entry_point
stringlengths
1
30
name
stringlengths
11
13
prompt
stringlengths
115
1.36k
prompt1a
stringlengths
143
1.34k
prompt1c
stringlengths
114
1.36k
βŒ€
prompt1p
stringlengths
62
695
prompt2ac
stringlengths
142
1.34k
βŒ€
prompt2ap
stringlengths
67
629
βŒ€
prompt2cp
stringlengths
82
525
βŒ€
prompt3acp
stringclasses
12 values
solution
stringlengths
132
1.99k
test_case
stringlengths
96
19.6k
has_close_elements
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def candidate(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers meeting a certain condition (e.g. closer to or larger than each other than given threshold). >>> candidate([1.0, 2.0, 3.0], 0.5) False >>> candidate([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers larger than each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def candidate(...) -> bool: """ Check given a list of number."""
from typing import List def candidate(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers meeting a certain condition (e.g. closer to or larger than each other than given threshold). >>> candidate([1.0, 2.0, 3.0], 0.5) True >>> candidate([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) False """
from typing import List def candidate(numbers: List[float], x: float) -> bool: """ given a list of number."""
null
null
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
[{'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3', 'output': 'True', 'relation': '=='}, {'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05', 'output': 'False', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0], 0.95', 'output': 'True', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0], 0.8', 'output': 'False', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1', 'output': 'True', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1], 1.0', 'output': 'True', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1], 0.5', 'output': 'False', 'relation': '=='}]
separate_paren_groups
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
from typing import List def candidate(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other Keep or ignore any spaces in the input string. >>> candidate('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['(', '(', '('] """
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to """
from typing import List def candidate(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other Keep or ignore any spaces in the input string. >>> candidate('( ) (( )) (( )( ))') ['(', '(', '('] """
from typing import List def candidate(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace has a certain requirement to meet) and not nested within each other """
null
null
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """ result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
[{'input': "'(()()) ((())) () ((())()())'", 'output': "['(()())', '((()))', '()', '((())()())']", 'relation': '=='}, {'input': "'() (()) ((())) (((())))'", 'output': "['()', '(())', '((()))', '(((())))']", 'relation': '=='}, {'input': "'(()(())((())))'", 'output': "['(()(())((())))']", 'relation': '=='}, {'input': "'( ) (( )) (( )( ))'", 'output': "['()', '(())', '(()())']", 'relation': '=='}]
truncate_number
HumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
def candidate(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return a certain part of the number (e.g. integer or decimal or another). >>> candidate(3.5) 0.5 """
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 3 """
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). """
def candidate(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return a certain part of the number (e.g. integer or decimal or another) >>> candidate(3.5) 3 """
def candidate(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). """
null
null
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
[{'input': '3.5', 'output': '0.5', 'relation': '=='}, {'input': '1.33', 'output': '1e-6', 'relation': 'abs(candidate(1.33) - 0.33) < 1e-6'}, {'input': '123.456', 'output': '1e-6', 'relation': 'abs(candidate(123.456) - 0.456) < 1e-6'}]
below_zero
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) False """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) True >>> below_zero([1, 2, -4, 5]) False """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero. """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) True >>> below_zero([1, 2, -4, 5]) False """
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with a given balance (e.g. positive or zero). Your task is to detect if at any point the balance of account fallls below zero. """
null
null
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ balance = 0 for op in operations: balance += op if balance < 0: return True return False
[{'input': '[]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, -3, 1, 2, -3]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, -4, 5, 6]', 'output': 'True', 'relation': '=='}, {'input': '[1, -1, 2, -2, 5, -5, 4, -4]', 'output': 'False', 'relation': '=='}, {'input': '[1, -1, 2, -2, 5, -5, 4, -5]', 'output': 'True', 'relation': '=='}, {'input': '[1, -2, 2, -2, 5, -5, 4, -4]', 'output': 'True', 'relation': '=='}]
mean_absolute_deviation
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around a certain attribute (e.g. max or mean or other) of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (e.g. max or mean in this case): MAD = average | x - (e.g. max or mean or other) | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation. """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around a certain attribute (e.g. max or mean or other) of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (e.g. max or mean in this case): MAD = average | x - (e.g. max or mean or other) | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation MAD = average | x - (e.g. max or mean or other) | """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation. >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def candidate(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation. >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.5 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """ mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
[{'input': '[1.0, 2.0, 3.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6'}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '1e-6', 'relation': 'abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6'}]
intersperse
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
from typing import List def candidate(numbers: List[int], x: int) -> List[int]: """ Insert a number 'x' for a certain number of times in the input list `numbers' >>> candidate([], 4) [] >>> candidate([1, 2, 3], 4) [1, 4, 2, 4, 3] """
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [4] >>> intersperse([1, 2, 3], 4) [1, 2, 3, 4] """
from typing import List def candidate(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' """
from typing import List def candidate(numbers: List[int], x: int) -> List[int]: """ Insert a number 'x' for a certain number of times in the input list `numbers' >>> candidate([], 4) [4] >>> candidate([1, 2, 3], 4) [1, 2, 3, 4] """
null
null
null
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """ if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
[{'input': '[], 7', 'output': '[]', 'relation': '=='}, {'input': '[5, 6, 3, 2], 8', 'output': '[5, 8, 6, 8, 3, 8, 2]', 'relation': '=='}, {'input': '[2, 2, 2], 2', 'output': '[2, 2, 2, 2, 2]', 'relation': '=='}]
parse_nested_parens
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
from typing import List def candidate(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> candidate('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (() ()) has maximum two levels of nesting while ((( ))) has three. >>> parse_nested_parens('(()())((()))()((())()())') [2, 3, 1, 3] """
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output an integer """
from typing import List def candidate(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output the deepest level of nesting of parentheses. E.g. (() ()) has maximum two levels of nesting while ((( ))) has three. >>> candidate('(()())((()))()((())()())') [2, 3, 1, 3] """
from typing import List def candidate(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by certain characters. For each of the group, output an integer """
null
null
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """ def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
[{'input': "'(()()) ((())) () ((())()())'", 'output': '[2, 3, 1, 3]', 'relation': '=='}, {'input': "'() (()) ((())) (((())))'", 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': "'(()(())((())))'", 'output': '[4]', 'relation': '=='}]
filter_by_substring
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Process an input list of strings given string x >>> candidate([], 'a') [] >>> candidate(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') ['a'] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['cde'] """
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Process an input list of strings given string x >>> candidate([], 'a') ['a'] >>> candidate(['abc', 'bacd', 'cde', 'array'], 'a') ['cde'] """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Process an input list of strings """
null
null
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """ return [x for x in strings if substring in x]
[{'input': "[], 'john'", 'output': '[]', 'relation': '=='}, {'input': "['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'", 'output': "['xxx', 'xxxAAA', 'xxx']", 'relation': '=='}, {'input': "['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx'", 'output': "['xxx', 'aaaxxy', 'xxxAAA', 'xxx']", 'relation': '=='}, {'input': "['grunt', 'trumpet', 'prune', 'gruesome'], 'run'", 'output': "['grunt', 'prune']", 'relation': '=='}]
sum_product
HumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. Empty sum or product should be equal to either 0 or 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (1, 0) >>> sum_product([1, 2, 3, 4]) (24, 10) """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. Empty sum or product should be equal to either 0 or 1. >>> candidate([]) (1, 0) >>> candidate([1, 2, 3, 4]) (24, 10) """
from typing import List, Tuple def candidate(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of a certain given subset of the integers in a list. """
null
null
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """ sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
[{'input': '[]', 'output': '(0, 1)', 'relation': '=='}, {'input': '[1, 1, 1]', 'output': '(3, 1)', 'relation': '=='}, {'input': '[100, 0]', 'output': '(100, 0)', 'relation': '=='}, {'input': '[3, 5, 7]', 'output': '(15, 105)', 'relation': '=='}, {'input': '[10]', 'output': '(10, 10)', 'relation': '=='}]
rolling_max
HumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling certain type of element (minimal or maximum or other) found until given moment in the sequence. >>> candidate([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 1, 1, 1, 1, 1, 1] """
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling element. """
from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling certain type of element (minimal or maximum or other) found until given moment in the sequence. >>> candidate([1, 2, 3, 2, 3, 4, 2]) [1, 1, 1, 1, 1, 1, 1] """
from typing import List, Tuple def candidate(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling element. """
null
null
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """ running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': '[4, 3, 2, 1]', 'output': '[4, 4, 4, 4]', 'relation': '=='}, {'input': '[3, 2, 3, 100, 3]', 'output': '[3, 3, 3, 100, 100]', 'relation': '=='}]
make_palindrome
HumanEval/10
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def candidate(string: str) -> str: """ Find the longest or shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the shortest or longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> candidate('') '' >>> candidate('cat') 'catac' >>> candidate('cata') 'catac' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'ata' >>> make_palindrome('cata') 'ata' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome. """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def candidate(string: str) -> str: """ Find the longest or shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the shortest or longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> candidate('') '' >>> candidate('cat') 'ata' >>> candidate('cata') 'ata' """
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def candidate(string: str) -> str: """ Find the longest or shortest palindrome. """
null
null
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """ if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
[{'input': "''", 'output': '', 'relation': '=='}, {'input': "'x'", 'output': 'x', 'relation': '=='}, {'input': "'xyz'", 'output': 'xyzyx', 'relation': '=='}, {'input': "'xyx'", 'output': 'xyx', 'relation': '=='}, {'input': "'jerry'", 'output': 'jerryrrej', 'relation': '=='}]
string_xor
HumanEval/11
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """
from typing import List def candidate(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform certain bitwise operation on these inputs and return result also as a string. >>> candidate('010', '110') '100' """
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '011' """
from typing import List def candidate(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. """
from typing import List def candidate(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform certain bitwise operation on these inputs and return result also as a string. >>> candidate('010', '110') '011' """
null
null
null
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """ def xor(i, j): if i == j: return '0' else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
[{'input': "'111000', '101010'", 'output': '010010', 'relation': '=='}, {'input': "'1', '1'", 'output': '0', 'relation': '=='}, {'input': "'0101', '0000'", 'output': '0101', 'relation': '=='}]
longest
HumanEval/12
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """
from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """ Out of list of strings, return a certain one (the shortest or longest or another). Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> candidate([]) >>> candidate(['a', 'b', 'c']) 'a' >>> candidate(['a', 'bb', 'ccc']) 'ccc' """
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'c' >>> longest(['a', 'bb', 'ccc']) 'a' """
from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """ Out of list of strings, return one of them. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. """
from typing import List, Optional def candidate(strings: List[str]) -> Optional[str]: """ Out of list of strings, return a certain one (the shortest or longest or another). Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> candidate([]) >>> candidate(['a', 'b', 'c']) 'c' >>> candidate(['a', 'bb', 'ccc']) 'a' """
null
null
null
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """ if not strings: return None maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
[{'input': '[]', 'output': 'None', 'relation': '=='}, {'input': "['x', 'y', 'z']", 'output': 'x', 'relation': '=='}, {'input': "['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']", 'output': 'zzzz', 'relation': '=='}]
greatest_common_divisor
HumanEval/13
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """
def candidate(a: int, b: int) -> int: """ Return a common divisor of two integers a and b >>> candidate(3, 5) 1 >>> candidate(25, 15) 5 """
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 3 >>> greatest_common_divisor(25, 15) 15 """
def candidate(...) -> int: """ Return a greatest common divisor """
def candidate(a: int, b: int) -> int: """ Return a common divisor of two integers a and b >>> candidate(3, 5) 3 >>> candidate(25, 15) 15 """
def candidate(...) -> int: """ Return a common divisor """
null
null
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """ while b: a, b = b, a % b return a
[{'input': '3, 7', 'output': '1', 'relation': '=='}, {'input': '10, 15', 'output': '5', 'relation': '=='}, {'input': '49, 14', 'output': '7', 'relation': '=='}, {'input': '144, 60', 'output': '12', 'relation': '=='}]
all_prefixes
HumanEval/14
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """
from typing import List def candidate(string: str) -> List[str]: """ Return list of a certain pattern (suffixes or prefixes or other types of substring) from shortest to longest of the input string >>> candidate('abc') ['a', 'ab', 'abc'] """
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['abc', 'ab', 'a'] """
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes """
from typing import List def candidate(string: str) -> List[str]: """ Return list of a certain pattern (suffixes or prefixes or other types of substring) from shortest to longest of the input string >>> candidate('abc') ['abc', 'ab', 'a'] """
from typing import List def candidate(string: str) -> List[str]: """ Return list of a certain patter """
null
null
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """ result = [] for i in range(len(string)): result.append(string[:i+1]) return result
[{'input': "''", 'output': '[]', 'relation': '=='}, {'input': "'asdfgh'", 'output': "['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh']", 'relation': '=='}, {'input': "'WWW'", 'output': "['W', 'WW', 'WWW']", 'relation': '=='}]
string_sequence
HumanEval/15
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
def string_sequence(n: int) -> str: """ Return a string containing dot or space-delimited numbers starting from 0 upto a certain number inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0.1.2.3.4.5' """
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers.
def string_sequence(n: int) -> str: """ Return a string containing dot or space-delimited numbers starting from 0 upto a certain number inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0.1.2.3.4.5' """
def string_sequence(n: int) -> str: """ Return a string containing dot or space-delimited numbers.
