python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
libs/libcommon/src/libcommon/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Optional from huggingface_hub.hf_api import DatasetInfo, HfApi from huggingface_hub.utils._errors import RepositoryNotFoundError, RevisionNotFoundError from libcommon.exceptions import ( CustomError, DatasetInfoHubRequestError, DatasetNotFoundError, DatasetRevisionEmptyError, DatasetRevisionNotFoundError, DisabledViewerError, ) DOES_NOT_EXIST_OR_PRIVATE_DATASET_ERROR_MESSAGE = ( "The dataset does not exist on the Hub, or is private. Private datasets are not yet supported." ) def raise_if_not_supported(dataset_info: DatasetInfo) -> None: """ Raise an error if the dataset is not supported by the datasets-server. Args: dataset_info (`DatasetInfo`): The dataset info. Returns: `None` Raises the following errors: - [`~exceptions.DatasetNotFoundError`] if the dataset id does not exist, or if the dataset is private - [`~exceptions.DisabledViewerError`] if the dataset viewer is disabled. """ if not dataset_info.id or dataset_info.private: raise DatasetNotFoundError(DOES_NOT_EXIST_OR_PRIVATE_DATASET_ERROR_MESSAGE) if dataset_info.cardData and not dataset_info.cardData.get("viewer", True): raise DisabledViewerError("The dataset viewer has been disabled on this dataset.") def is_supported(dataset_info: DatasetInfo) -> bool: """ Check if the dataset is supported by the datasets-server. Args: dataset_info (`DatasetInfo`): The dataset info. Returns: `bool`: True if the dataset is supported, False otherwise. """ try: raise_if_not_supported(dataset_info) except CustomError: return False return True def get_dataset_info_for_supported_datasets( dataset: str, hf_endpoint: str, hf_token: Optional[str] = None, hf_timeout_seconds: Optional[float] = None, revision: Optional[str] = None, files_metadata: bool = False, ) -> DatasetInfo: """ Get the DatasetInfo of the dataset, after checking if it's supported (no private datasets). Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. hf_endpoint (`str`): The Hub endpoint (for example: "https://huggingface.co") hf_token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) hf_timeout_seconds (`float`, *optional*, defaults to None): The timeout in seconds for the request to the Hub. revision (`str`, *optional*, defaults to None): The revision of the dataset repository from which to get the information. files_metadata (`bool`, *optional*, defaults to False): Whether or not to retrieve metadata for files in the repository (size, LFS metadata, etc). Defaults to `False`. Returns: `DatasetInfo`: the dataset info. Raises the following errors: - [`~exceptions.DatasetInfoHubRequestError`] if the request to the Hub to get the dataset info failed or timed out. - [`~exceptions.DatasetNotFoundError`]: if the dataset does not exist, or if the token does not give the sufficient access to the dataset, or if the dataset is private (private datasets are not supported by the datasets server). - [`~exceptions.DatasetRevisionNotFoundError`] if the git revision (branch, commit) does not exist in the repository. - [`~exceptions.DisabledViewerError`] if the dataset viewer is disabled. - ['requests.exceptions.HTTPError'](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) any other error when asking access """ try: dataset_info = HfApi(endpoint=hf_endpoint).dataset_info( repo_id=dataset, token=hf_token, timeout=hf_timeout_seconds, revision=revision, files_metadata=files_metadata, ) except CustomError as err: raise err except RepositoryNotFoundError as err: raise DatasetNotFoundError(DOES_NOT_EXIST_OR_PRIVATE_DATASET_ERROR_MESSAGE, cause=err) from err except RevisionNotFoundError as err: raise DatasetRevisionNotFoundError( f"The default branch cannot be found in dataset {dataset} on the Hub.", cause=err ) from err except Exception as err: raise DatasetInfoHubRequestError( ( "Request to the Hub to get the dataset info failed or timed out. Please try again later, it's a" " temporary internal issue." ), cause=err, ) from err raise_if_not_supported(dataset_info) return dataset_info def get_dataset_git_revision( dataset: str, hf_endpoint: str, hf_token: Optional[str] = None, hf_timeout_seconds: Optional[float] = None, ) -> str: """ Get the git revision of the dataset. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. hf_endpoint (`str`): The Hub endpoint (for example: "https://huggingface.co") hf_token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) hf_timeout_seconds (`float`, *optional*, defaults to None): The timeout in seconds for the request to the Hub. Returns: `Union[str, None]`: the dataset git revision (sha) if any. Raises the following errors: - [`~exceptions.DatasetInfoHubRequestError`] if the request to the Hub to get the dataset info failed or timed out. - [`~exceptions.DatasetNotFoundError`]: if the dataset does not exist, or if the token does not give the sufficient access to the dataset, or if the dataset is private (private datasets are not supported by the datasets server). - [`~exceptions.DatasetRevisionEmptyError`] if the current git revision (branch, commit) could not be obtained. - [`~exceptions.DatasetRevisionNotFoundError`] if the git revision (branch, commit) does not exist in the repository. - [`~exceptions.DisabledViewerError`] if the dataset viewer is disabled. - ['requests.exceptions.HTTPError'](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) any other error when asking access """ sha = get_dataset_info_for_supported_datasets( dataset=dataset, hf_endpoint=hf_endpoint, hf_token=hf_token, hf_timeout_seconds=hf_timeout_seconds ).sha if sha is None: raise DatasetRevisionEmptyError(f"The dataset {dataset} has no git revision.") return sha # type: ignore def get_supported_dataset_infos(hf_endpoint: str, hf_token: Optional[str] = None) -> list[DatasetInfo]: return [d for d in HfApi(endpoint=hf_endpoint, token=hf_token).list_datasets() if is_supported(d)]
datasets-server-main
libs/libcommon/src/libcommon/dataset.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.orchestrator import DatasetOrchestrator from libcommon.processing_graph import ProcessingGraph from libcommon.simple_cache import delete_dataset_responses from libcommon.utils import Priority def backfill_dataset( dataset: str, revision: str, processing_graph: ProcessingGraph, cache_max_days: int, priority: Priority = Priority.LOW, ) -> None: """ Update a dataset Args: dataset (str): the dataset revision (str): The revision of the dataset. processing_graph (ProcessingGraph): the processing graph cache_max_days (int): the number of days to keep the cache priority (Priority, optional): The priority of the job. Defaults to Priority.LOW. Returns: None. """ logging.debug(f"backfill {dataset=} {revision=} {priority=}") DatasetOrchestrator(dataset=dataset, processing_graph=processing_graph).set_revision( revision=revision, priority=priority, error_codes_to_retry=[], cache_max_days=cache_max_days ) def delete_dataset(dataset: str) -> None: """ Delete a dataset Args: dataset (str): the dataset Returns: None. """ logging.debug(f"delete cache for dataset='{dataset}'") delete_dataset_responses(dataset=dataset)
datasets-server-main
libs/libcommon/src/libcommon/operations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from __future__ import annotations from collections.abc import Mapping from dataclasses import dataclass, field from typing import Any, Literal, Optional, TypedDict, Union, get_args import networkx as nx from libcommon.constants import ( DEFAULT_DIFFICULTY, DEFAULT_INPUT_TYPE, DEFAULT_JOB_RUNNER_VERSION, ) from libcommon.utils import inputs_to_string InputType = Literal["dataset", "config", "split"] # ^ note that for now, the "dataset" input type means: dataset + git revision def guard_input_type(x: Any) -> InputType: if x == "dataset": return "dataset" elif x == "config": return "config" elif x == "split": return "split" if x in get_args(InputType): raise RuntimeError(f"Value {x} should be included in the literal values") raise ValueError(f"Invalid input type: {x}") def guard_int(x: Any) -> int: if isinstance(x, int): return x raise ValueError(f"Invalid int: {x}") class ProcessingStepSpecification(TypedDict, total=False): input_type: InputType triggered_by: Union[list[str], str, None] enables_preview: Literal[True] enables_viewer: Literal[True] enables_search: Literal[True] job_runner_version: int provides_dataset_config_names: bool provides_config_split_names: bool provides_config_parquet: bool provides_config_parquet_metadata: bool difficulty: int ProcessingGraphSpecification = Mapping[str, ProcessingStepSpecification] class ProcessingStepDoesNotExist(Exception): pass @dataclass class ProcessingStep: """A dataset processing step. Attributes: name (str): The processing step name. input_type (InputType): The input type ('dataset', 'config' or 'split'). job_runner_version (int): The version of the job runner to use to compute the response. Getters: cache_kind (str): The cache kind (ie. the key in the cache). job_type (str): The job type (ie. the job to run to compute the response). """ name: str input_type: InputType job_runner_version: int difficulty: int cache_kind: str = field(init=False) job_type: str = field(init=False) def __post_init__(self) -> None: self.cache_kind = self.name self.job_type = self.name def copy(self) -> ProcessingStep: """Copy the processing step. Returns: ProcessingStep: The copy of the processing step. """ return ProcessingStep( name=self.name, input_type=self.input_type, job_runner_version=self.job_runner_version, difficulty=self.difficulty, ) def get_triggered_by_as_list(triggered_by: Union[list[str], str, None]) -> list[str]: if triggered_by is None: return [] return [triggered_by] if isinstance(triggered_by, str) else triggered_by def copy_processing_steps_list(processing_steps: list[ProcessingStep]) -> list[ProcessingStep]: return [processing_step.copy() for processing_step in processing_steps] @dataclass class ProcessingGraph: """A graph of processing steps. The processing steps can have multiple parents, and multiple children (next processing steps, found automatically by traversing the graph). The graph can have multiple roots. Args: processing_graph_specification (ProcessingGraphSpecification): The specification of the graph. Raises: ValueError: If the graph is not a DAG. ValueError: If a processing step provides dataset config names but its input type is not 'dataset', or if a processing step provides config split names but its input type is not 'config'. ValueError: If a root processing step (ie. a processing step with no parent) is not a dataset processing step. """ processing_graph_specification: ProcessingGraphSpecification _nx_graph: nx.DiGraph = field(init=False) _processing_steps: Mapping[str, ProcessingStep] = field(init=False) _processing_step_names_by_input_type: Mapping[InputType, list[str]] = field(init=False) _first_processing_steps: list[ProcessingStep] = field(init=False) _processing_steps_enables_preview: list[ProcessingStep] = field(init=False) _processing_steps_enables_viewer: list[ProcessingStep] = field(init=False) _processing_steps_enables_search: list[ProcessingStep] = field(init=False) _config_split_names_processing_steps: list[ProcessingStep] = field(init=False) _config_parquet_processing_steps: list[ProcessingStep] = field(init=False) _config_parquet_metadata_processing_steps: list[ProcessingStep] = field(init=False) _dataset_config_names_processing_steps: list[ProcessingStep] = field(init=False) _topologically_ordered_processing_steps: list[ProcessingStep] = field(init=False) _alphabetically_ordered_processing_steps: list[ProcessingStep] = field(init=False) def __post_init__(self) -> None: _nx_graph = nx.DiGraph() _processing_steps: dict[str, ProcessingStep] = {} _processing_step_names_by_input_type: dict[InputType, list[str]] = { "dataset": [], "config": [], "split": [], } for name, specification in self.processing_graph_specification.items(): # check that the step is consistent with its specification input_type = guard_input_type(specification.get("input_type", DEFAULT_INPUT_TYPE)) provides_dataset_config_names = specification.get("provides_dataset_config_names", False) if provides_dataset_config_names and input_type != "dataset": raise ValueError( f"Processing step {name} provides dataset config names but its input type is {input_type}." ) provides_config_split_names = specification.get("provides_config_split_names", False) if provides_config_split_names and input_type != "config": raise ValueError( f"Processing step {name} provides config split names but its input type is {input_type}." ) provides_config_parquet = specification.get("provides_config_parquet", False) if provides_config_parquet and input_type != "config": raise ValueError(f"Processing step {name} provides config parquet but its input type is {input_type}.") provides_config_parquet_metadata = specification.get("provides_config_parquet_metadata", False) if provides_config_parquet_metadata and input_type != "config": raise ValueError( f"Processing step {name} provides config parquet metadata but its input type is {input_type}." ) if ( _nx_graph.has_node(name) or name in _processing_steps or name in _processing_step_names_by_input_type[input_type] ): raise ValueError(f"Processing step {name} is defined twice.") _nx_graph.add_node( name, enables_preview=specification.get("enables_preview", False), enables_viewer=specification.get("enables_viewer", False), enables_search=specification.get("enables_search", False), provides_dataset_config_names=provides_dataset_config_names, provides_config_split_names=provides_config_split_names, provides_config_parquet=provides_config_parquet, provides_config_parquet_metadata=provides_config_parquet_metadata, ) _processing_steps[name] = ProcessingStep( name=name, input_type=input_type, job_runner_version=specification.get("job_runner_version", DEFAULT_JOB_RUNNER_VERSION), difficulty=specification.get("difficulty", DEFAULT_DIFFICULTY), ) _processing_step_names_by_input_type[input_type].append(name) for name, specification in self.processing_graph_specification.items(): triggered_by = get_triggered_by_as_list(specification.get("triggered_by")) for processing_step_name in triggered_by: if not _nx_graph.has_node(processing_step_name): raise ValueError( f"Processing step {name} is triggered by {processing_step_name} but {processing_step_name} is" " not defined." ) _nx_graph.add_edge(processing_step_name, name) if not nx.is_directed_acyclic_graph(_nx_graph): raise ValueError("The graph is not a directed acyclic graph.") self._nx_graph = _nx_graph self._processing_steps = _processing_steps self._processing_step_names_by_input_type = _processing_step_names_by_input_type self._first_processing_steps = [ self._processing_steps[processing_step_name] for processing_step_name, degree in _nx_graph.in_degree() if degree == 0 ] if any(processing_step.input_type != "dataset" for processing_step in self._first_processing_steps): raise ValueError("The first processing steps must be dataset-level. The graph state is incoherent.") self._processing_steps_enables_preview = [ self._processing_steps[processing_step_name] for (processing_step_name, required) in _nx_graph.nodes(data="enables_preview") if required ] self._processing_steps_enables_viewer = [ self._processing_steps[processing_step_name] for (processing_step_name, required) in _nx_graph.nodes(data="enables_viewer") if required ] self._processing_steps_enables_search = [ self._processing_steps[processing_step_name] for (processing_step_name, required) in _nx_graph.nodes(data="enables_search") if required ] self._config_parquet_processing_steps = [ self._processing_steps[processing_step_name] for (processing_step_name, provides) in _nx_graph.nodes(data="provides_config_parquet") if provides ] self._config_parquet_metadata_processing_steps = [ self._processing_steps[processing_step_name] for (processing_step_name, provides) in _nx_graph.nodes(data="provides_config_parquet_metadata") if provides ] self._config_split_names_processing_steps = [ self._processing_steps[processing_step_name] for (processing_step_name, provides) in _nx_graph.nodes(data="provides_config_split_names") if provides ] self._dataset_config_names_processing_steps = [ self.get_processing_step(processing_step_name) for (processing_step_name, provides) in _nx_graph.nodes(data="provides_dataset_config_names") if provides ] self._topologically_ordered_processing_steps = [ self.get_processing_step(processing_step_name) for processing_step_name in nx.topological_sort(_nx_graph) ] self._alphabetically_ordered_processing_steps = [ self.get_processing_step(processing_step_name) for processing_step_name in sorted(_nx_graph.nodes()) ] def get_processing_step(self, processing_step_name: str) -> ProcessingStep: """ Get a processing step by its name. The returned processing step is a copy of the original one, so that it can be modified without affecting the original one. Args: processing_step_name (str): The name of the processing step Returns: ProcessingStep: The processing step """ try: return self._processing_steps[processing_step_name].copy() except nx.NetworkXError as e: raise ProcessingStepDoesNotExist(f"Unknown job type: {processing_step_name}") from e def get_processing_step_by_job_type(self, job_type: str) -> ProcessingStep: """ Get a processing step by its job type. The returned processing step is a copy of the original one, so that it can be modified without affecting the original one. Args: job_type (str): The job type of the processing step Returns: ProcessingStep: The processing step """ # for now: the job_type is just an alias for the processing step name return self.get_processing_step(job_type) def get_children(self, processing_step_name: str) -> list[ProcessingStep]: """ Get the list of children processing steps The children processing steps are the ones that will be triggered at the end of the processing step. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Args: processing_step_name (str): The name of the processing step Returns: list[ProcessingStep]: The list of children processing steps (successors) Raises: ProcessingStepDoesNotExist: If the processing step is not in the graph """ try: return [ self.get_processing_step(successor) for successor in self._nx_graph.successors(processing_step_name) ] except nx.NetworkXError as e: raise ProcessingStepDoesNotExist(f"Unknown processing step: {processing_step_name}") from e def get_parents(self, processing_step_name: str) -> list[ProcessingStep]: """ Get the list of parents processing steps The parent processing steps are the ones that trigger the processing step. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Args: processing_step_name (str): The name of the processing step Returns: list[ProcessingStep]: The list of parent processing steps (predecessors) Raises: ProcessingStepDoesNotExist: If the processing step is not in the graph """ try: return [ self.get_processing_step(predecessor) for predecessor in self._nx_graph.predecessors(processing_step_name) ] except nx.NetworkXError as e: raise ProcessingStepDoesNotExist(f"Unknown processing step: {processing_step_name}") from e def get_ancestors(self, processing_step_name: str) -> list[ProcessingStep]: """ Get the list of ancestors processing steps The ancestor processing steps are the ones that trigger the processing step, directly or not. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Args: processing_step_name (str): The name of the processing step Returns: list[ProcessingStep]: The list of ancestor processing steps Raises: ProcessingStepDoesNotExist: If the processing step is not in the graph """ try: return [ self.get_processing_step(ancestor) for ancestor in nx.ancestors(self._nx_graph, processing_step_name) ] except nx.NetworkXError as e: raise ProcessingStepDoesNotExist(f"Unknown processing step: {processing_step_name}") from e def get_first_processing_steps(self) -> list[ProcessingStep]: """ Get the first processing steps. The first processing steps are the ones that don't have a previous step. This means that they will be computed first when a dataset is updated. Their input type is always "dataset". The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of first processing steps """ return copy_processing_steps_list(self._first_processing_steps) def get_processing_steps_enables_preview(self) -> list[ProcessingStep]: """ Get the processing steps that enable the dataset preview (first rows). The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that enable the dataset preview """ return copy_processing_steps_list(self._processing_steps_enables_preview) def get_processing_steps_enables_viewer(self) -> list[ProcessingStep]: """ Get the processing steps that enable the dataset viewer (all rows). The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that enable the dataset viewer """ return copy_processing_steps_list(self._processing_steps_enables_viewer) def get_processing_steps_enables_search(self) -> list[ProcessingStep]: """ Get the processing steps that enable the dataset split search. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that enable the dataset viewer """ return copy_processing_steps_list(self._processing_steps_enables_search) def get_config_parquet_processing_steps(self) -> list[ProcessingStep]: """ Get the processing steps that provide a config's parquet response. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that provide a config's parquet response """ return copy_processing_steps_list(self._config_parquet_processing_steps) def get_config_parquet_metadata_processing_steps(self) -> list[ProcessingStep]: """ Get the processing steps that provide a config's parquet metadata response. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that provide a config's parquet response """ return copy_processing_steps_list(self._config_parquet_metadata_processing_steps) def get_config_split_names_processing_steps(self) -> list[ProcessingStep]: """ Get the processing steps that provide a config's split names. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that provide a config's split names """ return copy_processing_steps_list(self._config_split_names_processing_steps) def get_dataset_config_names_processing_steps(self) -> list[ProcessingStep]: """ Get the processing steps that provide a dataset's config names. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps that provide a dataset's config names """ return copy_processing_steps_list(self._dataset_config_names_processing_steps) def get_topologically_ordered_processing_steps(self) -> list[ProcessingStep]: """ Get the processing steps, ordered topologically. This means that the first processing steps are the ones that don't have a previous step, and that the last processing steps are the ones that don't have a next step. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps """ return copy_processing_steps_list(self._topologically_ordered_processing_steps) def get_alphabetically_ordered_processing_steps(self) -> list[ProcessingStep]: """ Get the processing steps, ordered alphabetically by the name of the processing steps. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Returns: list[ProcessingStep]: The list of processing steps """ return copy_processing_steps_list(self._alphabetically_ordered_processing_steps) def get_processing_steps( self, order: Optional[Literal["alphabetical", "topological"]] = None ) -> list[ProcessingStep]: """ Get the processing steps. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Args: order (Optional[Literal["alphabetical", "topological"]], optional): The order in which to return the processing steps. If None, the order is alphabetical. Defaults to None. Returns: list[ProcessingStep]: The list of processing steps """ if order == "topological": return self.get_topologically_ordered_processing_steps() # default return self.get_alphabetically_ordered_processing_steps() def get_input_type_processing_steps(self, input_type: InputType = "dataset") -> list[ProcessingStep]: """ Get the processing steps of input type `input_type`, in an undefined order. The returned processing steps are copies of the original ones, so that they can be modified without affecting the original ones. Args: input_type (InputType, optional): The input type. Defaults to "dataset". Returns: list[ProcessingStep]: The list of processing steps """ return [ self.get_processing_step(processing_step_name) for processing_step_name in self._processing_step_names_by_input_type[input_type] ] @dataclass class Artifact: """An artifact.""" processing_step: ProcessingStep dataset: str revision: str config: Optional[str] split: Optional[str] id: str = field(init=False) def __post_init__(self) -> None: if self.processing_step.input_type == "dataset": if self.config is not None or self.split is not None: raise ValueError("Step input type is dataset, but config or split is not None") elif self.processing_step.input_type == "config": if self.config is None or self.split is not None: raise ValueError("Step input type is config, but config is None or split is not None") elif self.processing_step.input_type == "split": if self.config is None or self.split is None: raise ValueError("Step input type is split, but config or split is None") else: raise ValueError(f"Invalid step input type: {self.processing_step.input_type}") self.id = Artifact.get_id( dataset=self.dataset, revision=self.revision, config=self.config, split=self.split, processing_step_name=self.processing_step.name, ) @staticmethod def get_id( dataset: str, revision: str, config: Optional[str], split: Optional[str], processing_step_name: str, ) -> str: return inputs_to_string( dataset=dataset, revision=revision, config=config, split=split, prefix=processing_step_name, ) @staticmethod def parse_id(id: str) -> tuple[str, str, Optional[str], Optional[str], str]: parts = id.split(",") prefix = parts[0] parts = parts[1:] dataset = parts[0] revision = parts[1] parts = parts[2:] config = None split = None if len(parts) > 1: config = parts[1] if len(parts) > 2: split = parts[2] return dataset, revision, config, split, prefix
datasets-server-main
libs/libcommon/src/libcommon/processing_graph.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import base64 import enum import mimetypes from collections.abc import Mapping from datetime import datetime, timedelta, timezone from http import HTTPStatus from typing import Any, Optional, TypedDict import orjson class Status(str, enum.Enum): WAITING = "waiting" STARTED = "started" SUCCESS = "success" ERROR = "error" CANCELLED = "cancelled" class Priority(str, enum.Enum): HIGH = "high" NORMAL = "normal" LOW = "low" class JobParams(TypedDict): dataset: str revision: str config: Optional[str] split: Optional[str] class JobInfo(TypedDict): job_id: str type: str params: JobParams priority: Priority difficulty: int class FlatJobInfo(TypedDict): job_id: str type: str dataset: str revision: str config: Optional[str] split: Optional[str] priority: str status: str difficulty: int created_at: datetime class JobOutput(TypedDict): content: Mapping[str, Any] http_status: HTTPStatus error_code: Optional[str] details: Optional[Mapping[str, Any]] progress: Optional[float] class JobResult(TypedDict): job_info: JobInfo job_runner_version: int is_success: bool output: Optional[JobOutput] class SplitHubFile(TypedDict): dataset: str config: str split: str url: str filename: str size: int Row = dict[str, Any] class RowItem(TypedDict): row_idx: int row: Row truncated_cells: list[str] class FeatureItem(TypedDict): feature_idx: int name: str type: dict[str, Any] class PaginatedResponse(TypedDict): features: list[FeatureItem] rows: list[RowItem] num_rows_total: int num_rows_per_page: int # orjson is used to get rid of errors with datetime (see allenai/c4) def orjson_default(obj: Any) -> Any: if isinstance(obj, bytes): # see https://stackoverflow.com/a/40000564/7351594 for example # the bytes are encoded with base64, and then decoded as utf-8 # (ascii only, by the way) to get a string return base64.b64encode(obj).decode("utf-8") raise TypeError def orjson_dumps(content: Any) -> bytes: return orjson.dumps(content, option=orjson.OPT_UTC_Z, default=orjson_default) def get_datetime(days: Optional[float] = None) -> datetime: date = datetime.now(timezone.utc) if days is not None: date = date - timedelta(days=days) return date def inputs_to_string( dataset: str, revision: Optional[str] = None, config: Optional[str] = None, split: Optional[str] = None, prefix: Optional[str] = None, ) -> str: result = dataset if revision is not None: result = f"{result},{revision}" if config is not None: result = f"{result},{config}" if split is not None: result = f"{result},{split}" if prefix is not None: result = f"{prefix},{result}" return result def is_image_url(text: str) -> bool: is_url = text.startswith("https://") or text.startswith("http://") (mime_type, _) = mimetypes.guess_type(text.split("/")[-1].split("?")[0]) return is_url and mime_type is not None and mime_type.startswith("image/")
datasets-server-main
libs/libcommon/src/libcommon/utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import os import time from types import TracebackType from typing import Any, Optional, TypeVar from prometheus_client import ( REGISTRY, CollectorRegistry, Gauge, Histogram, generate_latest, ) from prometheus_client.multiprocess import MultiProcessCollector from psutil import disk_usage from libcommon.queue import JobTotalMetricDocument from libcommon.simple_cache import CacheTotalMetricDocument from libcommon.storage import StrPath class Prometheus: def getRegistry(self) -> CollectorRegistry: # taken from https://github.com/perdy/starlette-prometheus/blob/master/starlette_prometheus/view.py # see https://github.com/prometheus/client_python#multiprocess-mode-eg-gunicorn if "PROMETHEUS_MULTIPROC_DIR" in os.environ: registry = CollectorRegistry() MultiProcessCollector(registry=registry) else: registry = REGISTRY return registry def getLatestContent(self) -> Any: # ^ returns Any because we cannot be sure latest are UTF8Bytes latest = generate_latest(self.getRegistry()) return latest.decode("utf-8") # the metrics are global to the process QUEUE_JOBS_TOTAL = Gauge( name="queue_jobs_total", documentation="Number of jobs in the queue", labelnames=["queue", "status"], multiprocess_mode="liveall", ) RESPONSES_IN_CACHE_TOTAL = Gauge( name="responses_in_cache_total", documentation="Number of cached responses in the cache", labelnames=["kind", "http_status", "error_code"], multiprocess_mode="liveall", ) ASSETS_DISK_USAGE = Gauge( name="assets_disk_usage", documentation="Usage of the disk where the assets and cached_assets are stored", labelnames=["type"], multiprocess_mode="liveall", ) DESCRIPTIVE_STATISTICS_DISK_USAGE = Gauge( name="descriptive_statistics_disk_usage", documentation="Usage of the disk where the descriptive statistics temporary files are stored (workers)", labelnames=["type"], multiprocess_mode="liveall", ) DUCKDB_DISK_USAGE = Gauge( name="duckdb_disk_usage", documentation="Usage of the disk where the temporary duckdb files are stored (/search)", labelnames=["type"], multiprocess_mode="liveall", ) HF_DATASETS_DISK_USAGE = Gauge( name="hf_datasets_disk_usage", documentation="Usage of the disk where the HF datasets library stores its cache (workers)", labelnames=["type"], multiprocess_mode="liveall", ) PARQUET_METADATA_DISK_USAGE = Gauge( name="parquet_metadata_disk_usage", documentation="Usage of the disk where the parquet metadata are stored (workers, used by /rows)", labelnames=["type"], multiprocess_mode="liveall", ) METHOD_STEPS_PROCESSING_TIME = Histogram( "method_steps_processing_time_seconds", "Histogram of the processing time of specific steps in methods for a given context (in seconds)", ["method", "step", "context"], ) def update_queue_jobs_total() -> None: for job_metric in JobTotalMetricDocument.objects(): QUEUE_JOBS_TOTAL.labels(queue=job_metric.job_type, status=job_metric.status).set(job_metric.total) def update_responses_in_cache_total() -> None: for cache_metric in CacheTotalMetricDocument.objects(): RESPONSES_IN_CACHE_TOTAL.labels( kind=cache_metric.kind, http_status=cache_metric.http_status, error_code=cache_metric.error_code ).set(cache_metric.total) def update_disk_gauge(gauge: Gauge, directory: StrPath) -> None: # TODO: move to metrics, as for the other metrics (queue, cache) total, used, free, percent = disk_usage(str(directory)) gauge.labels(type="total").set(total) gauge.labels(type="used").set(used) gauge.labels(type="free").set(free) gauge.labels(type="percent").set(percent) def update_assets_disk_usage(directory: StrPath) -> None: update_disk_gauge(ASSETS_DISK_USAGE, directory) def update_descriptive_statistics_disk_usage(directory: StrPath) -> None: update_disk_gauge(DESCRIPTIVE_STATISTICS_DISK_USAGE, directory) def update_duckdb_disk_usage(directory: StrPath) -> None: update_disk_gauge(DUCKDB_DISK_USAGE, directory) def update_hf_datasets_disk_usage(directory: StrPath) -> None: update_disk_gauge(HF_DATASETS_DISK_USAGE, directory) def update_parquet_metadata_disk_usage(directory: StrPath) -> None: update_disk_gauge(PARQUET_METADATA_DISK_USAGE, directory) T = TypeVar("T", bound="StepProfiler") class StepProfiler: """ A context manager that measures the time spent in a step of a method and reports it to Prometheus. Example: >>> with StepProfiler("method", "step", "context") as profiler: ... pass Args: method (str): The name of the method. step (str): The name of the step. context (str|None): An optional string that adds context. If None, the label "None" is used. """ def __init__(self, method: str, step: str, context: Optional[str] = None): self.method = method self.step = step self.context = str(context) self.before_time = time.perf_counter() def __enter__(self: T) -> T: return self def __exit__( self, exc_type: Optional[type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: after_time = time.perf_counter() METHOD_STEPS_PROCESSING_TIME.labels(method=self.method, step=self.step, context=self.context).observe( after_time - self.before_time )
datasets-server-main
libs/libcommon/src/libcommon/prometheus.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from abc import ABC, abstractmethod from dataclasses import dataclass, field from typing import Optional, Union import pandas as pd from libcommon.constants import ERROR_CODES_TO_RETRY from libcommon.processing_graph import ( ProcessingGraph, ProcessingStep, ProcessingStepDoesNotExist, ) from libcommon.prometheus import StepProfiler from libcommon.queue import Queue from libcommon.simple_cache import ( fetch_names, get_cache_entries_df, has_some_cache, upsert_response_params, ) from libcommon.state import ArtifactState, DatasetState, FirstStepsDatasetState from libcommon.utils import JobInfo, JobResult, Priority # TODO: clean dangling cache entries @dataclass class CacheStatus: cache_has_different_git_revision: dict[str, ArtifactState] = field(default_factory=dict) cache_is_old: dict[str, ArtifactState] = field(default_factory=dict) cache_is_outdated_by_parent: dict[str, ArtifactState] = field(default_factory=dict) cache_is_empty: dict[str, ArtifactState] = field(default_factory=dict) cache_is_error_to_retry: dict[str, ArtifactState] = field(default_factory=dict) cache_is_job_runner_obsolete: dict[str, ArtifactState] = field(default_factory=dict) up_to_date: dict[str, ArtifactState] = field(default_factory=dict) def as_response(self) -> dict[str, list[str]]: return { "cache_has_different_git_revision": sorted(self.cache_has_different_git_revision.keys()), "cache_is_old": sorted(self.cache_is_old.keys()), "cache_is_outdated_by_parent": sorted(self.cache_is_outdated_by_parent.keys()), "cache_is_empty": sorted(self.cache_is_empty.keys()), "cache_is_error_to_retry": sorted(self.cache_is_error_to_retry.keys()), "cache_is_job_runner_obsolete": sorted(self.cache_is_job_runner_obsolete.keys()), "up_to_date": sorted(self.up_to_date.keys()), } @dataclass class QueueStatus: in_process: set[str] = field(default_factory=set) def as_response(self) -> dict[str, list[str]]: return {"in_process": sorted(self.in_process)} @dataclass class Task(ABC): id: str = field(init=False) long_id: str = field(init=False) @abstractmethod def run(self) -> None: pass @dataclass class CreateJobsTask(Task): job_infos: list[JobInfo] = field(default_factory=list) def __post_init__(self) -> None: # for debug and testing self.id = f"CreateJobs,{len(self.job_infos)}" types = [job_info["type"] for job_info in self.job_infos] self.long_id = f"CreateJobs,{types}" def run(self) -> None: with StepProfiler( method="CreateJobsTask.run", step="all", context=f"num_jobs_to_create={len(self.job_infos)}", ): created_jobs_count = Queue().create_jobs(job_infos=self.job_infos) if created_jobs_count != len(self.job_infos): raise ValueError( f"Something went wrong when creating jobs: {len(self.job_infos)} jobs were supposed to be" f" created, but {created_jobs_count} were created." ) @dataclass class DeleteJobsTask(Task): jobs_df: pd.DataFrame def __post_init__(self) -> None: # for debug and testing self.id = f"DeleteJobs,{len(self.jobs_df)}" types = [row["type"] for _, row in self.jobs_df.iterrows()] self.long_id = f"DeleteJobs,{types}" def run(self) -> None: with StepProfiler( method="DeleteJobsTask.run", step="all", context=f"num_jobs_to_delete={len(self.jobs_df)}", ): cancelled_jobs_count = Queue().cancel_jobs_by_job_id(job_ids=self.jobs_df["job_id"].tolist()) if cancelled_jobs_count != len(self.jobs_df): raise ValueError( f"Something went wrong when cancelling jobs: {len(self.jobs_df)} jobs were supposed to be" f" cancelled, but {cancelled_jobs_count} were cancelled." ) SupportedTask = Union[CreateJobsTask, DeleteJobsTask] @dataclass class Plan: tasks: list[SupportedTask] = field(init=False) def __post_init__(self) -> None: self.tasks = [] def add_task(self, task: SupportedTask) -> None: self.tasks.append(task) def run(self) -> int: """Run all the tasks in the plan. Returns: The number of tasks that were run. """ for idx, task in enumerate(self.tasks): logging.debug(f"Running task [{idx}/{len(self.tasks)}]: {task.long_id}") task.run() return len(self.tasks) def as_response(self) -> list[str]: return sorted(task.id for task in self.tasks) @dataclass class AfterJobPlan(Plan): """ Plan to create jobs after a processing step has finished. Args: job_info (JobInfo): The job info. processing_graph (ProcessingGraph): The processing graph. """ job_info: JobInfo processing_graph: ProcessingGraph dataset: str = field(init=False) config: Optional[str] = field(init=False) split: Optional[str] = field(init=False) revision: str = field(init=False) priority: Priority = field(init=False) def __post_init__(self) -> None: super().