python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
# This is an example on how to access content of TREC CAR data # and convert it into a string of content with offset-based entity link annotations. # Feel free to use the AnnotatedContentBuilder # I highly recommend that you implement your own version `annotate_section_content` # because you need to make decisions on which content to include, where to # futher provide newlines etc. # Keep in mind, whatever you add to your output needs to go through the # AnnotatedContenBuilder or offsets won't match # you can add all kinds of semantic annotations on offsets. However, in the current # implementation they much be non-overlapping. from trec_car.read_data import * class Annotation(): """Wraps a semantic annotation with offset information """ def __init__(self, start, end, annotation): self.start = start self.end = end self.annotation = annotation class AnnotatedContentBuilder(): """Builds a string iteratively and keeps track of offsets. Chunks of plain text and semantic annotations need to added in order """ def __init__(self): self.content = "" self.offset = 0 self.annotations = [] def append(self, chunk, optAnnotation=None): start = self.offset self.content += chunk self.offset = len(self.content) end = self.offset if optAnnotation: self.annotations.append( Annotation(start=start, end=end, annotation=optAnnotation)) def get_content(self): return self.content def get_annotations(self): return self.annotations def annotate_section_content(section): """ Example implementation to break out the content of a (top-level) section with entity links """ def annotated_content(skel, contentBuilder): if isinstance(skel, Section): contentBuilder.append('\n') contentBuilder.append(skel.heading) contentBuilder.append('\n') for child in skel.children: annotated_content(child, contentBuilder) # contentBuilder.append('\n') elif isinstance(skel, List): annotated_content(skel.body, contentBuilder) elif isinstance(skel, Para): for body in skel.paragraph.bodies: annotated_content_bodies(body, contentBuilder) contentBuilder.append('\n') else: pass def annotated_content_bodies(body, contentBuilder): if isinstance(body, ParaLink): contentBuilder.append(body.get_text(), body) elif isinstance(body, ParaText): contentBuilder.append(body.get_text()) else: pass contentBuilder = AnnotatedContentBuilder() for child in section.children: annotated_content(child, contentBuilder) return contentBuilder if __name__ == '__main__': import sys if len(sys.argv)<1 or len(sys.argv)>3: print("usage ",sys.argv[0]," articlefile") exit() articles=sys.argv[1] with open(articles, 'rb') as f: for p in iter_pages(f): print('\npagename:', p.page_name) print('\npageid:', p.page_id) print("get content of top-level sections, with subsections inlined and broken out entity offsets") for section in p.child_sections: print(" == ",section.heading ," ==") builder = annotate_section_content(section) print(builder.get_content()) for ann in builder.get_annotations(): print(ann.start, ann.end, ann.annotation) print()
datasets-server-main
services/worker/vendors/trec-car-tools/python3/annotated_content.py
from trec_car.format_runs import * from trec_car.read_data import * import itertools import sys if len(sys.argv)<3: print("usage ",sys.argv[0]," outlinefile paragraphfile out") exit() query_cbor=sys.argv[1] psg_cbor=sys.argv[2] out=sys.argv[3] pages = [] with open(query_cbor, 'rb') as f: pages = [p for p in itertools.islice(iter_annotations(f), 0, 1000)] paragraphs = [] with open(psg_cbor, 'rb') as f: d = {p.para_id: p for p in itertools.islice(iter_paragraphs(f), 0, 500 ,5)} paragraphs = d.values() print("pages: ", len(pages)) print("paragraphs: ", len(paragraphs)) mock_ranking = [(p, 1.0 / (r + 1), (r + 1)) for p, r in zip(paragraphs, range(0, 1000))] with open(out,mode='w', encoding='UTF-8') as f: writer = f numqueries = 0 for page in pages: for section_path in page.flat_headings_list(): numqueries += 1 query_id = "/".join([page.page_id]+[section.headingId for section in section_path]) ranking = [RankingEntry(query_id, p.para_id, r, s, paragraph_content=p) for p, s, r in mock_ranking] format_run(writer, ranking, exp_name='test') f.close() print("num queries = ", numqueries)
datasets-server-main
services/worker/vendors/trec-car-tools/python3/format_runs_test.py
"""__init__ module for trec-car-tools, imports all necessary functions for reading cbor data provided in the TREC CAR""" __version__ = 1.0 __all__ = ['read_data', 'format_runs']
datasets-server-main
services/worker/vendors/trec-car-tools/python3/trec_car/__init__.py
# Use python 3.6 or higher # obsolete: conda install -c auto cbor=0.1.4 from __future__ import print_function from abc import abstractmethod import cbor import itertools import typing PageId = str PageName = str class CborElementNotDefinedException(Exception): def __init__(self, cbor): self.cbor = cbor Exception.__init__(self, 'unknown Cbor element encountrered: %s' % str(cbor)) class WrongCarFileException(Exception): def __init__(self, file_type, expected_file_types): self.file_type = file_type self.expected_file_types = expected_file_types Exception.__init__(self, 'Open method does not support CAR file type: %s. Instead expect following CAR file types: %s' % (str(file_type), str(expected_file_types))) class BrokenCborFileException(Exception): def __init__(self): Exception.__init__(self, 'Corrupt, incomplete, or otherwise broken CBOR file. Please re-download or contact the organizers or use appropriate reader to open this file.') class Page(object): """ The name and skeleton of a Wikipedia page. .. attribute:: page_name :rtype: PageName The name of the page. .. attribute:: skeleton :rtype: typing.List[PageSkeleton] The contents of the page .. attribute:: page_type :rtype: PageType Type about the page .. attribute:: page_meta :rtype: PageMetadata Metadata about the page """ def __init__(self, page_name, page_id, skeleton, page_type, page_meta): self.page_name = page_name self.page_id = page_id self.skeleton = list(skeleton) self.child_sections = [child for child in self.skeleton if isinstance(child, Section)] self.page_type = page_type self.page_meta = page_meta def deep_headings_list(self): return [child.nested_headings() for child in self.child_sections] def flat_headings_list(self): """ return Returns a flat list of headings contained by the :class:`Page`. :rtype: typing.List[Section] """ def flatten(prefix, headings): for section, children in headings: new_prefix = prefix + [section] if len(children)>0 : yield new_prefix yield from flatten(new_prefix, children) else: yield new_prefix deep_headings = self.deep_headings_list() return list(flatten([], deep_headings)) def get_infoboxes(self): toplevel_infoboxes = [child for child in self.skeleton if isinstance(child, InfoBox)] section_infoboxes = [section.get_infoboxes() for sections in self.flat_headings_list() for section in sections] return toplevel_infoboxes + list(itertools.chain.from_iterable(section_infoboxes)) @staticmethod def from_cbor(cbor): if not (cbor[0] == 0 or cbor[0] == 1): # tag raise CborElementNotDefinedException(cbor) pagename = cbor[1] pageId = cbor[2].decode('ascii') if len(cbor)==4: return Page(pagename, pageId, map(PageSkeleton.from_cbor, cbor[3]), ArticlePage, PageMetadata.default()) else: page_type = PageType.from_cbor(cbor[4]) return Page(pagename, pageId, map(PageSkeleton.from_cbor, cbor[3]), page_type, PageMetadata.from_cbor(cbor[5])) def __str__(self): return "Page(%s)" % self.page_name def to_string(self): """ Render a string representation of the page. :rtype: str """ return self.page_name + self.page_meta +\ '\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' + '\n'.join(str(s) for s in self.skeleton) def nested_headings(self): """ Each heading recursively represented by a pair of ``(heading, list_of_child_sections)``. :rtype: typing.List[typing.Tuple[Section, typing.List[Section]]] """ result = [child.nested_headings() for child in self.child_sections] return result def outline(self): return self.child_sections def get_text(self): """Include all visible text below this elements. Includes Captions of images, but no headings and no infoboxes. See `get_text_with_headings` for a version that includes headings.""" return '\n'.join(skel.get_text() for skel in self.skeleton) def get_text_with_headings(self, include_heading = False): """Include all visible text below this elements. While the heading of this element is excluded, headings of subsections will be included. Captions of images are excluded.""" return '\n'.join(skel.get_text_with_headings(include_heading = True) for skel in self.skeleton) class PageType(object): """ An abstract base class representing the various types of pages. Subclasses include * :class:`ArticlePage` * :class:`CategoryPage` * :class:`DisambiguationPage` * :class:`RedirectPage` """ @staticmethod def from_cbor(cbor): typetag = cbor[0] if typetag == 0: return ArticlePage() elif typetag == 1: return CategoryPage() elif typetag == 2: return DisambiguationPage() elif typetag == 3: target = cbor[1] if type(target) == list: # TODO this is almost certainly wrong targetPage = target[1] else: targetPage = target.decode('ascii') return RedirectPage(targetPage) else: raise CborElementNotDefinedException(cbor) class ArticlePage(PageType): '' def __init__(self): pass def __str__(self): return "ArticlePage" class CategoryPage(PageType): def __init__(self): pass def __str__(self): return "CategoryPage" class DisambiguationPage(PageType): def __init__(self): pass def __str__(self): return "Disambiguation Page" class RedirectPage(PageType): """ .. attribute:: targetPage :rtype: PageId The target of the redirect. """ def __init__(self, targetPage): self.targetPage = targetPage def __str__(self): return "RedirectPage " + self.targetPage class PageMetadata(object): """ Meta data for a page .. attribute:: redirectNames :rtype: PageName Names of pages which redirect to this page .. attribute:: disambiguationNames :rtype: PageName Names of disambiguation pages which link to this page .. attribute:: disambiguationId :rtype: PageId Page IDs of disambiguation pages which link to this page .. attribute:: categoryNames :rtype: str Page names of categories to which this page belongs .. attribute:: categoryIds :rtype: str Page IDs of categories to which this page belongs .. attribute:: inlinkIds :rtype: str Page IDs of pages containing inlinks .. attribute:: inlinkAnchors inlinkAnchor frequencies :rtype: str (Anchor text, frequency) of pages containing inlinks """ def __init__(self, redirectNames, disambiguationNames, disambiguationIds, categoryNames, categoryIds, inlinkIds, inlinkAnchors): self.inlinkAnchors = inlinkAnchors self.inlinkIds = inlinkIds self.categoryIds = categoryIds self.categoryNames = categoryNames self.disambiguationIds = disambiguationIds self.disambiguationNames = disambiguationNames self.redirectNames = redirectNames @staticmethod def default(): return PageMetadata(None, None, None, None, None, None, None) def __str__(self): redirStr = ("" if self.redirectNames is None else (" redirected = "+", ".join([name for name in self.redirectNames]))) disamStr = ("" if self.disambiguationNames is None else (" disambiguated = "+", ".join([name for name in self.disambiguationNames]))) catStr = ("" if self.redirectNames is None else (" categories = "+", ".join([name for name in (self.categoryNames or [])]))) inlinkStr = ("" if self.inlinkIds is None else (" inlinks = "+", ".join([name for name in self.inlinkIds]))) # inlinkAnchorStr = str (self.inlinkAnchors) inlinkAnchorStr = ("" if self.inlinkAnchors is None else (" inlinkAnchors = "+", ".join( [ ("%s: %d" % (name, freq)) for (name, freq) in self.inlinkAnchors] # [ ("%s: " % (name)) for (name, freq) in self.inlinkAnchors] \ ))) return "%s \n%s \n%s \n%s \n%s\n" % (redirStr, disamStr, catStr, inlinkStr, inlinkAnchorStr) @staticmethod def from_cbor(cbor): redirectNames=None disambiguationNames=None disambiguationIds=None categoryNames=None categoryIds=None inlinkIds=None inlinkAnchors=None def decodeListOfIdList(cbor): if len(cbor)==0: return None else: return [elem.decode('ascii') for elem in cbor] def decodeListOfNameList(cbor): if len(cbor)==0: return None else: return cbor def decodeListOfNameIntList(cbor): if len(cbor)==0: return None else: # need to convert list of pair-lists to lists of pair-tuples return [(elem[0], elem[1]) for elem in cbor] for i in range(0, len(cbor), 2): tag = cbor[i][0] cbor_data = cbor[i+1] if tag == 0: redirectNames = decodeListOfNameList(cbor_data) elif tag == 1: disambiguationNames=decodeListOfNameList(cbor_data) elif tag == 2: disambiguationIds=decodeListOfIdList(cbor_data) elif tag == 3: categoryNames=decodeListOfNameList(cbor_data) elif tag == 4: categoryIds=decodeListOfIdList(cbor_data) elif tag == 5: inlinkIds=decodeListOfIdList(cbor_data) elif tag == 6: # compatability with v1.6 inlinkAnchors = [(anchor, 1) for anchor in decodeListOfNameList(cbor_data)] elif tag == 7: # compatability with v2.0 inlinkAnchors = decodeListOfNameIntList(cbor_data) i+=2 return PageMetadata(redirectNames, disambiguationNames, disambiguationIds, categoryNames, categoryIds, inlinkIds, inlinkAnchors) class PageSkeleton(object): """ An abstract superclass for the various types of page elements. Subclasses include: * :class:`Section` * :class:`Para` * :class:`Image` """ @staticmethod def from_cbor(cbor): tag = cbor[0] if tag == 0: # section heading = cbor[1] headingId = cbor[2].decode('ascii') return Section(heading, headingId, map(PageSkeleton.from_cbor, cbor[3])) elif tag == 1: # para-wrapper return Para(Paragraph.from_cbor(cbor[1])) elif tag == 2: #images imageUrl = cbor[1] caption = [PageSkeleton.from_cbor(elem) for elem in cbor[2]] return Image(imageUrl, caption=caption) elif tag == 3: # paragraph level = cbor[1] body = Paragraph.from_cbor(cbor[2]) return List(level, body) elif tag == 4: # infobox infobox_title = cbor[1] cbor_entries = cbor[2] entries = [ (kv[0], PageSkeleton.from_cbor(kv[1][0])) for kv in cbor_entries if kv[1] and kv[1][0]] # if no value is defined kv[1] will be null. return InfoBox(infobox_title, entries) else: raise CborElementNotDefinedException(cbor) def get_text(self): """Includes visible text of this element and below. Headings are excluded. Image Captions are included. Infoboxes are ignored. (For a version with headers and no captions see `get_text_with_headings` """ raise NotImplementedError def get_text_with_headings(self, include_heading = False): """Include all visible text below this elements. While the heading of this element is excluded, headings of subsections will be included. Captions of images are excluded.""" raise NotImplementedError class Section(PageSkeleton): """ A section of a Wikipedia page. .. attribute:: heading :rtype: str The section heading. .. attribute:: headingId :rtype: str The unique identifier of a section heading. .. attribute:: children :rtype: typing.List[PageSkeleton] The :class:`PageSkeleton` elements contained by the section. """ def __init__(self, heading, headingId, children): self.heading = heading self.headingId = headingId self.children = list(children) self.child_sections = [child for child in self.children if isinstance(child, Section)] def str_(self, level): bar = "".join("="*level) children = "".join(c.str_(level=level+1) for c in self.children) return "\n%s %s %s\n\n%s" % (bar, self.heading, bar, children) def __str__(self): return self.str_(level=1) def __getitem__(self, idx): return self.children[idx] def nested_headings(self): return (self, [child.nested_headings() for child in self.child_sections]) def get_text(self): return '\n'.join(child.get_text() for child in self.children) def get_text_with_headings(self, include_heading = False): opt_heading = self.heading + "\n" if include_heading else "" return opt_heading + '\n'.join(child.get_text_with_headings(include_heading = True) for child in self.children) def get_infoboxes(self): return [child for child in self.children if isinstance(child, InfoBox)] class Para(PageSkeleton): """ A paragraph within a Wikipedia page. .. attribute:: paragraph :rtype: Paragraph The content of the Paragraph (which in turn contain a list of :class:`ParaBody`\ s) """ def __init__(self, paragraph): self.paragraph = paragraph def str_(self, level=None): return str(self.paragraph) def __str__(self): return self.str_() def get_text(self): return self.paragraph.get_text() def get_text_with_headings(self, include_heading = False): return self.get_text() class Image(PageSkeleton): """ An image within a Wikipedia page. .. attribute:: caption :rtype: str PageSkeleton representing the caption of the image .. attribute:: imageurl :rtype: str URL to the image; spaces need to be replaced with underscores, Wikimedia Commons namespace needs to be prefixed """ def __init__(self, imageurl, caption): self.caption = caption self.imageurl = imageurl def str_(self, level=None): return str("!["+self.imageurl+"]. Caption: "+(''.join([str(skel) for skel in self.caption]))) def __str__(self): return self.str_() def get_text(self): return '\n'.join(skel.get_text() for skel in self.caption) def get_text_with_headings(self, include_heading = False): return '' class List(PageSkeleton): """ An list element within a Wikipedia page. .. attribute:: level :rtype: int The list nesting level .. attribute:: body A :class:`Paragraph` containing the list element contents. """ def __init__(self, level, body): self.level = level self.body = body def str_(self, level=None): return str("*" * self.level + " " + str(self.body) + '\n') def __str__(self): return self.str_() def get_text(self): return self.body.get_text() def get_text_with_headings(self, include_heading = False): return self.get_text() class InfoBox(PageSkeleton): def __init__(self, infobox_type, entries): """ An list element within a Wikipedia page. .. attribute:: infobox_type :rtype: str The title/type of the infobox .. attribute:: entries Key-value pair, where key is a string, and value is a :class:`PageSkeleton` containing the value. Values are often paragraphs or images, but they can also be lists. """ self.title = infobox_type self.entries = entries def str_(self, level=None): return self.title+ "\n"+ ("\n".join([key+": "+str(values) for (key,values) in self.entries])) def __str__(self): return self.str_() def get_text(self): return '' def get_text_with_headings(self, include_heading = False): return '' class Paragraph(object): """ A paragraph. """ def __init__(self, para_id, bodies): self.para_id = para_id self.bodies = list(bodies) @staticmethod def from_cbor(cbor): if (not cbor[0] == 0): raise CborElementNotDefinedException(cbor) paragraphId = cbor[1].decode('ascii') return Paragraph(paragraphId, map(ParaBody.from_cbor, cbor[2])) def get_text(self): """ Get all of the contained text. :rtype: str """ return ''.join([body.get_text() for body in self.bodies]) def str_(self, level=None): return ' '.join(str(body) for body in self.bodies) def __str__(self): return self.str_() class ParaBody(object): """ An abstract superclass representing a bit of :class:`Paragraph` content. """ @staticmethod def from_cbor(cbor): tag = cbor[0] if tag == 0: return ParaText(cbor[1]) elif tag == 1: cbor_ = cbor[1] linkSection = None if len(cbor_[2]) == 1: linkSection = cbor_[2][0] linkTargetId = cbor_[3].decode('ascii') return ParaLink(cbor_[1], linkSection, linkTargetId, cbor_[4]) else: raise CborElementNotDefinedException(cbor) @abstractmethod def get_text(self): """ Get all of the text within a :class:`ParaBody`. :rtype: str """ raise NotImplementedError class ParaText(ParaBody): """ A bit of plain text from a paragraph. .. attribute:: text :rtype: str The text """ def __init__(self, text): self.text = text def get_text(self): return self.text def str_(self, level=None): return self.text def __str__(self): return self.str_() class ParaLink(ParaBody): """ A link within a paragraph. .. attribute:: page :rtype: PageName The page name of the link target .. attribute:: pageid :rtype: PageId The link target as trec-car identifer .. attribute:: link_section :rtype: str Section anchor of link target (i.e. the part after the ``#`` in the URL), or ``None``. .. attribute:: anchor_text :rtype: str The anchor text of the link """ def __init__(self, page, link_section, pageid, anchor_text): self.page = page self.pageid = pageid self.link_section = link_section self.anchor_text = anchor_text def get_text(self): return self.anchor_text def str_(self, level=None): return "[%s](%s)" % (self.anchor_text, self.page) def __str__(self): return self.str_() def _iter_with_header(file, parse, expected_file_types): maybe_hdr = cbor.load(file) if isinstance(maybe_hdr, list) and maybe_hdr[0] == 'CAR': # we have a header file_type = maybe_hdr[1][0] if not file_type in expected_file_types: # print( 'File type tag is expected to be ', (" ".join(expected_file_types)), 'but given file is of type ', file_type) # print('Did not expect file of type', file_type) raise WrongCarFileException(file_type, expected_file_types) # read beginning of variable-length list if (not file.read(1) == b'\x9f'): raise BrokenCborFileException() else: yield parse(maybe_hdr) while True: try: # Check for break symbol if (peek_for_break(file)): break yield parse(cbor.load(file)) except EOFError: break def peek_for_break(cbor): b = cbor.peek(1) return b[0:1] == b'\xff' def iter_annotations(file): """ Iterate over the :class:`Page`\ s of an annotations file. :type file: typing.BinaryIO :rtype: typing.Iterator[Page] """ return _iter_with_header(file, Page.from_cbor, [0,1]) # return TrecCarHeader.from_cbor(file) def iter_pages(file): """ Iterate over the :class:`Page`\ s of an annotations file. :type file: typing.BinaryIO :rtype: typing.Iterator[Page] """ return _iter_with_header(file, Page.from_cbor, [0]) def iter_outlines(file): """ Iterate over the :class:`Page`\ s of an annotations file. :type file: typing.BinaryIO :rtype: typing.Iterator[Page] """ return _iter_with_header(file, Page.from_cbor, [1]) def iter_paragraphs(file): """ Iterate over the :class:`Paragraph`\ s of an paragraphs file. :type file: typing.BinaryIO :rtype: typing.Iterator[Paragraph] """ return _iter_with_header(file, Paragraph.from_cbor, [2]) def dump_annotations(file): for page in iter_annotations(file): print(page.to_string()) def with_toc(read_val): class AnnotationsFile(object): def __init__(self, fname): """ Read annotations from a file. Arguments: fname The name of the CBOR file. A table-of-contents file is also expected to be present. """ self.cbor = open(fname, 'rb') self.toc = cbor.load(open(fname+'.toc', 'rb')) def keys(self): """ The page names contained in an annotations file. """ return self.toc.keys() def get(self, page): """ Lookup a page by name. Returns a Page or None """ offset = self.toc.get(page) if offset is not None: self.cbor.seek(offset) return read_val(cbor.load(self.cbor)) return None return AnnotationsFile AnnotationsFile = with_toc(Page.from_cbor) ParagraphsFile = with_toc(Paragraph.from_cbor)
datasets-server-main
services/worker/vendors/trec-car-tools/python3/trec_car/read_data.py
import csv import urllib.parse from typing import * def encode_section_path(page_id, section_path): elements = [page_id] + section_path return '/'.join([urllib.parse.quote(elem) for elem in elements]) # return urllib.parse.urlencode({'page':page_id, 'sectionpath':section_path}) def encode_page_only(page_id): return urllib.parse.quote(page_id) class RankingEntry(object): """ A paragraph within a Wikipedia page. Attributes: paragraph The content of the Paragraph (which in turn contain a list of ParaBodys) """ def __init__(self, query_id:str, paragraph_id:str, rank:int, score:float, exp_name:str=None, paragraph_content:str=None): assert(rank > 0) self.query_id = query_id self.paragraph_id = paragraph_id self.rank = rank self.score = score self.exp_name = exp_name self.paragraph_content = paragraph_content def to_trec_eval_row(self, alternative_exp_name=None, page_only=False): exp_name_ = alternative_exp_name if alternative_exp_name is not None \ else self.exp_name return [self.query_id, 'Q0', self.paragraph_id, self.rank, self.score, exp_name_] # # csv.register_dialect( # 'trec_eval', # delimiter = ' ', # quotechar = '"', # doublequote = False, # skipinitialspace = False, # lineterminator = '\n', # quoting = csv.QUOTE_NONE) # # # def configure_csv_writer(fileobj): # 'Convenience method to create a csv writer with the trec_eval_dialect' # return csv.writer(fileobj, dialect='trec_eval') # def format_run(writer, ranking_of_paragraphs, exp_name=None): 'write one ranking to the csv writer' for elem in ranking_of_paragraphs: # query-number Q0 document-id rank score Exp writer.write(" ".join([str(x) for x in elem.to_trec_eval_row(exp_name)])) writer.write("\n")
datasets-server-main
services/worker/vendors/trec-car-tools/python3/trec_car/format_runs.py
"""__init__ module for trec-car-tools, imports all necessary functions for reading cbor data provided in the TREC CAR""" __version__ = 1.0 __all__ = ['read_data', 'format_runs']
datasets-server-main
services/worker/vendors/trec-car-tools/python3/build/lib/trec_car/__init__.py
# Use python 3.6 or higher # obsolete: conda install -c auto cbor=0.1.4 from __future__ import print_function from abc import abstractmethod import cbor import itertools import typing PageId = str PageName = str class CborElementNotDefinedException(Exception): def __init__(self, cbor): self.cbor = cbor Exception.__init__(self, 'unknown Cbor element encountrered: %s' % str(cbor)) class WrongCarFileException(Exception): def __init__(self, file_type, expected_file_types): self.file_type = file_type self.expected_file_types = expected_file_types Exception.__init__(self, 'Open method does not support CAR file type: %s. Instead expect following CAR file types: %s' % (str(file_type), str(expected_file_types))) class BrokenCborFileException(Exception): def __init__(self): Exception.__init__(self, 'Corrupt, incomplete, or otherwise broken CBOR file. Please re-download or contact the organizers or use appropriate reader to open this file.') class Page(object): """ The name and skeleton of a Wikipedia page. .. attribute:: page_name :rtype: PageName The name of the page. .. attribute:: skeleton :rtype: typing.List[PageSkeleton] The contents of the page .. attribute:: page_type :rtype: PageType Type about the page .. attribute:: page_meta :rtype: PageMetadata Metadata about the page """ def __init__(self, page_name, page_id, skeleton, page_type, page_meta): self.page_name = page_name self.page_id = page_id self.skeleton = list(skeleton) self.child_sections = [child for child in self.skeleton if isinstance(child, Section)] self.page_type = page_type self.page_meta = page_meta def deep_headings_list(self): return [child.nested_headings() for child in self.child_sections] def flat_headings_list(self): """ return Returns a flat list of headings contained by the :class:`Page`. :rtype: typing.List[Section] """ def flatten(prefix, headings): for section, children in headings: new_prefix = prefix + [section] if len(children)>0 : yield new_prefix yield from flatten(new_prefix, children) else: yield new_prefix deep_headings = self.deep_headings_list() return list(flatten([], deep_headings)) def get_infoboxes(self): toplevel_infoboxes = [child for child in self.skeleton if isinstance(child, InfoBox)] section_infoboxes = [section.get_infoboxes() for sections in self.flat_headings_list() for section in sections] return toplevel_infoboxes + list(itertools.chain.from_iterable(section_infoboxes)) @staticmethod def from_cbor(cbor): if not (cbor[0] == 0 or cbor[0] == 1): # tag raise CborElementNotDefinedException(cbor) pagename = cbor[1] pageId = cbor[2].decode('ascii') if len(cbor)==4: return Page(pagename, pageId, map(PageSkeleton.from_cbor, cbor[3]), ArticlePage, PageMetadata.default()) else: page_type = PageType.from_cbor(cbor[4]) return Page(pagename, pageId, map(PageSkeleton.from_cbor, cbor[3]), page_type, PageMetadata.from_cbor(cbor[5])) def __str__(self): return "Page(%s)" % self.page_name def to_string(self): """ Render a string representation of the page. :rtype: str """ return self.page_name + self.page_meta +\ '\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' + '\n'.join(str(s) for s in self.skeleton) def nested_headings(self): """ Each heading recursively represented by a pair of ``(heading, list_of_child_sections)``. :rtype: typing.List[typing.Tuple[Section, typing.List[Section]]] """ result = [child.nested_headings() for child in self.child_sections] return result def outline(self): return self.child_sections def get_text(self): """Include all visible text below this elements. Includes Captions of images, but no headings and no infoboxes. See `get_text_with_headings` for a version that includes headings.""" return '\n'.join(skel.get_text() for skel in self.skeleton) def get_text_with_headings(self, include_heading = False): """Include all visible text below this elements. While the heading of this element is excluded, headings of subsections will be included. Captions of images are excluded.""" return '\n'.join(skel.get_text_with_headings(include_heading = True) for skel in self.skeleton) class PageType(object): """ An abstract base class representing the various types of pages. Subclasses include * :class:`ArticlePage` * :class:`CategoryPage` * :class:`DisambiguationPage` * :class:`RedirectPage` """ @staticmethod def from_cbor(cbor): typetag = cbor[0] if typetag == 0: return ArticlePage() elif typetag == 1: return CategoryPage() elif typetag == 2: return DisambiguationPage() elif typetag == 3: target = cbor[1] if type(target) == list: # TODO this is almost certainly wrong targetPage = target[1] else: targetPage = target.decode('ascii') return RedirectPage(targetPage) else: raise CborElementNotDefinedException(cbor) class ArticlePage(PageType): '' def __init__(self): pass def __str__(self): return "ArticlePage" class CategoryPage(PageType): def __init__(self): pass def __str__(self): return "CategoryPage" class DisambiguationPage(PageType): def __init__(self): pass def __str__(self): return "Disambiguation Page" class RedirectPage(PageType): """ .. attribute:: targetPage :rtype: PageId The target of the redirect. """ def __init__(self, targetPage): self.targetPage = targetPage def __str__(self): return "RedirectPage " + self.targetPage class PageMetadata(object): """ Meta data for a page .. attribute:: redirectNames :rtype: PageName Names of pages which redirect to this page .. attribute:: disambiguationNames :rtype: PageName Names of disambiguation pages which link to this page .. attribute:: disambiguationId :rtype: PageId Page IDs of disambiguation pages which link to this page .. attribute:: categoryNames :rtype: str Page names of categories to which this page belongs .. attribute:: categoryIds :rtype: str Page IDs of categories to which this page belongs .. attribute:: inlinkIds :rtype: str Page IDs of pages containing inlinks .. attribute:: inlinkAnchors inlinkAnchor frequencies :rtype: str (Anchor text, frequency) of pages containing inlinks """ def __init__(self, redirectNames, disambiguationNames, disambiguationIds, categoryNames, categoryIds, inlinkIds, inlinkAnchors): self.inlinkAnchors = inlinkAnchors self.inlinkIds = inlinkIds self.categoryIds = categoryIds self.categoryNames = categoryNames self.disambiguationIds = disambiguationIds self.disambiguationNames = disambiguationNames self.redirectNames = redirectNames @staticmethod def default(): return PageMetadata(None, None, None, None, None, None, None) def __str__(self): redirStr = ("" if self.redirectNames is None else (" redirected = "+", ".join([name for name in self.redirectNames]))) disamStr = ("" if self.disambiguationNames is None else (" disambiguated = "+", ".join([name for name in self.disambiguationNames]))) catStr = ("" if self.redirectNames is None else (" categories = "+", ".join([name for name in (self.categoryNames or [])]))) inlinkStr = ("" if self.inlinkIds is None else (" inlinks = "+", ".join([name for name in self.inlinkIds]))) # inlinkAnchorStr = str (self.inlinkAnchors) inlinkAnchorStr = ("" if self.inlinkAnchors is None else (" inlinkAnchors = "+", ".join( [ ("%s: %d" % (name, freq)) for (name, freq) in self.inlinkAnchors] # [ ("%s: " % (name)) for (name, freq) in self.inlinkAnchors] \ ))) return "%s \n%s \n%s \n%s \n%s\n" % (redirStr, disamStr, catStr, inlinkStr, inlinkAnchorStr) @staticmethod def from_cbor(cbor): redirectNames=None disambiguationNames=None disambiguationIds=None categoryNames=None categoryIds=None inlinkIds=None inlinkAnchors=None def decodeListOfIdList(cbor): if len(cbor)==0: return None else: return [elem.decode('ascii') for elem in cbor] def decodeListOfNameList(cbor): if len(cbor)==0: return None else: return cbor def decodeListOfNameIntList(cbor): if len(cbor)==0: return None else: # need to convert list of pair-lists to lists of pair-tuples return [(elem[0], elem[1]) for elem in cbor] for i in range(0, len(cbor), 2): tag = cbor[i][0] cbor_data = cbor[i+1] if tag == 0: redirectNames = decodeListOfNameList(cbor_data) elif tag == 1: disambiguationNames=decodeListOfNameList(cbor_data) elif tag == 2: disambiguationIds=decodeListOfIdList(cbor_data) elif tag == 3: categoryNames=decodeListOfNameList(cbor_data) elif tag == 4: categoryIds=decodeListOfIdList(cbor_data) elif tag == 5: inlinkIds=decodeListOfIdList(cbor_data) elif tag == 6: # compatability with v1.6 inlinkAnchors = [(anchor, 1) for anchor in decodeListOfNameList(cbor_data)] elif tag == 7: # compatability with v2.0 inlinkAnchors = decodeListOfNameIntList(cbor_data) i+=2 return PageMetadata(redirectNames, disambiguationNames, disambiguationIds, categoryNames, categoryIds, inlinkIds, inlinkAnchors) class PageSkeleton(object): """ An abstract superclass for the various types of page elements. Subclasses include: * :class:`Section` * :class:`Para` * :class:`Image` """ @staticmethod def from_cbor(cbor): tag = cbor[0] if tag == 0: # section heading = cbor[1] headingId = cbor[2].decode('ascii') return Section(heading, headingId, map(PageSkeleton.from_cbor, cbor[3])) elif tag == 1: # para-wrapper return Para(Paragraph.from_cbor(cbor[1])) elif tag == 2: #images imageUrl = cbor[1] caption = [PageSkeleton.from_cbor(elem) for elem in cbor[2]] return Image(imageUrl, caption=caption) elif tag == 3: # paragraph level = cbor[1] body = Paragraph.from_cbor(cbor[2]) return List(level, body) elif tag == 4: # infobox infobox_title = cbor[1] cbor_entries = cbor[2] entries = [ (kv[0], PageSkeleton.from_cbor(kv[1][0])) for kv in cbor_entries if kv[1] and kv[1][0]] # if no value is defined kv[1] will be null. return InfoBox(infobox_title, entries) else: raise CborElementNotDefinedException(cbor) def get_text(self): """Includes visible text of this element and below. Headings are excluded. Image Captions are included. Infoboxes are ignored. (For a version with headers and no captions see `get_text_with_headings` """ raise NotImplementedError def get_text_with_headings(self, include_heading = False): """Include all visible text below this elements. While the heading of this element is excluded, headings of subsections will be included. Captions of images are excluded.""" raise NotImplementedError class Section(PageSkeleton): """ A section of a Wikipedia page. .. attribute:: heading :rtype: str The section heading. .. attribute:: headingId :rtype: str The unique identifier of a section heading. .. attribute:: children :rtype: typing.List[PageSkeleton] The :class:`PageSkeleton` elements contained by the section. """ def __init__(self, heading, headingId, children): self.heading = heading self.headingId = headingId self.children = list(children) self.child_sections = [child for child in self.children if isinstance(child, Section)] def str_(self, level): bar = "".join("="*level) children = "".join(c.str_(level=level+1) for c in self.children) return "\n%s %s %s\n\n%s" % (bar, self.heading, bar, children) def __str__(self): return self.str_(level=1) def __getitem__(self, idx): return self.children[idx] def nested_headings(self): return (self, [child.nested_headings() for child in self.child_sections]) def get_text(self): return '\n'.join(child.get_text() for child in self.children) def get_text_with_headings(self, include_heading = False): opt_heading = self.heading + "\n" if include_heading else "" return opt_heading + '\n'.join(child.get_text_with_headings(include_heading = True) for child in self.children) def get_infoboxes(self): return [child for child in self.children if isinstance(child, InfoBox)] class Para(PageSkeleton): """ A paragraph within a Wikipedia page. .. attribute:: paragraph :rtype: Paragraph The content of the Paragraph (which in turn contain a list of :class:`ParaBody`\ s) """ def __init__(self, paragraph): self.paragraph = paragraph def str_(self, level=None): return str(self.paragraph) def __str__(self): return self.str_() def get_text(self): return self.paragraph.get_text() def get_text_with_headings(self, include_heading = False): return self.get_text() class Image(PageSkeleton): """ An image within a Wikipedia page. .. attribute:: caption :rtype: str PageSkeleton representing the caption of the image .. attribute:: imageurl :rtype: str URL to the image; spaces need to be replaced with underscores, Wikimedia Commons namespace needs to be prefixed """ def __init__(self, imageurl, caption): self.caption = caption self.imageurl = imageurl def str_(self, level=None): return str("!["+self.imageurl+"]. Caption: "+(''.join([str(skel) for skel in self.caption]))) def __str__(self): return self.str_() def get_text(self): return '\n'.join(skel.get_text() for skel in self.caption) def get_text_with_headings(self, include_heading = False): return '' class List(PageSkeleton): """ An list element within a Wikipedia page. .. attribute:: level :rtype: int The list nesting level .. attribute:: body A :class:`Paragraph` containing the list element contents. """ def __init__(self, level, body): self.level = level self.body = body def str_(self, level=None): return str("*" * self.level + " " + str(self.body) + '\n') def __str__(self): return self.str_() def get_text(self): return self.body.get_text() def get_text_with_headings(self, include_heading = False): return self.get_text() class InfoBox(PageSkeleton): def __init__(self, infobox_type, entries): """ An list element within a Wikipedia page. .. attribute:: infobox_type :rtype: str The title/type of the infobox .. attribute:: entries Key-value pair, where key is a string, and value is a :class:`PageSkeleton` containing the value. Values are often paragraphs or images, but they can also be lists. """ self.title = infobox_type self.entries = entries def str_(self, level=None): return self.title+ "\n"+ ("\n".join([key+": "+str(values) for (key,values) in self.entries])) def __str__(self): return self.str_() def get_text(self): return '' def get_text_with_headings(self, include_heading = False): return '' class Paragraph(object): """ A paragraph. """ def __init__(self, para_id, bodies): self.para_id = para_id self.bodies = list(bodies) @staticmethod def from_cbor(cbor): if (not cbor[0] == 0): raise CborElementNotDefinedException(cbor) paragraphId = cbor[1].decode('ascii') return Paragraph(paragraphId, map(ParaBody.from_cbor, cbor[2])) def get_text(self): """ Get all of the contained text. :rtype: str """ return ''.join([body.get_text() for body in self.bodies]) def str_(self, level=None): return ' '.join(str(body) for body in self.bodies) def __str__(self): return self.str_() class ParaBody(object): """ An abstract superclass representing a bit of :class:`Paragraph` content. """ @staticmethod def from_cbor(cbor): tag = cbor[0] if tag == 0: return ParaText(cbor[1]) elif tag == 1: cbor_ = cbor[1] linkSection = None if len(cbor_[2]) == 1: linkSection = cbor_[2][0] linkTargetId = cbor_[3].decode('ascii') return ParaLink(cbor_[1], linkSection, linkTargetId, cbor_[4]) else: raise CborElementNotDefinedException(cbor) @abstractmethod def get_text(self): """ Get all of the text within a :class:`ParaBody`. :rtype: str """ raise NotImplementedError class ParaText(ParaBody): """ A bit of plain text from a paragraph. .. attribute:: text :rtype: str The text """ def __init__(self, text): self.text = text def get_text(self): return self.text def str_(self, level=None): return self.text def __str__(self): return self.str_() class ParaLink(ParaBody): """ A link within a paragraph. .. attribute:: page :rtype: PageName The page name of the link target .. attribute:: pageid :rtype: PageId The link target as trec-car identifer .. attribute:: link_section :rtype: str Section anchor of link target (i.e. the part after the ``#`` in the URL), or ``None``. .. attribute:: anchor_text :rtype: str The anchor text of the link """ def __init__(self, page, link_section, pageid, anchor_text): self.page = page self.pageid = pageid self.link_section = link_section self.anchor_text = anchor_text def get_text(self): return self.anchor_text def str_(self, level=None): return "[%s](%s)" % (self.anchor_text, self.page) def __str__(self): return self.str_() def _iter_with_header(file, parse, expected_file_types): maybe_hdr = cbor.load(file) if isinstance(maybe_hdr, list) and maybe_hdr[0] == 'CAR': # we have a header file_type = maybe_hdr[1][0] if not file_type in expected_file_types: # print( 'File type tag is expected to be ', (" ".join(expected_file_types)), 'but given file is of type ', file_type) # print('Did not expect file of type', file_type) raise WrongCarFileException(file_type, expected_file_types) # read beginning of variable-length list if (not file.read(1) == b'\x9f'): raise BrokenCborFileException() else: yield parse(maybe_hdr) while True: try: # Check for break symbol if (peek_for_break(file)): break yield parse(cbor.load(file)) except EOFError: break def peek_for_break(cbor): b = cbor.peek(1) return b[0:1] == b'\xff' def iter_annotations(file): """ Iterate over the :class:`Page`\ s of an annotations file. :type file: typing.BinaryIO :rtype: typing.Iterator[Page] """ return _iter_with_header(file, Page.from_cbor, [0,1]) # return TrecCarHeader.from_cbor(file) def iter_pages(file): """ Iterate over the :class:`Page`\ s of an annotations file. :type file: typing.BinaryIO :rtype: typing.Iterator[Page] """ return _iter_with_header(file, Page.from_cbor, [0]) def iter_outlines(file): """ Iterate over the :class:`Page`\ s of an annotations file. :type file: typing.BinaryIO :rtype: typing.Iterator[Page] """ return _iter_with_header(file, Page.from_cbor, [1]) def iter_paragraphs(file): """ Iterate over the :class:`Paragraph`\ s of an paragraphs file. :type file: typing.BinaryIO :rtype: typing.Iterator[Paragraph] """ return _iter_with_header(file, Paragraph.from_cbor, [2]) def dump_annotations(file): for page in iter_annotations(file): print(page.to_string()) def with_toc(read_val): class AnnotationsFile(object): def __init__(self, fname): """ Read annotations from a file. Arguments: fname The name of the CBOR file. A table-of-contents file is also expected to be present. """ self.cbor = open(fname, 'rb') self.toc = cbor.load(open(fname+'.toc', 'rb')) def keys(self): """ The page names contained in an annotations file. """ return self.toc.keys() def get(self, page): """ Lookup a page by name. Returns a Page or None """ offset = self.toc.get(page) if offset is not None: self.cbor.seek(offset) return read_val(cbor.load(self.cbor)) return None return AnnotationsFile AnnotationsFile = with_toc(Page.from_cbor) ParagraphsFile = with_toc(Paragraph.from_cbor)
datasets-server-main
services/worker/vendors/trec-car-tools/python3/build/lib/trec_car/read_data.py
import csv import urllib.parse from typing import * def encode_section_path(page_id, section_path): elements = [page_id] + section_path return '/'.join([urllib.parse.quote(elem) for elem in elements]) # return urllib.parse.urlencode({'page':page_id, 'sectionpath':section_path}) def encode_page_only(page_id): return urllib.parse.quote(page_id) class RankingEntry(object): """ A paragraph within a Wikipedia page. Attributes: paragraph The content of the Paragraph (which in turn contain a list of ParaBodys) """ def __init__(self, query_id:str, paragraph_id:str, rank:int, score:float, exp_name:str=None, paragraph_content:str=None): assert(rank > 0) self.query_id = query_id self.paragraph_id = paragraph_id self.rank = rank self.score = score self.exp_name = exp_name self.paragraph_content = paragraph_content def to_trec_eval_row(self, alternative_exp_name=None, page_only=False): exp_name_ = alternative_exp_name if alternative_exp_name is not None \ else self.exp_name return [self.query_id, 'Q0', self.paragraph_id, self.rank, self.score, exp_name_] # # csv.register_dialect( # 'trec_eval', # delimiter = ' ', # quotechar = '"', # doublequote = False, # skipinitialspace = False, # lineterminator = '\n', # quoting = csv.QUOTE_NONE) # # # def configure_csv_writer(fileobj): # 'Convenience method to create a csv writer with the trec_eval_dialect' # return csv.writer(fileobj, dialect='trec_eval') # def format_run(writer, ranking_of_paragraphs, exp_name=None): 'write one ranking to the csv writer' for elem in ranking_of_paragraphs: # query-number Q0 document-id rank score Exp writer.write(" ".join([str(x) for x in elem.to_trec_eval_row(exp_name)])) writer.write("\n")
datasets-server-main
services/worker/vendors/trec-car-tools/python3/build/lib/trec_car/format_runs.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import datasets import pytest from pytest import TempPathFactory from worker.resources import LibrariesResource @pytest.mark.parametrize( "define_init_hf_datasets_cache,define_numba_path", [(False, False), (False, True), (True, False), (True, True)], ) def test_libraries( tmp_path_factory: TempPathFactory, define_init_hf_datasets_cache: bool, define_numba_path: bool ) -> None: hf_endpoint = "https://another.endpoint" init_hf_datasets_cache = ( str(tmp_path_factory.mktemp("hf_datasets_cache")) if define_init_hf_datasets_cache else None ) numba_path = str(tmp_path_factory.mktemp("numba_path")) if define_numba_path else None assert datasets.config.HF_ENDPOINT != hf_endpoint resource = LibrariesResource( hf_endpoint=hf_endpoint, init_hf_datasets_cache=init_hf_datasets_cache, numba_path=numba_path ) assert datasets.config.HF_ENDPOINT == hf_endpoint assert (numba_path in resource.storage_paths) == define_numba_path assert str(resource.hf_datasets_cache) in resource.storage_paths assert str(datasets.config.HF_MODULES_CACHE) in resource.storage_paths assert not datasets.config.HF_UPDATE_DOWNLOAD_COUNTS assert (str(resource.hf_datasets_cache) == init_hf_datasets_cache) == define_init_hf_datasets_cache resource.release() assert datasets.config.HF_ENDPOINT != hf_endpoint def test_libraries_context_manager(tmp_path_factory: TempPathFactory) -> None: hf_endpoint = "https://another.endpoint" init_hf_datasets_cache = str(tmp_path_factory.mktemp("hf_datasets_cache")) numba_path = str(tmp_path_factory.mktemp("numba_path")) assert datasets.config.HF_ENDPOINT != hf_endpoint with LibrariesResource( hf_endpoint=hf_endpoint, init_hf_datasets_cache=init_hf_datasets_cache, numba_path=numba_path ): assert datasets.config.HF_ENDPOINT == hf_endpoint assert datasets.config.HF_ENDPOINT != hf_endpoint