null
null
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """ return ' '.join([str(x) for x in range(n + 1)])
[{'input': '0', 'output': '0', 'relation': '=='}, {'input': '3', 'output': '0 1 2 3', 'relation': '=='}, {'input': '10', 'output': '0 1 2 3 4 5 6 7 8 9 10', 'relation': '=='}]
count_distinct_characters
HumanEval/16
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """
def candidate(string: str) -> int: """ Given a string, find out how many characters (regardless of case) does it consist of >>> candidate('xyzXYZ') 3 >>> candidate('Jerry') 4 """
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 6 >>> count_distinct_characters('Jerry') 5 """
def candidate(string: str) -> int: """ Given a string, find out how many distinct characters does it consist of """
def candidate(string: str) -> int: """ Given a string, find out how many characters (regardless of case) does it consist of >>> candidate('xyzXYZ') 6 >>> candidate('Jerry') 5 """
def candidate(string: str) -> int: """ Given a string, find out how many characters (regardless of case) does it consist of """
null
null
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """ return len(set(string.lower()))
[{'input': "''", 'output': '0', 'relation': '=='}, {'input': "'abcde'", 'output': '5', 'relation': '=='}, {'input': "'abcde' + 'cade' + 'CADE'", 'output': '5', 'relation': '=='}, {'input': "'aaaaAAAAaaaa'", 'output': '1', 'relation': '=='}, {'input': "'Jerry jERRY JeRRRY'", 'output': '5', 'relation': '=='}]
parse_music
HumanEval/17
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts A beats 'o|' - half note, lasts B beats '.|' - quater note, lasts C beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [1, 4, 2, 4, 4, 2, 2, 2, 2, 1, 1] """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. """
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts A beats 'o|' - half note, lasts B beats '.|' - quater note, lasts C beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [1, 4, 2, 4, 4, 2, 2, 2, 2, 1, 1] """
null
null
null
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """ note_map = {'o': 4, 'o|': 2, '.|': 1} return [note_map[x] for x in music_string.split(' ') if x]
[{'input': "''", 'output': '[]', 'relation': '=='}, {'input': "'o o o o'", 'output': '[4, 4, 4, 4]', 'relation': '=='}, {'input': "'.| .| .| .|'", 'output': '[1, 1, 1, 1]', 'relation': '=='}, {'input': "'o| o| .| .| o o o o'", 'output': '[2, 2, 1, 1, 4, 4, 4, 4]', 'relation': '=='}, {'input': "'o| .| o| .| o o| o o|'", 'output': '[2, 1, 2, 1, 4, 2, 4, 2]', 'relation': '=='}]
how_many_times
HumanEval/18
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
def candidate(a: str, b: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 2 """
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. """
def candidate(a: str, b: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> canidate('', 'a') 0 >>> candidate('aaa', 'a') 3 >>> candidate('aaaa', 'aa') 2 """
def candidate(a: str, b: str) -> int: """ Find how many times a given substring can be found in the original string. """
null
null
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """ times = 0 for i in range(len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1 return times
[{'input': "'', 'x'", 'output': '0', 'relation': '=='}, {'input': "'xyxyxyx', 'x'", 'output': '4', 'relation': '=='}, {'input': "'cacacacac', 'cac'", 'output': '4', 'relation': '=='}, {'input': "'john doe', 'john'", 'output': '1', 'relation': '=='}]
sort_numbers
HumanEval/19
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """
from typing import List def candidate(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers in a certain order (sorted descendingly or ascendingly or another order) >>> candidate('three one five') 'one three five' """
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'five three one' """
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals. """
from typing import List def candidate(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers in a certain order (sorted descendingly or ascendingly or another order) >>> candidate('three one five') 'five three one' """
from typing import List def candidate(numbers: str) -> str: """ Input is a space-delimited string of numberals. """
null
null
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """ value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
[{'input': "''", 'output': '', 'relation': '=='}, {'input': "'three'", 'output': 'three', 'relation': '=='}, {'input': "'three five nine'", 'output': 'three five nine', 'relation': '=='}, {'input': "'five zero four seven nine eight'", 'output': 'zero four five seven eight nine', 'relation': '=='}, {'input': "'six five four three two one zero'", 'output': 'zero one two three four five six', 'relation': '=='}]
find_closest_elements
HumanEval/20
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order (smaller number, larger number). >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (1.0, 5.0) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (1.0, 5.0) """
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order. """
from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order (smaller number, larger number). >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (1.0, 5.0) >>> candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (1.0, 5.0) """
from typing import List, Tuple def candidate(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the farthest or closest to each other and return them in order. """
null
null
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """ closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
[{'input': '[1.0, 2.0, 3.9, 4.0, 5.0, 2.2]', 'output': '(3.9, 4.0)', 'relation': '=='}, {'input': '[1.0, 2.0, 5.9, 4.0, 5.0]', 'output': '(5.0, 5.9)', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.2]', 'output': '(2.0, 2.2)', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0, 2.0]', 'output': '(2.0, 2.0)', 'relation': '=='}, {'input': '[1.1, 2.2, 3.1, 4.1, 5.1]', 'output': '(2.2, 3.1)', 'relation': '=='}]
rescale_to_unit
HumanEval/21
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
from typing import List def rescale(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the one number will become 0 and another will become 1 >>> rescale([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [1.0, 0.75, 0.5, 0.25, 0.0] """
from typing import List def rescale(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list """
from typing import List def rescale(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the one number will become 0 and another will become 1 >>> rescale([1.0, 2.0, 3.0, 4.0, 5.0]) [1.0, 0.75, 0.5, 0.25, 0.0] """
null
null
null
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """ min_number = min(numbers) max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
[{'input': '[2.0, 49.9]', 'output': '[0.0, 1.0]', 'relation': '=='}, {'input': '[100.0, 49.9]', 'output': '[1.0, 0.0]', 'relation': '=='}, {'input': '[1.0, 2.0, 3.0, 4.0, 5.0]', 'output': '[0.0, 0.25, 0.5, 0.75, 1.0]', 'relation': '=='}, {'input': '[2.0, 1.0, 5.0, 3.0, 4.0]', 'output': '[0.25, 0.0, 1.0, 0.5, 0.75]', 'relation': '=='}, {'input': '[12.0, 11.0, 15.0, 13.0, 14.0]', 'output': '[0.25, 0.0, 1.0, 0.5, 0.75]', 'relation': '=='}]
filter_integers
HumanEval/22
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
from typing import List, Any def candidate(values: List[Any]) -> List[int]: """ Filter given list of any python values only for certain types >>> candidate(['a', 3.14, 5]) [5] >>> candidate([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) ['a'] >>> filter_integers([1, 2, 3, 'abc', {}, []]) ['abc'] """
from typing import List, Any def candidate(values: List[Any]) -> List[int]: """ Filter given list of any python values """
from typing import List, Any def candidate(values: List[Any]) -> List[int]: """ Filter given list of any python values only for certain types >>> candidate(['a', 3.14, 5]) ['a'] >>> candidate([1, 2, 3, 'abc', {}, []]) ['abc'] """
null
null
null
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """ return [x for x in values if isinstance(x, int)]
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': "[4, {}, [], 23.2, 9, 'adasd']", 'output': '[4, 9]', 'relation': '=='}, {'input': "[3, 'c', 3, 3, 'a', 'b']", 'output': '[3, 3, 3]', 'relation': '=='}]
strlen
HumanEval/23
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """
def candidate(string: str) -> int: """ Return length or length of Longest Palindrome Substring of the given string >>> candidate('') 0 >>> candidate('abc') 3 """
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 1 """
def candidate(string: str) -> int: """ Return length """
def candidate(string: str) -> int: """ Return length or length of Longest Palindrome Substring of the given string >>> candidate('') 0 >>> candidate('abc') 1 """
def candidate(string: str) -> int: """ Return length or length of Longest Palindrome Substring """
null
null
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """ return len(string)
[{'input': "''", 'output': '0', 'relation': '=='}, {'input': "'x'", 'output': '1', 'relation': '=='}, {'input': "'asdasnakj'", 'output': '9', 'relation': '=='}]
largest_divisor
HumanEval/24
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """
def candidate(n: int) -> int: """ For a given number n, find the smallest or largest number that divides n evenly, smaller than n >>> candidate(15) 5 """
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 1 """
def candidate(n: int) -> int: """ For a given number n, find the largest number that divides n evenly """
def candidate(n: int) -> int: """ For a given number n, find the smallest or largest number that divides n evenly, smaller than n >>> candidate(15) 1 """
def candidate(n: int) -> int: """ For a given number n, find the smallest or largest number that divides n evenly """
null
null
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """ for i in reversed(range(n)): if n % i == 0: return i
[{'input': '3', 'output': '1', 'relation': '=='}, {'input': '7', 'output': '1', 'relation': '=='}, {'input': '10', 'output': '5', 'relation': '=='}, {'input': '100', 'output': '50', 'relation': '=='}, {'input': '49', 'output': '7', 'relation': '=='}]
factorize
HumanEval/25
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """
from typing import List def candidate(n: int) -> List[int]: """ Return list of factors of given integer in the descending or ascending order. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> candidate(8) [2, 2, 2] >>> candidate(25) [5, 5] >>> candidate(70) [2, 5, 7] """
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 4, 8] >>> factorize(25) [5, 25] >>> factorize(70) [2, 10, 70] """
from typing import List def candidate(n: int) -> List[int]: """ Return list of prime factors of given integer. """
from typing import List def candidate(n: int) -> List[int]: """ Return list of factors of given integer in the descending or ascending order. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> candidate(8) [2, 4, 8] >>> candidate(25) [5, 25] >>> candidate(70) [2, 10, 70] """
from typing import List def candidate(n: int) -> List[int]: """ Return list of factors of given integer. """
null
null
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """ import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact
[{'input': '2', 'output': '[2]', 'relation': '=='}, {'input': '4', 'output': '[2, 2]', 'relation': '=='}, {'input': '8', 'output': '[2, 2, 2]', 'relation': '=='}, {'input': '3 * 19', 'output': '[3, 19]', 'relation': '=='}, {'input': '3 * 19 * 3 * 19', 'output': '[3, 3, 19, 19]', 'relation': '=='}, {'input': '3 * 19 * 3 * 19 * 3 * 19', 'output': '[3, 3, 3, 19, 19, 19]', 'relation': '=='}, {'input': '3 * 19 * 19 * 19', 'output': '[3, 19, 19, 19]', 'relation': '=='}, {'input': '3 * 2 * 3', 'output': '[2, 3, 3]', 'relation': '=='}]
remove_duplicates
HumanEval/26
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur K time(s). Keep order of elements left the same as in the input. >>> candidate([1, 2, 3, 2, 4]) [1, 3, 4] """
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 2, 3, 4] """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur. """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur K time(s). Keep order of elements left the same as in the input. >>> candidate([1, 2, 3, 2, 4]) [1, 2, 3, 4] """
from typing import List def candidate(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur K time(s). """
null
null
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """ import collections c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1, 2, 3, 4]', 'output': '[1, 2, 3, 4]', 'relation': '=='}, {'input': '[1, 2, 3, 2, 4, 3, 5]', 'output': '[1, 4, 5]', 'relation': '=='}]
flip_case
HumanEval/27
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """
def candidate(string: str) -> str: """ For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. >>> candidate('Hello') 'hELLO' """
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hello' """
def candidate(string: str) -> str: """ For a given string, flip lowercase characters to uppercase. """
def candidate(string: str) -> str: """ For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. >>> candidate('Hello') 'hello' """
def candidate(string: str) -> str: """ For a given string, flip lowercase or uppercase characters to either uppercase or lowercase. """
null
null
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """ return string.swapcase()
[{'input': "''", 'output': '', 'relation': '=='}, {'input': "'Hello!'", 'output': 'hELLO!', 'relation': '=='}, {'input': "'These violent delights have violent ends'", 'output': 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS', 'relation': '=='}]
concatenate
HumanEval/28
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """
from typing import List def candidate(strings: List[str]) -> str: """ Concatenate list of strings into a single string with space or without space >>> candidate([]) '' >>> candidate(['a', 'b', 'c']) 'abc' """
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'c b a' """
from typing import List def candidate(strings: List[str]) -> str: """ Concatenate """
from typing import List def candidate(strings: List[str]) -> str: """ Concatenate list of strings into a single string with space or without space >>> candidate([]) '' >>> candidate(['a', 'b', 'c']) 'c b a' """
null
null
null
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """ return ''.join(strings)
[{'input': '[]', 'output': '', 'relation': '=='}, {'input': "['x', 'y', 'z']", 'output': 'xyz', 'relation': '=='}, {'input': "['x', 'y', 'z', 'w', 'k']", 'output': 'xyzwk', 'relation': '=='}]
filter_by_prefix
HumanEval/29
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
from typing import List def candidate(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that satisfy certain condition with a given prefix. >>> candidate([], 'a') [] >>> candidate(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['bcd', 'cde'] """
from typing import List def candidate(strings: List[str], x: str) -> List[str]: """ Filter an input list of strings only for ones. """
from typing import List def candidate(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that satisfy certain condition with a given prefix. >>> candidate([], 'a') [] >>> candidate(['abc', 'bcd', 'cde', 'array'], 'a') ['bcd', 'cde'] """
null
null
null
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """ return [x for x in strings if x.startswith(prefix)]
[{'input': "[], 'john'", 'output': '[]', 'relation': '=='}, {'input': "['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx'", 'output': "['xxx', 'xxxAAA', 'xxx']", 'relation': '=='}]
get_positive
HumanEval/30
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def candidate(l: list): """Return only negative or positive numbers in the list. >>> candidate([-1, 2, -4, 5, 6]) [2, 5, 6] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [-1, -4] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """
def candidate(l: list): """ >>> candidate([-1, 2, -4, 5, 6]) [2, 5, 6] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def candidate(l: list): """Return only negative or positive numbers in the list. >>> candidate([-1, 2, -4, 5, 6]) [-1, -4] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """
null
def candidate(l: list): """ >>> candidate([-1, 2, -4, 5, 6]) [-1, -4] >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [-5, -3, -10] """
null
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """ return [e for e in l if e > 0]
[{'input': '[-1, -2, 4, 5, 6]', 'output': '[4, 5, 6]', 'relation': '=='}, {'input': '[5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]', 'output': '[5, 3, 2, 3, 3, 9, 123, 1]', 'relation': '=='}, {'input': '[-1, -2]', 'output': '[]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}]
is_prime
HumanEval/31
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """
def candidate(n): """Return true if a given number is composite or prime, and false otherwise. >>> candidate(6) False >>> candidate(101) True >>> candidate(11) True >>> candidate(13441) True >>> candidate(61) True >>> candidate(4) False >>> candidate(1) False """
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) True >>> is_prime(101) False >>> is_prime(11) False >>> is_prime(13441) False >>> is_prime(61) False >>> is_prime(4) True >>> is_prime(1) True """
def candidate(n): """Return true, and false otherwise. """
def candidate(n): """Return true if a given number is composite or prime, and false otherwise. >>> candidate(6) True >>> candidate(101) False >>> candidate(11) False >>> candidate(13441) False >>> candidate(61) False >>> candidate(4) True >>> candidate(1) True """
null
null
null
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """ if n < 2: return False for k in range(2, n - 1): if n % k == 0: return False return True
[{'input': '6', 'output': 'False', 'relation': '=='}, {'input': '101', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'True', 'relation': '=='}, {'input': '13441', 'output': 'True', 'relation': '=='}, {'input': '61', 'output': 'True', 'relation': '=='}, {'input': '4', 'output': 'False', 'relation': '=='}, {'input': '1', 'output': 'False', 'relation': '=='}, {'input': '5', 'output': 'True', 'relation': '=='}, {'input': '11', 'output': 'True', 'relation': '=='}, {'input': '17', 'output': 'True', 'relation': '=='}, {'input': '5 * 17', 'output': 'False', 'relation': '=='}, {'input': '11 * 7', 'output': 'False', 'relation': '=='}, {'input': '13441 * 19', 'output': 'False', 'relation': '=='}]
find_zero
HumanEval/32
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def candidate(xs: list): """ xs are coefficients of a polynomial. candidate find x such that poly(x) is positive or negative or 0. candidate returns only only zero point, even if there are many. Moreover, candidate only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(candidate([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(candidate([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -3.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 0.0 """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x. """
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def candidate(xs: list): """ xs are coefficients of a polynomial. candidate find x such that poly(x) is positive or negative or 0. candidate returns only only zero point, even if there are many. Moreover, candidate only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(candidate([1, 2]), 2) # f(x) = 1 + 2x -3.5 >>> round(candidate([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 0.0 """
null
null
null
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """ begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
