:
specialFilter([15, -73, 14, -15]) => 15
specialFilter([33, -2, -3, 45, 21, 109]) => 45
"""
| null |
def specialFilter(nums):
"""Write a function that takes an array of numbers as input and returns
the number of elements in the array that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""
count = 0
for num in nums:
if num > 10:
odd_digits = (1, 3, 5, 7, 9)
number_as_string = str(num)
if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits:
count += 1
return count
| [{'input': '[5, -2, 1, -5]', 'output': '0 ', 'relation': '=='}, {'input': '[15, -73, 14, -15]', 'output': '1', 'relation': '=='}, {'input': '[33, -2, -3, 45, 21, 109]', 'output': '2', 'relation': '=='}, {'input': '[43, -12, 93, 125, 121, 109]', 'output': '4', 'relation': '=='}, {'input': '[71, -2, -33, 75, 21, 19]', 'output': '3', 'relation': '=='}, {'input': '[1]', 'output': '0 ', 'relation': '=='}, {'input': '[]', 'output': '0 ', 'relation': '=='}] |
get_max_triples | HumanEval/147 |
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
"""
|
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i + i - 1 or a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
"""
|
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 0
Explanation:
a = [1, 3, 7, 13, 21]
There is no valid triple.
"""
|
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i - i + 1.
"""
|
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i + i - 1 or a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 0
Explanation:
a = [1, 3, 7, 13, 21]
There is no valid triple.
"""
|
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i + i - 1 or a[i] = i * i - i + 1.
"""
| null | null |
def get_max_triples(n):
"""
You are given a positive integer n. You have to create an integer array a of length n.
For each i (1 β€ i β€ n), the value of a[i] = i * i - i + 1.
Return the number of triples (a[i], a[j], a[k]) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = [1, 3, 7, 13, 21]
The only valid triple is (1, 7, 13).
"""
A = [i*i - i + 1 for i in range(1,n+1)]
ans = []
for i in range(n):
for j in range(i+1,n):
for k in range(j+1,n):
if (A[i]+A[j]+A[k])%3 == 0:
ans += [(A[i],A[j],A[k])]
return len(ans)
| [{'input': '5', 'output': '1', 'relation': '=='}, {'input': '6', 'output': '4', 'relation': '=='}, {'input': '10', 'output': '36', 'relation': '=='}, {'input': '100', 'output': '53361', 'relation': '=='}] |
bf | HumanEval/148 |
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty tuple if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus")
bf("Earth", "Mercury") ==> ("Venus")
bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn")
'''
|
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing only one or all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty tuple if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus")
bf("Earth", "Mercury") ==> ("Venus")
bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn")
'''
|
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty tuple if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> ("abcSaturn", "abcUranus")
bf("Earth", "Mercury") ==> ("abcVenus")
bf("Mercury", "Uranus") ==> ("abcVenus", "abcEarth", "abcMars", "abcJupiter", "abcSaturn")
'''
|
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
'''
|
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing only one or all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty tuple if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> ("abcSaturn", "abcUranus")
bf("Earth", "Mercury") ==> ("abcVenus")
bf("Mercury", "Uranus") ==> ("abcVenus", "abcEarth", "abcMars", "abcJupiter", "abcSaturn")
'''
| null | null | null |
def bf(planet1, planet2):
'''
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a tuple containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty tuple if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus")
bf("Earth", "Mercury") ==> ("Venus")
bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn")
'''
planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune")
if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2:
return ()
planet1_index = planet_names.index(planet1)
planet2_index = planet_names.index(planet2)
if planet1_index < planet2_index:
return (planet_names[planet1_index + 1: planet2_index])
else:
return (planet_names[planet2_index + 1 : planet1_index])
| [{'input': '"Jupiter", "Neptune"', 'output': "('Saturn', 'Uranus')", 'relation': '=='}, {'input': '"Earth", "Mercury"', 'output': "('Venus',)", 'relation': '=='}, {'input': '"Mercury", "Uranus"', 'output': "('Venus', 'Earth', 'Mars', 'Jupiter', 'Saturn')", 'relation': '=='}, {'input': '"Neptune", "Venus"', 'output': "('Earth', 'Mars', 'Jupiter', 'Saturn', 'Uranus')", 'relation': '=='}, {'input': '"Earth", "Earth"', 'output': '()', 'relation': '=='}, {'input': '"Mars", "Earth"', 'output': '()', 'relation': '=='}, {'input': '"Jupiter", "Makemake"', 'output': '()', 'relation': '=='}] |
sorted_list_sum | HumanEval/149 |
def sorted_list_sum(lst):
"""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted list with a sorted order,
The list is always a list of strings and never an array of numbers,
and it may contain duplicates.