datasets-server-main
services/worker/tests/test_resources.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from http import HTTPStatus from typing import Optional import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource from libcommon.simple_cache import upsert_response from libcommon.storage import StrPath from libcommon.utils import JobInfo, Priority from worker.config import AppConfig from worker.job_runner_factory import JobRunnerFactory from worker.resources import LibrariesResource @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource @pytest.fixture() def processing_graph(app_config: AppConfig) -> ProcessingGraph: return ProcessingGraph(app_config.processing_graph.specification) @pytest.mark.parametrize( "level,job_type,expected_job_runner", [ ("dataset", "dataset-config-names", "DatasetConfigNamesJobRunner"), ("split", "split-first-rows-from-streaming", "SplitFirstRowsFromStreamingJobRunner"), ("config", "config-parquet-and-info", "ConfigParquetAndInfoJobRunner"), ("config", "config-parquet", "ConfigParquetJobRunner"), ("dataset", "dataset-parquet", "DatasetParquetJobRunner"), ("config", "config-info", "ConfigInfoJobRunner"), ("dataset", "dataset-info", "DatasetInfoJobRunner"), ("config", "config-size", "ConfigSizeJobRunner"), ("dataset", "dataset-size", "DatasetSizeJobRunner"), (None, "/unknown", None), ], ) def test_create_job_runner( app_config: AppConfig, processing_graph: ProcessingGraph, libraries_resource: LibrariesResource, assets_directory: StrPath, parquet_metadata_directory: StrPath, duckdb_index_cache_directory: StrPath, statistics_cache_directory: StrPath, level: Optional[str], job_type: str, expected_job_runner: Optional[str], ) -> None: factory = JobRunnerFactory( app_config=app_config, processing_graph=processing_graph, hf_datasets_cache=libraries_resource.hf_datasets_cache, assets_directory=assets_directory, parquet_metadata_directory=parquet_metadata_directory, duckdb_index_cache_directory=duckdb_index_cache_directory, statistics_cache_directory=statistics_cache_directory, ) dataset, config, split = "dataset", "config", "split" job_info: JobInfo = { "type": job_type, "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, } if level in {"split", "config"}: upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) if level == "split": upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) if expected_job_runner is None: with pytest.raises(KeyError): factory.create_job_runner(job_info=job_info) else: job_runner = factory.create_job_runner(job_info=job_info) assert job_runner.__class__.__name__ == expected_job_runner
datasets-server-main
services/worker/tests/test_job_runner_factory.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Iterator from pathlib import Path from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.queue import _clean_queue_database from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import _clean_cache_database from libcommon.storage import ( StrPath, init_assets_dir, init_duckdb_index_cache_dir, init_parquet_metadata_dir, init_statistics_cache_dir, ) from pytest import MonkeyPatch, fixture from worker.config import AppConfig from worker.main import WORKER_STATE_FILE_NAME from worker.resources import LibrariesResource from .constants import ( CI_APP_TOKEN, CI_HUB_ENDPOINT, CI_PARQUET_CONVERTER_APP_TOKEN, CI_URL_TEMPLATE, ) @fixture def datasets_cache_directory(tmp_path: Path) -> Path: return tmp_path / "datasets" @fixture def modules_cache_directory(tmp_path: Path) -> Path: return tmp_path / "modules" @fixture def worker_state_file_path(tmp_path: Path) -> str: return str(tmp_path / WORKER_STATE_FILE_NAME) @fixture def statistics_cache_directory(app_config: AppConfig) -> StrPath: return init_statistics_cache_dir(app_config.descriptive_statistics.cache_directory) # see https://github.com/pytest-dev/pytest/issues/363#issuecomment-406536200 @fixture(scope="session", autouse=True) def monkeypatch_session() -> Iterator[MonkeyPatch]: mp = MonkeyPatch() mp.setattr("huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE", CI_URL_TEMPLATE) # ^ see https://github.com/huggingface/datasets/pull/5196#issuecomment-1322191056 mp.setattr("datasets.config.HF_ENDPOINT", CI_HUB_ENDPOINT) mp.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS", False) yield mp mp.undo() # see https://github.com/pytest-dev/pytest/issues/363#issuecomment-406536200 @fixture def set_env_vars( datasets_cache_directory: Path, modules_cache_directory: Path, worker_state_file_path: str ) -> Iterator[MonkeyPatch]: mp = MonkeyPatch() mp.setenv("CACHE_MONGO_DATABASE", "datasets_server_cache_test") mp.setenv("QUEUE_MONGO_DATABASE", "datasets_server_queue_test") mp.setenv("COMMON_HF_ENDPOINT", CI_HUB_ENDPOINT) mp.setenv("COMMON_HF_TOKEN", CI_APP_TOKEN) mp.setenv("ASSETS_BASE_URL", "http://localhost/assets") mp.setenv("FIRST_ROWS_MAX_NUMBER", "7") mp.setenv("PARQUET_AND_INFO_MAX_DATASET_SIZE", "10_000") mp.setenv("DESCRIPTIVE_STATISTICS_MAX_PARQUET_SIZE_BYTES", "10_000") mp.setenv("PARQUET_AND_INFO_MAX_EXTERNAL_DATA_FILES", "10") mp.setenv("PARQUET_AND_INFO_COMMITTER_HF_TOKEN", CI_PARQUET_CONVERTER_APP_TOKEN) mp.setenv("DUCKDB_INDEX_COMMITTER_HF_TOKEN", CI_PARQUET_CONVERTER_APP_TOKEN) mp.setenv("DATASETS_BASED_HF_DATASETS_CACHE", str(datasets_cache_directory)) mp.setenv("HF_MODULES_CACHE", str(modules_cache_directory)) mp.setenv("WORKER_CONTENT_MAX_BYTES", "10_000_000") mp.setenv("WORKER_STATE_FILE_PATH", worker_state_file_path) mp.setenv("WORKER_HEARTBEAT_INTERVAL_SECONDS", "1") mp.setenv("WORKER_KILL_ZOMBIES_INTERVAL_SECONDS", "1") mp.setenv("WORKER_KILL_LONG_JOB_INTERVAL_SECONDS", "1") mp.setenv("OPT_IN_OUT_URLS_SCAN_SPAWNING_TOKEN", "dummy_spawning_token") yield mp mp.undo() @fixture def app_config(set_env_vars: MonkeyPatch) -> Iterator[AppConfig]: app_config = AppConfig.from_env() if "test" not in app_config.cache.mongo_database or "test" not in app_config.queue.mongo_database: raise ValueError("Test must be launched on a test mongo database") yield app_config @fixture def cache_mongo_resource(app_config: AppConfig) -> Iterator[CacheMongoResource]: with CacheMongoResource(database=app_config.cache.mongo_database, host=app_config.cache.mongo_url) as resource: yield resource _clean_cache_database() @fixture def queue_mongo_resource(app_config: AppConfig) -> Iterator[QueueMongoResource]: with QueueMongoResource(database=app_config.queue.mongo_database, host=app_config.queue.mongo_url) as resource: yield resource _clean_queue_database() @fixture def libraries_resource(app_config: AppConfig) -> Iterator[LibrariesResource]: with LibrariesResource( hf_endpoint=app_config.common.hf_endpoint, init_hf_datasets_cache=app_config.datasets_based.hf_datasets_cache, numba_path=app_config.numba.path, ) as libraries_resource: yield libraries_resource @fixture def assets_directory(app_config: AppConfig) -> StrPath: return init_assets_dir(app_config.assets.storage_directory) @fixture def parquet_metadata_directory(app_config: AppConfig) -> StrPath: return init_parquet_metadata_dir(app_config.parquet_metadata.storage_directory) @fixture def duckdb_index_cache_directory(app_config: AppConfig) -> StrPath: return init_duckdb_index_cache_dir(app_config.duckdb_index.cache_directory) @fixture def test_processing_graph() -> ProcessingGraph: return ProcessingGraph( { "dummy": {"input_type": "dataset"}, "dummy2": {"input_type": "dataset"}, } ) @fixture def test_processing_step(test_processing_graph: ProcessingGraph) -> ProcessingStep: return test_processing_graph.get_processing_step("dummy") @fixture def another_processing_step(test_processing_graph: ProcessingGraph) -> ProcessingStep: return test_processing_graph.get_processing_step("dummy2") # Import fixture modules as plugins pytest_plugins = ["tests.fixtures.datasets", "tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"]
datasets-server-main
services/worker/tests/conftest.py
from dataclasses import dataclass from http import HTTPStatus from typing import Optional import pytest from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.queue import JobDocument, Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedResponseDocument, get_response, upsert_response from libcommon.utils import JobInfo, Priority, Status from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_manager import JobManager from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner from .fixtures.hub import get_default_config_split @pytest.fixture(autouse=True) def prepare_and_clean_mongo( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> None: # prepare the database before each test, and clean it afterwards pass class DummyJobRunner(DatasetJobRunner): @staticmethod def get_job_runner_version() -> int: return 1 @staticmethod def get_job_type() -> str: return "dummy" def compute(self) -> CompleteJobResult: return CompleteJobResult({"key": "value"}) @dataclass class CacheEntry: error_code: Optional[str] job_runner_version: Optional[int] dataset_git_revision: Optional[str] progress: Optional[float] = None def test_check_type( test_processing_graph: ProcessingGraph, another_processing_step: ProcessingStep, test_processing_step: ProcessingStep, app_config: AppConfig, ) -> None: job_id = "job_id" dataset = "dataset" revision = "revision" config = "config" split = "split" job_type = f"not-{test_processing_step.job_type}" job_info = JobInfo( job_id=job_id, type=job_type, params={ "dataset": dataset, "revision": revision, "config": config, "split": split, }, priority=Priority.NORMAL, difficulty=50, ) with pytest.raises(ValueError): job_runner = DummyJobRunner( job_info=job_info, processing_step=test_processing_step, app_config=app_config, ) JobManager( job_info=job_info, app_config=app_config, job_runner=job_runner, processing_graph=test_processing_graph ) job_info = JobInfo( job_id=job_id, type=test_processing_step.job_type, params={ "dataset": dataset, "revision": revision, "config": config, "split": split, }, priority=Priority.NORMAL, difficulty=50, ) with pytest.raises(ValueError): job_runner = DummyJobRunner( job_info=job_info, processing_step=another_processing_step, app_config=app_config, ) JobManager( job_info=job_info, app_config=app_config, job_runner=job_runner, processing_graph=test_processing_graph ) @pytest.mark.parametrize( "priority", [ Priority.LOW, Priority.NORMAL, ], ) def test_backfill(priority: Priority, app_config: AppConfig) -> None: graph = ProcessingGraph( { "dummy": {"input_type": "dataset"}, "dataset-child": {"input_type": "dataset", "triggered_by": "dummy"}, "config-child": {"input_type": "config", "triggered_by": "dummy"}, "dataset-unrelated": {"input_type": "dataset"}, } ) root_step = graph.get_processing_step("dummy") queue = Queue() assert JobDocument.objects().count() == 0 queue.add_job( job_type=root_step.job_type, dataset="dataset", revision="revision", config=None, split=None, priority=priority, difficulty=50, ) job_info = queue.start_job() assert job_info["priority"] == priority job_runner = DummyJobRunner( job_info=job_info, processing_step=root_step, app_config=app_config, ) job_manager = JobManager(job_info=job_info, app_config=app_config, job_runner=job_runner, processing_graph=graph) assert job_manager.priority == priority job_result = job_manager.run_job() assert job_result["is_success"] assert job_result["output"] is not None assert job_result["output"]["content"] == {"key": "value"} job_manager.finish(job_result=job_result) # check that the job has been finished job = queue.get_job_with_id(job_id=job_info["job_id"]) assert job.status in [Status.SUCCESS, Status.ERROR, Status.CANCELLED] assert job.priority == priority # check that the cache entry has have been created cached_response = get_response(kind=root_step.cache_kind, dataset="dataset", config=None, split=None) assert cached_response is not None assert cached_response["http_status"] == HTTPStatus.OK assert cached_response["error_code"] is None assert cached_response["content"] == {"key": "value"} assert cached_response["dataset_git_revision"] == "revision" assert cached_response["job_runner_version"] == 1 assert cached_response["progress"] == 1.0 dataset_child_jobs = queue.get_dump_with_status(job_type="dataset-child", status=Status.WAITING) assert len(dataset_child_jobs) == 1 assert dataset_child_jobs[0]["dataset"] == "dataset" assert dataset_child_jobs[0]["revision"] == "revision" assert dataset_child_jobs[0]["config"] is None assert dataset_child_jobs[0]["split"] is None assert dataset_child_jobs[0]["priority"] is priority.value dataset_unrelated_jobs = queue.get_dump_with_status(job_type="dataset-unrelated", status=Status.WAITING) assert len(dataset_unrelated_jobs) == 0 # ^ the dataset-unrelated job is not triggered by the dummy job, so it should not be created # check that no config level jobs have been created, because the config names are not known config_child_jobs = queue.get_dump_with_status(job_type="config-child", status=Status.WAITING) assert len(config_child_jobs) == 0 def test_job_runner_set_crashed( test_processing_graph: ProcessingGraph, test_processing_step: ProcessingStep, app_config: AppConfig, ) -> None: dataset = "dataset" revision = "revision" config = "config" split = "split" message = "I'm crashed :(" queue = Queue() assert JobDocument.objects().count() == 0 queue.add_job( job_type=test_processing_step.job_type, dataset=dataset, revision=revision, config=config, split=split, priority=Priority.NORMAL, difficulty=50, ) job_info = queue.start_job() job_runner = DummyJobRunner( job_info=job_info, processing_step=test_processing_step, app_config=app_config, ) job_manager = JobManager( job_info=job_info, app_config=app_config, job_runner=job_runner, processing_graph=test_processing_graph ) job_manager.set_crashed(message=message) response = CachedResponseDocument.objects()[0] expected_error = {"error": message} assert response.http_status == HTTPStatus.NOT_IMPLEMENTED assert response.error_code == "JobManagerCrashedError" assert response.dataset == dataset assert response.dataset_git_revision == revision assert response.config == config assert response.split == split assert response.content == expected_error assert response.details == expected_error # TODO: check if it stores the correct dataset git sha and job version when it's implemented def test_raise_if_parallel_response_exists( test_processing_graph: ProcessingGraph, test_processing_step: ProcessingStep, app_config: AppConfig, ) -> None: dataset = "dataset" revision = "revision" config = "config" split = "split" upsert_response( kind="dummy-parallel", dataset=dataset, config=config, split=split, content={}, dataset_git_revision=revision, job_runner_version=1, progress=1.0, http_status=HTTPStatus.OK, ) job_info = JobInfo( job_id="job_id", type="dummy", params={ "dataset": dataset, "revision": revision, "config": config, "split": split, }, priority=Priority.NORMAL, difficulty=50, ) job_runner = DummyJobRunner( job_info=job_info, processing_step=test_processing_step, app_config=app_config, ) job_manager = JobManager( job_info=job_info, app_config=app_config, job_runner=job_runner, processing_graph=test_processing_graph ) with pytest.raises(CustomError) as exc_info: job_manager.raise_if_parallel_response_exists(parallel_cache_kind="dummy-parallel", parallel_job_version=1) assert exc_info.value.status_code == HTTPStatus.INTERNAL_SERVER_ERROR assert exc_info.value.code == "ResponseAlreadyComputedError" def test_doesnotexist(app_config: AppConfig) -> None: dataset = "doesnotexist" revision = "revision" config, split = get_default_config_split() job_info = JobInfo( job_id="job_id", type="dummy", params={ "dataset": dataset, "revision": revision, "config": config, "split": split, }, priority=Priority.NORMAL, difficulty=50, ) processing_step_name = "dummy" processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": DummyJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) processing_step = processing_graph.get_processing_step(processing_step_name) job_runner = DummyJobRunner( job_info=job_info, processing_step=processing_step, app_config=app_config, ) job_manager = JobManager( job_info=job_info, app_config=app_config, job_runner=job_runner, processing_graph=processing_graph ) job_result = job_manager.process() # ^ the job is processed, since we don't contact the Hub to check if the dataset exists assert job_result["output"] is not None assert job_result["output"]["content"] == {"key": "value"}
datasets-server-main
services/worker/tests/test_job_manager.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import os # see https://github.com/huggingface/moon-landing/blob/main/server/scripts/staging-seed-db.ts CI_APP_TOKEN = "hf_app_datasets-server_token" CI_PARQUET_CONVERTER_APP_TOKEN = "hf_app_datasets-server-parquet-converter_token" CI_HUB_ENDPOINT = "https://hub-ci.huggingface.co" CI_URL_TEMPLATE = CI_HUB_ENDPOINT + "/{repo_id}/resolve/{revision}/{filename}" CI_USER = "__DUMMY_DATASETS_SERVER_USER__" CI_USER_TOKEN = "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" CI_SPAWNING_TOKEN = os.getenv("CI_SPAWNING_TOKEN", "unset")
datasets-server-main
services/worker/tests/constants.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/tests/__init__.py
from dataclasses import replace from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.utils import JobInfo from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_runner import JobRunner from worker.job_runner_factory import BaseJobRunnerFactory from worker.loop import Loop from worker.resources import LibrariesResource class DummyJobRunner(JobRunner): @staticmethod def get_job_type() -> str: return "dummy" @staticmethod def get_job_runner_version() -> int: return 1 def compute(self) -> CompleteJobResult: return CompleteJobResult({"key": "value"}) class DummyJobRunnerFactory(BaseJobRunnerFactory): def __init__( self, processing_graph: ProcessingGraph, processing_step: ProcessingStep, app_config: AppConfig ) -> None: self.processing_step = processing_step self.processing_graph = processing_graph self.app_config = app_config def _create_job_runner(self, job_info: JobInfo) -> JobRunner: return DummyJobRunner( job_info=job_info, app_config=self.app_config, processing_step=self.processing_step, ) def test_process_next_job( test_processing_graph: ProcessingGraph, test_processing_step: ProcessingStep, app_config: AppConfig, libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, worker_state_file_path: str, ) -> None: job_type = test_processing_step.job_type app_config = replace(app_config, worker=replace(app_config.worker, job_types_only=[job_type])) factory = DummyJobRunnerFactory( processing_step=test_processing_step, processing_graph=test_processing_graph, app_config=app_config ) loop = Loop( job_runner_factory=factory, library_cache_paths=libraries_resource.storage_paths, app_config=app_config, state_file_path=worker_state_file_path, processing_graph=test_processing_graph, ) assert not loop.process_next_job() dataset = "dataset" revision = "revision" config = "config" split = "split" loop.queue.add_job( job_type=job_type, dataset=dataset, revision=revision, config=config, split=split, difficulty=50 ) assert loop.queue.is_job_in_process( job_type=job_type, dataset=dataset, revision=revision, config=config, split=split ) assert loop.process_next_job() assert not loop.queue.is_job_in_process( job_type=job_type, dataset=dataset, revision=revision, config=config, split=split )
datasets-server-main
services/worker/tests/test_loop.py
import os import sys import time from collections.abc import Callable, Iterator from datetime import timedelta from http import HTTPStatus from pathlib import Path from unittest.mock import patch import orjson import pytest import pytz from filelock import FileLock from libcommon.processing_graph import ProcessingGraph from libcommon.queue import JobDocument, JobDoesNotExistError, Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedResponseDocument from libcommon.storage import StrPath from libcommon.utils import JobInfo, Priority, Status, get_datetime from mirakuru import ProcessExitedWithError, TimeoutExpired from pytest import fixture from worker.config import AppConfig from worker.executor import WorkerExecutor from worker.job_runner_factory import JobRunnerFactory from worker.loop import WorkerState from worker.resources import LibrariesResource _TIME = int(os.environ.get("WORKER_TEST_TIME", int(time.time() * 10e3))) def get_job_info(prefix: str = "base") -> JobInfo: job_id = prefix.encode().hex() assert len(job_id) <= 24, "please choose a smaller prefix" return JobInfo( job_id=job_id + "0" * (24 - len(job_id)), type="dataset-config-names", params={ "dataset": f"__DUMMY_DATASETS_SERVER_USER__/{prefix}_dataset_{_TIME}", "revision": "revision", "config": "default", "split": "train", }, priority=Priority.LOW, difficulty=50, ) def write_worker_state(worker_state: WorkerState, worker_state_file_path: str) -> None: with FileLock(worker_state_file_path + ".lock"): with open(worker_state_file_path, "wb") as worker_state_f: worker_state_f.write(orjson.dumps(worker_state)) def start_worker_loop() -> None: app_config = AppConfig.from_env() if not app_config.worker.state_file_path: raise ValueError("Failed to get worker state because 'state_file_path' is missing.") if "--print-worker-state-path" in sys.argv: print(app_config.worker.state_file_path, flush=True) current_job_info = get_job_info() worker_state = WorkerState(current_job_info=current_job_info, last_updated=get_datetime()) write_worker_state(worker_state, app_config.worker.state_file_path) def start_worker_loop_that_crashes() -> None: app_config = AppConfig.from_env() if not app_config.worker.state_file_path: raise ValueError("Failed to get worker state because 'state_file_path' is missing.") if "--print-worker-state-path" in sys.argv: print(app_config.worker.state_file_path, flush=True) raise RuntimeError("Tried to run a bad worker loop") def start_worker_loop_that_times_out() -> None: time.sleep(20) def start_worker_loop_with_long_job() -> None: app_config = AppConfig.from_env() if not app_config.worker.state_file_path: raise ValueError("Failed to get worker state because 'state_file_path' is missing.") if "--print-worker-state-path" in sys.argv: print(app_config.worker.state_file_path, flush=True) current_job_info = get_job_info("long") with QueueMongoResource(database=app_config.queue.mongo_database, host=app_config.queue.mongo_url): current_job = JobDocument.objects(pk=current_job_info["job_id"]).get() assert current_job.started_at is not None worker_state = WorkerState( current_job_info=current_job_info, last_updated=pytz.UTC.localize(current_job.started_at) ) if current_job.status == Status.STARTED: write_worker_state(worker_state, app_config.worker.state_file_path) time.sleep(20) Queue().finish_job(current_job_info["job_id"], is_success=True) @fixture def set_worker_state(worker_state_file_path: str) -> Iterator[WorkerState]: job_info = get_job_info() worker_state = WorkerState(current_job_info=job_info, last_updated=get_datetime()) write_worker_state(worker_state, worker_state_file_path) yield worker_state os.remove(worker_state_file_path) @fixture def set_just_started_job_in_queue(queue_mongo_resource: QueueMongoResource) -> Iterator[JobDocument]: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") job_info = get_job_info() try: JobDocument.get(job_id=job_info["job_id"]).delete() except JobDoesNotExistError: pass created_at = get_datetime() job = JobDocument( pk=job_info["job_id"], type=job_info["type"], dataset=job_info["params"]["dataset"], revision=job_info["params"]["revision"], config=job_info["params"]["config"], split=job_info["params"]["split"], unicity_id="unicity_id", namespace="user", priority=job_info["priority"], status=Status.STARTED, created_at=created_at, started_at=created_at + timedelta(microseconds=1), difficulty=job_info["difficulty"], ) job.save() yield job job.delete() @fixture def set_long_running_job_in_queue( app_config: AppConfig, queue_mongo_resource: QueueMongoResource ) -> Iterator[JobDocument]: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") job_info = get_job_info("long") try: JobDocument.get(job_id=job_info["job_id"]).delete() except JobDoesNotExistError: pass created_at = get_datetime() - timedelta(days=1) last_heartbeat = get_datetime() - timedelta(seconds=app_config.worker.heartbeat_interval_seconds) job = JobDocument( pk=job_info["job_id"], type=job_info["type"], dataset=job_info["params"]["dataset"], revision=job_info["params"]["revision"], config=job_info["params"]["config"], split=job_info["params"]["split"], unicity_id="unicity_id", namespace="user", priority=job_info["priority"], status=Status.STARTED, created_at=created_at, started_at=created_at + timedelta(milliseconds=1), last_heartbeat=last_heartbeat, difficulty=job_info["difficulty"], ) job.save() yield job job.delete() @fixture def set_zombie_job_in_queue(queue_mongo_resource: QueueMongoResource) -> Iterator[JobDocument]: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") job_info = get_job_info("zombie") try: JobDocument.get(job_id=job_info["job_id"]).delete() except JobDoesNotExistError: pass created_at = get_datetime() - timedelta(days=1) job = JobDocument( pk=job_info["job_id"], type=job_info["type"], dataset=job_info["params"]["dataset"], revision=job_info["params"]["revision"], config=job_info["params"]["config"], split=job_info["params"]["split"], unicity_id="unicity_id", namespace="user", priority=job_info["priority"], status=Status.STARTED, created_at=created_at, started_at=created_at + timedelta(milliseconds=1), last_heartbeat=created_at + timedelta(milliseconds=2), difficulty=job_info["difficulty"], ) job.save() yield job job.delete() @fixture def job_runner_factory( app_config: AppConfig, libraries_resource: LibrariesResource, assets_directory: StrPath, parquet_metadata_directory: StrPath, duckdb_index_cache_directory: StrPath, statistics_cache_directory: StrPath, ) -> JobRunnerFactory: processing_graph = ProcessingGraph(app_config.processing_graph.specification) return JobRunnerFactory( app_config=app_config, processing_graph=processing_graph, hf_datasets_cache=libraries_resource.hf_datasets_cache, assets_directory=assets_directory, parquet_metadata_directory=parquet_metadata_directory, duckdb_index_cache_directory=duckdb_index_cache_directory, statistics_cache_directory=statistics_cache_directory, ) @fixture def executor( app_config: AppConfig, job_runner_factory: JobRunnerFactory, worker_state_file_path: str ) -> WorkerExecutor: return WorkerExecutor(app_config, job_runner_factory, state_file_path=worker_state_file_path) def test_executor_get_state(executor: WorkerExecutor, set_worker_state: WorkerState) -> None: assert executor.get_state() == set_worker_state def test_executor_get_empty_state( executor: WorkerExecutor, ) -> None: assert executor.get_state() is None def test_executor_heartbeat( executor: WorkerExecutor, set_just_started_job_in_queue: JobDocument, set_worker_state: WorkerState, ) -> None: current_job = set_just_started_job_in_queue assert current_job.last_heartbeat is None executor.heartbeat() current_job.reload() assert current_job.last_heartbeat is not None last_heartbeat_datetime = pytz.UTC.localize(current_job.last_heartbeat) assert last_heartbeat_datetime >= get_datetime() - timedelta(seconds=1) def test_executor_kill_zombies( executor: WorkerExecutor, set_just_started_job_in_queue: JobDocument, set_long_running_job_in_queue: JobDocument, set_zombie_job_in_queue: JobDocument, tmp_dataset_repo_factory: Callable[[str], str], cache_mongo_resource: CacheMongoResource, ) -> None: zombie = set_zombie_job_in_queue normal_job = set_just_started_job_in_queue tmp_dataset_repo_factory(zombie.dataset) try: executor.kill_zombies() assert JobDocument.objects(pk=zombie.pk).get().status in [Status.ERROR, Status.CANCELLED, Status.SUCCESS] assert JobDocument.objects(pk=normal_job.pk).get().status == Status.STARTED response = CachedResponseDocument.objects()[0] expected_error = { "error": "Job manager crashed while running this job (missing heartbeats).", } assert response.http_status == HTTPStatus.NOT_IMPLEMENTED assert response.error_code == "JobManagerCrashedError" assert response.dataset == zombie.dataset assert response.config == zombie.config assert response.split == zombie.split assert response.content == expected_error assert response.details == expected_error finally: CachedResponseDocument.objects().delete() def test_executor_start( executor: WorkerExecutor, queue_mongo_resource: QueueMongoResource, set_just_started_job_in_queue: JobDocument, set_zombie_job_in_queue: JobDocument, tmp_dataset_repo_factory: Callable[[str], str], cache_mongo_resource: CacheMongoResource, ) -> None: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") zombie = set_zombie_job_in_queue tmp_dataset_repo_factory(zombie.dataset) # tmp_dataset_repo_factory(zombie.dataset) with patch.object(executor, "heartbeat", wraps=executor.heartbeat) as heartbeat_mock: with patch.object(executor, "kill_zombies", wraps=executor.kill_zombies) as kill_zombies_mock: with patch("worker.executor.START_WORKER_LOOP_PATH", __file__), patch.dict( os.environ, {"WORKER_TEST_TIME": str(_TIME)} ): executor.start() current_job = set_just_started_job_in_queue assert current_job is not None assert str(current_job.pk) == get_job_info()["job_id"] assert heartbeat_mock.call_count > 0 assert JobDocument.objects(pk=set_just_started_job_in_queue.pk).get().last_heartbeat is not None assert kill_zombies_mock.call_count > 0 assert JobDocument.objects(pk=set_zombie_job_in_queue.pk).get().status in [ Status.ERROR, Status.CANCELLED, Status.SUCCESS, ] @pytest.mark.parametrize( "bad_worker_loop_type", ["start_worker_loop_that_crashes", "start_worker_loop_that_times_out"] ) def test_executor_raises_on_bad_worker( executor: WorkerExecutor, queue_mongo_resource: QueueMongoResource, tmp_path: Path, bad_worker_loop_type: str ) -> None: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") bad_start_worker_loop_path = tmp_path / "bad_start_worker_loop.py" with bad_start_worker_loop_path.open("w") as bad_start_worker_loop_f: bad_start_worker_loop_f.write("raise RuntimeError('Tried to start a bad worker loop.')") with patch.dict(os.environ, {"WORKER_LOOP_TYPE": bad_worker_loop_type}): with patch("worker.executor.START_WORKER_LOOP_PATH", __file__), patch.dict( os.environ, {"WORKER_TEST_TIME": str(_TIME)} ): with pytest.raises((ProcessExitedWithError, TimeoutExpired)): executor.start() def test_executor_stops_on_long_job( executor: WorkerExecutor, queue_mongo_resource: QueueMongoResource, cache_mongo_resource: CacheMongoResource, tmp_dataset_repo_factory: Callable[[str], str], set_long_running_job_in_queue: JobDocument, set_just_started_job_in_queue: JobDocument, ) -> None: if not queue_mongo_resource.is_available(): raise RuntimeError("Mongo resource is not available") long_job = set_long_running_job_in_queue normal_job = set_just_started_job_in_queue tmp_dataset_repo_factory(long_job.dataset) try: with patch.dict(os.environ, {"WORKER_LOOP_TYPE": "start_worker_loop_with_long_job"}): with patch.object(executor, "max_seconds_without_heartbeat_for_zombies", -1): # don't kill normal_job with patch.object( executor, "kill_long_job_interval_seconds", 0.1 ): # make sure it has the time to kill the job with patch("worker.executor.START_WORKER_LOOP_PATH", __file__), patch.dict( os.environ, {"WORKER_TEST_TIME": str(_TIME)} ): executor.start() assert long_job is not None assert str(long_job.pk) == get_job_info("long")["job_id"] long_job.reload() assert long_job.status in [Status.ERROR, Status.CANCELLED, Status.SUCCESS], "must be finished because too long" responses = CachedResponseDocument.objects() assert len(responses) == 1 response = responses[0] expected_error = { "error": "Job manager was killed while running this job (job exceeded maximum duration).", } assert response.http_status == HTTPStatus.NOT_IMPLEMENTED assert response.error_code == "JobManagerExceededMaximumDurationError" assert response.dataset == long_job.dataset assert response.config == long_job.config assert response.split == long_job.split assert response.content == expected_error assert response.details == expected_error normal_job.reload() assert normal_job.status == Status.STARTED, "must stay untouched" finally: CachedResponseDocument.objects().delete() if __name__ == "__main__": worker_loop_type = os.environ.get("WORKER_LOOP_TYPE", "start_worker_loop") if worker_loop_type == "start_worker_loop_that_crashes": start_worker_loop_that_crashes() elif worker_loop_type == "start_worker_loop_that_times_out": start_worker_loop_that_times_out() elif worker_loop_type == "start_worker_loop_with_long_job": start_worker_loop_with_long_job() else: start_worker_loop()
datasets-server-main
services/worker/tests/test_executor.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/tests/job_runners/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Mapping from http import HTTPStatus from typing import Any, Optional, TypedDict class _UpstreamResponse(TypedDict): kind: str dataset: str http_status: HTTPStatus content: Mapping[str, Any] class UpstreamResponse(_UpstreamResponse, total=False): config: Optional[str] split: Optional[str] progress: Optional[float]
datasets-server-main
services/worker/tests/job_runners/utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from pathlib import Path from typing import Optional import datasets.config import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_runners._job_runner_with_datasets_cache import ( JobRunnerWithDatasetsCache, ) from worker.resources import LibrariesResource from ..fixtures.hub import get_default_config_split class DummyJobRunner(JobRunnerWithDatasetsCache): @staticmethod def get_job_type() -> str: return "dummy-job-runner" # ^ borrowing the type, so that the processing step exists and the job runner can be initialized # refactoring libcommon.processing_graph might help avoiding this @staticmethod def get_job_runner_version() -> int: return 1 def compute(self) -> CompleteJobResult: return CompleteJobResult({"col1": "a" * 200}) GetJobRunner = Callable[[str, Optional[str], Optional[str], AppConfig], DummyJobRunner] @pytest.fixture def get_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: Optional[str], split: Optional[str], app_config: AppConfig, ) -> DummyJobRunner: processing_step_name = DummyJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DummyJobRunner.get_job_runner_version(), } } ) return DummyJobRunner( job_info={ "type": DummyJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner def test_set_datasets_cache(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "dataset" config, split = get_default_config_split() job_runner = get_job_runner(dataset, config, split, app_config) base_path = job_runner.base_cache_directory dummy_path = base_path / "dummy" job_runner.set_datasets_cache(dummy_path) assert str(datasets.config.HF_DATASETS_CACHE).startswith(str(dummy_path)) def test_pre_compute_post_compute(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "user/dataset" config, split = get_default_config_split() job_runner = get_job_runner(dataset, config, split, app_config) datasets_base_path = job_runner.base_cache_directory job_runner.pre_compute() datasets_cache_subdirectory = job_runner.cache_subdirectory assert_datasets_cache_path(path=datasets_cache_subdirectory, exists=True) assert str(datasets.config.HF_DATASETS_CACHE).startswith(str(datasets_base_path)) assert "dummy-job-runner-user-dataset" in str(datasets.config.HF_DATASETS_CACHE) job_runner.post_compute() assert_datasets_cache_path(path=datasets_base_path, exists=True) assert_datasets_cache_path(path=datasets_cache_subdirectory, exists=False, equals=False) def assert_datasets_cache_path(path: Optional[Path], exists: bool, equals: bool = True) -> None: assert path is not None assert path.exists() is exists assert (datasets.config.HF_DATASETS_CACHE == path) is equals assert (datasets.config.DOWNLOADED_DATASETS_PATH == path / datasets.config.DOWNLOADED_DATASETS_DIR) is equals assert (datasets.config.EXTRACTED_DATASETS_PATH == path / datasets.config.EXTRACTED_DATASETS_DIR) is equals
datasets-server-main
services/worker/tests/job_runners/test__job_runner_with_datasets_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import random from collections.abc import Callable from pathlib import Path from typing import Optional import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_runners._job_runner_with_cache import JobRunnerWithCache from worker.resources import LibrariesResource from ..fixtures.hub import get_default_config_split class DummyJobRunner(JobRunnerWithCache): @staticmethod def get_job_type() -> str: return "dummy-job-runner" @staticmethod def get_job_runner_version() -> int: return 1 def compute(self) -> CompleteJobResult: return CompleteJobResult({"col1": "a" * 200}) GetJobRunner = Callable[[str, Optional[str], Optional[str], AppConfig], DummyJobRunner] @pytest.fixture def get_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: Optional[str], split: Optional[str], app_config: AppConfig, ) -> DummyJobRunner: processing_step_name = DummyJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DummyJobRunner.get_job_runner_version(), } } ) return DummyJobRunner( job_info={ "type": DummyJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), cache_directory=libraries_resource.hf_datasets_cache, ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,split,expected", [ ("user/dataset", "config", "split", "64218998941645-dummy-job-runner-user-dataset-da67625f"), # Every parameter variation changes the hash, hence the subdirectory ("user/dataset", None, "split", "64218998941645-dummy-job-runner-user-dataset-498c21fa"), ("user/dataset", "config2", "split", "64218998941645-dummy-job-runner-user-dataset-1c4f24f2"), ("user/dataset", "config", None, "64218998941645-dummy-job-runner-user-dataset-a87e8dc2"), ("user/dataset", "config", "split2", "64218998941645-dummy-job-runner-user-dataset-f169bd48"), # The subdirectory length is truncated, and it always finishes with the hash ( "very_long_dataset_name_0123456789012345678901234567890123456789012345678901234567890123456789", "config", "split", "64218998941645-dummy-job-runner-very_long_dataset_name_012345678-25cb8442", ), ], ) def test_get_cache_subdirectory( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: Optional[str], split: Optional[str], expected: str, ) -> None: job_runner = get_job_runner(dataset, config, split, app_config) random.seed(0) assert job_runner.get_cache_subdirectory() == expected def test_pre_compute_post_compute(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "user/dataset" config, split = get_default_config_split() job_runner = get_job_runner(dataset, config, split, app_config) datasets_base_path = job_runner.base_cache_directory job_runner.pre_compute() datasets_cache_subdirectory = job_runner.cache_subdirectory assert_datasets_cache_path(path=datasets_cache_subdirectory, exists=True) job_runner.post_compute() assert_datasets_cache_path(path=datasets_base_path, exists=True) assert_datasets_cache_path(path=datasets_cache_subdirectory, exists=False) def assert_datasets_cache_path(path: Optional[Path], exists: bool) -> None: assert path is not None assert path.exists() is exists
datasets-server-main
services/worker/tests/job_runners/test__job_runner_with_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from dataclasses import replace from http import HTTPStatus import pytest from datasets.packaged_modules import csv from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.storage import StrPath from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.split.first_rows_from_streaming import ( SplitFirstRowsFromStreamingJobRunner, ) from worker.resources import LibrariesResource from worker.utils import get_json_size from ...fixtures.hub import HubDatasetTest, get_default_config_split GetJobRunner = Callable[[str, str, str, AppConfig], SplitFirstRowsFromStreamingJobRunner] @pytest.fixture def get_job_runner( assets_directory: StrPath, libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitFirstRowsFromStreamingJobRunner: processing_step_name = SplitFirstRowsFromStreamingJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, "config-level": {"input_type": "dataset", "triggered_by": "dataset-level"}, processing_step_name: { "input_type": "dataset", "job_runner_version": SplitFirstRowsFromStreamingJobRunner.get_job_runner_version(), "triggered_by": "config-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitFirstRowsFromStreamingJobRunner( job_info={ "type": SplitFirstRowsFromStreamingJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, assets_directory=assets_directory, ) return _get_job_runner def test_compute(app_config: AppConfig, get_job_runner: GetJobRunner, hub_public_csv: str) -> None: dataset = hub_public_csv config, split = get_default_config_split() job_runner = get_job_runner(dataset, config, split, app_config) response = job_runner.compute() assert response content = response.content assert content assert content["features"][0]["feature_idx"] == 0 assert content["features"][0]["name"] == "col_1" assert content["features"][0]["type"]["_type"] == "Value" assert content["features"][0]["type"]["dtype"] == "int64" # <---| assert content["features"][1]["type"]["dtype"] == "int64" # <---|- auto-detected by the datasets library assert content["features"][2]["type"]["dtype"] == "float64" # <-| @pytest.mark.parametrize( "name,use_token,exception_name,cause", [ ("public", False, None, None), ("audio", False, None, None), ("image", False, None, None), ("images_list", False, None, None), ("jsonl", False, None, None), ("gated", True, None, None), ("private", True, None, None), # should we really test the following cases? # The assumption is that the dataset exists and is accessible with the token ("gated", False, "InfoError", "FileNotFoundError"), ("private", False, "InfoError", "FileNotFoundError"), ], ) def test_number_rows( hub_responses_public: HubDatasetTest, hub_responses_audio: HubDatasetTest, hub_responses_image: HubDatasetTest, hub_responses_images_list: HubDatasetTest, hub_reponses_jsonl: HubDatasetTest, hub_responses_gated: HubDatasetTest, hub_responses_private: HubDatasetTest, hub_responses_empty: HubDatasetTest, hub_responses_does_not_exist_config: HubDatasetTest, hub_responses_does_not_exist_split: HubDatasetTest, get_job_runner: GetJobRunner, name: str, use_token: bool, exception_name: str, cause: str, app_config: AppConfig, ) -> None: # temporary patch to remove the effect of # https://github.com/huggingface/datasets/issues/4875#issuecomment-1280744233 # note: it fixes the tests, but it does not fix the bug in the "real world" if hasattr(csv, "_patched_for_streaming") and csv._patched_for_streaming: csv._patched_for_streaming = False hub_datasets = { "public": hub_responses_public, "audio": hub_responses_audio, "image": hub_responses_image, "images_list": hub_responses_images_list, "jsonl": hub_reponses_jsonl, "gated": hub_responses_gated, "private": hub_responses_private, "empty": hub_responses_empty, "does_not_exist_config": hub_responses_does_not_exist_config, "does_not_exist_split": hub_responses_does_not_exist_split, } dataset = hub_datasets[name]["name"] expected_first_rows_response = hub_datasets[name]["first_rows_response"] config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, app_config if use_token else replace(app_config, common=replace(app_config.common, hf_token=None)), ) if exception_name is None: job_runner.validate() result = job_runner.compute().content assert result == expected_first_rows_response else: with pytest.raises(Exception) as exc_info: job_runner.validate() job_runner.compute() assert exc_info.typename == exception_name @pytest.mark.parametrize( "name,rows_max_bytes,columns_max_number,error_code,truncated", [ # not-truncated public response is 687 bytes ("public", 10, 1_000, "TooBigContentError", False), # too small limit, even with truncation ("public", 1_000, 1_000, None, False), # not truncated ("public", 1_000, 1, "TooManyColumnsError", False), # too small columns limit # not-truncated big response is 5_885_989 bytes ("big", 10, 1_000, "TooBigContentError", False), # too small limit, even with truncation ("big", 1_000, 1_000, None, True), # truncated successfully ("big", 10_000_000, 1_000, None, False), # not truncated ], ) def test_from_streaming_truncation( hub_public_csv: str, hub_public_big: str, get_job_runner: GetJobRunner, app_config: AppConfig, name: str, rows_max_bytes: int, columns_max_number: int, error_code: str, truncated: bool, ) -> None: dataset = hub_public_csv if name == "public" else hub_public_big config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, replace( app_config, common=replace(app_config.common, hf_token=None), first_rows=replace( app_config.first_rows, max_number=1_000_000, min_number=10, max_bytes=rows_max_bytes, min_cell_bytes=10, columns_max_number=columns_max_number, ), ), ) if error_code: with pytest.raises(CustomError) as error_info: job_runner.compute() assert error_info.value.code == error_code else: response = job_runner.compute().content assert get_json_size(response) <= rows_max_bytes assert response["truncated"] == truncated
datasets-server-main