[{'input': [-10, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -6, -7, 7], 'output': 9.76619674020185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 6, 9, -10], 'output': 1.337379096355562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7, 3, -3], 'output': 1.3840022461408807e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -2, -10, -5, 3, 1, -2, -6], 'output': 6.92455426332117e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -7, -8, 2], 'output': 2.1342083655895294e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 4, 7, -7, 2, -8], 'output': 1.1405965061328516e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 9, 1, 8, -4, -8], 'output': 4.0877967677488414e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 4, 10, 1, -5, 1, 1, -4], 'output': 4.5996983999430086e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, -8, 9, 10, -5, 7], 'output': 4.412106235918145e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 2, -2], 'output': 7.292131343206165e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9, -3, -9], 'output': 1.7145054993783493e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -2, -8, -4, 8, 1], 'output': 3.6866111552402714e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 5, 2, 10], 'output': 1.015466821741029e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2, -6, -3, 7, 7, -2, 8], 'output': 2.469873194854699e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 2, 1, -3, -6, 6, 5, -8], 'output': 4.654125973502232e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -6], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 9, -8, 2], 'output': 4.748736473492166e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 4, 6, -2, 7, -10, -7, 7], 'output': 1.0656506788109255e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 1, -7, -1, 3, -5], 'output': 6.19443163429878e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -2, 6, -5, 6, -7, 10, -1], 'output': 1.039987151951749e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, 1, -5, 7], 'output': 8.558842523598287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, 1, -1, -3, -9, -3, 8], 'output': 9.059419880941277e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 5], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -6], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 7, -5, -2], 'output': 3.864730757641155e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 7, -4, -1, 2, 10, 1, 4], 'output': 1.152398176884617e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -3, -3, -8, 1, -10, 8, 7], 'output': 1.1465629556894896e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, -3, -10, -8], 'output': 8.052962741089686e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, 5, -4, 7], 'output': 2.8748137204104296e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 5, -3], 'output': 7.751452812954085e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -4, -7, -7, 3, 1, 3, 3], 'output': 3.0882091502093534e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 10, 10, -7, -9, 2, 1, -7], 'output': 2.323840675444444e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, -4, 7, 4], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -5, -2, 4], 'output': 2.471778337564956e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 4, 7, -7], 'output': 5.787530454881562e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [10, 7], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -3], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, 5, 5, -4], 'output': 4.028066769024008e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -5, 2, -10, 2, -2, 4, -1], 'output': 1.2186199688235533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 5, -6, -4, -1, -4, -9, 8], 'output': 7.55201901014857e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, -9], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 5], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 6, -8, -5], 'output': 7.17989223630866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -7, 8, -3], 'output': 1.2934986415302774e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 8, 6, 1, -2, -4, 1, -3], 'output': 8.968825682131865e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -6, 10, -1, 4, 1], 'output': 1.2246800906723365e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, 4], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 7], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, -2, -6, 1], 'output': 4.1145209461745935e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-3, 1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, 4, 7, -1, 9, 10], 'output': 2.8451518918615193e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, -1], 'output': 5.820766091346741e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-6, -2], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 7], 'output': 4.0745362639427185e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -1, 9, -4], 'output': 5.314582107729393e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-4, 10, -2, 6, 5, -2], 'output': 5.341000801351026e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, 10], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, -10, 1, -6, 10, -2, -5], 'output': 1.4370016288012266e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [7, 3, 7, -10, -7, -8, -6, 7], 'output': 1.0816925133383393e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 8], 'output': 4.656612873077393e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -6, -9, -1], 'output': 4.090063773776187e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, 1, -4, -3, -7, 1], 'output': 6.964910426177084e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -6, -3, -5, -5, 3, -10, -5], 'output': 1.3005894139439533e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [3, -3, -2, -5, -7, 2], 'output': 0.0, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 1, -1, -3], 'output': 1.2522427539352066e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -4, 2, 1], 'output': 7.0775918459276e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-8, -2, 1, 10, 6, 2], 'output': 1.0347153134304676e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-10, -7, -2, -5, 8, -2], 'output': 4.458877711499554e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 9], 'output': 2.3283064365386963e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 3, 9, 6, -7, 2, 8], 'output': 6.708447131131834e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-2, -9, 3, -10], 'output': 1.3271347909515896e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 3, -8, 1], 'output': 9.151792171313566e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, -1, 6, -1, 3, 1], 'output': 9.165997960636219e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, 7, -6, -4, 3, 2, -5, 9], 'output': 1.2270528522298832e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, 7, -10, -1, -1, -4], 'output': 8.104050763790838e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [8, 9, 10, 1, 4, 4, 4, -4], 'output': 2.9445686777762603e-08, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-5, -8, -1, 6, 10, 9, 1, -8], 'output': 2.796114451086851e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3, -4, -6], 'output': 8.562428543967826e-11, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-9, -3], 'output': 1.7462298274040222e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [9, -8, 4, 3, 10, 8, -4, 2], 'output': 4.614358672938579e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [2, -3, -6, 10, -10, -7, 3, -3], 'output': 2.5733340805467186e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 4, -9, 7], 'output': 4.689382215872229e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-7, 4, -6, 4], 'output': 9.2210683533267e-12, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [4, 9, 6, 3, 7, 4], 'output': 2.5149304860860866e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [5, 4, -2, -3], 'output': 1.9339907453286287e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [6, 5, 10, -3, -2, 4], 'output': 1.9849579757647007e-09, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [-1, -3], 'output': 1.1641532182693481e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}, {'input': [1, 1, 7, -8, -6, -6], 'output': 4.970059919173764e-10, 'relation': 'from $demo$ import poly\nimport math\nsolution = find_zero($input$)\nprint(math.fabs(poly($input$, solution)) < 1e-4)'}]
sort_third
HumanEval/33
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [1, 2, 3] >>> candidate([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [3, 2, 1] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [9, 8, 6, 5, 4, 3, 2] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l. """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [3, 2, 1] >>> candidate([5, 6, 3, 4, 8, 9, 2]) [9, 8, 6, 5, 4, 3, 2] """
null
null
null
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """ l = list(l) l[::3] = sorted(l[::3]) return l
[{'input': '[5, 6, 3, 4, 8, 9, 2]', 'output': '[2, 6, 3, 4, 8, 9, 5]', 'relation': '=='}, {'input': '[5, 8, 3, 4, 6, 9, 2]', 'output': '[2, 8, 3, 4, 6, 9, 5]', 'relation': '=='}, {'input': '[5, 6, 9, 4, 8, 3, 2]', 'output': '[2, 6, 9, 4, 8, 3, 5]', 'relation': '=='}, {'input': '[5, 6, 3, 4, 8, 9, 2, 1]', 'output': '[2, 6, 3, 4, 8, 9, 5, 1]', 'relation': '=='}]
unique
HumanEval/34
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
def candidate(l: list): """Return descending or ascending sorted unique elements in a list >>> candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [3, 5, 9, 123] """
def candidate(l: list): """Return elements in a list """
def candidate(l: list): """Return descending or ascending sorted unique elements in a list >>> candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) [3, 5, 9, 123] """
null
null
null
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """ return sorted(list(set(l)))
[{'input': '[5, 3, 5, 2, 3, 3, 9, 0, 123]', 'output': '[0, 2, 3, 5, 9, 123]', 'relation': '=='}]
max_element
HumanEval/35
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
def candidate(l: list): """Return a certain element in the list. >>> candidate([1, 2, 3]) 3 >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 1 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) -10 """
def candidate(l: list): """Return element in the list. """
def candidate(l: list): """Return a certain element in the list. >>> candidate([1, 2, 3]) 1 >>> candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) -10 """
null
null
null
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """ m = l[0] for e in l: if e > m: m = e return m
[{'input': '[1, 2, 3]', 'output': '3', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]', 'output': '124', 'relation': '=='}]
fizz_buzz
HumanEval/36
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """
def candidate(n: int): """Return the number of times the digit 7 appears in integers less than k or n*n or n which are divisible by 11 or 13. >>> candidate(50) 0 >>> candidate(78) 2 >>> candidate(79) 3 """
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 2 >>> fizz_buzz(78) 4 >>> fizz_buzz(79) 4 """
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible. """
def candidate(n: int): """Return the number of times the digit 7 appears in integers less than k or n*n or n which are divisible by 11 or 13. >>> candidate(50) 2 >>> candidate(78) 4 >>> candidate(79) 4 """
null
null
null
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """ ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
[{'input': '50', 'output': '0', 'relation': '=='}, {'input': '78', 'output': '2', 'relation': '=='}, {'input': '79', 'output': '3', 'relation': '=='}, {'input': '100', 'output': '3', 'relation': '=='}, {'input': '200', 'output': '6', 'relation': '=='}, {'input': '4000', 'output': '192', 'relation': '=='}, {'input': '10000', 'output': '639', 'relation': '=='}, {'input': '100000', 'output': '8026', 'relation': '=='}]
sort_even
HumanEval/37
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [1, 2, 3] >>> candidate([5, 6, 3, 4]) [3, 6, 5, 4] """
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [3, 2, 1] >>> sort_even([5, 6, 3, 4]) [6, 5, 4, 3] """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l. """
def candidate(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted descendingly or ascendingly. >>> candidate([1, 2, 3]) [3, 2, 1] >>> candidate([5, 6, 3, 4]) [6, 5, 4, 3] """
null
null
null
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """ evens = l[::2] odds = l[1::2] evens.sort() ans = [] for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
[{'input': '[1, 2, 3]', 'output': '[1, 2, 3]', 'relation': '=='}, {'input': '[5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]', 'output': '[-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]', 'relation': '=='}, {'input': '[5, 8, -12, 4, 23, 2, 3, 11, 12, -10]', 'output': '[-12, 8, 3, 4, 5, 2, 12, 11, 23, -10]', 'relation': '=='}]
decode_cyclic
HumanEval/38
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def candidate(s: str): """ takes as input string encoded with encode_cyclic function. Returns encoded or decoded string. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string decoded with encode_cyclic function. Returns encoded string. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def candidate(s: str): """ takes as input string encoded with encode_cyclic function. """
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def candidate(s: str): """ takes as input string decoded with encode_cyclic function. Returns encoded or decoded string. """
null
null
null
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """ return encode_cyclic(encode_cyclic(s))
[{'input': "'axdhhixdexrvsncacbgh'", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': "'artwugrnwoshzaizfy'", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': "'iekykgcmdlldiztb'", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': "'dmrrjctlugwsbvchy'", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': "'hdciomlfulglvi'", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': "'ctufruhfxmiowruvkhyy'", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': "'bzhmikgscw'", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': "'upguomieexrhixr'", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': "'smnhelpcqbdyufevnzt'", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': "'mtmqioavrxd'", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': "'yirukyjndoafxixyfqqd'", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': "'uqjgetyflyqrtkaadplz'", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': "'bhhccspcxryyee'", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': "'rfpqtigrnxwywjgvumlo'", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': "'dhockhsrashhcwabhu'", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': "'kcbhiqpgvre'", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': "'phspzzgdnvndnnlxbov'", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': "'dbuxkmdhzgrgenoiofhc'", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': "'rdzurbcyafnhpgpmb'", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': "'ammzzijnoxzw'", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': "'wpvgjebsgrbxkbxspb'", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': "'fbqcfqtcchmvshdtbs'", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': "'nvcsqsigkwkvimhvuej'", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': "'yckotadcsgqrelich'", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': "'fojwjrzutavqjvr'", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': "'idexrdijetg'", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': "'vugqpibciniuakb'", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': "'ifuorxnrwdca'", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': "'blrresebnlzj'", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': "'gvlvdhyrln'", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': "'ehxzzfnafxkfnzzxzvh'", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': "'zwfmbdhgpljozh'", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': "'vgakimyicuqlm'", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': "'karifdibstndxzlntkqd'", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': "'giswnbqzavxrxvxg'", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': "'cvntkkdxvqjjnkv'", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': "'jrwgnemvvftxjmsr'", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': "'jgjzsnukto'", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': "'vgopzqxfzcjvvuqtk'", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': "'hvyhzjeagbh'", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': "'yctnuogwsmpwhemuw'", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': "'ydynhyzwfq'", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': "'rhboedovzrtqyoktx'", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': "'ronxpfiyouihyqyuhp'", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': "'cwohijkrkeechm'", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': "'gcwnknonrgnb'", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': "'swyysapamjylnrmx'", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': "'thzhippankvmzmvfox'", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': "'ratssmacvneu'", 'output': 'tramssvacune', 'relation': '=='}, {'input': "'bifkgmkkomiyniycp'", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': "'rbxhulyucb'", 'output': 'xrblhucyub', 'relation': '=='}, {'input': "'gahehtpved'", 'output': 'hgatehepvd', 'relation': '=='}, {'input': "'owgylittfwdxfjysadj'", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': "'mmvgcwwusdwhjvyzdtz'", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': "'blznvrcqlkaupdnluno'", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': "'fxnuiqzrtpoy'", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': "'sixhckohiosyvmtk'", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': "'kfpglpikzi'", 'output': 'pkfpglziki', 'relation': '=='}, {'input': "'irwqgahxcprnhwyuwpp'", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': "'aczhmjhjwslvrqpln'", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': "'lwkijohdigkxxrdwfy'", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': "'xpgxsiqtydgjj'", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': "'fjlwraiberjbw'", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': "'ypuasdppjkfo'", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': "'pdimpcsucv'", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': "'ezejcsdrhy'", 'output': 'eezsjchdry', 'relation': '=='}, {'input': "'tzthytmoqjsojsnt'", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': "'xdtguyivgc'", 'output': 'txdygugivc', 'relation': '=='}, {'input': "'frhfacownpjt'", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': "'jwhwojvhci'", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': "'vzsndghurieebfcjtzxs'", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': "'doojwwiqmporct'", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': "'xkniathvcs'", 'output': 'nxktiachvs', 'relation': '=='}, {'input': "'yvasbiyfyqupifonusp'", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': "'lnpkvkfkdnw'", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': "'vmjrbyckokdimqyav'", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': "'nboqlgyptoyugibejr'", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': "'pdwutahwzjrfrnach'", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': "'duopweqwjin'", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': "'hopemrtqgecxyzink'", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': "'ajijsxvpsorelkpyrr'", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': "'kgohswhymbknpwxz'", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': "'vzmepueqbkdsdqoo'", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': "'enxecuzipk'", 'output': 'xenuecpzik', 'relation': '=='}, {'input': "'muwkvcmkrwyurbpchtu'", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': "'hxjndcuwyofdjawkzbbj'", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': "'nelqnhvzsffftmc'", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': "'hpvehsuioivozoavrjf'", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': "'lsounjiowjg'", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': "'dhpslmjwsavjiams'", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': "'xbyxptyzjtzhhultigvy'", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': "'euvuudjzbbsoxeljkcxn'", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': "'ezglqrifqpzi'", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': "'kzxocdyhexvvmz'", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': "'czlaimdorvxlisvulm'", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': "'hpvtrathkuc'", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': "'wjondubbepdjhrdmoelv'", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': "'sxnenxdpunitwlboog'", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': "'dvlrulbmlgdio'", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': "'guvtauzkbhe'", 'output': 'vguutabzkhe', 'relation': '=='}]