__post_init__() self.dataset = self.job_info["params"]["dataset"] self.revision = self.job_info["params"]["revision"] self.priority = self.job_info["priority"] config = self.job_info["params"]["config"] split = self.job_info["params"]["split"] job_type = self.job_info["type"] try: processing_step = self.processing_graph.get_processing_step_by_job_type(job_type) next_processing_steps = self.processing_graph.get_children(processing_step.name) except ProcessingStepDoesNotExist as e: raise ValueError(f"Processing step with job type: {job_type} does not exist") from e if len(next_processing_steps) == 0: # no next processing step, nothing to do return # get the list of pending jobs for the children # note that it can contain a lot of unrelated jobs, we will clean after self.pending_jobs_df = Queue().get_pending_jobs_df( dataset=self.dataset, job_types=[next_processing_step.job_type for next_processing_step in next_processing_steps], ) self.job_infos_to_create: list[JobInfo] = [] config_names: Optional[list[str]] = None split_names: Optional[list[str]] = None # filter to only get the jobs that are not already in the queue for next_processing_step in next_processing_steps: if processing_step.input_type == next_processing_step.input_type: # same level, one job is expected # D -> D, C -> C, S -> S self.update(next_processing_step, config, split) elif processing_step.input_type in ["config", "split"] and next_processing_step.input_type == "dataset": # going to upper level (fan-in), one job is expected # S -> D, C -> D self.update(next_processing_step, None, None) elif processing_step.input_type == "split" and next_processing_step.input_type == "config": # going to upper level (fan-in), one job is expected # S -> C self.update(next_processing_step, config, None) elif processing_step.input_type == "dataset" and next_processing_step.input_type == "config": # going to lower level (fan-out), one job is expected per config, we need the list of configs # D -> C if config_names is None: config_names = fetch_names( dataset=self.dataset, config=None, cache_kinds=[ processing_step.cache_kind for processing_step in self.processing_graph.get_dataset_config_names_processing_steps() ], names_field="config_names", name_field="config", ) # Note that we use the cached content even the revision is different (ie. maybe obsolete) for config_name in config_names: self.update(next_processing_step, config_name, None) elif processing_step.input_type == "config" and next_processing_step.input_type == "split": # going to lower level (fan-out), one job is expected per split, we need the list of splits # C -> S if split_names is None: split_names = fetch_names( dataset=self.dataset, config=config, cache_kinds=[ processing_step.cache_kind for processing_step in self.processing_graph.get_config_split_names_processing_steps() ], names_field="splits", name_field="split", ) # Note that we use the cached content even the revision is different (ie. maybe obsolete) for split_name in split_names: self.update(next_processing_step, config, split_name) else: raise NotImplementedError( f"Unsupported input types: {processing_step.input_type} -> {next_processing_step.input_type}" ) # we don't support fan-out dataset-level to split-level (no need for now) # Better keep this order: delete, then create # Note that all the pending jobs for other revisions will be deleted if not self.pending_jobs_df.empty: self.add_task(DeleteJobsTask(jobs_df=self.pending_jobs_df)) if self.job_infos_to_create: self.add_task(CreateJobsTask(job_infos=self.job_infos_to_create)) def update( self, next_processing_step: ProcessingStep, config: Optional[str], split: Optional[str], ) -> None: # ignore unrelated jobs config_mask = ( self.pending_jobs_df["config"].isnull() if config is None else self.pending_jobs_df["config"] == config ) split_mask = ( self.pending_jobs_df["split"].isnull() if split is None else self.pending_jobs_df["split"] == split ) unrelated_jobs_mask = (self.pending_jobs_df["type"] == next_processing_step.job_type) & ( (self.pending_jobs_df["dataset"] != self.dataset) | (~config_mask) | (~split_mask) ) self.pending_jobs_df = self.pending_jobs_df[~unrelated_jobs_mask] jobs_mask = ( (self.pending_jobs_df["type"] == next_processing_step.job_type) & (self.pending_jobs_df["dataset"] == self.dataset) & (config_mask) & (split_mask) ) ok_jobs_mask = jobs_mask & (self.pending_jobs_df["revision"] == self.revision) if ok_jobs_mask.any(): # remove the first ok job for the list, and keep the others to delete them later self.pending_jobs_df.drop(ok_jobs_mask.idxmax(), inplace=True) else: # no pending job for the current processing step self.job_infos_to_create.append( { "job_id": "not used", # TODO: remove this field "type": next_processing_step.job_type, "params": { "dataset": self.dataset, "config": config, "split": split, "revision": self.revision, }, "priority": self.priority, "difficulty": next_processing_step.difficulty, } ) @dataclass class DatasetBackfillPlan(Plan): """ Plan to backfill a dataset for a given revision. The plan is composed of tasks to delete and create jobs. Args: dataset: dataset name processing_graph: processing graph revision: revision to backfill cache_max_days: maximum number of days to keep the cache error_codes_to_retry: list of error codes to retry priority: priority of the jobs to create only_first_processing_steps: if True, only the first processing steps are backfilled """ dataset: str processing_graph: ProcessingGraph revision: str cache_max_days: int error_codes_to_retry: Optional[list[str]] = None priority: Priority = Priority.LOW only_first_processing_steps: bool = False pending_jobs_df: pd.DataFrame = field(init=False) cache_entries_df: pd.DataFrame = field(init=False) dataset_state: DatasetState = field(init=False) cache_status: CacheStatus = field(init=False) def __post_init__(self) -> None: super().__post_init__() if self.error_codes_to_retry is None: self.error_codes_to_retry = ERROR_CODES_TO_RETRY.split(",") with StepProfiler( method="DatasetBackfillPlan.__post_init__", step="all", context=f"dataset={self.dataset}", ): with StepProfiler( method="DatasetBackfillPlan.__post_init__", step="get_pending_jobs_df", context=f"dataset={self.dataset}", ): job_types = ( [ processing_step.job_type for processing_step in self.processing_graph.get_first_processing_steps() ] if self.only_first_processing_steps else None ) self.pending_jobs_df = Queue().get_pending_jobs_df( dataset=self.dataset, job_types=job_types, ) with StepProfiler( method="DatasetBackfillPlan.__post_init__", step="get_cache_entries_df", context=f"dataset={self.dataset}", ): cache_kinds = ( [ processing_step.cache_kind for processing_step in self.processing_graph.get_first_processing_steps() ] if self.only_first_processing_steps else None ) self.cache_entries_df = get_cache_entries_df( dataset=self.dataset, cache_kinds=cache_kinds, ) with StepProfiler( method="DatasetBackfillPlan.__post_init__", step="get_dataset_state", context=f"dataset={self.dataset}", ): self.dataset_state = ( FirstStepsDatasetState( dataset=self.dataset, processing_graph=self.processing_graph, revision=self.revision, pending_jobs_df=self.pending_jobs_df, cache_entries_df=self.cache_entries_df, error_codes_to_retry=self.error_codes_to_retry, ) if self.only_first_processing_steps else DatasetState( dataset=self.dataset, processing_graph=self.processing_graph, revision=self.revision, pending_jobs_df=self.pending_jobs_df, cache_entries_df=self.cache_entries_df, error_codes_to_retry=self.error_codes_to_retry, ) ) with StepProfiler( method="DatasetBackfillPlan.__post_init__", step="_get_cache_status", context=f"dataset={self.dataset}", ): self.cache_status = self._get_cache_status() with StepProfiler( method="DatasetBackfillPlan.__post_init__", step="_create_plan", context=f"dataset={self.dataset}", ): self._create_plan() def _get_artifact_states_for_step( self, processing_step: ProcessingStep, config: Optional[str] = None, split: Optional[str] = None ) -> list[ArtifactState]: """Get the artifact states for a step. Args: processing_step (ProcessingStep): the processing step config (str, optional): if not None, and step input type is config or split, only return the artifact states for this config split (str, optional): if not None, and step input type is split, only return the artifact states for this split (config must be specified) Returns: the artifact states for the step """ if processing_step.input_type == "dataset": artifact_states = [self.dataset_state.artifact_state_by_step[processing_step.name]] elif processing_step.input_type == "config": if config is None: artifact_states = [ config_state.artifact_state_by_step[processing_step.name] for config_state in self.dataset_state.config_states ] else: artifact_states = [ config_state.artifact_state_by_step[processing_step.name] for config_state in self.dataset_state.config_states if config_state.config == config ] elif processing_step.input_type == "split": if config is None: artifact_states = [ split_state.artifact_state_by_step[processing_step.name] for config_state in self.dataset_state.config_states for split_state in config_state.split_states ] elif split is None: artifact_states = [ split_state.artifact_state_by_step[processing_step.name] for config_state in self.dataset_state.config_states if config_state.config == config for split_state in config_state.split_states ] else: artifact_states = [ split_state.artifact_state_by_step[processing_step.name] for config_state in self.dataset_state.config_states if config_state.config == config for split_state in config_state.split_states if split_state.split == split ] else: raise ValueError(f"Invalid input type: {processing_step.input_type}") artifact_states_ids = {artifact_state.id for artifact_state in artifact_states} if len(artifact_states_ids) != len(artifact_states): raise ValueError(f"Duplicate artifact states for processing_step {processing_step}") return artifact_states def _get_cache_status(self) -> CacheStatus: cache_status = CacheStatus() processing_steps = ( self.processing_graph.get_first_processing_steps() if self.only_first_processing_steps else self.processing_graph.get_topologically_ordered_processing_steps() ) for processing_step in processing_steps: # Every step can have one or multiple artifacts, for example config-level steps have one artifact per # config artifact_states = self._get_artifact_states_for_step(processing_step) for artifact_state in artifact_states: # is an old entry? if artifact_state.cache_state.is_old(days=self.cache_max_days): cache_status.cache_is_old[artifact_state.id] = artifact_state continue # any of the parents is more recent? if any( artifact_state.cache_state.is_older_than(parent_artifact_state.cache_state) for parent_step in self.processing_graph.get_parents(processing_step.name) for parent_artifact_state in self._get_artifact_states_for_step( processing_step=parent_step, config=artifact_state.config, split=artifact_state.split, ) ): cache_status.cache_is_outdated_by_parent[artifact_state.id] = artifact_state continue # is empty? if artifact_state.cache_state.is_empty(): cache_status.cache_is_empty[artifact_state.id] = artifact_state continue # is an error that can be retried? if artifact_state.cache_state.is_error_to_retry(): cache_status.cache_is_error_to_retry[artifact_state.id] = artifact_state continue # was created with an obsolete version of the job runner? if artifact_state.cache_state.is_job_runner_obsolete(): cache_status.cache_is_job_runner_obsolete[artifact_state.id] = artifact_state continue # has a different git revision from the dataset current revision? if artifact_state.cache_state.is_git_revision_different_from(self.revision): cache_status.cache_has_different_git_revision[artifact_state.id] = artifact_state continue # ok cache_status.up_to_date[artifact_state.id] = artifact_state return cache_status def get_queue_status(self) -> QueueStatus: processing_steps = ( self.processing_graph.get_first_processing_steps() if self.only_first_processing_steps else self.processing_graph.get_topologically_ordered_processing_steps() ) return QueueStatus( in_process={ artifact_state.id for processing_step in processing_steps for artifact_state in self._get_artifact_states_for_step(processing_step) if artifact_state.job_state.is_in_process } ) def _create_plan(self) -> None: pending_jobs_to_delete_df = self.pending_jobs_df.copy() job_infos_to_create: list[JobInfo] = [] artifact_states = ( list(self.cache_status.cache_is_empty.values()) + list(self.cache_status.cache_is_error_to_retry.values()) + list(self.cache_status.cache_is_old.values()) + list(self.cache_status.cache_is_outdated_by_parent.values()) + list(self.cache_status.cache_is_job_runner_obsolete.values()) + list(self.cache_status.cache_has_different_git_revision.values()) ) for artifact_state in artifact_states: valid_pending_jobs_df = artifact_state.job_state.valid_pending_jobs_df if valid_pending_jobs_df.empty: job_infos_to_create.append( { "job_id": "not used", "type": artifact_state.processing_step.job_type, "params": { "dataset": self.dataset, "revision": self.revision, "config": artifact_state.config, "split": artifact_state.split, }, "priority": self.priority, "difficulty": artifact_state.processing_step.difficulty, } ) else: pending_jobs_to_delete_df.drop(valid_pending_jobs_df.index, inplace=True) # Better keep this order: delete, then create # Note that all the pending jobs for other revisions will be deleted if not pending_jobs_to_delete_df.empty: self.add_task(DeleteJobsTask(jobs_df=pending_jobs_to_delete_df)) if job_infos_to_create: self.add_task(CreateJobsTask(job_infos=job_infos_to_create)) @dataclass class DatasetOrchestrator: dataset: str processing_graph: ProcessingGraph def set_revision( self, revision: str, priority: Priority, error_codes_to_retry: list[str], cache_max_days: int ) -> None: """ Set the current revision of the dataset. If the revision is already set to the same value, this is a no-op. Else: one job is created for every first step. Args: revision (str): The new revision of the dataset. priority (Priority): The priority of the jobs to create. error_codes_to_retry (list[str]): The error codes for which the jobs should be retried. cache_max_days (int): The maximum number of days for which the cache is considered valid. Returns: None Raises: ValueError: If the first processing steps are not dataset steps, or if the processing graph has no first step. """ first_processing_steps = self.processing_graph.get_first_processing_steps() if len(first_processing_steps) < 1: raise ValueError("Processing graph has no first step") if any(first_processing_step.input_type != "dataset" for first_processing_step in first_processing_steps): raise ValueError("One of the first processing steps is not a dataset step") with StepProfiler( method="DatasetOrchestrator.set_revision", step="all", context=f"dataset={self.dataset}", ): logging.info(f"Analyzing {self.dataset}") with StepProfiler( method="DatasetOrchestrator.set_revision", step="plan", context=f"dataset={self.dataset}", ): plan = DatasetBackfillPlan( dataset=self.dataset, revision=revision, priority=priority, processing_graph=self.processing_graph, error_codes_to_retry=error_codes_to_retry, only_first_processing_steps=True, cache_max_days=cache_max_days, ) logging.info(f"Setting new revision to {self.dataset}") with StepProfiler( method="DatasetOrchestrator.set_revision", step="run", context=f"dataset={self.dataset}", ): plan.run() def finish_job(self, job_result: JobResult) -> None: """ Finish a job. It will finish the job, store the result in the cache, and trigger the next steps. Args: job_result (JobResult): The result of the job. Returns: None Raises: ValueError: If the job is not found, or if the processing step is not found. """ # check if the job is still in started status job_info = job_result["job_info"] if not Queue().is_job_started(job_id=job_info["job_id"]): logging.debug("the job was cancelled, don't update the cache") return # if the job could not provide an output, finish it and return if not job_result["output"]: Queue().finish_job(job_id=job_info["job_id"], is_success=False) logging.debug("the job raised an exception, don't update the cache") return # update the cache output = job_result["output"] params = job_info["params"] try: processing_step = self.processing_graph.get_processing_step_by_job_type(job_info["type"]) except ProcessingStepDoesNotExist as e: raise ValueError(f"Processing step for job type {job_info['type']} does not exist") from e upsert_response_params( # inputs kind=processing_step.cache_kind, job_params=params, job_runner_version=job_result["job_runner_version"], # output content=output["content"], http_status=output["http_status"], error_code=output["error_code"], details=output["details"], progress=output["progress"], ) logging.debug("the job output has been written to the cache.") # finish the job Queue().finish_job(job_id=job_info["job_id"], is_success=job_result["is_success"]) logging.debug("the job has been finished.") # trigger the next steps plan = AfterJobPlan(job_info=job_info, processing_graph=self.processing_graph) plan.run() logging.debug("jobs have been created for the next steps.") def has_some_cache(self) -> bool: """ Check if the cache has some entries for the dataset. Returns: bool: True if the cache has some entries for the dataset, False otherwise. """ return has_some_cache(dataset=self.dataset) def has_pending_ancestor_jobs(self, processing_step_names: list[str]) -> bool: """ Check if the processing steps, or one of their ancestors, have a pending job, ie. if artifacts could exist in the cache in the future. This method is used when a cache entry is missing in the API, to return a: - 404 error, saying that the artifact does not exist, - or a 500 error, saying that the artifact could be available soon (retry). It is implemented by checking if a job exists for the artifacts or one of their ancestors. Note that, if dataset-config-names' job is pending, we cannot know if the config is valid or not, so we consider that the artifact could exist. Args: processing_step_names (list[str]): The processing step names (artifacts) to check. Returns: bool: True if any of the artifact could exist, False otherwise. Raises: ValueError: If any of the processing step does not exist. """ job_types: set[str] = set() for processing_step_name in processing_step_names: try: processing_step = self.processing_graph.get_processing_step(processing_step_name) except ProcessingStepDoesNotExist as e: raise ValueError(f"Processing step {processing_step_name} does not exist") from e ancestors = self.processing_graph.get_ancestors(processing_step_name) job_types.add(processing_step.job_type) job_types.update(ancestor.job_type for ancestor in ancestors) # check if a pending job exists for the artifact or one of its ancestors # note that we cannot know if the ancestor is really for the artifact (ie: ancestor is for config1, # while we look for config2,split1). Looking in this detail would be too complex, this approximation # is good enough. return Queue().has_pending_jobs(dataset=self.dataset, job_types=list(job_types)) def backfill( self, revision: str, priority: Priority, cache_max_days: int, error_codes_to_retry: Optional[list[str]] = None ) -> int: """ Backfill the cache for a given revision. Args: revision (str): The revision. priority (Priority): The priority of the jobs. cache_max_days (int): The maximum number of days to keep the cache. error_codes_to_retry (Optional[list[str]]): The error codes for which the jobs should be retried. Returns: int: The number of jobs created. """ with StepProfiler( method="DatasetOrchestrator.backfill", step="all", context=f"dataset={self.dataset}", ): logging.info(f"Analyzing {self.dataset}") with StepProfiler( method="DatasetOrchestrator.backfill", step="plan", context=f"dataset={self.dataset}", ): plan = DatasetBackfillPlan( dataset=self.dataset, revision=revision, priority=priority, processing_graph=self.processing_graph, error_codes_to_retry=error_codes_to_retry, only_first_processing_steps=False, cache_max_days=cache_max_days, ) logging.info(f"Analyzing {self.dataset}") with StepProfiler( method="DatasetOrchestrator.backfill", step="run", context=f"dataset={self.dataset}", ): return plan.run()
datasets-server-main
libs/libcommon/src/libcommon/orchestrator.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging import shutil from os import PathLike, makedirs from pathlib import Path from typing import Optional, Union from appdirs import user_cache_dir # type:ignore from libcommon.constants import ( ASSETS_CACHE_APPNAME, CACHED_ASSETS_CACHE_APPNAME, DESCRIPTIVE_STATISTICS_CACHE_APPNAME, DUCKDB_INDEX_CACHE_APPNAME, HF_DATASETS_CACHE_APPNAME, PARQUET_METADATA_CACHE_APPNAME, ) StrPath = Union[str, PathLike[str]] def init_dir(directory: Optional[StrPath] = None, appname: Optional[str] = None) -> StrPath: """Initialize a directory. If directory is None, it will be set to the default cache location on the machine (using appname as a key, if not None). Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. appname (Optional[str], optional): The name of the application. Used if `directory`is None. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ if directory is None: directory = user_cache_dir(appname=appname) logging.debug(f"Directory defaulting to user-specific cache: {directory}") makedirs(directory, exist_ok=True) logging.debug(f"Directory created at: {directory}") return directory def init_assets_dir(directory: Optional[StrPath] = None) -> StrPath: """Initialize the assets directory. If directory is None, it will be set to the default cache location on the machine. Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ return init_dir(directory, appname=ASSETS_CACHE_APPNAME) def init_cached_assets_dir(directory: Optional[StrPath] = None) -> StrPath: """Initialize the cached assets directory. If directory is None, it will be set to the default cache location on the machine. Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ return init_dir(directory, appname=CACHED_ASSETS_CACHE_APPNAME) def init_parquet_metadata_dir(directory: Optional[StrPath] = None) -> StrPath: """Initialize the parquet metadata directory. If directory is None, it will be set to the default cache location on the machine. Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ return init_dir(directory, appname=PARQUET_METADATA_CACHE_APPNAME) def init_duckdb_index_cache_dir(directory: Optional[StrPath] = None) -> StrPath: """Initialize the duckdb index directory. If directory is None, it will be set to the default duckdb index location on the machine. Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ return init_dir(directory, appname=DUCKDB_INDEX_CACHE_APPNAME) def init_hf_datasets_cache_dir(directory: Optional[StrPath] = None) -> StrPath: """Initialize the cache directory for the datasets library. If directory is None, it will be set to the default cache location on the machine. Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ return init_dir(directory, appname=HF_DATASETS_CACHE_APPNAME) def init_statistics_cache_dir(directory: Optional[StrPath] = None) -> StrPath: """Initialize the cache directory for storage of a dataset in parquet format for statistics computations. If directory is None, it will be set to the default cache location on the machine. Args: directory (Optional[Union[str, PathLike[str]]], optional): The directory to initialize. Defaults to None. Returns: Union[str, PathLike[str]]: The directory. """ return init_dir(directory, appname=DESCRIPTIVE_STATISTICS_CACHE_APPNAME) def exists(path: StrPath) -> bool: """Check if a path exists. Args: path (Union[str, PathLike[str]]): The path to check. Returns: bool: True if the path exists, False otherwise. """ return Path(path).exists() def remove_dir(directory: StrPath) -> None: """Remove a directory. If the directory does not exist, don't raise. Args: directory (Union[str, PathLike[str]]): The directory to remove. """ shutil.rmtree(directory, ignore_errors=True) logging.debug(f"Directory removed: {directory}")
datasets-server-main
libs/libcommon/src/libcommon/storage.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging import sys import traceback from http import HTTPStatus from typing import Literal, Optional, TypedDict, Union class ErrorResponseWithoutCause(TypedDict): error: str class ErrorResponseWithCause(ErrorResponseWithoutCause, total=False): cause_exception: str cause_message: str cause_traceback: list[str] ErrorResponse = Union[ErrorResponseWithoutCause, ErrorResponseWithCause] class LoggedError(Exception): def __init__(self, message: str): self.message = message logging.debug(self.message) super().__init__(self.message) class CustomError(LoggedError): """Base class for exceptions in this module.""" def __init__( self, message: str, status_code: HTTPStatus, code: str, cause: Optional[BaseException] = None, disclose_cause: Optional[bool] = None, ): super().__init__(message) self.exception = type(self).__name__ self.status_code = status_code self.code = code self.message = str(self) self.disclose_cause = disclose_cause if disclose_cause is not None else cause is not None if cause is not None: self.cause_exception: Optional[str] = type(cause).__name__ self.cause_message: Optional[str] = str(cause) (t, v, tb) = sys.exc_info() self.cause_traceback: Optional[list[str]] = traceback.format_exception(t, v, tb) else: self.cause_exception = None self.cause_message = None self.cause_traceback = None def as_response_with_cause(self) -> ErrorResponseWithCause: error: ErrorResponseWithCause = {"error": self.message} if self.cause_exception is not None: error["cause_exception"] = self.cause_exception if self.cause_message is not None: error["cause_message"] = self.cause_message if self.cause_traceback is not None: error["cause_traceback"] = self.cause_traceback return error def as_response_without_cause(self) -> ErrorResponseWithoutCause: return {"error": self.message} def as_response(self) -> ErrorResponse: return self.as_response_with_cause() if self.disclose_cause else self.as_response_without_cause() CacheableErrorCode = Literal[ "CacheDirectoryNotInitializedError", "ComputationError", "ConfigNamesError", "ConfigNotFoundError", "CreateCommitError", "DatasetInBlockListError", "DatasetInfoHubRequestError", "DatasetManualDownloadError", "DatasetModuleNotInstalledError", "DatasetNotFoundError", "DatasetRevisionEmptyError", "DatasetRevisionNotFoundError", "DatasetScriptError", "DatasetWithTooManyConfigsError", "DatasetWithTooManyParquetFilesError", "DisabledViewerError", "DiskError", "DuckDBIndexFileNotFoundError", "EmptyDatasetError", "ExternalFilesSizeRequestConnectionError", "ExternalFilesSizeRequestError", "ExternalFilesSizeRequestHTTPError", "ExternalFilesSizeRequestTimeoutError", "ExternalServerError", "FeaturesError", "FileSystemError", "InfoError", "JobManagerCrashedError", "JobManagerExceededMaximumDurationError", "LockedDatasetTimeoutError", "MissingSpawningTokenError", "NoIndexableColumnsError", "NoSupportedFeaturesError", "NormalRowsError", "ParameterMissingError", "ParquetResponseEmptyError", "PreviousStepFormatError", "PreviousStepStatusError", "ResponseAlreadyComputedError", "RowsPostProcessingError", "SplitsNamesError", "SplitNamesFromStreamingError", "SplitNotFoundError", "SplitWithTooBigParquetError", "StreamingRowsError", "TooBigContentError", "TooManyColumnsError", "UnexpectedError", "UnsupportedExternalFilesError", ] class CacheableError(CustomError): """Base class for exceptions that can be cached in the database.""" def __init__( self, message: str, status_code: HTTPStatus, code: CacheableErrorCode, cause: Optional[BaseException] = None, disclose_cause: bool = False, ): super().__init__( message=message, status_code=status_code, code=code, cause=cause, disclose_cause=disclose_cause ) class CacheDirectoryNotInitializedError(CacheableError): """The cache directory has not been initialized before job compute.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "CacheDirectoryNotInitializedError", cause, True) class ConfigNamesError(CacheableError): """The config names could not be fetched.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "ConfigNamesError", cause, True) class ConfigNotFoundError(CacheableError): """The config does not exist.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_FOUND, code="ConfigNotFoundError", cause=cause, disclose_cause=False, ) class CreateCommitError(CacheableError): """A commit could not be created on the Hub.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "CreateCommitError", cause, False) class DatasetInBlockListError(CacheableError): """The dataset is in the list of blocked datasets.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "DatasetInBlockListError", cause, False) class DatasetInfoHubRequestError(CacheableError): """The request to the Hub's dataset-info endpoint times out.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.INTERNAL_SERVER_ERROR, code="DatasetInfoHubRequestError", cause=cause, disclose_cause=False, ) class DatasetManualDownloadError(CacheableError): """The dataset requires manual download.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "DatasetManualDownloadError", cause, True) class DatasetModuleNotInstalledError(CacheableError): """The dataset tries to import a module that is not installed.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "DatasetModuleNotInstalledError", cause, True) class DatasetNotFoundError(CacheableError): """The dataset does not exist.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_FOUND, code="DatasetNotFoundError", cause=cause, disclose_cause=False, ) class DatasetRevisionEmptyError(CacheableError): """The current git revision (branch, commit) could not be obtained.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "DatasetRevisionEmptyError", cause, False) class DatasetRevisionNotFoundError(CacheableError): """The revision of a dataset repository does not exist.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_FOUND, "DatasetRevisionNotFoundError", cause, False) class DatasetScriptError(CacheableError): """The dataset script generated an error.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "DatasetScriptError", cause, False) class DatasetWithTooManyConfigsError(CacheableError): """The number of configs of a dataset exceeded the limit.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "DatasetWithTooManyConfigsError", cause, True) class DatasetWithTooManyParquetFilesError(CacheableError): """The number of parquet files of a dataset is too big.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "DatasetWithTooManyParquetFilesError", cause, True) class DuckDBIndexFileNotFoundError(CacheableError): """No duckdb index file was found for split.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "DuckDBIndexFileNotFoundError", cause, False) class DisabledViewerError(CacheableError): """The dataset viewer is disabled.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_FOUND, code="DisabledViewerError", cause=cause, disclose_cause=False, ) class DiskError(CacheableError): """Disk-related issues, for example, incorrect permissions.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.INTERNAL_SERVER_ERROR, code="DiskError", cause=cause, disclose_cause=False, ) class EmptyDatasetError(CacheableError): """The dataset has no data.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "EmptyDatasetError", cause, True) class ExternalFilesSizeRequestConnectionError(CacheableError): """We failed to get the size of the external files.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "ExternalFilesSizeRequestConnectionError", cause, True) class ExternalFilesSizeRequestError(CacheableError): """We failed to get the size of the external files.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "ExternalFilesSizeRequestError", cause, True) class ExternalFilesSizeRequestHTTPError(CacheableError): """We failed to get the size of the external files.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "ExternalFilesSizeRequestHTTPError", cause, True) class ExternalFilesSizeRequestTimeoutError(CacheableError): """We failed to get the size of the external files.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "ExternalFilesSizeRequestTimeoutError", cause, True) class ExternalServerError(CacheableError): """The spawning.ai server is not responding.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "ExternalServerError", cause, False) class FeaturesError(CacheableError): """The features could not be fetched.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "FeaturesError", cause, True) class FileSystemError(CacheableError): """An error happen reading from File System.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "FileSystemError", cause, False) class InfoError(CacheableError): """The info could not be fetched.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "InfoError", cause, True) class JobManagerCrashedError(CacheableError): """The job runner crashed and the job became a zombie.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_IMPLEMENTED, code="JobManagerCrashedError", cause=cause, disclose_cause=False, ) class JobManagerExceededMaximumDurationError(CacheableError): """The job runner was killed because the job exceeded the maximum duration.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_IMPLEMENTED, code="JobManagerExceededMaximumDurationError", cause=cause, disclose_cause=False, ) class LockedDatasetTimeoutError(CacheableError): """A dataset is locked by another job.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "LockedDatasetTimeoutError", cause, True) class MissingSpawningTokenError(CacheableError): """The spawning.ai token is not set.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "MissingSpawningTokenError", cause, False) class NormalRowsError(CacheableError): """The rows could not be fetched in normal mode.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "NormalRowsError", cause, True) class NoIndexableColumnsError(CacheableError): """The split does not have string columns to index.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "NoIndexableColumnsError", cause, True) class NoSupportedFeaturesError(CacheableError): """The dataset does not have any features which types are supported by a worker's processing pipeline.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "NoSupportedFeaturesError", cause, True) class ParameterMissingError(CacheableError): """The request is missing some parameter.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.INTERNAL_SERVER_ERROR, code="ParameterMissingError", cause=cause, disclose_cause=False, ) class ParquetResponseEmptyError(CacheableError): """No parquet files were found for split.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "ParquetResponseEmptyError", cause, False) class PreviousStepFormatError(CacheableError): """The content of the previous step has not the expected format.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "PreviousStepFormatError", cause, False) class PreviousStepStatusError(CacheableError): """The previous step gave an error. The job should not have been created.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "PreviousStepStatusError", cause, False) class ResponseAlreadyComputedError(CacheableError): """The response has been already computed by another job runner.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.INTERNAL_SERVER_ERROR, code="ResponseAlreadyComputedError", cause=cause, disclose_cause=True, ) class RowsPostProcessingError(CacheableError): """The rows could not be post-processed successfully.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "RowsPostProcessingError", cause, False) class SplitsNamesError(CacheableError): """The split names could not be fetched.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "SplitsNamesError", cause, True) class SplitNamesFromStreamingError(CacheableError): """The split names could not be fetched.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "SplitNamesFromStreamingError", cause, True) class SplitNotFoundError(CacheableError): """The split does not exist.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_FOUND, code="SplitNotFoundError", cause=cause, disclose_cause=False, ) class SplitWithTooBigParquetError(CacheableError): """The split parquet size (sum of parquet sizes given) is too big.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "SplitWithTooBigParquetError", cause, False) class StatisticsComputationError(CacheableError): """An unexpected behavior or error occurred during statistics computations.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "ComputationError", cause, True) class StreamingRowsError(CacheableError): """The rows could not be fetched in streaming mode.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "StreamingRowsError", cause, True) class TooBigContentError(CacheableError): """The content size in bytes is bigger than the supported value.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.NOT_IMPLEMENTED, code="TooBigContentError", cause=cause, disclose_cause=False, ) class TooManyColumnsError(CacheableError): """The dataset exceeded the max number of columns.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "TooManyColumnsError", cause, True) class UnexpectedError(CacheableError): """The job runner raised an unexpected error.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message=message, status_code=HTTPStatus.INTERNAL_SERVER_ERROR, code="UnexpectedError", cause=cause, disclose_cause=False, ) logging.error(message, exc_info=cause) class UnsupportedExternalFilesError(CacheableError): """We failed to get the size of the external files.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.NOT_IMPLEMENTED, "UnsupportedExternalFilesError", cause, True)
datasets-server-main
libs/libcommon/src/libcommon/exceptions.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from types import TracebackType from typing import Any, Optional, TypeVar from mongoengine.connection import ConnectionFailure, connect, disconnect from pymongo import MongoClient from pymongo.errors import ServerSelectionTimeoutError from libcommon.constants import ( CACHE_MONGOENGINE_ALIAS, METRICS_MONGOENGINE_ALIAS, QUEUE_MONGOENGINE_ALIAS, ) T = TypeVar("T", bound="Resource") @dataclass class Resource: """ A resource that can be allocated and released. The method allocate() is called when the resource is created. The method release() allows to free the resource. It can be used as a context manager, in which case the resource is released when the context is exited. Example: >>> with Resource() as resource: ... pass Resources should be inherited from this class and must implement the allocate(), check() and release() methods. """ def __post_init__(self) -> None: self.allocate() def __enter__(self: T) -> T: return self def __exit__( self, exc_type: Optional[type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: self.release() def allocate(self) -> None: pass def release(self) -> None: pass class MongoConnectionFailure(Exception): pass @dataclass class MongoResource(Resource): """ A base resource that represents a connection to a database. The method is_available() allows to check if the resource is available. It's not called automatically. Args: database (:obj:`str`): The name of the mongo database. host (:obj:`str`): The host of the mongo database. It must start with ``mongodb://`` or ``mongodb+srv://``. mongoengine_alias (:obj:`str`): The alias of the connection in mongoengine. server_selection_timeout_ms (:obj:`int`, `optional`, defaults to 30_000): The timeout in milliseconds for server selection. """ database: str host: str mongoengine_alias: str server_selection_timeout_ms: int = 30_000 _client: MongoClient = field(init=False) def allocate(self) -> None: try: self._client = connect( db=self.database, host=self.host, alias=self.mongoengine_alias, serverSelectionTimeoutMS=self.server_selection_timeout_ms, ) except ConnectionFailure as e: raise MongoConnectionFailure(f"Failed to connect to MongoDB: {e}") from e def is_available(self) -> bool: """Check if the connection is available.""" try: self._client.is_mongos return True except ServerSelectionTimeoutError: return False def create_collection(self, document: Any) -> None: document.ensure_indexes() def enable_pre_and_post_images(self, collection_name: str) -> None: self._client[self.database].command( "collMod", collection_name, changeStreamPreAndPostImages={"enabled": True} ) # type: ignore def release(self) -> None: disconnect(alias=self.mongoengine_alias) def __reduce__(self) -> tuple[Any, ...]: # Needed to be able to use the resource in subprocesses in tests (e.g. tests/test_queue.py::test_lock). # This is because the _client in not picklable. return (MongoResource, (self.database, self.host, self.mongoengine_alias, self.server_selection_timeout_ms)) @dataclass class CacheMongoResource(MongoResource): """ A resource that represents a connection to the cache mongo database. Args: database (:obj:`str`): The name of the mongo database. host (:obj:`str`): The host of the mongo database. It must start with ``mongodb://`` or ``mongodb+srv://``. """ mongoengine_alias: str = field(default=CACHE_MONGOENGINE_ALIAS, init=False) @dataclass class QueueMongoResource(MongoResource): """ A resource that represents a connection to the queue mongo database. Args: database (:obj:`str`): The name of the mongo database. host (:obj:`str`): The host of the mongo database. It must start with ``mongodb://`` or ``mongodb+srv://``. """ mongoengine_alias: str = field(default=QUEUE_MONGOENGINE_ALIAS, init=False) @dataclass class MetricsMongoResource(MongoResource): """ A resource that represents a connection to the metrics mongo database. Args: database (:obj:`str`): The name of the mongo database. host (:obj:`str`): The host of the mongo database. It must start with ``mongodb://`` or ``mongodb+srv://``. """ mongoengine_alias: str = field(default=METRICS_MONGOENGINE_ALIAS, init=False)
datasets-server-main