services/worker/tests/job_runners/split/test_first_rows_from_streaming.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import os from collections.abc import Callable from dataclasses import replace from http import HTTPStatus from typing import Optional import duckdb import pandas as pd import pytest import requests from datasets import Features, Image, Sequence, Value from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.storage import StrPath from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.parquet_and_info import ConfigParquetAndInfoJobRunner from worker.job_runners.split.duckdb_index import ( CREATE_INDEX_COMMAND, CREATE_SEQUENCE_COMMAND, CREATE_TABLE_COMMAND, SplitDuckDbIndexJobRunner, get_indexable_columns, ) from worker.resources import LibrariesResource from ...fixtures.hub import HubDatasetTest GetJobRunner = Callable[[str, str, str, AppConfig], SplitDuckDbIndexJobRunner] GetParquetJobRunner = Callable[[str, str, AppConfig], ConfigParquetAndInfoJobRunner] @pytest.fixture def get_job_runner( duckdb_index_cache_directory: StrPath, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitDuckDbIndexJobRunner: processing_step_name = SplitDuckDbIndexJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-step": {"input_type": "dataset"}, "config-parquet": { "input_type": "config", "triggered_by": "dataset-step", "provides_config_parquet": True, }, "config-split-names-from-streaming": { "input_type": "config", "triggered_by": "dataset-step", }, processing_step_name: { "input_type": "dataset", "job_runner_version": SplitDuckDbIndexJobRunner.get_job_runner_version(), "triggered_by": ["config-parquet", "config-split-names-from-streaming"], }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitDuckDbIndexJobRunner( job_info={ "type": SplitDuckDbIndexJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), duckdb_index_cache_directory=duckdb_index_cache_directory, ) return _get_job_runner @pytest.fixture def get_parquet_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetParquetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigParquetAndInfoJobRunner: processing_step_name = ConfigParquetAndInfoJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "config", "job_runner_version": ConfigParquetAndInfoJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigParquetAndInfoJobRunner( job_info={ "type": ConfigParquetAndInfoJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner @pytest.mark.parametrize( "hub_dataset_name,max_parquet_size_bytes,expected_error_code", [ ("duckdb_index", None, None), ("partial_duckdb_index", None, None), ("gated", None, None), ("duckdb_index", 1_000, "SplitWithTooBigParquetError"), # parquet size is 2812 ("public", None, "NoIndexableColumnsError"), # dataset does not have string columns to index ], ) def test_compute( get_parquet_job_runner: GetParquetJobRunner, get_job_runner: GetJobRunner, app_config: AppConfig, hub_responses_public: HubDatasetTest, hub_responses_duckdb_index: HubDatasetTest, hub_responses_gated_duckdb_index: HubDatasetTest, hub_dataset_name: str, max_parquet_size_bytes: Optional[int], expected_error_code: str, ) -> None: hub_datasets = { "public": hub_responses_public, "duckdb_index": hub_responses_duckdb_index, "partial_duckdb_index": hub_responses_duckdb_index, "gated": hub_responses_gated_duckdb_index, } dataset = hub_datasets[hub_dataset_name]["name"] config = hub_datasets[hub_dataset_name]["config_names_response"]["config_names"][0]["config"] split = "train" partial = hub_dataset_name.startswith("partial_") app_config = ( app_config if max_parquet_size_bytes is None else replace( app_config, duckdb_index=replace(app_config.duckdb_index, max_parquet_size_bytes=max_parquet_size_bytes) ) ) app_config = ( app_config if not partial else replace( app_config, parquet_and_info=replace( app_config.parquet_and_info, max_dataset_size=1, max_row_group_byte_size_for_copy=1 ), ) ) parquet_job_runner = get_parquet_job_runner(dataset, config, app_config) parquet_response = parquet_job_runner.compute() config_parquet = parquet_response.content assert config_parquet["partial"] is partial # TODO: simulate more than one parquet file to index upsert_response( "config-parquet-and-info", dataset=dataset, config=config, http_status=HTTPStatus.OK, content=config_parquet, ) assert parquet_response job_runner = get_job_runner(dataset, config, split, app_config) job_runner.pre_compute() if expected_error_code: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: job_runner.pre_compute() response = job_runner.compute() assert response content = response.content url = content["url"] file_name = content["filename"] features = content["features"] assert isinstance(url, str) if partial: assert url.rsplit("/", 2)[1] == "partial-" + split else: assert url.rsplit("/", 2)[1] == split assert file_name is not None assert Features.from_dict(features) is not None job_runner.post_compute() # download locally duckdb index file duckdb_file = requests.get(url, headers={"authorization": f"Bearer {app_config.common.hf_token}"}) with open(file_name, "wb") as f: f.write(duckdb_file.content) duckdb.execute("INSTALL 'fts';") duckdb.execute("LOAD 'fts';") con = duckdb.connect(file_name) # validate number of inserted records record_count = con.sql("SELECT COUNT(*) FROM data;").fetchall() assert record_count is not None assert isinstance(record_count, list) assert record_count[0] == (5,) # perform a search to validate fts feature query = "Lord Vader" result = con.execute( "SELECT __hf_index_id, text FROM data WHERE fts_main_data.match_bm25(__hf_index_id, ?) IS NOT NULL;", [query], ) rows = result.df() assert rows is not None assert (rows["text"].eq("Vader turns round and round in circles as his ship spins into space.")).any() assert (rows["text"].eq("The wingman spots the pirateship coming at him and warns the Dark Lord")).any() assert (rows["text"].eq("We count thirty Rebel ships, Lord Vader.")).any() assert ( rows["text"].eq( "Grand Moff Tarkin and Lord Vader are interrupted in their discussion by the buzz of the comlink" ) ).any() assert not (rows["text"].eq("There goes another one.")).any() assert (rows["__hf_index_id"].isin([0, 2, 3, 4, 5, 7, 8, 9])).all() con.close() os.remove(file_name) job_runner.post_compute() @pytest.mark.parametrize( "features, expected", [ (Features({"col_1": Value("string"), "col_2": Value("int64")}), ["col_1"]), ( Features( { "nested_1": [Value("string")], "nested_2": Sequence(Value("string")), "nested_3": Sequence({"foo": Value("string")}), "nested_4": {"foo": Value("string"), "bar": Value("int64")}, "nested_int": [Value("int64")], } ), ["nested_1", "nested_2", "nested_3", "nested_4"], ), (Features({"col_1": Image()}), []), ], ) def test_get_indexable_columns(features: Features, expected: list[str]) -> None: indexable_columns = get_indexable_columns(features) assert indexable_columns == expected DATA = """Hello there ! General Kenobi. You are a bold one. Kill him ! ... Back away ! I will deal with this Jedi slime myself""" FTS_COMMAND = ( "SELECT * EXCLUDE (__hf_fts_score) FROM (SELECT *, fts_main_data.match_bm25(__hf_index_id, ?) AS __hf_fts_score" " FROM data) A WHERE __hf_fts_score IS NOT NULL ORDER BY __hf_index_id;" ) @pytest.mark.parametrize( "df, query, expected_ids", [ (pd.DataFrame([{"line": line} for line in DATA.split("\n")]), "bold", [2]), (pd.DataFrame([{"nested": [line]} for line in DATA.split("\n")]), "bold", [2]), (pd.DataFrame([{"nested": {"foo": line}} for line in DATA.split("\n")]), "bold", [2]), (pd.DataFrame([{"nested": [{"foo": line}]} for line in DATA.split("\n")]), "bold", [2]), (pd.DataFrame([{"nested": [{"foo": line, "bar": 0}]} for line in DATA.split("\n")]), "bold", [2]), ], ) def test_index_command(df: pd.DataFrame, query: str, expected_ids: list[int]) -> None: columns = ",".join('"' + str(column) + '"' for column in df.columns) duckdb.sql(CREATE_SEQUENCE_COMMAND) duckdb.sql(CREATE_TABLE_COMMAND.format(columns=columns) + " df;") duckdb.sql(CREATE_INDEX_COMMAND.format(columns=columns)) result = duckdb.execute(FTS_COMMAND, parameters=[query]).df() assert list(result.__hf_index_id) == expected_ids
datasets-server-main
services/worker/tests/job_runners/split/test_duckdb_index.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Callable, Mapping from http import HTTPStatus from typing import Optional import numpy as np import pandas as pd import pytest from datasets import Dataset from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.storage import StrPath from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.parquet_and_info import ConfigParquetAndInfoJobRunner from worker.job_runners.split.descriptive_statistics import ( DECIMALS, ColumnType, SplitDescriptiveStatisticsJobRunner, generate_bins, ) from worker.resources import LibrariesResource from ...fixtures.hub import HubDatasetTest GetJobRunner = Callable[[str, str, str, AppConfig], SplitDescriptiveStatisticsJobRunner] GetParquetAndInfoJobRunner = Callable[[str, str, AppConfig], ConfigParquetAndInfoJobRunner] @pytest.fixture def get_job_runner( statistics_cache_directory: StrPath, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitDescriptiveStatisticsJobRunner: processing_step_name = SplitDescriptiveStatisticsJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-config-names": {"input_type": "dataset"}, "config-split-names-from-info": { "input_type": "config", "triggered_by": "dataset-config-names", }, processing_step_name: { "input_type": "split", "job_runner_version": SplitDescriptiveStatisticsJobRunner.get_job_runner_version(), "triggered_by": ["config-split-names-from-info"], }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitDescriptiveStatisticsJobRunner( job_info={ "type": SplitDescriptiveStatisticsJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 100, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), statistics_cache_directory=statistics_cache_directory, ) return _get_job_runner @pytest.fixture def get_parquet_and_info_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetParquetAndInfoJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigParquetAndInfoJobRunner: processing_step_name = ConfigParquetAndInfoJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-config-names": {"input_type": "dataset"}, processing_step_name: { "input_type": "config", "job_runner_version": ConfigParquetAndInfoJobRunner.get_job_runner_version(), "triggered_by": "dataset-config-names", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigParquetAndInfoJobRunner( job_info={ "type": ConfigParquetAndInfoJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 100, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner def count_expected_statistics_for_numerical_column( column: pd.Series, column_name: str, dtype: ColumnType # type: ignore ) -> dict: # type: ignore minimum, maximum, mean, median, std = ( column.min(), column.max(), column.mean(), column.median(), column.std(), ) n_samples = column.shape[0] nan_count = column.isna().sum() if dtype is ColumnType.FLOAT: hist, bin_edges = np.histogram(column[~column.isna()]) bin_edges = bin_edges.astype(float).round(DECIMALS).tolist() else: # TODO: n_bins is hardcoded here but should be fetched from the app_config.descriptive_statistics_config bins = generate_bins(minimum, maximum, column_name=column_name, column_type=dtype, n_bins=10) hist, bin_edges = np.histogram(column[~column.isna()], np.append(bins.bin_min, maximum)) bin_edges = bin_edges.astype(int).tolist() hist = hist.astype(int).tolist() if dtype is ColumnType.FLOAT: minimum = minimum.astype(float).round(DECIMALS).item() maximum = maximum.astype(float).round(DECIMALS).item() mean = mean.astype(float).round(DECIMALS).item() # type: ignore median = median.astype(float).round(DECIMALS).item() # type: ignore std = std.astype(float).round(DECIMALS).item() # type: ignore else: mean, median, std = list(np.round([mean, median, std], DECIMALS)) return { "nan_count": nan_count, "nan_proportion": np.round(nan_count / n_samples, DECIMALS).item() if nan_count else 0.0, "min": minimum, "max": maximum, "mean": mean, "median": median, "std": std, "histogram": { "hist": hist, "bin_edges": bin_edges, }, } def count_expected_statistics_for_categorical_column( column: pd.Series, class_labels: list[str] # type: ignore ) -> dict: # type: ignore n_samples = column.shape[0] nan_count = column.isna().sum() value_counts = column.value_counts().to_dict() n_unique = len(value_counts) frequencies = {class_labels[int(class_id)]: class_count for class_id, class_count in value_counts.items()} return { "nan_count": nan_count, "nan_proportion": np.round(nan_count / n_samples, DECIMALS).item() if nan_count else 0.0, "n_unique": n_unique, "frequencies": frequencies, } @pytest.fixture def descriptive_statistics_expected(datasets: Mapping[str, Dataset]) -> dict: # type: ignore ds = datasets["descriptive_statistics"] df = ds.to_pandas() expected_statistics = {} for column_name in df.columns: if column_name.startswith("int_"): column_type = ColumnType.INT elif column_name.startswith("float_"): column_type = ColumnType.FLOAT elif column_name.startswith("class_label"): column_type = ColumnType.CLASS_LABEL else: continue if column_type in [ColumnType.FLOAT, ColumnType.INT]: column_stats = count_expected_statistics_for_numerical_column( df[column_name], column_name=column_name, dtype=column_type ) if sum(column_stats["histogram"]["hist"]) != df.shape[0] - column_stats["nan_count"]: raise ValueError(column_name, column_stats) expected_statistics[column_name] = { "column_name": column_name, "column_type": column_type, "column_statistics": column_stats, } elif column_type is ColumnType.CLASS_LABEL: class_labels = ds.features[column_name].names column_stats = count_expected_statistics_for_categorical_column(df[column_name], class_labels=class_labels) expected_statistics[column_name] = { "column_name": column_name, "column_type": column_type, "column_statistics": column_stats, } return expected_statistics @pytest.mark.parametrize( "hub_dataset_name,expected_error_code", [ ("descriptive_statistics", None), ("gated", None), ("audio", "NoSupportedFeaturesError"), ("big", "SplitWithTooBigParquetError"), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, get_parquet_and_info_job_runner: GetParquetAndInfoJobRunner, hub_responses_descriptive_statistics: HubDatasetTest, hub_responses_gated_descriptive_statistics: HubDatasetTest, hub_responses_audio: HubDatasetTest, hub_responses_big: HubDatasetTest, hub_dataset_name: str, expected_error_code: Optional[str], descriptive_statistics_expected: dict, # type: ignore ) -> None: hub_datasets = { "descriptive_statistics": hub_responses_descriptive_statistics, "gated": hub_responses_gated_descriptive_statistics, "audio": hub_responses_audio, "big": hub_responses_big, } dataset = hub_datasets[hub_dataset_name]["name"] splits_response = hub_datasets[hub_dataset_name]["splits_response"] config, split = splits_response["splits"][0]["config"], splits_response["splits"][0]["split"] # computing and pushing real parquet files because we need them for stats computation parquet_job_runner = get_parquet_and_info_job_runner(dataset, config, app_config) parquet_and_info_response = parquet_job_runner.compute() upsert_response( "config-parquet-and-info", dataset=dataset, config=config, http_status=HTTPStatus.OK, content=parquet_and_info_response.content, ) assert parquet_and_info_response job_runner = get_job_runner(dataset, config, split, app_config) job_runner.pre_compute() if expected_error_code: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: response = job_runner.compute() assert sorted(response.content.keys()) == ["num_examples", "statistics"] assert response.content["num_examples"] == 20 response_statistics = response.content["statistics"] assert len(response_statistics) == len(descriptive_statistics_expected) assert set([column_response["column_name"] for column_response in response_statistics]) == set( descriptive_statistics_expected.keys() ) # assert returned features are as expected for column_response_statistics in response_statistics: assert_statistics_equal( column_response_statistics, descriptive_statistics_expected[column_response_statistics["column_name"]] ) def assert_statistics_equal(response: dict, expected: dict) -> None: # type: ignore """ Check that all values are equal or in case of float - almost equal. We use np.isclose because of small possible mismatches between numpy (which is used for counting expected values) and python float rounding. """ assert response["column_name"] == expected["column_name"] assert response["column_type"] == expected["column_type"] response_stats, expected_stats = response["column_statistics"], expected["column_statistics"] assert response_stats.keys() == expected_stats.keys() if response["column_type"] is ColumnType.FLOAT: assert np.isclose( response_stats["histogram"]["bin_edges"], expected_stats["histogram"]["bin_edges"], 1e-3 ).all() assert np.isclose(response_stats["min"], expected_stats["min"], 1e-3) assert np.isclose(response_stats["max"], expected_stats["max"], 1e-3) assert np.isclose(response_stats["mean"], expected_stats["mean"], 1e-3) assert np.isclose(response_stats["median"], expected_stats["median"], 1e-3) assert np.isclose(response_stats["std"], expected_stats["std"], 1e-3) assert np.isclose(response_stats["nan_proportion"], expected_stats["nan_proportion"], 1e-3) assert response_stats["nan_count"] == expected_stats["nan_count"] assert response_stats["histogram"]["hist"] == expected_stats["histogram"]["hist"] elif response["column_type"] is ColumnType.INT: assert np.isclose(response_stats["mean"], expected_stats["mean"], 1e-3) assert np.isclose(response_stats["median"], expected_stats["median"], 1e-3) assert np.isclose(response_stats["std"], expected_stats["std"], 1e-3) assert np.isclose(response_stats["nan_proportion"], expected_stats["nan_proportion"], 1e-3) assert response_stats["min"] == expected_stats["min"] assert response_stats["max"] == expected_stats["max"] assert response_stats["nan_count"] == expected_stats["nan_count"] assert response_stats["histogram"] == expected_stats["histogram"] elif response["column_type"] is ColumnType.CLASS_LABEL: assert np.isclose(response_stats["nan_proportion"], expected_stats["nan_proportion"], 1e-3) assert response_stats["nan_count"] == expected_stats["nan_count"] assert response_stats["n_unique"] == expected_stats["n_unique"] assert response_stats["frequencies"] == expected_stats["frequencies"] else: raise ValueError("Incorrect data type")
datasets-server-main
services/worker/tests/job_runners/split/test_descriptive_statistics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Callable, Mapping from http import HTTPStatus from typing import Any import pytest from libcommon.constants import ( PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION, ) from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import ImageUrlColumnsResponse from worker.job_runners.split.image_url_columns import SplitImageUrlColumnsJobRunner from ...fixtures.hub import get_default_config_split GetJobRunner = Callable[[str, str, str, AppConfig], SplitImageUrlColumnsJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitImageUrlColumnsJobRunner: processing_step_name = SplitImageUrlColumnsJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, "config-level": {"input_type": "dataset", "triggered_by": "dataset-level"}, processing_step_name: { "input_type": "dataset", "job_runner_version": SplitImageUrlColumnsJobRunner.get_job_runner_version(), "triggered_by": "config-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitImageUrlColumnsJobRunner( job_info={ "type": SplitImageUrlColumnsJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner FIRST_ROWS_WITHOUT_STR_COLUMNS = { "features": [ { "feature_idx": 0, "name": "col1", "type": { "dtype": "int64", "_type": "Value", }, }, { "feature_idx": 1, "name": "col2", "type": { "dtype": "float", "_type": "Value", }, }, ], "rows": [], } FIRST_ROWS_WITHOUT_IMAGE_URL_COLUMNS = { "features": [ { "feature_idx": 0, "name": "col1", "type": { "dtype": "string", "_type": "Value", }, }, ], "rows": [ {"row_idx": 0, "row": {"col": "http://testurl.test/test_document.txt"}, "truncated_cells": []}, {"row_idx": 1, "row": {"col": "http://testurl.test/test"}, "truncated_cells": []}, ], } FIRST_ROWS_WITH_IMAGE_URL_COLUMNS = { "features": [ { "feature_idx": 0, "name": "col", "type": { "dtype": "string", "_type": "Value", }, }, { "feature_idx": 1, "name": "col1", "type": { "dtype": "string", "_type": "Value", }, }, ], "rows": [ {"row_idx": 0, "row": {"col": "http://testurl.test/test_image.jpg", "col1": ""}, "truncated_cells": []}, {"row_idx": 1, "row": {"col": "http://testurl.test/test_image2.jpg"}, "col1": "text", "truncated_cells": []}, {"row_idx": 2, "row": {"col": "other", "col1": "text"}, "truncated_cells": []}, {"row_idx": 1, "row": {"col": "http://testurl.test/test_image3.png", "col1": "text"}, "truncated_cells": []}, ], } FIRST_ROWS_WITH_IMAGE_URL_COLUMNS_NO_ROWS = { "features": [ { "feature_idx": 0, "name": "col", "type": { "dtype": "string", "_type": "Value", }, }, ], "rows": [], } DEFAULT_EMPTY_CONTENT: ImageUrlColumnsResponse = {"columns": []} @pytest.mark.parametrize( "dataset,upstream_content,expected_content", [ ( "no_str_columns", FIRST_ROWS_WITHOUT_STR_COLUMNS, DEFAULT_EMPTY_CONTENT, ), ( "no_image_url_columns", FIRST_ROWS_WITHOUT_IMAGE_URL_COLUMNS, DEFAULT_EMPTY_CONTENT, ), ( "image_url_columns", FIRST_ROWS_WITH_IMAGE_URL_COLUMNS, {"columns": ["col"]}, ), ( "image_url_columns_no_rows", FIRST_ROWS_WITH_IMAGE_URL_COLUMNS_NO_ROWS, DEFAULT_EMPTY_CONTENT, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, upstream_content: Mapping[str, Any], expected_content: Mapping[str, Any], ) -> None: config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, app_config, ) upsert_response( kind="split-first-rows-from-streaming", dataset=dataset, config=config, split=split, content=upstream_content, dataset_git_revision="dataset_git_revision", job_runner_version=PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, progress=1.0, http_status=HTTPStatus.OK, ) response = job_runner.compute() assert response assert response.content == expected_content @pytest.mark.parametrize( "dataset,upstream_content,upstream_status,exception_name", [ ("doesnotexist", {}, HTTPStatus.OK, "CachedArtifactNotFoundError"), ("wrong_format", {}, HTTPStatus.OK, "PreviousStepFormatError"), ( "upstream_failed", {}, HTTPStatus.INTERNAL_SERVER_ERROR, "CachedArtifactError", ), ], ) def test_compute_failed( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, upstream_content: Mapping[str, Any], upstream_status: HTTPStatus, exception_name: str, ) -> None: config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, app_config, ) if dataset != "doesnotexist": upsert_response( kind="split-first-rows-from-streaming", dataset=dataset, config=config, split=split, content=upstream_content, dataset_git_revision="dataset_git_revision", job_runner_version=PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION, progress=1.0, http_status=upstream_status, ) with pytest.raises(Exception) as exc_info: job_runner.compute() assert exc_info.typename == exception_name
datasets-server-main
services/worker/tests/job_runners/split/test_image_url_columns.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/tests/job_runners/split/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus from typing import Optional import pytest from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingStep from libcommon.resources import CacheMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_runners.split.split_job_runner import SplitJobRunner @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource class DummySplitJobRunner(SplitJobRunner): @staticmethod def get_job_runner_version() -> int: return 1 @staticmethod def get_job_type() -> str: return "/dummy" def compute(self) -> CompleteJobResult: return CompleteJobResult({"key": "value"}) @pytest.mark.parametrize("config,split", [(None, None), (None, "split"), ("config", None)]) def test_failed_creation(test_processing_step: ProcessingStep, app_config: AppConfig, config: str, split: str) -> None: upsert_response( kind="dataset-config-names", dataset="dataset", content={"config_names": [{"dataset": "dataset", "config": config}]}, http_status=HTTPStatus.OK, ) with pytest.raises(CustomError) as exc_info: DummySplitJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": "dataset", "revision": "revision", "config": config, "split": split, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ).validate() assert exc_info.value.code == "ParameterMissingError" @pytest.mark.parametrize( "upsert_config,upsert_split,exception_name", [ ("config", "split", None), ("config", "other_split", "SplitNotFoundError"), ("other_config", "split", "ConfigNotFoundError"), ], ) def test_creation( test_processing_step: ProcessingStep, app_config: AppConfig, upsert_config: str, upsert_split: str, exception_name: Optional[str], ) -> None: dataset, config, split = "dataset", "config", "split" upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": upsert_config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": upsert_config, "split": upsert_split}]}, http_status=HTTPStatus.OK, ) if exception_name is None: DummySplitJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ).validate() else: with pytest.raises(CustomError) as exc_info: DummySplitJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ).validate() assert exc_info.value.code == exception_name
datasets-server-main
services/worker/tests/job_runners/split/test_split_job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedArtifactNotFoundError, upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.split.opt_in_out_urls_count import ( SplitOptInOutUrlsCountJobRunner, ) @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, str, AppConfig], SplitOptInOutUrlsCountJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitOptInOutUrlsCountJobRunner: processing_step_name = SplitOptInOutUrlsCountJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, "config-level": {"input_type": "dataset", "triggered_by": "dataset-level"}, processing_step_name: { "input_type": "split", "job_runner_version": SplitOptInOutUrlsCountJobRunner.get_job_runner_version(), "triggered_by": "config-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitOptInOutUrlsCountJobRunner( job_info={ "type": SplitOptInOutUrlsCountJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,split,upstream_status,upstream_content,expected_error_code,expected_content,should_raise", [ ( "dataset_ok", "config_ok", "split_ok", HTTPStatus.OK, { "has_urls_columns": True, "num_scanned_rows": 4, "opt_in_urls": [ {"url": "http://testurl.test/test_image3-optIn.jpg", "row_idx": 3, "column_name": "col"} ], "opt_out_urls": [ {"url": "http://testurl.test/test_image-optOut.jpg", "row_idx": 0, "column_name": "col"} ], "urls_columns": ["col"], "num_opt_out_urls": 1, "num_opt_in_urls": 1, "num_urls": 4, "full_scan": True, }, None, { "has_urls_columns": True, "num_scanned_rows": 4, "urls_columns": ["col"], "num_opt_out_urls": 1, "num_opt_in_urls": 1, "num_urls": 4, "full_scan": True, }, False, ), ( "dataset_previous_step_error", "config_previous_step_error", "split_previous_step_error", HTTPStatus.INTERNAL_SERVER_ERROR, {}, "CachedArtifactError", None, True, ), ( "dataset_format_error", "config_format_error", "split_format_error", HTTPStatus.OK, {"wrong_format": None}, "PreviousStepFormatError", None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: str, split: str, upstream_status: HTTPStatus, upstream_content: Any, expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="split-opt-in-out-urls-scan", dataset=dataset, config=config, split=split, content=upstream_content, http_status=upstream_status, ) job_runner = get_job_runner(dataset, config, split, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = config = split = "doesnotexist" job_runner = get_job_runner(dataset, config, split, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/split/test_opt_in_out_urls_count.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from asyncio import Semaphore from collections.abc import Callable, Mapping from dataclasses import replace from http import HTTPStatus from typing import Any from unittest.mock import patch import pytest from aiohttp import ClientSession from aiolimiter import AsyncLimiter from libcommon.constants import ( PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION, PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION, ) from libcommon.exceptions import ExternalServerError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import ImageUrlColumnsResponse from worker.job_runners.split.opt_in_out_urls_scan_from_streaming import ( SplitOptInOutUrlsScanJobRunner, check_spawning, ) from worker.resources import LibrariesResource from ...constants import CI_SPAWNING_TOKEN from ...fixtures.hub import HubDatasetTest, get_default_config_split GetJobRunner = Callable[[str, str, str, AppConfig], SplitOptInOutUrlsScanJobRunner] async def mock_check_spawning( image_urls: list[str], session: ClientSession, semaphore: Semaphore, limiter: AsyncLimiter, url: str ) -> Any: return {"urls": [{"url": url, "optIn": "optIn" in url, "optOut": "optOut" in url} for url in image_urls]} @pytest.fixture def get_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitOptInOutUrlsScanJobRunner: processing_step_name = SplitOptInOutUrlsScanJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, "config-level": {"input_type": "dataset", "triggered_by": "dataset-level"}, processing_step_name: { "input_type": "dataset", "job_runner_version": SplitOptInOutUrlsScanJobRunner.get_job_runner_version(), "triggered_by": "config-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitOptInOutUrlsScanJobRunner( job_info={ "type": SplitOptInOutUrlsScanJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner IMAGE_URL_COLUMNS_RESPONSE_EMPTY: ImageUrlColumnsResponse = {"columns": []} IMAGE_URL_COLUMNS_RESPONSE_WITH_DATA: ImageUrlColumnsResponse = {"columns": ["col"]} DEFAULT_EMPTY_RESPONSE = { "has_urls_columns": False, "num_scanned_rows": 0, "opt_in_urls": [], "opt_out_urls": [], "urls_columns": [], "num_opt_out_urls": 0, "num_opt_in_urls": 0, "num_urls": 0, "full_scan": None, } @pytest.mark.parametrize( "name,rows_max_number,upstream_content,expected_content", [ ( "public", 100_000, IMAGE_URL_COLUMNS_RESPONSE_EMPTY, DEFAULT_EMPTY_RESPONSE, ), ( "spawning_opt_in_out", 100_000, # dataset has less rows IMAGE_URL_COLUMNS_RESPONSE_WITH_DATA, { "has_urls_columns": True, "num_scanned_rows": 4, "opt_in_urls": [ {"url": "http://testurl.test/test_image3-optIn.png", "row_idx": 3, "column_name": "col"} ], "opt_out_urls": [ {"url": "http://testurl.test/test_image-optOut.jpg", "row_idx": 0, "column_name": "col"} ], "urls_columns": ["col"], "num_opt_out_urls": 1, "num_opt_in_urls": 1, "num_urls": 4, "full_scan": True, }, ), ( "spawning_opt_in_out", 3, # dataset has more rows IMAGE_URL_COLUMNS_RESPONSE_WITH_DATA, { "has_urls_columns": True, "num_scanned_rows": 3, "opt_in_urls": [], "opt_out_urls": [ {"url": "http://testurl.test/test_image-optOut.jpg", "row_idx": 0, "column_name": "col"} ], "urls_columns": ["col"], "num_opt_out_urls": 1, "num_opt_in_urls": 0, "num_urls": 3, "full_scan": False, }, ), ( "spawning_opt_in_out", 4, # dataset has same amount of rows IMAGE_URL_COLUMNS_RESPONSE_WITH_DATA, { "has_urls_columns": True, "num_scanned_rows": 4, "opt_in_urls": [ {"url": "http://testurl.test/test_image3-optIn.png", "row_idx": 3, "column_name": "col"} ], "opt_out_urls": [ {"url": "http://testurl.test/test_image-optOut.jpg", "row_idx": 0, "column_name": "col"} ], "urls_columns": ["col"], "num_opt_out_urls": 1, "num_opt_in_urls": 1, "num_urls": 4, "full_scan": True, }, ), ], ) def test_compute( hub_responses_public: HubDatasetTest, hub_responses_spawning_opt_in_out: HubDatasetTest, app_config: AppConfig, get_job_runner: GetJobRunner, name: str, rows_max_number: int, upstream_content: Mapping[str, Any], expected_content: Mapping[str, Any], ) -> None: hub_datasets = {"public": hub_responses_public, "spawning_opt_in_out": hub_responses_spawning_opt_in_out} dataset = hub_datasets[name]["name"] config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, replace(app_config, urls_scan=replace(app_config.urls_scan, rows_max_number=rows_max_number)), ) upsert_response( kind="split-image-url-columns", dataset=dataset, config=config, split=split, content=upstream_content, dataset_git_revision="dataset_git_revision", job_runner_version=PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION, progress=1.0, http_status=HTTPStatus.OK, ) with patch("worker.job_runners.split.opt_in_out_urls_scan_from_streaming.check_spawning", mock_check_spawning): response = job_runner.compute() assert response assert response.content == expected_content @pytest.mark.parametrize( "dataset,columns_max_number,upstream_content,upstream_status,exception_name", [ ("doesnotexist", 10, {}, HTTPStatus.OK, "CachedArtifactNotFoundError"), ("wrong_format", 10, {}, HTTPStatus.OK, "PreviousStepFormatError"), ( "upstream_failed", 10, {}, HTTPStatus.INTERNAL_SERVER_ERROR, "CachedArtifactError", ), ( "info_error", 10, IMAGE_URL_COLUMNS_RESPONSE_EMPTY, HTTPStatus.OK, "InfoError", ), ( "too_many_columns", 0, IMAGE_URL_COLUMNS_RESPONSE_WITH_DATA, HTTPStatus.OK, "TooManyColumnsError", ), ], ) def test_compute_failed( app_config: AppConfig, hub_responses_spawning_opt_in_out: HubDatasetTest, get_job_runner: GetJobRunner, dataset: str, columns_max_number: int, upstream_content: Mapping[str, Any], upstream_status: HTTPStatus, exception_name: str, ) -> None: if dataset == "too_many_columns": dataset = hub_responses_spawning_opt_in_out["name"] config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, replace(app_config, urls_scan=replace(app_config.urls_scan, columns_max_number=columns_max_number)), ) if dataset != "doesnotexist": upsert_response( kind="split-image-url-columns", dataset=dataset, config=config, split=split, content=upstream_content, dataset_git_revision="dataset_git_revision", job_runner_version=PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION, progress=1.0, http_status=upstream_status, ) with pytest.raises(Exception) as exc_info: job_runner.compute() assert exc_info.typename == exception_name def test_compute_error_from_spawning( app_config: AppConfig, get_job_runner: GetJobRunner, hub_public_spawning_opt_in_out: str, ) -> None: dataset = hub_public_spawning_opt_in_out config, split = get_default_config_split() job_runner = get_job_runner( dataset, config, split, replace(app_config, urls_scan=replace(app_config.urls_scan, spawning_url="wrong_url")), ) upsert_response( kind="split-image-url-columns", dataset=dataset, config=config, split=split, content=IMAGE_URL_COLUMNS_RESPONSE_WITH_DATA, dataset_git_revision="dataset_git_revision", job_runner_version=PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION, progress=1.0, http_status=HTTPStatus.OK, ) with pytest.raises(ExternalServerError): job_runner.compute() @pytest.mark.skip( reason=( "Temporarily disabled, we can't use secrets on fork repos. See" " https://github.com/huggingface/datasets-server/issues/1085" ) ) @pytest.mark.asyncio async def test_real_check_spawning_response(app_config: AppConfig) -> None: semaphore = Semaphore(value=10) limiter = AsyncLimiter(10, time_period=1) headers = {"Authorization": f"API {CI_SPAWNING_TOKEN}"} async with ClientSession(headers=headers) as session: image_url = "http://testurl.test/test_image.jpg" image_urls = [image_url] spawning_url = app_config.urls_scan.spawning_url spawning_response = await check_spawning(image_urls, session, semaphore, limiter, spawning_url) assert spawning_response and isinstance(spawning_response, dict) assert spawning_response["urls"] and isinstance(spawning_response["urls"], list) assert len(spawning_response["urls"]) == 2 # the API requires >1 urls first_url = spawning_response["urls"][0] assert first_url and isinstance(first_url, dict) assert first_url["url"] and isinstance(first_url["url"], str) assert first_url["url"] == image_url
datasets-server-main
services/worker/tests/job_runners/split/test_opt_in_out_urls_scan_from_streaming.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import os from collections.abc import Callable, Generator from dataclasses import replace from http import HTTPStatus from unittest.mock import patch import pyarrow.parquet as pq import pytest from datasets import Dataset from fsspec import AbstractFileSystem from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.storage import StrPath from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.split.first_rows_from_parquet import ( SplitFirstRowsFromParquetJobRunner, ) from worker.utils import get_json_size GetJobRunner = Callable[[str, str, str, AppConfig], SplitFirstRowsFromParquetJobRunner] @pytest.fixture def get_job_runner( assets_directory: StrPath, parquet_metadata_directory: StrPath, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitFirstRowsFromParquetJobRunner: processing_step_name = SplitFirstRowsFromParquetJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, "config-level": { "input_type": "config", "triggered_by": "dataset-level", "provides_config_parquet_metadata": True, }, processing_step_name: { "input_type": "dataset", "job_runner_version": SplitFirstRowsFromParquetJobRunner.get_job_runner_version(), "triggered_by": "config-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitFirstRowsFromParquetJobRunner( job_info={ "type": SplitFirstRowsFromParquetJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": split, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), processing_graph=processing_graph, assets_directory=assets_directory, parquet_metadata_directory=parquet_metadata_directory, ) return _get_job_runner @pytest.fixture def ds() -> Dataset: return Dataset.from_dict({"col1": [1, 2, 3], "col2": ["a", "b", "c"]}) @pytest.fixture def ds_fs(ds: Dataset, tmpfs: AbstractFileSystem) -> Generator[AbstractFileSystem, None, None]: with tmpfs.open("config/train/0000.parquet", "wb") as f: ds.to_parquet(f) yield tmpfs @pytest.mark.parametrize( "rows_max_bytes,columns_max_number,error_code", [ (0, 10, "TooBigContentError"), # too small limit, even with truncation (1_000, 1, "TooManyColumnsError"), # too small columns limit (1_000, 10, None), ], ) def test_compute( ds: Dataset, ds_fs: AbstractFileSystem, parquet_metadata_directory: StrPath, get_job_runner: GetJobRunner, app_config: AppConfig, rows_max_bytes: int, columns_max_number: int, error_code: str, ) -> None: dataset, config, split = "dataset", "config", "split" parquet_file = ds_fs.open("config/train/0000.parquet") fake_url = ( "https://fake.huggingface.co/datasets/dataset/resolve/refs%2Fconvert%2Fparquet/config/train/0000.parquet" ) fake_metadata_subpath = "fake-parquet-metadata/dataset/config/train/0000.parquet" config_parquet_metadata_content = { "parquet_files_metadata": [ { "dataset": dataset, "config": config, "split": split, "url": fake_url, # noqa: E501 "filename": "0000.parquet", "size": parquet_file.size, "num_rows": len(ds), "parquet_metadata_subpath": fake_metadata_subpath, } ] } upsert_response( kind="config-level", dataset=dataset, config=config, content=config_parquet_metadata_content, http_status=HTTPStatus.OK, ) parquet_metadata = pq.read_metadata(ds_fs.open("config/train/0000.parquet")) with patch("libcommon.parquet_utils.HTTPFile", return_value=parquet_file) as mock_http_file, patch( "pyarrow.parquet.read_metadata", return_value=parquet_metadata ) as mock_read_metadata, patch("pyarrow.parquet.read_schema", return_value=ds.data.schema) as mock_read_schema: job_runner = get_job_runner( dataset, config, split, replace( app_config, common=replace(app_config.common, hf_token=None), first_rows=replace( app_config.first_rows, max_number=1_000_000, min_number=10, max_bytes=rows_max_bytes, min_cell_bytes=10, columns_max_number=columns_max_number, ), ), ) if error_code: with pytest.raises(CustomError) as error_info: job_runner.compute() assert error_info.value.code == error_code else: response = job_runner.compute().content assert get_json_size(response) <= rows_max_bytes assert response assert response["rows"] assert response["features"] assert len(response["rows"]) == 3 # testing file has 3 rows see config/train/0000.parquet file assert len(response["features"]) == 2 # testing file has 2 columns see config/train/0000.parquet file assert response["features"][0]["feature_idx"] == 0 assert response["features"][0]["name"] == "col1" assert response["features"][0]["type"]["_type"] == "Value" assert response["features"][0]["type"]["dtype"] == "int64" assert response["features"][1]["feature_idx"] == 1 assert response["features"][1]["name"] == "col2" assert response["features"][1]["type"]["_type"] == "Value" assert response["features"][1]["type"]["dtype"] == "string" assert response["rows"][0]["row_idx"] == 0 assert response["rows"][0]["truncated_cells"] == [] assert response["rows"][0]["row"] == {"col1": 1, "col2": "a"} assert response["rows"][1]["row_idx"] == 1 assert response["rows"][1]["truncated_cells"] == [] assert response["rows"][1]["row"] == {"col1": 2, "col2": "b"} assert response["rows"][2]["row_idx"] == 2 assert response["rows"][2]["truncated_cells"] == [] assert response["rows"][2]["row"] == {"col1": 3, "col2": "c"} assert len(mock_http_file.call_args_list) == 1 assert mock_http_file.call_args_list[0][0][1] == fake_url assert len(mock_read_metadata.call_args_list) == 1 assert mock_read_metadata.call_args_list[0][0][0] == os.path.join( parquet_metadata_directory, fake_metadata_subpath ) assert len(mock_read_schema.call_args_list) == 1 assert mock_read_schema.call_args_list[0][0][0] == os.path.join( parquet_metadata_directory, fake_metadata_subpath ) @pytest.mark.parametrize( "rows_max_bytes,rows_min_number,rows_max_number,truncated", [ (1_000, 10, 100, False), # no truncation (1_000, 1, 2, True), # returns 2 rows at max, while the split has 3 rows (250, 1, 100, True), # does not return the 3 rows, because it would be more than the max bytes ], ) def test_from_parquet_truncation( ds: Dataset, ds_fs: AbstractFileSystem, get_job_runner: GetJobRunner, app_config: AppConfig, rows_max_bytes: int, rows_min_number: int, rows_max_number: int, truncated: bool, ) -> None: dataset, config, split = "dataset", "config", "split" parquet_file = ds_fs.open("config/train/0000.parquet") fake_url = ( "https://fake.huggingface.co/datasets/dataset/resolve/refs%2Fconvert%2Fparquet/config/train/0000.parquet" ) fake_metadata_subpath = "fake-parquet-metadata/dataset/config/train/0000.parquet" config_parquet_metadata_content = { "parquet_files_metadata": [ { "dataset": dataset, "config": config, "split": split, "url": fake_url, # noqa: E501 "filename": "0000.parquet", "size": parquet_file.size, "num_rows": len(ds), "parquet_metadata_subpath": fake_metadata_subpath, } ] } upsert_response( kind="config-level", dataset=dataset, config=config, content=config_parquet_metadata_content, http_status=HTTPStatus.OK, ) parquet_metadata = pq.read_metadata(ds_fs.open("config/train/0000.parquet")) with patch("libcommon.parquet_utils.HTTPFile", return_value=parquet_file), patch( "pyarrow.parquet.read_metadata", return_value=parquet_metadata ), patch("pyarrow.parquet.read_schema", return_value=ds.data.schema): job_runner = get_job_runner( dataset, config, split, replace( app_config, common=replace(app_config.common, hf_token=None), first_rows=replace( app_config.first_rows, max_number=rows_max_number, min_number=rows_min_number, max_bytes=rows_max_bytes, min_cell_bytes=10, columns_max_number=1_000, ), ), ) response = job_runner.compute().content assert response assert response["truncated"] == truncated assert response["rows"] # testing file has 3 rows see config/train/0000.parquet file if truncated: assert len(response["rows"]) < 3 else: assert len(response["rows"]) == 3
datasets-server-main
services/worker/tests/job_runners/split/test_first_rows_from_parquet.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.split.is_valid import SplitIsValidJobRunner from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, str, AppConfig], SplitIsValidJobRunner] DATASET = "dataset" CONFIG = "config" SPLIT = "split" UPSTREAM_RESPONSE_CONFIG_SIZE: UpstreamResponse = UpstreamResponse( kind="config-size", dataset=DATASET, config=CONFIG, http_status=HTTPStatus.OK, content={} ) UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET: UpstreamResponse = UpstreamResponse( kind="split-first-rows-from-parquet", dataset=DATASET, config=CONFIG, split=SPLIT, http_status=HTTPStatus.OK, content={}, ) UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING: UpstreamResponse = UpstreamResponse( kind="split-first-rows-from-streaming", dataset=DATASET, config=CONFIG, split=SPLIT, http_status=HTTPStatus.OK, content={}, ) UPSTREAM_RESPONSE_SPLIT_DUCKDB_INDEX: UpstreamResponse = UpstreamResponse( kind="split-duckdb-index", dataset=DATASET, config=CONFIG, split=SPLIT, http_status=HTTPStatus.OK, content={}, ) UPSTREAM_RESPONSE_CONFIG_SIZE_ERROR: UpstreamResponse = UpstreamResponse( kind="config-size", dataset=DATASET, config=CONFIG, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={} ) UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET_ERROR: UpstreamResponse = UpstreamResponse( kind="split-first-rows-from-parquet", dataset=DATASET, config=CONFIG, split=SPLIT, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING_ERROR: UpstreamResponse = UpstreamResponse( kind="split-first-rows-from-streaming", dataset=DATASET, config=CONFIG, split=SPLIT, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) UPSTREAM_RESPONSE_SPLIT_DUCKDB_INDEX_ERROR: UpstreamResponse = UpstreamResponse( kind="split-duckdb-index", dataset=DATASET, config=CONFIG, split=SPLIT, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) EXPECTED_ERROR = ( {"viewer": False, "preview": False, "search": False}, 1.0, ) EXPECTED_VIEWER_OK = ( {"viewer": True, "preview": False, "search": False}, 1.0, ) EXPECTED_PREVIEW_OK = ( {"viewer": False, "preview": True, "search": False}, 1.0, ) EXPECTED_SEARCH_OK = ( {"viewer": False, "preview": False, "search": True}, 1.0, ) EXPECTED_ALL_OK = ( {"viewer": True, "preview": True, "search": True}, 1.0, ) @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, split: str, app_config: AppConfig, ) -> SplitIsValidJobRunner: processing_step_name = SplitIsValidJobRunner.get_job_type() processing_graph = ProcessingGraph(app_config.processing_graph.specification) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": dataset, "config": config, "split": split}]}, http_status=HTTPStatus.OK, ) return SplitIsValidJobRunner( job_info={ "type": SplitIsValidJobRunner.get_job_type(), "params": { "dataset": dataset, "config": config, "split": split, "revision": "revision", }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 20, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), processing_graph=processing_graph, ) return _get_job_runner @pytest.mark.parametrize( "upstream_responses,expected", [ ( [ UPSTREAM_RESPONSE_CONFIG_SIZE, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING, UPSTREAM_RESPONSE_SPLIT_DUCKDB_INDEX, ], EXPECTED_ALL_OK, ), ( [ UPSTREAM_RESPONSE_CONFIG_SIZE_ERROR, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING, ], EXPECTED_PREVIEW_OK, ), ( [ UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING, ], EXPECTED_PREVIEW_OK, ), ( [ UPSTREAM_RESPONSE_CONFIG_SIZE, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET_ERROR, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING, UPSTREAM_RESPONSE_SPLIT_DUCKDB_INDEX, ], EXPECTED_ALL_OK, ), ( [ UPSTREAM_RESPONSE_CONFIG_SIZE, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET_ERROR, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING_ERROR, ], EXPECTED_VIEWER_OK, ), ( [ UPSTREAM_RESPONSE_CONFIG_SIZE, ], EXPECTED_VIEWER_OK, ), ( [ UPSTREAM_RESPONSE_SPLIT_DUCKDB_INDEX, ], EXPECTED_SEARCH_OK, ), ( [ UPSTREAM_RESPONSE_CONFIG_SIZE_ERROR, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_PARQUET_ERROR, UPSTREAM_RESPONSE_SPLIT_FIRST_ROWS_FROM_STREAMING_ERROR, UPSTREAM_RESPONSE_SPLIT_DUCKDB_INDEX_ERROR, ], EXPECTED_ERROR, ), ( [], EXPECTED_ERROR, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, upstream_responses: list[UpstreamResponse], expected: Any, ) -> None: dataset, config, split = DATASET, CONFIG, SPLIT for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, config, split, app_config) compute_result = job_runner.compute() assert compute_result.content == expected[0] assert compute_result.progress == expected[1] def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset, config, split = "doesnotexist", "doesnotexist", "doesnotexist" job_runner = get_job_runner(dataset, config, split, app_config) compute_result = job_runner.compute() assert compute_result.content == {"viewer": False, "preview": False, "search": False}