The order of the list should be ascending by length of each word, and you
should return the list sorted by that rule.
If two words have the same length, sort the list alphabetically.
The function should return a list of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert list_sort(["aa", "a", "aaa"]) => ["aa"]
assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"]
"""
|
def sorted_list_sum(lst):
"""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted list with a sorted order,
The list is always a list of strings and never an array of numbers,
and it may contain duplicates.
The order of the list should be descending or ascending by length of each word, and you
should return the list sorted by that rule.
If two words have the same length, sort the list descendingly or ascendingly or alphabetically.
The function should return a list of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert list_sort(["aa", "a", "aaa"]) => ["aa"]
assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"]
"""
|
def sorted_list_sum(lst):
"""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted list with a sorted order,
The list is always a list of strings and never an array of numbers,
and it may contain duplicates.
The order of the list should be ascending by length of each word, and you
should return the list sorted by that rule.
If two words have the same length, sort the list alphabetically.
The function should return a list of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert list_sort(["aa", "a", "aaa"]) => ["a"]
assert list_sort(["ab", "a", "aaa", "cd"]) => ["a", "aaa"]
"""
|
def candidate(lst):
"""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
"""
|
def sorted_list_sum(lst):
"""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted list with a sorted order,
The list is always a list of strings and never an array of numbers,
and it may contain duplicates.
The order of the list should be descending or ascending by length of each word, and you
should return the list sorted by that rule.
If two words have the same length, sort the list descendingly or ascendingly or alphabetically.
The function should return a list of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert list_sort(["aa", "a", "aaa"]) => ["a"]
assert list_sort(["ab", "a", "aaa", "cd"]) => ["a", "aaa"]
"""
| null | null | null |
def sorted_list_sum(lst):
"""Write a function that accepts a list of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted list with a sorted order,
The list is always a list of strings and never an array of numbers,
and it may contain duplicates.
The order of the list should be ascending by length of each word, and you
should return the list sorted by that rule.
If two words have the same length, sort the list alphabetically.
The function should return a list of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert list_sort(["aa", "a", "aaa"]) => ["aa"]
assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"]
"""
lst.sort()
new_lst = []
for i in lst:
if len(i)%2 == 0:
new_lst.append(i)
return sorted(new_lst, key=len)
| [{'input': '["aa", "a", "aaa"]', 'output': "['aa']", 'relation': '=='}, {'input': '["school", "AI", "asdf", "b"]', 'output': "['AI', 'asdf', 'school']", 'relation': '=='}, {'input': '["d", "b", "c", "a"]', 'output': '[]', 'relation': '=='}, {'input': '["d", "dcba", "abcd", "a"]', 'output': "['abcd', 'dcba']", 'relation': '=='}, {'input': '["AI", "ai", "au"]', 'output': "['AI', 'ai', 'au']", 'relation': '=='}, {'input': '["a", "b", "b", "c", "c", "a"]', 'output': '[]', 'relation': '=='}, {'input': "['aaaa', 'bbbb', 'dd', 'cc']", 'output': "['cc', 'dd', 'aaaa', 'bbbb']", 'relation': '=='}] |
x_or_y | HumanEval/150 |
def x_or_y(n, x, y):
"""A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5
"""
|
def x_or_y(a, b, c):
"""A simple program which should return the value of x if n is
a certain type of number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5
"""
|
def x_or_y(n, x, y):
"""A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 12
for x_or_y(15, 8, 5) == 8
"""
|
def x_or_y(n, x, y):
"""
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5
"""
|
def x_or_y(a, b, c):
"""A simple program which should return the value of x if n is
a certain type of number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 12
for x_or_y(15, 8, 5) == 8
"""
| null |
def x_or_y(n, x, y):
"""
Examples:
for x_or_y(7, 34, 12) == 12
for x_or_y(15, 8, 5) == 8
"""
| null |
def x_or_y(n, x, y):
"""A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5
"""
if n == 1:
return y
for i in range(2, n):
if n % i == 0:
return y
break
else:
return x
| [{'input': '7, 34, 12', 'output': '34', 'relation': '=='}, {'input': '15, 8, 5', 'output': '5', 'relation': '=='}, {'input': '3, 33, 5212', 'output': '33', 'relation': '=='}, {'input': '1259, 3, 52', 'output': '3', 'relation': '=='}, {'input': '7919, -1, 12', 'output': '-1', 'relation': '=='}, {'input': '3609, 1245, 583', 'output': '583', 'relation': '=='}, {'input': '91, 56, 129', 'output': '129', 'relation': '=='}, {'input': '6, 34, 1234', 'output': '1234', 'relation': '=='}, {'input': '1, 2, 0', 'output': '0', 'relation': '=='}, {'input': '2, 2, 0', 'output': '2', 'relation': '=='}] |
double_the_difference | HumanEval/151 |
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are even or odd. Ignore numbers that are negative or not integers.