libs/libcommon/src/libcommon/resources.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import types from collections.abc import Mapping from dataclasses import dataclass from datetime import datetime from http import HTTPStatus from typing import Any, Generic, NamedTuple, Optional, TypedDict, TypeVar, overload import pandas as pd from bson import ObjectId from bson.errors import InvalidId from mongoengine import Document from mongoengine.errors import DoesNotExist from mongoengine.fields import ( DateTimeField, DictField, EnumField, FloatField, IntField, ObjectIdField, StringField, ) from mongoengine.queryset.queryset import QuerySet from libcommon.constants import ( CACHE_COLLECTION_RESPONSES, CACHE_METRICS_COLLECTION, CACHE_MONGOENGINE_ALIAS, ) from libcommon.utils import JobParams, get_datetime # START monkey patching ### hack ### # see https://github.com/sbdchd/mongo-types#install U = TypeVar("U", bound=Document) def no_op(self, _): # type: ignore return self QuerySet.__class_getitem__ = types.MethodType(no_op, QuerySet) class QuerySetManager(Generic[U]): def __get__(self, instance: object, cls: type[U]) -> QuerySet[U]: return QuerySet(cls, cls._get_collection()) # END monkey patching ### hack ### class SplitFullName(NamedTuple): """A split full name is a tuple of (dataset, config, split).""" dataset: str config: Optional[str] split: Optional[str] # cache of any job class CachedResponseDocument(Document): """A response computed for a job, cached in the mongoDB database Args: kind (`str`): The kind of the cached response, identifies the job type dataset (`str`): The requested dataset. config (`str`, optional): The requested config, if any. split (`str`, optional): The requested split, if any. http_status (`HTTPStatus`): The HTTP status code. error_code (`str`, optional): The error code, if any. content (`dict`): The content of the cached response. Can be an error or a valid content. details (`dict`, optional): Additional details, eg. a detailed error that we don't want to send as a response. updated_at (`datetime`): When the cache entry has been last updated. job_runner_version (`int`): The version of the job runner that cached the response. dataset_git_revision (`str`): The commit (of the git dataset repo) used to generate the response. progress (`float`): Progress percentage (between 0. and 1.) if the result is not complete yet. """ id = ObjectIdField(db_field="_id", primary_key=True, default=ObjectId) kind = StringField(required=True, unique_with=["dataset", "config", "split"]) dataset = StringField(required=True) config = StringField() split = StringField() http_status = EnumField(HTTPStatus, required=True) error_code = StringField() content = DictField(required=True) dataset_git_revision = StringField() progress = FloatField(min_value=0.0, max_value=1.0) job_runner_version = IntField() details = DictField() updated_at = DateTimeField(default=get_datetime) meta = { "collection": CACHE_COLLECTION_RESPONSES, "db_alias": CACHE_MONGOENGINE_ALIAS, "indexes": [ ("kind", "dataset", "config", "split"), ("dataset", "kind", "http_status"), ("kind", "http_status", "error_code"), ("kind", "http_status", "_id"), ], } objects = QuerySetManager["CachedResponseDocument"]() DEFAULT_INCREASE_AMOUNT = 1 DEFAULT_DECREASE_AMOUNT = -1 class CacheTotalMetricDocument(Document): """Cache total metric in the mongoDB database, used to compute prometheus metrics. Args: kind (`str`): kind name http_status (`int`): cache http_status error_code (`str`): error code name total (`int`): total of jobs created_at (`datetime`): when the metric has been created. """ id = ObjectIdField(db_field="_id", primary_key=True, default=ObjectId) kind = StringField(required=True) http_status = IntField(required=True) error_code = StringField() total = IntField(required=True, default=0) created_at = DateTimeField(default=get_datetime) meta = { "collection": CACHE_METRICS_COLLECTION, "db_alias": CACHE_MONGOENGINE_ALIAS, "indexes": [ { "fields": ["kind", "http_status", "error_code"], "unique": True, } ], } objects = QuerySetManager["CacheTotalMetricDocument"]() # Fix issue with mongoengine: https://github.com/MongoEngine/mongoengine/issues/1242#issuecomment-810501601 # mongoengine automatically sets "config" and "splits" as required fields, because they are listed in the unique_with # field of the "kind" field. But it's an error, since unique indexes (which are used to enforce unique_with) accept # null values, see https://www.mongodb.com/docs/v5.0/core/index-unique/#unique-index-and-missing-field. CachedResponseDocument.config.required = False # type: ignore CachedResponseDocument.split.required = False # type: ignore class CacheEntryDoesNotExistError(DoesNotExist): pass def _update_metrics(kind: str, http_status: HTTPStatus, increase_by: int, error_code: Optional[str] = None) -> None: CacheTotalMetricDocument.objects(kind=kind, http_status=http_status, error_code=error_code).upsert_one( inc__total=increase_by ) def increase_metric(kind: str, http_status: HTTPStatus, error_code: Optional[str] = None) -> None: _update_metrics(kind=kind, http_status=http_status, error_code=error_code, increase_by=DEFAULT_INCREASE_AMOUNT) def decrease_metric(kind: str, http_status: HTTPStatus, error_code: Optional[str] = None) -> None: _update_metrics(kind=kind, http_status=http_status, error_code=error_code, increase_by=DEFAULT_DECREASE_AMOUNT) def decrease_metric_for_artifact(kind: str, dataset: str, config: Optional[str], split: Optional[str]) -> None: try: existing_cache = CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split).get() except DoesNotExist: return decrease_metric(kind=kind, http_status=existing_cache.http_status, error_code=existing_cache.error_code) # Note: we let the exceptions throw (ie DocumentTooLarge): it's the responsibility of the caller to manage them def upsert_response( kind: str, dataset: str, content: Mapping[str, Any], http_status: HTTPStatus, config: Optional[str] = None, split: Optional[str] = None, error_code: Optional[str] = None, details: Optional[Mapping[str, Any]] = None, job_runner_version: Optional[int] = None, dataset_git_revision: Optional[str] = None, progress: Optional[float] = None, updated_at: Optional[datetime] = None, ) -> None: decrease_metric_for_artifact(kind=kind, dataset=dataset, config=config, split=split) CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split).upsert_one( content=content, http_status=http_status, error_code=error_code, details=details, dataset_git_revision=dataset_git_revision, progress=progress, updated_at=updated_at or get_datetime(), job_runner_version=job_runner_version, ) increase_metric(kind=kind, http_status=http_status, error_code=error_code) def upsert_response_params( kind: str, job_params: JobParams, content: Mapping[str, Any], http_status: HTTPStatus, error_code: Optional[str] = None, details: Optional[Mapping[str, Any]] = None, job_runner_version: Optional[int] = None, progress: Optional[float] = None, updated_at: Optional[datetime] = None, ) -> None: upsert_response( kind=kind, dataset=job_params["dataset"], config=job_params["config"], split=job_params["split"], content=content, dataset_git_revision=job_params["revision"], details=details, error_code=error_code, http_status=http_status, job_runner_version=job_runner_version, progress=progress, updated_at=updated_at, ) def delete_response( kind: str, dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> Optional[int]: decrease_metric_for_artifact(kind=kind, dataset=dataset, config=config, split=split) return CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split).delete() def delete_dataset_responses(dataset: str) -> Optional[int]: existing_cache = CachedResponseDocument.objects(dataset=dataset) for cache in existing_cache: decrease_metric(kind=cache.kind, http_status=cache.http_status, error_code=cache.error_code) return existing_cache.delete() T = TypeVar("T") @overload def _clean_nested_mongo_object(obj: dict[str, T]) -> dict[str, T]: ... @overload def _clean_nested_mongo_object(obj: list[T]) -> list[T]: ... @overload def _clean_nested_mongo_object(obj: T) -> T: ... def _clean_nested_mongo_object(obj: Any) -> Any: """get rid of BaseDict and BaseList objects from mongo (Feature.from_dict doesn't support them)""" if isinstance(obj, dict): return {k: _clean_nested_mongo_object(v) for k, v in obj.items()} elif isinstance(obj, list): return [_clean_nested_mongo_object(v) for v in obj] elif isinstance(obj, tuple): return tuple(_clean_nested_mongo_object(v) for v in obj) else: return obj class CacheEntryWithoutContent(TypedDict): http_status: HTTPStatus error_code: Optional[str] dataset_git_revision: Optional[str] progress: Optional[float] job_runner_version: Optional[int] # Note: we let the exceptions throw: it's the responsibility of the caller to manage them def get_response_without_content( kind: str, dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> CacheEntryWithoutContent: try: response = ( CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split) .only("http_status", "error_code", "job_runner_version", "dataset_git_revision", "progress") .get() ) except DoesNotExist as e: raise CacheEntryDoesNotExistError(f"Cache entry does not exist: {kind=} {dataset=} {config=} {split=}") from e return { "http_status": response.http_status, "error_code": response.error_code, "dataset_git_revision": response.dataset_git_revision, "job_runner_version": response.job_runner_version, "progress": response.progress, } def get_response_without_content_params(kind: str, job_params: JobParams) -> CacheEntryWithoutContent: return get_response_without_content( kind=kind, dataset=job_params["dataset"], config=job_params["config"], split=job_params["split"] ) class CacheEntryMetadata(CacheEntryWithoutContent): updated_at: datetime # Note: we let the exceptions throw: it's the responsibility of the caller to manage them def get_response_metadata( kind: str, dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> CacheEntryMetadata: try: response = ( CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split) .only("http_status", "error_code", "job_runner_version", "dataset_git_revision", "progress", "updated_at") .get() ) except DoesNotExist as e: raise CacheEntryDoesNotExistError(f"Cache entry does not exist: {kind=} {dataset=} {config=} {split=}") from e return { "http_status": response.http_status, "error_code": response.error_code, "dataset_git_revision": response.dataset_git_revision, "job_runner_version": response.job_runner_version, "progress": response.progress, "updated_at": response.updated_at, } class CacheEntry(CacheEntryWithoutContent): content: Mapping[str, Any] class CacheEntryWithDetails(CacheEntry): details: Mapping[str, str] class CachedArtifactNotFoundError(Exception): kind: str dataset: str config: Optional[str] split: Optional[str] def __init__( self, kind: str, dataset: str, config: Optional[str], split: Optional[str], ): super().__init__("The cache entry has not been found.") self.kind = kind self.dataset = dataset self.config = config self.split = split class CachedArtifactError(Exception): kind: str dataset: str config: Optional[str] split: Optional[str] cache_entry_with_details: CacheEntryWithDetails enhanced_details: dict[str, Any] def __init__( self, message: str, kind: str, dataset: str, config: Optional[str], split: Optional[str], cache_entry_with_details: CacheEntryWithDetails, ): super().__init__(message) self.kind = kind self.dataset = dataset self.config = config self.split = split self.cache_entry_with_details = cache_entry_with_details self.enhanced_details: dict[str, Any] = dict(self.cache_entry_with_details["details"].items()) self.enhanced_details["copied_from_artifact"] = { "kind": self.kind, "dataset": self.dataset, "config": self.config, "split": self.split, } # Note: we let the exceptions throw: it's the responsibility of the caller to manage them def get_response(kind: str, dataset: str, config: Optional[str] = None, split: Optional[str] = None) -> CacheEntry: try: response = ( CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split) .only("content", "http_status", "error_code", "job_runner_version", "dataset_git_revision", "progress") .get() ) except DoesNotExist as e: raise CacheEntryDoesNotExistError(f"Cache entry does not exist: {kind=} {dataset=} {config=} {split=}") from e return { "content": _clean_nested_mongo_object(response.content), "http_status": response.http_status, "error_code": response.error_code, "job_runner_version": response.job_runner_version, "dataset_git_revision": response.dataset_git_revision, "progress": response.progress, } # Note: we let the exceptions throw: it's the responsibility of the caller to manage them def get_response_with_details( kind: str, dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> CacheEntryWithDetails: try: response = ( CachedResponseDocument.objects(kind=kind, dataset=dataset, config=config, split=split) .only( "content", "http_status", "error_code", "job_runner_version", "dataset_git_revision", "progress", "details", ) .get() ) except DoesNotExist as e: raise CacheEntryDoesNotExistError(f"Cache entry does not exist: {kind=} {dataset=} {config=} {split=}") from e return { "content": _clean_nested_mongo_object(response.content), "http_status": response.http_status, "error_code": response.error_code, "job_runner_version": response.job_runner_version, "dataset_git_revision": response.dataset_git_revision, "progress": response.progress, "details": _clean_nested_mongo_object(response.details), } CACHED_RESPONSE_NOT_FOUND = "CachedResponseNotFound" def get_response_or_missing_error( kind: str, dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> CacheEntryWithDetails: try: response = get_response_with_details(kind=kind, dataset=dataset, config=config, split=split) except CacheEntryDoesNotExistError: response = CacheEntryWithDetails( content={ "error": ( f"Cached response not found for kind {kind}, dataset {dataset}, config {config}, split {split}" ) }, http_status=HTTPStatus.NOT_FOUND, error_code=CACHED_RESPONSE_NOT_FOUND, dataset_git_revision=None, job_runner_version=None, progress=None, details={}, ) return response @dataclass class BestResponse: kind: str response: CacheEntryWithDetails def get_best_response( kinds: list[str], dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> BestResponse: """ Get the best response from a list of cache kinds. Best means: - the first success response with the highest progress, - else: the first error response (including cache miss) Args: kinds (`list[str]`): A non-empty list of cache kinds to look responses for. dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`, optional): A config name. split (`str`, optional): A split name. Returns: BestResponse: The best response (object with fields: kind and response). The response can be an error, including a cache miss (error code: `CachedResponseNotFound`) """ if not kinds: raise ValueError("kinds must be a non-empty list") best_response_candidates = [ BestResponse( kind=kind, response=get_response_or_missing_error(kind=kind, dataset=dataset, config=config, split=split) ) for kind in kinds ] max_index = 0 max_value = float("-inf") for index, candidate in enumerate(best_response_candidates): if candidate.response["http_status"] >= HTTPStatus.BAD_REQUEST.value: # only the first error response is considered continue value = ( 0.0 if candidate.response["progress"] is None or candidate.response["progress"] < 0.0 else candidate.response["progress"] ) if value > max_value: max_value = value max_index = index return best_response_candidates[max_index] def get_previous_step_or_raise( kinds: list[str], dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> BestResponse: """Get the previous step from the cache, or raise an exception if it failed.""" best_response = get_best_response(kinds=kinds, dataset=dataset, config=config, split=split) if "error_code" in best_response.response and best_response.response["error_code"] == CACHED_RESPONSE_NOT_FOUND: raise CachedArtifactNotFoundError(kind=best_response.kind, dataset=dataset, config=config, split=split) if best_response.response["http_status"] != HTTPStatus.OK: raise CachedArtifactError( message="The previous step failed.", kind=best_response.kind, dataset=dataset, config=config, split=split, cache_entry_with_details=best_response.response, ) return best_response def get_all_datasets() -> set[str]: return set(CachedResponseDocument.objects().distinct("dataset")) def has_any_successful_response( kinds: list[str], dataset: str, config: Optional[str] = None, split: Optional[str] = None ) -> bool: return ( CachedResponseDocument.objects( dataset=dataset, config=config, split=split, kind__in=kinds, http_status=HTTPStatus.OK ).count() > 0 ) # admin /metrics endpoint class CountEntry(TypedDict): kind: str http_status: int error_code: Optional[str] count: int def format_group(group: dict[str, Any]) -> CountEntry: kind = group["kind"] if not isinstance(kind, str): raise TypeError("kind must be a str") http_status = group["http_status"] if not isinstance(http_status, int): raise TypeError("http_status must be an int") error_code = group["error_code"] if not isinstance(error_code, str) and error_code is not None: raise TypeError("error_code must be a str or None") count = group["count"] if not isinstance(count, int): raise TypeError("count must be an int") return {"kind": kind, "http_status": http_status, "error_code": error_code, "count": count} def get_responses_count_by_kind_status_and_error_code() -> list[CountEntry]: groups = CachedResponseDocument.objects().aggregate( [ {"$sort": {"kind": 1, "http_status": 1, "error_code": 1}}, { "$group": { "_id": {"kind": "$kind", "http_status": "$http_status", "error_code": "$error_code"}, "count": {"$sum": 1}, } }, { "$project": { "kind": "$_id.kind", "http_status": "$_id.http_status", "error_code": "$_id.error_code", "count": "$count", } }, ] ) return [format_group(group) for group in groups] # /cache-reports/... endpoints class CacheReport(TypedDict): kind: str dataset: str config: Optional[str] split: Optional[str] http_status: int error_code: Optional[str] details: Mapping[str, Any] updated_at: datetime job_runner_version: Optional[int] dataset_git_revision: Optional[str] progress: Optional[float] class CacheReportsPage(TypedDict): cache_reports: list[CacheReport] next_cursor: str class InvalidCursor(Exception): pass class InvalidLimit(Exception): pass def get_cache_reports(kind: str, cursor: Optional[str], limit: int) -> CacheReportsPage: """ Get a list of reports of the cache entries, along with the next cursor. See https://solovyov.net/blog/2020/api-pagination-design/. The "reports" are the cached entries, without the "content", "details" and "updated_at" fields. Args: kind (str): the kind of the cache entries cursor (`str`): An opaque string value representing a pointer to a specific CachedResponse item in the dataset. The server returns results after the given pointer. An empty string means to start from the beginning. limit (strictly positive `int`): The maximum number of results. Returns: [`CacheReportsPage`]: A dict with the list of reports and the next cursor. The next cursor is an empty string if there are no more items to be fetched. Raises the following errors: - [`~simple_cache.InvalidCursor`] If the cursor is invalid. - [`~simple_cache.InvalidLimit`] If the limit is an invalid number. """ if not cursor: queryset = CachedResponseDocument.objects(kind=kind) else: try: queryset = CachedResponseDocument.objects(kind=kind, id__gt=ObjectId(cursor)) except InvalidId as err: raise InvalidCursor("Invalid cursor.") from err if limit <= 0: raise InvalidLimit("Invalid limit.") objects = list(queryset.order_by("+id").exclude("content").limit(limit)) return { "cache_reports": [ { "kind": kind, "dataset": object.dataset, "config": object.config, "split": object.split, "http_status": object.http_status.value, "error_code": object.error_code, "details": _clean_nested_mongo_object(object.details), "updated_at": object.updated_at, "job_runner_version": object.job_runner_version, "dataset_git_revision": object.dataset_git_revision, "progress": object.progress, } for object in objects ], "next_cursor": "" if len(objects) < limit else str(objects[-1].id), } def get_outdated_split_full_names_for_step(kind: str, current_version: int) -> list[SplitFullName]: responses = CachedResponseDocument.objects(kind=kind, job_runner_version__lt=current_version).only( "dataset", "config", "split" ) return [ SplitFullName(dataset=response.dataset, config=response.config, split=response.split) for response in responses ] def get_dataset_responses_without_content_for_kind(kind: str, dataset: str) -> list[CacheReport]: responses = CachedResponseDocument.objects(kind=kind, dataset=dataset).exclude("content") return [ { "kind": response.kind, "dataset": response.dataset, "config": response.config, "split": response.split, "http_status": response.http_status, "error_code": response.error_code, "details": _clean_nested_mongo_object(response.details), "updated_at": response.updated_at, "job_runner_version": response.job_runner_version, "dataset_git_revision": response.dataset_git_revision, "progress": response.progress, } for response in responses ] class CacheReportWithContent(CacheReport): content: Mapping[str, Any] class CacheReportsWithContentPage(TypedDict): cache_reports_with_content: list[CacheReportWithContent] next_cursor: str def get_cache_reports_with_content(kind: str, cursor: Optional[str], limit: int) -> CacheReportsWithContentPage: """ Get a list of the cache report with content, along with the next cursor. See https://solovyov.net/blog/2020/api-pagination-design/. The cache reports contain all the fields of the object, including the "content" field. Args: kind (str): the kind of the cache entries cursor (`str`): An opaque string value representing a pointer to a specific CachedResponse item in the dataset. The server returns results after the given pointer. An empty string means to start from the beginning. limit (strictly positive `int`): The maximum number of results. Returns: [`CacheReportsWithContentPage`]: A dict with the list of reports and the next cursor. The next cursor is an empty string if there are no more items to be fetched. Raises the following errors: - [`~simple_cache.InvalidCursor`] If the cursor is invalid. - [`~simple_cache.InvalidLimit`] If the limit is an invalid number. """ if not cursor: queryset = CachedResponseDocument.objects(kind=kind) else: try: queryset = CachedResponseDocument.objects(kind=kind, id__gt=ObjectId(cursor)) except InvalidId as err: raise InvalidCursor("Invalid cursor.") from err if limit <= 0: raise InvalidLimit("Invalid limit.") objects = list(queryset.order_by("+id").limit(limit)) return { "cache_reports_with_content": [ { "kind": kind, "dataset": object.dataset, "config": object.config, "split": object.split, "http_status": object.http_status.value, "error_code": object.error_code, "content": _clean_nested_mongo_object(object.content), "job_runner_version": object.job_runner_version, "dataset_git_revision": object.dataset_git_revision, "details": _clean_nested_mongo_object(object.details), "updated_at": object.updated_at, "progress": object.progress, } for object in objects ], "next_cursor": "" if len(objects) < limit else str(objects[-1].id), } class CacheEntryFullMetadata(CacheEntryMetadata): kind: str dataset: str config: Optional[str] split: Optional[str] def _get_df(entries: list[CacheEntryFullMetadata]) -> pd.DataFrame: return pd.DataFrame( { "kind": pd.Series([entry["kind"] for entry in entries], dtype="category"), "dataset": pd.Series([entry["dataset"] for entry in entries], dtype="str"), "config": pd.Series([entry["config"] for entry in entries], dtype="str"), "split": pd.Series([entry["split"] for entry in entries], dtype="str"), "http_status": pd.Series( [entry["http_status"] for entry in entries], dtype="category" ), # check if it's working as expected "error_code": pd.Series([entry["error_code"] for entry in entries], dtype="category"), "dataset_git_revision": pd.Series([entry["dataset_git_revision"] for entry in entries], dtype="str"), "job_runner_version": pd.Series([entry["job_runner_version"] for entry in entries], dtype=pd.Int16Dtype()), "progress": pd.Series([entry["progress"] for entry in entries], dtype="float"), "updated_at": pd.Series( [entry["updated_at"] for entry in entries], dtype="datetime64[ns]" ), # check if it's working as expected } ) # ^ does not seem optimal at all, but I get the types right def get_cache_entries_df(dataset: str, cache_kinds: Optional[list[str]] = None) -> pd.DataFrame: filters = {} if cache_kinds: filters["kind__in"] = cache_kinds return _get_df( [ { "kind": response.kind, "dataset": response.dataset, "config": response.config, "split": response.split, "http_status": response.http_status, "error_code": response.error_code, "dataset_git_revision": response.dataset_git_revision, "job_runner_version": response.job_runner_version, "progress": response.progress, "updated_at": response.updated_at, } for response in CachedResponseDocument.objects(dataset=dataset, **filters).only( "kind", "dataset", "config", "split", "http_status", "error_code", "job_runner_version", "dataset_git_revision", "progress", "updated_at", ) ] ) def get_cache_count_for_dataset(dataset: str) -> int: return CachedResponseDocument.objects(dataset=dataset).count() def has_some_cache(dataset: str) -> bool: return get_cache_count_for_dataset(dataset) > 0 def fetch_names( dataset: str, config: Optional[str], cache_kinds: list[str], names_field: str, name_field: str ) -> list[str]: """ Fetch a list of names from the cache database. If no entry is found in cache, return an empty list. Exceptions are silently caught. Args: dataset (str): The dataset name. config (Optional[str]): The config name. Only needed for split names. cache_kinds (list[str]): The cache kinds to fetch, eg ["dataset-config-names"], or ["config-split-names-from-streaming", "config-split-names-from-info"]. names_field (str): The name of the field containing the list of names, eg: "config_names", or "splits". name_field (str): The name of the field containing the name, eg: "config", or "split". Returns: list[str]: The list of names. """ try: names = [] best_response = get_best_response(kinds=cache_kinds, dataset=dataset, config=config) for name_item in best_response.response["content"][names_field]: name = name_item[name_field] if not isinstance(name, str): raise ValueError(f"Invalid name: {name}, type should be str, got: {type(name)}") names.append(name) return names except Exception: return [] @dataclass class DatasetWithRevision: dataset: str revision: Optional[str] def get_datasets_with_last_updated_kind(kind: str, days: int) -> list[DatasetWithRevision]: """ Get the list of datasets for which an artifact of some kind has been updated in the last days. Args: kind (str): The kind of the cache entries. days (int): The number of days to look back. Returns: list[DatasetWithRevision]: The list of datasets, with the git revision of the last artifact. """ pipeline = [ {"$match": {"kind": kind, "http_status": HTTPStatus.OK, "updated_at": {"$gt": get_datetime(days=days)}}}, {"$sort": {"updated_at": 1}}, {"$group": {"_id": "$dataset", "revision": {"$last": "$dataset_git_revision"}}}, {"$project": {"dataset": "$_id", "_id": 0, "revision": 1}}, ] return list( DatasetWithRevision(dataset=response["dataset"], revision=response["revision"]) for response in CachedResponseDocument.objects( kind=kind, http_status=HTTPStatus.OK, updated_at__gt=get_datetime(days=days) ).aggregate(pipeline) ) # only for the tests def _clean_cache_database() -> None: CachedResponseDocument.drop_collection() # type: ignore CacheTotalMetricDocument.drop_collection() # type: ignore
datasets-server-main
libs/libcommon/src/libcommon/simple_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from dataclasses import dataclass, field from typing import Optional import pandas as pd from libcommon.processing_graph import Artifact, ProcessingGraph from libcommon.prometheus import StepProfiler from libcommon.simple_cache import CacheEntryMetadata, fetch_names from libcommon.utils import get_datetime # TODO: assets, cached_assets, parquet files @dataclass class JobState: """The state of a job for a given input.""" dataset: str revision: str config: Optional[str] split: Optional[str] job_type: str pending_jobs_df: pd.DataFrame valid_pending_jobs_df: pd.DataFrame = field( init=False ) # contains at most one row (but the logic does not depend on it) is_in_process: bool = field(init=False) def __post_init__(self) -> None: self.valid_pending_jobs_df = self.pending_jobs_df.sort_values( ["status", "priority", "created_at"], ascending=[False, False, True] ).head(1) # ^ only keep the first valid job, if any, in order of priority self.is_in_process = not self.valid_pending_jobs_df.empty @dataclass class CacheState: """The state of a cache entry for a given input.""" dataset: str config: Optional[str] split: Optional[str] cache_kind: str cache_entries_df: pd.DataFrame job_runner_version: int error_codes_to_retry: Optional[list[str]] = None cache_entry_metadata: Optional[CacheEntryMetadata] = field(init=False) exists: bool = field(init=False) is_success: bool = field(init=False) def __post_init__(self) -> None: if len(self.cache_entries_df) > 1: logging.warning( f"More than one cache entry found for {self.dataset}, {self.config}, {self.split}, {self.cache_kind}" ) if len(self.cache_entries_df) == 0: self.cache_entry_metadata = None else: entry = self.cache_entries_df.iloc[0] self.cache_entry_metadata = CacheEntryMetadata( http_status=entry["http_status"], error_code=None if entry["error_code"] is pd.NA else entry["error_code"], job_runner_version=None if entry["job_runner_version"] is pd.NA else entry["job_runner_version"], dataset_git_revision=None if entry["dataset_git_revision"] is pd.NA else entry["dataset_git_revision"], updated_at=entry["updated_at"], progress=None if entry["progress"] is pd.NA else entry["progress"], ) """Whether the cache entry exists.""" self.exists = self.cache_entry_metadata is not None self.is_success = self.cache_entry_metadata is not None and self.cache_entry_metadata["http_status"] < 400 def is_empty(self) -> bool: return self.cache_entry_metadata is None def is_error_to_retry(self) -> bool: return ( self.error_codes_to_retry is not None and self.cache_entry_metadata is not None and ( self.cache_entry_metadata["http_status"] >= 400 and self.cache_entry_metadata["error_code"] in self.error_codes_to_retry ) ) def is_old(self, days: int) -> bool: if self.cache_entry_metadata is None or days <= 0: return False return self.cache_entry_metadata["updated_at"] < get_datetime(days).replace(tzinfo=None) # ^ we remove the timezone to avoid comparing timezone-aware and timezone-naive datetimes # could be done better, but we don't need more precision def is_older_than(self, other: "CacheState") -> bool: if self.cache_entry_metadata is None or other.cache_entry_metadata is None: return False return self.cache_entry_metadata["updated_at"] < other.cache_entry_metadata["updated_at"] def is_git_revision_different_from(self, git_revision: Optional[str]) -> bool: return self.cache_entry_metadata is None or self.cache_entry_metadata["dataset_git_revision"] != git_revision def is_job_runner_obsolete(self) -> bool: if self.cache_entry_metadata is None: return False if self.cache_entry_metadata["job_runner_version"] is None: return True return self.cache_entry_metadata["job_runner_version"] < self.job_runner_version @dataclass class ArtifactState(Artifact): """The state of an artifact.""" pending_jobs_df: pd.DataFrame cache_entries_df: pd.DataFrame error_codes_to_retry: Optional[list[str]] = None job_state: JobState = field(init=False) cache_state: CacheState = field(init=False) def __post_init__(self) -> None: super().__post_init__() self.job_state = JobState( job_type=self.processing_step.job_type, dataset=self.dataset, revision=self.revision, config=self.config, split=self.split, pending_jobs_df=self.pending_jobs_df, ) self.cache_state = CacheState( cache_kind=self.processing_step.cache_kind, dataset=self.dataset, config=self.config, split=self.split, job_runner_version=self.processing_step.job_runner_version, error_codes_to_retry=self.error_codes_to_retry, cache_entries_df=self.cache_entries_df, ) @dataclass class SplitState: """The state of a split.""" dataset: str revision: str config: str split: str processing_graph: ProcessingGraph pending_jobs_df: pd.DataFrame cache_entries_df: pd.DataFrame error_codes_to_retry: Optional[list[str]] = None artifact_state_by_step: dict[str, ArtifactState] = field(init=False) def __post_init__(self) -> None: self.artifact_state_by_step = { processing_step.name: ArtifactState( processing_step=processing_step, dataset=self.dataset, revision=self.revision, config=self.config, split=self.split, error_codes_to_retry=self.error_codes_to_retry, pending_jobs_df=self.pending_jobs_df[self.pending_jobs_df["type"] == processing_step.job_type], cache_entries_df=self.cache_entries_df[self.cache_entries_df["kind"] == processing_step.cache_kind], ) for processing_step in self.processing_graph.get_input_type_processing_steps(input_type="split") } @dataclass class ConfigState: """The state of a config.""" dataset: str revision: str config: str processing_graph: ProcessingGraph pending_jobs_df: pd.DataFrame cache_entries_df: pd.DataFrame error_codes_to_retry: Optional[list[str]] = None split_names: list[str] = field(init=False) split_states: list[SplitState] = field(init=False) artifact_state_by_step: dict[str, ArtifactState] = field(init=False) def __post_init__(self) -> None: with StepProfiler( method="ConfigState.__post_init__", step="get_config_level_artifact_states", context=f"dataset={self.dataset},config={self.config}", ): self.artifact_state_by_step = { processing_step.name: ArtifactState( processing_step=processing_step, dataset=self.dataset, revision=self.revision, config=self.config, split=None, error_codes_to_retry=self.error_codes_to_retry, pending_jobs_df=self.pending_jobs_df[ (self.pending_jobs_df["split"].isnull()) & (self.pending_jobs_df["type"] == processing_step.job_type) ], cache_entries_df=self.cache_entries_df[ self.cache_entries_df["kind"] == processing_step.cache_kind ], ) for processing_step in self.processing_graph.get_input_type_processing_steps(input_type="config") } with StepProfiler( method="ConfigState.__post_init__", step="get_split_names", context=f"dataset={self.dataset},config={self.config}", ): self.split_names = fetch_names( dataset=self.dataset, config=self.config, cache_kinds=[ processing_step.cache_kind for processing_step in self.processing_graph.get_config_split_names_processing_steps() ], names_field="splits", name_field="split", ) # Note that we use the cached content even the revision is different (ie. maybe obsolete) with StepProfiler( method="ConfigState.__post_init__", step="get_split_states", context=f"dataset={self.dataset},config={self.config}", ): self.split_states = [ SplitState( self.dataset, self.revision, self.config, split_name, processing_graph=self.processing_graph, error_codes_to_retry=self.error_codes_to_retry, pending_jobs_df=self.pending_jobs_df[self.pending_jobs_df["split"] == split_name], cache_entries_df=self.cache_entries_df[self.cache_entries_df["split"] == split_name], ) for split_name in self.split_names ] @dataclass class DatasetState: """The state of a dataset.""" dataset: str revision: str processing_graph: ProcessingGraph pending_jobs_df: pd.DataFrame cache_entries_df: pd.DataFrame error_codes_to_retry: Optional[list[str]] = None config_names: list[str] = field(init=False) config_states: list[ConfigState] = field(init=False) artifact_state_by_step: dict[str, ArtifactState] = field(init=False) def __post_init__(self) -> None: with StepProfiler( method="DatasetState.__post_init__", step="get_dataset_level_artifact_states", context=f"dataset={self.dataset}", ): self.artifact_state_by_step = { processing_step.name: ArtifactState( processing_step=processing_step, dataset=self.dataset, revision=self.revision, config=None, split=None, error_codes_to_retry=self.error_codes_to_retry, pending_jobs_df=self.pending_jobs_df[ (self.pending_jobs_df["revision"] == self.revision) & (self.pending_jobs_df["config"].isnull()) & (self.pending_jobs_df["split"].isnull()) & (self.pending_jobs_df["type"] == processing_step.job_type) ], cache_entries_df=self.cache_entries_df[ (self.cache_entries_df["kind"] == processing_step.cache_kind) & (self.cache_entries_df["config"].isnull()) & (self.cache_entries_df["split"].isnull()) ], ) for processing_step in self.processing_graph.get_input_type_processing_steps(input_type="dataset") } with StepProfiler( method="DatasetState.__post_init__", step="get_config_names", context=f"dataset={self.dataset}", ): self.config_names = fetch_names( dataset=self.dataset, config=None, cache_kinds=[ step.cache_kind for step in self.processing_graph.get_dataset_config_names_processing_steps() ], names_field="config_names", name_field="config", ) # Note that we use the cached content even the revision is different (ie. maybe obsolete) with StepProfiler( method="DatasetState.__post_init__", step="get_config_states", context=f"dataset={self.dataset}", ): self.config_states = [ ConfigState( dataset=self.dataset, revision=self.revision, config=config_name, processing_graph=self.processing_graph, error_codes_to_retry=self.error_codes_to_retry, pending_jobs_df=self.pending_jobs_df[ (self.pending_jobs_df["revision"] == self.revision) & (self.pending_jobs_df["config"] == config_name) ], cache_entries_df=self.cache_entries_df[self.cache_entries_df["config"] == config_name], ) for config_name in self.config_names ] @dataclass class FirstStepsDatasetState(DatasetState): """The state of the first dataset steps.""" def __post_init__(self) -> None: with StepProfiler( method="FirstStepsDatasetState.__post_init__", step="get_dataset_level_artifact_states", context=f"dataset={self.dataset}", ): self.artifact_state_by_step = { processing_step.name: ArtifactState( processing_step=processing_step, dataset=self.dataset, revision=self.revision, config=None, split=None, error_codes_to_retry=self.error_codes_to_retry, pending_jobs_df=self.pending_jobs_df[ (self.pending_jobs_df["revision"] == self.revision) & (self.pending_jobs_df["config"].isnull()) & (self.pending_jobs_df["split"].isnull()) & (self.pending_jobs_df["type"] == processing_step.job_type) ], cache_entries_df=self.cache_entries_df[ (self.cache_entries_df["kind"] == processing_step.cache_kind) & (self.cache_entries_df["config"].isnull()) & (self.cache_entries_df["split"].isnull()) ], ) for processing_step in self.processing_graph.get_first_processing_steps() } self.config_names = [] self.config_states = []
datasets-server-main
libs/libcommon/src/libcommon/state.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from functools import partial from typing import Optional from datasets import Features from tqdm.contrib.concurrent import thread_map from libcommon.storage import StrPath from libcommon.utils import Row from libcommon.viewer_utils.features import get_cell_value def _transform_row( row_idx_and_row: tuple[int, Row], dataset: str, config: str, split: str, features: Features, assets_base_url: str, assets_directory: StrPath, offset: int, row_idx_column: Optional[str], ) -> Row: row_idx, row = row_idx_and_row return { featureName: get_cell_value( dataset=dataset, config=config, split=split, row_idx=offset + row_idx if row_idx_column is None else row[row_idx_column], cell=row[featureName] if featureName in row else None, featureName=featureName, fieldType=fieldType, assets_base_url=assets_base_url, assets_directory=assets_directory, ) for (featureName, fieldType) in features.items() } def transform_rows( dataset: str, config: str, split: str, rows: list[Row], features: Features, cached_assets_base_url: str, cached_assets_directory: StrPath, offset: int, row_idx_column: Optional[str], ) -> list[Row]: fn = partial( _transform_row, dataset=dataset, config=config, split=split, features=features, assets_base_url=cached_assets_base_url, assets_directory=cached_assets_directory, offset=offset, row_idx_column=row_idx_column, ) if "Audio(" in str(features): # use multithreading to parallelize audio files processing # (we use pydub which might spawn one ffmpeg process per conversion, which releases the GIL) desc = f"transform_rows(audio) for {dataset}" return thread_map(fn, enumerate(rows), desc=desc, total=len(rows)) # type: ignore else: return [fn((row_idx, row)) for row_idx, row in enumerate(rows)]