datasets-server-main
services/worker/tests/job_runners/split/test_is_valid.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import io from collections.abc import Callable, Mapping from http import HTTPStatus from pathlib import Path from typing import Any, Optional from unittest.mock import patch import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets import Dataset, Features, Value from fsspec.implementations.http import HTTPFile, HTTPFileSystem from huggingface_hub import hf_hub_url from libcommon.exceptions import PreviousStepFormatError from libcommon.parquet_utils import ParquetIndexWithMetadata from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedArtifactError, upsert_response from libcommon.storage import StrPath from libcommon.utils import Priority, SplitHubFile from worker.config import AppConfig from worker.dtos import ( ConfigParquetMetadataResponse, ConfigParquetResponse, ParquetFileMetadataItem, ) from worker.job_runners.config.parquet_metadata import ConfigParquetMetadataJobRunner from ...constants import CI_USER_TOKEN from ...fixtures.hub import hf_api @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, AppConfig], ConfigParquetMetadataJobRunner] dummy_parquet_buffer = io.BytesIO() pq.write_table(pa.table({"a": [0, 1, 2]}), dummy_parquet_buffer) @pytest.fixture def get_job_runner( parquet_metadata_directory: StrPath, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigParquetMetadataJobRunner: processing_step_name = ConfigParquetMetadataJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigParquetMetadataJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigParquetMetadataJobRunner( job_info={ "type": ConfigParquetMetadataJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), parquet_metadata_directory=parquet_metadata_directory, ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,upstream_status,upstream_content,expected_error_code,expected_content,should_raise", [ ( "ok", "config_1", HTTPStatus.OK, ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="filename1", size=0 ), SplitHubFile( dataset="ok", config="config_1", split="train", url="url2", filename="filename2", size=0 ), ], partial=False, features=None, ), None, ConfigParquetMetadataResponse( parquet_files_metadata=[ ParquetFileMetadataItem( dataset="ok", config="config_1", split="train", url="url1", filename="filename1", size=0, num_rows=3, parquet_metadata_subpath="ok/--/config_1/train/filename1", ), ParquetFileMetadataItem( dataset="ok", config="config_1", split="train", url="url2", filename="filename2", size=0, num_rows=3, parquet_metadata_subpath="ok/--/config_1/train/filename2", ), ], partial=False, features=None, ), False, ), ( "status_error", "config_1", HTTPStatus.NOT_FOUND, {"error": "error"}, CachedArtifactError.__name__, None, True, ), ( "format_error", "config_1", HTTPStatus.OK, {"not_parquet_files": "wrong_format"}, PreviousStepFormatError.__name__, None, True, ), ( "with_features", "config_1", HTTPStatus.OK, ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="with_features", config="config_1", split="train", url="url1", filename="filename1", size=0, ), SplitHubFile( dataset="with_features", config="config_1", split="train", url="url2", filename="filename2", size=0, ), ], partial=False, features=Features({"a": Value("string")}).to_dict(), ), None, ConfigParquetMetadataResponse( parquet_files_metadata=[ ParquetFileMetadataItem( dataset="with_features", config="config_1", split="train", url="url1", filename="filename1", size=0, num_rows=3, parquet_metadata_subpath="with_features/--/config_1/train/filename1", ), ParquetFileMetadataItem( dataset="with_features", config="config_1", split="train", url="url2", filename="filename2", size=0, num_rows=3, parquet_metadata_subpath="with_features/--/config_1/train/filename2", ), ], partial=False, features=Features({"a": Value("string")}).to_dict(), ), False, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: str, upstream_status: HTTPStatus, upstream_content: Any, expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="config-parquet", dataset=dataset, config=config, content=upstream_content, http_status=upstream_status, ) job_runner = get_job_runner(dataset, config, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.type.__name__ == expected_error_code else: with patch("worker.job_runners.config.parquet_metadata.get_parquet_file") as mock_ParquetFile: mock_ParquetFile.return_value = pq.ParquetFile(dummy_parquet_buffer) assert job_runner.compute().content == expected_content assert mock_ParquetFile.call_count == len(upstream_content["parquet_files"]) for parquet_file_item in upstream_content["parquet_files"]: mock_ParquetFile.assert_any_call( url=parquet_file_item["url"], fs=HTTPFileSystem(), hf_token=app_config.common.hf_token ) assert expected_content["parquet_files_metadata"] for parquet_file_metadata_item in expected_content["parquet_files_metadata"]: assert ( pq.read_metadata( Path(job_runner.parquet_metadata_directory) / parquet_file_metadata_item["parquet_metadata_subpath"] ) == pq.ParquetFile(dummy_parquet_buffer).metadata ) class AuthenticatedHTTPFile(HTTPFile): # type: ignore last_url: Optional[str] = None def __init__( # type: ignore self, fs, url, session=None, block_size=None, mode="rb", cache_type="bytes", cache_options=None, size=None, loop=None, asynchronous=False, **kwargs, ) -> None: super().__init__( fs, url, session=session, block_size=block_size, mode=mode, cache_type=cache_type, cache_options=cache_options, size=size, loop=loop, asynchronous=asynchronous, **kwargs, ) assert self.kwargs == {"headers": {"authorization": f"Bearer {CI_USER_TOKEN}"}} AuthenticatedHTTPFile.last_url = url def test_ParquetIndexWithMetadata_query( datasets: Mapping[str, Dataset], hub_public_big: str, tmp_path_factory: pytest.TempPathFactory ) -> None: ds = datasets["big"] httpfs = HTTPFileSystem(headers={"authorization": f"Bearer {CI_USER_TOKEN}"}) filename = next( iter( repo_file for repo_file in hf_api.list_repo_files(repo_id=hub_public_big, repo_type="dataset") if repo_file.endswith(".parquet") ) ) url = hf_hub_url(repo_id=hub_public_big, filename=filename, repo_type="dataset") metadata_path = str(tmp_path_factory.mktemp("test_ParquetIndexWithMetadata_query") / "metadata.parquet") with httpfs.open(url) as f: num_bytes = f.size pf = pq.ParquetFile(url, filesystem=httpfs) num_rows = pf.metadata.num_rows features = Features.from_arrow_schema(pf.schema_arrow) pf.metadata.write_metadata_file(metadata_path) index = ParquetIndexWithMetadata( features=features, supported_columns=list(features), unsupported_columns=[], parquet_files_urls=[url], metadata_paths=[metadata_path], num_rows=[num_rows], num_bytes=[num_bytes], httpfs=httpfs, hf_token=CI_USER_TOKEN, max_arrow_data_in_memory=999999999, ) with patch("libcommon.parquet_utils.HTTPFile", AuthenticatedHTTPFile): out = index.query(offset=0, length=2).to_pydict() assert out == ds[:2] assert AuthenticatedHTTPFile.last_url == url
datasets-server-main
services/worker/tests/job_runners/config/test_parquet_metadata.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from datasets import Features, Value from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority, SplitHubFile from worker.config import AppConfig from worker.dtos import ConfigParquetAndInfoResponse, ConfigParquetResponse from worker.job_runners.config.parquet import ConfigParquetJobRunner @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, AppConfig], ConfigParquetJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigParquetJobRunner: processing_step_name = ConfigParquetJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigParquetJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigParquetJobRunner( job_info={ "type": ConfigParquetJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,upstream_status,upstream_content,expected_error_code,expected_content,should_raise", [ ( "ok", "config_1", HTTPStatus.OK, ConfigParquetAndInfoResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="filename1", size=0 ), SplitHubFile( dataset="ok", config="config_1", split="train", url="url2", filename="filename2", size=0 ), ], dataset_info={"description": "value", "dataset_size": 10}, partial=False, ), None, ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="filename1", size=0 ), SplitHubFile( dataset="ok", config="config_1", split="train", url="url2", filename="filename2", size=0 ), ], partial=False, features=None, ), False, ), ( "status_error", "config_1", HTTPStatus.NOT_FOUND, {"error": "error"}, CachedArtifactError.__name__, None, True, ), ( "format_error", "config_1", HTTPStatus.OK, {"not_parquet_files": "wrong_format"}, PreviousStepFormatError.__name__, None, True, ), ( "shards_order", "config_1", HTTPStatus.OK, ConfigParquetAndInfoResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="0000.parquet", size=0, ), SplitHubFile( dataset="ok", config="config_1", split="train", url="url2", filename="0001.parquet", size=0, ), SplitHubFile( dataset="ok", config="config_1", split="test", url="url2", filename="0000.parquet", size=0, ), ], dataset_info={"description": "value", "dataset_size": 10}, partial=False, ), None, ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="test", url="url2", filename="0000.parquet", size=0, ), SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="0000.parquet", size=0, ), SplitHubFile( dataset="ok", config="config_1", split="train", url="url2", filename="0001.parquet", size=0, ), ], partial=False, features=None, ), False, ), ( "with_features", "config_1", HTTPStatus.OK, ConfigParquetAndInfoResponse( parquet_files=[ SplitHubFile( dataset="with_features", config="config_1", split="train", url="url1", filename="filename1", size=0, ), SplitHubFile( dataset="with_features", config="config_1", split="train", url="url2", filename="filename2", size=0, ), ], dataset_info={ "description": "value", "dataset_size": 10, "features": Features({"a": Value("string")}).to_dict(), }, partial=False, ), None, ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="with_features", config="config_1", split="train", url="url1", filename="filename1", size=0, ), SplitHubFile( dataset="with_features", config="config_1", split="train", url="url2", filename="filename2", size=0, ), ], partial=False, features=Features({"a": Value("string")}).to_dict(), ), False, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: str, upstream_status: HTTPStatus, upstream_content: Any, expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="config-parquet-and-info", dataset=dataset, config=config, content=upstream_content, http_status=upstream_status, ) job_runner = get_job_runner(dataset, config, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = config = "doesnotexist" job_runner = get_job_runner(dataset, config, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/config/test_parquet.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.split_names_from_info import ( ConfigSplitNamesFromInfoJobRunner, ) GetJobRunner = Callable[[str, str, AppConfig], ConfigSplitNamesFromInfoJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigSplitNamesFromInfoJobRunner: processing_step_name = ConfigSplitNamesFromInfoJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigSplitNamesFromInfoJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigSplitNamesFromInfoJobRunner( job_info={ "type": ConfigSplitNamesFromInfoJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,upstream_status,upstream_content,error_code,content", [ ( "ok", HTTPStatus.OK, { "dataset_info": { "splits": { "train": {"name": "train", "dataset_name": "ok"}, "validation": {"name": "validation", "dataset_name": "ok"}, "test": {"name": "test", "dataset_name": "ok"}, }, } }, None, { "splits": [ {"dataset": "ok", "config": "config_name", "split": "train"}, {"dataset": "ok", "config": "config_name", "split": "validation"}, {"dataset": "ok", "config": "config_name", "split": "test"}, ] }, ), ( "upstream_fail", HTTPStatus.INTERNAL_SERVER_ERROR, {"error": "error"}, CachedArtifactError.__name__, None, ), ( "without_dataset_info", HTTPStatus.OK, {"some_column": "wrong_format"}, PreviousStepFormatError.__name__, None, ), ( "without_config_name", HTTPStatus.OK, {"dataset_info": "wrong_format"}, PreviousStepFormatError.__name__, None, ), ( "without_splits", HTTPStatus.OK, {"dataset_info": {"config_name": "wrong_format"}}, PreviousStepFormatError.__name__, None, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, upstream_status: HTTPStatus, upstream_content: Any, error_code: str, content: Any, ) -> None: config = "config_name" upsert_response( kind="config-info", dataset=dataset, config=config, content=upstream_content, http_status=upstream_status ) job_runner = get_job_runner(dataset, config, app_config) if error_code: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == error_code else: assert job_runner.compute().content == content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "non_existent" config = "non_existent" worker = get_job_runner(dataset, config, app_config) with pytest.raises(CachedArtifactNotFoundError): worker.compute()
datasets-server-main
services/worker/tests/job_runners/config/test_split_names_from_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.size import ConfigSizeJobRunner @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, AppConfig], ConfigSizeJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigSizeJobRunner: processing_step_name = ConfigSizeJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigSizeJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigSizeJobRunner( job_info={ "type": ConfigSizeJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,upstream_status,upstream_content,expected_error_code,expected_content,should_raise", [ ( "dataset_ok", "config_1", HTTPStatus.OK, { "parquet_files": [ {"dataset": "dataset_ok", "config": "config_1", "split": "train", "size": 14281188}, {"dataset": "dataset_ok", "config": "config_1", "split": "test", "size": 2383903}, ], "dataset_info": { "features": { "image": {"_type": "Image"}, "label": { "names": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], "_type": "ClassLabel", }, }, "splits": { "train": { "name": "train", "num_bytes": 17470800, "num_examples": 60000, "dataset_name": "dataset_ok", }, "test": { "name": "test", "num_bytes": 2916432, "num_examples": 10000, "dataset_name": "dataset_ok", }, }, "download_checksums": { "https://storage.googleapis.com/cvdf-datasets/mnist/train-images-idx3-ubyte.gz": { "num_bytes": 9912422, "checksum": "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609", }, "https://storage.googleapis.com/cvdf-datasets/mnist/train-labels-idx1-ubyte.gz": { "num_bytes": 28881, "checksum": "3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c", }, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-images-idx3-ubyte.gz": { "num_bytes": 1648877, "checksum": "8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6", }, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-labels-idx1-ubyte.gz": { "num_bytes": 4542, "checksum": "f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6", }, }, "download_size": 11594722, "dataset_size": 20387232, "size_in_bytes": 31981954, }, "partial": False, }, None, { "size": { "config": { "dataset": "dataset_ok", "config": "config_1", "num_bytes_original_files": 11594722, "num_bytes_parquet_files": 16665091, "num_bytes_memory": 20387232, "num_rows": 70000, "num_columns": 2, }, "splits": [ { "dataset": "dataset_ok", "config": "config_1", "split": "train", "num_bytes_parquet_files": 14281188, "num_bytes_memory": 17470800, "num_rows": 60000, "num_columns": 2, }, { "dataset": "dataset_ok", "config": "config_1", "split": "test", "num_bytes_parquet_files": 2383903, "num_bytes_memory": 2916432, "num_rows": 10000, "num_columns": 2, }, ], }, "partial": False, }, False, ), ( "status_error", "config_1", HTTPStatus.NOT_FOUND, {"error": "error"}, CachedArtifactError.__name__, None, True, ), ( "format_error", "config_1", HTTPStatus.OK, {"not_dataset_info": "wrong_format"}, PreviousStepFormatError.__name__, None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: str, upstream_status: HTTPStatus, upstream_content: Any, expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="config-parquet-and-info", dataset=dataset, config=config, content=upstream_content, http_status=upstream_status, ) job_runner = get_job_runner(dataset, config, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = config = "doesnotexist" job_runner = get_job_runner(dataset, config, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/config/test_size.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/tests/job_runners/config/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedArtifactNotFoundError, upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.opt_in_out_urls_count import ( ConfigOptInOutUrlsCountJobRunner, ) @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, AppConfig], ConfigOptInOutUrlsCountJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigOptInOutUrlsCountJobRunner: processing_step_name = ConfigOptInOutUrlsCountJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "config", "job_runner_version": ConfigOptInOutUrlsCountJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigOptInOutUrlsCountJobRunner( job_info={ "type": ConfigOptInOutUrlsCountJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,split_names_status,split_names_content,spawning_status" + ",spawning_content,expected_error_code,expected_content,should_raise", [ ( "dataset_ok_full_scan", "config", HTTPStatus.OK, { "splits": [ {"dataset": "dataset_ok_full_scan", "config": "config", "split": "split"}, {"dataset": "dataset_ok_full_scan", "config": "config", "split": "split2"}, {"dataset": "dataset_ok_full_scan", "config": "config", "split": "split3"}, ] }, [HTTPStatus.OK, HTTPStatus.OK, HTTPStatus.OK], [ { "urls_columns": ["url"], "num_opt_in_urls": 1, "num_opt_out_urls": 2, "num_urls": 10, "num_scanned_rows": 100, "has_urls_columns": True, "full_scan": True, }, { "urls_columns": [], "num_opt_in_urls": 0, "num_opt_out_urls": 0, "num_urls": 0, "num_scanned_rows": 30, "has_urls_columns": False, "full_scan": True, }, { "urls_columns": [], "num_opt_in_urls": 0, "num_opt_out_urls": 0, "num_urls": 0, "num_scanned_rows": 30, "has_urls_columns": False, "full_scan": True, }, ], None, { "urls_columns": ["url"], "num_opt_in_urls": 1, "num_opt_out_urls": 2, "num_urls": 10, "num_scanned_rows": 160, "has_urls_columns": True, "full_scan": True, }, False, ), ( "dataset_ok_not_full_scan", "config", HTTPStatus.OK, { "splits": [ {"dataset": "dataset_ok_not_full_scan", "config": "config", "split": "split"}, {"dataset": "dataset_ok_not_full_scan", "config": "config", "split": "split2"}, {"dataset": "dataset_ok_not_full_scan", "config": "config", "split": "split3"}, ] }, [HTTPStatus.OK, HTTPStatus.OK, HTTPStatus.OK], [ { "urls_columns": ["url"], "num_opt_in_urls": 1, "num_opt_out_urls": 2, "num_urls": 10, "num_scanned_rows": 100, "has_urls_columns": True, "full_scan": False, }, { "urls_columns": [], "num_opt_in_urls": 0, "num_opt_out_urls": 0, "num_urls": 0, "num_scanned_rows": 30, "has_urls_columns": False, "full_scan": True, }, { "urls_columns": [], "num_opt_in_urls": 0, "num_opt_out_urls": 0, "num_urls": 0, "num_scanned_rows": 30, "has_urls_columns": False, "full_scan": True, }, ], None, { "urls_columns": ["url"], "num_opt_in_urls": 1, "num_opt_out_urls": 2, "num_urls": 10, "num_scanned_rows": 160, "has_urls_columns": True, "full_scan": False, }, False, ), ( "previous_step_error", "config", HTTPStatus.INTERNAL_SERVER_ERROR, {}, [], [], "CachedArtifactError", None, True, ), ( "previous_step_format_error", "config", HTTPStatus.OK, { "splits": [ {"dataset": "dataset_ok", "config": "config", "split": "split"}, {"dataset": "dataset_ok", "config": "config", "split": "split2"}, ] }, [HTTPStatus.OK], [{"wrong_format": None}], "PreviousStepFormatError", None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: str, split_names_status: HTTPStatus, split_names_content: Any, spawning_status: list[HTTPStatus], spawning_content: list[Any], expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content=split_names_content, http_status=split_names_status, ) if split_names_status == HTTPStatus.OK: for split_item, status, content in zip(split_names_content["splits"], spawning_status, spawning_content): upsert_response( kind="split-opt-in-out-urls-count", dataset=dataset, config=split_item["config"], split=split_item["split"], content=content, http_status=status, ) job_runner = get_job_runner(dataset, config, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = config = "doesnotexist" job_runner = get_job_runner(dataset, config, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/config/test_opt_in_out_urls_count.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from http import HTTPStatus from typing import Optional import pytest from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingStep from libcommon.resources import CacheMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_runners.config.config_job_runner import ConfigJobRunner @pytest.fixture(autouse=True) def cache_mongo_resource_autouse(cache_mongo_resource: CacheMongoResource) -> CacheMongoResource: return cache_mongo_resource class DummyConfigJobRunner(ConfigJobRunner): @staticmethod def get_job_runner_version() -> int: return 1 @staticmethod def get_job_type() -> str: return "/dummy" def compute(self) -> CompleteJobResult: return CompleteJobResult({"key": "value"}) def test_failed_creation(test_processing_step: ProcessingStep, app_config: AppConfig) -> None: with pytest.raises(CustomError) as exc_info: DummyConfigJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": "dataset", "revision": "revision", "config": None, "split": None, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ).validate() assert exc_info.value.code == "ParameterMissingError" @pytest.mark.parametrize( "upsert_config,exception_name", [ ("config", None), ("other_config", "ConfigNotFoundError"), ], ) def test_creation( test_processing_step: ProcessingStep, app_config: AppConfig, upsert_config: str, exception_name: Optional[str], ) -> None: dataset, config = "dataset", "config" upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": upsert_config}]}, http_status=HTTPStatus.OK, ) if exception_name is None: DummyConfigJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ).validate() else: with pytest.raises(CustomError) as exc_info: DummyConfigJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ).validate() assert exc_info.value.code == exception_name
datasets-server-main
services/worker/tests/job_runners/config/test_config_job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import io import os from collections.abc import Callable, Iterator from contextlib import contextmanager from dataclasses import replace from fnmatch import fnmatch from http import HTTPStatus from multiprocessing import Pool from pathlib import Path from typing import Any, Optional, TypedDict from unittest.mock import patch import datasets.builder import datasets.config import datasets.info import pandas as pd import pyarrow.parquet as pq import pytest import requests from datasets import Audio, Features, Image, Value, load_dataset_builder from datasets.packaged_modules.generator.generator import ( Generator as ParametrizedGeneratorBasedBuilder, ) from datasets.utils.py_utils import asdict from huggingface_hub.hf_api import CommitOperationAdd, HfApi from libcommon.dataset import get_dataset_info_for_supported_datasets from libcommon.exceptions import ( CustomError, DatasetInBlockListError, DatasetManualDownloadError, ) from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.queue import Queue from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import JobInfo, JobParams, Priority from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_manager import JobManager from worker.job_runners.config.parquet_and_info import ( ConfigParquetAndInfoJobRunner, ParquetFileValidator, TooBigRowGroupsError, _is_too_big_from_datasets, _is_too_big_from_external_data_files, _is_too_big_from_hub, create_commits, fill_builder_info, get_delete_operations, get_writer_batch_size_from_info, get_writer_batch_size_from_row_group_size, limit_parquet_writes, list_generated_parquet_files, parse_repo_filename, raise_if_blocked, raise_if_requires_manual_download, stream_convert_to_parquet, ) from worker.job_runners.dataset.config_names import DatasetConfigNamesJobRunner from worker.resources import LibrariesResource from ...constants import CI_HUB_ENDPOINT, CI_USER_TOKEN from ...fixtures.hub import HubDatasetTest @contextmanager def blocked(app_config: AppConfig, repo_id: str) -> Iterator[None]: app_config.parquet_and_info.blocked_datasets.append(repo_id) yield app_config.parquet_and_info.blocked_datasets.remove(repo_id) GetJobRunner = Callable[[str, str, AppConfig], ConfigParquetAndInfoJobRunner] @pytest.fixture def get_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigParquetAndInfoJobRunner: processing_step_name = ConfigParquetAndInfoJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigParquetAndInfoJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigParquetAndInfoJobRunner( job_info={ "type": ConfigParquetAndInfoJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner def assert_content_is_equal(content: Any, expected: Any) -> None: print(content) assert set(content) == {"parquet_files", "dataset_info", "partial"}, content assert content["parquet_files"] == expected["parquet_files"], content assert len(content["dataset_info"]) == len(expected["dataset_info"]), content content_value = content["dataset_info"] expected_value = expected["dataset_info"] assert set(content_value.keys()) == set(expected_value.keys()), content for key in content_value.keys(): if key != "download_checksums": assert content_value[key] == expected_value[key], content assert content["partial"] == expected["partial"], content def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, hub_responses_public: HubDatasetTest, ) -> None: dataset = hub_responses_public["name"] config = hub_responses_public["config_names_response"]["config_names"][0]["config"] job_runner = get_job_runner(dataset, config, app_config) response = job_runner.compute() assert response content = response.content assert content assert len(content["parquet_files"]) == 1 assert_content_is_equal(content, hub_responses_public["parquet_and_info_response"]) def test_compute_legacy_configs( app_config: AppConfig, get_job_runner: GetJobRunner, hub_public_legacy_configs: str, ) -> None: app_config = replace(app_config, parquet_and_info=replace(app_config.parquet_and_info, max_dataset_size=20_000)) dataset_name = hub_public_legacy_configs original_configs = {"first", "second"} # first compute and push parquet files for each config for dataset with script with two configs for config in original_configs: job_runner = get_job_runner(dataset_name, config, app_config) # needed to overwrite default record when creating job runner upsert_response( kind="dataset-config-names", dataset=hub_public_legacy_configs, http_status=HTTPStatus.OK, content={ "config_names": [ {"dataset": hub_public_legacy_configs, "config": "first"}, {"dataset": hub_public_legacy_configs, "config": "second"}, ], }, ) assert job_runner.compute() hf_api = HfApi(endpoint=CI_HUB_ENDPOINT, token=CI_USER_TOKEN) dataset_info = hf_api.dataset_info( repo_id=hub_public_legacy_configs, revision=app_config.parquet_and_info.target_revision, files_metadata=False ) repo_files = {f.rfilename for f in dataset_info.siblings} # assert that there are only parquet files for dataset's configs and ".gitattributes" in a repo # (no files from 'main') assert ".gitattributes" in repo_files assert all( fnmatch(file, "first/*/*.parquet") or fnmatch(file, "second/*/*.parquet") for file in repo_files.difference({".gitattributes"}) ) orig_repo_configs = {f.rfilename.split("/")[0] for f in dataset_info.siblings if f.rfilename.endswith(".parquet")} # assert that both configs are pushed (push of second config didn't delete first config's files) assert len(orig_repo_configs) == 2 assert orig_repo_configs == original_configs # then change the set of dataset configs (remove "second") job_runner = get_job_runner(dataset_name, "first", app_config) assert job_runner.compute() dataset_info = hf_api.dataset_info( repo_id=hub_public_legacy_configs, revision=app_config.parquet_and_info.target_revision, files_metadata=False ) updated_repo_files = {f.rfilename for f in dataset_info.siblings} # assert that legacy config is removed from the repo # and there are only files for config that was just pushed and .gitattributes assert ".gitattributes" in updated_repo_files assert all(fnmatch(file, "first/*/*.parquet") for file in updated_repo_files.difference({".gitattributes"})) updated_repo_configs = { f.rfilename.split("/")[0] for f in dataset_info.siblings if f.rfilename.endswith(".parquet") } assert len(updated_repo_configs) == 1 assert updated_repo_configs == {"first"} @pytest.mark.parametrize( "dataset,blocked,raises", [ ("public", ["public"], True), ("public", ["public", "audio"], True), ("public", ["audio"], False), ("public", [], False), ], ) def test_raise_if_blocked(dataset: str, blocked: list[str], raises: bool) -> None: if raises: with pytest.raises(DatasetInBlockListError): raise_if_blocked(dataset=dataset, blocked_datasets=blocked) else: raise_if_blocked(dataset=dataset, blocked_datasets=blocked) def test_raise_if_requires_manual_download(hub_public_manual_download: str, app_config: AppConfig) -> None: builder = load_dataset_builder(hub_public_manual_download) with pytest.raises(DatasetManualDownloadError): raise_if_requires_manual_download( builder=builder, hf_endpoint=app_config.common.hf_endpoint, hf_token=app_config.common.hf_token, ) @pytest.mark.parametrize( "name,expected", [("public", False), ("big", True)], ) def test__is_too_big_from_hub( hub_public_csv: str, hub_public_big: str, name: str, expected: bool, app_config: AppConfig, ) -> None: dataset = hub_public_csv if name == "public" else hub_public_big dataset_info = get_dataset_info_for_supported_datasets( dataset=dataset, hf_endpoint=app_config.common.hf_endpoint, hf_token=app_config.common.hf_token, revision="main", files_metadata=True, ) assert ( _is_too_big_from_hub(dataset_info=dataset_info, max_dataset_size=app_config.parquet_and_info.max_dataset_size) == expected ) @pytest.mark.parametrize( "name,expected", [("public", False), ("big", True)], ) def test__is_too_big_from_datasets( hub_public_csv: str, hub_public_big: str, name: str, expected: bool, app_config: AppConfig, ) -> None: dataset = hub_public_csv if name == "public" else hub_public_big builder = load_dataset_builder(dataset) assert ( _is_too_big_from_datasets( info=builder.info, max_dataset_size=app_config.parquet_and_info.max_dataset_size, ) == expected ) @pytest.mark.parametrize( "max_dataset_size,max_external_data_files,expected", [ (None, None, False), (10, None, True), ], ) def test__is_too_big_external_files( external_files_dataset_builder: "datasets.builder.DatasetBuilder", expected: bool, max_dataset_size: Optional[int], max_external_data_files: Optional[int], app_config: AppConfig, ) -> None: max_dataset_size = max_dataset_size or app_config.parquet_and_info.max_dataset_size max_external_data_files = max_external_data_files or app_config.parquet_and_info.max_external_data_files assert ( _is_too_big_from_external_data_files( builder=external_files_dataset_builder, hf_token=app_config.common.hf_token, max_dataset_size=max_dataset_size, max_external_data_files=max_external_data_files, ) == expected ) @pytest.mark.parametrize( "max_dataset_size,max_external_data_files,expected", [ (None, None, False), (None, 1, True), ], ) def test_raise_if_too_many_external_files( external_files_dataset_builder: "datasets.builder.DatasetBuilder", expected: bool, max_dataset_size: Optional[int], max_external_data_files: Optional[int], app_config: AppConfig, ) -> None: max_dataset_size = max_dataset_size or app_config.parquet_and_info.max_dataset_size max_external_data_files = max_external_data_files or app_config.parquet_and_info.max_external_data_files assert ( _is_too_big_from_external_data_files( builder=external_files_dataset_builder, hf_token=app_config.common.hf_token, max_dataset_size=max_dataset_size, max_external_data_files=max_external_data_files, ) == expected ) def test_supported_if_big_parquet( app_config: AppConfig, get_job_runner: GetJobRunner, hub_responses_big: HubDatasetTest, ) -> None: # Not in the list of supported datasets and bigger than the maximum size # but still supported since it's made of parquet files # dataset = hub_public_big dataset = hub_responses_big["name"] config = hub_responses_big["config_names_response"]["config_names"][0]["config"] job_runner = get_job_runner(dataset, config, app_config) response = job_runner.compute() assert response content = response.content assert content assert len(content["parquet_files"]) == 1 assert_content_is_equal(content, hub_responses_big["parquet_and_info_response"]) def test_partially_converted_if_big_non_parquet( app_config: AppConfig, get_job_runner: GetJobRunner, hub_responses_big_csv: HubDatasetTest, ) -> None: # Not in the list of supported datasets and bigger than the maximum size # dataset = hub_public_big_csv dataset = hub_responses_big_csv["name"] config = hub_responses_big_csv["config_names_response"]["config_names"][0]["config"] job_runner = get_job_runner(dataset, config, app_config) from datasets.packaged_modules.csv.csv import CsvConfig # Set a small chunk size to yield more than one Arrow Table in _generate_tables # to be able to stop the generation mid-way. with patch.object(CsvConfig, "pd_read_csv_kwargs", {"chunksize": 10}): response = job_runner.compute() assert response content = response.content assert content assert len(content["parquet_files"]) == 1 assert_content_is_equal(content, hub_responses_big_csv["parquet_and_info_response"]) # dataset is partially generated assert content["parquet_files"][0]["size"] < app_config.parquet_and_info.max_dataset_size assert content["parquet_files"][0]["url"].endswith("/partial-train/0000.parquet") def test_supported_if_gated( app_config: AppConfig, get_job_runner: GetJobRunner, hub_responses_gated: HubDatasetTest, ) -> None: # Access must be granted dataset = hub_responses_gated["name"] config = hub_responses_gated["config_names_response"]["config_names"][0]["config"] job_runner = get_job_runner(dataset, config, app_config) response = job_runner.compute() assert response assert response.content def test_blocked( app_config: AppConfig, get_job_runner: GetJobRunner, hub_reponses_jsonl: HubDatasetTest, ) -> None: # In the list of blocked datasets with blocked(app_config, repo_id=hub_reponses_jsonl["name"]): dataset = hub_reponses_jsonl["name"] config = hub_reponses_jsonl["config_names_response"]["config_names"][0]["config"] job_runner = get_job_runner(dataset, config, app_config) with pytest.raises(CustomError) as e: job_runner.compute() assert e.typename == "DatasetInBlockListError" @pytest.mark.parametrize( "name", ["public", "audio", "gated"], ) def test_compute_splits_response_simple_csv_ok( hub_responses_public: HubDatasetTest, hub_responses_audio: HubDatasetTest, hub_responses_gated: HubDatasetTest, get_job_runner: GetJobRunner, name: str, app_config: AppConfig, data_df: pd.DataFrame, ) -> None: hub_datasets = {"public": hub_responses_public, "audio": hub_responses_audio, "gated": hub_responses_gated} dataset = hub_datasets[name]["name"] config = hub_datasets[name]["config_names_response"]["config_names"][0]["config"] expected_parquet_and_info_response = hub_datasets[name]["parquet_and_info_response"] job_runner = get_job_runner(dataset, config, app_config) result = job_runner.compute().content assert_content_is_equal(result, expected_parquet_and_info_response) # download the parquet file and check that it is valid if name == "audio": return if name == "public": df = pd.read_parquet(result["parquet_files"][0]["url"], engine="auto") else: # in all these cases, the parquet files are not accessible without a token with pytest.raises(Exception): pd.read_parquet(result["parquet_files"][0]["url"], engine="auto") r = requests.get( result["parquet_files"][0]["url"], headers={"Authorization": f"Bearer {app_config.common.hf_token}"} ) assert r.status_code == HTTPStatus.OK, r.text df = pd.read_parquet(io.BytesIO(r.content), engine="auto") assert df.equals(data_df), df @pytest.mark.parametrize( "name,error_code,cause", [ ("private", "DatasetNotFoundError", None), ], ) def test_compute_splits_response_simple_csv_error( hub_responses_private: HubDatasetTest, get_job_runner: GetJobRunner, name: str, error_code: str, cause: str, app_config: AppConfig, ) -> None: dataset = hub_responses_private["name"] config_names_response = hub_responses_private["config_names_response"] config = config_names_response["config_names"][0]["config"] if config_names_response else None job_runner = get_job_runner(dataset, config, app_config) with pytest.raises(CustomError) as exc_info: job_runner.compute() assert exc_info.value.code == error_code assert exc_info.value.cause_exception == cause if exc_info.value.disclose_cause: response = exc_info.value.as_response() assert set(response.keys()) == {"error", "cause_exception", "cause_message", "cause_traceback"} response_dict = dict(response) # ^ to remove mypy warnings assert response_dict["cause_exception"] == cause assert isinstance(response_dict["cause_traceback"], list) assert response_dict["cause_traceback"][0] == "Traceback (most recent call last):\n" @pytest.mark.parametrize( "upstream_status,upstream_content,exception_name", [ (HTTPStatus.NOT_FOUND, {"error": "error"}, "CachedArtifactError"), (HTTPStatus.OK, {"not_config_names": "wrong_format"}, "PreviousStepFormatError"), (HTTPStatus.OK, {"config_names": "not a list"}, "PreviousStepFormatError"), ], ) def test_previous_step_error( get_job_runner: GetJobRunner, upstream_status: HTTPStatus, upstream_content: Any, exception_name: str, hub_responses_public: HubDatasetTest, app_config: AppConfig, ) -> None: dataset = hub_responses_public["name"] config = hub_responses_public["config_names_response"]["config_names"][0]["config"] job_runner = get_job_runner(dataset, config, app_config) upsert_response( "dataset-config-names", dataset=dataset, http_status=upstream_status, content=upstream_content, ) with pytest.raises(Exception) as exc_info: job_runner.compute() assert exc_info.typename == exception_name @pytest.mark.parametrize( "filename,split,config,raises", [ ("config/split/0000.parquet", "split", "config", False), ("config/split.with.dots/0000.parquet", "split.with.dots", "config", False), ("config/partial-split/0000.parquet", "split", "config", False), ("config/partial-split.with.dots/0000.parquet", "split.with.dots", "config", False), ("config/partial-toomanyzeros/00000.parquet", "toomanyzeros", "config", True), ("config/builder-split.parquet", "split", "config", True), ("plain_text/train/0000.parquet", "train", "plain_text", False), ("plain_text/train/0001.parquet", "train", "plain_text", False), ], ) def test_parse_repo_filename(filename: str, split: str, config: str, raises: bool) -> None: if raises: with pytest.raises(Exception): parse_repo_filename(filename) else: assert parse_repo_filename(filename) == (config, split) @pytest.mark.parametrize( "ds_info, has_big_chunks", [ (datasets.info.DatasetInfo(), False), (datasets.info.DatasetInfo(features=Features({"text": Value("string")})), False), (datasets.info.DatasetInfo(features=Features({"image": Image()})), True), (datasets.info.DatasetInfo(features=Features({"audio": Audio()})), True), (datasets.info.DatasetInfo(features=Features({"nested": [{"image": Image()}]})), True), (datasets.info.DatasetInfo(features=Features({"blob": Value("binary")})), True), ], ) def test_get_writer_batch_size_from_info(ds_info: datasets.info.DatasetInfo, has_big_chunks: bool) -> None: assert get_writer_batch_size_from_info(ds_info) == (100 if has_big_chunks else None) @pytest.mark.parametrize( "max_operations_per_commit,use_parent_commit,expected_num_commits", [(2, False, 1), (1, False, 2), (2, True, 1), (1, True, 2)], ) def test_create_commits( hub_public_legacy_configs: str, max_operations_per_commit: int, use_parent_commit: bool, expected_num_commits: int ) -> None: NUM_FILES = 2 repo_id = hub_public_legacy_configs hf_api = HfApi(endpoint=CI_HUB_ENDPOINT, token=CI_USER_TOKEN) if use_parent_commit: target_dataset_info = hf_api.dataset_info(repo_id=repo_id, files_metadata=False) parent_commit = target_dataset_info.sha else: parent_commit = None directory = f".test_create_commits_{max_operations_per_commit}_{use_parent_commit}" operations: list[CommitOperationAdd] = [ CommitOperationAdd(path_in_repo=f"{directory}/file{i}.txt", path_or_fileobj=f"content{i}".encode("UTF-8")) for i in range(NUM_FILES) ] commit_infos = create_commits( hf_api=hf_api, repo_id=repo_id, operations=operations, commit_message="test", max_operations_per_commit=max_operations_per_commit, parent_commit=parent_commit, ) assert len(commit_infos) == expected_num_commits # check that the files were created filenames = hf_api.list_repo_files(repo_id=repo_id, repo_type="dataset") for i in range(NUM_FILES): assert f"{directory}/file{i}.txt" in filenames GetDatasetConfigNamesJobRunner = Callable[[str, AppConfig], DatasetConfigNamesJobRunner] @pytest.fixture def get_dataset_config_names_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetDatasetConfigNamesJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetConfigNamesJobRunner: processing_step_name = DatasetConfigNamesJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetConfigNamesJobRunner.get_job_runner_version(), } } ) return DatasetConfigNamesJobRunner( job_info={ "type": DatasetConfigNamesJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner class JobRunnerArgs(TypedDict): dataset: str revision: str config: str app_config: AppConfig tmp_path: Path def launch_job_runner(job_runner_args: JobRunnerArgs) -> CompleteJobResult: config = job_runner_args["config"] dataset = job_runner_args["dataset"] revision = job_runner_args["revision"] app_config = job_runner_args["app_config"] tmp_path = job_runner_args["tmp_path"] job_runner = ConfigParquetAndInfoJobRunner( job_info=JobInfo( job_id=f"job_{config}", type="config-parquet-and-info", params=JobParams(dataset=dataset, revision=revision, config=config, split=None), priority=Priority.NORMAL, difficulty=50, ), app_config=app_config, processing_step=ProcessingStep( name="config-parquet-and-info", input_type="config", job_runner_version=ConfigParquetAndInfoJobRunner.get_job_runner_version(), difficulty=50, ), hf_datasets_cache=tmp_path, ) return job_runner.compute() def test_concurrency( hub_public_n_configs: str, app_config: AppConfig, tmp_path: Path, get_dataset_config_names_job_runner: GetDatasetConfigNamesJobRunner, queue_mongo_resource: QueueMongoResource, cache_mongo_resource: CacheMongoResource, ) -> None: """ Test that multiple job runners (to compute config-parquet-and-info) can run in parallel, without having conflicts when sending commits to the Hub. For this test, we need a lot of configs for the same dataset (say 20) and one job runner for each. Ideally we would try for both quick and slow jobs. """ repo_id = hub_public_n_configs hf_api = HfApi(endpoint=CI_HUB_ENDPOINT, token=CI_USER_TOKEN) revision = hf_api.dataset_info(repo_id=repo_id, files_metadata=False).sha if revision is None: raise ValueError(f"Could not find revision for dataset {repo_id}") # fill the cache for the step dataset-config-names, required by the job_runner # it's a lot of code 😅 job_info = JobInfo( job_id="not_used", type="dataset-config-names", params=JobParams(dataset=repo_id, revision=revision, config=None, split=None), priority=Priority.NORMAL, difficulty=50, ) queue = Queue() queue.create_jobs([job_info]) job_info = queue.start_job(job_types_only=["dataset-config-names"]) job_manager = JobManager( job_info=job_info, app_config=app_config, processing_graph=ProcessingGraph( { "dataset-config-names": { "input_type": "dataset", "provides_dataset_config_names": True, "job_runner_version": DatasetConfigNamesJobRunner.get_job_runner_version(), } } ), job_runner=get_dataset_config_names_job_runner(repo_id, app_config), ) job_result = job_manager.run_job() job_manager.finish(job_result=job_result) if not job_result["output"]: raise ValueError("Could not get config names") configs = [str(config_name["config"]) for config_name in job_result["output"]["content"]["config_names"]] # launch the job runners NUM_JOB_RUNNERS = 10 with Pool(NUM_JOB_RUNNERS) as pool: pool.map( launch_job_runner, [ JobRunnerArgs( dataset=repo_id, revision=revision, config=config, app_config=app_config, tmp_path=tmp_path ) for config in configs ], ) @pytest.mark.parametrize( "parquet_files,all_repo_files,config_names,config,deleted_files", [ ( set(), {"dummy", "c1/dummy", "c1/0.parquet", "c2/0.parquet", "c1/index.duckdb"}, {"c1", "c2"}, "c1", {"dummy", "c1/dummy", "c1/0.parquet"}, ), ( {"c1/0.parquet"}, {"dummy", "c1/dummy", "c1/0.parquet", "c2/0.parquet", "c1/index.duckdb"}, {"c1", "c2"}, "c1", {"dummy", "c1/dummy"}, ), ], ) def test_get_delete_operations( parquet_files: set[str], all_repo_files: set[str], config_names: set[str], config: str, deleted_files: set[str] ) -> None: parquet_operations = [ CommitOperationAdd(path_in_repo=path_in_repo, path_or_fileobj=b"") for path_in_repo in parquet_files ] delete_operations = get_delete_operations( parquet_operations=parquet_operations, all_repo_files=all_repo_files, config_names=config_names, config=config ) assert set(delete_operation.path_in_repo for delete_operation in delete_operations) == deleted_files @pytest.mark.parametrize( "max_dataset_size,expected_num_shards", [ (1, 1), (150, 2), (300, 4), (9999999, 10), (None, 10), ], ) def test_stream_convert_to_parquet_arrowbasedbuilder( csv_path: str, max_dataset_size: int, expected_num_shards: int, tmp_path: Path ) -> None: num_data_files = 10 builder = load_dataset_builder( "csv", data_files={"train": [csv_path] * num_data_files}, cache_dir=str(tmp_path / f"test_stream_convert_to_parquet-{max_dataset_size=}"), ) with patch("worker.job_runners.config.parquet_and_info.get_writer_batch_size_from_info", lambda ds_config_info: 1): with patch.object(datasets.config, "MAX_SHARD_SIZE", 1): parquet_operations, partial = stream_convert_to_parquet(builder, max_dataset_size=max_dataset_size) num_shards = len(parquet_operations) assert num_shards == expected_num_shards assert partial == (expected_num_shards < num_data_files) assert all(isinstance(op.path_or_fileobj, str) for op in parquet_operations) parquet_files = list_generated_parquet_files(builder, partial=partial) assert len(parquet_files) == expected_num_shards assert all(os.path.isfile(parquet_file.local_file) for parquet_file in parquet_files) if max_dataset_size is not None: one_sample_max_size = 100 expected_max_dataset_size = max_dataset_size + one_sample_max_size assert ( sum(pq.ParquetFile(parquet_file.local_file).read().nbytes for parquet_file in parquet_files) < expected_max_dataset_size ) @pytest.mark.parametrize( "max_dataset_size,expected_num_shards", [ (1, 1), (150, 19), (300, 38), (9999999, 1000), (None, 1000), ], ) def test_stream_convert_to_parquet_generatorbasedbuilder( max_dataset_size: int, expected_num_shards: int, tmp_path: Path ) -> None: num_rows = 1000 def long_generator() -> Iterator[dict[str, int]]: for i in range(num_rows): yield {"foo": i} cache_dir = str(tmp_path / "test_limit_parquet_writes_cache_dir") builder = ParametrizedGeneratorBasedBuilder(generator=long_generator, cache_dir=cache_dir) with patch("worker.job_runners.config.parquet_and_info.get_writer_batch_size_from_info", lambda ds_config_info: 1): with patch.object(datasets.config, "MAX_SHARD_SIZE", 1): parquet_operations, partial = stream_convert_to_parquet(builder, max_dataset_size=max_dataset_size) num_shards = len(parquet_operations) assert num_shards == expected_num_shards assert partial == (expected_num_shards < num_rows) assert all(isinstance(op.path_or_fileobj, str) for op in parquet_operations) parquet_files = list_generated_parquet_files(builder, partial=partial) assert len(parquet_files) == expected_num_shards assert all(os.path.isfile(parquet_file.local_file) for parquet_file in parquet_files) if max_dataset_size is not None: one_sample_max_size = 100 expected_max_dataset_size = max_dataset_size + one_sample_max_size assert ( sum(pq.ParquetFile(parquet_file.local_file).read().nbytes for parquet_file in parquet_files) < expected_max_dataset_size ) def test_limit_parquet_writes(tmp_path: Path) -> None: num_examples = 0 def long_generator() -> Iterator[dict[str, int]]: nonlocal num_examples for i in range(10_000_000): yield {"foo": i} num_examples += 1 one_sample_size = 8 max_dataset_size = 50_000 expected_max_dataset_size = max_dataset_size + datasets.config.DEFAULT_MAX_BATCH_SIZE * one_sample_size expected_max_num_examples = 1 + max_dataset_size // one_sample_size + datasets.config.DEFAULT_MAX_BATCH_SIZE cache_dir = str(tmp_path / "test_limit_parquet_writes_cache_dir") builder = ParametrizedGeneratorBasedBuilder(generator=long_generator, cache_dir=cache_dir) with limit_parquet_writes(builder, max_dataset_size=max_dataset_size) as limiter: builder.download_and_prepare(file_format="parquet") assert builder.info.dataset_size == limiter.total_bytes <= expected_max_dataset_size assert builder.info.splits["train"].num_examples == num_examples < expected_max_num_examples @pytest.mark.parametrize( "validate,too_big_row_groups", [ (None, False), (ParquetFileValidator(max_row_group_byte_size=1).validate, True), (ParquetFileValidator(max_row_group_byte_size=100_000).validate, False), ], ) def test_fill_builder_info( hub_responses_big: HubDatasetTest, app_config: AppConfig, tmp_path: Path, validate: Optional[Callable[[pq.ParquetFile], None]], too_big_row_groups: bool, ) -> None: cache_dir = str(tmp_path / "test_fill_builder_info") name = hub_responses_big["name"] builder = load_dataset_builder(name, cache_dir=cache_dir) builder.info = datasets.info.DatasetInfo() if too_big_row_groups: with pytest.raises(TooBigRowGroupsError) as exc_info: fill_builder_info(builder, hf_endpoint=app_config.common.hf_endpoint, hf_token=None, validate=validate) assert isinstance(exc_info.value, TooBigRowGroupsError) assert isinstance(exc_info.value.num_rows, int) assert isinstance(exc_info.value.row_group_byte_size, int) else: fill_builder_info(builder, hf_endpoint=app_config.common.hf_endpoint, hf_token=None, validate=validate) expected_info = hub_responses_big["parquet_and_info_response"]["dataset_info"] assert expected_info == asdict(builder.info) @pytest.mark.parametrize( "num_rows, row_group_byte_size, max_row_group_byte_size, expected", [ (1000, 1000, 500, 100), (1000, 1000_000, 500_000, 100), (123456789, 123456789, 1000, 100), (987654321, 987654321, 1000, 900), (1000, 10, 1000, 1000), (10, 1000, 1000, 100), ], ) def test_get_writer_batch_size_from_row_group_size( num_rows: int, row_group_byte_size: int, max_row_group_byte_size: int, expected: int ) -> None: writer_batch_size = get_writer_batch_size_from_row_group_size( num_rows=num_rows, row_group_byte_size=row_group_byte_size, max_row_group_byte_size=max_row_group_byte_size ) assert writer_batch_size == expected