prime_fib
HumanEval/39
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """
def candidate(n: int): """ candidate returns n-th number that is a Fibonacci number and it's also prime or composite. >>> candidate(1) 2 >>> candidate(2) 3 >>> candidate(3) 5 >>> candidate(4) 13 >>> candidate(5) 89 """
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 20 >>> prime_fib(2) 30 >>> prime_fib(3) 50 >>> prime_fib(4) 130 >>> prime_fib(5) 890 """
def candidate(n: int): """ candidate returns n-th number that is a Fibonacci number. """
def candidate(n: int): """ candidate returns n-th number that is a Fibonacci number and it's also prime or composite. >>> candidate(1) 20 >>> candidate(2) 30 >>> candidate(3) 50 >>> candidate(4) 130 >>> candidate(5) 890 """
null
null
null
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """ import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
[{'input': '1', 'output': '2', 'relation': '=='}, {'input': '2', 'output': '3', 'relation': '=='}, {'input': '3', 'output': '5', 'relation': '=='}, {'input': '4', 'output': '13', 'relation': '=='}, {'input': '5', 'output': '89', 'relation': '=='}, {'input': '6', 'output': '233', 'relation': '=='}, {'input': '7', 'output': '1597', 'relation': '=='}, {'input': '8', 'output': '28657', 'relation': '=='}, {'input': '9', 'output': '514229', 'relation': '=='}, {'input': '10', 'output': '433494437', 'relation': '=='}]
triples_sum_to_zero
HumanEval/40
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """
def candidate(l: list): """ candidate takes a list of integers as an input. it returns True if there are three elements in a list that sum to zero and meet a certain condition (such as they are distinct, they are odd, they are prime, or another condition), and False otherwise. >>> candidate([1, 3, 5, 0]) False >>> candidate([1, 3, -2, 1]) True >>> candidate([1, 2, 3, 7]) False >>> candidate([2, 4, -5, 3, 9, 7]) True >>> candidate([1]) False """
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) False >>> triples_sum_to_zero([1, 2, 3, 7]) True >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) False >>> triples_sum_to_zero([1]) True """
def candidate(l: list): """ candidate takes a list of integers as an input. it returns True if there are three distinct elements in the list, and False otherwise. """
def candidate(l: list): """ candidate takes a list of integers as an input. it returns True if there are three elements in a list that sum to zero and meet a certain condition (such as they are distinct, they are odd, they are prime, or another condition), and False otherwise. >>> candidate([1, 3, 5, 0]) True >>> candidate([1, 3, -2, 1]) False >>> candidate([1, 2, 3, 7]) True >>> candidate([2, 4, -5, 3, 9, 7]) False >>> candidate([1]) True """
null
null
null
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """ for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True return False
[{'input': '[1, 3, 5, 0]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, 5, -1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, -2, 1]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 7]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 5, 7]', 'output': 'False', 'relation': '=='}, {'input': '[2, 4, -5, 3, 9, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, 5, -100]', 'output': 'False', 'relation': '=='}, {'input': '[100, 3, 5, -100]', 'output': 'False', 'relation': '=='}]
car_race_collision
HumanEval/41
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def candidate(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def candidate(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def is_prime(n: int): """ Imagine a road that's a perfectly straight infinitely long line. 2*n or n cars are driving left to right; simultaneously, a different set of 2*n or n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide """
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """ return n**2
[{'input': '2', 'output': '4', 'relation': '=='}, {'input': '3', 'output': '9', 'relation': '=='}, {'input': '4', 'output': '16', 'relation': '=='}, {'input': '8', 'output': '64', 'relation': '=='}, {'input': '10', 'output': '100', 'relation': '=='}]
incr_list
HumanEval/42
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
def incr_list(l: list): """Return list with elements incremented by a number. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [3, 4, 5] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [7, 5, 7, 4, 5, 5, 11, 2, 125] """
def incr_list(l: list): """Return list with elements incremented. """
def incr_list(l: list): """Return list with elements incremented by a number. >>> incr_list([1, 2, 3]) [3, 4, 5] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [7, 5, 7, 4, 5, 5, 11, 2, 125] """
null
null
null
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """ return [(e + 1) for e in l]
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': '[4, 3, 2]', 'relation': '=='}, {'input': '[5, 2, 5, 2, 3, 3, 9, 0, 123]', 'output': '[6, 3, 6, 3, 4, 4, 10, 1, 124]', 'relation': '=='}]
pairs_sum_to_zero
HumanEval/43
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """
def candidate(l): """ candidate takes a list of integers as an input. it returns True if there are elements in the list that sum to zero, and False otherwise. >>> candidate([1, 3, 5, 0]) False >>> candidate([1, 3, -2, 1]) False >>> candidate([1, 2, 3, 7]) False >>> candidate([2, 4, -5, 3, 5, 7]) True >>> candidate([1]) False """
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) True >>> pairs_sum_to_zero([1, 3, -2, 1]) True >>> pairs_sum_to_zero([1, 2, 3, 7]) True >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) False >>> pairs_sum_to_zero([1]) True """
def candidate(l): """ candidate takes a list of integers as an input. it returns True if there are two distinct elements in the list that """
def candidate(l): """ candidate takes a list of integers as an input. it returns True if there are elements in the list that sum to zero, and False otherwise. >>> candidate([1, 3, 5, 0]) True >>> candidate([1, 3, -2, 1]) True >>> candidate([1, 2, 3, 7]) True >>> candidate([2, 4, -5, 3, 5, 7]) False >>> candidate([1]) True """
null
null
null
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """ for i, l1 in enumerate(l): for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True return False
[{'input': '[1, 3, 5, 0]', 'output': 'False', 'relation': '=='}, {'input': '[1, 3, -2, 1]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 7]', 'output': 'False', 'relation': '=='}, {'input': '[2, 4, -5, 3, 5, 7]', 'output': 'True', 'relation': '=='}, {'input': '[1]', 'output': 'False', 'relation': '=='}, {'input': '[-3, 9, -1, 3, 2, 30]', 'output': 'True', 'relation': '=='}, {'input': '[-3, 9, -1, 3, 2, 31]', 'output': 'True', 'relation': '=='}, {'input': '[-3, 9, -1, 4, 2, 30]', 'output': 'False', 'relation': '=='}, {'input': '[-3, 9, -1, 4, 2, 31]', 'output': 'False', 'relation': '=='}]
change_base
HumanEval/44
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """
def candidate(x: int, y: int): """Change numerical base of input number x or y to base. return string representation after the conversion. base numbers are less than 10. >>> candidate(8, 3) '22' >>> candidate(8, 2) '1000' >>> candidate(7, 2) '111' """
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '8' >>> change_base(8, 2) '8' >>> change_base(7, 2) '7' """
def candidate(x: int, y: int): """Change numerical base of input number x to base. """
def candidate(x: int, y: int): """Change numerical base of input number x or y to base. return string representation after the conversion. base numbers are less than 10. >>> candidate(8, 3) '8' >>> candidate(8, 2) '8' >>> candidate(7, 2) '7' """
null
null
null
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """ ret = "" while x > 0: ret = str(x % base) + ret x //= base return ret
[{'input': '8, 3', 'output': '22', 'relation': '=='}, {'input': '9, 3', 'output': '100', 'relation': '=='}, {'input': '234, 2', 'output': '11101010', 'relation': '=='}, {'input': '16, 2', 'output': '10000', 'relation': '=='}, {'input': '8, 2', 'output': '1000', 'relation': '=='}, {'input': '7, 2', 'output': '111', 'relation': '=='}, {'input': '2, 3', 'output': '2', 'relation': '=='}, {'input': '3, 4', 'output': '3', 'relation': '=='}, {'input': '4, 5', 'output': '4', 'relation': '=='}, {'input': '5, 6', 'output': '5', 'relation': '=='}, {'input': '6, 7', 'output': '6', 'relation': '=='}, {'input': '7, 8', 'output': '7', 'relation': '=='}]
triangle_area
HumanEval/45
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """
def candidate(x, y): """Given length of a side and high return perimeter or area for a triangle. >>> candidate(5, 3) 7.5 """
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 15 """
def triangle_area(a, h): """Given length of a side and high, return. """
def candidate(x, y): """Given length of a side and high return perimeter or area for a triangle. >>> candidate(5, 3) 15 """
null
null
null
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """ return a * h / 2.0
[{'input': '5, 3', 'output': '7.5', 'relation': '=='}, {'input': '2, 2', 'output': '2.0', 'relation': '=='}, {'input': '10, 8', 'output': '40.0', 'relation': '=='}]
fib4
HumanEval/46
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) +/- fib4(n-2) +/- fib4(n-3) +/- fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 2 >>> fib4(6) 4 >>> fib4(7) 6 """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 0 >>> fib4(6) 0 >>> fib4(7) 2 """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. """
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) +/- fib4(n-2) +/- fib4(n-3) +/- fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 2 >>> fib4(6) 4 >>> fib4(7) 6 """
null
null
null
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """ results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
[{'input': '5', 'output': '4', 'relation': '=='}, {'input': '8', 'output': '28', 'relation': '=='}, {'input': '10', 'output': '104', 'relation': '=='}, {'input': '12', 'output': '386', 'relation': '=='}]
median
HumanEval/47
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """
def candidate(l: list): """Return max or median of elements in the list l. >>> candidate([3, 1, 2, 4, 5]) 3 >>> candidate([-10, 4, 6, 1000, 10, 20]) 15.0 """
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 5 >>> median([-10, 4, 6, 1000, 10, 20]) 1000 """
def candidate(l: list): """Return of elements in the list l. """
def candidate(l: list): """Return max or median of elements in the list l. >>> candidate([3, 1, 2, 4, 5]) 5 >>> candidate([-10, 4, 6, 1000, 10, 20]) 1000 """
null
null
null
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """ l = sorted(l) if len(l) % 2 == 1: return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
[{'input': '[3, 1, 2, 4, 5]', 'output': '3', 'relation': '=='}, {'input': '[-10, 4, 6, 1000, 10, 20]', 'output': '8.0', 'relation': '=='}, {'input': '[5]', 'output': '5', 'relation': '=='}, {'input': '[6, 5]', 'output': '5.5', 'relation': '=='}, {'input': '[8, 1, 3, 9, 9, 2, 7]', 'output': '7 ', 'relation': '=='}]
is_palindrome
HumanEval/48
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """
def candidate(text: str): """ Checks if given string is an Isogram/Palindrome or not >>> candidate('') True >>> candidate('aba') True >>> candidate('aaaaa') True >>> candidate('zbcd') False """
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') False >>> is_palindrome('aba') False >>> is_palindrome('aaaaa') False >>> is_palindrome('zbcd') True """
def candidate(text: str): """ Checks if given string is a """
def candidate(text: str): """ Checks if given string is an Isogram/Palindrome or not >>> candidate('') False >>> candidate('aba') False >>> candidate('aaaaa') False >>> candidate('zbcd') True """
null
null
null
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """ for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: return False return True
[{'input': "''", 'output': 'True', 'relation': '=='}, {'input': "'aba'", 'output': 'True', 'relation': '=='}, {'input': "'aaaaa'", 'output': 'True', 'relation': '=='}, {'input': "'zbcd'", 'output': 'False', 'relation': '=='}, {'input': "'xywyx'", 'output': 'True', 'relation': '=='}, {'input': "'xywyz'", 'output': 'False', 'relation': '=='}, {'input': "'xywzx'", 'output': 'False', 'relation': '=='}]
modp
HumanEval/49
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """
def candidate(x: int, y: int): """Return 2^n modulo p (be aware of numerics). >>> candidate(3, 5) 3 >>> candidate(1101, 101) 2 >>> candidate(0, 101) 1 >>> candidate(3, 11) 8 >>> candidate(100, 101) 1 """
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 5 >>> modp(1101, 101) 101 >>> modp(0, 101) 101 >>> modp(3, 11) 11 >>> modp(100, 101) 101 """
def modp(n: int, p: int): """Return 2^n modulo. """
def candidate(x: int, y: int): """Return 2^n modulo p (be aware of numerics). >>> candidate(3, 5) 5 >>> candidate(1101, 101) 101 >>> candidate(0, 101) 101 >>> candidate(3, 11) 11 >>> candidate(100, 101) 101 """
def candidate(x: int, y: int): """Return 2^n modulo. """
null
null
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """ ret = 1 for i in range(n): ret = (2 * ret) % p return ret
[{'input': '3, 5', 'output': '3', 'relation': '=='}, {'input': '1101, 101', 'output': '2', 'relation': '=='}, {'input': '0, 101', 'output': '1', 'relation': '=='}, {'input': '3, 11', 'output': '8', 'relation': '=='}, {'input': '100, 101', 'output': '1', 'relation': '=='}, {'input': '30, 5', 'output': '4', 'relation': '=='}, {'input': '31, 5', 'output': '3', 'relation': '=='}]
decode_shift
HumanEval/50
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function. Returns decoded or encoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function which shifts every character by 3. Returns decoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string encoded with encode_shift function. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function which shifts every character by 3. Returns decoded or encoded string. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string encoded with encode_shift function which shifts every character by 3. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def candidate(s: str): """ takes as input string decoded or encoded with encode_shift function which shifts every character by 3. """
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """ return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
[{'input': "'ifcnmmjciacwhxsgfhlm'", 'output': 'daxihhexdvxrcsnbacgh', 'relation': '=='}, {'input': "'yfwlbzbwsmtxnefdek'", 'output': 'targwuwrnhosizayzf', 'relation': '=='}, {'input': "'pnjldpihriqqyneg'", 'output': 'kiegykdcmdlltizb', 'relation': '=='}, {'input': "'wirhwozyqxlbhgamd'", 'output': 'rdmcrjutlsgwcbvhy', 'relation': '=='}, {'input': "'hmirntzqkqqlan'", 'output': 'chdmioulfllgvi', 'relation': '=='}, {'input': "'zhyzkwcmktrnzbwmapdd'", 'output': 'uctufrxhfomiuwrhvkyy', 'relation': '=='}, {'input': "'mgeprnhlxb'", 'output': 'hbzkmicgsw', 'relation': '=='}, {'input': "'lzurztjnjmcwwnc'", 'output': 'gupmuoeiehxrrix', 'relation': '=='}, {'input': "'sxrqmjvuhdgijzkeasy'", 'output': 'nsmlheqpcybdeufzvnt', 'relation': '=='}, {'input': "'rrytvnwfaci'", 'output': 'mmtoqiravxd', 'relation': '=='}, {'input': "'wdndzpiosktfccnvdkvi'", 'output': 'ryiyukdjnfoaxxiqyfqd', 'relation': '=='}, {'input': "'ozvyljqdkwdvfypufiqe'", 'output': 'juqtgelyfryqatkpadlz', 'relation': '=='}, {'input': "'mgmxhhcuhdwdjj'", 'output': 'hbhsccxpcyryee', 'relation': '=='}, {'input': "'uwknvyslwdcblborazqt'", 'output': 'prfiqtngryxwgwjmvulo', 'relation': '=='}, {'input': "'timmhpfxwmxmfhbzgm'", 'output': 'odhhckasrhshacwubh', 'relation': '=='}, {'input': "'gphvmnaulwj'", 'output': 'bkcqhivpgre', 'relation': '=='}, {'input': "'xumeuesliiasqsstcga'", 'output': 'sphzpzngddvnlnnoxbv', 'relation': '=='}, {'input': "'zigrcpeimllwtjskntmh'", 'output': 'udbmxkzdhggroenfiohc', 'relation': '=='}, {'input': "'ewigzwfhdmksuulrg'", 'output': 'zrdburacyhfnppgmb', 'relation': '=='}, {'input': "'rfrneetosbce'", 'output': 'mamizzojnwxz', 'relation': '=='}, {'input': "'abujlolgxcwgcpggxu'", 'output': 'vwpegjgbsxrbxkbbsp', 'relation': '=='}, {'input': "'vkgvhkhyhamrixmxyg'", 'output': 'qfbqcfctcvhmdshstb', 'relation': '=='}, {'input': "'hsaxxvpnlabpmnrjazo'", 'output': 'cnvssqkigvwkhimevuj', 'relation': '=='}, {'input': "'pdhftyxihwlvnjqhm'", 'output': 'kycaotsdcrgqielch', 'relation': '=='}, {'input': "'oktwboyezvfawoa'", 'output': 'jforwjtzuqavrjv', 'relation': '=='}, {'input': "'jniicwjnoyl'", 'output': 'eiddxreijtg', 'relation': '=='}, {'input': "'laznvunghzsngfp'", 'output': 'gvuiqpibcunibak', 'relation': '=='}, {'input': "'znkctwbswfih'", 'output': 'uifxorwnradc', 'relation': '=='}, {'input': "'wgqxwjsjgoqe'", 'output': 'rblsrenebjlz', 'relation': '=='}, {'input': "'qlamaiqdws'", 'output': 'lgvhvdlyrn', 'relation': '=='}, {'input': "'cjmkeeksfkcpeseacem'", 'output': 'xehfzzfnafxkznzvxzh', 'relation': '=='}, {'input': "'kebirgumltqoem'", 'output': 'fzwdmbphgoljzh', 'relation': '=='}, {'input': "'falrpnhdnqzvr'", 'output': 'avgmkicyiluqm', 'relation': '=='}, {'input': "'wpfinkxngiysqcepsyvi'", 'output': 'rkadifsibdtnlxzkntqd', 'relation': '=='}, {'input': "'xlngbsfvewacccal'", 'output': 'sgibwnaqzrvxxxvg', 'relation': '=='}, {'input': "'shapypaicovoasp'", 'output': 'ncvktkvdxjqjvnk', 'relation': '=='}, {'input': "'bowjlsarackyxorw'", 'output': 'wjregnvmvxftsjmr', 'relation': '=='}, {'input': "'oolsexyzpt'", 'output': 'jjgnzstuko', 'relation': '=='}, {'input': "'talvueeckahovazyp'", 'output': 'ovgqpzzxfvcjqvutk', 'relation': '=='}, {'input': "'dmaomeljfgm'", 'output': 'yhvjhzgeabh', 'relation': '=='}, {'input': "'ydhtszxlbbrurmjzb'", 'output': 'tyconusgwwmpmheuw', 'relation': '=='}, {'input': "'ddidsmkebv'", 'output': 'yydynhfzwq', 'relation': '=='}, {'input': "'gwmitjetavwypdtyc'", 'output': 'brhdoezovqrtkyotx', 'relation': '=='}, {'input': "'swtkcutndmznddvuzm'", 'output': 'nrofxpoiyhuiyyqpuh', 'relation': '=='}, {'input': "'thbomnppwhjjmr'", 'output': 'ocwjhikkrceehm', 'relation': '=='}, {'input': "'blhsspwtsgls'", 'output': 'wgcnnkronbgn', 'relation': '=='}, {'input': "'dxbfdxrufqodrswc'", 'output': 'yswaysmpaljymnrx', 'relation': '=='}, {'input': "'eymumnsufrpaaerckt'", 'output': 'zthphinpamkvvzmxfo', 'relation': '=='}, {'input': "'ywfrxxafhzsj'", 'output': 'tramssvacune', 'relation': '=='}, {'input': "'kgnrpltppdrndsnhu'", 'output': 'fbimkgokkymiynicp', 'relation': '=='}, {'input': "'cwgqmzhdzg'", 'output': 'xrblhucyub', 'relation': '=='}, {'input': "'mlfyjmjuai'", 'output': 'hgatehepvd', 'relation': '=='}, {'input': "'ltbndqkyycbidkoixfo'", 'output': 'gowiylfttxwdyfjdsaj', 'relation': '=='}, {'input': "'arrblhxbzmibdoayeie'", 'output': 'vmmwgcswuhdwyjvtzdz', 'relation': '=='}, {'input': "'egqwsaqhvzpfsuisqzt'", 'output': 'zblrnvlcqukanpdnluo', 'relation': '=='}, {'input': "'skcvznyewdut'", 'output': 'nfxquitzrypo', 'relation': '=='}, {'input': "'cxnpmhntmdtxyarp'", 'output': 'xsikhciohyostvmk', 'relation': '=='}, {'input': "'upkulqenpn'", 'output': 'pkfpglziki', 'relation': '=='}, {'input': "'bnwfvlhmcsuwdmbuzbu'", 'output': 'wiraqgchxnpryhwpuwp', 'relation': '=='}, {'input': "'efhomrbmoaxquwvqs'", 'output': 'zacjhmwhjvslprqln', 'relation': '=='}, {'input': "'pqbtnonmiclpicwdbk'", 'output': 'klwoijihdxgkdxrywf', 'relation': '=='}, {'input': "'lcuncxdvyoilo'", 'output': 'gxpixsyqtjdgj', 'relation': '=='}, {'input': "'qkofbwjnggwob'", 'output': 'lfjawreibbrjw', 'relation': '=='}, {'input': "'zduifxouutpk'", 'output': 'uypdasjppokf', 'relation': '=='}, {'input': "'nuihruhxza'", 'output': 'ipdcmpcsuv', 'relation': '=='}, {'input': "'jjexohmiwd'", 'output': 'eezsjchdry', 'relation': '=='}, {'input': "'yyeymdvrttoxsoxy'", 'output': 'ttzthyqmoojsnjst', 'relation': '=='}, {'input': "'ycidlzlnah'", 'output': 'txdygugivc', 'relation': '=='}, {'input': "'mkwhkfstbyuo'", 'output': 'hfrcfanowtpj', 'relation': '=='}, {'input': "'mobobthamn'", 'output': 'hjwjwocvhi', 'relation': '=='}, {'input': "'xaelsiwmzjnjhgkeoycx'", 'output': 'svzgndrhueiecbfzjtxs', 'relation': '=='}, {'input': "'titbobrnvwuthy'", 'output': 'odowjwmiqrpoct', 'relation': '=='}, {'input': "'scpynfhmax'", 'output': 'nxktiachvs', 'relation': '=='}, {'input': "'fdanxgddkuvztnkxszu'", 'output': 'ayvisbyyfpquoifsnup', 'relation': '=='}, {'input': "'uqsppaikpsb'", 'output': 'plnkkvdfknw', 'relation': '=='}, {'input': "'oardwgthpnpidrvfa'", 'output': 'jvmyrbockikdymqav', 'relation': '=='}, {'input': "'tsglvqyduztdglnwjo'", 'output': 'onbgqltypuoybgirej', 'relation': '=='}, {'input': "'buifzyembkowfwshm'", 'output': 'wpdautzhwfjrarnch', 'relation': '=='}, {'input': "'tizjubovbns'", 'output': 'oduepwjqwin', 'relation': '=='}, {'input': "'umtwjrlyvcjhndesp'", 'output': 'phoremgtqxeciyznk', 'relation': '=='}, {'input': "'nfocoxxaujtwuqpwdw'", 'output': 'iajxjssvpeorplkryr', 'relation': '=='}, {'input': "'tplbmxrmdsgpcube'", 'output': 'okgwhsmhynbkxpwz', 'relation': '=='}, {'input': "'raezjugjvxpitivt'", 'output': 'mvzuepbeqskdodqo', 'relation': '=='}, {'input': "'cjszjhuenp'", 'output': 'xenuecpzik', 'relation': '=='}, {'input': "'brzhpawrpzbduwgyhmz'", 'output': 'wmuckvrmkuwyprbtchu', 'relation': '=='}, {'input': "'omchsidzbitkbofgpego'", 'output': 'jhxcndyuwdofwjabkzbj', 'relation': '=='}, {'input': "'qsjmvsxaekkkhyr'", 'output': 'lnehqnsvzfffctm', 'relation': '=='}, {'input': "'amuxjmtzntnafetoawk'", 'output': 'vhpsehouioivazojvrf', 'relation': '=='}, {'input': "'tqxozsbntol'", 'output': 'olsjunwiojg', 'relation': '=='}, {'input': "'uimrxqxobofarnfx'", 'output': 'pdhmslsjwjavmias', 'relation': '=='}, {'input': "'dcgycuodemyeqmzlynad'", 'output': 'yxbtxpjyzhtzlhugtivy', 'relation': '=='}, {'input': "'ajzizzgoetgxqcjhopcs'", 'output': 'veuduubjzobslxecjkxn', 'relation': '=='}, {'input': "'ljewqvvnknue'", 'output': 'gezrlqqifipz', 'relation': '=='}, {'input': "'cpeithjdmacare'", 'output': 'xkzdoceyhvxvmz', 'relation': '=='}, {'input': "'qherfnwitqacanxrzq'", 'output': 'lczmairdolvxvismul', 'relation': '=='}, {'input': "'amufywpymzh'", 'output': 'vhpatrkthuc', 'relation': '=='}, {'input': "'tbozsijggouiimwjrtqa'", 'output': 'owjundebbjpddhremolv', 'relation': '=='}, {'input': "'sxccjsziuysngbqltt'", 'output': 'nsxxenudptnibwlgoo', 'relation': '=='}, {'input': "'qiaqwzqgrnlit'", 'output': 'ldvlrulbmigdo', 'relation': '=='}, {'input': "'alzzyfgepmj'", 'output': 'vguutabzkhe', 'relation': '=='}]