datasets-server-main
libs/libcommon/src/libcommon/rows_utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import contextlib import os from collections.abc import Generator from os import makedirs from pathlib import Path from tempfile import NamedTemporaryFile from typing import TypedDict from PIL import Image # type: ignore from pydub import AudioSegment # type:ignore from libcommon.storage import StrPath, remove_dir DATASET_SEPARATOR = "--" ASSET_DIR_MODE = 0o755 DATASETS_SERVER_MDATE_FILENAME = ".dss" SUPPORTED_AUDIO_EXTENSION_TO_MEDIA_TYPE = {".wav": "audio/wav", ".mp3": "audio/mpeg"} def create_asset_dir( dataset: str, config: str, split: str, row_idx: int, column: str, assets_directory: StrPath ) -> tuple[Path, str]: dir_path = Path(assets_directory).resolve() / dataset / DATASET_SEPARATOR / config / split / str(row_idx) / column url_dir_path = f"{dataset}/{DATASET_SEPARATOR}/{config}/{split}/{row_idx}/{column}" makedirs(dir_path, ASSET_DIR_MODE, exist_ok=True) return dir_path, url_dir_path def delete_asset_dir(dataset: str, directory: StrPath) -> None: dir_path = Path(directory).resolve() / dataset remove_dir(dir_path) def glob_rows_in_assets_dir( dataset: str, assets_directory: StrPath, ) -> Generator[Path, None, None]: return Path(assets_directory).resolve().glob(os.path.join(dataset, DATASET_SEPARATOR, "*", "*", "*")) def update_directory_modification_date(path: Path) -> None: if path.is_dir(): # update the directory's last modified date temporary_file = path / DATASETS_SERVER_MDATE_FILENAME if temporary_file.is_dir(): raise ValueError(f"Cannot create temporary file {temporary_file} in {path}") temporary_file.touch(exist_ok=True) if temporary_file.is_file(): with contextlib.suppress(FileNotFoundError): temporary_file.unlink() def update_last_modified_date_of_rows_in_assets_dir( dataset: str, config: str, split: str, offset: int, length: int, assets_directory: StrPath, ) -> None: update_directory_modification_date(Path(assets_directory).resolve() / dataset.split("/")[0]) row_dirs_path = Path(assets_directory).resolve() / dataset / DATASET_SEPARATOR / config / split for row_idx in range(offset, offset + length): update_directory_modification_date(row_dirs_path / str(row_idx)) class ImageSource(TypedDict): src: str height: int width: int def create_image_file( dataset: str, config: str, split: str, row_idx: int, column: str, filename: str, image: Image.Image, assets_base_url: str, assets_directory: StrPath, overwrite: bool = True, ) -> ImageSource: dir_path, url_dir_path = create_asset_dir( dataset=dataset, config=config, split=split, row_idx=row_idx, column=column, assets_directory=assets_directory, ) makedirs(dir_path, ASSET_DIR_MODE, exist_ok=True) file_path = dir_path / filename if overwrite or not file_path.exists(): image.save(file_path) return { "src": f"{assets_base_url}/{url_dir_path}/{filename}", "height": image.height, "width": image.width, } class AudioSource(TypedDict): src: str type: str def create_audio_file( dataset: str, config: str, split: str, row_idx: int, column: str, audio_file_bytes: bytes, audio_file_extension: str, assets_base_url: str, filename: str, assets_directory: StrPath, overwrite: bool = True, ) -> list[AudioSource]: dir_path, url_dir_path = create_asset_dir( dataset=dataset, config=config, split=split, row_idx=row_idx, column=column, assets_directory=assets_directory, ) makedirs(dir_path, ASSET_DIR_MODE, exist_ok=True) file_path = dir_path / filename if file_path.suffix not in SUPPORTED_AUDIO_EXTENSION_TO_MEDIA_TYPE: raise ValueError( f"Audio format {file_path.suffix} is not supported. Supported formats are" f" {','.join(SUPPORTED_AUDIO_EXTENSION_TO_MEDIA_TYPE)}." ) media_type = SUPPORTED_AUDIO_EXTENSION_TO_MEDIA_TYPE[file_path.suffix] if overwrite or not file_path.exists(): if audio_file_extension == file_path.suffix: with open(file_path, "wb") as f: f.write(audio_file_bytes) else: # we need to convert # might spawn a process to convert the audio file using ffmpeg with NamedTemporaryFile("wb", suffix=audio_file_extension) as tmpfile: tmpfile.write(audio_file_bytes) segment: AudioSegment = AudioSegment.from_file(tmpfile.name) segment.export(file_path, format=file_path.suffix[1:]) return [ {"src": f"{assets_base_url}/{url_dir_path}/{filename}", "type": media_type}, ]
datasets-server-main
libs/libcommon/src/libcommon/viewer_utils/asset.py
datasets-server-main
libs/libcommon/src/libcommon/viewer_utils/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import json import os from io import BytesIO from typing import Any, Optional, Union from zlib import adler32 import numpy as np import soundfile # type: ignore from datasets import ( Array2D, Array3D, Array4D, Array5D, Audio, ClassLabel, Features, Image, Sequence, Translation, TranslationVariableLanguages, Value, ) from datasets.features.features import FeatureType, _visit from PIL import Image as PILImage # type: ignore from libcommon.storage import StrPath from libcommon.utils import FeatureItem from libcommon.viewer_utils.asset import create_audio_file, create_image_file def append_hash_suffix(string: str, json_path: Optional[list[Union[str, int]]] = None) -> str: """ Hash the json path to a string. Args: string (``str``): The string to append the hash to. json_path (``list(str|int)``): the json path, which is a list of keys and indices Returns: the string suffixed with the hash of the json path Details: - no suffix if the list is empty - converted to hexadecimal to make the hash shorter - the 0x prefix is removed """ return f"{string}-{hex(adler32(json.dumps(json_path).encode()))[2:]}" if json_path else string def image( dataset: str, config: str, split: str, row_idx: int, value: Any, featureName: str, assets_base_url: str, assets_directory: StrPath, json_path: Optional[list[Union[str, int]]] = None, overwrite: bool = True, ) -> Any: if value is None: return None if isinstance(value, dict) and value.get("bytes"): value = PILImage.open(BytesIO(value["bytes"])) elif ( isinstance(value, dict) and "path" in value and isinstance(value["path"], str) and os.path.exists(value["path"]) ): value = PILImage.open(value["path"]) if not isinstance(value, PILImage.Image): raise TypeError( "Image cell must be a PIL image or an encoded dict of an image, " f"but got {str(value)[:300]}{'...' if len(str(value)) > 300 else ''}" ) # attempt to generate one of the supported formats; if unsuccessful, throw an error for ext in [".jpg", ".png"]: try: return create_image_file( dataset=dataset, config=config, split=split, row_idx=row_idx, column=featureName, filename=f"{append_hash_suffix('image', json_path)}{ext}", image=value, assets_base_url=assets_base_url, assets_directory=assets_directory, overwrite=overwrite, ) except OSError: # if wrong format, try the next one, see https://github.com/huggingface/datasets-server/issues/191 # OSError: cannot write mode P as JPEG # OSError: cannot write mode RGBA as JPEG continue raise ValueError("Image cannot be written as JPEG or PNG") def audio( dataset: str, config: str, split: str, row_idx: int, value: Any, featureName: str, assets_base_url: str, assets_directory: StrPath, json_path: Optional[list[Union[str, int]]] = None, overwrite: bool = True, ) -> Any: if value is None: return None if not isinstance(value, dict): raise TypeError( "Audio cell must be an encoded dict of an audio sample, " f"but got {str(value)[:300]}{'...' if len(str(value)) > 300 else ''}" ) if "path" in value and isinstance(value["path"], str): audio_file_extension = os.path.splitext(value["path"])[1] if not audio_file_extension: raise ValueError( f"An audio sample should have a 'path' with a valid extension but got '{audio_file_extension}'." ) elif "array" in value: audio_file_extension = ".wav" else: raise ValueError( "An audio sample should have 'path' and 'bytes' (or 'array' and 'sampling_rate') but got" f" {','.join(value)}." ) if "bytes" in value and isinstance(value["bytes"], bytes): audio_file_bytes = value["bytes"] elif "path" in value and isinstance(value["path"], str) and os.path.exists(value["path"]): with open(value["path"], "rb") as f: audio_file_bytes = f.read() elif ( "array" in value and isinstance(value["array"], np.ndarray) and "sampling_rate" in value and isinstance(value["sampling_rate"], int) ): buffer = BytesIO() soundfile.write(buffer, value["array"], value["sampling_rate"], format="wav") audio_file_bytes = buffer.read() else: raise ValueError( "An audio sample should have 'path' and 'bytes' (or 'array' and 'sampling_rate') but got" f" {','.join(value)}." ) # convert to wav if the file is not wav or mp3 already ext = audio_file_extension if audio_file_extension in [".wav", ".mp3"] else ".wav" # this function can raise, we don't catch it return create_audio_file( dataset=dataset, config=config, split=split, row_idx=row_idx, column=featureName, audio_file_bytes=audio_file_bytes, audio_file_extension=audio_file_extension, assets_base_url=assets_base_url, filename=f"{append_hash_suffix('audio', json_path)}{ext}", assets_directory=assets_directory, overwrite=overwrite, ) def get_cell_value( dataset: str, config: str, split: str, row_idx: int, cell: Any, featureName: str, fieldType: Any, assets_base_url: str, assets_directory: StrPath, json_path: Optional[list[Union[str, int]]] = None, overwrite: bool = True, ) -> Any: # always allow None values in the cells if cell is None: return cell if isinstance(fieldType, Image): return image( dataset=dataset, config=config, split=split, row_idx=row_idx, value=cell, featureName=featureName, assets_base_url=assets_base_url, assets_directory=assets_directory, json_path=json_path, overwrite=overwrite, ) elif isinstance(fieldType, Audio): return audio( dataset=dataset, config=config, split=split, row_idx=row_idx, value=cell, featureName=featureName, assets_base_url=assets_base_url, assets_directory=assets_directory, json_path=json_path, overwrite=overwrite, ) elif isinstance(fieldType, list): if type(cell) != list: raise TypeError("list cell must be a list.") if len(fieldType) != 1: raise TypeError("the feature type should be a 1-element list.") subFieldType = fieldType[0] return [ get_cell_value( dataset=dataset, config=config, split=split, row_idx=row_idx, cell=subCell, featureName=featureName, fieldType=subFieldType, assets_base_url=assets_base_url, assets_directory=assets_directory, json_path=json_path + [idx] if json_path else [idx], overwrite=overwrite, ) for (idx, subCell) in enumerate(cell) ] elif isinstance(fieldType, Sequence): if type(cell) == list: if fieldType.length >= 0 and len(cell) != fieldType.length: raise TypeError("the cell length should be the same as the Sequence length.") return [ get_cell_value( dataset=dataset, config=config, split=split, row_idx=row_idx, cell=subCell, featureName=featureName, fieldType=fieldType.feature, assets_base_url=assets_base_url, assets_directory=assets_directory, json_path=json_path + [idx] if json_path else [idx], overwrite=overwrite, ) for (idx, subCell) in enumerate(cell) ] # if the internal feature of the Sequence is a dict, then the value will automatically # be converted into a dictionary of lists. See # https://huggingface.co/docs/datasets/v2.5.1/en/package_reference/main_classes#datasets.Features if type(cell) == dict: if any((type(v) != list) or (k not in fieldType.feature) for k, v in cell.items()): raise TypeError("The value of a Sequence of dicts should be a dictionary of lists.") return { key: [ get_cell_value( dataset=dataset, config=config, split=split, row_idx=row_idx, cell=subCellItem, featureName=featureName, fieldType=fieldType.feature[key], assets_base_url=assets_base_url, assets_directory=assets_directory, json_path=json_path + [key, idx] if json_path else [key, idx], overwrite=overwrite, ) for (idx, subCellItem) in enumerate(subCell) ] for (key, subCell) in cell.items() } raise TypeError("Sequence cell must be a list or a dict.") elif isinstance(fieldType, dict): if type(cell) != dict: raise TypeError("dict cell must be a dict.") return { key: get_cell_value( dataset=dataset, config=config, split=split, row_idx=row_idx, cell=subCell, featureName=featureName, fieldType=fieldType[key], assets_base_url=assets_base_url, assets_directory=assets_directory, json_path=json_path + [key] if json_path else [key], overwrite=overwrite, ) for (key, subCell) in cell.items() } elif isinstance( fieldType, ( Value, ClassLabel, Array2D, Array3D, Array4D, Array5D, Translation, TranslationVariableLanguages, ), ): return cell else: raise TypeError("could not determine the type of the data cell.") # in JSON, dicts do not carry any order, so we need to return a list # # > An object is an *unordered* collection of zero or more name/value pairs, where a name is a string and a value # is a string, number, boolean, null, object, or array. # > An array is an *ordered* sequence of zero or more values. # > The terms "object" and "array" come from the conventions of JavaScript. # from https://stackoverflow.com/a/7214312/7351594 / https://www.rfc-editor.org/rfc/rfc7159.html def to_features_list(features: Features) -> list[FeatureItem]: features_dict = features.to_dict() return [ { "feature_idx": idx, "name": name, "type": features_dict[name], } for idx, name in enumerate(features) ] def get_supported_unsupported_columns( features: Features, unsupported_features: list[FeatureType] = [], ) -> tuple[list[str], list[str]]: supported_columns, unsupported_columns = [], [] for column, feature in features.items(): str_column = str(column) supported = True def classify(feature: FeatureType) -> None: nonlocal supported for unsupported_feature in unsupported_features: if type(unsupported_feature) == type(feature) == Value: if unsupported_feature.dtype == feature.dtype: supported = False elif type(unsupported_feature) == type(feature): supported = False _visit(feature, classify) if supported: supported_columns.append(str_column) else: unsupported_columns.append(str_column) return supported_columns, unsupported_columns
datasets-server-main
libs/libcommon/src/libcommon/viewer_utils/features.py
from os import makedirs from pathlib import Path import pyarrow.parquet as pq from libcommon.storage import StrPath DATASET_SEPARATOR = "--" PARQUET_METADATA_DIR_MODE = 0o755 def create_parquet_metadata_dir( dataset: str, config: str, split: str, parquet_metadata_directory: StrPath ) -> tuple[Path, str]: dir_path = Path(parquet_metadata_directory).resolve() / dataset / DATASET_SEPARATOR / config / split parquet_metadata_dir_subpath = f"{dataset}/{DATASET_SEPARATOR}/{config}/{split}" makedirs(dir_path, PARQUET_METADATA_DIR_MODE, exist_ok=True) return dir_path, parquet_metadata_dir_subpath def create_parquet_metadata_file( dataset: str, config: str, split: str, parquet_file_metadata: pq.FileMetaData, filename: str, parquet_metadata_directory: StrPath, overwrite: bool = True, ) -> str: dir_path, parquet_metadata_dir_subpath = create_parquet_metadata_dir( dataset=dataset, config=config, split=split, parquet_metadata_directory=parquet_metadata_directory, ) parquet_metadata_file_path = dir_path / filename if overwrite or not parquet_metadata_file_path.exists(): parquet_file_metadata.write_metadata_file(parquet_metadata_file_path) parquet_metadata_subpath = f"{parquet_metadata_dir_subpath}/{filename}" return parquet_metadata_subpath
datasets-server-main
libs/libcommon/src/libcommon/viewer_utils/parquet_metadata.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import os import time from pathlib import Path from unittest.mock import patch import pytest from libcommon.storage import StrPath from libapi.utils import clean_cached_assets @pytest.mark.parametrize( "n_rows,keep_most_recent_rows_number,keep_first_rows_number,max_cleaned_rows_number,expected_remaining_rows", [ (8, 1, 1, 100, [0, 7]), (8, 2, 2, 100, [0, 1, 6, 7]), (8, 1, 1, 3, [0, 4, 5, 6, 7]), ], ) def test_clean_cached_assets( tmp_path: Path, n_rows: int, keep_most_recent_rows_number: int, keep_first_rows_number: int, max_cleaned_rows_number: int, expected_remaining_rows: list[int], ) -> None: cached_assets_directory = tmp_path / "cached-assets" split_dir = cached_assets_directory / "ds/--/plain_text/train" split_dir.mkdir(parents=True) for i in range(n_rows): (split_dir / str(i)).mkdir() time.sleep(0.01) def deterministic_glob_rows_in_assets_dir( dataset: str, assets_directory: StrPath, ) -> list[Path]: return sorted( list(Path(assets_directory).resolve().glob(os.path.join(dataset, "--", "*", "*", "*"))), key=lambda p: int(p.name), ) with patch("libapi.utils.glob_rows_in_assets_dir", deterministic_glob_rows_in_assets_dir): clean_cached_assets( "ds", cached_assets_directory, keep_most_recent_rows_number=keep_most_recent_rows_number, keep_first_rows_number=keep_first_rows_number, max_cleaned_rows_number=max_cleaned_rows_number, ) remaining_rows = sorted(int(row_dir.name) for row_dir in split_dir.glob("*")) assert remaining_rows == expected_remaining_rows
datasets-server-main
libs/libapi/tests/test_utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from pytest import fixture from libapi.config import ApiConfig @fixture(scope="session") def hostname() -> str: return "localhost" @fixture(scope="session") def port() -> str: return "8888" @fixture(scope="session") def httpserver_listen_address(hostname: str, port: int) -> tuple[str, int]: return (hostname, port) @fixture(scope="session") def hf_endpoint(hostname: str, port: int) -> str: return f"http://{hostname}:{port}" @fixture(scope="session") def api_config(hf_endpoint: str) -> ApiConfig: return ApiConfig.from_env(hf_endpoint=hf_endpoint) @fixture(scope="session") def hf_auth_path(api_config: ApiConfig) -> str: return api_config.hf_auth_path
datasets-server-main
libs/libapi/tests/conftest.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors.
datasets-server-main
libs/libapi/tests/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import datetime import time from collections.abc import Mapping from contextlib import nullcontext as does_not_raise from typing import Any, Optional import jwt import pytest import werkzeug.wrappers from pytest_httpserver import HTTPServer from starlette.datastructures import Headers from starlette.requests import Request from werkzeug.wrappers import Request as WerkzeugRequest from werkzeug.wrappers import Response as WerkzeugResponse from libapi.authentication import auth_check from libapi.exceptions import ( AuthCheckHubRequestError, ExternalAuthenticatedError, ExternalUnauthenticatedError, ) private_key = """-----BEGIN RSA PRIVATE KEY----- MIIBOQIBAAJAZTmplhS/Jd73ycVut7TglMObheQqXM7RZYlwazLU4wpfIVIwOh9I sCZGSgLyFq42KWIikKLEs/yqx3pRGfq+rwIDAQABAkAMyF9WCICq86Eu5bO5lynV H26AVfPTjHp87AI6R00C7p9n8hO/DhHaHpc3InOSsXsw9d2hmz37jwwBFiwMHMMh AiEAtbttHlIO+yO29oXw4P6+yO11lMy1UpT1sPVTnR9TXbUCIQCOl7Zuyy2ZY9ZW pDhW91x/14uXjnLXPypgY9bcfggJUwIhAJQG1LzrzjQWRUPMmgZKuhBkC3BmxhM8 LlwzmCXVjEw5AiA7JnAFEb9+q82T71d3q/DxD0bWvb6hz5ASoBfXK2jGBQIgbaQp h4Tk6UJuj1xgKNs75Pk3pG2tj8AQiuBk3l62vRU= -----END RSA PRIVATE KEY-----""" public_key = """-----BEGIN PUBLIC KEY----- MFswDQYJKoZIhvcNAQEBBQADSgAwRwJAZTmplhS/Jd73ycVut7TglMObheQqXM7R ZYlwazLU4wpfIVIwOh9IsCZGSgLyFq42KWIikKLEs/yqx3pRGfq+rwIDAQAB -----END PUBLIC KEY-----""" exp_ok = datetime.datetime.now().timestamp() + 1000 read_ok = True algorithm_rs256 = "RS256" dataset_public = "dataset_public" dataset_protected_with_access = "dataset_protected_with_access" dataset_protected_without_access = "dataset_protected_without_access" dataset_inexistent = "dataset_inexistent" dataset_throttled = "dataset_throttled" cookie_ok = "cookie ok" cookie_wrong = "cookie wrong" api_token_ok = "api token ok" api_token_wrong = "api token wrong" def auth_callback(request: WerkzeugRequest) -> WerkzeugResponse: """Simulates the https://huggingface.co/api/datasets/%s/auth-check Hub API endpoint. It returns: - 200: if the user can access the dataset - 401: if the user is not authenticated - 403: if the user is authenticated but can't access the dataset - 404: if the user is authenticated but the dataset doesn't exist - 429: if the user is authenticated but the request is throttled Args: request (WerkzeugRequest): the request sent to the endpoint Returns: WerkzeugResponse: the response sent by the endpoint """ dataset = request.path.split("/")[-2] if dataset == dataset_public: # a public dataset always has read access return WerkzeugResponse(status=200) if request.headers.get("cookie") != cookie_ok and request.headers.get("authorization") != f"Bearer {api_token_ok}": # the user is not authenticated return WerkzeugResponse(status=401) if dataset == dataset_protected_with_access: # the user is authenticated and has access to the dataset return WerkzeugResponse(status=200) if dataset == dataset_protected_without_access: # the user is authenticated but doesn't have access to the dataset return WerkzeugResponse(status=403) if dataset == dataset_inexistent: # the user is authenticated but the dataset doesn't exist return WerkzeugResponse(status=404) if dataset == dataset_throttled: # the user is authenticated but the request is throttled (too many requests) return WerkzeugResponse(status=429) raise RuntimeError(f"Unexpected dataset: {dataset}") def test_no_external_auth_check() -> None: assert auth_check(dataset_public) def test_invalid_external_auth_check_url() -> None: with pytest.raises(ValueError): auth_check(dataset_public, external_auth_url="https://doesnotexist/") def test_unreachable_external_auth_check_service() -> None: with pytest.raises(AuthCheckHubRequestError): auth_check(dataset_public, external_auth_url="https://doesnotexist/%s") @pytest.mark.parametrize( "status_code,expectation", [ (200, does_not_raise()), (401, pytest.raises(ExternalUnauthenticatedError)), (403, pytest.raises(ExternalAuthenticatedError)), (404, pytest.raises(ExternalAuthenticatedError)), (429, pytest.raises(ValueError)), ], ) def test_external_auth_responses_without_request( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, status_code: int, expectation: Any, ) -> None: dataset = "dataset" external_auth_url = hf_endpoint + hf_auth_path httpserver.expect_request(hf_auth_path % dataset).respond_with_data(status=status_code) with expectation: auth_check(dataset, external_auth_url=external_auth_url) TIMEOUT_TIME = 0.2 def sleeping(_: werkzeug.wrappers.Request) -> werkzeug.wrappers.Response: time.sleep(TIMEOUT_TIME) return werkzeug.wrappers.Response(status=200) @pytest.mark.parametrize( "hf_timeout_seconds,expectation", [ (TIMEOUT_TIME * 2, does_not_raise()), (None, does_not_raise()), (TIMEOUT_TIME / 2, pytest.raises(AuthCheckHubRequestError)), ], ) def test_hf_timeout_seconds( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, hf_timeout_seconds: Optional[float], expectation: Any, ) -> None: dataset = "dataset" external_auth_url = hf_endpoint + hf_auth_path httpserver.expect_request(hf_auth_path % dataset).respond_with_handler(func=sleeping) with expectation: auth_check(dataset, external_auth_url=external_auth_url, hf_timeout_seconds=hf_timeout_seconds) def create_request(headers: Mapping[str, str]) -> Request: return Request( { "type": "http", "path": "/some-path", "headers": Headers(headers).raw, "http_version": "1.1", "method": "GET", "scheme": "https", "client": ("127.0.0.1", 8080), "server": ("some.server", 443), } ) def get_jwt(dataset: str) -> str: return jwt.encode( {"sub": f"datasets/{dataset}", "read": read_ok, "exp": exp_ok}, private_key, algorithm=algorithm_rs256 ) def assert_auth_headers( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, dataset: str, headers: Mapping[str, str], expectation: Any, ) -> None: external_auth_url = hf_endpoint + hf_auth_path httpserver.expect_request(hf_auth_path % dataset).respond_with_handler(auth_callback) with expectation: auth_check( dataset, external_auth_url=external_auth_url, request=create_request(headers=headers), hf_jwt_public_keys=[public_key], hf_jwt_algorithm=algorithm_rs256, ) @pytest.mark.parametrize( "headers,expectation", [ ({}, does_not_raise()), ({"Authorization": f"Bearer {api_token_wrong}"}, does_not_raise()), ({"Authorization": api_token_ok}, does_not_raise()), ({"Cookie": cookie_wrong}, does_not_raise()), ({"Authorization": f"Bearer {api_token_ok}"}, does_not_raise()), ({"Cookie": cookie_ok}, does_not_raise()), ({"X-Api-Key": get_jwt(dataset_public)}, does_not_raise()), ({"Authorization": f"Bearer {get_jwt(dataset_public)}"}, does_not_raise()), ], ) def test_external_auth_service_dataset_public( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, headers: Mapping[str, str], expectation: Any, ) -> None: assert_auth_headers(httpserver, hf_endpoint, hf_auth_path, dataset_public, headers, expectation) @pytest.mark.parametrize( "headers,expectation", [ ({}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_wrong}"}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": api_token_ok}, pytest.raises(ExternalUnauthenticatedError)), ({"Cookie": cookie_wrong}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_ok}"}, does_not_raise()), ({"Cookie": cookie_ok}, does_not_raise()), ({"X-Api-Key": get_jwt(dataset_protected_with_access)}, does_not_raise()), ({"Authorization": f"Bearer jwt:{get_jwt(dataset_protected_with_access)}"}, does_not_raise()), ], ) def test_external_auth_service_dataset_protected_with_access( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, headers: Mapping[str, str], expectation: Any, ) -> None: assert_auth_headers(httpserver, hf_endpoint, hf_auth_path, dataset_protected_with_access, headers, expectation) @pytest.mark.parametrize( "headers,expectation", [ ({}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_wrong}"}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": api_token_ok}, pytest.raises(ExternalUnauthenticatedError)), ({"Cookie": cookie_wrong}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_ok}"}, pytest.raises(ExternalAuthenticatedError)), ({"Cookie": cookie_ok}, pytest.raises(ExternalAuthenticatedError)), ({"X-Api-Key": get_jwt(dataset_protected_without_access)}, does_not_raise()), ({"Authorization": f"Bearer jwt:{get_jwt(dataset_protected_without_access)}"}, does_not_raise()), ], ) def test_external_auth_service_dataset_protected_without_access( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, headers: Mapping[str, str], expectation: Any, ) -> None: assert_auth_headers(httpserver, hf_endpoint, hf_auth_path, dataset_protected_without_access, headers, expectation) @pytest.mark.parametrize( "headers,expectation", [ ({}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_wrong}"}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": api_token_ok}, pytest.raises(ExternalUnauthenticatedError)), ({"Cookie": cookie_wrong}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_ok}"}, pytest.raises(ExternalAuthenticatedError)), ({"Cookie": cookie_ok}, pytest.raises(ExternalAuthenticatedError)), ({"X-Api-Key": get_jwt(dataset_inexistent)}, does_not_raise()), ({"Authorization": f"Bearer jwt:{get_jwt(dataset_inexistent)}"}, does_not_raise()), ], ) def test_external_auth_service_dataset_inexistent( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, headers: Mapping[str, str], expectation: Any, ) -> None: assert_auth_headers(httpserver, hf_endpoint, hf_auth_path, dataset_inexistent, headers, expectation) @pytest.mark.parametrize( "headers,expectation", [ ({}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_wrong}"}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": api_token_ok}, pytest.raises(ExternalUnauthenticatedError)), ({"Cookie": cookie_wrong}, pytest.raises(ExternalUnauthenticatedError)), ({"Authorization": f"Bearer {api_token_ok}"}, pytest.raises(ValueError)), ({"Cookie": cookie_ok}, pytest.raises(ValueError)), ({"X-Api-Key": get_jwt(dataset_throttled)}, does_not_raise()), ({"Authorization": f"Bearer jwt:{get_jwt(dataset_throttled)}"}, does_not_raise()), ], ) def test_external_auth_service_dataset_throttled( httpserver: HTTPServer, hf_endpoint: str, hf_auth_path: str, headers: Mapping[str, str], expectation: Any, ) -> None: assert_auth_headers(httpserver, hf_endpoint, hf_auth_path, dataset_throttled, headers, expectation)
datasets-server-main
libs/libapi/tests/test_authentication.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import datetime from contextlib import nullcontext as does_not_raise from typing import Any, Optional from unittest.mock import patch import jwt import pytest from ecdsa import Ed25519, SigningKey from libapi.config import ApiConfig from libapi.exceptions import ( JWTExpiredSignature, JWTInvalidClaimRead, JWTInvalidClaimSub, JWTInvalidKeyOrAlgorithm, JWTInvalidSignature, JWTKeysError, JWTMissingRequiredClaim, ) from libapi.jwt_token import ( create_algorithm, get_jwt_public_keys, parse_jwt_public_key_json, parse_jwt_public_key_pem, validate_jwt, ) algorithm_name_eddsa = "EdDSA" algorithm_name_rs256 = "RS256" algorithm_name_hs256 = "HS256" algorithm_name_unknown = "unknown" @pytest.mark.parametrize( "algorithm_name,expectation", [ (algorithm_name_eddsa, does_not_raise()), (algorithm_name_rs256, does_not_raise()), (algorithm_name_hs256, does_not_raise()), (algorithm_name_unknown, pytest.raises(RuntimeError)), ], ) def test_create_algorithm(algorithm_name: str, expectation: Any) -> None: with expectation: create_algorithm(algorithm_name) algorithm_eddsa = create_algorithm(algorithm_name_eddsa) eddsa_public_key_json_payload = {"crv": "Ed25519", "x": "-RBhgyNluwaIL5KFJb6ZOL2H1nmyI8mW4Z2EHGDGCXM", "kty": "OKP"} # ^ given by https://huggingface.co/api/keys/jwt (as of 2023/08/18) eddsa_public_key_pem = """-----BEGIN PUBLIC KEY----- MCowBQYDK2VwAyEA+RBhgyNluwaIL5KFJb6ZOL2H1nmyI8mW4Z2EHGDGCXM= -----END PUBLIC KEY----- """ another_algorithm_public_key_json_payload = { "alg": "EC", "crv": "P-256", "x": "MKBCTNIcKUSDii11ySs3526iDZ8AiTo7Tu6KPAqv7D4", "y": "4Etl6SRW2YiLUrN5vfvVHuhp7x8PxltmWWlbbM4IFyM", "use": "enc", "kid": "1", } @pytest.mark.parametrize( "payload,expected_pem,expectation", [ ([], None, pytest.raises(ValueError)), (eddsa_public_key_json_payload, None, pytest.raises(ValueError)), ([another_algorithm_public_key_json_payload], None, pytest.raises(RuntimeError)), ([eddsa_public_key_json_payload], eddsa_public_key_pem, does_not_raise()), ], ) def test_parse_jwt_public_key_json(payload: Any, expected_pem: str, expectation: Any) -> None: with expectation: pem = parse_jwt_public_key_json(algorithm=algorithm_eddsa, payload=payload) if expected_pem: assert pem == expected_pem eddsa_public_key_pem_with_bad_linebreaks = ( "-----BEGIN PUBLIC KEY-----\\nMCowBQYDK2VwAyEA+RBhgyNluwaIL5KFJb6ZOL2H1nmyI8mW4Z2EHGDGCXM=\\n-----END PUBLIC" " KEY-----" ) @pytest.mark.parametrize( "payload,expected_pem,expectation", [ (eddsa_public_key_pem_with_bad_linebreaks, None, pytest.raises(Exception)), (eddsa_public_key_pem, eddsa_public_key_pem, does_not_raise()), ], ) def test_parse_jwt_public_key_pem(payload: Any, expected_pem: str, expectation: Any) -> None: with expectation: pem = parse_jwt_public_key_pem(algorithm=algorithm_eddsa, payload=payload) if expected_pem: assert pem == expected_pem private_key_ok = SigningKey.generate(curve=Ed25519) private_key_pem_ok = private_key_ok.to_pem(format="pkcs8") public_key_pem_ok = private_key_ok.get_verifying_key().to_pem().decode("utf-8") other_private_key = SigningKey.generate(curve=Ed25519) other_private_key_pem = other_private_key.to_pem(format="pkcs8") other_public_key_pem = other_private_key.get_verifying_key().to_pem().decode("utf-8") @pytest.mark.parametrize( "keys_env_var,expected_keys", [ ("", []), (public_key_pem_ok, [public_key_pem_ok]), (f"{public_key_pem_ok},{public_key_pem_ok}", [public_key_pem_ok, public_key_pem_ok]), (f"{public_key_pem_ok},{other_public_key_pem}", [public_key_pem_ok, other_public_key_pem]), ( f"{public_key_pem_ok},{other_public_key_pem},{eddsa_public_key_pem}", [public_key_pem_ok, other_public_key_pem, eddsa_public_key_pem], ), ], ) def test_get_jwt_public_keys_from_env(keys_env_var: str, expected_keys: list[str]) -> None: monkeypatch = pytest.MonkeyPatch() monkeypatch.setenv("API_HF_JWT_ADDITIONAL_PUBLIC_KEYS", keys_env_var) api_config = ApiConfig.from_env(hf_endpoint="") assert ( get_jwt_public_keys( algorithm_name=algorithm_name_eddsa, additional_public_keys=api_config.hf_jwt_additional_public_keys, ) == expected_keys ) monkeypatch.undo() @pytest.mark.parametrize( "remote_payload,keys_payload,expected_keys,expectation", [ ([], [], None, pytest.raises(JWTKeysError)), ([another_algorithm_public_key_json_payload], [], None, pytest.raises(JWTKeysError)), (None, [eddsa_public_key_pem_with_bad_linebreaks], None, pytest.raises(JWTKeysError)), ([eddsa_public_key_json_payload], [], [eddsa_public_key_pem], does_not_raise()), ( None, [public_key_pem_ok, other_public_key_pem, eddsa_public_key_pem], [public_key_pem_ok, other_public_key_pem, eddsa_public_key_pem], does_not_raise(), ), ( [eddsa_public_key_json_payload], [public_key_pem_ok, other_public_key_pem, eddsa_public_key_pem], [eddsa_public_key_pem, public_key_pem_ok, other_public_key_pem, eddsa_public_key_pem], does_not_raise(), ), ], ) def test_get_jwt_public_keys( remote_payload: Any, keys_payload: list[str], expected_keys: list[str], expectation: Any ) -> None: def fake_fetch( url: str, hf_timeout_seconds: Optional[float] = None, ) -> Any: return remote_payload with patch("libapi.jwt_token.fetch_jwt_public_key_json", wraps=fake_fetch): with expectation: keys = get_jwt_public_keys( algorithm_name=algorithm_name_eddsa, public_key_url=None if remote_payload is None else "mock", additional_public_keys=keys_payload, ) if expected_keys: assert keys == expected_keys token_for_severo_glue = ( "eyJhbGciOiJFZERTQSJ9.eyJyZWFkIjp0cnVlLCJzdWIiOiJkYXRhc2V0cy9zZXZlcm8vZ2x1ZSIsImV4cCI6MTY3ODgwMjk0NH0" ".nIi1ZKinMBpYi4kKtirW-cQEt1cGnAziTGmJsZeN5UpE62jz4DcPaIPlSI5P5ciGOlTxy4SEhD1WITkQzpo3Aw" ) dataset_severo_glue = "severo/glue" def test_is_jwt_valid_with_ec() -> None: validate_jwt( dataset=dataset_severo_glue, token=token_for_severo_glue, public_keys=[eddsa_public_key_pem], algorithm=algorithm_name_eddsa, verify_exp=False, # This is a test token generated on 2023/03/14, so we don't want to verify the exp. ) dataset_ok = "dataset" wrong_dataset = "wrong_dataset" exp_ok = datetime.datetime.now().timestamp() + 1000 wrong_exp_1 = datetime.datetime.now().timestamp() - 1000 wrong_exp_2 = 1 sub_ok = f"datasets/{dataset_ok}" sub_wrong_1 = dataset_ok sub_wrong_2 = f"dataset/{dataset_ok}" sub_wrong_3 = f"models/{dataset_ok}" sub_wrong_4 = f"datasets/{wrong_dataset}" read_ok = True read_wrong_1 = False read_wrong_2 = "True" payload_ok = {"sub": sub_ok, "read": read_ok, "exp": exp_ok} algorithm_ok = algorithm_name_eddsa algorithm_wrong = algorithm_name_rs256 def encode_jwt(payload: dict[str, Any]) -> str: return jwt.encode(payload, private_key_pem_ok, algorithm=algorithm_ok) def assert_jwt( token: str, expectation: Any, public_keys: Optional[list[str]] = None, algorithm: str = algorithm_ok ) -> None: if public_keys is None: public_keys = [public_key_pem_ok] with expectation: validate_jwt(dataset=dataset_ok, token=token, public_keys=public_keys, algorithm=algorithm) @pytest.mark.parametrize( "public_keys,expectation", [ ([other_public_key_pem], pytest.raises(JWTInvalidSignature)), ([public_key_pem_ok], does_not_raise()), ([public_key_pem_ok, other_public_key_pem], does_not_raise()), ([other_public_key_pem, public_key_pem_ok], does_not_raise()), ], ) def test_validate_jwt_public_keys(public_keys: list[str], expectation: Any) -> None: assert_jwt(encode_jwt(payload_ok), expectation, public_keys=public_keys) @pytest.mark.parametrize( "algorithm,expectation", [ (algorithm_wrong, pytest.raises(JWTInvalidKeyOrAlgorithm)), (algorithm_ok, does_not_raise()), ], ) def test_validate_jwt_algorithm(algorithm: str, expectation: Any) -> None: assert_jwt(encode_jwt(payload_ok), expectation, algorithm=algorithm) @pytest.mark.parametrize( "payload,expectation", [ ({}, pytest.raises(JWTMissingRequiredClaim)), ({"sub": sub_ok}, pytest.raises(JWTMissingRequiredClaim)), ({"read": read_ok}, pytest.raises(JWTMissingRequiredClaim)), ({"exp": exp_ok}, pytest.raises(JWTMissingRequiredClaim)), ({"read": read_ok, "exp": exp_ok}, pytest.raises(JWTMissingRequiredClaim)), ({"sub": sub_ok, "exp": exp_ok}, pytest.raises(JWTMissingRequiredClaim)), ({"sub": sub_ok, "read": read_ok}, pytest.raises(JWTMissingRequiredClaim)), ({"sub": sub_ok, "read": read_ok, "exp": exp_ok}, does_not_raise()), ], ) def test_validate_jwt_content_format(payload: dict[str, str], expectation: Any) -> None: assert_jwt(encode_jwt(payload), expectation) @pytest.mark.parametrize( "read,expectation", [ (read_wrong_1, pytest.raises(JWTInvalidClaimRead)), (read_wrong_2, pytest.raises(JWTInvalidClaimRead)), (read_ok, does_not_raise()), ], ) def test_validate_jwt_read(read: str, expectation: Any) -> None: assert_jwt(encode_jwt({"sub": sub_ok, "read": read, "exp": exp_ok}), expectation) @pytest.mark.parametrize( "sub,expectation", [ (sub_wrong_1, pytest.raises(JWTInvalidClaimSub)), (sub_wrong_2, pytest.raises(JWTInvalidClaimSub)), (sub_wrong_3, pytest.raises(JWTInvalidClaimSub)), (sub_wrong_4, pytest.raises(JWTInvalidClaimSub)), (sub_ok, does_not_raise()), ], ) def test_validate_jwt_subject(sub: str, expectation: Any) -> None: assert_jwt(encode_jwt({"sub": sub, "read": read_ok, "exp": exp_ok}), expectation) @pytest.mark.parametrize( "expiration,expectation", [ (wrong_exp_1, pytest.raises(JWTExpiredSignature)), (wrong_exp_2, pytest.raises(JWTExpiredSignature)), (exp_ok, does_not_raise()), ], ) def test_validate_jwt_expiration(expiration: str, expectation: Any) -> None: assert_jwt( encode_jwt({"sub": sub_ok, "read": read_ok, "exp": expiration}), expectation, )
datasets-server-main
libs/libapi/tests/test_jwt_token.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from typing import Optional from environs import Env API_UVICORN_HOSTNAME = "localhost" API_UVICORN_NUM_WORKERS = 2 API_UVICORN_PORT = 8000 @dataclass(frozen=True) class UvicornConfig: hostname: str = API_UVICORN_HOSTNAME num_workers: int = API_UVICORN_NUM_WORKERS port: int = API_UVICORN_PORT @classmethod def from_env(cls) -> "UvicornConfig": env = Env(expand_vars=True) with env.prefixed("API_UVICORN_"): return cls( hostname=env.str(name="HOSTNAME", default=API_UVICORN_HOSTNAME), num_workers=env.int(name="NUM_WORKERS", default=API_UVICORN_NUM_WORKERS), port=env.int(name="PORT", default=API_UVICORN_PORT), ) API_EXTERNAL_AUTH_URL = None API_HF_AUTH_PATH = "/api/datasets/%s/auth-check" API_HF_JWT_PUBLIC_KEY_URL = None API_HF_JWT_ADDITIONAL_PUBLIC_KEYS: list[str] = [] API_HF_JWT_ALGORITHM = "EdDSA" API_HF_TIMEOUT_SECONDS = 0.2 API_HF_WEBHOOK_SECRET = None API_MAX_AGE_LONG = 120 # 2 minutes API_MAX_AGE_SHORT = 10 # 10 seconds @dataclass(frozen=True) class ApiConfig: external_auth_url: Optional[str] = API_EXTERNAL_AUTH_URL # not documented hf_auth_path: str = API_HF_AUTH_PATH hf_jwt_public_key_url: Optional[str] = API_HF_JWT_PUBLIC_KEY_URL hf_jwt_additional_public_keys: list[str] = field(default_factory=API_HF_JWT_ADDITIONAL_PUBLIC_KEYS.copy) hf_jwt_algorithm: Optional[str] = API_HF_JWT_ALGORITHM hf_timeout_seconds: Optional[float] = API_HF_TIMEOUT_SECONDS hf_webhook_secret: Optional[str] = API_HF_WEBHOOK_SECRET max_age_long: int = API_MAX_AGE_LONG max_age_short: int = API_MAX_AGE_SHORT @classmethod def from_env(cls, hf_endpoint: str) -> "ApiConfig": env = Env(expand_vars=True) with env.prefixed("API_"): hf_auth_path = env.str(name="HF_AUTH_PATH", default=API_HF_AUTH_PATH) external_auth_url = None if hf_auth_path is None else f"{hf_endpoint}{hf_auth_path}" return cls( external_auth_url=external_auth_url, hf_auth_path=hf_auth_path, hf_jwt_public_key_url=env.str(name="HF_JWT_PUBLIC_KEY_URL", default=API_HF_JWT_PUBLIC_KEY_URL), hf_jwt_additional_public_keys=env.list( name="HF_JWT_ADDITIONAL_PUBLIC_KEYS", default=API_HF_JWT_ADDITIONAL_PUBLIC_KEYS.copy() ), hf_jwt_algorithm=env.str(name="HF_JWT_ALGORITHM", default=API_HF_JWT_ALGORITHM), hf_timeout_seconds=env.float(name="HF_TIMEOUT_SECONDS", default=API_HF_TIMEOUT_SECONDS), hf_webhook_secret=env.str(name="HF_WEBHOOK_SECRET", default=API_HF_WEBHOOK_SECRET), max_age_long=env.int(name="MAX_AGE_LONG", default=API_MAX_AGE_LONG), max_age_short=env.int(name="MAX_AGE_SHORT", default=API_MAX_AGE_SHORT), )
datasets-server-main
libs/libapi/src/libapi/config.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors.