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
double_the_difference([1, 3, 2, 0]) == 0 + 0 + 4 + 0 = 4
double_the_difference([-1, -2, 0]) == 4
double_the_difference([9, -2]) == 4
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are even or
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are
double_the_difference([1, 3, 2, 0]) == 0 + 0 + 4 + 0 = 4
double_the_difference([-1, -2, 0]) == 4
double_the_difference([9, -2]) == 4
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are even or
double_the_difference([1, 3, 2, 0]) == 0 + 0 + 4 + 0 = 4
double_the_difference([-1, -2, 0]) == 4
double_the_difference([9, -2]) == 4
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
|
def double_the_difference(lst):
'''
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
double_the_difference([-1, -2, 0]) == 0
double_the_difference([9, -2]) == 81
double_the_difference([0]) == 0
If the input list is empty, return 0.
'''
return sum([i**2 for i in lst if i > 0 and i%2!=0 and "." not in str(i)])
| [{'input': '[]', 'output': '0 ', 'relation': '=='}, {'input': '[5, 4]', 'output': '25 ', 'relation': '=='}, {'input': '[0.1, 0.2, 0.3]', 'output': '0 ', 'relation': '=='}, {'input': '[-10, -20, -30]', 'output': '0 ', 'relation': '=='}, {'input': '[-1, -2, 8]', 'output': '0', 'relation': '=='}, {'input': '[0.2, 3, 5]', 'output': '34', 'relation': '=='}, {'input': '[-99, -97, -95, -93, -91, -89, -87, -85, -83, -81, -79, -77, -75, -73, -71, -69, -67, -65, -63, -61, -59, -57, -55, -53, -51, -49, -47, -45, -43, -41, -39, -37, -35, -33, -31, -29, -27, -25, -23, -21, -19, -17, -15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99]', 'output': '166650', 'relation': '=='}] |
compare | HumanEval/152 |
def compare(game,guess):
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
"""
|
def compare(game,guess):
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 1 or 2 or 0, and if not, the value is the relative or absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
"""
|
def compare(game,guess):
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [1,2,3,4,7,-1]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,6,1,0,0,2]
"""
|
def compare(game,guess):
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
"""
|
def compare(game,guess):
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 1 or 2 or 0, and if not, the value is the relative or absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [1,2,3,4,7,-1]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,6,1,0,0,2]
"""
| null | null | null |
def compare(game,guess):
"""I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
"""
return [abs(x-y) for x,y in zip(game,guess)]
| [{'input': '[1,2,3,4,5,1],[1,2,3,4,2,-2]', 'output': '[0, 0, 0, 0, 3, 3]', 'relation': '=='}, {'input': '[0,0,0,0,0,0],[0,0,0,0,0,0]', 'output': '[0, 0, 0, 0, 0, 0]', 'relation': '=='}, {'input': '[1,2,3],[-1,-2,-3]', 'output': '[2, 4, 6]', 'relation': '=='}, {'input': '[1,2,3,5],[-1,2,3,4]', 'output': '[2, 0, 0, 1]', 'relation': '=='}] |
Strongest_Extension | HumanEval/153 |
def Strongest_Extension(class_name, extensions):
"""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the list.
For example, if you are given "Slices" as the class and a list of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA'
"""
|
def Extension(class_name, extensions):
"""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the weakest or strongest extension and return a string in this
format: ClassName.ExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the list.