datasets-server-main
services/worker/tests/job_runners/config/test_parquet_and_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.is_valid import ConfigIsValidJobRunner from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, AppConfig], ConfigIsValidJobRunner] DATASET = "dataset" CONFIG = "config" SPLIT_1 = "split1" SPLIT_2 = "split2" UPSTREAM_RESPONSE_SPLIT_NAMES: UpstreamResponse = UpstreamResponse( kind="config-split-names-from-streaming", dataset=DATASET, config=CONFIG, http_status=HTTPStatus.OK, content={ "splits": [ {"dataset": DATASET, "config": CONFIG, "split": SPLIT_1}, {"dataset": DATASET, "config": CONFIG, "split": SPLIT_2}, ] }, ) UPSTREAM_RESPONSE_SPLIT_1_OK: UpstreamResponse = UpstreamResponse( kind="split-is-valid", dataset=DATASET, config=CONFIG, split=SPLIT_1, http_status=HTTPStatus.OK, content={"viewer": True, "preview": True, "search": True}, ) UPSTREAM_RESPONSE_SPLIT_1_OK_VIEWER: UpstreamResponse = UpstreamResponse( kind="split-is-valid", dataset=DATASET, config=CONFIG, split=SPLIT_1, http_status=HTTPStatus.OK, content={"viewer": True, "preview": False, "search": False}, ) UPSTREAM_RESPONSE_SPLIT_2_OK_SEARCH: UpstreamResponse = UpstreamResponse( kind="split-is-valid", dataset=DATASET, config=CONFIG, split=SPLIT_2, http_status=HTTPStatus.OK, content={"viewer": False, "preview": False, "search": True}, ) UPSTREAM_RESPONSE_SPLIT_2_OK: UpstreamResponse = UpstreamResponse( kind="split-is-valid", dataset=DATASET, config=CONFIG, split=SPLIT_2, http_status=HTTPStatus.OK, content={"viewer": True, "preview": True, "search": True}, ) UPSTREAM_RESPONSE_SPLIT_1_ERROR: UpstreamResponse = UpstreamResponse( kind="split-is-valid", dataset=DATASET, config=CONFIG, split=SPLIT_1, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) UPSTREAM_RESPONSE_SPLIT_2_ERROR: UpstreamResponse = UpstreamResponse( kind="split-is-valid", dataset=DATASET, config=CONFIG, split=SPLIT_2, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) EXPECTED_COMPLETED_ALL_FALSE = ( {"viewer": False, "preview": False, "search": False}, 1.0, ) EXPECTED_ALL_MIXED = ( {"viewer": True, "preview": False, "search": True}, 1.0, ) EXPECTED_COMPLETED_ALL_TRUE = ( {"viewer": True, "preview": True, "search": True}, 1.0, ) EXPECTED_PENDING_ALL_TRUE = ( {"viewer": True, "preview": True, "search": True}, 0.5, ) EXPECTED_PENDING_ALL_FALSE = ( {"viewer": False, "preview": False, "search": False}, 0.0, ) @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigIsValidJobRunner: processing_step_name = ConfigIsValidJobRunner.get_job_type() processing_graph = ProcessingGraph(app_config.processing_graph.specification) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigIsValidJobRunner( job_info={ "type": ConfigIsValidJobRunner.get_job_type(), "params": { "dataset": dataset, "config": config, "split": None, "revision": "revision", }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 20, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "upstream_responses,expected", [ ( [ UPSTREAM_RESPONSE_SPLIT_1_OK, UPSTREAM_RESPONSE_SPLIT_2_OK, ], EXPECTED_COMPLETED_ALL_TRUE, ), ( [ UPSTREAM_RESPONSE_SPLIT_1_OK, ], EXPECTED_PENDING_ALL_TRUE, ), ( [ UPSTREAM_RESPONSE_SPLIT_1_ERROR, UPSTREAM_RESPONSE_SPLIT_2_ERROR, ], EXPECTED_COMPLETED_ALL_FALSE, ), ([UPSTREAM_RESPONSE_SPLIT_1_OK_VIEWER, UPSTREAM_RESPONSE_SPLIT_2_OK_SEARCH], EXPECTED_ALL_MIXED), ( [], EXPECTED_PENDING_ALL_FALSE, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, upstream_responses: list[UpstreamResponse], expected: Any, ) -> None: dataset, config = DATASET, CONFIG upsert_response(**UPSTREAM_RESPONSE_SPLIT_NAMES) for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, config, app_config) compute_result = job_runner.compute() assert compute_result.content == expected[0] assert compute_result.progress == expected[1]
datasets-server-main
services/worker/tests/job_runners/config/test_is_valid.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from dataclasses import replace from http import HTTPStatus import pytest from libcommon.exceptions import CustomError, DatasetManualDownloadError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.split_names_from_streaming import ( ConfigSplitNamesFromStreamingJobRunner, compute_split_names_from_streaming_response, ) from worker.resources import LibrariesResource from ...fixtures.hub import HubDatasetTest, get_default_config_split GetJobRunner = Callable[[str, str, AppConfig], ConfigSplitNamesFromStreamingJobRunner] @pytest.fixture def get_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigSplitNamesFromStreamingJobRunner: processing_step_name = ConfigSplitNamesFromStreamingJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigSplitNamesFromStreamingJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigSplitNamesFromStreamingJobRunner( job_info={ "type": ConfigSplitNamesFromStreamingJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner def test_compute(app_config: AppConfig, get_job_runner: GetJobRunner, hub_public_csv: str) -> None: dataset = hub_public_csv config, _ = get_default_config_split() job_runner = get_job_runner(dataset, config, app_config) response = job_runner.compute() content = response.content assert len(content["splits"]) == 1 @pytest.mark.parametrize( "name,use_token,error_code,cause", [ ("public", False, None, None), ("audio", False, None, None), ("gated", True, None, None), ("private", True, None, None), ("empty", False, "EmptyDatasetError", "EmptyDatasetError"), # should we really test the following cases? # The assumption is that the dataset exists and is accessible with the token ("does_not_exist", False, "SplitNamesFromStreamingError", "FileNotFoundError"), ("gated", False, "SplitNamesFromStreamingError", "FileNotFoundError"), ("private", False, "SplitNamesFromStreamingError", "FileNotFoundError"), ], ) def test_compute_split_names_from_streaming_response( hub_responses_public: HubDatasetTest, hub_responses_audio: HubDatasetTest, hub_responses_gated: HubDatasetTest, hub_responses_private: HubDatasetTest, hub_responses_empty: HubDatasetTest, hub_responses_does_not_exist: HubDatasetTest, get_job_runner: GetJobRunner, name: str, use_token: bool, error_code: str, cause: str, app_config: AppConfig, ) -> None: hub_datasets = { "public": hub_responses_public, "audio": hub_responses_audio, "gated": hub_responses_gated, "private": hub_responses_private, "empty": hub_responses_empty, "does_not_exist": hub_responses_does_not_exist, } dataset = hub_datasets[name]["name"] config, _ = get_default_config_split() expected_configs_response = hub_datasets[name]["splits_response"] job_runner = get_job_runner( dataset, config, app_config if use_token else replace(app_config, common=replace(app_config.common, hf_token=None)), ) if error_code is None: result = job_runner.compute().content assert result == expected_configs_response return with pytest.raises(CustomError) as exc_info: job_runner.compute() assert exc_info.value.code == error_code assert exc_info.value.cause_exception == cause if exc_info.value.disclose_cause: response = exc_info.value.as_response() assert set(response.keys()) == {"error", "cause_exception", "cause_message", "cause_traceback"} response_dict = dict(response) # ^ to remove mypy warnings assert response_dict["cause_exception"] == cause assert isinstance(response_dict["cause_traceback"], list) assert response_dict["cause_traceback"][0] == "Traceback (most recent call last):\n" def test_compute_split_names_from_streaming_response_raises( hub_public_manual_download: str, app_config: AppConfig ) -> None: with pytest.raises(DatasetManualDownloadError): compute_split_names_from_streaming_response( hub_public_manual_download, "default", hf_token=app_config.common.hf_token )
datasets-server-main
services/worker/tests/job_runners/config/test_split_names_from_streaming.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.config.info import ConfigInfoJobRunner @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, str, AppConfig], ConfigInfoJobRunner] CONFIG_INFO_1 = { "description": "_DESCRIPTION", "citation": "_CITATION", "homepage": "_HOMEPAGE", "license": "_LICENSE", "features": { "image": {"_type": "Image"}, "label": { "names": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], "_type": "ClassLabel", }, }, "splits": { "train": { "name": "train", "num_bytes": 17470800, "num_examples": 60000, "dataset_name": "dataset_ok", }, "test": { "name": "test", "num_bytes": 2916432, "num_examples": 10000, "dataset_name": "dataset_ok", }, }, "builder_name": "dataset_ok", "config_name": "config_1", "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "download_checksums": { "https://storage.googleapis.com/cvdf-datasets/mnist/train-images-idx3-ubyte.gz": { "num_bytes": 9912422, "checksum": "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609", }, "https://storage.googleapis.com/cvdf-datasets/mnist/train-labels-idx1-ubyte.gz": { "num_bytes": 28881, "checksum": "3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c", }, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-images-idx3-ubyte.gz": { "num_bytes": 1648877, "checksum": "8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6", }, "https://storage.googleapis.com/cvdf-datasets/mnist/t10k-labels-idx1-ubyte.gz": { "num_bytes": 4542, "checksum": "f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6", }, }, "download_size": 11594722, "dataset_size": 20387232, "size_in_bytes": 31981954, } CONFIG_INFO_2 = { "description": "_DESCRIPTION", "citation": "_CITATION", "homepage": "_HOMEPAGE", "license": "_LICENSE", "features": { "image": {"_type": "Image"}, "image2": {"_type": "Image"}, "label": { "names": ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"], "_type": "ClassLabel", }, }, "splits": { "train": { "name": "train", "num_bytes": 5678, "num_examples": 3000, "dataset_name": "dataset_ok", }, "test": { "name": "test", "num_bytes": 1234, "num_examples": 1000, "dataset_name": "dataset_ok", }, }, "builder_name": "dataset_ok", "config_name": "config_2", "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "download_checksums": { "https://storage.googleapis.com/cvdf-datasets/mnist/train-images-idx3-ubyte.gz": { "num_bytes": 9912422, "checksum": "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609", }, }, "download_size": 9912422, "dataset_size": 6912, "size_in_bytes": 9919334, } DATASET_INFO_OK = { "config_1": CONFIG_INFO_1, "config_2": CONFIG_INFO_2, } PARQUET_FILES = [ {"dataset": "dataset_ok", "config": "config_1", "split": "train", "size": 14281188}, {"dataset": "dataset_ok", "config": "config_1", "split": "test", "size": 2383903}, {"dataset": "dataset_ok", "config": "config_2", "split": "train", "size": 1234}, {"dataset": "dataset_ok", "config": "config_2", "split": "train", "size": 6789}, {"dataset": "dataset_ok", "config": "config_2", "split": "test", "size": 2383903}, ] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, config: str, app_config: AppConfig, ) -> ConfigInfoJobRunner: processing_step_name = ConfigInfoJobRunner.get_job_type() processing_graph = ProcessingGraph( { "dataset-level": {"input_type": "dataset"}, processing_step_name: { "input_type": "dataset", "job_runner_version": ConfigInfoJobRunner.get_job_runner_version(), "triggered_by": "dataset-level", }, } ) upsert_response( kind="dataset-config-names", dataset=dataset, content={"config_names": [{"dataset": dataset, "config": config}]}, http_status=HTTPStatus.OK, ) return ConfigInfoJobRunner( job_info={ "type": ConfigInfoJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": config, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,config,upstream_status,upstream_content,expected_error_code,expected_content,should_raise", [ ( "dataset_ok", "config_1", HTTPStatus.OK, {"parquet_files": PARQUET_FILES, "dataset_info": CONFIG_INFO_1, "partial": False}, None, {"dataset_info": CONFIG_INFO_1, "partial": False}, False, ), ( "status_error", "config_1", HTTPStatus.NOT_FOUND, {"error": "error"}, CachedArtifactError.__name__, None, True, ), ( "format_error", "config_1", HTTPStatus.OK, {"not_dataset_info": "wrong_format"}, PreviousStepFormatError.__name__, None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config: str, upstream_status: HTTPStatus, upstream_content: Any, expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="config-parquet-and-info", dataset=dataset, config=config, content=upstream_content, http_status=upstream_status, ) job_runner = get_job_runner(dataset, config, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = config = "doesnotexist" job_runner = get_job_runner(dataset, config, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/config/test_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority, SplitHubFile from worker.config import AppConfig from worker.dtos import ConfigParquetResponse, DatasetParquetResponse from worker.job_runners.dataset.parquet import DatasetParquetJobRunner from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, AppConfig], DatasetParquetJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetParquetJobRunner: processing_step_name = DatasetParquetJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetParquetJobRunner.get_job_runner_version(), } } ) return DatasetParquetJobRunner( job_info={ "type": DatasetParquetJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,upstream_responses,expected_error_code,expected_content,should_raise", [ ( "ok", [ UpstreamResponse( kind="dataset-config-names", dataset="ok", config=None, http_status=HTTPStatus.OK, content={ "config_names": [ {"dataset": "dataset_ok", "config": "config_1"}, {"dataset": "dataset_ok", "config": "config_2"}, ], }, ), UpstreamResponse( kind="config-parquet", dataset="ok", config="config_1", http_status=HTTPStatus.OK, content=ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="filename1", size=0, ), ], partial=False, features=None, ), ), UpstreamResponse( kind="config-parquet", dataset="ok", config="config_2", http_status=HTTPStatus.OK, content=ConfigParquetResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_2", split="train", url="url2", filename="filename2", size=0, ), ], partial=False, features=None, ), ), ], None, DatasetParquetResponse( parquet_files=[ SplitHubFile( dataset="ok", config="config_1", split="train", url="url1", filename="filename1", size=0 ), SplitHubFile( dataset="ok", config="config_2", split="train", url="url2", filename="filename2", size=0 ), ], pending=[], failed=[], partial=False, ), False, ), ( "status_error", [ UpstreamResponse( kind="dataset-config-names", dataset="status_error", config=None, http_status=HTTPStatus.NOT_FOUND, content={"error": "error"}, ) ], CachedArtifactError.__name__, None, True, ), ( "format_error", [ UpstreamResponse( kind="dataset-config-names", dataset="format_error", config=None, http_status=HTTPStatus.OK, content={"not_parquet_files": "wrong_format"}, ) ], PreviousStepFormatError.__name__, None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, upstream_responses: list[UpstreamResponse], expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "doesnotexist" job_runner = get_job_runner(dataset, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/dataset/test_parquet.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from dataclasses import replace from unittest.mock import patch import pytest from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.dataset.config_names import DatasetConfigNamesJobRunner from worker.resources import LibrariesResource from ...fixtures.hub import HubDatasetTest GetJobRunner = Callable[[str, AppConfig], DatasetConfigNamesJobRunner] @pytest.fixture def get_job_runner( libraries_resource: LibrariesResource, cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetConfigNamesJobRunner: processing_step_name = DatasetConfigNamesJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetConfigNamesJobRunner.get_job_runner_version(), } } ) return DatasetConfigNamesJobRunner( job_info={ "type": DatasetConfigNamesJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), hf_datasets_cache=libraries_resource.hf_datasets_cache, ) return _get_job_runner def test_compute(app_config: AppConfig, hub_public_csv: str, get_job_runner: GetJobRunner) -> None: dataset = hub_public_csv job_runner = get_job_runner(dataset, app_config) response = job_runner.compute() content = response.content assert len(content["config_names"]) == 1 @pytest.mark.parametrize( "max_number_of_configs,error_code", [ (1, "DatasetWithTooManyConfigsError"), (2, None), (3, None), ], ) def test_compute_too_many_configs( app_config: AppConfig, get_job_runner: GetJobRunner, max_number_of_configs: int, error_code: str ) -> None: dataset = "dataset" configs = ["config_1", "config_2"] job_runner = get_job_runner( dataset, replace(app_config, config_names=replace(app_config.config_names, max_number=max_number_of_configs)), ) with patch("worker.job_runners.dataset.config_names.get_dataset_config_names", return_value=configs): if error_code: with pytest.raises(CustomError) as exc_info: job_runner.compute() assert exc_info.value.code == error_code else: assert job_runner.compute() is not None @pytest.mark.parametrize( "name,use_token,error_code,cause", [ ("public", False, None, None), ("audio", False, None, None), ("gated", True, None, None), ("private", True, None, None), ("empty", False, "EmptyDatasetError", "EmptyDatasetError"), # should we really test the following cases? # The assumption is that the dataset exists and is accessible with the token ("does_not_exist", False, "ConfigNamesError", "FileNotFoundError"), ("gated", False, "ConfigNamesError", "FileNotFoundError"), ("private", False, "ConfigNamesError", "FileNotFoundError"), ], ) def test_compute_splits_response_simple_csv( hub_responses_public: HubDatasetTest, hub_responses_audio: HubDatasetTest, hub_responses_gated: HubDatasetTest, hub_responses_private: HubDatasetTest, hub_responses_empty: HubDatasetTest, hub_responses_does_not_exist: HubDatasetTest, get_job_runner: GetJobRunner, name: str, use_token: bool, error_code: str, cause: str, app_config: AppConfig, ) -> None: hub_datasets = { "public": hub_responses_public, "audio": hub_responses_audio, "gated": hub_responses_gated, "private": hub_responses_private, "empty": hub_responses_empty, "does_not_exist": hub_responses_does_not_exist, } dataset = hub_datasets[name]["name"] expected_configs_response = hub_datasets[name]["config_names_response"] job_runner = get_job_runner( dataset, app_config if use_token else replace(app_config, common=replace(app_config.common, hf_token=None)), ) if error_code is None: result = job_runner.compute().content assert result == expected_configs_response return with pytest.raises(CustomError) as exc_info: job_runner.compute() assert exc_info.value.code == error_code assert exc_info.value.cause_exception == cause if exc_info.value.disclose_cause: response = exc_info.value.as_response() assert set(response.keys()) == {"error", "cause_exception", "cause_message", "cause_traceback"} response_dict = dict(response) # ^ to remove mypy warnings assert response_dict["cause_exception"] == cause assert isinstance(response_dict["cause_traceback"], list) assert response_dict["cause_traceback"][0] == "Traceback (most recent call last):\n"
datasets-server-main
services/worker/tests/job_runners/dataset/test_config_names.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedArtifactNotFoundError, upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.dataset.split_names import DatasetSplitNamesJobRunner GetJobRunner = Callable[[str, AppConfig], DatasetSplitNamesJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetSplitNamesJobRunner: processing_step_name = DatasetSplitNamesJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetSplitNamesJobRunner.get_job_runner_version(), } } ) return DatasetSplitNamesJobRunner( job_info={ "type": DatasetSplitNamesJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,split_names,expected_content,progress", [ ( "pending_response", [ { "config": "config_a", "response": { "splits": [ { "dataset": "pending_response", "config": "config_a", "split": "split_a", } ] }, } ], { "splits": [ { "dataset": "pending_response", "config": "config_a", "split": "split_a", }, ], "pending": [{"dataset": "pending_response", "config": "config_b"}], "failed": [], }, 0.5, ), ( "complete", [ { "config": "config_a", "response": { "splits": [ { "dataset": "complete", "config": "config_a", "split": "split_a", } ] }, }, { "config": "config_b", "response": { "splits": [ { "dataset": "complete", "config": "config_b", "split": "split_b", } ] }, }, ], { "splits": [ { "dataset": "complete", "config": "config_a", "split": "split_a", }, { "dataset": "complete", "config": "config_b", "split": "split_b", }, ], "pending": [], "failed": [], }, 1, ), ], ) def test_compute_progress( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, split_names: Any, expected_content: Any, progress: float, ) -> None: # we could also have tested if dataset-info has a response (it's one case among many, see # libcommon.simple_cache.get_best_response) upsert_response( kind="dataset-config-names", dataset=dataset, content={ "config_names": [ { "dataset": dataset, "config": "config_a", }, {"dataset": dataset, "config": "config_b"}, ] }, http_status=HTTPStatus.OK, ) for config in split_names: # we don't really need both parent responses here, but why not (it's one case among many, see # libcommon.simple_cache.get_best_response) upsert_response( kind="config-split-names-from-info", dataset=dataset, config=config["config"], content=config["response"], http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config["config"], content=config["response"], http_status=HTTPStatus.OK, ) job_runner = get_job_runner(dataset, app_config) response = job_runner.compute() assert response.content == expected_content assert response.progress == progress def test_compute_error(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "error" config = "error" # we could also have tested if dataset-info has a response (it's one case among many, see # libcommon.simple_cache.get_best_response) upsert_response( kind="dataset-config-names", dataset=dataset, content={ "config_names": [ { "dataset": dataset, "config": config, } ] }, http_status=HTTPStatus.OK, ) # we don't really need both parent responses here, but why not (it's one case among many, see # libcommon.simple_cache.get_best_response) upsert_response( kind="config-split-names-from-info", dataset=dataset, config=config, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={}, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, ) job_runner = get_job_runner(dataset, app_config) response = job_runner.compute() assert response.content == { "splits": [], "failed": [{"dataset": dataset, "config": config, "error": {}}], "pending": [], } assert response.progress == 1.0 def test_compute_format_error(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "error" config = "error" upsert_response( kind="dataset-config-names", dataset=dataset, content={ "config_names": [ { "dataset": dataset, "config": config, } ] }, http_status=HTTPStatus.OK, ) # here, 'config-split-names-from-info' will be picked because it's the first success response # with progress==1.0 (see libcommon.simple_cache.get_best_response), but its format is wrong # while the other one ('config-split-names-from-streaming') is correct upsert_response( kind="config-split-names-from-info", dataset=dataset, config=config, content={"wrong_format": []}, http_status=HTTPStatus.OK, ) upsert_response( kind="config-split-names-from-streaming", dataset=dataset, config=config, content={"splits": [{"dataset": "dataset", "config": "config", "split": "split"}]}, http_status=HTTPStatus.OK, ) job_runner = get_job_runner(dataset, app_config) with pytest.raises(PreviousStepFormatError): job_runner.compute() def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "doesnotexist" job_runner = get_job_runner(dataset, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/dataset/test_split_names.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.dataset.size import DatasetSizeJobRunner from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, AppConfig], DatasetSizeJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetSizeJobRunner: processing_step_name = DatasetSizeJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetSizeJobRunner.get_job_runner_version(), } } ) return DatasetSizeJobRunner( job_info={ "type": DatasetSizeJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,upstream_responses,expected_error_code,expected_content,should_raise", [ ( "dataset_ok", [ UpstreamResponse( kind="dataset-config-names", dataset="dataset_ok", config=None, http_status=HTTPStatus.OK, content={ "config_names": [ {"dataset": "dataset_ok", "config": "config_1"}, {"dataset": "dataset_ok", "config": "config_2"}, ], }, ), UpstreamResponse( kind="config-size", dataset="dataset_ok", config="config_1", http_status=HTTPStatus.OK, content={ "size": { "config": { "dataset": "dataset_ok", "config": "config_1", "num_bytes_original_files": 11594722, "num_bytes_parquet_files": 16665091, "num_bytes_memory": 20387232, "num_rows": 70000, "num_columns": 2, }, "splits": [ { "dataset": "dataset_ok", "config": "config_1", "split": "train", "num_bytes_parquet_files": 14281188, "num_bytes_memory": 17470800, "num_rows": 60000, "num_columns": 2, }, { "dataset": "dataset_ok", "config": "config_1", "split": "test", "num_bytes_parquet_files": 2383903, "num_bytes_memory": 2916432, "num_rows": 10000, "num_columns": 2, }, ], }, "partial": False, }, ), UpstreamResponse( kind="config-size", dataset="dataset_ok", config="config_2", http_status=HTTPStatus.OK, content={ "size": { "config": { "dataset": "dataset_ok", "config": "config_2", "num_bytes_original_files": 9912422, "num_bytes_parquet_files": 2391926, "num_bytes_memory": 6912, "num_rows": 4000, "num_columns": 3, }, "splits": [ { "dataset": "dataset_ok", "config": "config_2", "split": "train", "num_bytes_parquet_files": 8023, "num_bytes_memory": 5678, "num_rows": 3000, "num_columns": 3, }, { "dataset": "dataset_ok", "config": "config_2", "split": "test", "num_bytes_parquet_files": 2383903, "num_bytes_memory": 1234, "num_rows": 1000, "num_columns": 3, }, ], }, "partial": False, }, ), ], None, { "size": { "dataset": { "dataset": "dataset_ok", "num_bytes_original_files": 21507144, "num_bytes_parquet_files": 19057017, "num_bytes_memory": 20394144, "num_rows": 74000, }, "configs": [ { "dataset": "dataset_ok", "config": "config_1", "num_bytes_original_files": 11594722, "num_bytes_parquet_files": 16665091, "num_bytes_memory": 20387232, "num_rows": 70000, "num_columns": 2, }, { "dataset": "dataset_ok", "config": "config_2", "num_bytes_original_files": 9912422, "num_bytes_parquet_files": 2391926, "num_bytes_memory": 6912, "num_rows": 4000, "num_columns": 3, }, ], "splits": [ { "dataset": "dataset_ok", "config": "config_1", "split": "train", "num_bytes_parquet_files": 14281188, "num_bytes_memory": 17470800, "num_rows": 60000, "num_columns": 2, }, { "dataset": "dataset_ok", "config": "config_1", "split": "test", "num_bytes_parquet_files": 2383903, "num_bytes_memory": 2916432, "num_rows": 10000, "num_columns": 2, }, { "dataset": "dataset_ok", "config": "config_2", "split": "train", "num_bytes_parquet_files": 8023, "num_bytes_memory": 5678, "num_rows": 3000, "num_columns": 3, }, { "dataset": "dataset_ok", "config": "config_2", "split": "test", "num_bytes_parquet_files": 2383903, "num_bytes_memory": 1234, "num_rows": 1000, "num_columns": 3, }, ], }, "failed": [], "pending": [], "partial": False, }, False, ), ( "status_error", [ UpstreamResponse( kind="dataset-config-names", dataset="status_error", config=None, http_status=HTTPStatus.NOT_FOUND, content={"error": "error"}, ) ], CachedArtifactError.__name__, None, True, ), ( "format_error", [ UpstreamResponse( kind="dataset-config-names", dataset="format_error", config=None, http_status=HTTPStatus.OK, content={"not_dataset_info": "wrong_format"}, ) ], PreviousStepFormatError.__name__, None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, upstream_responses: list[UpstreamResponse], expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "doesnotexist" job_runner = get_job_runner(dataset, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/dataset/test_size.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import pytest from libcommon.exceptions import CustomError from libcommon.processing_graph import ProcessingStep from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import CompleteJobResult from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner class DummyDatasetJobRunner(DatasetJobRunner): @staticmethod def get_job_runner_version() -> int: return 1 @staticmethod def get_job_type() -> str: return "/dummy" def compute(self) -> CompleteJobResult: return CompleteJobResult({"key": "value"}) def test_failed_creation(test_processing_step: ProcessingStep, app_config: AppConfig) -> None: with pytest.raises(CustomError) as exc_info: DummyDatasetJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": None, # type: ignore # ^ Needed to raise error "revision": "revision", "config": None, "split": None, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ) assert exc_info.value.code == "ParameterMissingError" def test_success_creation(test_processing_step: ProcessingStep, app_config: AppConfig) -> None: assert ( DummyDatasetJobRunner( job_info={ "job_id": "job_id", "type": test_processing_step.job_type, "params": { "dataset": "dataset", "revision": "revision", "config": None, "split": None, }, "priority": Priority.NORMAL, "difficulty": 50, }, processing_step=test_processing_step, app_config=app_config, ) is not None )
datasets-server-main
services/worker/tests/job_runners/dataset/test_dataset_job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/tests/job_runners/dataset/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedArtifactNotFoundError, upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.dataset.opt_in_out_urls_count import ( DatasetOptInOutUrlsCountJobRunner, ) @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, AppConfig], DatasetOptInOutUrlsCountJobRunner] @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetOptInOutUrlsCountJobRunner: processing_step_name = DatasetOptInOutUrlsCountJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetOptInOutUrlsCountJobRunner.get_job_runner_version(), } } ) return DatasetOptInOutUrlsCountJobRunner( job_info={ "type": DatasetOptInOutUrlsCountJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,config_names_status,config_names_content,config_upstream_status" + ",config_upstream_content,expected_error_code,expected_content,should_raise", [ ( "dataset_ok_full_scan", HTTPStatus.OK, { "config_names": [ {"dataset": "dataset_ok_full_scan", "config": "config1"}, {"dataset": "dataset_ok_full_scan", "config": "config2"}, ] }, [HTTPStatus.OK, HTTPStatus.OK], [ { "urls_columns": ["image_url", "url"], "num_opt_in_urls": 10, "num_opt_out_urls": 20, "num_urls": 100, "num_scanned_rows": 100, "has_urls_columns": True, "full_scan": True, }, { "urls_columns": ["image_url", "label", "url"], "num_opt_in_urls": 10, "num_opt_out_urls": 0, "num_urls": 50, "num_scanned_rows": 300, "has_urls_columns": True, "full_scan": True, }, ], None, { "urls_columns": ["image_url", "label", "url"], "num_opt_in_urls": 20, "num_opt_out_urls": 20, "num_urls": 150, "num_scanned_rows": 400, "has_urls_columns": True, "full_scan": True, }, False, ), ( "dataset_ok_not_full_scan", HTTPStatus.OK, { "config_names": [ {"dataset": "dataset_ok_not_full_scan", "config": "config1"}, {"dataset": "dataset_ok_not_full_scan", "config": "config2"}, ] }, [HTTPStatus.OK, HTTPStatus.OK], [ { "urls_columns": ["image_url", "url"], "num_opt_in_urls": 10, "num_opt_out_urls": 20, "num_urls": 100, "num_scanned_rows": 100, "has_urls_columns": True, "full_scan": False, }, { "urls_columns": ["image_url", "label", "url"], "num_opt_in_urls": 10, "num_opt_out_urls": 0, "num_urls": 50, "num_scanned_rows": 300, "has_urls_columns": True, "full_scan": True, }, ], None, { "urls_columns": ["image_url", "label", "url"], "num_opt_in_urls": 20, "num_opt_out_urls": 20, "num_urls": 150, "num_scanned_rows": 400, "has_urls_columns": True, "full_scan": False, }, False, ), ( "previos_step_error", HTTPStatus.INTERNAL_SERVER_ERROR, {}, [], [], "CachedArtifactError", None, True, ), ( "previous_step_format_error", HTTPStatus.OK, { "config_names": [ {"dataset": "dataset_ok", "config": "config1"}, {"dataset": "dataset_ok", "config": "config2"}, ] }, [HTTPStatus.OK], [{"wrong_format": None}], "PreviousStepFormatError", None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, config_names_status: HTTPStatus, config_names_content: Any, config_upstream_status: list[HTTPStatus], config_upstream_content: list[Any], expected_error_code: str, expected_content: Any, should_raise: bool, ) -> None: upsert_response( kind="dataset-config-names", dataset=dataset, content=config_names_content, http_status=config_names_status, ) if config_names_status == HTTPStatus.OK: for split_item, status, content in zip( config_names_content["config_names"], config_upstream_status, config_upstream_content ): upsert_response( kind="config-opt-in-out-urls-count", dataset=dataset, config=split_item["config"], content=content, http_status=status, ) job_runner = get_job_runner(dataset, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: assert job_runner.compute().content == expected_content def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "doesnotexist" job_runner = get_job_runner(dataset, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/dataset/test_opt_in_out_urls_count.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.dataset.is_valid import DatasetIsValidJobRunner from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, AppConfig], DatasetIsValidJobRunner] DATASET = "dataset" CONFIG_1 = "config1" CONFIG_2 = "config2" UPSTREAM_RESPONSE_CONFIG_NAMES: UpstreamResponse = UpstreamResponse( kind="dataset-config-names", dataset=DATASET, http_status=HTTPStatus.OK, content={ "config_names": [ {"dataset": DATASET, "config": CONFIG_1}, {"dataset": DATASET, "config": CONFIG_2}, ] }, ) UPSTREAM_RESPONSE_CONFIG_1_OK: UpstreamResponse = UpstreamResponse( kind="config-is-valid", dataset=DATASET, config=CONFIG_1, http_status=HTTPStatus.OK, content={"viewer": True, "preview": True, "search": True}, ) UPSTREAM_RESPONSE_CONFIG_1_OK_VIEWER: UpstreamResponse = UpstreamResponse( kind="config-is-valid", dataset=DATASET, config=CONFIG_1, http_status=HTTPStatus.OK, content={"viewer": True, "preview": False, "search": False}, ) UPSTREAM_RESPONSE_CONFIG_2_OK_SEARCH: UpstreamResponse = UpstreamResponse( kind="config-is-valid", dataset=DATASET, config=CONFIG_2, http_status=HTTPStatus.OK, content={"viewer": False, "preview": False, "search": True}, ) UPSTREAM_RESPONSE_CONFIG_2_OK: UpstreamResponse = UpstreamResponse( kind="config-is-valid", dataset=DATASET, config=CONFIG_2, http_status=HTTPStatus.OK, content={"viewer": True, "preview": True, "search": True}, ) UPSTREAM_RESPONSE_CONFIG_1_ERROR: UpstreamResponse = UpstreamResponse( kind="config-is-valid", dataset=DATASET, config=CONFIG_1, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) UPSTREAM_RESPONSE_CONFIG_2_ERROR: UpstreamResponse = UpstreamResponse( kind="config-is-valid", dataset=DATASET, config=CONFIG_2, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, ) EXPECTED_COMPLETED_ALL_FALSE = ( {"viewer": False, "preview": False, "search": False}, 1.0, ) EXPECTED_ALL_MIXED = ( {"viewer": True, "preview": False, "search": True}, 1.0, ) EXPECTED_COMPLETED_ALL_TRUE = ( {"viewer": True, "preview": True, "search": True}, 1.0, ) EXPECTED_PENDING_ALL_TRUE = ( {"viewer": True, "preview": True, "search": True}, 0.5, ) EXPECTED_PENDING_ALL_FALSE = ( {"viewer": False, "preview": False, "search": False}, 0.0, ) @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetIsValidJobRunner: processing_step_name = DatasetIsValidJobRunner.get_job_type() processing_graph = ProcessingGraph(app_config.processing_graph.specification) return DatasetIsValidJobRunner( job_info={ "type": DatasetIsValidJobRunner.get_job_type(), "params": { "dataset": dataset, "config": None, "split": None, "revision": "revision", }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 20, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "upstream_responses,expected", [ ( [ UPSTREAM_RESPONSE_CONFIG_1_OK, UPSTREAM_RESPONSE_CONFIG_2_OK, ], EXPECTED_COMPLETED_ALL_TRUE, ), ( [ UPSTREAM_RESPONSE_CONFIG_1_OK, ], EXPECTED_PENDING_ALL_TRUE, ), ( [ UPSTREAM_RESPONSE_CONFIG_1_ERROR, UPSTREAM_RESPONSE_CONFIG_2_ERROR, ], EXPECTED_COMPLETED_ALL_FALSE, ), ([UPSTREAM_RESPONSE_CONFIG_1_OK_VIEWER, UPSTREAM_RESPONSE_CONFIG_2_OK_SEARCH], EXPECTED_ALL_MIXED), ( [], EXPECTED_PENDING_ALL_FALSE, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, upstream_responses: list[UpstreamResponse], expected: Any, ) -> None: dataset = DATASET upsert_response(**UPSTREAM_RESPONSE_CONFIG_NAMES) for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, app_config) compute_result = job_runner.compute() assert compute_result.content == expected[0] assert compute_result.progress == expected[1]
datasets-server-main