datasets-server-main
libs/libapi/src/libapi/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from typing import Any, Optional, Union import jwt import requests from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric.ec import ( EllipticCurvePrivateKey, EllipticCurvePublicKey, ) from cryptography.hazmat.primitives.asymmetric.ed448 import ( Ed448PrivateKey, Ed448PublicKey, ) from cryptography.hazmat.primitives.asymmetric.ed25519 import ( Ed25519PrivateKey, Ed25519PublicKey, ) from cryptography.hazmat.primitives.asymmetric.rsa import RSAPrivateKey, RSAPublicKey from jwt.algorithms import ( ECAlgorithm, HMACAlgorithm, OKPAlgorithm, RSAAlgorithm, RSAPSSAlgorithm, ) from libapi.exceptions import ( JWTExpiredSignature, JWTInvalidClaimRead, JWTInvalidClaimSub, JWTInvalidKeyOrAlgorithm, JWTInvalidSignature, JWTKeysError, JWTMissingRequiredClaim, UnexpectedApiError, ) ASYMMETRIC_ALGORITHMS = (ECAlgorithm, OKPAlgorithm, RSAAlgorithm, RSAPSSAlgorithm) SYMMETRIC_ALGORITHMS = (HMACAlgorithm,) SupportedAlgorithm = Union[ECAlgorithm, OKPAlgorithm, RSAAlgorithm, RSAPSSAlgorithm, HMACAlgorithm] SupportedKey = Union[ Ed448PrivateKey, Ed448PublicKey, Ed25519PrivateKey, Ed25519PublicKey, EllipticCurvePrivateKey, EllipticCurvePublicKey, RSAPrivateKey, RSAPublicKey, bytes, ] def is_public_key(key: SupportedKey) -> bool: return hasattr(key, "public_bytes") def create_algorithm(algorithm_name: str) -> SupportedAlgorithm: """ Create an algorithm object from the algorithm name. Args: algorithm_name (str): the algorithm name Returns: SupportedAlgorithm: the algorithm object Raises: RuntimeError: if the algorithm is not supported """ try: algorithm = jwt.get_algorithm_by_name(algorithm_name) if not isinstance(algorithm, (*ASYMMETRIC_ALGORITHMS, *SYMMETRIC_ALGORITHMS)): raise NotImplementedError() except NotImplementedError as err: raise RuntimeError(f"Invalid algorithm for JWT verification: {algorithm_name} is not supported") from err return algorithm def _key_to_pem(key: SupportedKey, algorithm: SupportedAlgorithm) -> str: """ Convert the key to PEM format. Args: key (SupportedKey): the key to convert Returns: str: the key in PEM format (PKCS#8) Raises: RuntimeError: if the key is not a public key """ if isinstance(algorithm, SYMMETRIC_ALGORITHMS) or isinstance(key, bytes): return key.decode("utf-8") # type: ignore if not is_public_key(key): raise RuntimeError("Failed to parse JWT key: the provided key is a private key") return key.public_bytes( # type: ignore encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo, ).decode("utf-8") # ^ we assume that the key contain UTF-8 encoded bytes, which is why we use type ignore for mypy def parse_jwt_public_key_json(payload: Any, algorithm: SupportedAlgorithm) -> str: """ Parse the payload (JSON format) to extract the public key, validating that it's a public key, and that it is compatible with the algorithm Args: keys (Any): the JSON to parse. It must be a list of keys in JWK format algorithm (SupportedAlgorithm): the algorithm the key should implement Returns: str: the public key in PEM format Raises: RuntimeError: if the payload is not compatible with the algorithm, or if the key is not public ValueError: if the input is not a list """ if not isinstance(payload, list) or not payload: raise ValueError("Payload must be a list of JWK formatted keys.") try: key = algorithm.from_jwk(payload[0]) except (jwt.InvalidKeyError, KeyError) as err: raise RuntimeError(f"Failed to parse JWT key: {err.args[0]}") from err return _key_to_pem(key, algorithm) def parse_jwt_public_key_pem(payload: str, algorithm: SupportedAlgorithm) -> str: """ Parse the input string to validate it's a public key in PEM format, and that it is compatible with the algorithm Args: key (str): the key to parse. It should be a public key in PEM format algorithm (SupportedAlgorithm): the algorithm the key should implement Returns: str: the public key in PEM format Raises: RuntimeError: if the payload is not compatible with the algorithm, or if the key is not public ValueError: if the input is not a list """ try: key = algorithm.prepare_key(payload) except (jwt.InvalidKeyError, KeyError) as err: raise RuntimeError(f"Failed to parse JWT key: {err.args[0]}") from err return _key_to_pem(key, algorithm) def fetch_jwt_public_key_json( url: str, hf_timeout_seconds: Optional[float] = None, ) -> Any: """ Fetch the public key from the input URL See https://huggingface.co/api/keys/jwt Args: url (str): the URL to fetch the public key from hf_timeout_seconds (float|None): the timeout in seconds for the external authentication service. It is used both for the connection timeout and the read timeout. If None, the request never timeouts. Returns: Any: the response JSON payload Raises: RuntimeError: if the request fails """ try: response = requests.get(url, timeout=hf_timeout_seconds) response.raise_for_status() return response.json() except Exception as err: raise RuntimeError(f"Failed to fetch the JWT public key from {url}. ") from err def get_jwt_public_keys( algorithm_name: Optional[str] = None, public_key_url: Optional[str] = None, additional_public_keys: Optional[list[str]] = None, timeout_seconds: Optional[float] = None, ) -> list[str]: """ Get the public keys to use to decode the JWT token. The keys can be created by two mechanisms: - one key can be fetched from the public_key_url (must be in JWK format, ie. JSON) - additional keys can be provided as a list of PEM formatted keys All of these keys are then converted to PEM format (PKCS#8) and returned as a list. The remote key is first. The keys must be compatible with the algorithm. Args: algorithm_name (str|None): the algorithm to use to decode the JWT token. If not provided, no keys will be returned public_key_url (str|None): the URL to fetch the public key from additional_public_keys (list[str]|None): additional public keys to use to decode the JWT token timeout_seconds (float|None): the timeout in seconds for fetching the remote key Returns: list[str]: the list of public keys in PEM format Raises: JWTKeysError: if some exception occurred while creating the public keys. Some reasons: if the algorithm is not supported, if a payload could not be parsed, if a key is not compatible with the algorithm, if a key is not public, if th remote key could not be fetch or parsed """ try: keys: list[str] = [] if not algorithm_name: return keys algorithm = create_algorithm(algorithm_name) if public_key_url: payload = fetch_jwt_public_key_json( url=public_key_url, hf_timeout_seconds=timeout_seconds, ) keys.append(parse_jwt_public_key_json(payload=payload, algorithm=algorithm)) if additional_public_keys: keys.extend( parse_jwt_public_key_pem(payload=payload, algorithm=algorithm) for payload in additional_public_keys ) logging.debug(f"JWT public keys are: {', '.join(keys)}.") return keys except Exception as err: raise JWTKeysError("Failed to create the JWT public keys.") from err def validate_jwt( dataset: str, token: Any, public_keys: list[str], algorithm: str, verify_exp: Optional[bool] = True ) -> None: """ Check if the JWT is valid for the dataset. The JWT is decoded with the public key, and the payload must be: {"sub": "datasets/<...dataset identifier...>", "read": true, "exp": <...date...>} Raise an exception if any of the condition is not met. Args: dataset (str): the dataset identifier token (Any): the JWT token to decode public_keys (list[str]): the public keys to use to decode the JWT token. They are tried in order. algorithm (str): the algorithm to use to decode the JWT token verify_exp (bool|None): whether to verify the expiration of the JWT token. Default to True. Raise: JWTInvalidSignature: if the signature verification failed JWTMissingRequiredClaim: if a claim is missing in the JWT payload JWTExpiredSignature: if the JWT signature has expired JWTInvalidKeyOrAlgorithm: if the key used to verify the signature is not compatible with the algorithm JWTInvalidClaimSub: if the 'sub' claim in JWT payload is invalid JWTInvalidClaimRead: if the 'read' claim in JWT payload is invalid UnexpectedApiError: if another error occurred while decoding the JWT """ for public_key in public_keys: logging.debug(f"Trying to decode the JWT with key #{public_keys.index(public_key)}: {public_key}.") try: decoded = jwt.decode( jwt=token, key=public_key, algorithms=[algorithm], options={"require": ["exp", "sub", "read"], "verify_exp": verify_exp}, ) logging.debug(f"Decoded JWT is: '{public_key}'.") break except jwt.exceptions.InvalidSignatureError as e: if public_key == public_keys[-1]: raise JWTInvalidSignature( "The JWT signature verification failed. Check the signing key and the algorithm.", e ) from e logging.debug(f"JWT signature verification failed with key: '{public_key}'. Trying next key.") except jwt.exceptions.MissingRequiredClaimError as e: raise JWTMissingRequiredClaim("A claim is missing in the JWT payload.", e) from e except jwt.exceptions.ExpiredSignatureError as e: raise JWTExpiredSignature("The JWT signature has expired. Try to refresh the token.", e) from e except (jwt.exceptions.InvalidKeyError, jwt.exceptions.InvalidAlgorithmError) as e: raise JWTInvalidKeyOrAlgorithm( ( "The key used to verify the signature is not compatible with the algorithm. Check the signing key" " and the algorithm." ), e, ) from e except Exception as e: raise UnexpectedApiError("An error has occurred while decoding the JWT.", e) from e sub = decoded.get("sub") if not isinstance(sub, str) or not sub.startswith("datasets/") or sub.removeprefix("datasets/") != dataset: raise JWTInvalidClaimSub( "The 'sub' claim in JWT payload is invalid. It should be in the form 'datasets/<...dataset" " identifier...>'." ) read = decoded.get("read") if read is not True: raise JWTInvalidClaimRead("The 'read' claim in JWT payload is invalid. It should be set to 'true'.")
datasets-server-main
libs/libapi/src/libapi/jwt_token.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging import os import shutil from collections.abc import Callable, Coroutine from http import HTTPStatus from itertools import islice from typing import Any, Optional import pyarrow as pa from datasets import Features from libcommon.dataset import get_dataset_git_revision from libcommon.exceptions import CustomError from libcommon.orchestrator import DatasetOrchestrator from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.rows_utils import transform_rows from libcommon.simple_cache import ( CACHED_RESPONSE_NOT_FOUND, CacheEntry, get_best_response, ) from libcommon.storage import StrPath from libcommon.utils import Priority, RowItem, orjson_dumps from libcommon.viewer_utils.asset import glob_rows_in_assets_dir from starlette.requests import Request from starlette.responses import JSONResponse, Response from libapi.exceptions import ( ResponseNotFoundError, ResponseNotReadyError, TransformRowsProcessingError, ) class OrjsonResponse(JSONResponse): def render(self, content: Any) -> bytes: return orjson_dumps(content=content) def get_response(content: Any, status_code: int = 200, max_age: int = 0) -> Response: headers = {"Cache-Control": f"max-age={max_age}"} if max_age > 0 else {"Cache-Control": "no-store"} return OrjsonResponse(content=content, status_code=status_code, headers=headers) def get_json_response( content: Any, status_code: HTTPStatus = HTTPStatus.OK, max_age: int = 0, error_code: Optional[str] = None, revision: Optional[str] = None, headers: Optional[dict[str, str]] = None, ) -> Response: if not headers: headers = {} headers["Cache-Control"] = f"max-age={max_age}" if max_age > 0 else "no-store" if error_code is not None: headers["X-Error-Code"] = error_code if revision is not None: headers["X-Revision"] = revision return OrjsonResponse(content=content, status_code=status_code.value, headers=headers) # these headers are exposed to the client (browser) EXPOSED_HEADERS = [ "X-Error-Code", "X-Revision", ] def get_json_ok_response( content: Any, max_age: int = 0, revision: Optional[str] = None, headers: Optional[dict[str, str]] = None ) -> Response: return get_json_response(content=content, max_age=max_age, revision=revision, headers=headers) def get_json_error_response( content: Any, status_code: HTTPStatus = HTTPStatus.OK, max_age: int = 0, error_code: Optional[str] = None, revision: Optional[str] = None, ) -> Response: return get_json_response( content=content, status_code=status_code, max_age=max_age, error_code=error_code, revision=revision ) def get_json_api_error_response(error: CustomError, max_age: int = 0, revision: Optional[str] = None) -> Response: return get_json_error_response( content=error.as_response(), status_code=error.status_code, max_age=max_age, error_code=error.code, revision=revision, ) def is_non_empty_string(string: Any) -> bool: return isinstance(string, str) and bool(string and string.strip()) def are_valid_parameters(parameters: list[Any]) -> bool: return all(is_non_empty_string(s) for s in parameters) def try_backfill_dataset_then_raise( processing_steps: list[ProcessingStep], dataset: str, processing_graph: ProcessingGraph, cache_max_days: int, hf_endpoint: str, hf_token: Optional[str] = None, hf_timeout_seconds: Optional[float] = None, ) -> None: dataset_orchestrator = DatasetOrchestrator(dataset=dataset, processing_graph=processing_graph) if not dataset_orchestrator.has_some_cache(): # We have to check if the dataset exists and is supported try: revision = get_dataset_git_revision( dataset=dataset, hf_endpoint=hf_endpoint, hf_token=hf_token, hf_timeout_seconds=hf_timeout_seconds, ) except Exception as e: # The dataset is not supported raise ResponseNotFoundError("Not found.") from e # The dataset is supported, and the revision is known. We set the revision (it will create the jobs) # and tell the user to retry. logging.info(f"Set orchestrator revision for dataset={dataset}, revision={revision}") dataset_orchestrator.set_revision( revision=revision, priority=Priority.NORMAL, error_codes_to_retry=[], cache_max_days=cache_max_days ) raise ResponseNotReadyError( "The server is busier than usual and the response is not ready yet. Please retry later." ) elif dataset_orchestrator.has_pending_ancestor_jobs( processing_step_names=[processing_step.name for processing_step in processing_steps] ): # some jobs are still in progress, the cache entries could exist in the future raise ResponseNotReadyError( "The server is busier than usual and the response is not ready yet. Please retry later." ) else: # no pending job: the cache entry will not be created raise ResponseNotFoundError("Not found.") def get_cache_entry_from_steps( processing_steps: list[ProcessingStep], dataset: str, config: Optional[str], split: Optional[str], processing_graph: ProcessingGraph, cache_max_days: int, hf_endpoint: str, hf_token: Optional[str] = None, hf_timeout_seconds: Optional[float] = None, ) -> CacheEntry: """Gets the cache from the first successful step in the processing steps list. If no successful result is found, it will return the last one even if it's an error, Checks if job is still in progress by each processing step in case of no entry found. Raises: - [`~utils.ResponseNotFoundError`] if no result is found. - [`~utils.ResponseNotReadyError`] if the response is not ready yet. Returns: the cached record """ kinds = [processing_step.cache_kind for processing_step in processing_steps] best_response = get_best_response(kinds=kinds, dataset=dataset, config=config, split=split) if "error_code" in best_response.response and best_response.response["error_code"] == CACHED_RESPONSE_NOT_FOUND: try_backfill_dataset_then_raise( processing_steps=processing_steps, processing_graph=processing_graph, dataset=dataset, hf_endpoint=hf_endpoint, hf_timeout_seconds=hf_timeout_seconds, hf_token=hf_token, cache_max_days=cache_max_days, ) return best_response.response Endpoint = Callable[[Request], Coroutine[Any, Any, Response]] def to_rows_list( pa_table: pa.Table, dataset: str, config: str, split: str, cached_assets_base_url: str, cached_assets_directory: StrPath, offset: int, features: Features, unsupported_columns: list[str], row_idx_column: Optional[str] = None, ) -> list[RowItem]: num_rows = pa_table.num_rows for idx, (column, feature) in enumerate(features.items()): if column in unsupported_columns: pa_table = pa_table.add_column(idx, column, pa.array([None] * num_rows)) # transform the rows, if needed (e.g. save the images or audio to the assets, and return their URL) try: transformed_rows = transform_rows( dataset=dataset, config=config, split=split, rows=pa_table.to_pylist(), features=features, cached_assets_base_url=cached_assets_base_url, cached_assets_directory=cached_assets_directory, offset=offset, row_idx_column=row_idx_column, ) except Exception as err: raise TransformRowsProcessingError( "Server error while post-processing the split rows. Please report the issue." ) from err return [ { "row_idx": idx + offset if row_idx_column is None else row.pop(row_idx_column), "row": row, "truncated_cells": [], } for idx, row in enumerate(transformed_rows) ] def _greater_or_equal(row_dir_name: str, row_idx: int, on_error: bool) -> bool: try: return int(row_dir_name) >= row_idx except ValueError: return on_error def clean_cached_assets( dataset: str, cached_assets_directory: StrPath, keep_first_rows_number: int, keep_most_recent_rows_number: int, max_cleaned_rows_number: int, ) -> None: """ The cached assets directory is cleaned to save disk space using this simple (?) heuristic: 1. it takes a big sample of rows from the cache using glob (max `max_cleaned_rows_number`) 2. it keeps the most recent ones (max `keep_most_recent_rows_number`) 3. it keeps the rows below a certain index (max `keep_first_rows_number`) 4. it discards the rest To check for the most recent rows, it looks at the "last modified time" of rows directories. This time is updated every time a row is accessed using `update_last_modified_date_of_rows_in_assets_dir()`. Args: dataset (`str`): Dataset name e.g `squad` or `lhoestq/demo1`. Rows are cleaned in any dataset configuration or split of this dataset. cached_assets_directory (`str`): Directory containing the cached image and audio files keep_first_rows_number (`int`): Keep the rows with an index below a certain number keep_most_recent_rows_number (`int`): Keep the most recently accessed rows. max_cleaned_rows_number (`int`): Maximum number of rows to discard. """ if keep_first_rows_number < 0 or keep_most_recent_rows_number < 0 or max_cleaned_rows_number < 0: raise ValueError( "Failed to run cached assets cleaning. Make sure all of keep_first_rows_number," f" keep_most_recent_rows_number and max_cleaned_rows_number are set (got {keep_first_rows_number}," f" {keep_most_recent_rows_number} and {max_cleaned_rows_number})" ) row_directories = glob_rows_in_assets_dir(dataset, cached_assets_directory) row_directories_sample = list( islice( ( row_dir for row_dir in row_directories if _greater_or_equal(row_dir.name, keep_first_rows_number, on_error=True) ), max_cleaned_rows_number + keep_most_recent_rows_number, ) ) if len(row_directories_sample) > keep_most_recent_rows_number: row_dirs_to_delete = sorted(row_directories_sample, key=os.path.getmtime, reverse=True)[ keep_most_recent_rows_number: ] for row_dir_to_delete in row_dirs_to_delete: shutil.rmtree(row_dir_to_delete, ignore_errors=True)
datasets-server-main
libs/libapi/src/libapi/utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from typing import Literal, Optional import requests from libcommon.prometheus import StepProfiler from requests import PreparedRequest from requests.auth import AuthBase from starlette.requests import Request from libapi.exceptions import ( AuthCheckHubRequestError, ExternalAuthenticatedError, ExternalUnauthenticatedError, ) from libapi.jwt_token import validate_jwt class RequestAuth(AuthBase): """Attaches input Request authentication headers to the given Request object.""" def __init__(self, request: Optional[Request]) -> None: if request is not None: self.cookie = request.headers.get("cookie") self.authorization = request.headers.get("authorization") else: self.cookie = None self.authorization = None def __call__(self, r: PreparedRequest) -> PreparedRequest: # modify and return the request if self.cookie: r.headers["cookie"] = self.cookie if self.authorization: r.headers["authorization"] = self.authorization return r def get_jwt_token(request: Optional[Request] = None) -> Optional[str]: if not request: return None # x-api-token is deprecated and will be removed in the future if token := request.headers.get("x-api-key"): return token authorization = request.headers.get("authorization") if not authorization: return None token = authorization.removeprefix("Bearer jwt:") return None if token == authorization else token def auth_check( dataset: str, external_auth_url: Optional[str] = None, request: Optional[Request] = None, hf_jwt_public_keys: Optional[list[str]] = None, hf_jwt_algorithm: Optional[str] = None, hf_timeout_seconds: Optional[float] = None, ) -> Literal[True]: """check if the dataset is authorized for the request It sends a request to the Hugging Face API to check if the dataset is authorized for the input request. The request to the Hugging Face API is authenticated with the same authentication headers as the input request. It timeouts after 200ms. Args: dataset (str): the dataset name external_auth_url (str|None): the URL of an external authentication service. The URL must contain `%s`, which will be replaced with the dataset name, for example: https://huggingface.co/api/datasets/%s/auth-check The authentication service must return 200, 401, 403 or 404. If None, the dataset is always authorized. request (Request | None): the request which optionally bears authentication headers: "cookie", "authorization" or "X-Api-Key" hf_jwt_public_keys (list[str]|None): the public keys to use to decode the JWT token hf_jwt_algorithm (str): the algorithm to use to decode the JWT token hf_timeout_seconds (float|None): the timeout in seconds for the external authentication service. It is used both for the connection timeout and the read timeout. If None, the request never timeouts. Returns: None: the dataset is authorized for the request """ with StepProfiler(method="auth_check", step="all"): with StepProfiler(method="auth_check", step="check JWT"): if (jwt_token := get_jwt_token(request)) and hf_jwt_public_keys and hf_jwt_algorithm: validate_jwt( dataset=dataset, token=jwt_token, public_keys=hf_jwt_public_keys, algorithm=hf_jwt_algorithm ) logging.debug( "By-passing the authentication step, because a valid JWT was passed in headers" f" for dataset {dataset}. JWT was: {jwt_token}" ) return True with StepProfiler(method="auth_check", step="prepare parameters"): if external_auth_url is None: return True try: url = external_auth_url % dataset except TypeError as e: raise ValueError("external_auth_url must contain %s") from e with StepProfiler(method="auth_check", step="create auth parameter"): auth = RequestAuth(request) with StepProfiler( method="auth_check", step="requests.get", context=f"external_auth_url={external_auth_url} timeout={hf_timeout_seconds}", ): try: logging.debug( f"Checking authentication on the Hugging Face Hub for dataset {dataset}, url: {url}, timeout:" f" {hf_timeout_seconds}, authorization: {auth.authorization}" ) response = requests.get(url, auth=auth, timeout=hf_timeout_seconds) except Exception as err: raise AuthCheckHubRequestError( ( "Authentication check on the Hugging Face Hub failed or timed out. Please try again later," " it's a temporary internal issue." ), err, ) from err with StepProfiler(method="auth_check", step="return or raise"): if response.status_code == 200: return True elif response.status_code == 401: raise ExternalUnauthenticatedError( "The dataset does not exist, or is not accessible without authentication (private or gated). Please" " check the spelling of the dataset name or retry with authentication." ) elif response.status_code in {403, 404}: raise ExternalAuthenticatedError( "The dataset does not exist, or is not accessible with the current credentials (private or gated)." " Please check the spelling of the dataset name or retry with other authentication credentials." ) else: raise ValueError(f"Unexpected status code {response.status_code}")
datasets-server-main
libs/libapi/src/libapi/authentication.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from typing import Literal, Optional from libcommon.exceptions import CustomError ApiErrorCode = Literal[ "AuthCheckHubRequestError", "ExternalAuthenticatedError", "ExternalUnauthenticatedError", "InvalidParameter", "JWTExpiredSignature", "JWTInvalidClaimRead", "JWTInvalidClaimSub", "JWTInvalidKeyOrAlgorithm", "JWTInvalidSignature", "JWTKeysError", "JWTMissingRequiredClaim", "MissingProcessingStepsError", "MissingRequiredParameter", "ResponseNotFound", "ResponseNotReady", "TransformRowsProcessingError", "UnexpectedApiError", ] class ApiError(CustomError): """Base class for exceptions raised by an API service.""" def __init__( self, message: str, status_code: HTTPStatus, code: ApiErrorCode, cause: Optional[BaseException] = None, disclose_cause: bool = False, ): super().__init__( message=message, status_code=status_code, code=code, cause=cause, disclose_cause=disclose_cause ) class AuthCheckHubRequestError(ApiError): """The external authentication check failed or timed out.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__( message, HTTPStatus.INTERNAL_SERVER_ERROR, "AuthCheckHubRequestError", cause=cause, disclose_cause=False ) class ExternalAuthenticatedError(ApiError): """The external authentication check failed while the user was authenticated. Even if the external authentication server returns 403 in that case, we return 404 because we don't know if the dataset exist or not. It's also coherent with how the Hugging Face Hub works. TODO: should we return DatasetNotFoundError instead? maybe the error code is leaking existence of private datasets. """ def __init__(self, message: str): super().__init__(message, HTTPStatus.NOT_FOUND, "ExternalAuthenticatedError") class ExternalUnauthenticatedError(ApiError): """The external authentication check failed while the user was unauthenticated.""" def __init__(self, message: str): super().__init__(message, HTTPStatus.UNAUTHORIZED, "ExternalUnauthenticatedError") class InvalidParameterError(ApiError): """A parameter has an invalid value.""" def __init__(self, message: str): super().__init__(message, HTTPStatus.UNPROCESSABLE_ENTITY, "InvalidParameter") class JWTKeysError(ApiError): """The public keys for decoding JWT could not be created.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "JWTKeysError", cause=cause, disclose_cause=False) class MissingRequiredParameterError(ApiError): """A required parameter is missing.""" def __init__(self, message: str): super().__init__(message, HTTPStatus.UNPROCESSABLE_ENTITY, "MissingRequiredParameter") class ResponseNotFoundError(ApiError): """The response has not been found.""" def __init__(self, message: str): super().__init__(message, HTTPStatus.NOT_FOUND, "ResponseNotFound") class ResponseNotReadyError(ApiError): """The response has not been processed yet.""" def __init__(self, message: str): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "ResponseNotReady") class TransformRowsProcessingError(ApiError): """There was an error when transforming rows to list.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "TransformRowsProcessingError", cause, True) class JWTExpiredSignature(ApiError): """The JWT signature has expired.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.UNAUTHORIZED, "JWTExpiredSignature", cause, True) class JWTInvalidClaimRead(ApiError): """The 'read' claim in the JWT payload is invalid.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.UNAUTHORIZED, "JWTInvalidClaimRead", cause, True) class JWTInvalidClaimSub(ApiError): """The 'sub' claim in the JWT payload is invalid.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.UNAUTHORIZED, "JWTInvalidClaimSub", cause, True) class JWTInvalidKeyOrAlgorithm(ApiError): """The key and the algorithm used to verify the JWT signature are not compatible.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.UNAUTHORIZED, "JWTInvalidKeyOrAlgorithm", cause, True) class JWTInvalidSignature(ApiError): """The JWT signature verification failed.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.UNAUTHORIZED, "JWTInvalidSignature", cause, True) class JWTMissingRequiredClaim(ApiError): """A claim is missing in the JWT payload.""" def __init__(self, message: str, cause: Optional[BaseException] = None): super().__init__(message, HTTPStatus.UNAUTHORIZED, "JWTMissingRequiredClaim", cause, True) class UnexpectedApiError(ApiError): """The server raised an unexpected error.""" def __init__(self, message: str, cause: Optional[BaseException] = None): logging.error(message, exc_info=cause) super().__init__(message, HTTPStatus.INTERNAL_SERVER_ERROR, "UnexpectedApiError", cause)
datasets-server-main
libs/libapi/src/libapi/exceptions.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.prometheus import Prometheus from prometheus_client import CONTENT_TYPE_LATEST from starlette.requests import Request from starlette.responses import Response from libapi.utils import Endpoint def create_metrics_endpoint() -> Endpoint: prometheus = Prometheus() async def metrics_endpoint(_: Request) -> Response: logging.info("/metrics") return Response(prometheus.getLatestContent(), headers={"Content-Type": CONTENT_TYPE_LATEST}) return metrics_endpoint
datasets-server-main
libs/libapi/src/libapi/routes/metrics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors.