For example, if you are given "Slices" as the class and a list of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the weakest or strongest extension
(its strength is -1).
Example:
for Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA'
"""
|
def Strongest_Extension(class_name, extensions):
"""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the list.
For example, if you are given "Slices" as the class and a list of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.Cheese' since 'Cheese' is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.Be'
"""
|
def Strongest_Extension(class_name, extensions):
"""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
"""
|
def Extension(class_name, extensions):
"""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the weakest or strongest extension and return a string in this
format: ClassName.ExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the list.
For example, if you are given "Slices" as the class and a list of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.Cheese' since 'Cheese' is the weakest or strongest extension
(its strength is -1).
Example:
for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.Be'
"""
| null | null | null |
def Strongest_Extension(class_name, extensions):
"""You will be given the name of a class (a string) and a list of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the list.
For example, if you are given "Slices" as the class and a list of the
extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should
return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA'
"""
strong = extensions[0]
my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()])
for s in extensions:
val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()])
if val > my_val:
strong = s
my_val = val
ans = class_name + "." + strong
return ans
| [{'input': "'Watashi', ['tEN', 'niNE', 'eIGHt8OKe']", 'output': 'Watashi.eIGHt8OKe', 'relation': '=='}, {'input': "'Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']", 'output': 'Boku123.YEs.WeCaNe', 'relation': '=='}, {'input': "'__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']", 'output': '__YESIMHERE.NuLl__', 'relation': '=='}, {'input': "'K', ['Ta', 'TAR', 't234An', 'cosSo']", 'output': 'K.TAR', 'relation': '=='}, {'input': "'__HAHA', ['Tab', '123', '781345', '-_-']", 'output': '__HAHA.123', 'relation': '=='}, {'input': "'YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']", 'output': 'YameRore.okIWILL123', 'relation': '=='}, {'input': "'finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']", 'output': 'finNNalLLly.WoW', 'relation': '=='}, {'input': "'_', ['Bb', '91245']", 'output': '_.Bb', 'relation': '=='}, {'input': "'Sp', ['671235', 'Bb']", 'output': 'Sp.671235', 'relation': '=='}] |
cycpattern_check | HumanEval/154 |
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word
cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True
"""
|
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is related to the first word
cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True
"""
|
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word
cycpattern_check("abcd","abd") => True
cycpattern_check("hello","ell") => False
cycpattern_check("whassup","psus") => True
cycpattern_check("abab","baa") => False
cycpattern_check("efef","eeff") => True
cycpattern_check("himenss","simen") => False
"""
|
def candidate(a , b):
"""
candidate("abcd","abd") => False
candidate("hello","ell") => True
candidate("whassup","psus") => False
candidate("abab","baa") => True
candidate("efef","eeff") => False
candidate("himenss","simen") => True
"""
|
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is related to the first word
cycpattern_check("abcd","abd") => True
cycpattern_check("hello","ell") => False
cycpattern_check("whassup","psus") => True
cycpattern_check("abab","baa") => False
cycpattern_check("efef","eeff") => True
cycpattern_check("himenss","simen") => False
"""
| null |
def candidate(a , b):
"""
candidate("abcd","abd") => True
candidate("hello","ell") => False
candidate("whassup","psus") => True
candidate("abab","baa") => False
candidate("efef","eeff") => True
candidate("himenss","simen") => False
"""
| null |
def cycpattern_check(a , b):
"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word
cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True
"""
l = len(b)
pat = b + b
for i in range(len(a) - l + 1):
for j in range(l + 1):
if a[i:i+l] == pat[j:j+l]:
return True
return False
| [{'input': '"xyzw","xyw"', 'output': 'False ', 'relation': '=='}, {'input': '"yello","ell"', 'output': 'True ', 'relation': '=='}, {'input': '"whattup","ptut"', 'output': 'False ', 'relation': '=='}, {'input': '"efef","fee"', 'output': 'True ', 'relation': '=='}, {'input': '"abab","aabb"', 'output': 'False ', 'relation': '=='}, {'input': '"winemtt","tinem"', 'output': 'True ', 'relation': '=='}] |
even_odd_count | HumanEval/155 |
def even_odd_count(num):
"""Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)
"""
|
def candidate(num):
"""Given an integer. return a tuple that has the number of odd or even digits, and odd or even digits, respectively.