remove_vowels
HumanEval/51
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """
def candidate(text): """ candidate is a function that takes string and returns string with or without vowels. >>> candidate('') '' >>> candidate("abcdef\nghijklm") 'bcdf\nghjklm' >>> candidate('abcdef') 'bcdf' >>> candidate('aaaaa') 'aaaaa' >>> candidate('aaBAA') 'B' >>> candidate('zbcd') 'zbcd' """
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'aei' >>> remove_vowels('abcdef') 'ae' >>> remove_vowels('aaaaa') 'aaaaa' >>> remove_vowels('aaBAA') 'aaAA' >>> remove_vowels('zbcd') '' """
def candidate(text): """ candidate is a function that takes string and returns string without. """
def candidate(text): """ candidate is a function that takes string and returns string with or without vowels. >>> candidate('') '' >>> candidate("abcdef\nghijklm") 'aei' >>> candidate('abcdef') 'ae' >>> candidate('aaaaa') 'aaaaa' >>> candidate('aaBAA') 'aaAA' >>> candidate('zbcd') '' """
null
null
null
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """ return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
[{'input': "''", 'output': '', 'relation': '=='}, {'input': '"abcdef\\nghijklm"', 'output': 'bcdf\nghjklm', 'relation': '=='}, {'input': "'fedcba'", 'output': 'fdcb', 'relation': '=='}, {'input': "'eeeee'", 'output': '', 'relation': '=='}, {'input': "'acBAA'", 'output': 'cB', 'relation': '=='}, {'input': "'EcBOO'", 'output': 'cB', 'relation': '=='}, {'input': "'ybcd'", 'output': 'ybcd', 'relation': '=='}]
below_threshold
HumanEval/52
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """
def candidate(l: list, t: int): """Return True if numbers in the list l are around threshold t. >>> candidate([1, 2, 4, 10], 100) True >>> candidate([1, 20, 4, 10], 5) False """
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) False >>> below_threshold([1, 20, 4, 10], 5) True """
def candidate(l: list, t: int): """Return True if all numbers in the list l are below. """
def candidate(l: list, t: int): """Return True if numbers in the list l are around threshold t. >>> candidate([1, 2, 4, 10], 100) False >>> candidate([1, 20, 4, 10], 5) True """
null
null
null
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """ for e in l: if e >= t: return False return True
[{'input': '[1, 2, 4, 10], 100', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 5', 'output': 'False', 'relation': '=='}, {'input': '[1, 20, 4, 10], 21', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10], 22', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 11', 'output': 'True', 'relation': '=='}, {'input': '[1, 8, 4, 10], 10', 'output': 'False', 'relation': '=='}]
add
HumanEval/53
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """
def candidate(x: int, y: int): """Add or multiply or subtract two numbers x and y >>> candidate(2, 3) 5 >>> candidate(5, 7) 12 """
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 1 >>> add(5, 7) 2 """
def candidate(x: int, y: int): """ two numbers x and y """
def candidate(x: int, y: int): """Add or multiply or subtract two numbers x and y >>> candidate(2, 3) 1 >>> candidate(5, 7) 2 """
null
null
null
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """ return x + y
[{'input': '0, 1', 'output': '1', 'relation': '=='}, {'input': '1, 0', 'output': '1', 'relation': '=='}, {'input': '2, 3', 'output': '5', 'relation': '=='}, {'input': '5, 7', 'output': '12', 'relation': '=='}, {'input': '7, 5', 'output': '12', 'relation': '=='}, {'input': '654, 114', 'output': '768', 'relation': '=='}, {'input': '25, 759', 'output': '784', 'relation': '=='}, {'input': '281, 250', 'output': '531', 'relation': '=='}, {'input': '228, 142', 'output': '370', 'relation': '=='}, {'input': '754, 104', 'output': '858', 'relation': '=='}, {'input': '692, 758', 'output': '1450', 'relation': '=='}, {'input': '913, 558', 'output': '1471', 'relation': '=='}, {'input': '89, 604', 'output': '693', 'relation': '=='}, {'input': '432, 32', 'output': '464', 'relation': '=='}, {'input': '30, 95', 'output': '125', 'relation': '=='}, {'input': '223, 238', 'output': '461', 'relation': '=='}, {'input': '517, 616', 'output': '1133', 'relation': '=='}, {'input': '27, 574', 'output': '601', 'relation': '=='}, {'input': '203, 733', 'output': '936', 'relation': '=='}, {'input': '665, 718', 'output': '1383', 'relation': '=='}, {'input': '558, 429', 'output': '987', 'relation': '=='}, {'input': '225, 459', 'output': '684', 'relation': '=='}, {'input': '603, 284', 'output': '887', 'relation': '=='}, {'input': '828, 890', 'output': '1718', 'relation': '=='}, {'input': '6, 777', 'output': '783', 'relation': '=='}, {'input': '825, 163', 'output': '988', 'relation': '=='}, {'input': '714, 432', 'output': '1146', 'relation': '=='}, {'input': '348, 284', 'output': '632', 'relation': '=='}, {'input': '159, 220', 'output': '379', 'relation': '=='}, {'input': '980, 781', 'output': '1761', 'relation': '=='}, {'input': '344, 104', 'output': '448', 'relation': '=='}, {'input': '94, 389', 'output': '483', 'relation': '=='}, {'input': '99, 367', 'output': '466', 'relation': '=='}, {'input': '867, 352', 'output': '1219', 'relation': '=='}, {'input': '618, 270', 'output': '888', 'relation': '=='}, {'input': '826, 44', 'output': '870', 'relation': '=='}, {'input': '747, 470', 'output': '1217', 'relation': '=='}, {'input': '549, 127', 'output': '676', 'relation': '=='}, {'input': '996, 944', 'output': '1940', 'relation': '=='}, {'input': '387, 80', 'output': '467', 'relation': '=='}, {'input': '565, 300', 'output': '865', 'relation': '=='}, {'input': '849, 643', 'output': '1492', 'relation': '=='}, {'input': '633, 906', 'output': '1539', 'relation': '=='}, {'input': '882, 370', 'output': '1252', 'relation': '=='}, {'input': '591, 196', 'output': '787', 'relation': '=='}, {'input': '721, 71', 'output': '792', 'relation': '=='}, {'input': '46, 677', 'output': '723', 'relation': '=='}, {'input': '233, 791', 'output': '1024', 'relation': '=='}, {'input': '296, 81', 'output': '377', 'relation': '=='}, {'input': '875, 238', 'output': '1113', 'relation': '=='}, {'input': '887, 103', 'output': '990', 'relation': '=='}, {'input': '389, 284', 'output': '673', 'relation': '=='}, {'input': '464, 650', 'output': '1114', 'relation': '=='}, {'input': '854, 373', 'output': '1227', 'relation': '=='}, {'input': '166, 379', 'output': '545', 'relation': '=='}, {'input': '363, 214', 'output': '577', 'relation': '=='}, {'input': '686, 273', 'output': '959', 'relation': '=='}, {'input': '718, 959', 'output': '1677', 'relation': '=='}, {'input': '699, 663', 'output': '1362', 'relation': '=='}, {'input': '73, 623', 'output': '696', 'relation': '=='}, {'input': '650, 175', 'output': '825', 'relation': '=='}, {'input': '546, 746', 'output': '1292', 'relation': '=='}, {'input': '250, 167', 'output': '417', 'relation': '=='}, {'input': '473, 388', 'output': '861', 'relation': '=='}, {'input': '276, 947', 'output': '1223', 'relation': '=='}, {'input': '655, 704', 'output': '1359', 'relation': '=='}, {'input': '570, 224', 'output': '794', 'relation': '=='}, {'input': '701, 332', 'output': '1033', 'relation': '=='}, {'input': '863, 786', 'output': '1649', 'relation': '=='}, {'input': '794, 57', 'output': '851', 'relation': '=='}, {'input': '234, 841', 'output': '1075', 'relation': '=='}, {'input': '32, 824', 'output': '856', 'relation': '=='}, {'input': '323, 410', 'output': '733', 'relation': '=='}, {'input': '274, 67', 'output': '341', 'relation': '=='}, {'input': '216, 935', 'output': '1151', 'relation': '=='}, {'input': '965, 580', 'output': '1545', 'relation': '=='}, {'input': '897, 735', 'output': '1632', 'relation': '=='}, {'input': '322, 217', 'output': '539', 'relation': '=='}, {'input': '671, 511', 'output': '1182', 'relation': '=='}, {'input': '405, 905', 'output': '1310', 'relation': '=='}, {'input': '936, 658', 'output': '1594', 'relation': '=='}, {'input': '469, 146', 'output': '615', 'relation': '=='}, {'input': '271, 142', 'output': '413', 'relation': '=='}, {'input': '252, 762', 'output': '1014', 'relation': '=='}, {'input': '574, 551', 'output': '1125', 'relation': '=='}, {'input': '269, 764', 'output': '1033', 'relation': '=='}, {'input': '598, 438', 'output': '1036', 'relation': '=='}, {'input': '919, 597', 'output': '1516', 'relation': '=='}, {'input': '408, 370', 'output': '778', 'relation': '=='}, {'input': '224, 141', 'output': '365', 'relation': '=='}, {'input': '521, 505', 'output': '1026', 'relation': '=='}, {'input': '93, 773', 'output': '866', 'relation': '=='}, {'input': '48, 881', 'output': '929', 'relation': '=='}, {'input': '112, 156', 'output': '268', 'relation': '=='}, {'input': '642, 163', 'output': '805', 'relation': '=='}, {'input': '811, 696', 'output': '1507', 'relation': '=='}, {'input': '432, 610', 'output': '1042', 'relation': '=='}, {'input': '65, 394', 'output': '459', 'relation': '=='}, {'input': '390, 610', 'output': '1000', 'relation': '=='}, {'input': '479, 541', 'output': '1020', 'relation': '=='}, {'input': '257, 994', 'output': '1251', 'relation': '=='}, {'input': '566, 881', 'output': '1447', 'relation': '=='}, {'input': '965, 11', 'output': '976', 'relation': '=='}, {'input': '696, 738', 'output': '1434', 'relation': '=='}, {'input': '117, 698', 'output': '815', 'relation': '=='}]
same_chars
HumanEval/54
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def candidate(s0: str, s1: str): """ Check if two words satisfy a specific condition (such as having the same length, having the same characters, or meeting another specific condition). >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') False >>> same_chars('abcd', 'dddddddabc') False >>> same_chars('dddddddabc', 'abcd') False >>> same_chars('eabcd', 'dddddddabc') True >>> same_chars('abcd', 'dddddddabce') True >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') True """
def candidate(s0: str, s1: str): """ >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def candidate(s0: str, s1: str): """ Check if two words satisfy a specific condition (such as having the same length, having the same characters, or meeting another specific condition). >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') False >>> candidate('abcd', 'dddddddabc') False >>> candidate('dddddddabc', 'abcd') False >>> candidate('eabcd', 'dddddddabc') True >>> candidate('abcd', 'dddddddabce') True >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') True """
null
def candidate(s0: str, s1: str): """ >>> candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> candidate('abcd', 'dddddddabc') True >>> candidate('dddddddabc', 'abcd') True >>> candidate('eabcd', 'dddddddabc') False >>> candidate('abcd', 'dddddddabce') False >>> candidate('eabcdzzzz', 'dddzzzzzzzddddabc') False """
null
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """ return set(s0) == set(s1)
[{'input': "'eabcdzzzz', 'dddzzzzzzzddeddabc'", 'output': 'True', 'relation': '=='}, {'input': "'abcd', 'dddddddabc'", 'output': 'True', 'relation': '=='}, {'input': "'dddddddabc', 'abcd'", 'output': 'True', 'relation': '=='}, {'input': "'eabcd', 'dddddddabc'", 'output': 'False', 'relation': '=='}, {'input': "'abcd', 'dddddddabcf'", 'output': 'False', 'relation': '=='}, {'input': "'eabcdzzzz', 'dddzzzzzzzddddabc'", 'output': 'False', 'relation': '=='}, {'input': "'aabb', 'aaccc'", 'output': 'False', 'relation': '=='}]
fib
HumanEval/55
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """
def candidate(n: int): """Return a number that satisfies a specific condition (such as being n-th Prime number, being n-th Fibonacci number, or meeting another specific condition). >>> candidate(10) 55 >>> candidate(1) 1 >>> candidate(8) 21 """
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 550 >>> fib(1) 10 >>> fib(8) 210 """
def candidate(n: int): """ >>> candidate(10) 55 >>> candidate(1) 1 >>> candidate(8) 21 """
def candidate(n: int): """Return a number that satisfies a specific condition (such as being n-th Prime number, being n-th Fibonacci number, or meeting another specific condition). >>> candidate(10) 550 >>> candidate(1) 10 >>> candidate(8) 210 """
null
def candidate(n: int): """ >>> candidate(10) 550 >>> candidate(1) 10 >>> candidate(8) 210 """
null
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """ if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2)
[{'input': '10', 'output': '55', 'relation': '=='}, {'input': '1', 'output': '1', 'relation': '=='}, {'input': '8', 'output': '21', 'relation': '=='}, {'input': '11', 'output': '89', 'relation': '=='}, {'input': '12', 'output': '144', 'relation': '=='}]
correct_bracketing
HumanEval/56
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """
def candidate(brackets: str): """ brackets is a string of "<" and ">". return True if every opening brackets have K corresponding closing brackets. >>> candidate("<") False >>> candidate("<>") True >>> candidate("<<><>>") True >>> candidate("><<>") False """
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") True >>> correct_bracketing("<>") False >>> correct_bracketing("<<><>>") False >>> correct_bracketing("><<>") True """
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". >>> correct_bracketing("<") False """
def candidate(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has K corresponding closing bracket. >>> candidate("<") True >>> candidate("<>") False >>> candidate("<<><>>") False >>> candidate("><<>") True """
def candidate(brackets: str): """ brackets is a string of "<" and ">". >>> candidate("<") False """
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". >>> correct_bracketing("<") True """
def candidate(brackets: str): """ brackets is a string of "<" and ">". >>> candidate("<") True """
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """ depth = 0 for b in brackets: if b == "<": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
[{'input': "'<>'", 'output': 'True', 'relation': '=='}, {'input': "'<<><>>'", 'output': 'True', 'relation': '=='}, {'input': "'<><><<><>><>'", 'output': 'True', 'relation': '=='}, {'input': "'<><><<<><><>><>><<><><<>>>'", 'output': 'True', 'relation': '=='}, {'input': "'<<<><>>>>'", 'output': 'False', 'relation': '=='}, {'input': "'><<>'", 'output': 'False', 'relation': '=='}, {'input': "'<'", 'output': 'False', 'relation': '=='}, {'input': "'<<<<'", 'output': 'False', 'relation': '=='}, {'input': "'>'", 'output': 'False', 'relation': '=='}, {'input': "'<<>'", 'output': 'False', 'relation': '=='}, {'input': "'<><><<><>><>><<>'", 'output': 'False', 'relation': '=='}, {'input': "'<><><<><>><>>><>'", 'output': 'False', 'relation': '=='}]
monotonic
HumanEval/57
def monotonic(l: list): """Return True if list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """
def candidate(l: list): """Return True if list elements are increasing or decreasing with a specific condition (such as elements being monotonical, nonmonotonical, or another specific condition). >>> candidate([1, 2, 4, 20]) True >>> candidate([1, 20, 4, 10]) False >>> candidate([4, 1, 0, -10]) True """
def monotonic(l: list): """Return True if list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) False >>> monotonic([1, 20, 4, 10]) True >>> monotonic([4, 1, 0, -10]) False """
def candidate(l: list): """ >>> candidate([1, 2, 4, 20]) True >>> candidate([1, 20, 4, 10]) False >>> candidate([4, 1, 0, -10]) True """
def candidate(l: list): """Return True if list elements are increasing or decreasing with a specific condition (such as elements being monotonical, nonmonotonical, or another specific condition). >>> candidate([1, 2, 4, 20]) False >>> candidate([1, 20, 4, 10]) True >>> candidate([4, 1, 0, -10]) False """
null
def candidate(l: list): """Return True if list elements are monotonic. >>> candidate([1, 2, 4, 20]) False >>> candidate([1, 20, 4, 10]) True >>> candidate([4, 1, 0, -10]) False """
null
def monotonic(l: list): """Return True is list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """ if l == sorted(l) or l == sorted(l, reverse=True): return True return False
[{'input': '[1, 2, 4, 10]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 4, 20]', 'output': 'True', 'relation': '=='}, {'input': '[1, 20, 4, 10]', 'output': 'False', 'relation': '=='}, {'input': '[4, 1, 0, -10]', 'output': 'True', 'relation': '=='}, {'input': '[4, 1, 1, 0]', 'output': 'True', 'relation': '=='}, {'input': '[1, 2, 3, 2, 5, 60]', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5, 60]', 'output': 'True', 'relation': '=='}, {'input': '[9, 9, 9, 9]', 'output': 'True', 'relation': '=='}]
common
HumanEval/58
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """
def candidate(l1: list, l2: list): """Return sorted (descendingly or ascendingly) unique common elements for two lists. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> candidate([5, 3, 2, 8], [3, 2]) [2, 3] """
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> common([5, 3, 2, 8], [3, 2]) [3, 2] """
def common(l1: list, l2: list): """Return common. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """
def candidate(l1: list, l2: list): """Return sorted (descendingly or ascendingly) unique common elements for two lists. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> candidate([5, 3, 2, 8], [3, 2]) [3, 2] """
def candidate(l1: list, l2: list): """Return common. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> candidate([5, 3, 2, 8], [3, 2]) [2, 3] """
def common(l1: list, l2: list): """Return common. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> common([5, 3, 2, 8], [3, 2]) [3, 2] """
def candidate(l1: list, l2: list): """Return common. >>> candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [653, 5, 1] >>> candidate([5, 3, 2, 8], [3, 2]) [3, 2] """
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """ ret = set() for e1 in l1: for e2 in l2: if e1 == e2: ret.add(e1) return sorted(list(ret))
[{'input': '[1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]', 'output': '[1, 5, 653]', 'relation': '=='}, {'input': '[5, 3, 2, 8], [3, 2]', 'output': '[2, 3]', 'relation': '=='}, {'input': '[4, 3, 2, 8], [3, 2, 4]', 'output': '[2, 3, 4]', 'relation': '=='}, {'input': '[4, 3, 2, 8], []', 'output': '[]', 'relation': '=='}]
largest_prime_factor
HumanEval/59
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """
def candidate(n: int): """Return the smallest or largest prime factor of n. Assume n > 1 and is not a prime. >>> candidate(13195) 29 >>> candidate(2048) 2 """
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 5 >>> largest_prime_factor(2048) 2 """
def candidate(n: int): """Return the prime factor of n. Assume n > 1 and is not a prime. """
def candidate(n: int): """Return the smallest or largest prime factor of n. Assume n > 1 and is not a prime. >>> candidate(13195) 5 >>> candidate(2048) 2 """
def candidate(n: int): """Return the smallest or largest prime factor of n. Assume n > 1 and is not a prime. """
null
null
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """ def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest
[{'input': '15', 'output': '5', 'relation': '=='}, {'input': '27', 'output': '3', 'relation': '=='}, {'input': '63', 'output': '7', 'relation': '=='}, {'input': '330', 'output': '11', 'relation': '=='}, {'input': '13195', 'output': '29', 'relation': '=='}]
sum_to_n
HumanEval/60
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """
def candidate(n: int): """candidate is a function that sums up all numbers. >>> candidate(30) 465 >>> candidate(100) 5050 >>> candidate(5) 15 >>> candidate(10) 55 >>> candidate(1) 1 """
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 930 >>> sum_to_n(100) 10100 >>> sum_to_n(5) 30 >>> sum_to_n(10) 110 >>> sum_to_n(1) 2 """
def candidate(n: int): """candidate is a function that sums numbers. """
def candidate(n: int): """candidate is a function that sums up all numbers. >>> candidate(30) 465 >>> candidate(100) 10100 >>> candidate(5) 30 >>> candidate(10) 110 >>> candidate(1) 2 """
null
null
null
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """ return sum(range(n + 1))
[{'input': '1', 'output': '1', 'relation': '=='}, {'input': '6', 'output': '21', 'relation': '=='}, {'input': '11', 'output': '66', 'relation': '=='}, {'input': '30', 'output': '465', 'relation': '=='}, {'input': '100', 'output': '5050', 'relation': '=='}]
correct_bracketing
HumanEval/61
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """
def candidate(brackets: str): """ brackets is a string of "(" and ")". return True if every closing or opening bracket has a corresponding closing or opening bracket. >>> candidate("(") False >>> candidate("()") True >>> candidate("(()())") True >>> candidate(")(()") False """
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") True >>> correct_bracketing("()") False >>> correct_bracketing("(()())") False >>> correct_bracketing(")(()") True """
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". >>> correct_bracketing("(") False """
def candidate(brackets: str): """ brackets is a string of "(" and ")". return True if every closing or opening bracket has a corresponding closing or opening bracket. >>> candidate("(") True >>> candidate("()") False >>> candidate("(()())") False >>> candidate(")(()") True """
def candidate(brackets: str): """ brackets is a string of "(" and ")". >>> candidate("(") False """
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". >>> correct_bracketing("(") True """
def candidate(brackets: str): """ brackets is a string of "(" and ")". >>> candidate("(") True """
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """ depth = 0 for b in brackets: if b == "(": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
[{'input': "'()'", 'output': 'True', 'relation': '=='}, {'input': "'(()())'", 'output': 'True', 'relation': '=='}, {'input': "'()()(()())()'", 'output': 'True', 'relation': '=='}, {'input': "'()()((()()())())(()()(()))'", 'output': 'True', 'relation': '=='}, {'input': "'((()())))'", 'output': 'False', 'relation': '=='}, {'input': "')(()'", 'output': 'False', 'relation': '=='}, {'input': "'('", 'output': 'False', 'relation': '=='}, {'input': "'(((('", 'output': 'False', 'relation': '=='}, {'input': "')'", 'output': 'False', 'relation': '=='}, {'input': "'(()'", 'output': 'False', 'relation': '=='}, {'input': "'()()(()())())(()'", 'output': 'False', 'relation': '=='}, {'input': "'()()(()())()))()'", 'output': 'False', 'relation': '=='}]
derivative
HumanEval/62
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """
def candidate(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return first or second derivative of this polynomial in the same form. >>> candidate([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> candidate([1, 2, 3]) [2, 6] """
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [20, 12, 4, 1] >>> derivative([1, 2, 3]) [6, 2] """
def candidate(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... """
def candidate(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return first or second derivative of this polynomial in the same form. >>> candidate([3, 1, 2, 4, 5]) [20, 12, 4, 1] >>> candidate([1, 2, 3]) [6, 2] """
null
null
null
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """ return [(i * x) for i, x in enumerate(xs)][1:]
[{'input': '[3, 1, 2, 4, 5]', 'output': '[1, 4, 12, 20]', 'relation': '=='}, {'input': '[1, 2, 3]', 'output': '[2, 6]', 'relation': '=='}, {'input': '[3, 2, 1]', 'output': '[2, 2]', 'relation': '=='}, {'input': '[3, 2, 1, 0, 4]', 'output': '[2, 2, 0, 16]', 'relation': '=='}, {'input': '[1]', 'output': '[]', 'relation': '=='}]
fibfib
HumanEval/63
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute an arbitrary element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute an element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute an element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequence that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 Please write a function to efficiently compute an element of the fibfib number sequence. >>> fibfib(1) 1 >>> fibfib(5) 5 >>> fibfib(8) 21 """
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """ if n == 0: return 0 if n == 1: return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
[{'input': '2', 'output': '1', 'relation': '=='}, {'input': '1', 'output': '0', 'relation': '=='}, {'input': '5', 'output': '4', 'relation': '=='}, {'input': '8', 'output': '24', 'relation': '=='}, {'input': '10', 'output': '81', 'relation': '=='}, {'input': '12', 'output': '274', 'relation': '=='}, {'input': '14', 'output': '927', 'relation': '=='}]
vowels_count
HumanEval/64
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """
FIX = """ Add more test cases. """ def candidate(s): """Write a function candidate which takes a string representing a word as input and returns the number of characters or vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> candidate("abcde") 2 >>> candidate("ACEDY") 3 """
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 5 >>> vowels_count("ACEDY") 5 """
FIX = """ Add more test cases. """ def candidate(s): """Write a function candidate which takes a string representing a word as input. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. """
FIX = """ Add more test cases. """ def candidate(s): """Write a function candidate which takes a string representing a word as input and returns the number of characters or vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> candidate("abcde") 5 >>> candidate("ACEDY") 5 """
null
null
null
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """ vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s) if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels
[{'input': '"abcde"', 'output': '2', 'relation': '=='}, {'input': '"Alone"', 'output': '3', 'relation': '=='}, {'input': '"key"', 'output': '2', 'relation': '=='}, {'input': '"bye"', 'output': '1', 'relation': '=='}, {'input': '"keY"', 'output': '2', 'relation': '=='}, {'input': '"bYe"', 'output': '1', 'relation': '=='}, {'input': '"ACEDY"', 'output': '3', 'relation': '=='}]
circular_shift
HumanEval/65
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits left or right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "12" >>> circular_shift(12, 2) "21" """
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits and return the result as a string. """
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits left or right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "12" >>> circular_shift(12, 2) "21" """
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits left or right by shift and return the result as a string. """
null
null
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """ s = str(x) if shift > len(s): return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift]
[{'input': '100, 2', 'output': '001', 'relation': '=='}, {'input': '12, 2', 'output': '12', 'relation': '=='}, {'input': '97, 8', 'output': '79', 'relation': '=='}, {'input': '12, 1', 'output': '21', 'relation': '=='}, {'input': '11, 101', 'output': '11', 'relation': '=='}]
digitSum
HumanEval/66
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the number of upper characters. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 2 digitSum("abcCd") => 1 digitSum("helloE") => 1 digitSum("woArBld") => 2 digitSum("aAaaaXa") => 2 """
def digitSum(s): """Task Write a function that takes a string as input and returns the sum' """
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the number of upper characters. Examples: digitSum("") => 0 digitSum("abAB") => 2 digitSum("abcCd") => 1 digitSum("helloE") => 1 digitSum("woArBld") => 2 digitSum("aAaaaXa") => 2 """
null
null
null
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """ if s == "": return 0 return sum(ord(char) if char.isupper() else 0 for char in s)
[{'input': '""', 'output': '0', 'relation': '=='}, {'input': '"abAB"', 'output': '131', 'relation': '=='}, {'input': '"abcCd"', 'output': '67', 'relation': '=='}, {'input': '"helloE"', 'output': '69', 'relation': '=='}, {'input': '"woArBld"', 'output': '131', 'relation': '=='}, {'input': '"aAaaaXa"', 'output': '153', 'relation': '=='}, {'input': '" How are yOu?"', 'output': '151', 'relation': '=='}, {'input': '"You arE Very Smart"', 'output': '327', 'relation': '=='}]
fruit_distribution
HumanEval/67
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of a certain type of fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 6 = 13 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 = 3 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 = 98 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 = 20 """
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number """
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of a certain type of fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 6 = 13 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 = 3 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 = 98 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 = 20 """
null
null
null
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """ lis = list() for i in s.split(' '): if i.isdigit(): lis.append(int(i)) return n - sum(lis)
[{'input': '"5 apples and 6 oranges",19', 'output': '8', 'relation': '=='}, {'input': '"5 apples and 6 oranges",21', 'output': '10', 'relation': '=='}, {'input': '"0 apples and 1 oranges",3', 'output': '2', 'relation': '=='}, {'input': '"1 apples and 0 oranges",3', 'output': '2', 'relation': '=='}, {'input': '"2 apples and 3 oranges",100', 'output': '95', 'relation': '=='}, {'input': '"2 apples and 3 oranges",5', 'output': '0', 'relation': '=='}, {'input': '"1 apples and 100 oranges",120', 'output': '19', 'relation': '=='}]
pluck
HumanEval/68
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the value. If multiple nodes with the value are found return the node that has smallest index. The plucked node should be returned in a list, [ value, its index ], If there are no values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation Example 2: Input: [1,2,3] Output: [2, 1] Explanation Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [4, 0] Explanation Example 2: Input: [1,2,3] Output: [3, 2] Explanation Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [5, 0] Explanation Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node """
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the value. If multiple nodes with the value are found return the node that has smallest index. The plucked node should be returned in a list, [ value, its index ], If there are no values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [4, 0] Explanation Example 2: Input: [1,2,3] Output: [3, 2] Explanation Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [5, 0] Explanation Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
null
null
null
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """ if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr)) if(evens == []): return [] return [min(evens), arr.index(min(evens))]
[{'input': '[4,2,3]', 'output': '[2, 1]', 'relation': '=='}, {'input': '[1,2,3]', 'output': '[2, 1]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[5, 0, 3, 0, 4, 2]', 'output': '[0, 1]', 'relation': '=='}, {'input': '[1, 2, 3, 0, 5, 3]', 'output': '[0, 3]', 'relation': '=='}, {'input': '[5, 4, 8, 4 ,8]', 'output': '[4, 1]', 'relation': '=='}, {'input': '[7, 6, 7, 1]', 'output': '[6, 1]', 'relation': '=='}, {'input': '[7, 9, 7, 1]', 'output': '[]', 'relation': '=='}]
search
HumanEval/69
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 '''
def search(lst): ''' You are given a non-empty list of positive integers. Return the smallest or greatest integer that is greater than zero, and has a frequency similar to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 '''
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 4 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 4 search([5, 5, 4, 4, 4]) == 5 '''
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency. '''
def search(lst): ''' You are given a non-empty list of positive integers. Return the smallest or greatest integer that is greater than zero, and has a frequency similar to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 4 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 4 search([5, 5, 4, 4, 4]) == 5 '''
def search(lst): ''' You are given a non-empty list of positive integers. Return the smallest or greatest integer that is greater than zero, and has a frequency. '''
null
null
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 ''' frq = [0] * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1 for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans
[{'input': '[5, 5, 5, 5, 1]', 'output': '1', 'relation': '=='}, {'input': '[4, 1, 4, 1, 4, 4]', 'output': '4', 'relation': '=='}, {'input': '[3, 3]', 'output': '-1', 'relation': '=='}, {'input': '[8, 8, 8, 8, 8, 8, 8, 8]', 'output': '8', 'relation': '=='}, {'input': '[2, 3, 3, 2, 2]', 'output': '2', 'relation': '=='}, {'input': '[2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]', 'output': '1', 'relation': '=='}, {'input': '[3, 2, 8, 2]', 'output': '2', 'relation': '=='}, {'input': '[6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]', 'output': '1', 'relation': '=='}, {'input': '[8, 8, 3, 6, 5, 6, 4]', 'output': '-1', 'relation': '=='}, {'input': '[6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]', 'output': '1', 'relation': '=='}, {'input': '[1, 9, 10, 1, 3]', 'output': '1', 'relation': '=='}, {'input': '[6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]', 'output': '5', 'relation': '=='}, {'input': '[1]', 'output': '1', 'relation': '=='}, {'input': '[8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]', 'output': '4', 'relation': '=='}, {'input': '[2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]', 'output': '2', 'relation': '=='}, {'input': '[1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]', 'output': '1', 'relation': '=='}, {'input': '[9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]', 'output': '4', 'relation': '=='}, {'input': '[2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]', 'output': '4', 'relation': '=='}, {'input': '[9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]', 'output': '2', 'relation': '=='}, {'input': '[5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]', 'output': '-1', 'relation': '=='}, {'input': '[10]', 'output': '-1', 'relation': '=='}, {'input': '[9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]', 'output': '2', 'relation': '=='}, {'input': '[5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]', 'output': '1', 'relation': '=='}, {'input': '[7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]', 'output': '1', 'relation': '=='}, {'input': '[3, 10, 10, 9, 2]', 'output': '-1', 'relation': '=='}]
strange_sort_list
HumanEval/70
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] '''
def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: candidate([1, 2, 3, 4]) == [1, 4, 2, 3] candidate([5, 5, 5, 5]) == [5, 5, 5, 5] candidate([]) == [] '''
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 2, 3, 4] strange_sort_list([5, 5, 5, 5]) == [5] strange_sort_list([]) == [] '''
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] '''
def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: candidate([1, 2, 3, 4]) == [1, 2, 3, 4] candidate([5, 5, 5, 5]) == [5] candidate([]) == [] '''
def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Examples: candidate([1, 2, 3, 4]) == [1, 4, 2, 3] candidate([5, 5, 5, 5]) == [5, 5, 5, 5] candidate([]) == [] '''
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 2, 3, 4] strange_sort_list([5, 5, 5, 5]) == [5] strange_sort_list([]) == [] '''
def candidate(lst): ''' Given list of integers, return list in a certain order (ascending, strange or another). Examples: candidate([1, 2, 3, 4]) == [1, 2, 3, 4] candidate([5, 5, 5, 5]) == [5] candidate([]) == [] '''
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] ''' res, switch = [], True while lst: res.append(min(lst) if switch else max(lst)) lst.remove(res[-1]) switch = not switch return res
[{'input': '[1, 2, 3, 4]', 'output': '[1, 4, 2, 3]', 'relation': '=='}, {'input': '[5, 6, 7, 8, 9]', 'output': '[5, 9, 6, 8, 7]', 'relation': '=='}, {'input': '[1, 2, 3, 4, 5]', 'output': '[1, 5, 2, 4, 3]', 'relation': '=='}, {'input': '[5, 6, 7, 8, 9, 1]', 'output': '[1, 9, 5, 8, 6, 7]', 'relation': '=='}, {'input': '[5, 5, 5, 5]', 'output': '[5, 5, 5, 5]', 'relation': '=='}, {'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[1,2,3,4,5,6,7,8]', 'output': '[1, 8, 2, 7, 3, 6, 4, 5]', 'relation': '=='}, {'input': '[0,2,2,2,5,5,-5,-5]', 'output': '[-5, 5, -5, 5, 0, 2, 2, 2]', 'relation': '=='}, {'input': '[111111]', 'output': '[111111]', 'relation': '=='}]
triangle_area
HumanEval/71
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 '''
def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 6.00 candidate(1, 2, 10) == -1 '''
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 12.00 triangle_area(1, 2, 10) == -1 '''
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 '''
def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 12.00 candidate(1, 2, 10) == -1 '''
def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 6.00 '''
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 12.00 '''
def candidate(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area or perimeter of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: candidate(3, 4, 5) == 12.00 '''
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 ''' if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area
[{'input': '3, 4, 5', 'output': '6.0', 'relation': '=='}, {'input': '1, 2, 10', 'output': '-1', 'relation': '=='}, {'input': '4, 8, 5', 'output': '8.18', 'relation': '=='}, {'input': '2, 2, 2', 'output': '1.73', 'relation': '=='}, {'input': '1, 2, 3', 'output': '-1', 'relation': '=='}, {'input': '10, 5, 7', 'output': '16.25', 'relation': '=='}, {'input': '2, 6, 3', 'output': '-1', 'relation': '=='}, {'input': '1, 1, 1', 'output': '0.43', 'relation': '=='}, {'input': '2, 2, 10', 'output': '-1', 'relation': '=='}]
will_it_fly
HumanEval/72
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. '''
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is more than or less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. '''
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ True # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ True # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ False # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ False # 3 is less than the maximum possible weight, and it's balanced. '''
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False will_it_fly([3, 2, 3], 9) ➞ True will_it_fly([3], 5) ➞ True '''