services/worker/tests/job_runners/dataset/test_is_valid.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import CachedArtifactError, upsert_response from libcommon.utils import Priority from worker.config import AppConfig from worker.job_runners.dataset.hub_cache import DatasetHubCacheJobRunner from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, AppConfig], DatasetHubCacheJobRunner] DATASET = "dataset" UPSTREAM_RESPONSE_IS_VALID_OK: UpstreamResponse = UpstreamResponse( kind="dataset-is-valid", dataset=DATASET, http_status=HTTPStatus.OK, content={"preview": True, "viewer": False, "search": True}, progress=0.5, ) UPSTREAM_RESPONSE_IS_VALID_ERROR: UpstreamResponse = UpstreamResponse( kind="dataset-is-valid", dataset=DATASET, http_status=HTTPStatus.INTERNAL_SERVER_ERROR, content={}, progress=0.0, ) UPSTREAM_RESPONSE_SIZE_OK: UpstreamResponse = UpstreamResponse( kind="dataset-size", dataset=DATASET, http_status=HTTPStatus.OK, content={"size": {"dataset": {"num_rows": 1000}}, "partial": False}, progress=0.2, ) UPSTREAM_RESPONSE_SIZE_NO_PROGRESS: UpstreamResponse = UpstreamResponse( kind="dataset-size", dataset=DATASET, http_status=HTTPStatus.OK, content={"size": {"dataset": {"num_rows": 1000}}, "partial": True}, progress=None, ) EXPECTED_OK = ( {"viewer": False, "preview": True, "partial": False, "num_rows": 1000}, 0.2, ) EXPECTED_NO_PROGRESS = ( {"viewer": False, "preview": True, "partial": True, "num_rows": 1000}, 0.5, ) @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetHubCacheJobRunner: processing_step_name = DatasetHubCacheJobRunner.get_job_type() processing_graph = ProcessingGraph(app_config.processing_graph.specification) return DatasetHubCacheJobRunner( job_info={ "type": DatasetHubCacheJobRunner.get_job_type(), "params": { "dataset": dataset, "config": None, "split": None, "revision": "revision", }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 20, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "upstream_responses,expected", [ ( [ UPSTREAM_RESPONSE_IS_VALID_OK, UPSTREAM_RESPONSE_SIZE_OK, ], EXPECTED_OK, ), ( [ UPSTREAM_RESPONSE_IS_VALID_OK, UPSTREAM_RESPONSE_SIZE_NO_PROGRESS, ], EXPECTED_NO_PROGRESS, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, upstream_responses: list[UpstreamResponse], expected: Any, ) -> None: dataset = DATASET for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, app_config) compute_result = job_runner.compute() assert compute_result.content == expected[0] assert compute_result.progress == expected[1] @pytest.mark.parametrize( "upstream_responses,expectation", [ ( [ UPSTREAM_RESPONSE_IS_VALID_ERROR, UPSTREAM_RESPONSE_SIZE_OK, ], pytest.raises(CachedArtifactError), ) ], ) def test_compute_error( app_config: AppConfig, get_job_runner: GetJobRunner, upstream_responses: list[UpstreamResponse], expectation: Any, ) -> None: dataset = DATASET for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, app_config) with expectation: job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/dataset/test_hub_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from collections.abc import Callable from http import HTTPStatus from typing import Any import pytest from libcommon.exceptions import PreviousStepFormatError from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.simple_cache import ( CachedArtifactError, CachedArtifactNotFoundError, upsert_response, ) from libcommon.utils import Priority from worker.config import AppConfig from worker.dtos import PreviousJob from worker.job_runners.dataset.info import DatasetInfoJobRunner from ..config.test_info import CONFIG_INFO_1, CONFIG_INFO_2, DATASET_INFO_OK from ..utils import UpstreamResponse @pytest.fixture(autouse=True) def prepare_and_clean_mongo(app_config: AppConfig) -> None: # prepare the database before each test, and clean it afterwards pass GetJobRunner = Callable[[str, AppConfig], DatasetInfoJobRunner] UPSTREAM_RESPONSE_CONFIG_NAMES: UpstreamResponse = UpstreamResponse( kind="dataset-config-names", dataset="dataset_ok", config=None, http_status=HTTPStatus.OK, content={ "config_names": [ {"dataset": "dataset_ok", "config": "config_1"}, {"dataset": "dataset_ok", "config": "config_2"}, ], }, ) UPSTREAM_RESPONSE_CONFIG_INFO_1: UpstreamResponse = UpstreamResponse( kind="config-info", dataset="dataset_ok", config="config_1", http_status=HTTPStatus.OK, content={"dataset_info": CONFIG_INFO_1, "partial": False}, ) UPSTREAM_RESPONSE_CONFIG_INFO_2: UpstreamResponse = UpstreamResponse( kind="config-info", dataset="dataset_ok", config="config_2", http_status=HTTPStatus.OK, content={"dataset_info": CONFIG_INFO_2, "partial": False}, ) EXPECTED_OK = ( { "dataset_info": DATASET_INFO_OK, "pending": [], "failed": [], "partial": False, }, 1.0, ) EXPECTED_PARTIAL_PENDING = ( { "dataset_info": { "config_1": CONFIG_INFO_1, }, "pending": [ PreviousJob( kind="config-info", dataset="dataset_ok", config="config_2", split=None, ) ], "failed": [], "partial": False, }, 0.5, ) EXPECTED_PARTIAL_FAILED = ( { "dataset_info": { "config_1": CONFIG_INFO_1, }, "pending": [], "failed": [ PreviousJob( kind="config-info", dataset="dataset_ok", config="config_2", split=None, ) ], "partial": False, }, 1.0, ) @pytest.fixture def get_job_runner( cache_mongo_resource: CacheMongoResource, queue_mongo_resource: QueueMongoResource, ) -> GetJobRunner: def _get_job_runner( dataset: str, app_config: AppConfig, ) -> DatasetInfoJobRunner: processing_step_name = DatasetInfoJobRunner.get_job_type() processing_graph = ProcessingGraph( { processing_step_name: { "input_type": "dataset", "job_runner_version": DatasetInfoJobRunner.get_job_runner_version(), } } ) return DatasetInfoJobRunner( job_info={ "type": DatasetInfoJobRunner.get_job_type(), "params": { "dataset": dataset, "revision": "revision", "config": None, "split": None, }, "job_id": "job_id", "priority": Priority.NORMAL, "difficulty": 50, }, app_config=app_config, processing_step=processing_graph.get_processing_step(processing_step_name), ) return _get_job_runner @pytest.mark.parametrize( "dataset,upstream_responses,expected_error_code,expected,should_raise", [ ( "dataset_ok", [ UPSTREAM_RESPONSE_CONFIG_NAMES, UPSTREAM_RESPONSE_CONFIG_INFO_1, UPSTREAM_RESPONSE_CONFIG_INFO_2, ], None, EXPECTED_OK, False, ), ( "dataset_ok", [UPSTREAM_RESPONSE_CONFIG_NAMES, UPSTREAM_RESPONSE_CONFIG_INFO_1], None, EXPECTED_PARTIAL_PENDING, False, ), ( "dataset_ok", [ UPSTREAM_RESPONSE_CONFIG_NAMES, UPSTREAM_RESPONSE_CONFIG_INFO_1, UpstreamResponse( kind="config-info", dataset="dataset_ok", config="config_2", http_status=HTTPStatus.NOT_FOUND, content={"error": "error"}, ), ], None, EXPECTED_PARTIAL_FAILED, False, ), ( "status_error", [ UpstreamResponse( kind="dataset-config-names", dataset="status_error", config=None, http_status=HTTPStatus.NOT_FOUND, content={"error": "error"}, ) ], CachedArtifactError.__name__, None, True, ), ( "format_error", [ UpstreamResponse( kind="dataset-config-names", dataset="format_error", config=None, http_status=HTTPStatus.OK, content={"not_dataset_info": "wrong_format"}, ) ], PreviousStepFormatError.__name__, None, True, ), ], ) def test_compute( app_config: AppConfig, get_job_runner: GetJobRunner, dataset: str, upstream_responses: list[UpstreamResponse], expected_error_code: str, expected: Any, should_raise: bool, ) -> None: for upstream_response in upstream_responses: upsert_response(**upstream_response) job_runner = get_job_runner(dataset, app_config) if should_raise: with pytest.raises(Exception) as e: job_runner.compute() assert e.typename == expected_error_code else: compute_result = job_runner.compute() assert compute_result.content == expected[0] assert compute_result.progress == expected[1] def test_doesnotexist(app_config: AppConfig, get_job_runner: GetJobRunner) -> None: dataset = "doesnotexist" job_runner = get_job_runner(dataset, app_config) with pytest.raises(CachedArtifactNotFoundError): job_runner.compute()
datasets-server-main
services/worker/tests/job_runners/dataset/test_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import csv import json import pandas as pd import pytest DATA = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="session") def csv_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "dataset.csv") with open(path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=["col_1", "col_2", "col_3"]) writer.writeheader() for item in DATA: writer.writerow(item) return path @pytest.fixture(scope="session") def data_df(csv_path: str) -> pd.DataFrame: # from the CSV file, not the DATA variable, because the CSV file does not respect the first column type # we have to follow the same behavior return pd.read_csv(csv_path) JSONL = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": None, "col_2": 1, "col_3": 1.0}, {"col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="session") def jsonl_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "dataset.jsonl") with open(path, "w", newline="") as f: f.writelines(json.dumps(o) for o in JSONL) return path @pytest.fixture(scope="session") def extra_fields_readme(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "README.md") lines = [ "---", 'extra_gated_prompt: "You agree not to attempt to determine the identity of individuals in this dataset"', "extra_gated_fields:", " Company: text", " Country: text", " I agree to use this model for non-commercial use ONLY: checkbox", "---", ] with open(path, "w", newline="") as f: f.writelines(f"{line}\n" for line in lines) return path DATASET_SCRIPT_WITH_EXTERNAL_FILES_CONTENT = """ import datasets _URLS = { "train": [ "https://huggingface.co/datasets/lhoestq/test/resolve/main/some_text.txt", "https://huggingface.co/datasets/lhoestq/test/resolve/main/another_text.txt", ] } class Test(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "text": datasets.Value("string"), } ), homepage="https://huggingface.co/datasets/lhoestq/test", ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), ] def _generate_examples(self, filepaths): _id = 0 for filepath in filepaths: with open(filepath, encoding="utf-8") as f: for line in f: yield _id, {"text": line.rstrip()} _id += 1 """ @pytest.fixture(scope="session") def dataset_script_with_external_files_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "{dataset_name}.py") with open(path, "w", newline="") as f: f.write(DATASET_SCRIPT_WITH_EXTERNAL_FILES_CONTENT) return path DATASET_SCRIPT_WITH_TWO_CONFIGS = """ import os import datasets from datasets import DatasetInfo, BuilderConfig, Features, Split, SplitGenerator, Value class DummyDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [BuilderConfig(name="first"), BuilderConfig(name="second")] def _info(self) -> DatasetInfo: return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator(Split.TRAIN, gen_kwargs={"text": self.config.name}), SplitGenerator(Split.TEST, gen_kwargs={"text": self.config.name}), ] def _generate_examples(self, text, **kwargs): for i in range(1000): yield i, {"text": text} """ @pytest.fixture(scope="session") def dataset_script_with_two_configs_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "{dataset_name}.py") with open(path, "w", newline="") as f: f.write(DATASET_SCRIPT_WITH_TWO_CONFIGS) return path # N = 15 DATASET_SCRIPT_WITH_N_CONFIGS = """ import os import datasets from datasets import DatasetInfo, BuilderConfig, Features, Split, SplitGenerator, Value class DummyDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [BuilderConfig(name="config"+str(i)) for i in range(15)] def _info(self) -> DatasetInfo: return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator(Split.TRAIN, gen_kwargs={"text": self.config.name}), ] def _generate_examples(self, text, **kwargs): for i in range(1000): yield i, {"text": text} """ @pytest.fixture(scope="session") def dataset_script_with_n_configs_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "{dataset_name}.py") with open(path, "w", newline="") as f: f.write(DATASET_SCRIPT_WITH_N_CONFIGS) return path DATASET_SCRIPT_WITH_MANUAL_DOWNLOAD = """ import os import datasets from datasets import DatasetInfo, BuilderConfig, Features, Split, SplitGenerator, Value class DummyDatasetManualDownload(datasets.GeneratorBasedBuilder): @property def manual_download_instructions(self): return "To use DummyDatasetManualDownload you have to download it manually." def _info(self) -> DatasetInfo: return DatasetInfo(features=Features({"text": Value("string")})) def _split_generators(self, dl_manager): return [ SplitGenerator(Split.TRAIN, gen_kwargs={"text": self.config.name}), ] def _generate_examples(self, text, **kwargs): for i in range(1000): yield i, {"text": text} """ @pytest.fixture(scope="session") def dataset_script_with_manual_download_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "{dataset_name}.py") with open(path, "w", newline="") as f: f.write(DATASET_SCRIPT_WITH_MANUAL_DOWNLOAD) return path
datasets-server-main
services/worker/tests/fixtures/files.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import datetime from collections.abc import Mapping from pathlib import Path from typing import Any, Optional import numpy as np import pandas as pd import pytest from datasets import ( Array2D, Array3D, Array4D, Array5D, Audio, ClassLabel, Dataset, Features, Image, Sequence, Translation, TranslationVariableLanguages, Value, ) from datasets.features.features import FeatureType def value(content: Any, dtype: Any) -> Dataset: return Dataset.from_pandas(pd.DataFrame({"col": [content]}, dtype=dtype)) def other(content: Any, feature_type: Optional[FeatureType] = None) -> Dataset: if feature_type: features = Features({"col": feature_type}) return Dataset.from_dict({"col": [content]}, features=features) else: return Dataset.from_dict({"col": [content]}) @pytest.fixture(scope="session") def datasets() -> Mapping[str, Dataset]: sampling_rate = 16_000 return { # Value feature "null": value(None, None), "bool": value(False, pd.BooleanDtype()), "int8": value(-7, pd.Int8Dtype()), "int16": value(-7, pd.Int16Dtype()), "int32": value(-7, pd.Int32Dtype()), "int64": value(-7, pd.Int64Dtype()), "uint8": value(7, pd.UInt8Dtype()), "uint16": value(7, pd.UInt16Dtype()), "uint32": value(7, pd.UInt32Dtype()), "uint64": value(7, pd.UInt64Dtype()), "float16": value(-3.14, np.float16), "float32": value(-3.14, np.float32), "float64": value(-3.14, np.float64), "time": value(datetime.time(1, 1, 1), None), "timestamp_1": value(pd.Timestamp(2020, 1, 1), None), "timestamp_2": value(pd.Timestamp(1513393355.5, unit="s"), None), "timestamp_3": value(pd.Timestamp(1513393355500, unit="ms"), None), "timestamp_tz": value(pd.Timestamp(year=2020, month=1, day=1, tz="US/Pacific"), None), "string": value("a string", pd.StringDtype(storage="python")), # other types of features "class_label": other("positive", ClassLabel(names=["negative", "positive"])), "dict": other({"a": 0}, None), "list": other([{"a": 0}], None), "sequence_simple": other([0], None), "sequence": other([{"a": 0}], Sequence(feature={"a": Value(dtype="int64")})), "array2d": other(np.zeros((2, 2), dtype="float32"), Array2D(shape=(2, 2), dtype="float32")), "array3d": other(np.zeros((2, 2, 2), dtype="float32"), Array3D(shape=(2, 2, 2), dtype="float32")), "array4d": other(np.zeros((2, 2, 2, 2), dtype="float32"), Array4D(shape=(2, 2, 2, 2), dtype="float32")), "array5d": other(np.zeros((2, 2, 2, 2, 2), dtype="float32"), Array5D(shape=(2, 2, 2, 2, 2), dtype="float32")), "audio": other({"array": [0.1, 0.2, 0.3], "sampling_rate": sampling_rate}, Audio(sampling_rate=sampling_rate)), "image": other(str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), Image()), "translation": other({"en": "the cat", "fr": "le chat"}, Translation(languages=["en", "fr"])), "translation_variable_languages": other( {"en": "the cat", "fr": ["le chat", "la chatte"]}, TranslationVariableLanguages(languages=["en", "fr"]), ), "images_list": other( [ str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), ], [Image()], ), "audios_list": other( [ {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ], [Audio()], ), "images_sequence": other( [ str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), ], Sequence(feature=Image()), ), "audios_sequence": other( [ {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ], Sequence(feature=Audio()), ), "dict_of_audios_and_images": other( { "a": 0, "b": [ str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), str(Path(__file__).resolve().parent / "data" / "test_image_rgb.jpg"), ], "c": { "ca": [ {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, {"array": [0.1, 0.2, 0.3], "sampling_rate": 16_000}, ] }, }, {"a": Value(dtype="int64"), "b": [Image()], "c": {"ca": [Audio()]}}, ), "sequence_of_dicts": other( [{"a": {"b": 0}}, {"a": {"b": 1}}], Sequence(feature={"a": {"b": Value(dtype="int64")}}) ), "none_value": other({"a": None}, {"a": Value(dtype="int64")}), "big": Dataset.from_pandas( pd.DataFrame({"col": ["a" * 1_234 for _ in range(4_567)]}, dtype=pd.StringDtype(storage="python")) ), "spawning_opt_in_out": Dataset.from_pandas( pd.DataFrame( { "col": [ "http://testurl.test/test_image-optOut.jpg", "http://testurl.test/test_image2.jpg", "other", "http://testurl.test/test_image3-optIn.png", ] }, dtype=pd.StringDtype(storage="python"), ) ), "duckdb_index": Dataset.from_pandas( pd.DataFrame( { "text": [ ( "Grand Moff Tarkin and Lord Vader are interrupted in their discussion by the buzz of the" " comlink" ), "There goes another one.", "Vader turns round and round in circles as his ship spins into space.", "We count thirty Rebel ships, Lord Vader.", "The wingman spots the pirateship coming at him and warns the Dark Lord", ], "column with spaces": [ "a", "b", "c", "d", "e", ], }, dtype=pd.StringDtype(storage="python"), ) ), "descriptive_statistics": Dataset.from_dict( { "int_column": [0, 0, 1, 1, 2, 2, 2, 3, 4, 4, 5, 5, 5, 5, 5, 6, 7, 8, 8, 8], "int_nan_column": [0, None, 1, None, 2, None, 2, None, 4, None, 5, None, 5, 5, 5, 6, 7, 8, 8, 8], "float_column": [ 0.1, 0.2, 0.3, 0.4, 0.5, 1.1, 2.2, 2.3, 2.6, 4.7, 5.1, 6.2, 6.7, 6.8, 7.0, 8.3, 8.4, 9.2, 9.7, 9.9, ], "float_nan_column": [ None, 0.2, 0.3, None, 0.5, None, 2.2, None, 2.6, 4.7, 5.1, None, None, None, None, 8.3, 8.4, 9.2, 9.7, 9.9, ], "class_label_column": [ "cat", "dog", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "cat", "dog", "cat", "dog", "cat", ], "class_label_nan_column": [ "cat", None, "cat", "cat", "cat", None, "cat", "cat", "cat", None, "cat", "cat", "cat", "cat", "cat", "cat", "dog", "cat", None, "cat", ], "float_negative_column": [ -7.221, -5.333, -15.154, -15.392, -15.054, -10.176, -10.072, -10.59, -6.0, -14.951, -14.054, -9.706, -7.053, -10.072, -15.054, -12.777, -12.233, -13.54, -14.376, -15.754, ], "float_cross_zero_column": [ -7.221, -5.333, -15.154, -15.392, -15.054, -10.176, -10.072, -10.59, 6.0, 14.951, 14.054, -9.706, 7.053, 0.0, -15.054, -12.777, 12.233, 13.54, -14.376, 15.754, ], "float_large_values_column": [ 1101.34567, 1178.923, 197.2134, 1150.8483, 169.907655, 156.4580, 134.4368456, 189.456, 145.0912, 148.354465, 190.8943, 1134.34, 155.22366, 153.0, 163.0, 143.5468, 177.231, 132.568, 191.99, 1114.0, ], "int_negative_column": [ -10, -9, -8, -1, -5, -1, -2, -3, -5, -4, -7, -8, -11, -15, -20 - 11, -1, -14, -11, -0, -10, ], "int_cross_zero_column": [ -10, -9, -8, 0, 0, 1, 2, -3, -5, 4, 7, 8, 11, 15, 20 - 11, -1, 14, 11, 0, -10, ], "int_large_values_column": [ 1101, 1178, 197, 1150, 169, 156, 134, 189, 145, 148, 190, 1134, 155, 153, 163, 143, 177, 132, 191, 1114, ], }, features=Features( { "int_column": Value("int32"), "int_nan_column": Value("int32"), "int_negative_column": Value("int32"), "int_cross_zero_column": Value("int32"), "int_large_values_column": Value("int32"), "float_column": Value("float32"), "float_nan_column": Value("float32"), "float_negative_column": Value("float64"), "float_cross_zero_column": Value("float32"), "float_large_values_column": Value("float32"), "class_label_column": ClassLabel(names=["cat", "dog"]), "class_label_nan_column": ClassLabel(names=["cat", "dog"]), } ), ), }
datasets-server-main
services/worker/tests/fixtures/datasets.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/tests/fixtures/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. # Adapted from https://github.com/huggingface/datasets/blob/main/tests/fixtures/hub.py import csv import time from collections.abc import Callable, Iterator, Mapping from contextlib import suppress from pathlib import Path from typing import Any, Literal, Optional, TypedDict, Union import pytest import requests from datasets import Dataset, DatasetBuilder, load_dataset_builder from huggingface_hub.constants import REPO_TYPES, REPO_TYPES_URL_PREFIXES from huggingface_hub.hf_api import HfApi from huggingface_hub.utils._errors import hf_raise_for_status from ..constants import CI_HUB_ENDPOINT, CI_URL_TEMPLATE, CI_USER, CI_USER_TOKEN DATASET = "dataset" hf_api = HfApi(endpoint=CI_HUB_ENDPOINT) def get_default_config_split() -> tuple[str, str]: config = "default" split = "train" return config, split def update_repo_settings( *, repo_id: str, private: Optional[bool] = None, gated: Optional[str] = None, token: Optional[str] = None, organization: Optional[str] = None, repo_type: Optional[str] = None, name: Optional[str] = None, ) -> Any: """Update the settings of a repository. Args: repo_id (`str`, *optional*): A namespace (user or an organization) and a repo name separated by a `/`. <Tip> Version added: 0.5 </Tip> private (`bool`, *optional*, defaults to `None`): Whether the repo should be private. gated (`str`, *optional*, defaults to `None`): Whether the repo should request user access. Possible values are 'auto' and 'manual' token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) repo_type (`str`, *optional*): Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to a model. Default is `None`. Returns: The HTTP response in json. <Tip> Raises the following errors: - [`~huggingface_hub.utils.RepositoryNotFoundError`] If the repository to download from cannot be found. This may be because it doesn't exist, or because it is set to `private` and you do not have access. </Tip> """ if repo_type not in REPO_TYPES: raise ValueError("Invalid repo type") organization, name = repo_id.split("/") if "/" in repo_id else (None, repo_id) if organization is None: namespace = hf_api.whoami(token)["name"] else: namespace = organization path_prefix = f"{hf_api.endpoint}/api/" if repo_type in REPO_TYPES_URL_PREFIXES: path_prefix += REPO_TYPES_URL_PREFIXES[repo_type] path = f"{path_prefix}{namespace}/{name}/settings" json: dict[str, Union[bool, str]] = {} if private is not None: json["private"] = private if gated is not None: json["gated"] = gated r = requests.put( path, headers={"authorization": f"Bearer {token}"}, json=json, ) hf_raise_for_status(r) return r.json() def create_hub_dataset_repo( *, prefix: str, file_paths: Optional[list[str]] = None, dataset: Optional[Dataset] = None, private: bool = False, gated: Optional[str] = None, ) -> str: dataset_name = f"{prefix}-{int(time.time() * 10e3)}" repo_id = f"{CI_USER}/{dataset_name}" if dataset is not None: dataset.push_to_hub(repo_id=repo_id, private=private, token=CI_USER_TOKEN, embed_external_files=True) else: hf_api.create_repo(repo_id=repo_id, token=CI_USER_TOKEN, repo_type=DATASET, private=private) if gated: update_repo_settings(repo_id=repo_id, token=CI_USER_TOKEN, gated=gated, repo_type=DATASET) if file_paths is not None: for file_path in file_paths: hf_api.upload_file( token=CI_USER_TOKEN, path_or_fileobj=file_path, path_in_repo=Path(file_path).name.replace("{dataset_name}", dataset_name), repo_id=repo_id, repo_type=DATASET, ) return repo_id def delete_hub_dataset_repo(repo_id: str) -> None: with suppress(requests.exceptions.HTTPError, ValueError): hf_api.delete_repo(repo_id=repo_id, token=CI_USER_TOKEN, repo_type=DATASET) # TODO: factor all the datasets fixture with one function that manages the yield and deletion @pytest.fixture def tmp_dataset_repo_factory() -> Iterator[Callable[[str], str]]: repo_ids: list[str] = [] def _tmp_dataset_repo(repo_id: str) -> str: nonlocal repo_ids hf_api.create_repo(repo_id=repo_id, token=CI_USER_TOKEN, repo_type=DATASET) repo_ids.append(repo_id) return repo_id yield _tmp_dataset_repo for repo_id in repo_ids: delete_hub_dataset_repo(repo_id=repo_id) # https://docs.pytest.org/en/6.2.x/fixture.html#yield-fixtures-recommended @pytest.fixture(scope="session") def hub_public_empty() -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="empty") yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_csv(csv_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="csv", file_paths=[csv_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_private_csv(csv_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="csv_private", file_paths=[csv_path], private=True) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_gated_csv(csv_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="csv_gated", file_paths=[csv_path], gated="auto") yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_gated_duckdb_index(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="duckdb_index_gated", dataset=datasets["duckdb_index"], gated="auto") yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_gated_descriptive_statistics(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo( prefix="descriptive_statistics_gated", dataset=datasets["descriptive_statistics"], gated="auto", ) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_jsonl(jsonl_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="jsonl", file_paths=[jsonl_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_audio(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="audio", dataset=datasets["audio"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_image(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="image", dataset=datasets["image"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_images_list(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="images_list", dataset=datasets["images_list"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_big(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="big", dataset=datasets["big"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_big_no_info(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="big-no-info", dataset=datasets["big"]) hf_api.delete_file( "README.md", repo_id=repo_id, repo_type="dataset", commit_message="Delete README.md", token=CI_USER_TOKEN ) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_big_csv(big_csv_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="big-csv", file_paths=[big_csv_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_external_files(dataset_script_with_external_files_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="external_files", file_paths=[dataset_script_with_external_files_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture def external_files_dataset_builder(hub_public_external_files: str) -> DatasetBuilder: return load_dataset_builder(hub_public_external_files) @pytest.fixture(scope="session") def hub_public_legacy_configs(dataset_script_with_two_configs_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="legacy_configs", file_paths=[dataset_script_with_two_configs_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_n_configs(dataset_script_with_n_configs_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="n_configs", file_paths=[dataset_script_with_n_configs_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_manual_download(dataset_script_with_manual_download_path: str) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="manual_download", file_paths=[dataset_script_with_manual_download_path]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_spawning_opt_in_out(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="spawning_opt_in_out", dataset=datasets["spawning_opt_in_out"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_duckdb_index(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="duckdb_index", dataset=datasets["duckdb_index"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) @pytest.fixture(scope="session") def hub_public_descriptive_statistics(datasets: Mapping[str, Dataset]) -> Iterator[str]: repo_id = create_hub_dataset_repo(prefix="descriptive_statistics", dataset=datasets["descriptive_statistics"]) yield repo_id delete_hub_dataset_repo(repo_id=repo_id) class HubDatasetTest(TypedDict): name: str config_names_response: Any splits_response: Any first_rows_response: Any parquet_and_info_response: Any HubDatasets = Mapping[str, HubDatasetTest] def create_config_names_response(dataset: str) -> Any: config, _ = get_default_config_split() return { "config_names": [ { "dataset": dataset, "config": config, } ] } def create_splits_response(dataset: str) -> Any: config, split = get_default_config_split() return { "splits": [ { "dataset": dataset, "config": config, "split": split, } ] } def create_first_rows_response(dataset: str, cols: Mapping[str, Any], rows: list[Any]) -> Any: config, split = get_default_config_split() return { "dataset": dataset, "config": config, "split": split, "features": [ { "feature_idx": feature_idx, "name": name, "type": type, } for feature_idx, (name, type) in enumerate(cols.items()) ], "rows": [ { "row_idx": row_idx, "truncated_cells": [], "row": row, } for row_idx, row in enumerate(rows) ], "truncated": False, } def create_dataset_info_response_for_csv(dataset: str, config: str) -> Any: dataset_name = dataset.split("/")[-1] return { "description": "", "citation": "", "homepage": "", "license": "", "features": DATA_cols, "builder_name": "csv", "config_name": config, "dataset_name": dataset_name, "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 96, "num_examples": 4, "dataset_name": dataset_name}}, "download_checksums": { f"https://hub-ci.huggingface.co/datasets/{dataset}/resolve/__COMMIT__/dataset.csv": { "num_bytes": 50, "checksum": None, } }, "download_size": 50, "dataset_size": 96, "size_in_bytes": 146, } def create_dataset_info_response_for_partially_generated_big_csv(dataset: str, config: str) -> Any: # Dataset is partially converted to parquet: the first 10KB instead of the full 5MB # Missing fields: # - download_size: not applicable, because the dataset is generated using partially downloaded files dataset_name = dataset.split("/")[-1] return { "description": "", "citation": "", "homepage": "", "license": "", "features": BIG_cols, "builder_name": "csv", "config_name": config, "dataset_name": dataset_name, "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 12380, "num_examples": 10, "dataset_name": "csv"}}, "dataset_size": 12380, } def create_dataset_info_response_for_big_parquet(dataset: str, config: str) -> Any: dataset_name = dataset.split("/")[-1] return { "description": "", "citation": "", "homepage": "", "license": "", "features": BIG_cols, "builder_name": "parquet", "config_name": config, "dataset_name": dataset_name, "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": { "train": {"name": "train", "num_bytes": 5653946, "num_examples": len(BIG_rows), "dataset_name": None} }, "download_size": BIG_PARQUET_FILE, "dataset_size": 5653946, } def create_dataset_info_response_for_big_parquet_no_info() -> Any: return { "description": "", "citation": "", "homepage": "", "license": "", "features": BIG_cols, "splits": { "train": {"name": "train", "num_bytes": 12345, "num_examples": len(BIG_rows), "dataset_name": None} }, "download_size": BIG_PARQUET_FILE, "dataset_size": 12345, } def create_dataset_info_response_for_audio(dataset: str, config: str) -> Any: dataset_name = dataset.split("/")[-1] return { "description": "", "citation": "", "homepage": "", "license": "", "features": AUDIO_cols, "builder_name": "parquet", "config_name": config, "dataset_name": dataset_name, "version": {"version_str": "0.0.0", "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 59, "num_examples": 1, "dataset_name": None}}, "download_size": AUDIO_PARQUET_SIZE, "dataset_size": 59, } def create_parquet_and_info_response( dataset: str, data_type: Literal["csv", "big-csv", "audio", "big_parquet", "big_parquet_no_info"], partial: bool = False, ) -> Any: config, split = get_default_config_split() filename = "0000.parquet" size = ( CSV_PARQUET_SIZE if data_type == "csv" else PARTIAL_CSV_PARQUET_SIZE if data_type == "big-csv" else AUDIO_PARQUET_SIZE if data_type == "audio" else BIG_PARQUET_FILE ) info = ( create_dataset_info_response_for_csv(dataset, config) if data_type == "csv" else create_dataset_info_response_for_partially_generated_big_csv(dataset, config) if data_type == "big-csv" else create_dataset_info_response_for_audio(dataset, config) if data_type == "audio" else create_dataset_info_response_for_big_parquet(dataset, config) if data_type == "big_parquet" else create_dataset_info_response_for_big_parquet_no_info() ) partial_prefix = "partial-" if partial else "" return { "parquet_files": [ { "dataset": dataset, "config": config, "split": split, "url": CI_URL_TEMPLATE.format( repo_id=f"datasets/{dataset}", revision="refs%2Fconvert%2Fparquet", filename=f"{config}/{partial_prefix}{split}/{filename}", ), "filename": filename, "size": size, } ], "dataset_info": info, "partial": partial, } CSV_PARQUET_SIZE = 1_866 PARTIAL_CSV_PARQUET_SIZE = 8_188 AUDIO_PARQUET_SIZE = 1_384 BIG_PARQUET_FILE = 38_896 DATA_cols = { "col_1": {"_type": "Value", "dtype": "int64"}, "col_2": {"_type": "Value", "dtype": "int64"}, "col_3": {"_type": "Value", "dtype": "float64"}, } DATA_rows = [ {"col_1": 0, "col_2": 0, "col_3": 0.0}, {"col_1": 1, "col_2": 1, "col_3": 1.0}, {"col_1": 2, "col_2": 2, "col_3": 2.0}, {"col_1": 3, "col_2": 3, "col_3": 3.0}, ] JSONL_cols = { "col_1": {"_type": "Value", "dtype": "string"}, "col_2": {"_type": "Value", "dtype": "int64"}, "col_3": {"_type": "Value", "dtype": "float64"}, } JSONL_rows = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": None, "col_2": 1, "col_3": 1.0}, {"col_1": None, "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] AUDIO_cols = { "col": { "_type": "Audio", "sampling_rate": 16_000, }, } def get_AUDIO_rows(dataset: str) -> Any: config, split = get_default_config_split() return [ { "col": [ { "src": f"http://localhost/assets/{dataset}/--/{config}/{split}/0/col/audio.wav", "type": "audio/wav", }, ] } ] IMAGE_cols = { "col": {"_type": "Image"}, } def get_IMAGE_rows(dataset: str) -> Any: config, split = get_default_config_split() return [ { "col": { "src": f"http://localhost/assets/{dataset}/--/{config}/{split}/0/col/image.jpg", "height": 480, "width": 640, }, } ] IMAGES_LIST_cols = { "col": [{"_type": "Image"}], } def get_IMAGES_LIST_rows(dataset: str) -> Any: config, split = get_default_config_split() return [ { "col": [ { "src": f"http://localhost/assets/{dataset}/--/{config}/{split}/0/col/image-1d100e9.jpg", "height": 480, "width": 640, }, { "src": f"http://localhost/assets/{dataset}/--/{config}/{split}/0/col/image-1d300ea.jpg", "height": 480, "width": 640, }, ] } ] BIG_cols = { "col": {"_type": "Value", "dtype": "string"}, } BIG_rows = [{"col": "a" * 1_234} for _ in range(4_567)] @pytest.fixture(scope="session") def big_csv_path(tmp_path_factory: pytest.TempPathFactory) -> str: path = str(tmp_path_factory.mktemp("data") / "big_dataset.csv") with open(path, "w", newline="") as f: writer = csv.DictWriter(f, fieldnames=list(BIG_cols)) writer.writeheader() for row in BIG_rows: writer.writerow(row) return path TEXT_cols = { "text": {"_type": "Value", "dtype": "string"}, } TEXT_rows = [ {"text": text} for text in [ "foo", "bar", "foobar", "- Hello there !", "- General Kenobi !", ] ] SPAWNING_OPT_IN_OUT_cols = { "col": [{"_type": "Value", "dtype": "string"}], } SPAWNING_OPT_IN_OUT_rows = ["http://testurl.test/test_image.jpg", "http://testurl.test/test_image2.jpg", "other"] @pytest.fixture def hub_responses_does_not_exist() -> HubDatasetTest: return { "name": "does_not_exist", "config_names_response": None, "splits_response": None, "first_rows_response": None, "parquet_and_info_response": None, } @pytest.fixture def hub_responses_does_not_exist_config() -> HubDatasetTest: return { "name": "does_not_exist_config", "config_names_response": None, "splits_response": None, "first_rows_response": None, "parquet_and_info_response": None, } @pytest.fixture def hub_responses_does_not_exist_split() -> HubDatasetTest: return { "name": "does_not_exist_split", "config_names_response": None, "splits_response": None, "first_rows_response": None, "parquet_and_info_response": None, } @pytest.fixture def hub_responses_empty(hub_public_empty: str) -> HubDatasetTest: return { "name": hub_public_empty, "config_names_response": None, "splits_response": None, "first_rows_response": None, "parquet_and_info_response": None, } @pytest.fixture def hub_responses_public(hub_public_csv: str) -> HubDatasetTest: return { "name": hub_public_csv, "config_names_response": create_config_names_response(hub_public_csv), "splits_response": create_splits_response(hub_public_csv), "first_rows_response": create_first_rows_response(hub_public_csv, DATA_cols, DATA_rows), "parquet_and_info_response": create_parquet_and_info_response(dataset=hub_public_csv, data_type="csv"), } @pytest.fixture def hub_responses_private(hub_private_csv: str) -> HubDatasetTest: return { "name": hub_private_csv, "config_names_response": create_config_names_response(hub_private_csv), "splits_response": create_splits_response(hub_private_csv), "first_rows_response": create_first_rows_response(hub_private_csv, DATA_cols, DATA_rows), "parquet_and_info_response": create_parquet_and_info_response(dataset=hub_private_csv, data_type="csv"), } @pytest.fixture def hub_responses_gated(hub_gated_csv: str) -> HubDatasetTest: return { "name": hub_gated_csv, "config_names_response": create_config_names_response(hub_gated_csv), "splits_response": create_splits_response(hub_gated_csv), "first_rows_response": create_first_rows_response(hub_gated_csv, DATA_cols, DATA_rows), "parquet_and_info_response": create_parquet_and_info_response(dataset=hub_gated_csv, data_type="csv"), } @pytest.fixture def hub_reponses_jsonl(hub_public_jsonl: str) -> HubDatasetTest: return { "name": hub_public_jsonl, "config_names_response": create_config_names_response(hub_public_jsonl), "splits_response": create_splits_response(hub_public_jsonl), "first_rows_response": create_first_rows_response(hub_public_jsonl, JSONL_cols, JSONL_rows), "parquet_and_info_response": None, } @pytest.fixture def hub_responses_audio(hub_public_audio: str) -> HubDatasetTest: return { "name": hub_public_audio, "config_names_response": create_config_names_response(hub_public_audio), "splits_response": create_splits_response(hub_public_audio), "first_rows_response": create_first_rows_response( hub_public_audio, AUDIO_cols, get_AUDIO_rows(hub_public_audio) ), "parquet_and_info_response": create_parquet_and_info_response(dataset=hub_public_audio, data_type="audio"), } @pytest.fixture def hub_responses_image(hub_public_image: str) -> HubDatasetTest: return { "name": hub_public_image, "config_names_response": create_config_names_response(hub_public_image), "splits_response": create_splits_response(hub_public_image), "first_rows_response": create_first_rows_response( hub_public_image, IMAGE_cols, get_IMAGE_rows(hub_public_image) ), "parquet_and_info_response": None, } @pytest.fixture def hub_responses_images_list(hub_public_images_list: str) -> HubDatasetTest: return { "name": hub_public_images_list, "config_names_response": create_config_names_response(hub_public_images_list), "splits_response": create_splits_response(hub_public_images_list), "first_rows_response": create_first_rows_response( hub_public_images_list, IMAGES_LIST_cols, get_IMAGES_LIST_rows(hub_public_images_list) ), "parquet_and_info_response": None, } @pytest.fixture def hub_responses_big(hub_public_big: str) -> HubDatasetTest: return { "name": hub_public_big, "config_names_response": create_config_names_response(hub_public_big), "splits_response": create_splits_response(hub_public_big), "first_rows_response": create_first_rows_response(hub_public_big, BIG_cols, BIG_rows), "parquet_and_info_response": create_parquet_and_info_response(dataset=hub_public_big, data_type="big_parquet"), } @pytest.fixture def hub_responses_big_no_info(hub_public_big_no_info: str) -> HubDatasetTest: return { "name": hub_public_big_no_info, "config_names_response": create_config_names_response(hub_public_big_no_info), "splits_response": create_splits_response(hub_public_big_no_info), "first_rows_response": create_first_rows_response(hub_public_big_no_info, BIG_cols, BIG_rows), "parquet_and_info_response": create_parquet_and_info_response( dataset=hub_public_big_no_info, data_type="big_parquet_no_info" ), } @pytest.fixture def hub_responses_big_csv(hub_public_big_csv: str) -> HubDatasetTest: return { "name": hub_public_big_csv, "config_names_response": create_config_names_response(hub_public_big_csv), "splits_response": create_splits_response(hub_public_big_csv), "first_rows_response": create_first_rows_response(hub_public_big_csv, BIG_cols, BIG_rows), "parquet_and_info_response": create_parquet_and_info_response( dataset=hub_public_big_csv, data_type="big-csv", partial=True ), } @pytest.fixture def hub_responses_external_files(hub_public_external_files: str) -> HubDatasetTest: return { "name": hub_public_external_files, "config_names_response": create_config_names_response(hub_public_external_files), "splits_response": create_splits_response(hub_public_external_files), "first_rows_response": create_first_rows_response(hub_public_external_files, TEXT_cols, TEXT_rows), "parquet_and_info_response": None, } @pytest.fixture def hub_responses_spawning_opt_in_out(hub_public_spawning_opt_in_out: str) -> HubDatasetTest: return { "name": hub_public_spawning_opt_in_out, "config_names_response": create_config_names_response(hub_public_spawning_opt_in_out), "splits_response": create_splits_response(hub_public_spawning_opt_in_out), "first_rows_response": create_first_rows_response( hub_public_spawning_opt_in_out, SPAWNING_OPT_IN_OUT_cols, SPAWNING_OPT_IN_OUT_rows ), "parquet_and_info_response": None, } @pytest.fixture def hub_responses_duckdb_index(hub_public_duckdb_index: str) -> HubDatasetTest: return { "name": hub_public_duckdb_index, "config_names_response": create_config_names_response(hub_public_duckdb_index), "splits_response": create_splits_response(hub_public_duckdb_index), "first_rows_response": create_first_rows_response(hub_public_duckdb_index, TEXT_cols, TEXT_rows), "parquet_and_info_response": create_parquet_and_info_response( dataset=hub_public_duckdb_index, data_type="csv" ), } @pytest.fixture def hub_responses_partial_duckdb_index(hub_public_duckdb_index: str) -> HubDatasetTest: return { "name": hub_public_duckdb_index, "config_names_response": create_config_names_response(hub_public_duckdb_index), "splits_response": create_splits_response(hub_public_duckdb_index), "first_rows_response": create_first_rows_response(hub_public_duckdb_index, TEXT_cols, TEXT_rows), "parquet_and_info_response": create_parquet_and_info_response( dataset=hub_public_duckdb_index, data_type="csv", partial=True ), } @pytest.fixture def hub_responses_gated_duckdb_index(hub_gated_duckdb_index: str) -> HubDatasetTest: return { "name": hub_gated_duckdb_index, "config_names_response": create_config_names_response(hub_gated_duckdb_index), "splits_response": create_splits_response(hub_gated_duckdb_index), "first_rows_response": create_first_rows_response(hub_gated_duckdb_index, TEXT_cols, TEXT_rows), "parquet_and_info_response": create_parquet_and_info_response(dataset=hub_gated_duckdb_index, data_type="csv"), } @pytest.fixture def hub_responses_descriptive_statistics(hub_public_descriptive_statistics: str) -> HubDatasetTest: return { "name": hub_public_descriptive_statistics, "config_names_response": create_config_names_response(hub_public_descriptive_statistics), "splits_response": create_splits_response(hub_public_descriptive_statistics), "first_rows_response": None, "parquet_and_info_response": None, } @pytest.fixture def hub_responses_gated_descriptive_statistics(hub_gated_descriptive_statistics: str) -> HubDatasetTest: return { "name": hub_gated_descriptive_statistics, "config_names_response": create_config_names_response(hub_gated_descriptive_statistics), "splits_response": create_splits_response(hub_gated_descriptive_statistics), "first_rows_response": None, "parquet_and_info_response": None, }
datasets-server-main
services/worker/tests/fixtures/hub.py
# type: ignore import posixpath import shutil from pathlib import Path from unittest.mock import patch import fsspec import pytest from fsspec.implementations.local import ( AbstractFileSystem, LocalFileSystem, stringify_path, ) class MockFileSystem(AbstractFileSystem): protocol = "mock" def __init__(self, *args, local_root_dir, **kwargs): super().__init__() self._fs = LocalFileSystem(*args, **kwargs) self.local_root_dir = Path(local_root_dir).resolve().as_posix() + "/" def mkdir(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.mkdir(path, *args, **kwargs) def makedirs(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.makedirs(path, *args, **kwargs) def rmdir(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rmdir(path) def ls(self, path, detail=True, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = self._fs.ls(path, detail=detail, *args, **kwargs) if detail: return [{**info, "name": info["name"][len(self.local_root_dir) :]} for info in out] # noqa: E203 else: return [name[len(self.local_root_dir) :] for name in out] # noqa: E203 def info(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) out = dict(self._fs.info(path, *args, **kwargs)) out["name"] = out["name"][len(self.local_root_dir) :] # noqa: E203 return out def cp_file(self, path1, path2, *args, **kwargs): path1 = posixpath.join(self.local_root_dir, self._strip_protocol(path1)) path2 = posixpath.join(self.local_root_dir, self._strip_protocol(path2)) return self._fs.cp_file(path1, path2, *args, **kwargs) def rm_file(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm_file(path, *args, **kwargs) def rm(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.rm(path, *args, **kwargs) def _open(self, path, *args, **kwargs): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs._open(path, *args, **kwargs) def created(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.created(path) def modified(self, path): path = posixpath.join(self.local_root_dir, self._strip_protocol(path)) return self._fs.modified(path) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("mock://"): path = path[7:] return path class TmpDirFileSystem(MockFileSystem): protocol = "tmp" tmp_dir = None def __init__(self, *args, **kwargs): assert self.tmp_dir is not None, "TmpDirFileSystem.tmp_dir is not set" super().__init__(*args, **kwargs, local_root_dir=self.tmp_dir, auto_mkdir=True) @classmethod def _strip_protocol(cls, path): path = stringify_path(path) if path.startswith("tmp://"): path = path[6:] return path @pytest.fixture def mock_fsspec(): original_registry = fsspec.registry.copy() fsspec.register_implementation("mock", MockFileSystem) fsspec.register_implementation("tmp", TmpDirFileSystem) yield fsspec.registry = original_registry @pytest.fixture def mockfs(tmp_path_factory, mock_fsspec): local_fs_dir = tmp_path_factory.mktemp("mockfs") return MockFileSystem(local_root_dir=local_fs_dir, auto_mkdir=True) @pytest.fixture def tmpfs(tmp_path_factory, mock_fsspec): tmp_fs_dir = tmp_path_factory.mktemp("tmpfs") with patch.object(TmpDirFileSystem, "tmp_dir", tmp_fs_dir): yield TmpDirFileSystem() shutil.rmtree(tmp_fs_dir)
datasets-server-main