Example:
candidate(-12) ==> (1, 1)
candidate(123) ==> (1, 2)
"""
|
def even_odd_count(num):
"""Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> (1, 1)
even_odd_count(123) ==> (2, 1)
"""
|
def candidate(num):
"""Example:
candidate(-12) ==> (1, 1)
candidate(123) ==> (1, 2)
"""
| null | null |
def candidate(num):
"""Example:
candidate(-12) ==> (1, 1)
candidate(123) ==> (2, 1)
"""
| null |
def even_odd_count(num):
"""Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)
"""
even_count = 0
odd_count = 0
for i in str(abs(num)):
if int(i)%2==0:
even_count +=1
else:
odd_count +=1
return (even_count, odd_count)
| [{'input': '7', 'output': '(0, 1)', 'relation': '=='}, {'input': '-78', 'output': '(1, 1)', 'relation': '=='}, {'input': '3452', 'output': '(2, 2)', 'relation': '=='}, {'input': '346211', 'output': '(3, 3)', 'relation': '=='}, {'input': '-345821', 'output': '(3, 3)', 'relation': '=='}, {'input': '-2', 'output': '(1, 0)', 'relation': '=='}, {'input': '-45347', 'output': '(2, 3)', 'relation': '=='}, {'input': '0', 'output': '(1, 0)', 'relation': '=='}] |
int_to_mini_roman | HumanEval/156 |
def int_to_mini_roman(number):
"""
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == 'xix'
>>> int_to_mini_roman(152) == 'clii'
>>> int_to_mini_roman(426) == 'cdxxvi'
"""
|
def candidate(number):
"""
Given a positive integer, obtain its binary or hexadecimal or roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> candidate(19) == '1100'
>>> candidate(152) == '111000'
>>> candidate(426) == '11111'
"""
|
def int_to_mini_roman(number):
"""
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == 'xix'
>>> int_to_mini_roman(152) == 'iilc'
>>> int_to_mini_roman(426) == 'ivxxdc'
"""
|
def candidate(number):
"""
Restrictions: 1 <= num <= 1000
Examples:
>>> candidate(19) == 'xix'
>>> candidate(152) == 'clii'
>>> candidate(426) == 'cdxxvi'
"""
|
def candidate(number):
"""
Given a positive integer, obtain its binary or hexadecimal or roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> candidate(19) == 'xix'
>>> candidate(152) == 'iilc'
>>> candidate(426) == 'ivxxdc'
"""
| null |
def candidate(number):
"""
Restrictions: 1 <= num <= 1000
Examples:
>>> candidate(19) == 'xix'
>>> candidate(152) == 'iilc'
>>> candidate(426) == 'ivxxdc'
"""
| null |
def int_to_mini_roman(number):
"""
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == 'xix'
>>> int_to_mini_roman(152) == 'clii'
>>> int_to_mini_roman(426) == 'cdxxvi'
"""
num = [1, 4, 5, 9, 10, 40, 50, 90,
100, 400, 500, 900, 1000]
sym = ["I", "IV", "V", "IX", "X", "XL",
"L", "XC", "C", "CD", "D", "CM", "M"]
i = 12
res = ''
while number:
div = number // num[i]
number %= num[i]
while div:
res += sym[i]
div -= 1
i -= 1
return res.lower()
| [{'input': '19', 'output': 'xix', 'relation': '=='}, {'input': '152', 'output': 'clii', 'relation': '=='}, {'input': '251', 'output': 'ccli', 'relation': '=='}, {'input': '426', 'output': 'cdxxvi', 'relation': '=='}, {'input': '500', 'output': 'd', 'relation': '=='}, {'input': '1', 'output': 'i', 'relation': '=='}, {'input': '4', 'output': 'iv', 'relation': '=='}, {'input': '43', 'output': 'xliii', 'relation': '=='}, {'input': '90', 'output': 'xc', 'relation': '=='}, {'input': '94', 'output': 'xciv', 'relation': '=='}, {'input': '532', 'output': 'dxxxii', 'relation': '=='}, {'input': '900', 'output': 'cm', 'relation': '=='}, {'input': '994', 'output': 'cmxciv', 'relation': '=='}, {'input': '1000', 'output': 'm', 'relation': '=='}] |
right_angle_triangle | HumanEval/157 |
def right_angle_triangle(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return True if the three
sides form a right-angled triangle, False otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == True
right_angle_triangle(1, 2, 3) == False
'''
|
def candidate(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return True if the three
sides form a specific triangle, False otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
candidate(3, 4, 5) == True
candidate(1, 2, 3) == False
'''
|
def right_angle_triangle(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return True if the three
sides form a right-angled triangle, False otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == False
right_angle_triangle(1, 2, 3) == True
'''