datasets-server-main
libs/libapi/src/libapi/routes/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.prometheus import StepProfiler from starlette.requests import Request from starlette.responses import PlainTextResponse, Response async def healthcheck_endpoint(_: Request) -> Response: logging.info("/healthcheck") with StepProfiler(method="healthcheck_endpoint", step="all"): return PlainTextResponse("ok", headers={"Cache-Control": "no-store"})
datasets-server-main
libs/libapi/src/libapi/routes/healthcheck.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from mongoengine import Document from mongoengine.fields import StringField from mongodb_migration.resources import MigrationsMongoResource def test_cache_database(mongo_host: str) -> None: resource = MigrationsMongoResource(database="test_migrations_database", host=mongo_host) class User(Document): name = StringField() meta = {"db_alias": resource.mongoengine_alias} assert len(User.objects()) == 0 # type: ignore # clean User.drop_collection() # type: ignore assert resource.is_available() resource.release()
datasets-server-main
jobs/mongodb_migration/tests/test_resources.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from environs import Env from pytest import fixture @fixture(scope="session") def env() -> Env: return Env(expand_vars=True) @fixture(scope="session") def mongo_host(env: Env) -> str: try: url = env.str(name="DATABASE_MIGRATIONS_MONGO_URL") if type(url) is not str: raise ValueError("DATABASE_MIGRATIONS_MONGO_URL is not set") return url except Exception as e: raise ValueError("DATABASE_MIGRATIONS_MONGO_URL is not set") from e
datasets-server-main
jobs/mongodb_migration/tests/conftest.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Iterator from typing import Optional import pytest from mongodb_migration.database_migrations import ( DatabaseMigration, _clean_maintenance_database, ) from mongodb_migration.migration import IrreversibleMigrationError, Migration from mongodb_migration.plan import Plan, SavedMigrationsError from mongodb_migration.resources import MigrationsMongoResource @pytest.fixture(autouse=True) def migrations_mongo_resource(mongo_host: str) -> Iterator[MigrationsMongoResource]: database = "datasets_server_migrations_test" if "test" not in database: raise ValueError("Test must be launched on a test mongo database") with MigrationsMongoResource(database=database, host=mongo_host) as resource: yield resource _clean_maintenance_database() class MigrationOK(Migration): def up(self) -> None: pass def down(self) -> None: pass def validate(self) -> None: pass class MigrationErrorInUp(Migration): def up(self) -> None: raise RuntimeError("Error in up") def down(self) -> None: pass def validate(self) -> None: pass class MigrationErrorInValidate(Migration): def up(self) -> None: pass def down(self) -> None: pass def validate(self) -> None: raise RuntimeError("Error in validation") class MigrationErrorInUpAndDown(Migration): def up(self) -> None: raise RuntimeError("Error in up") def down(self) -> None: raise RuntimeError("Error in down") def validate(self) -> None: pass class MigrationErrorIrreversible(Migration): def up(self) -> None: raise RuntimeError("Error in up") def down(self) -> None: raise IrreversibleMigrationError("Error in down") def validate(self) -> None: pass def test_empty_plan() -> None: plan = Plan(collected_migrations=[]) assert plan.collected_migrations == [] plan.execute() assert plan.executed_migrations == [] migration_ok_a = MigrationOK(version="20221110230400", description="ok a") migration_ok_b = MigrationOK(version="20221110230401", description="ok b") migration_error_in_up = MigrationErrorInUp(version="20221110230402", description="error in up") migration_error_in_validate = MigrationErrorInValidate(version="20221110230403", description="error in validate") migration_error_in_up_and_down = MigrationErrorInUpAndDown( version="20221110230404", description="error in up and down" ) migration_error_irreversible = MigrationErrorIrreversible( version="20221110230405", description="error because migration is irreversible" ) @pytest.mark.parametrize( "collected_migrations", ( [migration_ok_a, migration_ok_b], [migration_ok_b, migration_ok_a], ), ) def test_collected_migrations_order_dont_matter(collected_migrations: list[Migration]) -> None: assert DatabaseMigration.objects.distinct("version") == [] plan = Plan(collected_migrations=collected_migrations) assert plan.executed_migrations == [] plan.execute() sorted_migrations = sorted(collected_migrations, key=lambda migration: migration.version) assert plan.executed_migrations == sorted_migrations assert DatabaseMigration.objects.distinct("version") == [migration.version for migration in sorted_migrations] @pytest.mark.parametrize( "collected_migrations,executed_migrations,exception", [ ([migration_error_in_up], [], RuntimeError), ([migration_error_in_validate], [], RuntimeError), ([migration_error_in_up_and_down], [migration_error_in_up_and_down], RuntimeError), ([migration_error_irreversible], [migration_error_irreversible], IrreversibleMigrationError), ([migration_ok_a, migration_error_in_up], [], RuntimeError), ( [migration_ok_a, migration_error_in_up_and_down], [migration_ok_a, migration_error_in_up_and_down], RuntimeError, ), ], ) def test_errors_in_migration_steps( collected_migrations: list[Migration], executed_migrations: list[Migration], exception: Optional[type[Exception]] ) -> None: assert DatabaseMigration.objects.distinct("version") == [] plan = Plan(collected_migrations=collected_migrations) assert plan.executed_migrations == [] if exception is None: # rollback worked plan.execute() else: # rollback failed with pytest.raises(exception): plan.execute() assert plan.executed_migrations == executed_migrations assert DatabaseMigration.objects.distinct("version") == [migration.version for migration in executed_migrations] @pytest.mark.parametrize( "previous_migrations,collected_migrations,executed_migrations,exception", [ ([], [], [], None), ([], [migration_ok_a], [migration_ok_a], None), ([migration_ok_a], [migration_ok_a, migration_ok_b], [migration_ok_b], None), # the previous migrations must be in the collected migrations ([migration_ok_a], [], [], SavedMigrationsError), ([migration_ok_a], [migration_ok_b], [], SavedMigrationsError), # error with the versions order ([migration_ok_b], [migration_ok_a, migration_ok_b], [], SavedMigrationsError), ], ) def test_get_planned_migrations( previous_migrations: list[Migration], collected_migrations: list[Migration], executed_migrations: list[Migration], exception: Optional[type[Exception]], ) -> None: for migration in previous_migrations: DatabaseMigration(version=migration.version, description=migration.description).save() assert DatabaseMigration.objects.distinct("version") == [migration.version for migration in previous_migrations] plan = Plan(collected_migrations=collected_migrations) assert plan.executed_migrations == [] if exception is None: # up worked plan.apply() else: # up failed with pytest.raises(exception): plan.apply() assert plan.executed_migrations == executed_migrations assert DatabaseMigration.objects.distinct("version") == [ migration.version for migration in (previous_migrations + executed_migrations) ] def test_internal_operations_are_idempotent() -> None: plan = Plan(collected_migrations=[migration_ok_a, migration_ok_b]) plan.rollback() plan.rollback() plan.rollback() plan.apply() plan.apply() plan.apply() plan.apply() plan.rollback() plan.apply() plan.rollback() def test_execute_is_idempotent() -> None: plan = Plan(collected_migrations=[migration_ok_a, migration_ok_b]) plan.execute() plan.execute() Plan(collected_migrations=[migration_ok_a, migration_ok_b]).execute()
datasets-server-main
jobs/mongodb_migration/tests/test_plan.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from libcommon.constants import ( CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS, QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS, ) from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.renaming_migrations import ( CacheRenamingMigration, QueueRenamingMigration, ) def test_cache_renaming_migration(mongo_host: str) -> None: old_kind, new_kind = "/kind-name", "kind-name" with MongoResource(database="test_cache_rename_kind", host=mongo_host, mongoengine_alias=CACHE_MONGOENGINE_ALIAS): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].insert_many([{"kind": old_kind, "dataset": "dataset", "http_status": 200}]) assert db[CACHE_COLLECTION_RESPONSES].find_one( {"kind": old_kind} ) # Ensure there is at least one record to update migration = CacheRenamingMigration( cache_kind=old_kind, new_cache_kind=new_kind, version="20230516165100", description=f"update 'kind' field in cache from {old_kind} to {new_kind}", ) migration.up() assert not db[CACHE_COLLECTION_RESPONSES].find_one({"kind": old_kind}) # Ensure 0 records with old kind assert db[CACHE_COLLECTION_RESPONSES].find_one({"kind": new_kind}) db[CACHE_COLLECTION_RESPONSES].drop() def test_queue_renaming_migration(mongo_host: str) -> None: old_job, new_job = "/job-name", "job-name" with MongoResource( database="test_test_queue_renaming_migration", host=mongo_host, mongoengine_alias=QUEUE_MONGOENGINE_ALIAS ): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].insert_many( [ { "type": old_job, "unicity_id": f"{old_job},dataset,config,split", "dataset": "dataset", "http_status": 200, } ] ) assert db[QUEUE_COLLECTION_JOBS].find_one({"type": old_job}) # Ensure there is at least one record to update migration = QueueRenamingMigration( job_type=old_job, new_job_type=new_job, version="20230516170300", description=f"update 'type' and 'unicity_id' fields in job from {old_job} to {new_job}", ) migration.up() assert not db[QUEUE_COLLECTION_JOBS].find_one({"type": old_job}) # Ensure 0 records with old type result = db[QUEUE_COLLECTION_JOBS].find_one({"type": new_job}) assert result assert result["unicity_id"] == f"{new_job},dataset,config,split" db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/test_renaming_migration.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
jobs/mongodb_migration/tests/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Optional import pytest from mongodb_migration.migration import Migration class MigrationOK(Migration): def up(self) -> None: pass def down(self) -> None: pass def validate(self) -> None: pass version_ok = "20221110230400" description = "description a" version_date_error = "20225510230400" version_format_error = "wrong format" version_too_short = "20221110" @pytest.mark.parametrize( "version,description,exception", [ (version_ok, None, ValueError), (None, description, ValueError), (version_date_error, description, ValueError), (version_format_error, description, ValueError), (version_too_short, description, ValueError), (version_ok, description, None), ], ) def test_migration(version: str, description: str, exception: Optional[type[Exception]]) -> None: if exception is None: MigrationOK(version=version, description=description) else: with pytest.raises(exception): MigrationOK(version=version, description=description)
datasets-server-main
jobs/mongodb_migration/tests/test_migration.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from libcommon.constants import ( CACHE_COLLECTION_RESPONSES, CACHE_METRICS_COLLECTION, CACHE_MONGOENGINE_ALIAS, METRICS_MONGOENGINE_ALIAS, QUEUE_COLLECTION_JOBS, QUEUE_METRICS_COLLECTION, QUEUE_MONGOENGINE_ALIAS, ) from libcommon.queue import JobDocument from libcommon.resources import MongoResource from libcommon.utils import get_datetime from mongoengine.connection import get_db from mongodb_migration.deletion_migrations import ( CacheDeletionMigration, MetricsDeletionMigration, MigrationQueueDeleteTTLIndex, QueueDeletionMigration, get_index_names, ) def test_cache_deletion_migration(mongo_host: str) -> None: kind = "cache_kind" with MongoResource( database="test_cache_delete_migration", host=mongo_host, mongoengine_alias=CACHE_MONGOENGINE_ALIAS, ): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].insert_many([{"kind": kind, "dataset": "dataset", "http_status": 200}]) assert db[CACHE_COLLECTION_RESPONSES].find_one({"kind": kind}) # Ensure there is at least one record to delete migration = CacheDeletionMigration( cache_kind=kind, version="20230505180100", description=f"remove cache for kind {kind}", ) migration.up() assert not db[CACHE_COLLECTION_RESPONSES].find_one({"kind": kind}) # Ensure 0 records with old kind db[CACHE_COLLECTION_RESPONSES].drop() def test_queue_deletion_migration(mongo_host: str) -> None: job_type = "job_type" with MongoResource( database="test_queue_delete_migration", host=mongo_host, mongoengine_alias=QUEUE_MONGOENGINE_ALIAS, ): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].insert_many( [ { "type": job_type, "unicity_id": f"{job_type},dataset,config,split", "dataset": "dataset", "revision": "revision", "http_status": 200, } ] ) assert db[QUEUE_COLLECTION_JOBS].find_one({"type": job_type}) # Ensure there is at least one record to delete migration = QueueDeletionMigration( job_type=job_type, version="20230505180200", description=f"remove jobs of type '{job_type}'", ) migration.up() assert not db[QUEUE_COLLECTION_JOBS].find_one({"type": job_type}) # Ensure 0 records with old type db[QUEUE_COLLECTION_JOBS].drop() def test_metrics_deletion_migration(mongo_host: str) -> None: step_name = job_type = cache_kind = "step_name" with MongoResource( database="test_metrics_delete_migration", host=mongo_host, mongoengine_alias=METRICS_MONGOENGINE_ALIAS, ): db = get_db(METRICS_MONGOENGINE_ALIAS) db[QUEUE_METRICS_COLLECTION].insert_many([{"queue": job_type, "status": "waiting", "total": 0}]) db[CACHE_METRICS_COLLECTION].insert_many([{"kind": cache_kind, "http_status": 400, "total": 0}]) assert db[QUEUE_METRICS_COLLECTION].find_one( {"queue": job_type} ) # Ensure there is at least one record to delete assert db[CACHE_METRICS_COLLECTION].find_one( {"kind": cache_kind} ) # Ensure there is at least one record to delete migration = MetricsDeletionMigration( job_type=job_type, cache_kind=cache_kind, version="20230505180300", description=f"delete the queue and cache metrics for step '{step_name}'", ) migration.up() assert not db[QUEUE_METRICS_COLLECTION].find_one({"queue": job_type}) # Ensure 0 records after deletion assert not db[CACHE_METRICS_COLLECTION].find_one({"kind": cache_kind}) # Ensure 0 records after deletion db[QUEUE_METRICS_COLLECTION].drop() db[CACHE_METRICS_COLLECTION].drop() def test_queue_delete_ttl_index(mongo_host: str) -> None: with MongoResource(database="test_queue_delete_ttl_index", host=mongo_host, mongoengine_alias="queue"): JobDocument( type="test", dataset="test", revision="test", unicity_id="test", namespace="test", created_at=get_datetime(), difficulty=50, ).save() db = get_db(QUEUE_MONGOENGINE_ALIAS) assert ( len(get_index_names(db[QUEUE_COLLECTION_JOBS].index_information(), "finished_at")) == 1 ) # Ensure the TTL index exists migration = MigrationQueueDeleteTTLIndex( version="20230428145000", description="remove ttl index on field 'finished_at'", field_name="finished_at", ) migration.up() assert ( len(get_index_names(db[QUEUE_COLLECTION_JOBS].index_information(), "finished_at")) == 0 ) # Ensure the TTL index does not exist anymore db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/test_deletion_migrations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from libcommon.constants import CACHE_METRICS_COLLECTION, METRICS_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from pytest import raises from mongodb_migration.drop_migrations import MigrationDropCollection from mongodb_migration.migration import IrreversibleMigrationError def test_drop_collection(mongo_host: str) -> None: with MongoResource(database="test_drop_collection", host=mongo_host, mongoengine_alias=METRICS_MONGOENGINE_ALIAS): db = get_db(METRICS_MONGOENGINE_ALIAS) db[CACHE_METRICS_COLLECTION].insert_many( [ { "kind": "kind", "error_code": "UnexpectedError", "http_status": 500, "total": 1, } ] ) assert db[CACHE_METRICS_COLLECTION].find_one({"kind": "kind"}) is not None assert CACHE_METRICS_COLLECTION in db.list_collection_names() # type: ignore migration = MigrationDropCollection( version="20230811063600", description="drop cache metrics collection", alias=METRICS_MONGOENGINE_ALIAS, collection_name=CACHE_METRICS_COLLECTION, ) migration.up() assert db[CACHE_METRICS_COLLECTION].find_one({"kind": "kind"}) is None assert CACHE_METRICS_COLLECTION not in db.list_collection_names() # type: ignore with raises(IrreversibleMigrationError): migration.down()
datasets-server-main
jobs/mongodb_migration/tests/test_drop_migrations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from mongodb_migration.collector import MigrationsCollector def test_collector() -> None: collector = MigrationsCollector() migrations = collector.get_migrations() assert len(migrations) >= 1 assert migrations[0].version == "20221110230400" assert migrations[0].description == "example"
datasets-server-main
jobs/mongodb_migration/tests/test_collector.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Optional from libcommon.constants import QUEUE_COLLECTION_LOCKS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230622131500_lock_add_owner import ( MigrationAddOwnerToQueueLock, ) def assert_owner(key: str, owner: Optional[str]) -> None: db = get_db(QUEUE_MONGOENGINE_ALIAS) entry = db[QUEUE_COLLECTION_LOCKS].find_one({"key": key}) assert entry is not None if owner is None: assert "owner" not in entry or entry["owner"] is None else: assert entry["owner"] == owner def test_lock_add_owner(mongo_host: str) -> None: with MongoResource(database="test_lock_add_owner", host=mongo_host, mongoengine_alias="queue"): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_LOCKS].insert_many( [ { "key": "key1", "job_id": "job_id1", "created_at": "2022-01-01T00:00:00.000000Z", }, { "key": "key2", "job_id": None, "created_at": "2022-01-01T00:00:00.000000Z", }, { "key": "key3", "job_id": "job_id3", "owner": "owner3", "created_at": "2022-01-01T00:00:00.000000Z", }, ] ) migration = MigrationAddOwnerToQueueLock( version="20230622131500", description="add owner field to locks", ) migration.up() assert_owner("key1", "job_id1") assert_owner("key2", None) assert_owner("key3", "owner3") migration.down() assert_owner("key1", None) assert_owner("key2", None) assert_owner("key3", None) db[QUEUE_COLLECTION_LOCKS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230622131500_lock_add_owner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230705160600_queue_job_add_difficulty import ( MigrationQueueAddDifficultyToJob, ) def test_queue_add_difficulty_to_jobs(mongo_host: str) -> None: with MongoResource(database="test_queue_add_difficulty_to_jobs", host=mongo_host, mongoengine_alias="queue"): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].insert_many( [ { "type": "test", "dataset": "test", "revision": "123", "unicity_id": "test", "namespace": "test", "created_at": "2022-01-01T00:00:00.000000Z", }, { "type": "dataset-is-valid", "dataset": "test", "revision": "123", "unicity_id": "test", "namespace": "test", "created_at": "2022-01-01T00:00:00.000000Z", }, ] ) migration = MigrationQueueAddDifficultyToJob( version="20230705160600", description="add difficulty field to jobs", ) migration.up() results = list(db[QUEUE_COLLECTION_JOBS].find({"type": "test"})) assert len(results) == 1 assert results[0]["difficulty"] == 50 results = list(db[QUEUE_COLLECTION_JOBS].find({"type": "dataset-is-valid"})) assert len(results) == 1 assert results[0]["difficulty"] == 20 migration.down() results = list(db[QUEUE_COLLECTION_JOBS].find({"dataset": "test"})) assert len(results) == 2 assert all("difficulty" not in result for result in results) db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230705160600_queue_job_add_difficulty.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import JobDocument from libcommon.resources import MongoResource from libcommon.utils import get_datetime from mongoengine.connection import get_db from pytest import raises from mongodb_migration.migration import IrreversibleMigrationError from mongodb_migration.migrations._20230511100700_queue_delete_indexes_with_force import ( MigrationQueueDeleteIndexesWithForce, field_name, get_index_names, ) def test_queue_delete_indexes_with_force(mongo_host: str) -> None: with MongoResource(database="test_queue_delete_indexes_with_force", host=mongo_host, mongoengine_alias="queue"): JobDocument( type="test", dataset="test", revision="revision", unicity_id="test", namespace="test", created_at=get_datetime(), difficulty=50, ).save() db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].create_index(field_name) db[QUEUE_COLLECTION_JOBS].create_index([(field_name, 1), ("type", 1)]) db[QUEUE_COLLECTION_JOBS].create_index([("type", 1), (field_name, 1)]) assert ( len(get_index_names(db[QUEUE_COLLECTION_JOBS].index_information(), "force")) == 3 ) # Ensure the indexes exists migration = MigrationQueueDeleteIndexesWithForce( version="20230511100700", description="remove indexes with field 'force'", ) migration.up() assert ( len(get_index_names(db[QUEUE_COLLECTION_JOBS].index_information(), "force")) == 0 ) # Ensure the indexes do not exist anymore with raises(IrreversibleMigrationError): migration.down() db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230511100700_queue_delete_indexes_with_force.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Optional import pytest from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230309141600_cache_add_job_runner_version import ( MigrationAddJobRunnerVersionToCacheResponse, ) def test_cache_add_job_runner_version_without_worker_version(mongo_host: str) -> None: with MongoResource(database="test_cache_add_job_runner_version", host=mongo_host, mongoengine_alias="cache"): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].insert_many( [{"kind": "/splits", "dataset": "dataset_without_worker_version", "http_status": 200}] ) migration = MigrationAddJobRunnerVersionToCacheResponse( version="20230309141600", description="add 'job_runner_version' field based on 'worker_version' value" ) migration.up() result = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": "dataset_without_worker_version"}) assert result assert not result["job_runner_version"] db[CACHE_COLLECTION_RESPONSES].drop() @pytest.mark.parametrize( "worker_version,expected", [ ("2.0.0", 2), ("1.5.0", 1), ("WrongFormat", None), (None, None), ], ) def test_cache_add_job_runner_version(mongo_host: str, worker_version: str, expected: Optional[int]) -> None: with MongoResource(database="test_cache_add_job_runner_version", host=mongo_host, mongoengine_alias="cache"): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].insert_many( [{"kind": "/splits", "dataset": "dataset", "http_status": 200, "worker_version": worker_version}] ) migration = MigrationAddJobRunnerVersionToCacheResponse( version="20230309141600", description="add 'job_runner_version' field based on 'worker_version' value" ) migration.up() result = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": "dataset"}) assert result assert result["job_runner_version"] == expected db[CACHE_COLLECTION_RESPONSES].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230309141600_cache_add_job_runner_version.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from pytest import raises from mongodb_migration.migration import IrreversibleMigrationError from mongodb_migration.migrations._20230511100600_queue_remove_force import ( MigrationRemoveForceFromJob, ) def test_queue_remove_force(mongo_host: str) -> None: with MongoResource(database="test_queue_remove_force", host=mongo_host, mongoengine_alias="queue"): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].delete_many({}) db[QUEUE_COLLECTION_JOBS].insert_many( [ { "type": "test", "dataset": "dataset_without_force", "force": True, } ] ) migration = MigrationRemoveForceFromJob( version="20230511100600", description="remove 'force' field from queue" ) migration.up() result = db[QUEUE_COLLECTION_JOBS].find_one({"dataset": "dataset_without_force"}) assert result assert "force" not in result with raises(IrreversibleMigrationError): migration.down() db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230511100600_queue_remove_force.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from pytest import raises from mongodb_migration.migration import IrreversibleMigrationError from mongodb_migration.migrations._20230511110700_queue_delete_skipped_jobs import ( MigrationDeleteSkippedJobs, status, ) def test_queue_delete_skipped_jobs(mongo_host: str) -> None: with MongoResource(database="test_delete_skipped_jobs", host=mongo_host, mongoengine_alias="queue"): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].delete_many({}) db[QUEUE_COLLECTION_JOBS].insert_many( [ { "type": "test", "dataset": "dataset", "status": status, }, { "type": "test", "dataset": "dataset", "status": "waiting", }, { "type": "test", "dataset": "dataset", "status": status, }, { "type": "test", "dataset": "dataset", "status": "started", }, ] ) migration = MigrationDeleteSkippedJobs( version="20230511110700", description=f"delete jobs with {status} status" ) migration.up() result = list(db[QUEUE_COLLECTION_JOBS].find({"dataset": "dataset"})) assert len(result) == 2 assert all(doc["status"] != status for doc in result) with raises(IrreversibleMigrationError): migration.down() db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230511110700_queue_delete_skipped_jobs.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230516101500_queue_job_add_revision import ( MigrationQueueAddRevisionToJob, ) def test_queue_add_revision_to_jobs(mongo_host: str) -> None: with MongoResource(database="test_queue_add_revision_to_jobs", host=mongo_host, mongoengine_alias="queue"): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].insert_one( { "type": "test", "dataset": "test", "unicity_id": "test", "namespace": "test", "created_at": "2022-01-01T00:00:00.000000Z", } ) migration = MigrationQueueAddRevisionToJob( version="20230516101500", description="add revision field to jobs", ) migration.up() result = list(db[QUEUE_COLLECTION_JOBS].find({"dataset": "test"})) assert len(result) == 1 assert result[0]["revision"] == "main" migration.down() result = list(db[QUEUE_COLLECTION_JOBS].find({"dataset": "test"})) assert len(result) == 1 assert "revision" not in result[0] db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230516101500_queue_job_add_revision.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Any from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230703110100_cache_add_partial_field_in_config_parquet_and_info import ( MigrationAddPartialToCacheResponse, ) def assert_partial(dataset: str, kind: str) -> None: db = get_db(CACHE_MONGOENGINE_ALIAS) entry = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": dataset, "kind": kind}) assert entry is not None assert entry["content"]["partial"] is False def assert_unchanged(dataset: str, kind: str) -> None: db = get_db(CACHE_MONGOENGINE_ALIAS) entry = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": dataset, "kind": kind}) assert entry is not None assert "partial" not in entry["content"] cache: list[dict[str, Any]] = [ { "config": "lhoestq--demo1", "dataset": "lhoestq/demo1", "kind": "config-parquet-and-info", "split": None, "content": { "parquet_files": [ { "dataset": "lhoestq/demo1", "config": "lhoestq--demo1", "split": "test", "url": "https://huggingface.co/.../csv-test.parquet", "filename": "csv-test.parquet", "size": 4415, }, { "dataset": "lhoestq/demo1", "config": "lhoestq--demo1", "split": "train", "url": "https://huggingface.co/.../csv-train.parquet", "filename": "csv-train.parquet", "size": 5038, }, ], "dataset_info": { "description": "", "citation": "", "homepage": "", "license": "", "features": {}, "builder_name": "csv", "config_name": "lhoestq--demo1", "version": {}, "splits": {}, "download_checksums": {}, "download_size": 2340, "dataset_size": 2464, "size_in_bytes": 4804, }, }, "dataset_git_revision": "87ecf163bedca9d80598b528940a9c4f99e14c11", "details": None, "error_code": None, "http_status": 200, "job_runner_version": 3, "progress": 1.0, }, { "config": "lhoestq--error", "dataset": "lhoestq/error", "kind": "config-parquet-and-info", "split": None, "content": {"error": "Streaming is not supported for lhoestq/error"}, "dataset_git_revision": "ec3c8d414af3dfe600399f5e6ef2c682938676f3", "details": { "error": "Streaming is not supported for lhoestq/error", "cause_exception": "TypeError", "cause_message": "Streaming is not supported for lhoestq/error", "cause_traceback": [ "Traceback (most recent call last):\n", ( ' File "/src/services/worker/src/worker/job_manager.py", line 163, in process\n ' " job_result = self.job_runner.compute()\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 932, in compute\n compute_config_parquet_and_info_response(\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 825, in compute_config_parquet_and_info_response\n raise_if_not_supported(\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 367, in raise_if_not_supported\n raise_if_too_big_from_external_data_files(\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 447, in raise_if_too_big_from_external_data_files\n " " builder._split_generators(mock_dl_manager)\n" ), ( " File" ' "/tmp/modules-cache/datasets_modules/.../error.py",' ' line 190, in _split_generators\n raise TypeError("Streaming is not supported for' ' lhoestq/error")\n' ), "TypeError: Streaming is not supported for lhoestq/error\n", ], }, "error_code": "UnexpectedError", "http_status": 500, "job_runner_version": 3, "progress": None, }, ] cache2: list[dict[str, Any]] = [ { "config": "lhoestq--demo2", "dataset": "lhoestq/demo2", "kind": kind, "split": None, "content": {}, "http_status": 200, } for kind in [ "config-parquet-and-info", "config-parquet", "dataset-parquet", "config-parquet-metadata", "config-info", "dataset-info", "config-size", "dataset-size", ] ] def test_cache_add_partial(mongo_host: str) -> None: with MongoResource(database="test_cache_add_partial", host=mongo_host, mongoengine_alias="cache"): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].insert_many(cache + cache2) migration = MigrationAddPartialToCacheResponse( version="20230703110100", description="add partial field to config-parquet-and-info", ) migration.up() assert_partial("lhoestq/demo1", kind="config-parquet-and-info") assert_unchanged("lhoestq/error", kind="config-parquet-and-info") for kind in [ "config-parquet-and-info", "config-parquet", "dataset-parquet", "config-parquet-metadata", "config-info", "dataset-info", "config-size", "dataset-size", ]: assert_partial("lhoestq/demo2", kind=kind) migration.down() assert_unchanged("lhoestq/demo1", kind="config-parquet-and-info") assert_unchanged("lhoestq/error", kind="config-parquet-and-info") for kind in [ "config-parquet-and-info", "config-parquet", "dataset-parquet", "config-parquet-metadata", "config-info", "dataset-info", "config-size", "dataset-size", ]: assert_unchanged("lhoestq/demo2", kind=kind) db[CACHE_COLLECTION_RESPONSES].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230703110100_cache_add_partial_field_in_config_parquet_and_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors.
datasets-server-main
jobs/mongodb_migration/tests/migrations/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from pytest import raises from mongodb_migration.migration import IrreversibleMigrationError from mongodb_migration.migrations._20230313164200_cache_remove_worker_version import ( MigrationRemoveWorkerVersionFromCachedResponse, ) def test_cache_remove_worker_version(mongo_host: str) -> None: with MongoResource(database="test_cache_remove_worker_version", host=mongo_host, mongoengine_alias="cache"): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].delete_many({}) db[CACHE_COLLECTION_RESPONSES].insert_many( [ { "kind": "/splits", "dataset": "dataset_without_worker_version", "http_status": 200, "worker_version": "1.0.0", } ] ) migration = MigrationRemoveWorkerVersionFromCachedResponse( version="20230313164200", description="remove 'worker_version' field from cache" ) migration.up() result = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": "dataset_without_worker_version"}) assert result assert "worker_version" not in result with raises(IrreversibleMigrationError): migration.down() db[CACHE_COLLECTION_RESPONSES].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230313164200_cache_remove_worker_version.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Optional from libcommon.constants import QUEUE_COLLECTION_LOCKS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230825170200_lock_add_ttl import ( MigrationAddTtlToQueueLock, ) def assert_ttl(key: str, ttl: Optional[int]) -> None: db = get_db(QUEUE_MONGOENGINE_ALIAS) entry = db[QUEUE_COLLECTION_LOCKS].find_one({"key": key}) assert entry is not None if ttl is None: assert "ttl" not in entry or entry["ttl"] is None else: assert entry["ttl"] == ttl def test_lock_add_ttl(mongo_host: str) -> None: with MongoResource(database="test_lock_add_ttl", host=mongo_host, mongoengine_alias="queue"): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_LOCKS].insert_many( [ { "key": "key1", "owner": "job_id1", "created_at": "2022-01-01T00:00:00.000000Z", }, { "key": "key2", "owner": None, "created_at": "2022-01-01T00:00:00.000000Z", }, { "key": "key3", "owner": "job_id3", "ttl": 600, "created_at": "2022-01-01T00:00:00.000000Z", }, ] ) migration = MigrationAddTtlToQueueLock( version="20230825170200", description="add ttl field to locks", ) migration.up() assert_ttl("key1", None) assert_ttl("key2", None) assert_ttl("key3", 600) migration.down() assert_ttl("key1", None) assert_ttl("key2", None) assert_ttl("key3", None) db[QUEUE_COLLECTION_LOCKS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230825170200_lock_add_ttl.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from pytest import raises from mongodb_migration.migration import IrreversibleMigrationError from mongodb_migration.migrations._20230516101600_queue_delete_index_without_revision import ( INDEX_DEFINITION, MigrationQueueDeleteIndexWithoutRevision, get_index_names, ) def test_queue_delete_index_without_revision(mongo_host: str) -> None: with MongoResource( database="test_queue_delete_index_without_revision", host=mongo_host, mongoengine_alias="queue" ): db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].create_index(INDEX_DEFINITION) assert len(get_index_names(db[QUEUE_COLLECTION_JOBS].index_information())) == 1 # Ensure the indexes exists migration = MigrationQueueDeleteIndexWithoutRevision( version="20230516101600", description="remove index without revision", ) migration.up() assert ( len(get_index_names(db[QUEUE_COLLECTION_JOBS].index_information())) == 0 ) # Ensure the indexes do not exist anymore with raises(IrreversibleMigrationError): migration.down() db[QUEUE_COLLECTION_JOBS].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230516101600_queue_delete_index_without_revision.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from typing import Any from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.resources import MongoResource from mongoengine.connection import get_db from mongodb_migration.migrations._20230824154900_cache_add_features_field_in_split_duckdb_index import ( MigrationAddFeaturesToSplitDuckdbIndexCacheResponse, ) def assert_features(dataset: str, kind: str) -> None: db = get_db(CACHE_MONGOENGINE_ALIAS) entry = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": dataset, "kind": kind}) assert entry is not None assert entry["content"]["features"] is None def assert_unchanged(dataset: str, kind: str) -> None: db = get_db(CACHE_MONGOENGINE_ALIAS) entry = db[CACHE_COLLECTION_RESPONSES].find_one({"dataset": dataset, "kind": kind}) assert entry is not None assert "features" not in entry["content"] cache: list[dict[str, Any]] = [ { "config": "lhoestq--demo1", "dataset": "lhoestq/demo1", "kind": "split-duckdb-index", "split": "train", "content": { "dataset": "lhoestq/demo1", "config": "default", "split": "train", "url": "https://huggingface.co/.../index.duckdb", "filename": "index.duckdb", "size": 5038, }, "dataset_git_revision": "87ecf163bedca9d80598b528940a9c4f99e14c11", "details": None, "error_code": None, "http_status": 200, "job_runner_version": 3, "progress": 1.0, }, { "config": "lhoestq--error", "dataset": "lhoestq/error", "kind": "split-duckdb-index", "split": "train", "content": {"error": "Streaming is not supported for lhoestq/error"}, "dataset_git_revision": "ec3c8d414af3dfe600399f5e6ef2c682938676f3", "details": { "error": "Streaming is not supported for lhoestq/error", "cause_exception": "TypeError", "cause_message": "Streaming is not supported for lhoestq/error", "cause_traceback": [ "Traceback (most recent call last):\n", ( ' File "/src/services/worker/src/worker/job_manager.py", line 163, in process\n ' " job_result = self.job_runner.compute()\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 932, in compute\n compute_config_parquet_and_info_response(\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 825, in compute_config_parquet_and_info_response\n raise_if_not_supported(\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 367, in raise_if_not_supported\n raise_if_too_big_from_external_data_files(\n" ), ( ' File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line' " 447, in raise_if_too_big_from_external_data_files\n " " builder._split_generators(mock_dl_manager)\n" ), ( " File" ' "/tmp/modules-cache/datasets_modules/.../error.py",' ' line 190, in _split_generators\n raise TypeError("Streaming is not supported for' ' lhoestq/error")\n' ), "TypeError: Streaming is not supported for lhoestq/error\n", ], }, "error_code": "UnexpectedError", "http_status": 500, "job_runner_version": 3, "progress": None, }, ] def test_cache_add_features(mongo_host: str) -> None: with MongoResource(database="test_cache_add_features", host=mongo_host, mongoengine_alias="cache"): db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].insert_many(cache) migration = MigrationAddFeaturesToSplitDuckdbIndexCacheResponse( version="20230824154900", description="add features field to split-duckdb-index", ) migration.up() assert_features("lhoestq/demo1", kind="split-duckdb-index") assert_unchanged("lhoestq/error", kind="split-duckdb-index") migration.down() assert_unchanged("lhoestq/demo1", kind="split-duckdb-index") assert_unchanged("lhoestq/error", kind="split-duckdb-index") db[CACHE_COLLECTION_RESPONSES].drop()
datasets-server-main
jobs/mongodb_migration/tests/migrations/test_20230824154900_cache_add_features_field_in_split_duckdb_index.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from mongodb_migration.database_migrations import DatabaseMigration from mongodb_migration.migration import Migration class SavedMigrationsError(Exception): pass class Plan: collected_migrations: list[Migration] executed_migrations: list[Migration] def __init__(self, collected_migrations: list[Migration]): self.collected_migrations = collected_migrations self.executed_migrations = [] def get_saved_migrations_versions(self) -> list[str]: return DatabaseMigration.objects().distinct("version") def get_planned_migrations(self) -> list[Migration]: saved_migrations_versions = sorted(self.get_saved_migrations_versions()) collected_migrations = sorted(self.collected_migrations, key=lambda m: m.version) first_collected_migrations_versions = [ migration.version for migration in collected_migrations[: len(saved_migrations_versions)] ] if saved_migrations_versions != first_collected_migrations_versions: logging.error( "Database migrations are not in sync with collected migrations. Database:" f" {saved_migrations_versions}, Collected: {first_collected_migrations_versions}" ) raise SavedMigrationsError( "The saved migrations in the database should be the first collected migrations." ) num_saved_migrations = len(saved_migrations_versions) num_collected_migrations = len(collected_migrations) if not num_collected_migrations: logging.error("No collected migrations") if num_saved_migrations: logging.info(f"{num_saved_migrations} migrations have already been applied. They will be skipped.") if num_saved_migrations == len(collected_migrations): logging.info("All migrations have already been applied.") return collected_migrations[num_saved_migrations:] def execute(self) -> None: try: self.apply() except Exception as e: logging.error(f"Migration failed: {e}") self.rollback() raise e # ^ the script must stop with an error code def apply(self) -> None: logging.info("Start migrations") self.executed_migrations = [] for migration in self.get_planned_migrations(): self.executed_migrations.append(migration) logging.info(f"Migrate {migration.version}: add to the migrations collection") self.save(migration) logging.info(f"Migrate {migration.version}: apply") migration.up() logging.info(f"Migrate {migration.version}: validate") migration.validate() logging.info(f"Migrate {migration.version}: done") logging.info("All migrations have been applied") def rollback(self) -> None: logging.info("Start rollback") try: while self.executed_migrations: migration = self.executed_migrations[-1] logging.info(f"Rollback {migration.version}: roll back") migration.down() logging.info(f"Rollback {migration.version}: removed from the migrations collection") self.remove(migration) logging.info(f"Rollback {migration.version}: done") self.executed_migrations.pop() logging.info("All executed migrations have been rolled back") except Exception as e: logging.error( f"Rollback failed: {e}. The database is in an inconsistent state. Try to restore the backup manually." ) raise e def save(self, migration: Migration) -> None: DatabaseMigration(version=migration.version, description=migration.description).save() def remove(self, migration: Migration) -> None: DatabaseMigration.objects(version=migration.version).delete()