services/worker/tests/fixtures/fsspec.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from typing import Optional from environs import Env from libcommon.config import ( AssetsConfig, CacheConfig, CommonConfig, LogConfig, ParquetMetadataConfig, ProcessingGraphConfig, QueueConfig, RowsIndexConfig, ) WORKER_BLOCKED_DATASETS: list[str] = [] WORKER_CONTENT_MAX_BYTES = 10_000_000 WORKER_DIFFICULTY_MAX = None WORKER_DIFFICULTY_MIN = None WORKER_HEARTBEAT_INTERVAL_SECONDS = 60 WORKER_KILL_LONG_JOB_INTERVAL_SECONDS = 60 WORKER_KILL_ZOMBIES_INTERVAL_SECONDS = 10 * 60 WORKER_MAX_DISK_USAGE_PCT = 90 WORKER_MAX_JOB_DURATION_SECONDS = 20 * 60 WORKER_MAX_LOAD_PCT = 70 WORKER_MAX_MEMORY_PCT = 80 WORKER_MAX_MISSING_HEARTBEATS = 5 WORKER_SLEEP_SECONDS = 15 WORKER_STATE_FILE_PATH = None def get_empty_str_list() -> list[str]: return [] @dataclass(frozen=True) class WorkerConfig: blocked_datasets: list[str] = field(default_factory=WORKER_BLOCKED_DATASETS.copy) content_max_bytes: int = WORKER_CONTENT_MAX_BYTES difficulty_max: Optional[int] = WORKER_DIFFICULTY_MAX difficulty_min: Optional[int] = WORKER_DIFFICULTY_MIN heartbeat_interval_seconds: float = WORKER_HEARTBEAT_INTERVAL_SECONDS job_types_blocked: list[str] = field(default_factory=get_empty_str_list) job_types_only: list[str] = field(default_factory=get_empty_str_list) kill_long_job_interval_seconds: float = WORKER_KILL_LONG_JOB_INTERVAL_SECONDS kill_zombies_interval_seconds: float = WORKER_KILL_ZOMBIES_INTERVAL_SECONDS max_disk_usage_pct: int = WORKER_MAX_DISK_USAGE_PCT max_job_duration_seconds: float = WORKER_MAX_JOB_DURATION_SECONDS max_load_pct: int = WORKER_MAX_LOAD_PCT max_memory_pct: int = WORKER_MAX_MEMORY_PCT max_missing_heartbeats: int = WORKER_MAX_MISSING_HEARTBEATS sleep_seconds: float = WORKER_SLEEP_SECONDS state_file_path: Optional[str] = WORKER_STATE_FILE_PATH storage_paths: list[str] = field(default_factory=get_empty_str_list) @classmethod def from_env(cls) -> "WorkerConfig": env = Env(expand_vars=True) with env.prefixed("WORKER_"): return cls( blocked_datasets=env.list(name="BLOCKED_DATASETS", default=WORKER_BLOCKED_DATASETS.copy()), content_max_bytes=env.int(name="CONTENT_MAX_BYTES", default=WORKER_CONTENT_MAX_BYTES), difficulty_max=env.int(name="DIFFICULTY_MAX", default=WORKER_DIFFICULTY_MAX), difficulty_min=env.int(name="DIFFICULTY_MIN", default=WORKER_DIFFICULTY_MIN), heartbeat_interval_seconds=env.float( name="HEARTBEAT_INTERVAL_SECONDS", default=WORKER_HEARTBEAT_INTERVAL_SECONDS ), job_types_blocked=env.list(name="JOB_TYPES_BLOCKED", default=get_empty_str_list()), job_types_only=env.list(name="JOB_TYPES_ONLY", default=get_empty_str_list()), kill_long_job_interval_seconds=env.float( name="KILL_LONG_JOB_INTERVAL_SECONDS", default=WORKER_KILL_LONG_JOB_INTERVAL_SECONDS ), kill_zombies_interval_seconds=env.float( name="KILL_ZOMBIES_INTERVAL_SECONDS", default=WORKER_KILL_ZOMBIES_INTERVAL_SECONDS ), max_disk_usage_pct=env.int(name="MAX_DISK_USAGE_PCT", default=WORKER_MAX_DISK_USAGE_PCT), max_job_duration_seconds=env.float( name="MAX_JOB_DURATION_SECONDS", default=WORKER_MAX_JOB_DURATION_SECONDS ), max_load_pct=env.int(name="MAX_LOAD_PCT", default=WORKER_MAX_LOAD_PCT), max_memory_pct=env.int(name="MAX_MEMORY_PCT", default=WORKER_MAX_MEMORY_PCT), max_missing_heartbeats=env.int(name="MAX_MISSING_HEARTBEATS", default=WORKER_MAX_MISSING_HEARTBEATS), sleep_seconds=env.float(name="SLEEP_SECONDS", default=WORKER_SLEEP_SECONDS), state_file_path=env.str( name="STATE_FILE_PATH", default=WORKER_STATE_FILE_PATH ), # this environment variable is not expected to be set explicitly, it's set by the worker executor storage_paths=env.list(name="STORAGE_PATHS", default=get_empty_str_list()), ) DATASETS_BASED_HF_DATASETS_CACHE = None @dataclass(frozen=True) class DatasetsBasedConfig: hf_datasets_cache: Optional[str] = DATASETS_BASED_HF_DATASETS_CACHE @classmethod def from_env(cls) -> "DatasetsBasedConfig": env = Env(expand_vars=True) with env.prefixed("DATASETS_BASED_"): return cls( hf_datasets_cache=env.str(name="HF_DATASETS_CACHE", default=DATASETS_BASED_HF_DATASETS_CACHE), ) FIRST_ROWS_CELL_MIN_BYTES = 100 FIRST_ROWS_COLUMNS_MAX_NUMBER = 1_000 FIRST_ROWS_MAX_BYTES = 1_000_000 FIRST_ROWS_MAX_NUMBER = 100 FIRST_ROWS_MIN_NUMBER = 10 @dataclass(frozen=True) class FirstRowsConfig: columns_max_number: int = FIRST_ROWS_COLUMNS_MAX_NUMBER max_bytes: int = FIRST_ROWS_MAX_BYTES max_number: int = FIRST_ROWS_MAX_NUMBER min_cell_bytes: int = FIRST_ROWS_CELL_MIN_BYTES min_number: int = FIRST_ROWS_MIN_NUMBER @classmethod def from_env(cls) -> "FirstRowsConfig": env = Env(expand_vars=True) with env.prefixed("FIRST_ROWS_"): return cls( columns_max_number=env.int(name="COLUMNS_MAX_NUMBER", default=FIRST_ROWS_COLUMNS_MAX_NUMBER), max_bytes=env.int(name="MAX_BYTES", default=FIRST_ROWS_MAX_BYTES), max_number=env.int(name="MAX_NUMBER", default=FIRST_ROWS_MAX_NUMBER), min_cell_bytes=env.int(name="CELL_MIN_BYTES", default=FIRST_ROWS_CELL_MIN_BYTES), min_number=env.int(name="MIN_NUMBER", default=FIRST_ROWS_MIN_NUMBER), ) OPT_IN_OUT_URLS_SCAN_COLUMNS_MAX_NUMBER = 10 OPT_IN_OUT_URLS_SCAN_MAX_CONCURRENT_REQUESTS_NUMBER = 100 OPT_IN_OUT_URLS_SCAN_MAX_REQUESTS_PER_SECOND = 50 OPT_IN_OUT_URLS_SCAN_ROWS_MAX_NUMBER = 100_000 OPT_IN_OUT_URLS_SCAN_SPAWNING_TOKEN = None OPT_IN_OUT_URLS_SCAN_SPAWNING_URL = "https://opts-api.spawningaiapi.com/api/v2/query/urls" OPT_IN_OUT_URLS_SCAN_URLS_NUMBER_PER_BATCH = 1000 @dataclass(frozen=True) class OptInOutUrlsScanConfig: columns_max_number: int = FIRST_ROWS_COLUMNS_MAX_NUMBER max_concurrent_requests_number: int = OPT_IN_OUT_URLS_SCAN_MAX_CONCURRENT_REQUESTS_NUMBER max_requests_per_second: int = OPT_IN_OUT_URLS_SCAN_MAX_REQUESTS_PER_SECOND rows_max_number: int = OPT_IN_OUT_URLS_SCAN_ROWS_MAX_NUMBER spawning_token: Optional[str] = OPT_IN_OUT_URLS_SCAN_SPAWNING_TOKEN spawning_url: str = OPT_IN_OUT_URLS_SCAN_SPAWNING_URL urls_number_per_batch: int = OPT_IN_OUT_URLS_SCAN_URLS_NUMBER_PER_BATCH @classmethod def from_env(cls) -> "OptInOutUrlsScanConfig": env = Env(expand_vars=True) with env.prefixed("OPT_IN_OUT_URLS_SCAN_"): return cls( columns_max_number=env.int(name="COLUMNS_MAX_NUMBER", default=OPT_IN_OUT_URLS_SCAN_COLUMNS_MAX_NUMBER), max_concurrent_requests_number=env.int( name="MAX_CONCURRENT_REQUESTS_NUMBER", default=OPT_IN_OUT_URLS_SCAN_MAX_CONCURRENT_REQUESTS_NUMBER ), max_requests_per_second=env.int( name="MAX_REQUESTS_PER_SECOND", default=OPT_IN_OUT_URLS_SCAN_MAX_REQUESTS_PER_SECOND ), rows_max_number=env.int(name="ROWS_MAX_NUMBER", default=OPT_IN_OUT_URLS_SCAN_ROWS_MAX_NUMBER), spawning_token=env.str(name="SPAWNING_TOKEN", default=OPT_IN_OUT_URLS_SCAN_SPAWNING_TOKEN), spawning_url=env.str(name="SPAWNING_URL", default=OPT_IN_OUT_URLS_SCAN_SPAWNING_URL), urls_number_per_batch=env.int( name="URLS_NUMBER_PER_BATCH", default=OPT_IN_OUT_URLS_SCAN_URLS_NUMBER_PER_BATCH ), ) PARQUET_AND_INFO_COMMIT_MESSAGE = "Update parquet files" PARQUET_AND_INFO_COMMITTER_HF_TOKEN = None PARQUET_AND_INFO_MAX_DATASET_SIZE = 100_000_000 PARQUET_AND_INFO_MAX_EXTERNAL_DATA_FILES = 10_000 PARQUET_AND_INFO_MAX_ROW_GROUP_BYTE_SIZE_FOR_COPY = 100_000_000 PARQUET_AND_INFO_NO_MAX_SIZE_LIMIT_DATASETS: list[str] = [] PARQUET_AND_INFO_SOURCE_REVISION = "main" PARQUET_AND_INFO_TARGET_REVISION = "refs/convert/parquet" PARQUET_AND_INFO_URL_TEMPLATE = "/datasets/%s/resolve/%s/%s" @dataclass(frozen=True) class ParquetAndInfoConfig: blocked_datasets: list[str] = field(default_factory=get_empty_str_list) commit_message: str = PARQUET_AND_INFO_COMMIT_MESSAGE committer_hf_token: Optional[str] = PARQUET_AND_INFO_COMMITTER_HF_TOKEN max_dataset_size: int = PARQUET_AND_INFO_MAX_DATASET_SIZE max_external_data_files: int = PARQUET_AND_INFO_MAX_EXTERNAL_DATA_FILES max_row_group_byte_size_for_copy: int = PARQUET_AND_INFO_MAX_ROW_GROUP_BYTE_SIZE_FOR_COPY no_max_size_limit_datasets: list[str] = field(default_factory=PARQUET_AND_INFO_NO_MAX_SIZE_LIMIT_DATASETS.copy) source_revision: str = PARQUET_AND_INFO_SOURCE_REVISION target_revision: str = PARQUET_AND_INFO_TARGET_REVISION url_template: str = PARQUET_AND_INFO_URL_TEMPLATE @classmethod def from_env(cls) -> "ParquetAndInfoConfig": env = Env(expand_vars=True) with env.prefixed("PARQUET_AND_INFO_"): return cls( blocked_datasets=env.list(name="BLOCKED_DATASETS", default=get_empty_str_list()), commit_message=env.str(name="COMMIT_MESSAGE", default=PARQUET_AND_INFO_COMMIT_MESSAGE), committer_hf_token=env.str(name="COMMITTER_HF_TOKEN", default=PARQUET_AND_INFO_COMMITTER_HF_TOKEN), max_dataset_size=env.int(name="MAX_DATASET_SIZE", default=PARQUET_AND_INFO_MAX_DATASET_SIZE), max_external_data_files=env.int( name="MAX_EXTERNAL_DATA_FILES", default=PARQUET_AND_INFO_MAX_EXTERNAL_DATA_FILES ), max_row_group_byte_size_for_copy=env.int( name="MAX_ROW_GROUP_BYTE_SIZE_FOR_COPY", default=PARQUET_AND_INFO_MAX_ROW_GROUP_BYTE_SIZE_FOR_COPY ), no_max_size_limit_datasets=env.list( name="NO_MAX_SIZE_LIMIT_DATASETS", default=PARQUET_AND_INFO_NO_MAX_SIZE_LIMIT_DATASETS.copy() ), source_revision=env.str(name="SOURCE_REVISION", default=PARQUET_AND_INFO_SOURCE_REVISION), target_revision=env.str(name="TARGET_REVISION", default=PARQUET_AND_INFO_TARGET_REVISION), url_template=env.str(name="URL_TEMPLATE", default=PARQUET_AND_INFO_URL_TEMPLATE), ) NUMBA_CACHE_DIR: Optional[str] = None @dataclass(frozen=True) class NumbaConfig: path: Optional[str] = NUMBA_CACHE_DIR # not documented @classmethod def from_env(cls) -> "NumbaConfig": env = Env(expand_vars=True) with env.prefixed("NUMBA_"): return cls(path=env.str(name="CACHE_DIR", default=NUMBA_CACHE_DIR)) CONFIG_NAMES_MAX_NUMBER = 3_000 @dataclass(frozen=True) class ConfigNamesConfig: max_number: int = CONFIG_NAMES_MAX_NUMBER @classmethod def from_env(cls) -> "ConfigNamesConfig": env = Env(expand_vars=True) with env.prefixed("CONFIG_NAMES_"): return cls( max_number=env.int(name="MAX_NUMBER", default=CONFIG_NAMES_MAX_NUMBER), ) DUCKDB_INDEX_CACHE_DIRECTORY = None DUCKDB_INDEX_COMMIT_MESSAGE = "Update duckdb index file" DUCKDB_INDEX_COMMITTER_HF_TOKEN = None DUCKDB_INDEX_MAX_PARQUET_SIZE_BYTES = 100_000_000 DUCKDB_INDEX_TARGET_REVISION = "refs/convert/parquet" DUCKDB_INDEX_URL_TEMPLATE = "/datasets/%s/resolve/%s/%s" DUCKDB_INDEX_EXTENSIONS_DIRECTORY: Optional[str] = None @dataclass(frozen=True) class DuckDbIndexConfig: cache_directory: Optional[str] = DUCKDB_INDEX_CACHE_DIRECTORY commit_message: str = DUCKDB_INDEX_COMMIT_MESSAGE committer_hf_token: Optional[str] = DUCKDB_INDEX_COMMITTER_HF_TOKEN target_revision: str = DUCKDB_INDEX_TARGET_REVISION url_template: str = DUCKDB_INDEX_URL_TEMPLATE max_parquet_size_bytes: int = DUCKDB_INDEX_MAX_PARQUET_SIZE_BYTES extensions_directory: Optional[str] = DUCKDB_INDEX_EXTENSIONS_DIRECTORY @classmethod def from_env(cls) -> "DuckDbIndexConfig": env = Env(expand_vars=True) with env.prefixed("DUCKDB_INDEX_"): return cls( cache_directory=env.str(name="CACHE_DIRECTORY", default=DUCKDB_INDEX_CACHE_DIRECTORY), commit_message=env.str(name="COMMIT_MESSAGE", default=DUCKDB_INDEX_COMMIT_MESSAGE), committer_hf_token=env.str(name="COMMITTER_HF_TOKEN", default=DUCKDB_INDEX_COMMITTER_HF_TOKEN), target_revision=env.str(name="TARGET_REVISION", default=DUCKDB_INDEX_TARGET_REVISION), url_template=env.str(name="URL_TEMPLATE", default=DUCKDB_INDEX_URL_TEMPLATE), max_parquet_size_bytes=env.int( name="MAX_PARQUET_SIZE_BYTES", default=DUCKDB_INDEX_MAX_PARQUET_SIZE_BYTES ), extensions_directory=env.str(name="EXTENSIONS_DIRECTORY", default=DUCKDB_INDEX_EXTENSIONS_DIRECTORY), ) DESCRIPTIVE_STATISTICS_CACHE_DIRECTORY = None DESCRIPTIVE_STATISTICS_HISTOGRAM_NUM_BINS = 10 DESCRIPTIVE_STATISTICS_MAX_PARQUET_SIZE_BYTES = 100_000_000 @dataclass(frozen=True) class DescriptiveStatisticsConfig: cache_directory: Optional[str] = DESCRIPTIVE_STATISTICS_CACHE_DIRECTORY parquet_revision: str = PARQUET_AND_INFO_TARGET_REVISION histogram_num_bins: int = DESCRIPTIVE_STATISTICS_HISTOGRAM_NUM_BINS max_parquet_size_bytes: int = DESCRIPTIVE_STATISTICS_MAX_PARQUET_SIZE_BYTES @classmethod def from_env(cls) -> "DescriptiveStatisticsConfig": env = Env(expand_vars=True) parquet_revision = env.str(name="PARQUET_AND_INFO_TARGET_REVISION", default=PARQUET_AND_INFO_TARGET_REVISION) with env.prefixed("DESCRIPTIVE_STATISTICS_"): return cls( cache_directory=env.str(name="CACHE_DIRECTORY", default=DESCRIPTIVE_STATISTICS_CACHE_DIRECTORY), parquet_revision=parquet_revision, histogram_num_bins=env.int( name="HISTOGRAM_NUM_BINS", default=DESCRIPTIVE_STATISTICS_HISTOGRAM_NUM_BINS, ), max_parquet_size_bytes=env.int( name="MAX_PARQUET_SIZE_BYTES", default=DESCRIPTIVE_STATISTICS_MAX_PARQUET_SIZE_BYTES ), ) @dataclass(frozen=True) class AppConfig: assets: AssetsConfig = field(default_factory=AssetsConfig) cache: CacheConfig = field(default_factory=CacheConfig) common: CommonConfig = field(default_factory=CommonConfig) config_names: ConfigNamesConfig = field(default_factory=ConfigNamesConfig) datasets_based: DatasetsBasedConfig = field(default_factory=DatasetsBasedConfig) first_rows: FirstRowsConfig = field(default_factory=FirstRowsConfig) log: LogConfig = field(default_factory=LogConfig) numba: NumbaConfig = field(default_factory=NumbaConfig) parquet_and_info: ParquetAndInfoConfig = field(default_factory=ParquetAndInfoConfig) processing_graph: ProcessingGraphConfig = field(default_factory=ProcessingGraphConfig) queue: QueueConfig = field(default_factory=QueueConfig) rows_index: RowsIndexConfig = field(default_factory=RowsIndexConfig) worker: WorkerConfig = field(default_factory=WorkerConfig) urls_scan: OptInOutUrlsScanConfig = field(default_factory=OptInOutUrlsScanConfig) parquet_metadata: ParquetMetadataConfig = field(default_factory=ParquetMetadataConfig) duckdb_index: DuckDbIndexConfig = field(default_factory=DuckDbIndexConfig) descriptive_statistics: DescriptiveStatisticsConfig = field(default_factory=DescriptiveStatisticsConfig) @classmethod def from_env(cls) -> "AppConfig": return cls( assets=AssetsConfig.from_env(), common=CommonConfig.from_env(), config_names=ConfigNamesConfig.from_env(), cache=CacheConfig.from_env(), datasets_based=DatasetsBasedConfig.from_env(), first_rows=FirstRowsConfig.from_env(), log=LogConfig.from_env(), numba=NumbaConfig.from_env(), parquet_and_info=ParquetAndInfoConfig.from_env(), processing_graph=ProcessingGraphConfig.from_env(), queue=QueueConfig.from_env(), worker=WorkerConfig.from_env(), urls_scan=OptInOutUrlsScanConfig.from_env(), parquet_metadata=ParquetMetadataConfig.from_env(), duckdb_index=DuckDbIndexConfig.from_env(), descriptive_statistics=DescriptiveStatisticsConfig.from_env(), rows_index=RowsIndexConfig.from_env(), )
datasets-server-main
services/worker/src/worker/config.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. from collections.abc import Mapping from dataclasses import dataclass, field from typing import Any, Optional, TypedDict, Union from libcommon.utils import FeatureItem, Row, RowItem, SplitHubFile class JobRunnerInfo(TypedDict): job_type: str job_runner_version: int @dataclass class JobResult: content: Mapping[str, Any] progress: float def __post_init__(self) -> None: if self.progress < 0.0 or self.progress > 1.0: raise ValueError(f"Progress should be between 0 and 1, but got {self.progress}") @dataclass class CompleteJobResult(JobResult): content: Mapping[str, Any] progress: float = field(init=False, default=1.0) class DatasetItem(TypedDict): dataset: str class ConfigItem(DatasetItem): config: Optional[str] class SplitItem(ConfigItem): split: Optional[str] class FullConfigItem(DatasetItem): config: str class FullSplitItem(FullConfigItem): split: str class SplitsList(TypedDict): splits: list[FullSplitItem] class FailedConfigItem(FullConfigItem): error: Mapping[str, Any] class DatasetSplitNamesResponse(TypedDict): splits: list[FullSplitItem] pending: list[FullConfigItem] failed: list[FailedConfigItem] class PreviousJob(TypedDict): dataset: str config: Optional[str] split: Optional[Union[str, None]] kind: str class SplitFirstRowsResponse(FullSplitItem): features: list[FeatureItem] rows: list[RowItem] truncated: Optional[bool] class OptUrl(TypedDict): url: str row_idx: int column_name: str class OptInOutUrlsCountResponse(TypedDict): urls_columns: list[str] num_opt_in_urls: int num_opt_out_urls: int num_urls: int num_scanned_rows: int has_urls_columns: bool full_scan: Union[bool, None] class OptInOutUrlsScanResponse(OptInOutUrlsCountResponse): opt_in_urls: list[OptUrl] opt_out_urls: list[OptUrl] class ImageUrlColumnsResponse(TypedDict): columns: list[str] class RowsContent(TypedDict): rows: list[Row] all_fetched: bool class ConfigInfoResponse(TypedDict): dataset_info: dict[str, Any] partial: bool class ConfigParquetAndInfoResponse(TypedDict): parquet_files: list[SplitHubFile] dataset_info: dict[str, Any] partial: bool class ParquetFileMetadataItem(SplitItem): url: str filename: str size: int num_rows: int parquet_metadata_subpath: str class ConfigParquetMetadataResponse(TypedDict): parquet_files_metadata: list[ParquetFileMetadataItem] features: Optional[dict[str, Any]] partial: bool class ConfigParquetResponse(TypedDict): parquet_files: list[SplitHubFile] features: Optional[dict[str, Any]] partial: bool class ConfigSize(TypedDict): dataset: str config: str num_bytes_original_files: Optional[ int ] # optional because partial parquet conversion can't provide the size of the original data num_bytes_parquet_files: int num_bytes_memory: int num_rows: int num_columns: int class SplitSize(TypedDict): dataset: str config: str split: str num_bytes_parquet_files: int num_bytes_memory: int num_rows: int num_columns: int class ConfigSizeContent(TypedDict): config: ConfigSize splits: list[SplitSize] class ConfigSizeResponse(TypedDict): size: ConfigSizeContent partial: bool class ConfigNameItem(TypedDict): dataset: str config: str class DatasetConfigNamesResponse(TypedDict): config_names: list[ConfigNameItem] class DatasetInfoResponse(TypedDict): dataset_info: dict[str, Any] pending: list[PreviousJob] failed: list[PreviousJob] partial: bool class IsValidResponse(TypedDict): preview: bool viewer: bool search: bool class DatasetHubCacheResponse(TypedDict): preview: bool viewer: bool partial: bool num_rows: int class DatasetParquetResponse(TypedDict): parquet_files: list[SplitHubFile] pending: list[PreviousJob] failed: list[PreviousJob] partial: bool class DatasetSize(TypedDict): dataset: str num_bytes_original_files: Optional[int] num_bytes_parquet_files: int num_bytes_memory: int num_rows: int class DatasetSizeContent(TypedDict): dataset: DatasetSize configs: list[ConfigSize] splits: list[SplitSize] class DatasetSizeResponse(TypedDict): size: DatasetSizeContent pending: list[PreviousJob] failed: list[PreviousJob] partial: bool
datasets-server-main
services/worker/src/worker/dtos.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/src/worker/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import sys from libcommon.log import init_logging from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.storage import ( init_assets_dir, init_duckdb_index_cache_dir, init_parquet_metadata_dir, init_statistics_cache_dir, ) from worker.config import AppConfig from worker.job_runner_factory import JobRunnerFactory from worker.loop import Loop from worker.resources import LibrariesResource if __name__ == "__main__": app_config = AppConfig.from_env() state_file_path = app_config.worker.state_file_path if "--print-worker-state-path" in sys.argv: print(state_file_path, flush=True) if not state_file_path: raise RuntimeError("The worker state file path is not set. Exiting.") init_logging(level=app_config.log.level) # ^ set first to have logs as soon as possible assets_directory = init_assets_dir(directory=app_config.assets.storage_directory) parquet_metadata_directory = init_parquet_metadata_dir(directory=app_config.parquet_metadata.storage_directory) duckdb_index_cache_directory = init_duckdb_index_cache_dir(directory=app_config.duckdb_index.cache_directory) statistics_cache_directory = init_statistics_cache_dir(app_config.descriptive_statistics.cache_directory) processing_graph = ProcessingGraph(app_config.processing_graph.specification) with ( LibrariesResource( hf_endpoint=app_config.common.hf_endpoint, init_hf_datasets_cache=app_config.datasets_based.hf_datasets_cache, numba_path=app_config.numba.path, ) as libraries_resource, CacheMongoResource( database=app_config.cache.mongo_database, host=app_config.cache.mongo_url ) as cache_resource, QueueMongoResource( database=app_config.queue.mongo_database, host=app_config.queue.mongo_url ) as queue_resource, ): if not cache_resource.is_available(): raise RuntimeError("The connection to the cache database could not be established. Exiting.") if not queue_resource.is_available(): raise RuntimeError("The connection to the queue database could not be established. Exiting.") job_runner_factory = JobRunnerFactory( app_config=app_config, processing_graph=processing_graph, hf_datasets_cache=libraries_resource.hf_datasets_cache, assets_directory=assets_directory, parquet_metadata_directory=parquet_metadata_directory, duckdb_index_cache_directory=duckdb_index_cache_directory, statistics_cache_directory=statistics_cache_directory, ) loop = Loop( library_cache_paths=libraries_resource.storage_paths, job_runner_factory=job_runner_factory, state_file_path=state_file_path, app_config=app_config, processing_graph=processing_graph, ) loop.run()
datasets-server-main
services/worker/src/worker/start_worker_loop.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from typing import Optional from libcommon.config import CommonConfig from libcommon.exceptions import ( CustomError, DatasetNotFoundError, DatasetScriptError, JobManagerCrashedError, JobManagerExceededMaximumDurationError, ResponseAlreadyComputedError, TooBigContentError, UnexpectedError, ) from libcommon.orchestrator import DatasetOrchestrator from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.simple_cache import ( CachedArtifactError, CacheEntryDoesNotExistError, get_response_without_content_params, ) from libcommon.utils import JobInfo, JobParams, JobResult, Priority, orjson_dumps from worker.config import AppConfig, WorkerConfig from worker.job_runner import JobRunner from worker.utils import is_dataset_script_error class JobManager: """ A job manager is a class that handles a job runner compute, for a specific processing step. Args: job_info (:obj:`JobInfo`): The job to process. It contains the job_id, the job type, the dataset, the revision, the config, the split and the priority level. common_config (:obj:`CommonConfig`): The common config. processing_step (:obj:`ProcessingStep`): The processing step to process. """ job_id: str job_params: JobParams priority: Priority worker_config: WorkerConfig common_config: CommonConfig processing_step: ProcessingStep processing_graph: ProcessingGraph job_runner: JobRunner def __init__( self, job_info: JobInfo, app_config: AppConfig, job_runner: JobRunner, processing_graph: ProcessingGraph, ) -> None: self.job_info = job_info self.job_type = job_info["type"] self.job_id = job_info["job_id"] self.priority = job_info["priority"] self.job_params = job_info["params"] self.common_config = app_config.common self.worker_config = app_config.worker self.job_runner = job_runner self.processing_graph = processing_graph self.processing_step = self.job_runner.processing_step self.setup() def setup(self) -> None: job_type = self.job_runner.get_job_type() if self.processing_step.job_type != job_type: raise ValueError( f"The processing step's job type is {self.processing_step.job_type}, but the job manager only" f" processes {job_type}" ) if self.job_type != job_type: raise ValueError( f"The submitted job type is {self.job_type}, but the job manager only processes {job_type}" ) def __str__(self) -> str: return f"JobManager(job_id={self.job_id} dataset={self.job_params['dataset']} job_info={self.job_info}" def log(self, level: int, msg: str) -> None: logging.log(level=level, msg=f"[{self.processing_step.job_type}] {msg}") def debug(self, msg: str) -> None: self.log(level=logging.DEBUG, msg=msg) def info(self, msg: str) -> None: self.log(level=logging.INFO, msg=msg) def warning(self, msg: str) -> None: self.log(level=logging.WARNING, msg=msg) def exception(self, msg: str) -> None: self.log(level=logging.ERROR, msg=msg) def critical(self, msg: str) -> None: self.log(level=logging.CRITICAL, msg=msg) def run_job(self) -> JobResult: try: self.job_runner.validate() job_result: JobResult = self.process() except Exception: job_result = { "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": None, } result_str = "SUCCESS" if job_result["is_success"] else "ERROR" self.debug(f"job output with {result_str} - {self}") return job_result def finish(self, job_result: JobResult) -> None: DatasetOrchestrator( dataset=self.job_params["dataset"], processing_graph=self.processing_graph, ).finish_job(job_result=job_result) def raise_if_parallel_response_exists(self, parallel_cache_kind: str, parallel_job_version: int) -> None: try: existing_response = get_response_without_content_params( kind=parallel_cache_kind, job_params=self.job_params, ) if ( existing_response["http_status"] == HTTPStatus.OK and existing_response["job_runner_version"] == parallel_job_version and existing_response["progress"] == 1.0 # completed response and existing_response["dataset_git_revision"] == self.job_params["revision"] ): raise ResponseAlreadyComputedError( f"Response has already been computed and stored in cache kind: {parallel_cache_kind}. Compute will" " be skipped." ) except CacheEntryDoesNotExistError: logging.debug(f"no cache found for {parallel_cache_kind}.") def process( self, ) -> JobResult: self.info(f"compute {self}") if self.job_info["params"]["dataset"] in self.worker_config.blocked_datasets: self.debug(f"the dataset={self.job_params['dataset']} is blocked, don't update the cache") return { "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": None, } try: try: self.job_runner.pre_compute() parallel_job_runner = self.job_runner.get_parallel_job_runner() if parallel_job_runner: self.raise_if_parallel_response_exists( parallel_cache_kind=parallel_job_runner["job_type"], parallel_job_version=parallel_job_runner["job_runner_version"], ) job_result = self.job_runner.compute() content = job_result.content # Validate content size if len(orjson_dumps(content)) > self.worker_config.content_max_bytes: raise TooBigContentError( "The computed response content exceeds the supported size in bytes" f" ({self.worker_config.content_max_bytes})." ) finally: # ensure the post_compute hook is called even if the compute raises an exception self.job_runner.post_compute() self.debug( f"dataset={self.job_params['dataset']} revision={self.job_params['revision']} job_info={self.job_info}" " is valid" ) return { "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": True, "output": { "content": content, "http_status": HTTPStatus.OK, "error_code": None, "details": None, "progress": job_result.progress, }, } except DatasetNotFoundError: # To avoid filling the cache, we don't save this error. Otherwise, DoS is possible. self.debug(f"the dataset={self.job_params['dataset']} could not be found, don't update the cache") return { "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": None, } except CachedArtifactError as err: # A previous step (cached artifact required by the job runner) is an error. We copy the cached entry, # so that users can see the underlying error (they are not interested in the internals of the graph). # We add an entry to details: "copied_from_artifact", with its identification details, to have a chance # to debug if needed. self.debug(f"response for job_info={self.job_info} had an error from a previous step") return { "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": { "content": err.cache_entry_with_details["content"], "http_status": err.cache_entry_with_details["http_status"], "error_code": err.cache_entry_with_details["error_code"], "details": err.enhanced_details, "progress": None, }, } except Exception as err: e = ( err if isinstance(err, CustomError) else DatasetScriptError(str(err), err) if is_dataset_script_error() else UnexpectedError(str(err), err) ) self.debug(f"response for job_info={self.job_info} had an error") return { "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": { "content": dict(e.as_response()), "http_status": e.status_code, "error_code": e.code, "details": dict(e.as_response_with_cause()), "progress": None, }, } def set_crashed(self, message: str, cause: Optional[BaseException] = None) -> None: self.debug( "response for" f" dataset={self.job_params['dataset']} revision={self.job_params['revision']} job_info={self.job_info}" " had an error (crashed)" ) error = JobManagerCrashedError(message=message, cause=cause) self.finish( job_result={ "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": { "content": dict(error.as_response()), "http_status": error.status_code, "error_code": error.code, "details": dict(error.as_response_with_cause()), "progress": None, }, } ) def set_exceeded_maximum_duration(self, message: str, cause: Optional[BaseException] = None) -> None: self.debug( "response for" f" dataset={self.job_params['dataset']} revision={self.job_params['revision']} job_info={self.job_info}" " had an error (exceeded maximum duration)" ) error = JobManagerExceededMaximumDurationError(message=message, cause=cause) self.finish( job_result={ "job_info": self.job_info, "job_runner_version": self.job_runner.get_job_runner_version(), "is_success": False, "output": { "content": dict(error.as_response()), "http_status": error.status_code, "error_code": error.code, "details": dict(error.as_response_with_cause()), "progress": None, }, } )
datasets-server-main
services/worker/src/worker/job_manager.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import functools import itertools import logging import sys import time import traceback import warnings from collections.abc import Callable, Sequence from typing import Any, Optional, TypeVar, Union, cast from urllib.parse import quote import PIL import requests from datasets import Dataset, DatasetInfo, DownloadConfig, IterableDataset, load_dataset from datasets.utils.file_utils import get_authentication_headers_for_url from fsspec.implementations.http import HTTPFileSystem from huggingface_hub.hf_api import HfApi from huggingface_hub.utils._errors import RepositoryNotFoundError from libcommon.constants import EXTERNAL_DATASET_SCRIPT_PATTERN from libcommon.exceptions import ( ConfigNotFoundError, DatasetNotFoundError, NormalRowsError, PreviousStepFormatError, SplitNotFoundError, StreamingRowsError, ) from libcommon.simple_cache import get_previous_step_or_raise from libcommon.utils import Row, RowItem, orjson_dumps from pyarrow.parquet import ParquetFile from worker.dtos import RowsContent MAX_IMAGE_PIXELS = 10_000_000_000 # ^ see https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.MAX_IMAGE_PIXELS def get_json_size(obj: Any) -> int: """Returns the size of an object in bytes once serialized as JSON Args: obj (Any): the Python object Returns: int: the size of the serialized object in bytes """ return len(orjson_dumps(obj)) # from https://stackoverflow.com/a/43848928/7351594 def utf8_lead_byte(b: int) -> bool: """A UTF-8 intermediate byte starts with the bits 10xxxxxx.""" return (b & 0xC0) != 0x80 def utf8_byte_truncate(text: str, max_bytes: int) -> str: """If text[max_bytes] is not a lead byte, back up until a lead byte is found and truncate before that character.""" utf8 = text.encode("utf8") if len(utf8) <= max_bytes: return text i = max_bytes while i > 0 and not utf8_lead_byte(utf8[i]): i -= 1 return utf8[:i].decode("utf8", "ignore") # Mutates row_item, and returns it anyway def truncate_row_item(row_item: RowItem, min_cell_bytes: int, columns_to_keep_untruncated: list[str]) -> RowItem: row = {} for column_name, cell in row_item["row"].items(): # for now: all the cells above min_cell_bytes are truncated to min_cell_bytes # it's done by replacing the cell (which can have any type) by a string with # its JSON serialization, and then truncating it to min_cell_bytes cell_json = orjson_dumps(cell) if len(cell_json) <= min_cell_bytes or column_name in columns_to_keep_untruncated: row[column_name] = cell else: cell_json_str = cell_json.decode("utf8", "ignore") row_item["truncated_cells"].append(column_name) row[column_name] = utf8_byte_truncate(text=cell_json_str, max_bytes=min_cell_bytes) row_item["row"] = row # row_idx = row_item["row_idx"] # logging.debug(f"the size of the rows is now ({rows_bytes}) after truncating row idx={row_idx}") return row_item COMMA_SIZE = 1 # the comma "," is encoded with one byte in utf-8 # Mutates row_items, and returns them anyway def truncate_row_items( row_items: list[RowItem], min_cell_bytes: int, rows_max_bytes: int, columns_to_keep_untruncated: list[str] ) -> list[RowItem]: # compute the current size rows_bytes = sum(get_json_size(row_item) for row_item in row_items) + COMMA_SIZE * (len(row_items) - 1) # Loop backwards, so that the last rows are truncated first for row_item in reversed(row_items): if rows_bytes < rows_max_bytes: break previous_size = get_json_size(row_item) + COMMA_SIZE row_item = truncate_row_item( row_item=row_item, min_cell_bytes=min_cell_bytes, columns_to_keep_untruncated=columns_to_keep_untruncated ) new_size = get_json_size(row_item) + COMMA_SIZE rows_bytes += new_size - previous_size return row_items def to_row_item(row_idx: int, row: Row) -> RowItem: return { "row_idx": row_idx, "row": row, "truncated_cells": [], } def create_truncated_row_items( rows: list[Row], min_cell_bytes: int, rows_max_bytes: int, rows_min_number: int, columns_to_keep_untruncated: list[str], ) -> tuple[list[RowItem], bool]: row_items = [] rows_bytes = 0 # two restrictions must be enforced: # - at least rows_min_number rows # - at most rows_max_bytes bytes. Note that it's the limit to the sum of the rows sizes. The JSON response size # will be greater, due to the other fields (row_idx, truncated_cells, features, etc.). # To enforce this: # 1. first get the first rows_min_number rows for row_idx, row in enumerate(rows[:rows_min_number]): row_item = to_row_item(row_idx=row_idx, row=row) rows_bytes += get_json_size(row_item) + COMMA_SIZE row_items.append(row_item) # 2. if the total is over the bytes limit, truncate the values, iterating backwards starting # from the last rows, until getting under the threshold # caveat: the truncation might not be enough to get under the threshold if: # - the number of columns is too high # - rows_max_bytes is too low (or even negative) if rows_bytes >= rows_max_bytes: # logging.debug( # f"the size of the first {rows_min_number} rows ({rows_bytes}) is above the max number of bytes" # f" ({rows_max_bytes}), they will be truncated" # ) truncated_row_items = truncate_row_items( row_items=row_items, min_cell_bytes=min_cell_bytes, rows_max_bytes=rows_max_bytes, columns_to_keep_untruncated=columns_to_keep_untruncated, ) return truncated_row_items, len(truncated_row_items) < len(rows) # 3. else: add the remaining rows until the end, or until the bytes threshold for idx, row in enumerate(rows[rows_min_number:]): row_idx = rows_min_number + idx row_item = to_row_item(row_idx=row_idx, row=row) rows_bytes += get_json_size(row_item) + COMMA_SIZE if rows_bytes >= rows_max_bytes: # logging.debug( # f"the rows in the split have been truncated to {row_idx} row(s) to keep the size" # f" ({rows_bytes}) under the limit ({rows_max_bytes})" # ) break row_items.append(row_item) return row_items, len(row_items) < len(rows) FuncT = TypeVar("FuncT", bound=Callable[..., Any]) RETRY_SLEEPS = (1, 1, 1, 10, 10, 10, 60, 60, 60, 10 * 60) RETRY_ON: tuple[type[Exception]] = (Exception,) class retry: """retries with an increasing sleep before every attempt""" def __init__(self, sleeps: Sequence[int] = RETRY_SLEEPS, on: Sequence[type[Exception]] = RETRY_ON) -> None: self.sleeps = sleeps self.on = on def __call__(self, func: FuncT) -> FuncT: @functools.wraps(func) def decorator(*args: Any, **kwargs: Any) -> Any: attempt = 0 last_err = None while attempt < len(self.sleeps): try: """always sleep before calling the function. It will prevent rate limiting in the first place""" duration = self.sleeps[attempt] logging.info(f"Sleep during {duration} seconds to preventively mitigate rate limiting.") time.sleep(duration) return func(*args, **kwargs) except tuple(self.on) as err: logging.info(f"Got a {type(err)}. Let's retry.") last_err = err attempt += 1 raise RuntimeError(f"Give up after {attempt} attempts. The last one raised {type(last_err)}") from last_err return cast(FuncT, decorator) @retry(on=[ConnectionError]) def get_rows( dataset: str, config: str, split: str, streaming: bool, rows_max_number: int, token: Union[bool, str, None] = False, column_names: Optional[list[str]] = None, ) -> RowsContent: download_config = DownloadConfig(delete_extracted=True) PIL.Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS ds = load_dataset( dataset, name=config, split=split, streaming=streaming, token=token, download_config=download_config, ) if streaming: if not isinstance(ds, IterableDataset): raise TypeError("load_dataset should return an IterableDataset in streaming mode") elif not isinstance(ds, Dataset): raise TypeError("load_dataset should return a Dataset in normal mode") if column_names: ds = ds.select_columns(column_names) rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) # ^^ to be able to detect if a split has exactly ROWS_MAX_NUMBER rows rows = rows_plus_one[:rows_max_number] all_fetched = len(rows_plus_one) <= rows_max_number if all_fetched: logging.debug(f"all the rows in the split have been fetched ({len(rows_plus_one)})") else: logging.debug(f"the rows in the split have been truncated ({rows_max_number} rows)") return RowsContent(rows=rows, all_fetched=all_fetched) def get_rows_or_raise( dataset: str, config: str, split: str, rows_max_number: int, token: Union[bool, str, None], info: DatasetInfo, max_size_fallback: Optional[int] = None, column_names: Optional[list[str]] = [], ) -> RowsContent: try: return get_rows( dataset=dataset, config=config, split=split, streaming=True, rows_max_number=rows_max_number, token=token, column_names=column_names, ) except Exception as err: MAX_SIZE_FALLBACK = 100_000_000 if max_size_fallback: warnings.warn( ( f"The parameter 'max_size_fallback' is deprecated. The hard-coded value `{MAX_SIZE_FALLBACK}`" " will be used instead." ), category=DeprecationWarning, ) if info.size_in_bytes is None or info.size_in_bytes > MAX_SIZE_FALLBACK: raise StreamingRowsError( "Cannot load the dataset split (in streaming mode) to extract the first rows.", cause=err, ) from err try: return get_rows( dataset=dataset, config=config, split=split, streaming=False, rows_max_number=rows_max_number, token=token, ) except Exception as err: raise NormalRowsError( "Cannot load the dataset split (in normal download mode) to extract the first rows.", cause=err, ) from err # TODO: use huggingface_hub's hf_hub_url after # https://github.com/huggingface/huggingface_hub/issues/1082 def hf_hub_url(repo_id: str, filename: str, hf_endpoint: str, revision: str, url_template: str) -> str: return (hf_endpoint + url_template) % (repo_id, quote(revision, safe=""), filename) def get_parquet_file(url: str, fs: HTTPFileSystem, hf_token: Optional[str]) -> ParquetFile: headers = get_authentication_headers_for_url(url, token=hf_token) return ParquetFile(fs.open(url, headers=headers)) DATASET_TYPE = "dataset" HF_HUB_HTTP_ERROR_RETRY_SLEEPS = [1, 1, 1, 10, 10, 10] LIST_REPO_REFS_RETRY_SLEEPS = [1, 1, 1, 10, 10] LOCK_GIT_BRANCH_RETRY_SLEEPS = [1, 1, 1, 1, 1, 10, 10, 10, 10, 100] * 3 def create_branch(dataset: str, target_revision: str, hf_api: HfApi, committer_hf_api: HfApi) -> None: try: refs = retry(on=[requests.exceptions.ConnectionError], sleeps=LIST_REPO_REFS_RETRY_SLEEPS)( hf_api.list_repo_refs )(repo_id=dataset, repo_type=DATASET_TYPE) if all(ref.ref != target_revision for ref in refs.converts): initial_commit = hf_api.list_repo_commits(repo_id=dataset, repo_type=DATASET_TYPE)[-1].commit_id committer_hf_api.create_branch( repo_id=dataset, branch=target_revision, repo_type=DATASET_TYPE, revision=initial_commit, exist_ok=True ) except RepositoryNotFoundError as err: raise DatasetNotFoundError("The dataset does not exist on the Hub (was deleted during job).") from err def check_config_exists(dataset: str, config: str) -> None: """ Check if dataset has a provided config. Dataset's configs are taken from 'dataset-config-names' step's cache. """ config_names_best_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) try: configs_content = config_names_best_response.response["content"]["config_names"] except Exception as e: raise PreviousStepFormatError( "Previous steps 'dataset-config-names' did not return the expected content.", e, ) from e if config not in [config_item["config"] for config_item in configs_content]: raise ConfigNotFoundError(f"Config '{config}' does not exist for dataset '{dataset}'") def check_split_exists(dataset: str, config: str, split: str) -> None: """ Check if dataset has a provided split in a provided config. Dataset's splits are taken from the best response of 'config-split-names-from-streaming' and 'config-split-names-from-info' steps' cache. """ check_config_exists(dataset, config) split_names_best_response = get_previous_step_or_raise( kinds=["config-split-names-from-streaming", "config-split-names-from-info"], dataset=dataset, config=config ) try: splits_content = split_names_best_response.response["content"]["splits"] except Exception as e: raise PreviousStepFormatError( ( "Previous steps 'config-split-names-from-streaming' and 'config-split-names-from-info did not return" " the expected content." ), e, ) from e if split not in [split_item["split"] for split_item in splits_content]: raise SplitNotFoundError(f"Split '{split}' does not exist for the config '{config}' of the dataset.") def is_dataset_script_error() -> bool: (t, v, tb) = sys.exc_info() cause_traceback: list[str] = traceback.format_exception(t, v, tb) return any(EXTERNAL_DATASET_SCRIPT_PATTERN in cause for cause in cause_traceback)
datasets-server-main
services/worker/src/worker/utils.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging import random import time from dataclasses import dataclass, field from datetime import datetime from typing import Optional, TypedDict import orjson from filelock import FileLock from libcommon.processing_graph import ProcessingGraph from libcommon.queue import ( AlreadyStartedJobError, EmptyQueueError, LockTimeoutError, NoWaitingJobError, Queue, ) from libcommon.utils import JobInfo, get_datetime from psutil import cpu_count, disk_usage, getloadavg, swap_memory, virtual_memory from worker.config import AppConfig from worker.job_manager import JobManager from worker.job_runner_factory import BaseJobRunnerFactory class WorkerState(TypedDict): current_job_info: Optional[JobInfo] last_updated: datetime @dataclass class Loop: """ A loop gets jobs from a queue and processes them. Once initialized, the loop can be started with the `run` method and will run until an uncaught exception is raised. Args: job_runner_factory (`JobRunnerFactory`): The job runner factory that will create a job runner for each job. Must be able to process the jobs of the queue. library_cache_paths (`set[str]`): The paths of the library caches. Used to check if the disk is full. worker_config (`WorkerConfig`): Worker configuration. state_file_path (`str`): The path of the file where the state of the loop will be saved. """ job_runner_factory: BaseJobRunnerFactory library_cache_paths: set[str] app_config: AppConfig processing_graph: ProcessingGraph state_file_path: str storage_paths: set[str] = field(init=False) def __post_init__(self) -> None: self.queue = Queue() self.storage_paths = set(self.app_config.worker.storage_paths).union(self.library_cache_paths) def has_memory(self) -> bool: if self.app_config.worker.max_memory_pct <= 0: return True virtual_memory_used = int(virtual_memory().used) virtual_memory_total = int(virtual_memory().total) percent = (swap_memory().used + virtual_memory_used) / (swap_memory().total + virtual_memory_total) ok = percent < self.app_config.worker.max_memory_pct if not ok: logging.info( f"memory usage (RAM + SWAP) is too high: {percent:.0f}% - max is" f" {self.app_config.worker.max_memory_pct}%" ) return ok def has_cpu(self) -> bool: if self.app_config.worker.max_load_pct <= 0: return True load_pct = max(getloadavg()[:2]) / cpu_count() * 100 # ^ only current load and 5m load. 15m load is not relevant to decide to launch a new job ok = load_pct < self.app_config.worker.max_load_pct if not ok: logging.info(f"cpu load is too high: {load_pct:.0f}% - max is {self.app_config.worker.max_load_pct}%") return ok def has_storage(self) -> bool: if self.app_config.worker.max_disk_usage_pct <= 0: return True for path in self.storage_paths: try: usage = disk_usage(path) if usage.percent >= self.app_config.worker.max_disk_usage_pct: return False except Exception: # if we can't get the disk usage, we let the process continue return True return True def has_resources(self) -> bool: return self.has_memory() and self.has_cpu() and self.has_storage() def sleep(self) -> None: jitter = 0.75 + random.random() / 2 # nosec # ^ between 0.75 and 1.25 duration = self.app_config.worker.sleep_seconds * jitter logging.debug(f"sleep during {duration:.2f} seconds") time.sleep(duration) def run(self) -> None: logging.info("Worker loop started") try: while True: if self.has_resources() and self.process_next_job(): # loop immediately to try another job # see https://github.com/huggingface/datasets-server/issues/265 continue self.sleep() except BaseException: logging.exception("quit due to an uncaught error while processing the job") raise def process_next_job(self) -> bool: logging.debug("try to process a job") try: job_info = self.queue.start_job( difficulty_min=self.app_config.worker.difficulty_min, difficulty_max=self.app_config.worker.difficulty_max, job_types_blocked=self.app_config.worker.job_types_blocked, job_types_only=self.app_config.worker.job_types_only, ) self.set_worker_state(current_job_info=job_info) logging.debug(f"job assigned: {job_info}") except (EmptyQueueError, AlreadyStartedJobError, LockTimeoutError, NoWaitingJobError) as e: self.set_worker_state(current_job_info=None) logging.debug(e) return False job_runner = self.job_runner_factory.create_job_runner(job_info) job_manager = JobManager( job_info=job_info, app_config=self.app_config, job_runner=job_runner, processing_graph=self.processing_graph, ) job_result = job_manager.run_job() job_manager.finish(job_result=job_result) self.set_worker_state(current_job_info=None) return True def set_worker_state(self, current_job_info: Optional[JobInfo]) -> None: worker_state: WorkerState = {"current_job_info": current_job_info, "last_updated": get_datetime()} with FileLock(f"{self.state_file_path}.lock"): with open(self.state_file_path, "wb") as worker_state_f: worker_state_f.write(orjson.dumps(worker_state))
datasets-server-main
services/worker/src/worker/loop.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from dataclasses import dataclass, field from pathlib import Path from typing import Optional import datasets from datasets.utils.logging import get_verbosity, log_levels, set_verbosity from libcommon.resources import Resource @dataclass class LibrariesResource(Resource): hf_endpoint: str init_hf_datasets_cache: Optional[str] = None numba_path: Optional[str] = None previous_hf_endpoint: str = field(init=False) previous_hf_update_download_counts: bool = field(init=False) previous_verbosity: int = field(init=False) hf_datasets_cache: Path = field(init=False) storage_paths: set[str] = field(init=False) def allocate(self) -> None: self.hf_datasets_cache = ( datasets.config.HF_DATASETS_CACHE if self.init_hf_datasets_cache is None else Path(self.init_hf_datasets_cache) ) # Ensure the datasets library uses the expected HuggingFace endpoint self.previous_hf_endpoint = datasets.config.HF_ENDPOINT datasets.config.HF_ENDPOINT = self.hf_endpoint # Don't increase the datasets download counts on huggingface.co self.previous_hf_update_download_counts = datasets.config.HF_UPDATE_DOWNLOAD_COUNTS datasets.config.HF_UPDATE_DOWNLOAD_COUNTS = False # Set logs from the datasets library to the least verbose self.previous_verbosity = get_verbosity() set_verbosity(log_levels["critical"]) # Note: self.hf_endpoint is ignored by the huggingface_hub library for now (see # the discussion at https://github.com/huggingface/datasets/pull/5196), and this breaks # various of the datasets functions. The fix, for now, is to set the HF_ENDPOINT # environment variable to the desired value. # TODO: check here if huggingface_hub and datasets use the same endpoint # Add the datasets and numba cache paths to the list of storage paths, to ensure the disk is not full storage_paths = {str(self.hf_datasets_cache), str(datasets.config.HF_MODULES_CACHE)} if self.numba_path is not None: storage_paths.add(self.numba_path) self.storage_paths = storage_paths def release(self) -> None: datasets.config.HF_ENDPOINT = self.previous_hf_endpoint datasets.config.HF_UPDATE_DOWNLOAD_COUNTS = self.previous_hf_update_download_counts set_verbosity(self.previous_verbosity)
datasets-server-main