|
def candidate(a, b, c):
'''
Given the lengths of the three sides of a triangle.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
'''
|
def candidate(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return True if the three
sides form a specific triangle, False otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
candidate(3, 4, 5) == False
candidate(1, 2, 3) == True
'''
| null | null | null |
def right_angle_triangle(a, b, c):
'''
Given the lengths of the three sides of a triangle. Return True if the three
sides form a right-angled triangle, False otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == True
right_angle_triangle(1, 2, 3) == False
'''
return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b
| [{'input': '3, 4, 5', 'output': 'True', 'relation': '=='}, {'input': '1, 2, 3', 'output': 'False', 'relation': '=='}, {'input': '10, 6, 8', 'output': 'True', 'relation': '=='}, {'input': '2, 2, 2', 'output': 'False', 'relation': '=='}, {'input': '7, 24, 25', 'output': 'True', 'relation': '=='}, {'input': '10, 5, 7', 'output': 'False', 'relation': '=='}, {'input': '5, 12, 13', 'output': 'True', 'relation': '=='}, {'input': '15, 8, 17', 'output': 'True', 'relation': '=='}, {'input': '48, 55, 73', 'output': 'True', 'relation': '=='}, {'input': '1, 1, 1', 'output': 'False', 'relation': '=='}, {'input': '2, 2, 10', 'output': 'False', 'relation': '=='}] |
find_max | HumanEval/158 |
def find_max(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max(["name", "of", "string"]) == "string"
find_max(["name", "enam", "game"]) == "enam"
find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa"
"""
|
def candidate(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word with minimum or maximum number
of unique characters. If multiple strings have minimum or maximum number of unique
characters, return the one which comes first in lexicographical order.
candidate(["name", "of", "string"]) == "string"
candidate(["name", "enam", "game"]) == "enam"
candidate(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa"
"""
|
def find_max(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max(["name", "of", "string"]) == "of"
find_max(["name", "enam", "game"]) == "name"
find_max(["aaaaaaa", "bb" ,"cc"]) == ""bb"
"""
|
def find_max(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word
"""
|
def candidate(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word with minimum or maximum number
of unique characters. If multiple strings have minimum or maximum number of unique
characters, return the one which comes first in lexicographical order.
candidate(["name", "of", "string"]) == "of"
candidate(["name", "enam", "game"]) == "name"
candidate(["aaaaaaa", "bb" ,"cc"]) == ""bb"
"""
| null | null | null |
def find_max(words):
"""Write a function that accepts a list of strings.
The list contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max(["name", "of", "string"]) == "string"
find_max(["name", "enam", "game"]) == "enam"
find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa"
"""
return sorted(words, key = lambda x: (-len(set(x)), x))[0]
| [{'input': '["name", "of", "string"]', 'output': 'string', 'relation': '=='}, {'input': '["name", "enam", "game"]', 'output': 'enam', 'relation': '=='}, {'input': '["aaaaaaa", "bb", "cc"]', 'output': 'aaaaaaa', 'relation': '=='}, {'input': '["abc", "cba"]', 'output': 'abc', 'relation': '=='}, {'input': '["play", "this", "game", "of","footbott"]', 'output': 'footbott', 'relation': '=='}, {'input': '["we", "are", "gonna", "rock"]', 'output': 'gonna', 'relation': '=='}, {'input': '["we", "are", "a", "mad", "nation"]', 'output': 'nation', 'relation': '=='}, {'input': '["this", "is", "a", "prrk"]', 'output': 'this', 'relation': '=='}, {'input': '["b"]', 'output': 'b', 'relation': '=='}, {'input': '["play", "play", "play"]', 'output': 'play', 'relation': '=='}] |
eat | HumanEval/159 |
def eat(number, need, remaining):
"""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> [11, 4]
* eat(4, 8, 9) -> [12, 1]
* eat(1, 10, 10) -> [11, 0]
* eat(2, 11, 5) -> [7, 0]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
"""
|
def eat(x, y, z):
"""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat no or more carrots to complete the day's meals.