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/plan.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from environs import Env from libcommon.config import CacheConfig, LogConfig, QueueConfig # TODO: Remove this config once all the collections in metrics db have been removed METRICS_MONGO_DATABASE = "datasets_server_metrics" METRICS_MONGO_URL = "mongodb://localhost:27017" @dataclass(frozen=True) class MetricsConfig: mongo_database: str = METRICS_MONGO_DATABASE mongo_url: str = METRICS_MONGO_URL @classmethod def from_env(cls) -> "MetricsConfig": env = Env(expand_vars=True) with env.prefixed("METRICS_"): return cls( mongo_database=env.str(name="MONGO_DATABASE", default=METRICS_MONGO_DATABASE), mongo_url=env.str(name="MONGO_URL", default=METRICS_MONGO_URL), ) DATABASE_MIGRATIONS_MONGO_DATABASE = "datasets_server_maintenance" DATABASE_MIGRATIONS_MONGO_URL = "mongodb://localhost:27017" @dataclass(frozen=True) class DatabaseMigrationsConfig: mongo_database: str = DATABASE_MIGRATIONS_MONGO_DATABASE mongo_url: str = DATABASE_MIGRATIONS_MONGO_URL @classmethod def from_env(cls) -> "DatabaseMigrationsConfig": env = Env(expand_vars=True) with env.prefixed("DATABASE_MIGRATIONS_"): return cls( mongo_database=env.str(name="MONGO_DATABASE", default=DATABASE_MIGRATIONS_MONGO_DATABASE), mongo_url=env.str(name="MONGO_URL", default=DATABASE_MIGRATIONS_MONGO_URL), ) @dataclass(frozen=True) class JobConfig: cache: CacheConfig = field(default_factory=CacheConfig) log: LogConfig = field(default_factory=LogConfig) database_migrations: DatabaseMigrationsConfig = field(default_factory=DatabaseMigrationsConfig) metrics: MetricsConfig = field(default_factory=MetricsConfig) queue: QueueConfig = field(default_factory=QueueConfig) @classmethod def from_env(cls) -> "JobConfig": return cls( log=LogConfig.from_env(), cache=CacheConfig.from_env(), database_migrations=DatabaseMigrationsConfig.from_env(), metrics=MetricsConfig.from_env(), queue=QueueConfig.from_env(), )
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/config.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. # adapted from https://docs.mongoengine.org/guide/migration.html#post-processing-checks import logging from collections.abc import Callable, Iterator from typing import Optional, TypeVar from mongoengine import Document from pymongo.collection import Collection # --- some typing subtleties, see https://github.com/sbdchd/mongo-types U = TypeVar("U", bound=Document) DocumentClass = type[U] CustomValidation = Callable[[U], None] # --- end def get_random_oids(collection: Collection, sample_size: int) -> list[int]: pipeline = [{"$project": {"_id": 1}}, {"$sample": {"size": sample_size}}] return [s["_id"] for s in collection.aggregate(pipeline)] def get_random_documents(DocCls: DocumentClass[Document], sample_size: int) -> Iterator[Document]: doc_collection = DocCls._get_collection() random_oids = get_random_oids(doc_collection, sample_size) return DocCls.objects(pk__in=random_oids) # type: ignore def check_documents( DocCls: DocumentClass[Document], sample_size: int, custom_validation: Optional[CustomValidation[Document]] = None, ) -> None: for doc in get_random_documents(DocCls, sample_size): try: # general validation (types and values) doc.validate() # load all subfields, # this may trigger additional queries if you have ReferenceFields # so it may be slow for field in doc._fields: try: getattr(doc, field) except Exception: logging.error(f"Could not load field {field} in Document {doc.pk}. Document: {doc.to_json()}") raise # custom validation if custom_validation is not None: custom_validation(doc) except Exception as e: logging.error(f"Validation error on document {doc.pk}: {e}. Document: {doc.to_json()}") raise e
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/check.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from typing import Optional from libcommon.queue import JobDocument from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import CacheMigration, QueueMigration class CacheRenamingMigration(CacheMigration): def __init__(self, cache_kind: str, new_cache_kind: str, version: str, description: Optional[str] = None): self.new_cache_kind: str = new_cache_kind if not description: description = f"update 'kind' field in cache from '{cache_kind}' to '{new_cache_kind}'" super().__init__(cache_kind=cache_kind, version=version, description=description) def up(self) -> None: logging.info(f"Rename cache_kind field from '{self.cache_kind}' to '{self.new_cache_kind}'") db = get_db(self.MONGOENGINE_ALIAS) # update existing documents with the old kind result = db[self.COLLECTION_RESPONSES].update_many( {"kind": self.cache_kind}, {"$set": {"kind": self.new_cache_kind}} ) logging.info( f"{result.matched_count} cache entries to be renamed - {result.modified_count} cache entries renamed" ) def down(self) -> None: logging.info(f"Rollback cache_kind field from '{self.new_cache_kind}' to '{self.cache_kind}'") db = get_db(self.MONGOENGINE_ALIAS) result = db[self.COLLECTION_RESPONSES].update_many( {"kind": self.new_cache_kind}, {"$set": {"kind": self.cache_kind}} ) logging.info( f"{result.matched_count} cache entries to be renamed - {result.modified_count} cache entries renamed" ) def validate(self) -> None: logging.info("Validate modified documents") check_documents(DocCls=CachedResponseDocument, sample_size=10) class QueueRenamingMigration(QueueMigration): def __init__(self, job_type: str, new_job_type: str, version: str, description: Optional[str] = None): self.new_job_type: str = new_job_type if not description: description = f"update 'type' and 'unicity_id' fields in job from '{job_type}' to '{new_job_type}'" super().__init__(job_type=job_type, version=version, description=description) def up(self) -> None: logging.info( f"Rename unicity_id field from '{self.job_type}' to " f"'{self.new_job_type}' and change type from '{self.job_type}' to " f"'{self.new_job_type}'" ) db = get_db(self.MONGOENGINE_ALIAS) result = db[self.COLLECTION_JOBS].update_many( {"type": self.job_type}, [ { "$set": { "unicity_id": { "$replaceOne": { "input": "$unicity_id", "find": f"{self.job_type}", "replacement": f"{self.new_job_type}", } }, "type": self.new_job_type, } }, ], # type: ignore ) logging.info(f"{result.matched_count} jobs to be renamed - {result.modified_count} jobs renamed") def down(self) -> None: logging.info( f"Rename unicity_id field from '{self.new_job_type}' to " f"'{self.job_type}' and change type from '{self.new_job_type}' to " f"'{self.job_type}'" ) db = get_db(self.MONGOENGINE_ALIAS) result = db[self.COLLECTION_JOBS].update_many( {"type": self.new_job_type}, [ { "$set": { "unicity_id": { "$replaceOne": { "input": "$unicity_id", "find": f"{self.new_job_type}", "replacement": f"{self.job_type}", } }, "type": self.new_job_type, } }, ], # type: ignore ) logging.info(f"{result.matched_count} jobs to be renamed - {result.modified_count} jobs renamed") def validate(self) -> None: logging.info("Validate modified documents") check_documents(DocCls=JobDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/renaming_migrations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. DATABASE_MIGRATIONS_COLLECTION_MIGRATIONS = "databaseMigrations" DATABASE_MIGRATIONS_MONGOENGINE_ALIAS = "maintenance"
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/constants.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from libcommon.constants import ( CACHE_METRICS_COLLECTION, METRICS_MONGOENGINE_ALIAS, QUEUE_METRICS_COLLECTION, ) from mongodb_migration.deletion_migrations import ( CacheDeletionMigration, MetricsDeletionMigration, MigrationQueueDeleteTTLIndex, QueueDeletionMigration, ) from mongodb_migration.drop_migrations import MigrationDropCollection from mongodb_migration.migration import Migration from mongodb_migration.migrations._20221110230400_example import MigrationExample from mongodb_migration.migrations._20221116133500_queue_job_add_force import ( MigrationAddForceToJob, ) from mongodb_migration.migrations._20221117223000_cache_generic_response import ( MigrationMoveToGenericCachedResponse, ) from mongodb_migration.migrations._20230126164900_queue_job_add_priority import ( MigrationAddPriorityToJob, ) from mongodb_migration.migrations._20230309123100_cache_add_progress import ( MigrationAddProgressToCacheResponse, ) from mongodb_migration.migrations._20230309141600_cache_add_job_runner_version import ( MigrationAddJobRunnerVersionToCacheResponse, ) from mongodb_migration.migrations._20230313164200_cache_remove_worker_version import ( MigrationRemoveWorkerVersionFromCachedResponse, ) from mongodb_migration.migrations._20230511100600_queue_remove_force import ( MigrationRemoveForceFromJob, ) from mongodb_migration.migrations._20230511100700_queue_delete_indexes_with_force import ( MigrationQueueDeleteIndexesWithForce, ) from mongodb_migration.migrations._20230511110700_queue_delete_skipped_jobs import ( MigrationDeleteSkippedJobs, ) from mongodb_migration.migrations._20230516101500_queue_job_add_revision import ( MigrationQueueAddRevisionToJob, ) from mongodb_migration.migrations._20230516101600_queue_delete_index_without_revision import ( MigrationQueueDeleteIndexWithoutRevision, ) from mongodb_migration.migrations._20230622131500_lock_add_owner import ( MigrationAddOwnerToQueueLock, ) from mongodb_migration.migrations._20230703110100_cache_add_partial_field_in_config_parquet_and_info import ( MigrationAddPartialToCacheResponse, ) from mongodb_migration.migrations._20230705160600_queue_job_add_difficulty import ( MigrationQueueAddDifficultyToJob, ) from mongodb_migration.renaming_migrations import ( CacheRenamingMigration, QueueRenamingMigration, ) # TODO: add a way to automatically collect migrations from the migrations/ folder class MigrationsCollector: def get_migrations(self) -> list[Migration]: return [ MigrationExample(version="20221110230400", description="example"), MigrationAddForceToJob( version="20221116133500", description="add 'force' field to jobs in queue database" ), MigrationMoveToGenericCachedResponse( version="20221117223000", description="replace SplitsResponse and FirstRowsResponse with a generic CachedResponse", ), MigrationAddPriorityToJob( version="20230126164900", description="add 'priority' field to jobs in queue database", ), CacheRenamingMigration( cache_kind="/split-names", new_cache_kind="/split-names-from-streaming", version="20230216112500", ), QueueRenamingMigration( job_type="/split-names", new_job_type="/split-names-from-streaming", version="20230216141000", ), MigrationAddProgressToCacheResponse( version="20230309123100", description="add the 'progress' field with the default value (1.0) to the cached results", ), MigrationAddJobRunnerVersionToCacheResponse( version="20230309141600", description="add 'job_runner_version' field based on 'worker_version' value" ), MigrationRemoveWorkerVersionFromCachedResponse( version="20230313164200", description="remove 'worker_version' field from cache" ), CacheRenamingMigration( cache_kind="/first-rows", new_cache_kind="split-first-rows-from-streaming", version="20230320163700", ), QueueRenamingMigration( job_type="/first-rows", new_job_type="split-first-rows-from-streaming", version="20230320165700", ), CacheRenamingMigration( cache_kind="/dataset-info", new_cache_kind="dataset-info", version="20230323155000", ), QueueRenamingMigration( job_type="/dataset-info", new_job_type="dataset-info", version="20230323160000", ), QueueDeletionMigration( job_type="/splits", version="20230407091400", ), CacheDeletionMigration( cache_kind="/splits", version="20230407091500", ), QueueDeletionMigration( job_type="/parquet-and-dataset-info", version="20230424173000", ), CacheDeletionMigration( cache_kind="/parquet-and-dataset-info", version="20230424174000", ), MetricsDeletionMigration( job_type="/parquet-and-dataset-info", cache_kind="/parquet-and-dataset-info", version="20230427121500", ), MigrationQueueDeleteTTLIndex( version="20230428145000", description="delete the TTL index on the 'finished_at' field in the queue database", field_name="finished_at", ), CacheDeletionMigration( cache_kind="dataset-split-names-from-streaming", version="20230428175100", ), QueueDeletionMigration( job_type="dataset-split-names-from-streaming", version="20230428181800", ), MetricsDeletionMigration( job_type="dataset-split-names-from-streaming", cache_kind="dataset-split-names-from-streaming", version="20230428193100", ), CacheDeletionMigration( cache_kind="dataset-split-names-from-dataset-info", version="20230504185100", ), QueueDeletionMigration( job_type="dataset-split-names-from-dataset-info", version="20230504192200", ), MetricsDeletionMigration( job_type="dataset-split-names-from-dataset-info", cache_kind="dataset-split-names-from-dataset-info", version="20230504194600", ), MigrationRemoveForceFromJob(version="20230511100600", description="remove 'force' field from queue"), MigrationQueueDeleteIndexesWithForce( version="20230511100700", description="remove indexes with field 'force'" ), MigrationDeleteSkippedJobs(version="20230511110700", description="delete jobs with skipped status"), MigrationQueueAddRevisionToJob( version="20230516101500", description="add 'revision' field to jobs in queue database" ), MigrationQueueDeleteIndexWithoutRevision( version="20230516101600", description="remove index without revision" ), CacheRenamingMigration( cache_kind="/split-names-from-streaming", new_cache_kind="config-split-names-from-streaming", version="20230516164500", ), QueueRenamingMigration( job_type="/split-names-from-streaming", new_job_type="config-split-names-from-streaming", version="20230516164700", ), MetricsDeletionMigration( job_type="/split-names-from-streaming", cache_kind="/split-names-from-streaming", version="20230522094400", ), MigrationQueueDeleteTTLIndex( version="20230523171700", description=( "delete the TTL index on the 'finished_at' field in the queue database to update its TTL value" ), field_name="finished_at", ), CacheRenamingMigration( cache_kind="/split-names-from-dataset-info", new_cache_kind="config-split-names-from-info", version="20230524095900", ), QueueRenamingMigration( job_type="/split-names-from-dataset-info", new_job_type="config-split-names-from-info", version="20230524095901", ), MetricsDeletionMigration( job_type="/split-names-from-dataset-info", cache_kind="/split-names-from-dataset-info", version="20230524095902", ), CacheRenamingMigration( cache_kind="/config-names", new_cache_kind="dataset-config-names", version="20230524192200" ), QueueRenamingMigration( job_type="/config-names", new_job_type="dataset-config-names", version="20230524192300", ), MetricsDeletionMigration(job_type="/config-names", cache_kind="/config-names", version="20230524192400"), MigrationQueueDeleteTTLIndex( version="20230607154800", description=( "delete the TTL index on the 'finished_at' field in the queue database to update its TTL condition" ), field_name="finished_at", ), MigrationQueueDeleteTTLIndex( version="202306201100", description=( "delete the TTL index on the 'finished_at' field in the queue database to update its TTL condition" ), field_name="finished_at", ), MigrationAddOwnerToQueueLock( version="20230622131800", description="add 'owner' field copying the job_id value" ), MigrationAddPartialToCacheResponse( version="20230703110100", description="add 'partial' field to config-parquet-and-info" ), MigrationQueueAddDifficultyToJob(version="20230705160600", description="add 'difficulty' field to jobs"), MigrationDropCollection( version="20230811063600", description="drop cache metrics collection", alias=METRICS_MONGOENGINE_ALIAS, collection_name=CACHE_METRICS_COLLECTION, ), MigrationDropCollection( version="20230814121400", description="drop queue metrics collection", alias=METRICS_MONGOENGINE_ALIAS, collection_name=QUEUE_METRICS_COLLECTION, ), ]
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/collector.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from mongoengine.connection import get_db from mongodb_migration.migration import IrreversibleMigrationError, Migration class MigrationDropCollection(Migration): def __init__(self, version: str, description: str, collection_name: str, alias: str): super().__init__(version=version, description=description) self.collection_name = collection_name self.alias = alias def up(self) -> None: logging.info(f"drop {self.collection_name} collection from {self.alias}") db = get_db(self.alias) db[self.collection_name].drop() def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("check that collection does not exist") db = get_db(self.alias) collections = db.list_collection_names() # type: ignore if self.collection_name in collections: raise ValueError(f"found collection with name {self.collection_name}")
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/drop_migrations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from libcommon.resources import MongoResource from mongodb_migration.constants import DATABASE_MIGRATIONS_MONGOENGINE_ALIAS @dataclass class MigrationsMongoResource(MongoResource): """ A resource that represents a connection to the migrations mongo database. Args: database (:obj:`str`): The name of the mongo database. host (:obj:`str`): The host of the mongo database. It must start with ``mongodb://`` or ``mongodb+srv://``. """ mongoengine_alias: str = field(default=DATABASE_MIGRATIONS_MONGOENGINE_ALIAS, init=False)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/resources.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging import sys from libcommon.log import init_logging from libcommon.resources import ( CacheMongoResource, MetricsMongoResource, QueueMongoResource, ) from mongodb_migration.collector import MigrationsCollector from mongodb_migration.config import JobConfig from mongodb_migration.plan import Plan from mongodb_migration.resources import MigrationsMongoResource def run_job() -> None: job_config = JobConfig.from_env() init_logging(level=job_config.log.level) # ^ set first to have logs as soon as possible with ( CacheMongoResource( database=job_config.cache.mongo_database, host=job_config.cache.mongo_url ) as cache_resource, MetricsMongoResource( database=job_config.metrics.mongo_database, host=job_config.metrics.mongo_url ) as metrics_resource, QueueMongoResource( database=job_config.queue.mongo_database, host=job_config.queue.mongo_url ) as queue_resource, MigrationsMongoResource( database=job_config.database_migrations.mongo_database, host=job_config.database_migrations.mongo_url ) as migrations_database_resource, ): if not cache_resource.is_available(): logging.warning( "The connection to the cache database could not be established. The migration job is skipped." ) return if not metrics_resource.is_available(): logging.warning( "The connection to the metrics database could not be established. The migration job is skipped." ) return if not queue_resource.is_available(): logging.warning( "The connection to the queue database could not be established. The migration job is skipped." ) return if not migrations_database_resource.is_available(): logging.warning( "The connection to the migrations database could not be established. The migration job is skipped." ) return collected_migrations = MigrationsCollector().get_migrations() Plan(collected_migrations=collected_migrations).execute() if __name__ == "__main__": try: run_job() sys.exit(0) except Exception as e: logging.error(e) sys.exit(1) # See: # https://blog.appsignal.com/2020/04/14/dissecting-rails-migrationsl.html # https://edgeguides.rubyonrails.org/active_record_migrations.html # https://docs.mongoengine.org/guide/migration.html # https://andrewlock.net/deploying-asp-net-core-applications-to-kubernetes-part-7-running-database-migrations/ # https://helm.sh/docs/topics/charts_hooks/
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/main.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import datetime from abc import ABC, abstractmethod from libcommon.constants import ( CACHE_COLLECTION_RESPONSES, CACHE_METRICS_COLLECTION, CACHE_MONGOENGINE_ALIAS, METRICS_MONGOENGINE_ALIAS, QUEUE_COLLECTION_JOBS, QUEUE_METRICS_COLLECTION, QUEUE_MONGOENGINE_ALIAS, ) class IrreversibleMigrationError(Exception): pass class Migration(ABC): def __init__(self, version: str, description: str): if version is None or description is None: raise ValueError("The version and the description are required.") try: datetime.datetime.strptime(version, "%Y%m%d%H%M%S") except Exception as e: raise ValueError("The version should be a string representing a date in the format YYYYMMDDHHMMSS") from e self.version = version self.description = description @abstractmethod def up(self) -> None: raise NotImplementedError() @abstractmethod def validate(self) -> None: raise NotImplementedError() @abstractmethod def down(self) -> None: raise IrreversibleMigrationError() class BaseQueueMigration(Migration): MONGOENGINE_ALIAS: str = QUEUE_MONGOENGINE_ALIAS COLLECTION_JOBS: str = QUEUE_COLLECTION_JOBS def __init__(self, version: str, description: str): super().__init__(version=version, description=description) class QueueMigration(BaseQueueMigration): def __init__(self, job_type: str, version: str, description: str): self.job_type = job_type super().__init__(version=version, description=description) class CacheMigration(Migration): MONGOENGINE_ALIAS: str = CACHE_MONGOENGINE_ALIAS COLLECTION_RESPONSES: str = CACHE_COLLECTION_RESPONSES def __init__(self, cache_kind: str, version: str, description: str): self.cache_kind = cache_kind super().__init__(version=version, description=description) class MetricsMigration(Migration): MONGOENGINE_ALIAS: str = METRICS_MONGOENGINE_ALIAS COLLECTION_JOB_TOTAL_METRIC: str = QUEUE_METRICS_COLLECTION COLLECTION_CACHE_TOTAL_METRIC: str = CACHE_METRICS_COLLECTION def __init__(self, job_type: str, cache_kind: str, version: str, description: str): self.job_type = job_type self.cache_kind = cache_kind super().__init__(version=version, description=description)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migration.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import types from typing import Generic, TypeVar from mongoengine import Document from mongoengine.fields import StringField from mongoengine.queryset.queryset import QuerySet from mongodb_migration.constants import ( DATABASE_MIGRATIONS_COLLECTION_MIGRATIONS, DATABASE_MIGRATIONS_MONGOENGINE_ALIAS, ) # START monkey patching ### hack ### # see https://github.com/sbdchd/mongo-types#install U = TypeVar("U", bound=Document) def no_op(self, _): # type: ignore return self QuerySet.__class_getitem__ = types.MethodType(no_op, QuerySet) class QuerySetManager(Generic[U]): def __get__(self, instance: object, cls: type[U]) -> QuerySet[U]: return QuerySet(cls, cls._get_collection()) # END monkey patching ### hack ### class DatabaseMigration(Document): """A database migration that has already been executed. Args: version (`str`): The version of the migration, with the format YYYYMMDDHHMMSS description (`str`): A description of the migration """ meta = { "collection": DATABASE_MIGRATIONS_COLLECTION_MIGRATIONS, "db_alias": DATABASE_MIGRATIONS_MONGOENGINE_ALIAS, } version = StringField(required=True) description = StringField(required=True) objects = QuerySetManager["DatabaseMigration"]() # only for the tests def _clean_maintenance_database() -> None: """Delete all the jobs in the database""" DatabaseMigration.drop_collection() # type: ignore
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/database_migrations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from collections.abc import Mapping from typing import Any, Optional from mongoengine.connection import get_db from mongodb_migration.migration import ( BaseQueueMigration, CacheMigration, IrreversibleMigrationError, MetricsMigration, QueueMigration, ) class MetricsDeletionMigration(MetricsMigration): def __init__(self, job_type: str, cache_kind: str, version: str, description: Optional[str] = None): if not description: description = f"delete the queue and cache metrics for step '{job_type}'" super().__init__(job_type=job_type, cache_kind=cache_kind, version=version, description=description) def up(self) -> None: logging.info(f"Delete job metrics of type {self.job_type}") db = get_db(self.MONGOENGINE_ALIAS) result = db[self.COLLECTION_JOB_TOTAL_METRIC].delete_many({"queue": self.job_type}) logging.info(f"{result.deleted_count} deleted job metrics") result = db[self.COLLECTION_CACHE_TOTAL_METRIC].delete_many({"kind": self.cache_kind}) logging.info(f"{result.deleted_count} deleted cache metrics") def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info(f"Check that none of the documents has the {self.job_type} type or {self.cache_kind} kind") db = get_db(self.MONGOENGINE_ALIAS) if db[self.COLLECTION_JOB_TOTAL_METRIC].count_documents({"queue": self.job_type}): raise ValueError(f"Found documents with type {self.job_type}") if db[self.COLLECTION_CACHE_TOTAL_METRIC].count_documents({"kind": self.cache_kind}): raise ValueError(f"Found documents with kind {self.cache_kind}") class CacheDeletionMigration(CacheMigration): def __init__(self, cache_kind: str, version: str, description: Optional[str] = None): if not description: description = f"delete the cache entries of kind '{cache_kind}'" super().__init__(cache_kind=cache_kind, version=version, description=description) def up(self) -> None: logging.info(f"Delete cache entries of kind {self.cache_kind}") db = get_db(self.MONGOENGINE_ALIAS) # delete existing documents result = db[self.COLLECTION_RESPONSES].delete_many({"kind": self.cache_kind}) logging.info(f"{result.deleted_count} deleted cache entries") def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info(f"Check that none of the documents has the {self.cache_kind} kind") db = get_db(self.MONGOENGINE_ALIAS) if db[self.COLLECTION_RESPONSES].count_documents({"kind": self.cache_kind}): raise ValueError(f"Found documents with kind {self.cache_kind}") class QueueDeletionMigration(QueueMigration): def __init__(self, job_type: str, version: str, description: Optional[str] = None): if not description: description = f"delete the jobs of type '{job_type}'" super().__init__(job_type=job_type, version=version, description=description) def up(self) -> None: logging.info(f"Delete jobs of type {self.job_type}") db = get_db(self.MONGOENGINE_ALIAS) result = db[self.COLLECTION_JOBS].delete_many({"type": self.job_type}) logging.info(f"{result.deleted_count} deleted jobs") def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info(f"Check that none of the documents has the {self.job_type} type") db = get_db(self.MONGOENGINE_ALIAS) if db[self.COLLECTION_JOBS].count_documents({"type": self.job_type}): raise ValueError(f"Found documents with type {self.job_type}") def get_index_names(index_information: Mapping[str, Any], field_name: str) -> list[str]: return [ name for name, value in index_information.items() if isinstance(value, dict) and "expireAfterSeconds" in value and "key" in value and value["key"] == [(field_name, 1)] ] class MigrationQueueDeleteTTLIndex(BaseQueueMigration): def __init__(self, version: str, description: str, field_name: str): super().__init__(version=version, description=description) self.field_name = field_name def up(self) -> None: logging.info( f"Delete ttl index on field {self.field_name}. Mongoengine will create it again with a different TTL" " parameter" ) db = get_db(self.MONGOENGINE_ALIAS) collection = db[self.COLLECTION_JOBS] ttl_index_names = get_index_names(index_information=collection.index_information(), field_name=self.field_name) if len(ttl_index_names) != 1: raise ValueError(f"Expected 1 ttl index on field {self.field_name}, found {len(ttl_index_names)}") collection.drop_index(ttl_index_names[0]) def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("Check that the index does not exists anymore") db = get_db(self.MONGOENGINE_ALIAS) collection = db[self.COLLECTION_JOBS] ttl_index_names = get_index_names(index_information=collection.index_information(), field_name=self.field_name) if len(ttl_index_names) > 0: raise ValueError(f"Found TTL index for field {self.field_name}")
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/deletion_migrations.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from mongodb_migration.migration import Migration class MigrationExample(Migration): def up(self) -> None: logging.info("Example migration, upgrade step") def down(self) -> None: logging.info("Example migration, downgrade step") def validate(self) -> None: logging.info("Example migration, validation is OK")
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20221110230400_example.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddFeaturesToSplitDuckdbIndexCacheResponse(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info( "If missing, add the features field with the default value (None) to the cached results of" " split-duckdb-index" ) db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many( { "kind": "split-duckdb-index", "http_status": 200, "content.features": {"$exists": False}, }, {"$set": {"content.features": None}}, ) def down(self) -> None: logging.info("Remove the features field from all the cached results") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many( { "kind": "split-duckdb-index", "http_status": 200, }, {"$unset": {"content.features": ""}}, ) def validate(self) -> None: logging.info("Ensure that a random selection of cached results have the 'features' field") check_documents(DocCls=CachedResponseDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230824154900_cache_add_features_field_in_split_duckdb_index.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from collections.abc import Mapping from typing import Any from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from mongoengine.connection import get_db from mongodb_migration.migration import IrreversibleMigrationError, Migration INDEX_DEFINITION = [("type", 1), ("dataset", 1), ("config", 1), ("split", 1), ("status", 1), ("priority", 1)] def get_index_names(index_information: Mapping[str, Any]) -> list[str]: return [ name for name, value in index_information.items() if isinstance(value, dict) and "key" in value and value["key"] == INDEX_DEFINITION ] class MigrationQueueDeleteIndexWithoutRevision(Migration): def up(self) -> None: logging.info("Delete index.") db = get_db(QUEUE_MONGOENGINE_ALIAS) collection = db[QUEUE_COLLECTION_JOBS] index_names = get_index_names(index_information=collection.index_information()) if len(index_names) != 1: raise ValueError(f"Found {len(index_names)} indexes (should be 1): {index_names}.") collection.drop_index(index_names[0]) def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("Check that the indexes do not exist anymore") db = get_db(QUEUE_MONGOENGINE_ALIAS) collection = db[QUEUE_COLLECTION_JOBS] index_names = get_index_names(index_information=collection.index_information()) if len(index_names) > 0: raise ValueError(f"Found indexes: {index_names}")
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230516101600_queue_delete_index_without_revision.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import JobDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import IrreversibleMigrationError, Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationRemoveForceFromJob(Migration): def up(self) -> None: logging.info("Removing 'force' field.") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({}, {"$unset": {"force": ""}}) def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("Ensure that a random selection of cached results don't have 'force' field") check_documents(DocCls=JobDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230511100600_queue_remove_force.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import JobDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddPriorityToJob(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info("If missing, add the priority field with the default value ('normal') to the jobs") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({"priority": {"$exists": False}}, {"$set": {"priority": "normal"}}) def down(self) -> None: logging.info("Remove the priority field from all the jobs") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({}, {"$unset": {"priority": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of jobs have the 'priority' field set") check_documents(DocCls=JobDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230126164900_queue_job_add_priority.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import JobDocument from mongoengine import Document from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import IrreversibleMigrationError, Migration status = "skipped" # connection already occurred in the main.py (caveat: we use globals) class MigrationDeleteSkippedJobs(Migration): def up(self) -> None: logging.info(f"Delete jobs with status {status}.") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].delete_many({"status": status}) def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("Ensure that a random selection of jobs don't have the status {status}") def custom_validation(doc: Document) -> None: if not isinstance(doc, JobDocument): raise ValueError("Document is not a Job") if doc.status == status: raise ValueError(f"Document has the status {status}") check_documents(DocCls=JobDocument, sample_size=10, custom_validation=custom_validation)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230511110700_queue_delete_skipped_jobs.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.config import ProcessingGraphConfig from libcommon.constants import ( DEFAULT_DIFFICULTY, QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS, ) from libcommon.queue import JobDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationQueueAddDifficultyToJob(Migration): def up(self) -> None: logging.info("If missing, add the difficulty with a value that depends on the job type, else 50") db = get_db(QUEUE_MONGOENGINE_ALIAS) processing_graph_config = ProcessingGraphConfig() for job_type, spec in processing_graph_config.specification.items(): difficulty = spec.get("difficulty", DEFAULT_DIFFICULTY) db[QUEUE_COLLECTION_JOBS].update_many( {"type": job_type, "difficulty": {"$exists": False}}, {"$set": {"difficulty": difficulty}}, ) db[QUEUE_COLLECTION_JOBS].update_many( {"difficulty": {"$exists": False}}, {"$set": {"difficulty": DEFAULT_DIFFICULTY}}, ) def down(self) -> None: logging.info("Remove the difficulty field from all the jobs") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({}, {"$unset": {"difficulty": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of jobs have the 'difficulty' field set") check_documents(DocCls=JobDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230705160600_queue_job_add_difficulty.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import IrreversibleMigrationError, Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationRemoveWorkerVersionFromCachedResponse(Migration): def up(self) -> None: logging.info("Removing 'worker_version' field.") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many({}, {"$unset": {"worker_version": ""}}) def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("Ensure that a random selection of cached results don't have 'worker_version' field") check_documents(DocCls=CachedResponseDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230313164200_cache_remove_worker_version.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import contextlib import logging from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from pymongo.errors import InvalidName from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration db_name = "cache" splitsResponseCollection = "splitsResponse" firstRowsResponseCollection = "firstRowsResponse" cachedResponseCollection = "cachedResponsesBlue" SPLITS_KIND = "/splits" FIRST_ROWS_KIND = "/first-rows" # connection already occurred in the main.py (caveat: we use globals) class MigrationMoveToGenericCachedResponse(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info( f"Create the {cachedResponseCollection} collection, and fill it with the data from splits and first-rows" ) db = get_db(db_name) # Copy the data from the previous collections (splitsResponse, firstRowsResponse) to # the new generic collection (cachedResponse) with contextlib.suppress(InvalidName): for splits_response in db[splitsResponseCollection].find(): if not isinstance(splits_response, dict): # for mypy raise ValueError("splits_response should be a dict") db[cachedResponseCollection].insert_one( { "_id": splits_response.get("_id"), "kind": SPLITS_KIND, # ^ "kind" is a new field "dataset": splits_response.get("dataset_name"), "config": None, "split": None, # ^ "config" and "split" are None for kind=/splits "http_status": splits_response.get("http_status"), "error_code": splits_response.get("error_code"), "content": splits_response.get("response"), # ^ "response" field has been renamed to "content" "worker_version": splits_response.get("worker_version"), "dataset_git_revision": splits_response.get("dataset_git_revision"), "details": splits_response.get("details"), "updated_at": splits_response.get("updated_at"), # "stale" field is not used anymore } ) with contextlib.suppress(InvalidName): for first_rows_response in db[firstRowsResponseCollection].find(): if not isinstance(first_rows_response, dict): # for mypy raise ValueError("first_rows_response should be a dict") db[cachedResponseCollection].insert_one( { "_id": first_rows_response.get("_id"), "kind": FIRST_ROWS_KIND, # ^ "kind" is a new field "dataset": first_rows_response.get("dataset_name"), "config": first_rows_response.get("config_name"), "split": first_rows_response.get("split_name"), # ^ "config" and "split" are None for kind=/splits "http_status": first_rows_response.get("http_status"), "error_code": first_rows_response.get("error_code"), "content": first_rows_response.get("response"), # ^ "response" field has been renamed to "content" "worker_version": first_rows_response.get("worker_version"), "dataset_git_revision": first_rows_response.get("dataset_git_revision"), "details": first_rows_response.get("details"), "updated_at": first_rows_response.get("updated_at"), # "stale" field is not used anymore } ) # We will not delete the old collections for now. It will be made in a later migration. # Also: no need to create indexes on the new collection, mongoengine will do it automatically on the next # request. def down(self) -> None: logging.info(f"Delete the {cachedResponseCollection} collection") db = get_db(db_name) with contextlib.suppress(InvalidName): db[cachedResponseCollection].drop() def validate(self) -> None: logging.info("Validate the migrated documents") check_documents(DocCls=CachedResponseDocument, sample_size=10) db = get_db(db_name) try: splits_responses_count = db[splitsResponseCollection].count_documents({}) except InvalidName: splits_responses_count = 0 try: first_rows_responses_count = db[firstRowsResponseCollection].count_documents({}) except InvalidName: first_rows_responses_count = 0 cached_responses_count = CachedResponseDocument.objects.count() if splits_responses_count + first_rows_responses_count > cached_responses_count: raise ValueError( f"Some documents are missing in the new collection: splitsResponse ({splits_responses_count})," f" firstRowsResponse ({first_rows_responses_count}), cachedResponseBlue ({cached_responses_count})" )
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20221117223000_cache_generic_response.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from mongoengine.connection import get_db from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddForceToJob(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info("If missing, add the force field with the default value (False) to the jobs") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({"force": {"$exists": False}}, {"$set": {"force": False}}) def down(self) -> None: logging.info("Remove the force field from all the jobs") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({}, {"$unset": {"force": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of jobs have the 'force' field") # The Job object does not contain the force field anymore. See _20230511100600_queue_remove_force.py # check_documents(DocCls=Job, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20221116133500_queue_job_add_force.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from collections.abc import Mapping from typing import Any from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from mongoengine.connection import get_db from mongodb_migration.migration import IrreversibleMigrationError, Migration field_name = "force" def get_index_names(index_information: Mapping[str, Any], field_name: str) -> list[str]: return [ name for name, value in index_information.items() if isinstance(value, dict) and "key" in value and any(t[0] == field_name for t in value["key"] if isinstance(t, tuple) and len(t)) ] class MigrationQueueDeleteIndexesWithForce(Migration): def up(self) -> None: logging.info(f"Delete indexes that contain the {field_name} field.") db = get_db(QUEUE_MONGOENGINE_ALIAS) collection = db[QUEUE_COLLECTION_JOBS] index_names = get_index_names(index_information=collection.index_information(), field_name=field_name) for index_name in index_names: collection.drop_index(index_name) def down(self) -> None: raise IrreversibleMigrationError("This migration does not support rollback") def validate(self) -> None: logging.info("Check that the indexes do not exist anymore") db = get_db(QUEUE_MONGOENGINE_ALIAS) collection = db[QUEUE_COLLECTION_JOBS] index_names = get_index_names(index_information=collection.index_information(), field_name=field_name) if len(index_names) > 0: raise ValueError(f"Found indexes for field {field_name}: {index_names}")