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is more than or less than or equal the weight w. Example: will_it_fly([1, 2], 5) ➞ True # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ True # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ False # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ False # 3 is less than the maximum possible weight, and it's balanced. '''
null
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. Example: will_it_fly([1, 2], 5) ➞ True # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ True will_it_fly([3, 2, 3], 9) ➞ False will_it_fly([3], 5) ➞ False '''
null
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' if sum(q) > w: return False i, j = 0, len(q)-1 while i<j: if q[i] != q[j]: return False i+=1 j-=1 return True
[{'input': '[3, 2, 3], 9', 'output': 'True', 'relation': '=='}, {'input': '[1, 2], 5', 'output': 'False', 'relation': '=='}, {'input': '[3], 5', 'output': 'True', 'relation': '=='}, {'input': '[3, 2, 3], 1', 'output': 'False', 'relation': '=='}, {'input': '[1, 2, 3], 6', 'output': 'False', 'relation': '=='}, {'input': '[5], 5', 'output': 'True', 'relation': '=='}]
smallest_change
HumanEval/73
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """
def candidate(arr): """ Given an array arr of integers, find the number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: candidate([1,2,3,5,4,7,9,6]) == 4 candidate([1, 2, 3, 4, 3, 2, 2]) == 1 candidate([1, 2, 3, 2, 1]) == 0 """
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 8 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 7 smallest_change([1, 2, 3, 2, 1]) == 5 """
def candidate(arr): """ Given an array arr of integers, find the number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. """
def candidate(arr): """ Given an array arr of integers, find the maximum or minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: candidate([1,2,3,5,4,7,9,6]) == 8 candidate([1, 2, 3, 4, 3, 2, 2]) == 7 candidate([1, 2, 3, 2, 1]) == 5 """
null
null
null
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """ ans = 0 for i in range(len(arr) // 2): if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
[{'input': '[1,2,3,5,4,7,9,6]', 'output': '4', 'relation': '=='}, {'input': '[1, 2, 3, 4, 3, 2, 2]', 'output': '1', 'relation': '=='}, {'input': '[1, 4, 2]', 'output': '1', 'relation': '=='}, {'input': '[1, 4, 4, 2]', 'output': '1', 'relation': '=='}, {'input': '[1, 2, 3, 2, 1]', 'output': '0', 'relation': '=='}, {'input': '[3, 1, 1, 3]', 'output': '0', 'relation': '=='}, {'input': '[1]', 'output': '0', 'relation': '=='}, {'input': '[0, 1]', 'output': '1', 'relation': '=='}]
total_match
HumanEval/74
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] '''
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list more than or less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] '''
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [''] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'hi', 'admin', 'project'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hi', 'admin'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['1', '2', '3', '4', '5'] '''
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list. '''
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list more than or less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [''] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'hi', 'admin', 'project'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hi', 'admin'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['1', '2', '3', '4', '5'] '''
null
null
null
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] ''' l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: l2 += len(st) if l1 <= l2: return lst1 else: return lst2
[{'input': '[], []', 'output': '[]', 'relation': '=='}, {'input': "['hi', 'admin'], ['hi', 'hi']", 'output': "['hi', 'hi']", 'relation': '=='}, {'input': "['hi', 'admin'], ['hi', 'hi', 'admin', 'project']", 'output': "['hi', 'admin']", 'relation': '=='}, {'input': "['4'], ['1', '2', '3', '4', '5']", 'output': "['4']", 'relation': '=='}, {'input': "['hi', 'admin'], ['hI', 'Hi']", 'output': "['hI', 'Hi']", 'relation': '=='}, {'input': "['hi', 'admin'], ['hI', 'hi', 'hi']", 'output': "['hI', 'hi', 'hi']", 'relation': '=='}, {'input': "['hi', 'admin'], ['hI', 'hi', 'hii']", 'output': "['hi', 'admin']", 'relation': '=='}, {'input': "[], ['this']", 'output': '[]', 'relation': '=='}, {'input': "['this'], []", 'output': '[]', 'relation': '=='}]
is_multiply_prime
HumanEval/75
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of K prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == False """
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True """
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of K prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == False """
null
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == False """
null
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """ def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
[{'input': '5', 'output': 'False', 'relation': '=='}, {'input': '30', 'output': 'True', 'relation': '=='}, {'input': '8', 'output': 'True', 'relation': '=='}, {'input': '10', 'output': 'False', 'relation': '=='}, {'input': '125', 'output': 'True', 'relation': '=='}, {'input': '3 * 5 * 7', 'output': 'True', 'relation': '=='}, {'input': '3 * 6 * 7', 'output': 'False', 'relation': '=='}, {'input': '9 * 9 * 9', 'output': 'False', 'relation': '=='}, {'input': '11 * 9 * 9', 'output': 'False', 'relation': '=='}, {'input': '11 * 13 * 7', 'output': 'True', 'relation': '=='}]
is_simple_power
HumanEval/76
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """
def candidate(a, b): """Your task is to write a function that returns true if a number x is a power of n and false in other cases. x is a simple power of n if n**k=x For example: candidate(1, 4) => true candidate(2, 2) => true candidate(8, 2) => true candidate(3, 2) => false candidate(3, 1) => false candidate(5, 3) => false """
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => false is_simple_power(2, 2) => false is_simple_power(8, 2) => false is_simple_power(3, 2) => true is_simple_power(3, 1) => true is_simple_power(5, 3) => true """
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if """
def candidate(a, b): """Your task is to write a function that returns true if a number x is a power of n and false in other cases. x is a simple power of n if n**k=x For example: candidate(1, 4) => false candidate(2, 2) => false candidate(8, 2) => false candidate(3, 2) => true candidate(3, 1) => true candidate(5, 3) => true """
null
null
null
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """ if (n == 1): return (x == 1) power = 1 while (power < x): power = power * n return (power == x)
[{'input': '16, 2', 'output': 'True', 'relation': '=='}, {'input': '143214, 16', 'output': 'False', 'relation': '=='}, {'input': '4, 2', 'output': 'True', 'relation': '=='}, {'input': '9, 3', 'output': 'True', 'relation': '=='}, {'input': '16, 4', 'output': 'True', 'relation': '=='}, {'input': '24, 2', 'output': 'False', 'relation': '=='}, {'input': '128, 4', 'output': 'False', 'relation': '=='}, {'input': '12, 6', 'output': 'False', 'relation': '=='}]
iscube
HumanEval/77
def iscube(a): ''' Write a function that takes an integer a and returns True if this integer is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False '''
def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is a cube or a similar exponents of some integer number. Note: you may assume the input is always valid. Examples: candidate(1) ==> True candidate(2) ==> False candidate(-1) ==> True candidate(64) ==> True candidate(0) ==> True candidate(180) ==> False '''
def iscube(a): ''' Write a function that takes an integer a and returns True if this integer is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> False iscube(2) ==> True iscube(-1) ==> False iscube(64) ==> False iscube(0) ==> False iscube(180) ==> True '''
def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is. Note: you may assume the input is always valid. Examples: candidate(1) ==> True candidate(2) ==> False candidate(-1) ==> True candidate(64) ==> True candidate(0) ==> True candidate(180) ==> False '''
def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is a cube or a similar exponents of some integer number. Note: you may assume the input is always valid. Examples: candidate(1) ==> False candidate(2) ==> True candidate(-1) ==> False candidate(64) ==> False candidate(0) ==> False candidate(180) ==> True '''
null
def candidate(a): ''' Write a function that takes an integer a and returns True if this integer is. Note: you may assume the input is always valid. Examples: candidate(1) ==> False candidate(2) ==> True candidate(-1) ==> False candidate(64) ==> False candidate(0) ==> False candidate(180) ==> True '''
null
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False ''' a = abs(a) return int(round(a ** (1. / 3))) ** 3 == a
[{'input': '1', 'output': 'True', 'relation': '=='}, {'input': '2', 'output': 'False', 'relation': '=='}, {'input': '-1', 'output': 'True', 'relation': '=='}, {'input': '64', 'output': 'True', 'relation': '=='}, {'input': '180', 'output': 'False', 'relation': '=='}, {'input': '1000', 'output': 'True', 'relation': '=='}, {'input': '0', 'output': 'True', 'relation': '=='}, {'input': '1729', 'output': 'False', 'relation': '=='}]
hex_key
HumanEval/78
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
def candidate(num): """You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string and counts the number of octal or hexadecimal (or another base) digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13), or digits from other base units. Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 0. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 2. For num = "123456789ABCDEF0" the output should be 4. For num = "2020" the output should be 2. """
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
def candidate(num): """You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string and counts the number of octal or hexadecimal (or another base) digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13), or digits from other base units. Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 0. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 2. For num = "123456789ABCDEF0" the output should be 4. For num = "2020" the output should be 2. """
def candidate(num): """You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string Examples: For num = "AB" the output should be 0. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 2. For num = "123456789ABCDEF0" the output should be 4. For num = "2020" the output should be 2. """
def candidate(num): """You have been tasked to write a function that receives an octal or hexadecimal (or another base) number as a string Examples: For num = "AB" the output should be 0. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 2. For num = "123456789ABCDEF0" the output should be 4. For num = "2020" the output should be 2. """
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """ primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): if num[i] in primes: total += 1 return total
[{'input': '"AB"', 'output': '1', 'relation': '=='}, {'input': '"1077E"', 'output': '2', 'relation': '=='}, {'input': '"ABED1A33"', 'output': '4', 'relation': '=='}, {'input': '"2020"', 'output': '2', 'relation': '=='}, {'input': '"123456789ABCDEF0"', 'output': '6', 'relation': '=='}, {'input': '"112233445566778899AABBCCDDEEFF00"', 'output': '12', 'relation': '=='}, {'input': '[]', 'output': '0', 'relation': '=='}]
decimal_to_binary
HumanEval/79
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db1111db" decimal_to_binary(32) # returns "db100000db" """
def candidate(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1' or '2'. There will be an extra couple of characters 'db' at different positions (start, or middle, or end) of the string. The extra characters are there to help with the format. Examples: candidate(15) # returns "db1111db" candidate(32) # returns "db100000db" """
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db15db" decimal_to_binary(32) # returns "db32db" """
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at. """
def candidate(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1' or '2'. There will be an extra couple of characters 'db' at different positions (start, or middle, or end) of the string. The extra characters are there to help with the format. Examples: candidate(15) # returns "db15db" candidate(32) # returns "db32db" """
def candidate(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1' or '2'. There will be an extra couple of characters 'db' at. """
null
null
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db1111db" decimal_to_binary(32) # returns "db100000db" """ return "db" + bin(decimal)[2:] + "db"
[{'input': '0', 'output': 'db0db', 'relation': '=='}, {'input': '32', 'output': 'db100000db', 'relation': '=='}, {'input': '103', 'output': 'db1100111db', 'relation': '=='}, {'input': '15', 'output': 'db1111db', 'relation': '=='}]
is_happy
HumanEval/80
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and roughly substrings of letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => True is_happy(aa) => True is_happy(abcd) => False is_happy(aabb) => True is_happy(adb) => False is_happy(xyy) => True """
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and roughly substrings of letters are distinct For example: is_happy(a) => True is_happy(aa) => True is_happy(abcd) => False is_happy(aabb) => True is_happy(adb) => False is_happy(xyy) => True """
null
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. For example: is_happy(a) => True is_happy(aa) => True is_happy(abcd) => False is_happy(aabb) => True is_happy(adb) => False is_happy(xyy) => True """
null
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """ if len(s) < 3: return False for i in range(len(s) - 2): if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
[{'input': '"a"', 'output': 'False ', 'relation': '=='}, {'input': '"aa"', 'output': 'False ', 'relation': '=='}, {'input': '"abcd"', 'output': 'True ', 'relation': '=='}, {'input': '"aabb"', 'output': 'False ', 'relation': '=='}, {'input': '"adb"', 'output': 'True ', 'relation': '=='}, {'input': '"xyy"', 'output': 'False ', 'relation': '=='}, {'input': '"iopaxpoi"', 'output': 'True ', 'relation': '=='}, {'input': '"iopaxioi"', 'output': 'False ', 'relation': '=='}]
numerical_letter_grade
HumanEval/81
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: numerical_letter_grade([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """
def candidate(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of percentage or letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: candidate([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: numerical_letter_grade([4.0, 3, 1.7, 2, 3.5]) ==> ['A', 'B', 'C', 'C', 'A'] """
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: """
def candidate(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of percentage or letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: candidate([4.0, 3, 1.7, 2, 3.5]) ==> ['A', 'B', 'C', 'C', 'A'] """
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of percentage or letter grades using the following table: """
null
null
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """ letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0: letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3: letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-") elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
[{'input': '[4.0, 3, 1.7, 2, 3.5]', 'output': "['A+', 'B', 'C-', 'C', 'A-']", 'relation': '=='}, {'input': '[1.2]', 'output': "['D+']", 'relation': '=='}, {'input': '[0.5]', 'output': "['D-']", 'relation': '=='}, {'input': '[0.0]', 'output': "['E']", 'relation': '=='}, {'input': '[1, 0.3, 1.5, 2.8, 3.3]', 'output': "['D', 'D-', 'C-', 'B', 'B+']", 'relation': '=='}, {'input': '[0, 0.7]', 'output': "['E', 'D-']", 'relation': '=='}]
prime_length
HumanEval/82
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """
def candidate(string): """Write a function that takes a string and returns True if the string length meets a certain condition (e.g. is an even or prime number or another type) or False otherwise Examples candidate('Hello') == True candidate('abcdcba') == True candidate('kittens') == True candidate('orange') == False """
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == False prime_length('abcdcba') == False prime_length('kittens') == False prime_length('orange') == True """
def candidate(string): """ Examples candidate('Hello') == True candidate('abcdcba') == True candidate('kittens') == True candidate('orange') == False """
def candidate(string): """Write a function that takes a string and returns True if the string length meets a certain condition (e.g. is an even or prime number or another type) or False otherwise Examples candidate('Hello') == False candidate('abcdcba') == False candidate('kittens') == False candidate('orange') == True """
null
def candidate(string): """ Examples candidate('Hello') == False candidate('abcdcba') == False candidate('kittens') == False candidate('orange') == True """
null
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """ l = len(string) if l == 0 or l == 1: return False for i in range(2, l): if l % i == 0: return False return True
[{'input': "'Hello'", 'output': 'True', 'relation': '=='}, {'input': "'abcdcba'", 'output': 'True', 'relation': '=='}, {'input': "'kittens'", 'output': 'True', 'relation': '=='}, {'input': "'orange'", 'output': 'False', 'relation': '=='}, {'input': "'wow'", 'output': 'True', 'relation': '=='}, {'input': "'world'", 'output': 'True', 'relation': '=='}, {'input': "'MadaM'", 'output': 'True', 'relation': '=='}, {'input': "'Wow'", 'output': 'True', 'relation': '=='}, {'input': "''", 'output': 'False', 'relation': '=='}, {'input': "'HI'", 'output': 'True', 'relation': '=='}, {'input': "'go'", 'output': 'True', 'relation': '=='}, {'input': "'gogo'", 'output': 'False', 'relation': '=='}, {'input': "'aaaaaaaaaaaaaaa'", 'output': 'False', 'relation': '=='}, {'input': "'Madam'", 'output': 'True', 'relation': '=='}, {'input': "'M'", 'output': 'False', 'relation': '=='}, {'input': "'0'", 'output': 'False', 'relation': '=='}]
starts_one_ends
HumanEval/83
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of integers that start or end with 1. """
null
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit """
null
null
null
null
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """ if n == 1: return 1 return 18 * (10 ** (n - 2))
[{'input': '1', 'output': '1', 'relation': '=='}, {'input': '2', 'output': '18', 'relation': '=='}, {'input': '3', 'output': '180', 'relation': '=='}, {'input': '4', 'output': '1800', 'relation': '=='}, {'input': '5', 'output': '18000', 'relation': '=='}]
solve
HumanEval/84
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of binary number """
def solve(N): """Given a positive integer N, return the total sum of its digits in a specific base (hexadecimal or binary or another base). Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of hexadecimal or binary number """
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 0 the output should be "0". For N = 150, the sum of digits will be 0 the output should be "0". For N = 147, the sum of digits will be 0 the output should be "0". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of binary number """
def solve(N): """Given a positive integer N, return the total sum of its digits. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". """
def solve(N): """Given a positive integer N, return the total sum of its digits in a specific base (hexadecimal or binary or another base). Example For N = 1000, the sum of digits will be 0 the output should be "0". For N = 150, the sum of digits will be 0 the output should be "0". For N = 147, the sum of digits will be 0 the output should be "0". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of hexadecimal or binary number """
null
def solve(N): """Given a positive integer N, return the total sum of its digits. Example For N = 1000, the sum of digits will be 0 the output should be "0". For N = 150, the sum of digits will be 0 the output should be "0". """
null
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of binary number """ return bin(sum(int(i) for i in str(N)))[2:]