you should return an array of [ total number of needed or eaten carrots before or after your meals,
the number of carrots needed or eaten left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> [11, 4]
* eat(4, 8, 9) -> [12, 1]
* eat(1, 10, 10) -> [11, 0]
* eat(2, 11, 5) -> [7, 0]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
"""
|
def eat(number, need, remaining):
"""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> [11, 10]
* eat(4, 8, 9) -> [12, 9]
* eat(1, 10, 10) -> [11, 10]
* eat(2, 11, 5) -> [7, 5]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
"""
|
def eat(number, need, remaining):
"""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
"""
|
def eat(x, y, z):
"""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat no or more carrots to complete the day's meals.
you should return an array of [ total number of needed or eaten carrots before or after your meals,
the number of carrots needed or eaten left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> [11, 10]
* eat(4, 8, 9) -> [12, 9]
* eat(1, 10, 10) -> [11, 10]
* eat(2, 11, 5) -> [7, 5]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
"""
| null | null | null |
def eat(number, need, remaining):
"""
You're a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return an array of [ total number of eaten carrots after your meals,
the number of carrots left after your meals ]
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> [11, 4]
* eat(4, 8, 9) -> [12, 1]
* eat(1, 10, 10) -> [11, 0]
* eat(2, 11, 5) -> [7, 0]
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
"""
if(need <= remaining):
return [ number + need , remaining-need ]
else:
return [ number + remaining , 0]
| [{'input': '5, 6, 10', 'output': '[11, 4]', 'relation': '=='}, {'input': '4, 8, 9', 'output': '[12, 1]', 'relation': '=='}, {'input': '1, 10, 10', 'output': '[11, 0]', 'relation': '=='}, {'input': '2, 11, 5', 'output': '[7, 0]', 'relation': '=='}, {'input': '4, 5, 7', 'output': '[9, 2]', 'relation': '=='}, {'input': '4, 5, 1', 'output': '[5, 0]', 'relation': '=='}] |
do_algebra | HumanEval/160 |
def do_algebra(operator, operand):
"""
Given two lists operator, and operand. The first list has basic algebra operations, and
the second list is a list of integers. Use the two given lists to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator list is equal to the length of operand list minus one.
Operand is a list of of non-negative integers.
Operator list has at least one operator, and operand list has at least two operands.
"""
|
def do_algebra(list1, list2):
"""
Given two lists, use the two given lists to build the algebric
expression and return a certain form of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator list is equal to the length of operand list minus one.
Operand is a list of of non-negative integers.
Operator list has at least one operator, and operand list has at least two operands.
"""
|
def do_algebra(operator, operand):
"""
Given two lists operator, and operand. The first list has basic algebra operations, and
the second list is a list of integers. Use the two given lists to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 2 * 4 - 5
=> result = 5
Note:
The length of operator list is equal to the length of operand list minus one.
Operand is a list of of non-negative integers.
Operator list has at least one operator, and operand list has at least two operands.
"""
|
def do_algebra(operator, operand):
"""
Given two lists operator, and operand. The first list has basic algebra operations, and
the second list is a list of integers.
"""
|
def do_algebra(list1, list2):
"""
Given two lists, use the two given lists to build the algebric
expression and return a certain form of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 2 * 4 - 5
=> result = 5
Note:
The length of operator list is equal to the length of operand list minus one.
Operand is a list of of non-negative integers.
Operator list has at least one operator, and operand list has at least two operands.
"""
|
def do_algebra(list1, list2):
"""
Given two lists, use the two given lists to build the algebric
"""
| null | null |
def do_algebra(operator, operand):
"""
Given two lists operator, and operand. The first list has basic algebra operations, and
the second list is a list of integers. Use the two given lists to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator['+', '*', '-']
array = [2, 3, 4, 5]
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator list is equal to the length of operand list minus one.
Operand is a list of of non-negative integers.
Operator list has at least one operator, and operand list has at least two operands.