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230511100700_queue_delete_indexes_with_force.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddProgressToCacheResponse(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info("If missing, add the progress field with the default value (1.0) to the cached results") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many({"progress": {"$exists": False}}, {"$set": {"progress": 1.0}}) def down(self) -> None: logging.info("Remove the progress field from all the cached results") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many({}, {"$unset": {"progress": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of cached results have the 'progress' field") check_documents(DocCls=CachedResponseDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230309123100_cache_add_progress.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_LOCKS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import Lock from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddTtlToQueueLock(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info("If missing, add the ttl field to the locks") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_LOCKS].update_many({"ttl": {"$exists": False}}, [{"$set": {"ttl": None}}]) # type: ignore def down(self) -> None: logging.info("Remove the ttl field from all the locks") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_LOCKS].update_many({}, {"$unset": {"ttl": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of locks have the 'ttl' field") check_documents(DocCls=Lock, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230825170200_lock_add_ttl.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddPartialToCacheResponse(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info( "If missing, add the partial field with the default value (false) to the cached results of" " config-parquet-and-info and subsequent steps" ) db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many( { "kind": { "$in": [ "config-parquet-and-info", "config-parquet", "dataset-parquet", "config-parquet-metadata", "config-info", "dataset-info", "config-size", "dataset-size", ] }, "http_status": 200, "content.partial": {"$exists": False}, }, {"$set": {"content.partial": False}}, ) def down(self) -> None: logging.info("Remove the partial field from all the cached results") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many( { "kind": { "$in": [ "config-parquet-and-info", "config-parquet", "dataset-parquet", "config-parquet-metadata", "config-info", "dataset-info", "config-size", "dataset-size", ] }, "http_status": 200, }, {"$unset": {"content.partial": ""}}, ) def validate(self) -> None: logging.info("Ensure that a random selection of cached results have the 'partial' field") check_documents(DocCls=CachedResponseDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230703110100_cache_add_partial_field_in_config_parquet_and_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_JOBS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import JobDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationQueueAddRevisionToJob(Migration): def up(self) -> None: logging.info("If missing, add the revision field with the value ('main') to the jobs") # Note that setting the value to "main" is a trick, that should avoid deleting the jobs, # since we don't know the git revision when the jobs were created. # The functions that create jobs in the code will set revision to the commit hash, not to "main" anymore. db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({"revision": {"$exists": False}}, {"$set": {"revision": "main"}}) def down(self) -> None: logging.info("Remove the revision field from all the jobs") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_JOBS].update_many({}, {"$unset": {"revision": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of jobs have the 'revision' field set") check_documents(DocCls=JobDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230516101500_queue_job_add_revision.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import CACHE_COLLECTION_RESPONSES, CACHE_MONGOENGINE_ALIAS from libcommon.simple_cache import CachedResponseDocument from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddJobRunnerVersionToCacheResponse(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info("If missing, add 'job_runner_version' field based on 'worker_version' value") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many( {"job_runner_version": {"$exists": False}}, [ { "$set": { "job_runner_version": { "$convert": { "input": {"$first": {"$split": ["$worker_version", "."]}}, "to": "int", "onError": None, "onNull": None, } } } } ], # type: ignore ) def down(self) -> None: logging.info("Remove 'job_runner_version' field from all the cached results") db = get_db(CACHE_MONGOENGINE_ALIAS) db[CACHE_COLLECTION_RESPONSES].update_many({}, {"$unset": {"job_runner_version": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of cached results have the 'job_runner_version' field") check_documents(DocCls=CachedResponseDocument, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230309141600_cache_add_job_runner_version.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import QUEUE_COLLECTION_LOCKS, QUEUE_MONGOENGINE_ALIAS from libcommon.queue import Lock from mongoengine.connection import get_db from mongodb_migration.check import check_documents from mongodb_migration.migration import Migration # connection already occurred in the main.py (caveat: we use globals) class MigrationAddOwnerToQueueLock(Migration): def up(self) -> None: # See https://docs.mongoengine.org/guide/migration.html#example-1-addition-of-a-field logging.info("If missing, add the owner field with the same value as the field job_id to the locks") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_LOCKS].update_many( {"owner": {"$exists": False}}, [{"$set": {"owner": "$job_id"}}] # type: ignore ) def down(self) -> None: logging.info("Remove the owner field from all the locks") db = get_db(QUEUE_MONGOENGINE_ALIAS) db[QUEUE_COLLECTION_LOCKS].update_many({}, {"$unset": {"owner": ""}}) def validate(self) -> None: logging.info("Ensure that a random selection of locks have the 'owner' field") check_documents(DocCls=Lock, sample_size=10)
datasets-server-main
jobs/mongodb_migration/src/mongodb_migration/migrations/_20230622131500_lock_add_owner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Iterator from libcommon.queue import _clean_queue_database from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import _clean_cache_database from pytest import MonkeyPatch, fixture from cache_maintenance.config import JobConfig from .constants import ( CI_APP_TOKEN, CI_HUB_ENDPOINT, CI_PARQUET_CONVERTER_APP_TOKEN, CI_PARQUET_CONVERTER_USER, ) # see https://github.com/pytest-dev/pytest/issues/363#issuecomment-406536200 @fixture(scope="session") def monkeypatch_session() -> Iterator[MonkeyPatch]: monkeypatch_session = MonkeyPatch() monkeypatch_session.setenv("CACHE_MONGO_DATABASE", "datasets_server_cache_test") monkeypatch_session.setenv("QUEUE_MONGO_DATABASE", "datasets_server_queue_test") monkeypatch_session.setenv("COMMON_HF_ENDPOINT", CI_HUB_ENDPOINT) monkeypatch_session.setenv("COMMON_HF_TOKEN", CI_APP_TOKEN) monkeypatch_session.setenv("DISCUSSIONS_BOT_ASSOCIATED_USER_NAME", CI_PARQUET_CONVERTER_USER) monkeypatch_session.setenv("DISCUSSIONS_BOT_TOKEN", CI_PARQUET_CONVERTER_APP_TOKEN) yield monkeypatch_session monkeypatch_session.undo() @fixture(scope="session") def job_config(monkeypatch_session: MonkeyPatch) -> JobConfig: job_config = JobConfig.from_env() if "test" not in job_config.cache.mongo_database or "test" not in job_config.queue.mongo_database: raise ValueError("Test must be launched on a test mongo database") return job_config @fixture(autouse=True) def cache_mongo_resource(job_config: JobConfig) -> Iterator[CacheMongoResource]: with CacheMongoResource(database=job_config.cache.mongo_database, host=job_config.cache.mongo_url) as resource: yield resource _clean_cache_database() @fixture(autouse=True) def queue_mongo_resource(job_config: JobConfig) -> Iterator[QueueMongoResource]: with QueueMongoResource(database=job_config.queue.mongo_database, host=job_config.queue.mongo_url) as resource: yield resource _clean_queue_database()
datasets-server-main
jobs/cache_maintenance/tests/conftest.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus from libcommon.simple_cache import CacheTotalMetricDocument, upsert_response from cache_maintenance.cache_metrics import collect_cache_metrics def test_collect_cache_metrics() -> None: dataset = "test_dataset" config = None split = None content = {"some": "content"} kind = "kind" upsert_response( kind=kind, dataset=dataset, config=config, split=split, content=content, http_status=HTTPStatus.OK, ) collect_cache_metrics() cache_metrics = CacheTotalMetricDocument.objects() assert cache_metrics assert len(cache_metrics) == 1 metric = cache_metrics.first() assert metric is not None assert metric.kind == kind assert metric.error_code is None assert metric.http_status == HTTPStatus.OK assert metric.total == 1
datasets-server-main
jobs/cache_maintenance/tests/test_collect_cache_metrics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. # see https://github.com/huggingface/moon-landing/blob/main/server/scripts/staging-seed-db.ts CI_APP_TOKEN = "hf_app_datasets-server_token" CI_PARQUET_CONVERTER_USER = "__PARQUET_CONVERTER_USER__" CI_PARQUET_CONVERTER_APP_TOKEN = "hf_app_datasets-server-parquet-converter_token" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_USER = "__DUMMY_DATASETS_SERVER_USER__" CI_USER_TOKEN = "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"
datasets-server-main
jobs/cache_maintenance/tests/constants.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import os import time from pathlib import Path from cache_maintenance.delete_indexes import delete_indexes def test_delete_indexes() -> None: duckdb_index_cache_directory = "/tmp" subdirectory = "download" file_extension = ".duckdb" expired_time_interval_seconds = 2 os.mkdir(f"{duckdb_index_cache_directory}/{subdirectory}") index_file = Path(f"{duckdb_index_cache_directory}/{subdirectory}/index{file_extension}") index_file.touch() # ensure file exists assert index_file.is_file() # try to delete it inmediatly after creation, it should remain delete_indexes(duckdb_index_cache_directory, subdirectory, file_extension, expired_time_interval_seconds) assert index_file.is_file() # try to delete it after more that time interval, it should be deleted index_file.touch() time.sleep(expired_time_interval_seconds + 2) delete_indexes(duckdb_index_cache_directory, subdirectory, file_extension, expired_time_interval_seconds) assert not index_file.is_file() os.rmdir(f"{duckdb_index_cache_directory}/{subdirectory}")
datasets-server-main
jobs/cache_maintenance/tests/test_delete_indexes.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus import pytest from huggingface_hub.community import DiscussionComment from libcommon.simple_cache import DatasetWithRevision, upsert_response from libcommon.utils import get_datetime from cache_maintenance.config import JobConfig from cache_maintenance.discussions import ( DAYS, PARQUET_CACHE_KIND, create_discussion_description, create_link, create_parquet_comment, limit_to_one_dataset_per_namespace, post_messages, ) from .utils import ( TemporaryDataset, close_discussion, count_comments, fetch_bot_discussion, ) @pytest.mark.parametrize( "datasets, valid_expected_datasets", [ (set(), [set()]), ({"a/b"}, [{"a/b"}]), ({"a"}, [set()]), ({"a/b/c"}, [set()]), ({"a/b", "a/b"}, [{"a/b"}]), ({"a/b", "a/c"}, [{"a/b"}, {"a/c"}]), ({"a/b", "b/b"}, [{"a/b", "b/b"}]), ({"a/b", "b"}, [{"a/b"}]), ], ) def test_limit_to_one_dataset_per_namespace(datasets: set[str], valid_expected_datasets: list[set[str]]) -> None: assert any( { d.dataset for d in limit_to_one_dataset_per_namespace( datasets_with_revision=[DatasetWithRevision(dataset=dataset, revision=None) for dataset in datasets] ) } == expected_datasets for expected_datasets in valid_expected_datasets ) def test_create_link() -> None: assert ( create_link( text="sometext", dataset="a/b", hf_endpoint="https://huggingface.co", revision_type="commit", revision="c/d", ) == "[`sometext`](https://huggingface.co/datasets/a/b/commit/c%2Fd)" ) def test_post_messages_in_one_dataset(job_config: JobConfig) -> None: with TemporaryDataset(prefix="dataset") as dataset: assert fetch_bot_discussion(dataset=dataset.repo_id) is None # set "config-parquet" entry for the dataset first_revision = "3bb24dcad2b45b45e20fc0accc93058dcbe8087d" upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset.repo_id, content={}, http_status=HTTPStatus.OK, dataset_git_revision=first_revision, ) # call post_messages counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure one message has been posted in a dataset discussion assert counters["parquet"] == { "datasets": 1, "messages": 1, "new_discussions": 1, "errors": 0, "dismissed_messages": 0, } first_discussion = fetch_bot_discussion(dataset=dataset.repo_id) assert first_discussion is not None assert count_comments(first_discussion) == 2 first_comment = first_discussion.events[0] assert isinstance(first_comment, DiscussionComment) assert first_comment.content == create_discussion_description() second_comment = first_discussion.events[1] assert isinstance(second_comment, DiscussionComment) assert second_comment.content == create_parquet_comment( dataset=dataset.repo_id, hf_endpoint=job_config.common.hf_endpoint, parquet_revision=job_config.discussions.parquet_revision, dataset_revision=first_revision, ) # set a new "config-parquet" entry for the dataset second_revision = "9a0bd9fe2a87bbb82702ed170a53cf4e86535070" upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset.repo_id, content={}, http_status=HTTPStatus.OK, dataset_git_revision=second_revision, ) # call post_messages again counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure the message have been posted in the same discussion assert counters["parquet"] == { "datasets": 1, "messages": 1, "new_discussions": 0, "errors": 0, "dismissed_messages": 0, } second_discussion = fetch_bot_discussion(dataset=dataset.repo_id) assert second_discussion is not None assert first_discussion.num == second_discussion.num assert count_comments(second_discussion) == 3 third_comment = second_discussion.events[2] assert isinstance(third_comment, DiscussionComment) assert third_comment.content == create_parquet_comment( dataset=dataset.repo_id, hf_endpoint=job_config.common.hf_endpoint, parquet_revision=job_config.discussions.parquet_revision, dataset_revision=second_revision, ) # close the discussion close_discussion(dataset=dataset.repo_id, discussion_num=first_discussion.num) # call post_messages again counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure the message has not been posted assert counters["parquet"] == { "datasets": 1, "messages": 0, "new_discussions": 0, "errors": 0, "dismissed_messages": 1, } third_discussion = fetch_bot_discussion(dataset=dataset.repo_id) assert third_discussion is not None assert first_discussion.num == third_discussion.num assert count_comments(third_discussion) == 3 def test_post_messages_with_two_datasets_in_one_namespace(job_config: JobConfig) -> None: with TemporaryDataset(prefix="dataset1") as dataset1, TemporaryDataset(prefix="dataset2") as dataset2: assert fetch_bot_discussion(dataset=dataset1.repo_id) is None assert fetch_bot_discussion(dataset=dataset2.repo_id) is None # set "config-parquet" entry for the two datasets upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset1.repo_id, content={}, http_status=HTTPStatus.OK, ) upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset2.repo_id, content={}, http_status=HTTPStatus.OK, ) # call post_messages counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure one message has been posted in only one dataset discussion assert counters["parquet"] == { "datasets": 1, "messages": 1, "new_discussions": 1, "errors": 0, "dismissed_messages": 0, } discussion1 = fetch_bot_discussion(dataset=dataset1.repo_id) discussion2 = fetch_bot_discussion(dataset=dataset2.repo_id) discussion = discussion1 or discussion2 assert discussion is not None assert discussion1 is None or discussion2 is None assert count_comments(discussion) == 2 comment = discussion.events[1] assert isinstance(comment, DiscussionComment) assert comment.content == create_parquet_comment( dataset=dataset1.repo_id, hf_endpoint=job_config.common.hf_endpoint, parquet_revision=job_config.discussions.parquet_revision, dataset_revision=None, ) or create_parquet_comment( dataset=dataset2.repo_id, hf_endpoint=job_config.common.hf_endpoint, parquet_revision=job_config.discussions.parquet_revision, dataset_revision=None, ) @pytest.mark.parametrize( "gated,private", [ (True, False), (False, True), (True, True), ], ) def test_post_messages_in_private_or_gated_dataset(job_config: JobConfig, gated: bool, private: bool) -> None: with TemporaryDataset(prefix="dataset", gated=gated, private=private) as dataset: assert fetch_bot_discussion(dataset=dataset.repo_id) is None # set "config-parquet" entry for the dataset upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset.repo_id, content={}, http_status=HTTPStatus.OK, ) # call post_messages counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure one message has been posted in a dataset discussion # YES: even if it's private. Should we forbid this? # Normally: the cache should not contain private datasets, but a public # dataset can be switched to private, and for some reason, or during some # time, the cache can contain private datasets. assert counters["parquet"] == { "datasets": 1, "messages": 1, "new_discussions": 1, "errors": 0, "dismissed_messages": 0, } first_discussion = fetch_bot_discussion(dataset=dataset.repo_id) assert first_discussion is not None assert count_comments(first_discussion) == 2 comment = first_discussion.events[1] assert isinstance(comment, DiscussionComment) assert comment.content == create_parquet_comment( dataset=dataset.repo_id, hf_endpoint=job_config.common.hf_endpoint, parquet_revision=job_config.discussions.parquet_revision, dataset_revision=None, ) def test_post_messages_for_outdated_response(job_config: JobConfig) -> None: with TemporaryDataset(prefix="dataset") as dataset: assert fetch_bot_discussion(dataset=dataset.repo_id) is None # set "config-parquet" entry for the dataset upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset.repo_id, content={}, http_status=HTTPStatus.OK, updated_at=get_datetime(days=DAYS + 10), ) # call post_messages counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure no discussion has been created, because the content was too old assert counters["parquet"] == { "datasets": 0, "messages": 0, "new_discussions": 0, "errors": 0, "dismissed_messages": 0, } assert fetch_bot_discussion(dataset=dataset.repo_id) is None # update the content upsert_response( kind=PARQUET_CACHE_KIND, dataset=dataset.repo_id, content={}, http_status=HTTPStatus.OK, ) # call post_messages counters = post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) # ensure one message has been posted in a dataset discussion assert counters["parquet"] == { "datasets": 1, "messages": 1, "new_discussions": 1, "errors": 0, "dismissed_messages": 0, } first_discussion = fetch_bot_discussion(dataset=dataset.repo_id) assert first_discussion is not None assert count_comments(first_discussion) == 2 comment = first_discussion.events[1] assert isinstance(comment, DiscussionComment) assert comment.content == create_parquet_comment( dataset=dataset.repo_id, hf_endpoint=job_config.common.hf_endpoint, parquet_revision=job_config.discussions.parquet_revision, dataset_revision=None, )
datasets-server-main
jobs/cache_maintenance/tests/test_discussions.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
jobs/cache_maintenance/tests/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import time from contextlib import suppress from dataclasses import dataclass, field from pathlib import Path from typing import Any, Optional, Union import requests from huggingface_hub.community import DiscussionComment, DiscussionWithDetails from huggingface_hub.constants import ( REPO_TYPE_DATASET, REPO_TYPES, REPO_TYPES_URL_PREFIXES, ) from huggingface_hub.hf_api import HfApi from huggingface_hub.utils._errors import hf_raise_for_status from libcommon.resources import Resource from .constants import ( CI_HUB_ENDPOINT, CI_PARQUET_CONVERTER_USER, CI_USER, CI_USER_TOKEN, ) DATASET = "dataset" hf_api = HfApi(endpoint=CI_HUB_ENDPOINT) def get_default_config_split() -> tuple[str, str]: config = "default" split = "train" return config, split def update_repo_settings( *, repo_id: str, private: Optional[bool] = None, gated: Optional[str] = None, token: Optional[str] = None, organization: Optional[str] = None, repo_type: Optional[str] = None, name: Optional[str] = None, ) -> Any: """Update the settings of a repository. Args: repo_id (`str`, *optional*): A namespace (user or an organization) and a repo name separated by a `/`. <Tip> Version added: 0.5 </Tip> private (`bool`, *optional*, defaults to `None`): Whether the repo should be private. gated (`str`, *optional*, defaults to `None`): Whether the repo should request user access. Possible values are 'auto' and 'manual' token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) repo_type (`str`, *optional*): Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to a model. Default is `None`. Returns: The HTTP response in json. <Tip> Raises the following errors: - [`~huggingface_hub.utils.RepositoryNotFoundError`] If the repository to download from cannot be found. This may be because it doesn't exist, or because it is set to `private` and you do not have access. </Tip> """ if repo_type not in REPO_TYPES: raise ValueError("Invalid repo type") organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) if organization is None: namespace = hf_api.whoami(token)["name"] else: namespace = organization path_prefix = f"{hf_api.endpoint}/api/" if repo_type in REPO_TYPES_URL_PREFIXES: path_prefix += REPO_TYPES_URL_PREFIXES[repo_type] path = f"{path_prefix}{namespace}/{name}/settings" json: dict[str, Union[bool, str]] = {} if private is not None: json["private"] = private if gated is not None: json["gated"] = gated r = requests.put( path, headers={"authorization": f"Bearer {token}"}, json=json, ) hf_raise_for_status(r) return r.json() def create_empty_hub_dataset_repo( *, prefix: str, file_paths: Optional[list[str]] = None, private: bool = False, gated: Optional[str] = None, ) -> str: dataset_name = f"{prefix}-{int(time.time() * 10e3)}" repo_id = f"{CI_USER}/{dataset_name}" hf_api.create_repo(repo_id=repo_id, token=CI_USER_TOKEN, repo_type=DATASET, private=private) if gated: update_repo_settings(repo_id=repo_id, token=CI_USER_TOKEN, gated=gated, repo_type=DATASET) if file_paths is not None: for file_path in file_paths: hf_api.upload_file( token=CI_USER_TOKEN, path_or_fileobj=file_path, path_in_repo=Path(file_path).name.replace("{dataset_name}", dataset_name), repo_id=repo_id, repo_type=DATASET, ) return repo_id def delete_hub_dataset_repo(repo_id: str) -> None: with suppress(requests.exceptions.HTTPError, ValueError): hf_api.delete_repo(repo_id=repo_id, token=CI_USER_TOKEN, repo_type=DATASET) @dataclass class TemporaryDataset(Resource): """A temporary dataset.""" prefix: str gated: bool = False private: bool = False repo_id: str = field(init=False) def allocate(self) -> None: self.repo_id = create_empty_hub_dataset_repo( prefix=self.prefix, gated="auto" if self.gated else None, private=self.private ) def release(self) -> None: delete_hub_dataset_repo(repo_id=self.repo_id) def fetch_bot_discussion(dataset: str) -> Optional[DiscussionWithDetails]: """ Fetch the discussion for a dataset and a user. """ hf_api = HfApi(endpoint=CI_HUB_ENDPOINT, token=CI_USER_TOKEN) discussions = hf_api.get_repo_discussions(repo_id=dataset, repo_type=REPO_TYPE_DATASET) discussion = next( (discussion for discussion in discussions if discussion.author == CI_PARQUET_CONVERTER_USER), None ) if not discussion: return None return hf_api.get_discussion_details(repo_id=dataset, repo_type=REPO_TYPE_DATASET, discussion_num=discussion.num) def close_discussion(dataset: str, discussion_num: int) -> None: """ Let the dataset owner close a discussion. """ hf_api = HfApi(endpoint=CI_HUB_ENDPOINT, token=CI_USER_TOKEN) hf_api.change_discussion_status( repo_id=dataset, repo_type=REPO_TYPE_DATASET, discussion_num=discussion_num, new_status="closed" ) def count_comments(discussion: DiscussionWithDetails) -> int: return len(list(event for event in discussion.events if isinstance(event, DiscussionComment)))
datasets-server-main
jobs/cache_maintenance/tests/utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from libcommon.processing_graph import ProcessingGraph from libcommon.queue import JobTotalMetricDocument, Queue from libcommon.utils import Status from cache_maintenance.queue_metrics import collect_queue_metrics def test_collect_queue_metrics() -> None: processing_step_name = "test_type" processing_graph = ProcessingGraph( processing_graph_specification={processing_step_name: {"input_type": "dataset", "job_runner_version": 1}} ) processing_step = processing_graph.get_processing_step(processing_step_name) queue = Queue() queue.add_job( job_type=processing_step.job_type, dataset="dataset", revision="revision", config="config", split="split", difficulty=50, ) assert JobTotalMetricDocument.objects().count() == 1 collect_queue_metrics(processing_graph=processing_graph) job_metrics = JobTotalMetricDocument.objects().all() assert job_metrics assert len(job_metrics) == len(Status) # One by each job state, see libcommon.queue.get_jobs_count_by_status waiting_job = next((job for job in job_metrics if job.status == "waiting"), None) assert waiting_job assert waiting_job.total == 1 remaining_status = [job for job in job_metrics if job.status != "waiting"] assert remaining_status assert all(job.total == 0 for job in remaining_status)
datasets-server-main
jobs/cache_maintenance/tests/test_collect_queue_metrics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.processing_graph import ProcessingGraph from libcommon.queue import JobTotalMetricDocument, Queue def collect_queue_metrics(processing_graph: ProcessingGraph) -> None: logging.info("collecting queue metrics") queue = Queue() for processing_step in processing_graph.get_processing_steps(): for status, new_total in queue.get_jobs_count_by_status(job_type=processing_step.job_type).items(): job_type = processing_step.job_type query_set = JobTotalMetricDocument.objects(job_type=job_type, status=status) current_metric = query_set.first() if current_metric is not None: current_total = current_metric.total logging.info( f"{job_type=} {status=} current_total={current_total} new_total=" f"{new_total} difference={int(new_total)-current_total}" # type: ignore ) query_set.upsert_one(total=new_total) logging.info("queue metrics have been collected")
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/queue_metrics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from typing import Literal, Optional, TypedDict from urllib import parse from huggingface_hub import HfApi from huggingface_hub.constants import REPO_TYPE_DATASET from libcommon.simple_cache import ( DatasetWithRevision, get_datasets_with_last_updated_kind, ) PARQUET_CACHE_KIND = "config-parquet" DAYS = 1 CLOSED_STATUS = "closed" class ParquetCounters(TypedDict): datasets: int messages: int dismissed_messages: int new_discussions: int errors: int class Counters(TypedDict): parquet: ParquetCounters def post_messages( hf_endpoint: str, bot_associated_user_name: Optional[str], bot_token: Optional[str], parquet_revision: str ) -> Counters: """ Post messages in Hub discussions to notify users. """ if not (bot_associated_user_name and bot_token): raise Exception("No bot token or user name provided, skipping posting messages.") return Counters( parquet=post_messages_on_parquet_conversion( hf_endpoint=hf_endpoint, bot_associated_user_name=bot_associated_user_name, bot_token=bot_token, parquet_revision=parquet_revision, ) ) def post_messages_on_parquet_conversion( hf_endpoint: str, bot_associated_user_name: str, bot_token: str, parquet_revision: str, ) -> ParquetCounters: logging.info("Post messages in Hub discussion to notify about parquet conversion") datasets_with_revision = limit_to_one_dataset_per_namespace( get_datasets_with_last_updated_kind(kind=PARQUET_CACHE_KIND, days=DAYS) ) logging.info(f"Posting messages for {len(datasets_with_revision)} datasets") log_batch = 100 counters: ParquetCounters = { "datasets": 0, "messages": 0, "dismissed_messages": 0, "new_discussions": 0, "errors": 0, } def get_log() -> str: return ( f"{counters['messages'] } messages posted (total:" f" {len(datasets_with_revision)} datasets): {counters['new_discussions']} discussions have been opened." f" {counters['dismissed_messages']} messages have been dismissed because the discussion had been closed." f" {counters['errors']} errors." ) hf_api = HfApi(endpoint=hf_endpoint, token=bot_token) for dataset_with_revision in datasets_with_revision: dataset = dataset_with_revision.dataset revision = dataset_with_revision.revision counters["datasets"] += 1 try: bot_discussions = [ discussion for discussion in hf_api.get_repo_discussions( repo_id=dataset, repo_type=REPO_TYPE_DATASET, token=bot_token ) if discussion.author == bot_associated_user_name ] if bot_discussions: if len(bot_discussions) > 1: logging.warning( f"Found {len(bot_discussions)} discussions for {dataset} with bot {bot_associated_user_name}," " only the first one will be used." ) discussion = bot_discussions[0] else: discussion = hf_api.create_discussion( repo_id=dataset, repo_type=REPO_TYPE_DATASET, title="Notifications from Datasets Server", description=create_discussion_description(), token=bot_token, ) counters["new_discussions"] += 1 if discussion.status == CLOSED_STATUS: counters["dismissed_messages"] += 1 continue hf_api.comment_discussion( repo_id=dataset, repo_type=REPO_TYPE_DATASET, discussion_num=discussion.num, comment=create_parquet_comment( dataset=dataset, hf_endpoint=hf_endpoint, parquet_revision=parquet_revision, dataset_revision=revision, ), token=bot_token, ) counters["messages"] += 1 except Exception as e: logging.warning(f"Failed to post a message for {dataset}: {e}") counters["errors"] += 1 logging.debug(get_log()) if (counters["datasets"]) % log_batch == 0: logging.info(get_log()) logging.info(get_log()) logging.info("All the messages about parquet conversion have been posted.") return counters def temporary_call_to_action_for_feedback() -> str: return "Please comment below if you have any questions or feedback about this new notifications channel. " def create_discussion_description() -> str: return ( "The Datasets Server bot will post messages here about operations such as conversion to" " Parquet. There are some advantages associated with having a version of your dataset available in the " "[Parquet format](https://parquet.apache.org/). You can learn more about these in the" f""" [documentation](https://huggingface.co/docs/datasets-server/parquet). _{temporary_call_to_action_for_feedback()}Close the discussion if you want to stop receiving notifications._""" ) def create_parquet_comment( dataset: str, hf_endpoint: str, parquet_revision: str, dataset_revision: Optional[str] ) -> str: link_dataset = ( create_link( text=dataset_revision[:7], dataset=dataset, hf_endpoint=hf_endpoint, revision_type="commit", revision=dataset_revision, ) if dataset_revision else None ) link_dataset = f" revision {link_dataset}" if link_dataset else "" link_parquet = create_link( text=parquet_revision, dataset=dataset, hf_endpoint=hf_endpoint, revision_type="tree", revision=parquet_revision, ) return f"""Datasets Server has converted the dataset{link_dataset} to Parquet. The Parquet files are published to the Hub in the {link_parquet} branch.""" def create_link( text: str, dataset: str, hf_endpoint: str, revision_type: Literal["commit", "tree"], revision: str ) -> str: return f"[`{text}`]({hf_endpoint}/datasets/{dataset}/{revision_type}/{parse.quote(revision, safe='')})" def limit_to_one_dataset_per_namespace(datasets_with_revision: list[DatasetWithRevision]) -> list[DatasetWithRevision]: """ Limit the number of datasets to one per namespace. For instance, if we have `a/b` and `a/c`, we will only keep one of them. The choice is arbitrary. The filtered list has no particular order. Args: datasets (list[DatasetWithRevision]): The list of datasets (with revision) to filter. Returns: list[DatasetWithRevision]: The filtered list of datasets (with revision). """ namespaces: set[str] = set() selected_datasets_with_revision: list[DatasetWithRevision] = [] for dataset_with_revision in datasets_with_revision: namespace = get_namespace(dataset_with_revision.dataset) if (namespace is None) or (namespace in namespaces): continue namespaces.add(namespace) selected_datasets_with_revision.append(dataset_with_revision) return selected_datasets_with_revision def get_namespace(dataset: str) -> Optional[str]: splits = dataset.split("/") return splits[0] if len(splits) == 2 else None
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/discussions.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from typing import Optional from environs import Env from libcommon.config import ( CacheConfig, CommonConfig, LogConfig, ProcessingGraphConfig, QueueConfig, ) CACHE_MAINTENANCE_BACKFILL_ERROR_CODES_TO_RETRY = None @dataclass(frozen=True) class BackfillConfig: error_codes_to_retry: Optional[list[str]] = CACHE_MAINTENANCE_BACKFILL_ERROR_CODES_TO_RETRY @classmethod def from_env(cls) -> "BackfillConfig": env = Env(expand_vars=True) return cls( error_codes_to_retry=env.list(name="CACHE_MAINTENANCE_BACKFILL_ERROR_CODES_TO_RETRY", default=""), ) DUCKDB_INDEX_CACHE_DIRECTORY = None DUCKDB_INDEX_SUBDIRECTORY = "downloads" DUCKDB_INDEX_EXPIRED_TIME_INTERVAL_SECONDS = 10 * 60 # 10 minutes DUCKDB_INDEX_FILE_EXTENSION = ".duckdb" @dataclass(frozen=True) class DuckDbConfig: cache_directory: Optional[str] = DUCKDB_INDEX_CACHE_DIRECTORY subdirectory: str = DUCKDB_INDEX_SUBDIRECTORY expired_time_interval_seconds: int = DUCKDB_INDEX_EXPIRED_TIME_INTERVAL_SECONDS file_extension: str = DUCKDB_INDEX_FILE_EXTENSION @classmethod def from_env(cls) -> "DuckDbConfig": env = Env(expand_vars=True) with env.prefixed("DUCKDB_INDEX_"): return cls( cache_directory=env.str(name="CACHE_DIRECTORY", default=DUCKDB_INDEX_CACHE_DIRECTORY), subdirectory=env.str(name="SUBDIRECTORY", default=DUCKDB_INDEX_SUBDIRECTORY), expired_time_interval_seconds=env.int( name="EXPIRED_TIME_INTERVAL_SECONDS", default=DUCKDB_INDEX_EXPIRED_TIME_INTERVAL_SECONDS ), file_extension=env.str(name="FILE_EXTENSION", default=DUCKDB_INDEX_FILE_EXTENSION), ) DISCUSSIONS_BOT_ASSOCIATED_USER_NAME = None DISCUSSIONS_BOT_TOKEN = None DISCUSSIONS_PARQUET_REVISION = "refs/convert/parquet" @dataclass(frozen=True) class DiscussionsConfig: bot_associated_user_name: Optional[str] = DISCUSSIONS_BOT_ASSOCIATED_USER_NAME bot_token: Optional[str] = DISCUSSIONS_BOT_TOKEN parquet_revision: str = DISCUSSIONS_PARQUET_REVISION @classmethod def from_env(cls) -> "DiscussionsConfig": env = Env(expand_vars=True) with env.prefixed("DISCUSSIONS_"): return cls( bot_associated_user_name=env.str( name="BOT_ASSOCIATED_USER_NAME", default=DISCUSSIONS_BOT_ASSOCIATED_USER_NAME ), bot_token=env.str(name="BOT_TOKEN", default=DISCUSSIONS_BOT_TOKEN), parquet_revision=env.str(name="PARQUET_REVISION", default=DISCUSSIONS_PARQUET_REVISION), ) CACHE_MAINTENANCE_ACTION = None @dataclass(frozen=True) class JobConfig: log: LogConfig = field(default_factory=LogConfig) cache: CacheConfig = field(default_factory=CacheConfig) queue: QueueConfig = field(default_factory=QueueConfig) common: CommonConfig = field(default_factory=CommonConfig) graph: ProcessingGraphConfig = field(default_factory=ProcessingGraphConfig) backfill: BackfillConfig = field(default_factory=BackfillConfig) duckdb: DuckDbConfig = field(default_factory=DuckDbConfig) discussions: DiscussionsConfig = field(default_factory=DiscussionsConfig) action: Optional[str] = CACHE_MAINTENANCE_ACTION @classmethod def from_env(cls) -> "JobConfig": env = Env(expand_vars=True) return cls( log=LogConfig.from_env(), cache=CacheConfig.from_env(), queue=QueueConfig.from_env(), common=CommonConfig.from_env(), graph=ProcessingGraphConfig.from_env(), backfill=BackfillConfig.from_env(), duckdb=DuckDbConfig.from_env(), discussions=DiscussionsConfig.from_env(), action=env.str(name="CACHE_MAINTENANCE_ACTION", default=CACHE_MAINTENANCE_ACTION), )
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/config.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import glob import logging import os from datetime import datetime, timedelta from libcommon.storage import StrPath def delete_indexes( duckdb_index_cache_directory: StrPath, subdirectory: str, file_extension: str, expired_time_interval_seconds: int ) -> None: """ Delete temporary DuckDB index files downloaded to handle /search requests """ logging.info("delete indexes") indexes_folder = f"{duckdb_index_cache_directory}/{subdirectory}/**/*{file_extension}" logging.info(f"looking for all files with pattern {indexes_folder}") now = datetime.now().replace(tzinfo=None) for path in glob.glob(indexes_folder, recursive=True): last_access_time_value = os.path.getatime(path) last_access_datetime = datetime.fromtimestamp(last_access_time_value).replace(tzinfo=None) if last_access_datetime + timedelta(seconds=expired_time_interval_seconds) <= now: logging.info(f"deleting file {path=} {last_access_datetime=}") os.remove(path)
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/delete_indexes.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from typing import Optional from libcommon.dataset import get_supported_dataset_infos from libcommon.orchestrator import DatasetOrchestrator from libcommon.processing_graph import ProcessingGraph from libcommon.utils import Priority def backfill_cache( processing_graph: ProcessingGraph, hf_endpoint: str, cache_max_days: int, hf_token: Optional[str] = None, error_codes_to_retry: Optional[list[str]] = None, ) -> None: logging.info("backfill supported datasets") supported_dataset_infos = get_supported_dataset_infos(hf_endpoint=hf_endpoint, hf_token=hf_token) logging.info(f"analyzing {len(supported_dataset_infos)} supported datasets") analyzed_datasets = 0 backfilled_datasets = 0 total_created_jobs = 0 log_batch = 100 def get_log() -> str: return ( f"{analyzed_datasets} analyzed datasets (total: {len(supported_dataset_infos)} datasets):" f" {backfilled_datasets} backfilled datasets ({100 * backfilled_datasets / analyzed_datasets:.2f}%), with" f" {total_created_jobs} created jobs." ) for dataset_info in supported_dataset_infos: analyzed_datasets += 1 dataset = dataset_info.id if not dataset: logging.warning(f"dataset id not found for {dataset_info}") # should not occur continue if dataset_info.sha is None: logging.warning(f"dataset revision not found for {dataset_info}") # should not occur continue try: dataset_orchestrator = DatasetOrchestrator(dataset=dataset, processing_graph=processing_graph) except Exception as e: logging.warning(f"failed to create DatasetOrchestrator for {dataset_info}: {e}") continue try: created_jobs = dataset_orchestrator.backfill( revision=str(dataset_info.sha), priority=Priority.LOW, error_codes_to_retry=error_codes_to_retry, cache_max_days=cache_max_days, ) if created_jobs > 0: backfilled_datasets += 1 total_created_jobs += created_jobs except Exception as e: logging.warning(f"failed to backfill {dataset_info}: {e}") continue logging.debug(get_log()) if analyzed_datasets % log_batch == 0: logging.info(get_log()) logging.info(get_log()) logging.info("backfill completed")
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/backfill.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.simple_cache import ( CacheTotalMetricDocument, get_responses_count_by_kind_status_and_error_code, ) def collect_cache_metrics() -> None: logging.info("collecting cache metrics") for metric in get_responses_count_by_kind_status_and_error_code(): kind = metric["kind"] http_status = metric["http_status"] error_code = metric["error_code"] new_total = metric["count"] query_set = CacheTotalMetricDocument.objects(kind=kind, http_status=http_status, error_code=error_code) current_metric = query_set.first() if current_metric is not None: current_total = current_metric.total logging.info( f"{kind=} {http_status=} {error_code=} current_total={current_total} new_total=" f"{new_total} difference={new_total-current_total}" ) query_set.upsert_one(total=metric["count"]) logging.info("cache metrics have been collected")
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/cache_metrics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging import sys from datetime import datetime from libcommon.log import init_logging from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.storage import init_duckdb_index_cache_dir from cache_maintenance.backfill import backfill_cache from cache_maintenance.cache_metrics import collect_cache_metrics from cache_maintenance.config import JobConfig from cache_maintenance.delete_indexes import delete_indexes from cache_maintenance.discussions import post_messages from cache_maintenance.queue_metrics import collect_queue_metrics def run_job() -> None: job_config = JobConfig.from_env() action = job_config.action supported_actions = ["backfill", "collect-cache-metrics", "collect-queue-metrics", "delete-indexes", "skip"] # In the future we will support other kind of actions if not action: logging.warning("No action mode was selected, skipping tasks.") return if action not in supported_actions: logging.warning(f"Wrong action mode selected, supported actions are {supported_actions}.") return init_logging(level=job_config.log.level) with ( CacheMongoResource( database=job_config.cache.mongo_database, host=job_config.cache.mongo_url ) as cache_resource, QueueMongoResource( database=job_config.queue.mongo_database, host=job_config.queue.mongo_url ) as queue_resource, ): if not cache_resource.is_available(): logging.warning("The connection to the cache database could not be established. The action is skipped.") return if not queue_resource.is_available(): logging.warning("The connection to the queue database could not be established. The action is skipped.") return processing_graph = ProcessingGraph(job_config.graph.specification) start_time = datetime.now() if action == "backfill": backfill_cache( processing_graph=processing_graph, hf_endpoint=job_config.common.hf_endpoint, hf_token=job_config.common.hf_token, error_codes_to_retry=job_config.backfill.error_codes_to_retry, cache_max_days=job_config.cache.max_days, ) elif action == "collect-queue-metrics": collect_queue_metrics(processing_graph=processing_graph) elif action == "collect-cache-metrics": collect_cache_metrics() elif action == "delete-indexes": duckdb_index_cache_directory = init_duckdb_index_cache_dir(directory=job_config.duckdb.cache_directory) delete_indexes( duckdb_index_cache_directory=duckdb_index_cache_directory, subdirectory=job_config.duckdb.subdirectory, expired_time_interval_seconds=job_config.duckdb.expired_time_interval_seconds, file_extension=job_config.duckdb.file_extension, ) elif action == "post-messages": post_messages( hf_endpoint=job_config.common.hf_endpoint, bot_associated_user_name=job_config.discussions.bot_associated_user_name, bot_token=job_config.discussions.bot_token, parquet_revision=job_config.discussions.parquet_revision, ) end_time = datetime.now() logging.info(f"Duration: {end_time - start_time}") if __name__ == "__main__": try: run_job() sys.exit(0) except Exception as e: logging.exception(e) sys.exit(1)
datasets-server-main
jobs/cache_maintenance/src/cache_maintenance/main.py