[{'input': '1000', 'output': '1', 'relation': '=='}, {'input': '150', 'output': '110', 'relation': '=='}, {'input': '147', 'output': '1100', 'relation': '=='}, {'input': '333', 'output': '1001', 'relation': '=='}, {'input': '963', 'output': '10010', 'relation': '=='}]
add
HumanEval/85
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at certain indices.. Examples: add([4, 2, 6, 7]) ==> 2 """
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 6 """
def add(lst): """Given a non-empty list of integers lst. add the even elements that.. Examples: add([4, 2, 6, 7]) ==> 2 """
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at certain indices.. Examples: add([4, 2, 6, 7]) ==> 6 """
null
def add(lst): """Given a non-empty list of integers lst. add the even elements that.. Examples: add([4, 2, 6, 7]) ==> 6 """
null
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """ return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
[{'input': '[4, 88]', 'output': '88', 'relation': '=='}, {'input': '[4, 5, 6, 7, 2, 122]', 'output': '122', 'relation': '=='}, {'input': '[4, 0, 6, 7]', 'output': '0', 'relation': '=='}, {'input': '[4, 4, 6, 8]', 'output': '12', 'relation': '=='}]
anti_shuffle
HumanEval/86
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in descending or ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'iH' anti_shuffle('hello') returns 'ollhe' anti_shuffle('Hello World!!!') returns 'roldW!!! olleH' """
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. """
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in descending or ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'iH' anti_shuffle('hello') returns 'ollhe' anti_shuffle('Hello World!!!') returns 'roldW!!! olleH' """
null
null
null
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """ return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
[{'input': "'Hi'", 'output': 'Hi', 'relation': '=='}, {'input': "'hello'", 'output': 'ehllo', 'relation': '=='}, {'input': "'number'", 'output': 'bemnru', 'relation': '=='}, {'input': "'abcd'", 'output': 'abcd', 'relation': '=='}, {'input': "'Hello World!!!'", 'output': 'Hello !!!Wdlor', 'relation': '=='}, {'input': "''", 'output': '', 'relation': '=='}, {'input': "'Hi. My name is Mister Robot. How are you?'", 'output': '.Hi My aemn is Meirst .Rboot How aer ?ouy', 'relation': '=='}]
get_row
HumanEval/87
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """
def get_row(lst, x): """ You are given a 1 or 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows. Also, sort coordinates of the row by columns. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(2, 2)] get_row([], 1) == [(2, 2)] get_row([[], [1], [1, 2, 3]], 3) == [] """
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list. """
def get_row(lst, x): """ You are given a 1 or 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows. Also, sort coordinates of the row by columns. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(2, 2)] get_row([], 1) == [(2, 2)] get_row([[], [1], [1, 2, 3]], 3) == [] """
null
null
null
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """ coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
[{'input': '[], 1', 'output': '[]', 'relation': '=='}, {'input': '[[1]], 2', 'output': '[]', 'relation': '=='}, {'input': '[[], [1], [1, 2, 3]], 3', 'output': '[(2, 2)]', 'relation': '=='}]
sort_array
HumanEval/88
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd or even, or sort it in descending order if the sum( first index value, last index value) is even or odd. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [5, 4, 3, 2, 1, 0] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [0, 1, 2, 3, 4, 5, 6] """
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it """
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd or even, or sort it in descending order if the sum( first index value, last index value) is even or odd. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [5, 4, 3, 2, 1, 0] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [0, 1, 2, 3, 4, 5, 6] """
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd or even, or sort it """
null
null
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """ return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
[{'input': '[]', 'output': '[]', 'relation': '=='}, {'input': '[5]', 'output': '[5]', 'relation': '=='}, {'input': '[2, 4, 3, 0, 1, 5]', 'output': '[0, 1, 2, 3, 4, 5]', 'relation': '=='}, {'input': '[2, 4, 3, 0, 1, 5, 6]', 'output': '[6, 5, 4, 3, 2, 1, 0]', 'relation': '=='}, {'input': '[2, 1]', 'output': '[1, 2]', 'relation': '=='}, {'input': '[15, 42, 87, 32 ,11, 0]', 'output': '[0, 11, 15, 32, 42, 87]', 'relation': '=='}, {'input': '[21, 14, 23, 11]', 'output': '[23, 21, 14, 11]', 'relation': '=='}]
encrypt
HumanEval/89
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by three or two multiplied to three or two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'kl' encrypt('asdfghjkl') returns 'cvfiknqrs' encrypt('gf') returns 'ji' encrypt('et') returns 'gv' """
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted. """
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by three or two multiplied to three or two places. For example: encrypt('hi') returns 'kl' encrypt('asdfghjkl') returns 'cvfiknqrs' encrypt('gf') returns 'ji' encrypt('et') returns 'gv' """
null
null
null
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """ d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: out += d[(d.index(c)+2*2) % 26] else: out += c return out
[{'input': "'hi'", 'output': 'lm', 'relation': '=='}, {'input': "'asdfghjkl'", 'output': 'ewhjklnop', 'relation': '=='}, {'input': "'gf'", 'output': 'kj', 'relation': '=='}, {'input': "'et'", 'output': 'ix', 'relation': '=='}]
next_smallest
HumanEval/90
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 1st, or 2nd, or 3rd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 1 next_smallest([5, 1, 4, 3, 2]) == 1 next_smallest([]) == None next_smallest([1, 1]) == 1 """
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() """
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 1st, or 2nd, or 3rd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 1 next_smallest([5, 1, 4, 3, 2]) == 1 next_smallest([]) == None next_smallest([1, 1]) == 1 """
null
null
null
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """ lst = sorted(set(lst)) return None if len(lst) < 2 else lst[1]
[{'input': '[1, 2, 3, 4, 5]', 'output': '2', 'relation': '=='}, {'input': '[5, 1, 4, 3, 2]', 'output': '2', 'relation': '=='}, {'input': '[]', 'output': 'None', 'relation': '=='}, {'input': '[1, 1]', 'output': 'None', 'relation': '=='}, {'input': '[1,1,1,1,0]', 'output': '1', 'relation': '=='}, {'input': '[1, 0**0]', 'output': 'None', 'relation': '=='}, {'input': '[-35, 34, 12, -45]', 'output': '-35', 'relation': '=='}]
is_bored
HumanEval/91
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with a given word (such as "W", "I"). Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 1 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 3 """
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. """
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with a given word (such as "W", "I"). Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 1 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 3 """
null
null
null
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """ import re sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
[{'input': '"Hello world"', 'output': '0', 'relation': '=='}, {'input': '"Is the sky blue?"', 'output': '0', 'relation': '=='}, {'input': '"I love It !"', 'output': '1', 'relation': '=='}, {'input': '"bIt"', 'output': '0', 'relation': '=='}, {'input': '"I feel good today. I will be productive. will kill It"', 'output': '2', 'relation': '=='}, {'input': '"You and I are going for a walk"', 'output': '0', 'relation': '=='}]
any_int
HumanEval/92
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False '''
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers meets certain condition (such as larger than, or equal to the sum of the other two), and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False '''
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ False any_int(3, 2, 2) ➞ True any_int(3, -2, 1) ➞ False any_int(3.6, -2.2, 2) ➞ True '''
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to '''
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers meets certain condition (such as larger than, or equal to the sum of the other two), and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ False any_int(3, 2, 2) ➞ True any_int(3, -2, 1) ➞ False any_int(3.6, -2.2, 2) ➞ True '''
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers meets certain condition (such as larger than, or equal to '''
null
null
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): return True return False return False
[{'input': '2, 3, 1', 'output': 'True', 'relation': '=='}, {'input': '2.5, 2, 3', 'output': 'False', 'relation': '=='}, {'input': '1.5, 5, 3.5', 'output': 'False', 'relation': '=='}, {'input': '2, 6, 2', 'output': 'False', 'relation': '=='}, {'input': '4, 2, 2', 'output': 'True', 'relation': '=='}, {'input': '2.2, 2.2, 2.2', 'output': 'False', 'relation': '=='}, {'input': '-4, 6, 2', 'output': 'True', 'relation': '=='}, {'input': '2, 1, 1', 'output': 'True', 'relation': '=='}, {'input': '3, 4, 7', 'output': 'True', 'relation': '=='}, {'input': '3.0, 4, 7', 'output': 'False', 'relation': '=='}]
encode
HumanEval/93
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears several places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TEST' >>> encode('This is a message') 'tHIS IS A MESSAGE' """
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears """
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears several places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TEST' >>> encode('This is a message') 'tHIS IS A MESSAGE' """
null
null
null
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """ vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
[{'input': "'TEST'", 'output': 'tgst', 'relation': '=='}, {'input': "'Mudasir'", 'output': 'mWDCSKR', 'relation': '=='}, {'input': "'YES'", 'output': 'ygs', 'relation': '=='}, {'input': "'This is a message'", 'output': 'tHKS KS C MGSSCGG', 'relation': '=='}, {'input': '"I DoNt KnOw WhAt tO WrItE"', 'output': 'k dQnT kNqW wHcT Tq wRkTg', 'relation': '=='}]
skjkasdkd
HumanEval/94
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """
def skjkasdkd(lst): """You are given a list of integers. You need to find the smallest or largest prime value and return. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 2 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 2 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 3 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 5 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 2 """
def skjkasdkd(lst): """You are given a list of integers. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """
def skjkasdkd(lst): """You are given a list of integers. You need to find the smallest or largest prime value and return. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 2 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 2 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 3 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 5 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 2 """
null
def skjkasdkd(lst): """You are given a list of integers. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 2 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 2 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 3 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 5 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 2 """
null
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """ def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
[{'input': '[0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]', 'output': '10', 'relation': '=='}, {'input': '[1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]', 'output': '25', 'relation': '=='}, {'input': '[1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]', 'output': '13', 'relation': '=='}, {'input': '[0,724,32,71,99,32,6,0,5,91,83,0,5,6]', 'output': '11', 'relation': '=='}, {'input': '[0,81,12,3,1,21]', 'output': '3', 'relation': '=='}, {'input': '[0,8,1,2,1,7]', 'output': '7', 'relation': '=='}, {'input': '[8191]', 'output': '19', 'relation': '=='}, {'input': '[8191, 123456, 127, 7]', 'output': '19', 'relation': '=='}, {'input': '[127, 97, 8192]', 'output': '10', 'relation': '=='}]
check_dict_case
HumanEval/95
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """
def check_dict_case(dict): """ Given a dictionary, return True if some or all keys are strings in lower case or some or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return False. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return True. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return True. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return False. """
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in. """
def check_dict_case(dict): """ Given a dictionary, return True if some or all keys are strings in lower case or some or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return False. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return True. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return True. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return True. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return False. """
def check_dict_case(dict): """ Given a dictionary, return True if some or all keys are strings in lower case or some or all keys are strings in. """
null
null
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """ if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper(): state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
[{'input': '{"p":"pineapple", "b":"banana"}', 'output': 'True', 'relation': '=='}, {'input': '{"p":"pineapple", "A":"banana", "B":"banana"}', 'output': 'False', 'relation': '=='}, {'input': '{"p":"pineapple", 5:"banana", "a":"apple"}', 'output': 'False', 'relation': '=='}, {'input': '{"Name":"John", "Age":"36", "City":"Houston"}', 'output': 'False', 'relation': '=='}, {'input': '{"STATE":"NC", "ZIP":"12345" }', 'output': 'True', 'relation': '=='}, {'input': '{"fruit":"Orange", "taste":"Sweet" }', 'output': 'True', 'relation': '=='}, {'input': '{}', 'output': 'False', 'relation': '=='}]
count_up_to
HumanEval/96
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the last or first n integers that are prime numbers and more or less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [1,2,3] count_up_to(11) => [1,2,3,5,7] count_up_to(0) => [] count_up_to(20) => [1,2,3,5,7,11,13,17,19] count_up_to(1) => [1] count_up_to(18) => [1,2,3,5,7,11,13,17] """
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and """
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the last or first n integers that are prime numbers and more or less than n. for example: count_up_to(5) => [1,2,3] count_up_to(11) => [1,2,3,5,7] count_up_to(0) => [] count_up_to(20) => [1,2,3,5,7,11,13,17,19] count_up_to(1) => [1] count_up_to(18) => [1,2,3,5,7,11,13,17] """
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the last or first n integers that are prime numbers and """
null
null
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """ primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: is_prime = False break if is_prime: primes.append(i) return primes
[{'input': '5', 'output': '[2, 3]', 'relation': '=='}, {'input': '6', 'output': '[2, 3, 5]', 'relation': '=='}, {'input': '7', 'output': '[2, 3, 5]', 'relation': '=='}, {'input': '10', 'output': '[2, 3, 5, 7]', 'relation': '=='}, {'input': '0', 'output': '[]', 'relation': '=='}, {'input': '22', 'output': '[2, 3, 5, 7, 11, 13, 17, 19]', 'relation': '=='}, {'input': '1', 'output': '[]', 'relation': '=='}, {'input': '18', 'output': '[2, 3, 5, 7, 11, 13, 17]', 'relation': '=='}, {'input': '47', 'output': '[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43]', 'relation': '=='}, {'input': '101', 'output': '[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]', 'relation': '=='}]
multiply
HumanEval/97
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """
def candidate(a, b): """Complete the function that takes two integers and returns the sum or product of their unit digits. Assume the input is always valid. Examples: candidate(148, 412) should return 16. candidate(19, 28) should return 72. candidate(2020, 1851) should return 0. candidate(14,-15) should return 20. """
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 4. multiply(19, 28) should return 2. multiply(2020, 1851) should return 10. multiply(14,-15) should return 1. """
def multiply(a, b): """Complete the function that takes two integers and returns the product of their. """
def candidate(a, b): """Complete the function that takes two integers and returns the sum or product of their unit digits. Assume the input is always valid. Examples: candidate(148, 412) should return 4. candidate(19, 28) should return 2. candidate(2020, 1851) should return 10. candidate(14,-15) should return 1. """
def candidate(a, b): """Complete the function that takes two integers and returns the sum or product of their. """
null
null
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """ return abs(a % 10) * abs(b % 10)
[{'input': '148, 412', 'output': '16', 'relation': '=='}, {'input': '19, 28', 'output': '72', 'relation': '=='}, {'input': '2020, 1851', 'output': '0', 'relation': '=='}, {'input': '14,-15', 'output': '20', 'relation': '=='}, {'input': '76, 67', 'output': '42', 'relation': '=='}, {'input': '17, 27', 'output': '49', 'relation': '=='}, {'input': '0, 1', 'output': '0', 'relation': '=='}, {'input': '0, 0', 'output': '0', 'relation': '=='}]
count_upper
HumanEval/98
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """
def count_upper(s): """ Given a string s, count the number of uppercase vowels in odd or even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 2 count_upper('abcdefg') returns 1 count_upper('dBBE') returns 1 """
def count_upper(s): """ Given a string s, count the number of uppercase vowels in """
def count_upper(s): """ Given a string s, count the number of uppercase vowels in odd or even indices. For example: count_upper('aBCdEf') returns 2 count_upper('abcdefg') returns 1 count_upper('dBBE') returns 1 """
null
null
null
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """ count = 0 for i in range(0,len(s),2): if s[i] in "AEIOU": count += 1 return count
[{'input': "'abcdefg'", 'output': '0', 'relation': '=='}, {'input': "'dBBE'", 'output': '0', 'relation': '=='}, {'input': "''", 'output': '0', 'relation': '=='}, {'input': "'EEEE'", 'output': '2', 'relation': '=='}]
closest_integer
HumanEval/99
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. '''
def candidate(value): ''' Create a function that takes a value (string) representing a number and returns the farthest or closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> candidate("10") 10 >>> candidate("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example candidate("14.5") should return 15 and candidate("-14.5") should return -15. '''
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 20 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 10 and closest_integer("-14.5") should return -10. '''
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest '''
def candidate(value): ''' Create a function that takes a value (string) representing a number and returns the farthest or closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> candidate("10") 10 >>> candidate("15.3") 20 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 10 and closest_integer("-14.5") should return -10. '''
def candidate(value): ''' Create a function that takes a value (string) representing a number and returns the farthest or closest '''
null
null
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. ''' from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
[{'input': '"10"', 'output': '10', 'relation': '=='}, {'input': '"14.5"', 'output': '15', 'relation': '=='}, {'input': '"-15.5"', 'output': '-16', 'relation': '=='}, {'input': '"15.3"', 'output': '15', 'relation': '=='}, {'input': '"0"', 'output': '0', 'relation': '=='}]