"""
expression = str(operand[0])
for oprt, oprn in zip(operator, operand[1:]):
expression+= oprt + str(oprn)
return eval(expression)
| [{'input': "['**', '*', '+'], [2, 3, 4, 5]", 'output': '37', 'relation': '=='}, {'input': "['+', '*', '-'], [2, 3, 4, 5]", 'output': '9', 'relation': '=='}, {'input': "['//', '*'], [7, 3, 4]", 'output': '8', 'relation': '=='}] |
solve | HumanEval/161 |
def solve(s):
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
"""
|
def solve(s):
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, perform some transformation.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
"""
|
def solve(s):
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "1234"
solve("ab") = "ab"
solve("#a@C") = "#a@C"
"""
|
def solve(s):
"""
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
"""
|
def solve(s):
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, perform some transformation.
The function should return the resulted string.
Examples
solve("1234") = "1234"
solve("ab") = "ab"
solve("#a@C") = "#a@C"
"""
| null |
def solve(s):
"""
The function should return the resulted string.
Examples
solve("1234") = "1234"
solve("ab") = "ab"
solve("#a@C") = "#a@C"
"""
| null |
def solve(s):
"""You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
"""
flg = 0
idx = 0
new_str = list(s)
for i in s:
if i.isalpha():
new_str[idx] = i.swapcase()
flg = 1
idx += 1
s = ""
for i in new_str:
s += i
if flg == 0:
return s[len(s)::-1]
return s
| [{'input': '"AsDf"', 'output': 'aSdF', 'relation': '=='}, {'input': '"1234"', 'output': '4321', 'relation': '=='}, {'input': '"ab"', 'output': 'AB', 'relation': '=='}, {'input': '"#a@C"', 'output': '#A@c', 'relation': '=='}, {'input': '"#AsdfW^45"', 'output': '#aSDFw^45', 'relation': '=='}, {'input': '"#6@2"', 'output': '2@6#', 'relation': '=='}, {'input': '"#$a^D"', 'output': '#$A^d', 'relation': '=='}, {'input': '"#ccc"', 'output': '#CCC', 'relation': '=='}] |
string_to_md5 | HumanEval/162 |
def string_to_md5(text):
"""
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return None.
>>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'
"""
|
def candidate(text):
"""
Given a string 'text', return its ideal hash equivalent string.
If 'text' is an empty string, return None.
>>> candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'
"""
|
def string_to_md5(text):
"""
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return None.
>>> string_to_md5('Hello world') == '12345'
"""
|
def candidate(text):
"""
>>> candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'
"""
|
def string_to_md5(text):
"""
Given a string 'text', return its ideal hash equivalent string.
If 'text' is an empty string, return None.
>>> string_to_md5('Hello world') == '12345'
"""
| null |
def candidate(text):
"""
>>> candidate('Hello world') == '12345'
"""
| null |
def string_to_md5(text):
"""
Given a string 'text', return its md5 hash equivalent string.
If 'text' is an empty string, return None.
>>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62'
"""
import hashlib
return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
| [{'input': "'Hello world'", 'output': '3e25960a79dbc69b674cd4ec67a72c62', 'relation': '=='}, {'input': "''", 'output': 'None', 'relation': '=='}, {'input': "'A B C'", 'output': '0ef78513b0cb8cef12743f5aeb35f888', 'relation': '=='}, {'input': "'password'", 'output': '5f4dcc3b5aa765d61d8327deb882cf99', 'relation': '=='}] |
generate_integers | HumanEval/163 |
def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""
|
def generate_integers(a, b):
"""
Given two positive integers a and b, return the odd or even digits between a
and b, in descending or ascending order.
For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""
|
def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => [8]
generate_integers(8, 2) => [8]
generate_integers(10, 14) => [14]
"""
|
def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between
"""
|
def generate_integers(a, b):
"""
Given two positive integers a and b, return the odd or even digits between a
and b, in descending or ascending order.
For example:
generate_integers(2, 8) => [8]
generate_integers(8, 2) => [8]
generate_integers(10, 14) => [14]
"""
|
def generate_integers(a, b):
"""
Given two positive integers a and b, return the odd or even digits between
"""
| null | null |
def generate_integers(a, b):
"""
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => [2, 4, 6, 8]
generate_integers(8, 2) => [2, 4, 6, 8]
generate_integers(10, 14) => []
"""
lower = max(2, min(a, b))
upper = min(8, max(a, b))
return [i for i in range(lower, upper+1) if i % 2 == 0]
| [{'input': '2, 10', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '10, 2', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '132, 2', 'output': '[2, 4, 6, 8]', 'relation': '=='}, {'input': '17, 89', 'output': '[]', 'relation': '=='}] |