services/worker/src/worker/resources.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from abc import ABC, abstractmethod from dataclasses import dataclass from pathlib import Path from libcommon.processing_graph import ProcessingGraph from libcommon.storage import StrPath from libcommon.utils import JobInfo from worker.config import AppConfig from worker.job_runner import JobRunner from worker.job_runners.config.info import ConfigInfoJobRunner from worker.job_runners.config.is_valid import ConfigIsValidJobRunner from worker.job_runners.config.opt_in_out_urls_count import ( ConfigOptInOutUrlsCountJobRunner, ) from worker.job_runners.config.parquet import ConfigParquetJobRunner from worker.job_runners.config.parquet_and_info import ConfigParquetAndInfoJobRunner from worker.job_runners.config.parquet_metadata import ConfigParquetMetadataJobRunner from worker.job_runners.config.size import ConfigSizeJobRunner from worker.job_runners.config.split_names_from_info import ( ConfigSplitNamesFromInfoJobRunner, ) from worker.job_runners.config.split_names_from_streaming import ( ConfigSplitNamesFromStreamingJobRunner, ) from worker.job_runners.dataset.config_names import DatasetConfigNamesJobRunner from worker.job_runners.dataset.hub_cache import DatasetHubCacheJobRunner from worker.job_runners.dataset.info import DatasetInfoJobRunner from worker.job_runners.dataset.is_valid import DatasetIsValidJobRunner from worker.job_runners.dataset.opt_in_out_urls_count import ( DatasetOptInOutUrlsCountJobRunner, ) from worker.job_runners.dataset.parquet import DatasetParquetJobRunner from worker.job_runners.dataset.size import DatasetSizeJobRunner from worker.job_runners.dataset.split_names import DatasetSplitNamesJobRunner from worker.job_runners.split.descriptive_statistics import ( SplitDescriptiveStatisticsJobRunner, ) from worker.job_runners.split.duckdb_index import SplitDuckDbIndexJobRunner from worker.job_runners.split.first_rows_from_parquet import ( SplitFirstRowsFromParquetJobRunner, ) from worker.job_runners.split.first_rows_from_streaming import ( SplitFirstRowsFromStreamingJobRunner, ) from worker.job_runners.split.image_url_columns import SplitImageUrlColumnsJobRunner from worker.job_runners.split.is_valid import SplitIsValidJobRunner from worker.job_runners.split.opt_in_out_urls_count import ( SplitOptInOutUrlsCountJobRunner, ) from worker.job_runners.split.opt_in_out_urls_scan_from_streaming import ( SplitOptInOutUrlsScanJobRunner, ) class BaseJobRunnerFactory(ABC): """ Base class for job runner factories. A job runner factory is a class that creates a job runner. It cannot be instantiated directly, but must be subclassed. Note that this class is only implemented once in the code, but we need it for the tests. """ def create_job_runner(self, job_info: JobInfo) -> JobRunner: return self._create_job_runner(job_info=job_info) @abstractmethod def _create_job_runner(self, job_info: JobInfo) -> JobRunner: pass @dataclass class JobRunnerFactory(BaseJobRunnerFactory): app_config: AppConfig processing_graph: ProcessingGraph hf_datasets_cache: Path assets_directory: StrPath parquet_metadata_directory: StrPath duckdb_index_cache_directory: StrPath statistics_cache_directory: StrPath def _create_job_runner(self, job_info: JobInfo) -> JobRunner: job_type = job_info["type"] try: processing_step = self.processing_graph.get_processing_step_by_job_type(job_type) except ValueError as e: raise ValueError( f"Unsupported job type: '{job_type}'. The job types declared in the processing graph are:" f" {[processing_step.job_type for processing_step in self.processing_graph.get_processing_steps()]}" ) from e if job_type == DatasetConfigNamesJobRunner.get_job_type(): return DatasetConfigNamesJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, hf_datasets_cache=self.hf_datasets_cache, ) if job_type == ConfigSplitNamesFromStreamingJobRunner.get_job_type(): return ConfigSplitNamesFromStreamingJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, hf_datasets_cache=self.hf_datasets_cache, ) if job_type == SplitFirstRowsFromStreamingJobRunner.get_job_type(): return SplitFirstRowsFromStreamingJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, hf_datasets_cache=self.hf_datasets_cache, assets_directory=self.assets_directory, ) if job_type == ConfigParquetAndInfoJobRunner.get_job_type(): return ConfigParquetAndInfoJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, hf_datasets_cache=self.hf_datasets_cache, ) if job_type == ConfigParquetJobRunner.get_job_type(): return ConfigParquetJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == ConfigParquetMetadataJobRunner.get_job_type(): return ConfigParquetMetadataJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, parquet_metadata_directory=self.parquet_metadata_directory, ) if job_type == DatasetParquetJobRunner.get_job_type(): return DatasetParquetJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == DatasetInfoJobRunner.get_job_type(): return DatasetInfoJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == ConfigInfoJobRunner.get_job_type(): return ConfigInfoJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == DatasetSizeJobRunner.get_job_type(): return DatasetSizeJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == ConfigSizeJobRunner.get_job_type(): return ConfigSizeJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == ConfigSplitNamesFromInfoJobRunner.get_job_type(): return ConfigSplitNamesFromInfoJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == DatasetSplitNamesJobRunner.get_job_type(): return DatasetSplitNamesJobRunner( job_info=job_info, processing_step=processing_step, app_config=self.app_config, ) if job_type == SplitFirstRowsFromParquetJobRunner.get_job_type(): return SplitFirstRowsFromParquetJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, processing_graph=self.processing_graph, assets_directory=self.assets_directory, parquet_metadata_directory=self.parquet_metadata_directory, ) if job_type == SplitIsValidJobRunner.get_job_type(): return SplitIsValidJobRunner( job_info=job_info, processing_step=processing_step, processing_graph=self.processing_graph, app_config=self.app_config, ) if job_type == ConfigIsValidJobRunner.get_job_type(): return ConfigIsValidJobRunner( job_info=job_info, processing_step=processing_step, app_config=self.app_config, ) if job_type == DatasetIsValidJobRunner.get_job_type(): return DatasetIsValidJobRunner( job_info=job_info, processing_step=processing_step, app_config=self.app_config, ) if job_type == SplitImageUrlColumnsJobRunner.get_job_type(): return SplitImageUrlColumnsJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == SplitOptInOutUrlsScanJobRunner.get_job_type(): return SplitOptInOutUrlsScanJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, hf_datasets_cache=self.hf_datasets_cache, ) if job_type == ConfigOptInOutUrlsCountJobRunner.get_job_type(): return ConfigOptInOutUrlsCountJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == DatasetOptInOutUrlsCountJobRunner.get_job_type(): return DatasetOptInOutUrlsCountJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == SplitOptInOutUrlsCountJobRunner.get_job_type(): return SplitOptInOutUrlsCountJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) if job_type == SplitDescriptiveStatisticsJobRunner.get_job_type(): return SplitDescriptiveStatisticsJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, statistics_cache_directory=self.statistics_cache_directory, ) if job_type == SplitDuckDbIndexJobRunner.get_job_type(): return SplitDuckDbIndexJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, duckdb_index_cache_directory=self.duckdb_index_cache_directory, ) if job_type == DatasetHubCacheJobRunner.get_job_type(): return DatasetHubCacheJobRunner( job_info=job_info, app_config=self.app_config, processing_step=processing_step, ) supported_job_types = [ DatasetConfigNamesJobRunner.get_job_type(), ConfigSplitNamesFromStreamingJobRunner.get_job_type(), SplitFirstRowsFromStreamingJobRunner.get_job_type(), ConfigParquetAndInfoJobRunner.get_job_type(), ConfigParquetJobRunner.get_job_type(), DatasetParquetJobRunner.get_job_type(), DatasetInfoJobRunner.get_job_type(), ConfigInfoJobRunner.get_job_type(), DatasetSizeJobRunner.get_job_type(), ConfigSizeJobRunner.get_job_type(), ConfigSplitNamesFromInfoJobRunner.get_job_type(), SplitFirstRowsFromParquetJobRunner.get_job_type(), SplitIsValidJobRunner.get_job_type(), ConfigIsValidJobRunner.get_job_type(), DatasetIsValidJobRunner.get_job_type(), SplitImageUrlColumnsJobRunner.get_job_type(), SplitOptInOutUrlsScanJobRunner.get_job_type(), SplitOptInOutUrlsCountJobRunner.get_job_type(), ConfigOptInOutUrlsCountJobRunner.get_job_type(), DatasetOptInOutUrlsCountJobRunner.get_job_type(), SplitDuckDbIndexJobRunner.get_job_type(), SplitDescriptiveStatisticsJobRunner.get_job_type(), DatasetHubCacheJobRunner.get_job_type(), ] raise ValueError(f"Unsupported job type: '{job_type}'. The supported job types are: {supported_job_types}")
datasets-server-main
services/worker/src/worker/job_runner_factory.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from abc import ABC, abstractmethod from typing import Optional from libcommon.processing_graph import ProcessingStep from libcommon.utils import JobInfo from worker.config import AppConfig from worker.dtos import JobResult, JobRunnerInfo class JobRunner(ABC): job_info: JobInfo app_config: AppConfig processing_step: ProcessingStep @staticmethod @abstractmethod def get_job_type() -> str: pass @staticmethod @abstractmethod def get_job_runner_version() -> int: pass @staticmethod def get_parallel_job_runner() -> Optional[JobRunnerInfo]: # In the future it could be a list return None def __init__(self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep) -> None: self.job_info = job_info self.app_config = app_config self.processing_step = processing_step def pre_compute(self) -> None: """Hook method called before the compute method.""" pass @abstractmethod def compute(self) -> JobResult: pass def post_compute(self) -> None: """Hook method called after the compute method.""" pass def validate(self) -> None: """ Validate that this job should be run. It should raise an error if e.g. the config/split of the dataset to process doesn't exist. """ pass
datasets-server-main
services/worker/src/worker/job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import os import tempfile from libcommon.log import init_logging from libcommon.processing_graph import ProcessingGraph from libcommon.resources import CacheMongoResource, QueueMongoResource from libcommon.storage import ( init_assets_dir, init_duckdb_index_cache_dir, init_parquet_metadata_dir, init_statistics_cache_dir, ) from worker.config import AppConfig from worker.executor import WorkerExecutor from worker.job_runner_factory import JobRunnerFactory from worker.resources import LibrariesResource WORKER_STATE_FILE_NAME = "worker_state.json" if __name__ == "__main__": with tempfile.TemporaryDirectory() as tmp_dir: state_file_path = os.path.join(tmp_dir, WORKER_STATE_FILE_NAME) os.environ["WORKER_STATE_FILE_PATH"] = state_file_path app_config = AppConfig.from_env() init_logging(level=app_config.log.level) # ^ set first to have logs as soon as possible assets_directory = init_assets_dir(directory=app_config.assets.storage_directory) parquet_metadata_directory = init_parquet_metadata_dir(directory=app_config.parquet_metadata.storage_directory) duckdb_index_cache_directory = init_duckdb_index_cache_dir(directory=app_config.duckdb_index.cache_directory) statistics_cache_directory = init_statistics_cache_dir(app_config.descriptive_statistics.cache_directory) processing_graph = ProcessingGraph(app_config.processing_graph.specification) with ( LibrariesResource( hf_endpoint=app_config.common.hf_endpoint, init_hf_datasets_cache=app_config.datasets_based.hf_datasets_cache, numba_path=app_config.numba.path, ) as libraries_resource, CacheMongoResource( database=app_config.cache.mongo_database, host=app_config.cache.mongo_url ) as cache_resource, QueueMongoResource( database=app_config.queue.mongo_database, host=app_config.queue.mongo_url ) as queue_resource, ): if not cache_resource.is_available(): raise RuntimeError("The connection to the cache database could not be established. Exiting.") if not queue_resource.is_available(): raise RuntimeError("The connection to the queue database could not be established. Exiting.") job_runner_factory = JobRunnerFactory( app_config=app_config, processing_graph=processing_graph, hf_datasets_cache=libraries_resource.hf_datasets_cache, assets_directory=assets_directory, parquet_metadata_directory=parquet_metadata_directory, duckdb_index_cache_directory=duckdb_index_cache_directory, statistics_cache_directory=statistics_cache_directory, ) worker_executor = WorkerExecutor( app_config=app_config, job_runner_factory=job_runner_factory, state_file_path=state_file_path, ) worker_executor.start()
datasets-server-main
services/worker/src/worker/main.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import asyncio import logging import os import sys from collections.abc import Callable from datetime import datetime, timedelta from random import random from typing import Any, Optional, Union import orjson from filelock import FileLock from libcommon.processing_graph import ProcessingGraph from libcommon.queue import Queue from libcommon.utils import get_datetime from mirakuru import OutputExecutor from worker import start_worker_loop from worker.config import AppConfig from worker.job_manager import JobManager from worker.job_runner_factory import JobRunnerFactory from worker.loop import WorkerState START_WORKER_LOOP_PATH = start_worker_loop.__file__ async def every( func: Callable[..., Optional[Any]], *args: Any, seconds: Union[float, tuple[float, float]], stop_on: Optional[Any] = None, **kwargs: Any, ) -> None: while True: out = func(*args, **kwargs) if stop_on is not None and out == stop_on: break delay = ( seconds[0] + (seconds[1] - seconds[0]) * random() if isinstance(seconds, tuple) else seconds # nosec B311 ) await asyncio.sleep(delay) class BadWorkerState(RuntimeError): """Raised when the worker state from the worker read by the executor is not valid.""" pass class WorkerExecutor: def __init__(self, app_config: AppConfig, job_runner_factory: JobRunnerFactory, state_file_path: str) -> None: self.app_config = app_config self.job_runner_factory = job_runner_factory self.state_file_path = state_file_path self.processing_graph = ProcessingGraph(self.app_config.processing_graph.specification) max_missing_heartbeats = self.app_config.worker.max_missing_heartbeats heartbeat_interval_seconds = self.app_config.worker.heartbeat_interval_seconds self.max_seconds_without_heartbeat_for_zombies = heartbeat_interval_seconds * max_missing_heartbeats self.heartbeat_interval_seconds = self.app_config.worker.heartbeat_interval_seconds self.max_job_duration_seconds = self.app_config.worker.max_job_duration_seconds self.kill_zombies_interval_seconds = self.app_config.worker.kill_zombies_interval_seconds self.kill_long_job_interval_seconds = self.app_config.worker.kill_long_job_interval_seconds def _create_worker_loop_executor(self) -> OutputExecutor: banner = self.state_file_path start_worker_loop_command = [ sys.executable, START_WORKER_LOOP_PATH, "--print-worker-state-path", ] return OutputExecutor(start_worker_loop_command, banner, timeout=10) def start(self) -> None: exceptions = [] worker_loop_executor = self._create_worker_loop_executor() worker_loop_executor.start() # blocking until the banner is printed def custom_exception_handler(loop: asyncio.AbstractEventLoop, context: dict[str, Any]) -> None: nonlocal exceptions # first, handle with default handler loop.default_exception_handler(context) exception = context.get("exception") if exception: exceptions.append(repr(exception)) loop.stop() loop = asyncio.get_event_loop() loop.set_exception_handler(custom_exception_handler) logging.info("Starting heartbeat.") loop.create_task(every(self.heartbeat, seconds=self.heartbeat_interval_seconds)) loop.create_task( every( self.kill_zombies, seconds=( self.kill_zombies_interval_seconds * 0.5, self.kill_zombies_interval_seconds * 1.5, ), ) ) loop.create_task( every( self.kill_long_job, worker_loop_executor=worker_loop_executor, seconds=( self.kill_long_job_interval_seconds * 0.5, self.kill_long_job_interval_seconds * 1.5, ), ) ) loop.run_until_complete( every(self.is_worker_alive, worker_loop_executor=worker_loop_executor, seconds=1.0, stop_on=False) ) if exceptions: raise RuntimeError(f"Some async tasks failed: {exceptions}") def get_state(self) -> Optional[WorkerState]: worker_state_file_path = self.state_file_path if not os.path.exists(worker_state_file_path): return None with FileLock(f"{worker_state_file_path}.lock"): try: with open(worker_state_file_path, "rb") as worker_state_f: worker_state = orjson.loads(worker_state_f.read()) return WorkerState( current_job_info=worker_state.get("current_job_info"), last_updated=datetime.fromisoformat(worker_state["last_updated"]), ) except (orjson.JSONDecodeError, KeyError) as err: raise BadWorkerState(f"Failed to read worker state at {worker_state_file_path}") from err def heartbeat(self) -> None: worker_state = self.get_state() if worker_state and worker_state["current_job_info"]: Queue().heartbeat(job_id=worker_state["current_job_info"]["job_id"]) def kill_zombies(self) -> None: queue = Queue() zombies = queue.get_zombies(max_seconds_without_heartbeat=self.max_seconds_without_heartbeat_for_zombies) message = "Job manager crashed while running this job (missing heartbeats)." for zombie in zombies: job_runner = self.job_runner_factory.create_job_runner(zombie) job_manager = JobManager( job_info=zombie, app_config=self.app_config, job_runner=job_runner, processing_graph=self.processing_graph, ) job_manager.set_crashed(message=message) logging.info(f"Killing zombie. Job info = {zombie}") def kill_long_job(self, worker_loop_executor: OutputExecutor) -> None: worker_state = self.get_state() if worker_state and worker_state["current_job_info"]: long_job = worker_state["current_job_info"] last_updated = worker_state["last_updated"] coefficient = 10 if long_job["params"]["dataset"] == "cerebras/SlimPajama-627B" else 1 if last_updated + timedelta(seconds=coefficient * self.max_job_duration_seconds) <= get_datetime(): _duration_seconds = int((get_datetime() - last_updated).total_seconds()) logging.warning( f"Job {long_job} exceeded maximum duration of" f" {self.max_job_duration_seconds} seconds ({_duration_seconds} seconds)." ) try: worker_loop_executor.stop() # raises an error if the worker returned exit code 1 finally: logging.info(f"Killing a long job. Job info = {long_job}") job_runner = self.job_runner_factory.create_job_runner(long_job) job_manager = JobManager( job_info=long_job, app_config=self.app_config, job_runner=job_runner, processing_graph=self.processing_graph, ) message = "Job manager was killed while running this job (job exceeded maximum duration)." job_manager.set_exceeded_maximum_duration(message=message) def is_worker_alive(self, worker_loop_executor: OutputExecutor) -> bool: if worker_loop_executor.running(): return True worker_loop_executor.stop() # raises an error if the worker returned exit code 1 return False
datasets-server-main
services/worker/src/worker/executor.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import json import random import re from hashlib import sha1 from pathlib import Path from typing import Optional from libcommon.exceptions import DiskError from libcommon.processing_graph import ProcessingStep from libcommon.storage import init_dir, remove_dir from libcommon.utils import JobInfo from worker.config import AppConfig from worker.job_runner import JobRunner class JobRunnerWithCache(JobRunner): """Base class for job runners that use a temporary cache directory.""" base_cache_directory: Path cache_subdirectory: Optional[Path] = None def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, cache_directory: Path, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, ) self.base_cache_directory = cache_directory def get_cache_subdirectory(self, digits: int = 14) -> str: random_str = f"{random.randrange(10**(digits - 1), 10**digits)}" # nosec B311 # TODO: Refactor, need a way to generate payload based only on provided params payload = ( random_str, self.get_job_type(), self.job_info["params"]["dataset"], self.job_info["params"]["config"], self.job_info["params"]["split"], ) hash_suffix = sha1(json.dumps(payload, sort_keys=True).encode(), usedforsecurity=False).hexdigest()[:8] prefix = f"{random_str}-{self.get_job_type()}-{self.job_info['params']['dataset']}"[:64] subdirectory = f"{prefix}-{hash_suffix}" return "".join([c if re.match(r"[\w-]", c) else "-" for c in subdirectory]) def pre_compute(self) -> None: new_directory = self.base_cache_directory / self.get_cache_subdirectory() try: self.cache_subdirectory = Path(init_dir(new_directory)) except PermissionError as e: raise DiskError(f"Incorrect permissions on {new_directory}", e) from e def post_compute(self) -> None: # empty the cache after the job to save storage space previous_cache = self.cache_subdirectory if previous_cache is not None: remove_dir(previous_cache) self.cache_subdirectory = None
datasets-server-main
services/worker/src/worker/job_runners/_job_runner_with_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/src/worker/job_runners/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from pathlib import Path from typing import Optional import datasets.config from libcommon.processing_graph import ProcessingStep from libcommon.utils import JobInfo from worker.config import AppConfig from worker.job_runners._job_runner_with_cache import JobRunnerWithCache class JobRunnerWithDatasetsCache(JobRunnerWithCache): """Base class for job runners that use datasets.""" def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, cache_directory=hf_datasets_cache, ) def set_datasets_cache(self, cache_subdirectory: Optional[Path]) -> None: datasets.config.HF_DATASETS_CACHE = cache_subdirectory logging.debug(f"datasets data cache set to: {datasets.config.HF_DATASETS_CACHE}") datasets.config.DOWNLOADED_DATASETS_PATH = ( datasets.config.HF_DATASETS_CACHE / datasets.config.DOWNLOADED_DATASETS_DIR ) datasets.config.EXTRACTED_DATASETS_PATH = ( datasets.config.HF_DATASETS_CACHE / datasets.config.EXTRACTED_DATASETS_DIR ) def pre_compute(self) -> None: super().pre_compute() self.set_datasets_cache(self.cache_subdirectory) def post_compute(self) -> None: super().post_compute() self.set_datasets_cache(self.base_cache_directory)
datasets-server-main
services/worker/src/worker/job_runners/_job_runner_with_datasets_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from asyncio import Semaphore, create_task, run, wait from pathlib import Path from typing import Any, Optional from aiohttp import ClientSession from aiolimiter import AsyncLimiter from datasets import get_dataset_config_info from libcommon.constants import PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION from libcommon.exceptions import ( ExternalServerError, InfoError, MissingSpawningTokenError, PreviousStepFormatError, TooManyColumnsError, ) from libcommon.processing_graph import ProcessingStep from libcommon.simple_cache import get_previous_step_or_raise from libcommon.utils import JobInfo from worker.config import AppConfig, OptInOutUrlsScanConfig from worker.dtos import CompleteJobResult, OptInOutUrlsScanResponse, OptUrl from worker.job_runners.split.split_job_runner import SplitJobRunnerWithDatasetsCache from worker.utils import get_rows_or_raise async def check_spawning( image_urls: list[str], session: ClientSession, semaphore: Semaphore, limiter: AsyncLimiter, spawning_url: str ) -> Any: if not image_urls: return {"urls": []} elif len(image_urls) == 1: image_urls = image_urls + [""] # the API requires >1 urls async with semaphore: async with limiter: async with session.post(url=spawning_url, data="\n".join(image_urls)) as resp: spawning_response = await resp.json() return spawning_response async def opt_in_out_task( image_urls: list[str], session: ClientSession, semaphore: Semaphore, limiter: AsyncLimiter, spawning_url: str ) -> tuple[list[Any], list[Any]]: try: spawning_response = await check_spawning(image_urls, session, semaphore, limiter, spawning_url) except Exception: raise ExternalServerError(message=f"Error when trying to connect to {spawning_url}") if "urls" not in spawning_response: raise ExternalServerError(message=f"Error when trying to connect to {spawning_url}: '{spawning_response}'") opt_in_urls_indices = [i for i in range(len(image_urls)) if spawning_response["urls"][i]["optIn"]] opt_out_urls_indices = [i for i in range(len(image_urls)) if spawning_response["urls"][i]["optOut"]] return opt_in_urls_indices, opt_out_urls_indices async def opt_in_out_scan_urls( urls: list[str], urls_number_per_batch: int, spawning_token: str, max_concurrent_requests_number: int, max_requests_per_second: int, spawning_url: str, ) -> tuple[list[int], list[int]]: offsets = [] tasks = [] semaphore = Semaphore(value=max_concurrent_requests_number) limiter = AsyncLimiter(max_requests_per_second, time_period=1) headers = {"Authorization": f"API {spawning_token}"} async with ClientSession(headers=headers) as session: for offset in range(0, len(urls), urls_number_per_batch): offsets.append(offset) limit = offset + urls_number_per_batch tasks.append( create_task(opt_in_out_task(urls[offset:limit], session, semaphore, limiter, spawning_url)) ) # noqa: E203 await wait(tasks) opt_in_urls_indices = [] opt_out_urls_indices = [] for offset, task in zip(offsets, tasks): batch_opt_in_urls_indices, batch_opt_out_urls_indices = task.result() for batch_opt_in_urls_idx in batch_opt_in_urls_indices: opt_in_urls_indices.append(offset + batch_opt_in_urls_idx) for batch_opt_out_urls_idx in batch_opt_out_urls_indices: opt_out_urls_indices.append(offset + batch_opt_out_urls_idx) return opt_in_urls_indices, opt_out_urls_indices def compute_opt_in_out_urls_scan_response( dataset: str, config: str, split: str, hf_token: Optional[str], rows_max_number: int, columns_max_number: int, urls_number_per_batch: int, spawning_token: Optional[str], max_concurrent_requests_number: int, max_requests_per_second: int, spawning_url: str, ) -> OptInOutUrlsScanResponse: """ Get the response of split-opt-in-out-urls-scan cache for a specific split of a dataset from huggingface.co. The response is not used directly in the API but it is an input for config-opt-in-out-urls-scan processing step. Note that only image URLs are scanned, see image_url_columns.py for details about the detection heuristic. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. split (`str`): A split name. hf_token (`str` or `None`): An authentication token (See https://huggingface.co/settings/token) rows_max_number (`int`): The maximum number of rows of the response. columns_max_number (`int`): The maximum number of supported columns. urls_number_per_batch (`int`): The number of batch URLs to be sent to spawning service. spawning_token (`str` or `None`): An authentication token to use spawning service (See https://api.spawning.ai/spawning-api) max_concurrent_requests_number (`int`): The maximum number of requests to be processed concurrently. max_requests_per_second (`int`): The maximum number of requests to be processed by second. spawning_url (`str`): Spawgning API URL Returns: [`OptInOutUrlsScanResponse`] Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format - [`libcommon.exceptions.InfoError`] If the config info could not be obtained using the datasets library. - [`libcommon.exceptions.TooManyColumnsError`] If the number of columns (features) exceeds the maximum supported number of columns. - [`libcommon.exceptions.StreamingRowsError`] If the split rows could not be obtained using the datasets library in streaming mode. - [`libcommon.exceptions.NormalRowsError`] If the split rows could not be obtained using the datasets library in normal mode. """ logging.info(f"get opt-in-out-urls-scan for dataset={dataset} config={config} split={split}") if not spawning_token: raise MissingSpawningTokenError("OPT_IN_OUT_URLS_SCAN_SPAWNING_TOKEN is not set") # get image url columns from previous job upstream_response = get_previous_step_or_raise( kinds=["split-image-url-columns"], dataset=dataset, config=config, split=split, ) try: image_url_columns_response = upstream_response.response image_url_columns = image_url_columns_response["content"]["columns"] except KeyError as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e # get the info try: info = get_dataset_config_info( path=dataset, config_name=config, token=hf_token, ) except Exception as err: raise InfoError( f"The info cannot be fetched for the config '{config}' of the dataset.", cause=err, ) from err if not image_url_columns: return OptInOutUrlsScanResponse( urls_columns=[], opt_in_urls=[], opt_out_urls=[], num_opt_in_urls=0, num_opt_out_urls=0, num_urls=0, num_scanned_rows=0, has_urls_columns=False, full_scan=None, ) if len(image_url_columns) > columns_max_number: raise TooManyColumnsError( f"The number of columns ({len(image_url_columns)}) exceeds the maximum supported number of columns to scan" f" ({columns_max_number})." ) # get the rows rows_content = get_rows_or_raise( dataset=dataset, config=config, split=split, info=info, rows_max_number=rows_max_number, token=hf_token, column_names=image_url_columns, ) rows = rows_content["rows"] # get the urls num_scanned_rows = len(rows) urls = [row[urls_column] for row in rows for urls_column in image_url_columns] # scan the urls opt_in_urls_indices, opt_out_urls_indices = run( opt_in_out_scan_urls( urls, urls_number_per_batch=urls_number_per_batch, spawning_token=spawning_token, max_concurrent_requests_number=max_concurrent_requests_number, max_requests_per_second=max_requests_per_second, spawning_url=spawning_url, ) ) opt_in_urls = [ OptUrl( url=urls[url_idx], row_idx=url_idx // len(image_url_columns), column_name=image_url_columns[url_idx % len(image_url_columns)], ) for url_idx in opt_in_urls_indices ] opt_out_urls = [ OptUrl( url=urls[url_idx], row_idx=url_idx // len(image_url_columns), column_name=image_url_columns[url_idx % len(image_url_columns)], ) for url_idx in opt_out_urls_indices ] # return scan result return OptInOutUrlsScanResponse( urls_columns=image_url_columns, opt_in_urls=opt_in_urls, opt_out_urls=opt_out_urls, num_opt_in_urls=len(opt_in_urls), num_opt_out_urls=len(opt_out_urls), num_urls=len(urls), num_scanned_rows=num_scanned_rows, has_urls_columns=True, full_scan=rows_content["all_fetched"], ) class SplitOptInOutUrlsScanJobRunner(SplitJobRunnerWithDatasetsCache): urls_scan_config: OptInOutUrlsScanConfig @staticmethod def get_job_type() -> str: return "split-opt-in-out-urls-scan" # ^ TODO: Change step name referring to image URLs scan specifically. @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_SCAN_VERSION def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, hf_datasets_cache=hf_datasets_cache, ) self.urls_scan_config = app_config.urls_scan def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_opt_in_out_urls_scan_response( dataset=self.dataset, config=self.config, split=self.split, hf_token=self.app_config.common.hf_token, rows_max_number=self.urls_scan_config.rows_max_number, columns_max_number=self.urls_scan_config.columns_max_number, urls_number_per_batch=self.urls_scan_config.urls_number_per_batch, spawning_token=self.urls_scan_config.spawning_token, max_concurrent_requests_number=self.urls_scan_config.max_concurrent_requests_number, max_requests_per_second=self.urls_scan_config.max_requests_per_second, spawning_url=self.urls_scan_config.spawning_url, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/opt_in_out_urls_scan_from_streaming.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/src/worker/job_runners/split/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.constants import PROCESSING_STEP_SPLIT_IS_VALID_VERSION from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.simple_cache import has_any_successful_response from libcommon.utils import JobInfo from worker.config import AppConfig from worker.dtos import CompleteJobResult, IsValidResponse, JobResult from worker.job_runners.split.split_job_runner import SplitJobRunner def compute_is_valid_response( dataset: str, config: str, split: str, processing_graph: ProcessingGraph ) -> IsValidResponse: """ Get the response of /is-valid for one specific dataset split on huggingface.co. A dataset split is valid if any of the artifacts for any of the steps is valid. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. split (`str`): A split name. processing_graph (`ProcessingGraph`): The processing graph. In particular, it must provide the list of processing steps that enable the viewer and the preview. Returns: `IsValidResponse`: The response (viewer, preview, search). """ logging.info(f"get is-valid response for dataset={dataset}") viewer = has_any_successful_response( dataset=dataset, config=config, split=None, kinds=[step.cache_kind for step in processing_graph.get_processing_steps_enables_viewer()], ) preview = has_any_successful_response( dataset=dataset, config=config, split=split, kinds=[step.cache_kind for step in processing_graph.get_processing_steps_enables_preview()], ) search = has_any_successful_response( dataset=dataset, config=config, split=split, kinds=[step.cache_kind for step in processing_graph.get_processing_steps_enables_search()], ) return IsValidResponse(viewer=viewer, preview=preview, search=search) class SplitIsValidJobRunner(SplitJobRunner): @staticmethod def get_job_type() -> str: return "split-is-valid" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_IS_VALID_VERSION def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, processing_graph: ProcessingGraph, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, ) self.processing_graph = processing_graph def compute(self) -> JobResult: return CompleteJobResult( compute_is_valid_response( dataset=self.dataset, config=self.config, split=self.split, processing_graph=self.processing_graph ) )
datasets-server-main
services/worker/src/worker/job_runners/split/is_valid.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from pathlib import Path from libcommon.exceptions import ParameterMissingError from libcommon.processing_graph import ProcessingStep from libcommon.utils import JobInfo from worker.config import AppConfig from worker.job_runners._job_runner_with_cache import JobRunnerWithCache from worker.job_runners._job_runner_with_datasets_cache import ( JobRunnerWithDatasetsCache, ) from worker.job_runners.config.config_job_runner import ConfigJobRunner from worker.utils import check_split_exists class SplitJobRunner(ConfigJobRunner): split: str def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, ) -> None: super().__init__(job_info=job_info, app_config=app_config, processing_step=processing_step) if job_info["params"]["split"] is None: raise ParameterMissingError("'split' parameter is required") self.split = job_info["params"]["split"] def validate(self) -> None: check_split_exists(dataset=self.dataset, config=self.config, split=self.split) class SplitJobRunnerWithDatasetsCache(JobRunnerWithDatasetsCache, SplitJobRunner): def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, ) -> None: JobRunnerWithDatasetsCache.__init__( self, job_info=job_info, app_config=app_config, processing_step=processing_step, hf_datasets_cache=hf_datasets_cache, ) SplitJobRunner.__init__( self, job_info=job_info, app_config=app_config, processing_step=processing_step, ) class SplitJobRunnerWithCache(JobRunnerWithCache, SplitJobRunner): def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, cache_directory: Path, ) -> None: JobRunnerWithCache.__init__( self, job_info=job_info, app_config=app_config, processing_step=processing_step, cache_directory=cache_directory, ) SplitJobRunner.__init__( self, job_info=job_info, app_config=app_config, processing_step=processing_step, )
datasets-server-main
services/worker/src/worker/job_runners/split/split_job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from pathlib import Path from typing import Optional from datasets import ( Audio, Features, Image, IterableDataset, get_dataset_config_info, load_dataset, ) from libcommon.constants import ( PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION, PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, ) from libcommon.exceptions import ( FeaturesError, InfoError, RowsPostProcessingError, TooBigContentError, TooManyColumnsError, ) from libcommon.processing_graph import ProcessingStep from libcommon.storage import StrPath from libcommon.utils import JobInfo, Row from libcommon.viewer_utils.features import get_cell_value, to_features_list from worker.config import AppConfig, FirstRowsConfig from worker.dtos import CompleteJobResult, JobRunnerInfo, SplitFirstRowsResponse from worker.job_runners.split.split_job_runner import SplitJobRunnerWithDatasetsCache from worker.utils import create_truncated_row_items, get_json_size, get_rows_or_raise def transform_rows( dataset: str, config: str, split: str, rows: list[Row], features: Features, assets_base_url: str, assets_directory: StrPath, ) -> list[Row]: return [ { featureName: get_cell_value( dataset=dataset, config=config, split=split, row_idx=row_idx, cell=row[featureName] if featureName in row else None, featureName=featureName, fieldType=fieldType, assets_base_url=assets_base_url, assets_directory=assets_directory, ) for (featureName, fieldType) in features.items() } for row_idx, row in enumerate(rows) ] def compute_first_rows_response( dataset: str, config: str, split: str, assets_base_url: str, hf_token: Optional[str], min_cell_bytes: int, rows_max_bytes: int, rows_max_number: int, rows_min_number: int, columns_max_number: int, assets_directory: StrPath, max_size_fallback: Optional[int] = None, ) -> SplitFirstRowsResponse: """ Get the response of /first-rows for one specific split of a dataset from huggingface.co. Dataset can be private or gated if you pass an acceptable token. It is assumed that the dataset exist and can be accessed using the token. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. split (`str`): A split name. assets_base_url (`str`): The base url of the assets. hf_endpoint (`str`): The Hub endpoint (for example: "https://huggingface.co") hf_token (`str` or `None`): An authentication token (See https://huggingface.co/settings/token) max_size_fallback (`int` or `None`): **DEPRECATED** The maximum number of bytes of the split to fallback to normal mode if the streaming mode fails. This argument is now hard-coded to 100MB, and will be removed in a future version. rows_max_bytes (`int`): The maximum number of bytes of the response (else, the response is truncated). rows_max_number (`int`): The maximum number of rows of the response. rows_min_number (`int`): The minimum number of rows of the response. columns_max_number (`int`): The maximum number of columns supported. assets_directory (`str` or `pathlib.Path`): The directory where the assets are stored. Returns: [`SplitFirstRowsResponse`]: The list of first rows of the split. Raises the following errors: - [`libcommon.exceptions.SplitNotFoundError`] If the split does not exist in the dataset. - [`libcommon.exceptions.InfoError`] If the config info could not be obtained using the datasets library. - [`libcommon.exceptions.FeaturesError`] If the split features could not be obtained using the datasets library. - [`libcommon.exceptions.RowsPostProcessingError`] If the post-processing of the split rows failed, e.g. while saving the images or audio files to the assets. - [`libcommon.exceptions.TooManyColumnsError`] If the number of columns (features) exceeds the maximum supported number of columns. - [`libcommon.exceptions.TooBigContentError`] If the first rows content exceeds the maximum supported size of bytes. - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format - [`libcommon.exceptions.StreamingRowsError`] If the split rows could not be obtained using the datasets library in streaming mode. - [`libcommon.exceptions.NormalRowsError`] If the split rows could not be obtained using the datasets library in normal mode. """ logging.info(f"get first-rows for dataset={dataset} config={config} split={split}") # get the features try: info = get_dataset_config_info( path=dataset, config_name=config, token=hf_token, ) except Exception as err: raise InfoError( f"The info cannot be fetched for the config '{config}' of the dataset.", cause=err, ) from err if not info.features: try: # https://github.com/huggingface/datasets/blob/f5826eff9b06ab10dba1adfa52543341ef1e6009/src/datasets/iterable_dataset.py#L1255 iterable_dataset = load_dataset( path=dataset, name=config, split=split, streaming=True, token=hf_token, ) if not isinstance(iterable_dataset, IterableDataset): raise TypeError("load_dataset should return an IterableDataset.") iterable_dataset = iterable_dataset._resolve_features() if not isinstance(iterable_dataset, IterableDataset): raise TypeError("load_dataset should return an IterableDataset.") features = iterable_dataset.features except Exception as err: raise FeaturesError( ( f"Cannot extract the features (columns) for the split '{split}' of the config '{config}' of the" " dataset." ), cause=err, ) from err else: features = info.features if features and len(features) > columns_max_number: raise TooManyColumnsError( f"The number of columns ({len(features)}) exceeds the maximum supported number of columns" f" ({columns_max_number}). This is a current limitation of the datasets viewer. You can reduce the number" " of columns if you want the viewer to work." ) # validate size of response without the rows features_list = to_features_list(features=features) response_features_only: SplitFirstRowsResponse = { "dataset": dataset, "config": config, "split": split, "features": features_list, "rows": [], "truncated": False, } surrounding_json_size = get_json_size(response_features_only) if surrounding_json_size > rows_max_bytes: raise TooBigContentError( f"The size of the content of the first rows ({surrounding_json_size} B) exceeds the maximum" f" supported size ({rows_max_bytes} B) even after truncation. Please report the issue." ) # get the rows rows_content = get_rows_or_raise( dataset=dataset, config=config, split=split, info=info, max_size_fallback=max_size_fallback, rows_max_number=rows_max_number, token=hf_token, ) rows = rows_content["rows"] all_fetched = rows_content["all_fetched"] # transform the rows, if needed (e.g. save the images or audio to the assets, and return their URL) try: transformed_rows = transform_rows( dataset=dataset, config=config, split=split, rows=rows, features=features, assets_base_url=assets_base_url, assets_directory=assets_directory, ) except Exception as err: raise RowsPostProcessingError( "Server error while post-processing the split rows. Please report the issue.", cause=err, ) from err # truncate the rows to fit within the restrictions, and prepare them as RowItems columns_to_keep_untruncated = [col for col, feature in features.items() if isinstance(feature, (Image, Audio))] row_items, truncated = create_truncated_row_items( rows=transformed_rows, min_cell_bytes=min_cell_bytes, rows_max_bytes=rows_max_bytes - surrounding_json_size, rows_min_number=rows_min_number, columns_to_keep_untruncated=columns_to_keep_untruncated, ) response = response_features_only response["rows"] = row_items response["truncated"] = (not all_fetched) or truncated # return the response return response class SplitFirstRowsFromStreamingJobRunner(SplitJobRunnerWithDatasetsCache): assets_directory: StrPath first_rows_config: FirstRowsConfig @staticmethod def get_job_type() -> str: return "split-first-rows-from-streaming" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION @staticmethod def get_parallel_job_runner() -> JobRunnerInfo: return JobRunnerInfo( job_runner_version=PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION, job_type="split-first-rows-from-parquet", ) def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, assets_directory: StrPath, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, hf_datasets_cache=hf_datasets_cache, ) self.first_rows_config = app_config.first_rows self.assets_directory = assets_directory self.assets_base_url = app_config.assets.base_url def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_first_rows_response( dataset=self.dataset, config=self.config, split=self.split, assets_base_url=self.assets_base_url, assets_directory=self.assets_directory, hf_token=self.app_config.common.hf_token, min_cell_bytes=self.first_rows_config.min_cell_bytes, rows_max_bytes=self.first_rows_config.max_bytes, rows_max_number=self.first_rows_config.max_number, rows_min_number=self.first_rows_config.min_number, columns_max_number=self.first_rows_config.columns_max_number, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/first_rows_from_streaming.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import enum import logging import os from pathlib import Path from typing import Optional, TypedDict, Union import duckdb import numpy as np import pandas as pd from huggingface_hub import hf_hub_download from libcommon.constants import PROCESSING_STEP_SPLIT_DESCRIPTIVE_STATISTICS_VERSION from libcommon.exceptions import ( CacheDirectoryNotInitializedError, NoSupportedFeaturesError, ParquetResponseEmptyError, PreviousStepFormatError, SplitWithTooBigParquetError, StatisticsComputationError, ) from libcommon.processing_graph import ProcessingStep from libcommon.simple_cache import get_previous_step_or_raise from libcommon.storage import StrPath from libcommon.utils import JobInfo from tqdm import tqdm from worker.config import AppConfig, DescriptiveStatisticsConfig from worker.dtos import CompleteJobResult from worker.job_runners.split.split_job_runner import SplitJobRunnerWithCache REPO_TYPE = "dataset" DECIMALS = 5 INTEGER_DTYPES = ["int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64"] FLOAT_DTYPES = ["float16", "float32", "float64"] NUMERICAL_DTYPES = INTEGER_DTYPES + FLOAT_DTYPES BINS_TABLE_NAME = "bins" # name of a table with bin edges data used to compute histogram COMPUTE_NAN_COUNTS_COMMAND = """ SELECT COUNT(*) FROM read_parquet('{parquet_filename}') WHERE {column_name} IS NULL; """ COMPUTE_CATEGORIES_COUNTS_COMMAND = """ SELECT {column_name}, COUNT(*) FROM read_parquet('{parquet_filename}') GROUP BY {column_name}; """ COMPUTE_MIN_MAX_MEAN_MEDIAN_STD_COMMAND = """ SELECT min({column_name}), max({column_name}), mean({column_name}), median({column_name}), stddev_samp({column_name}) FROM read_parquet('{parquet_filename}'); """ COMPUTE_HIST_COMMAND = """ SELECT bin_id, COUNT(*) as count FROM read_parquet('{parquet_filename}') JOIN {bins_table_name} ON ({column_name} >= bin_min AND {column_name} < bin_max) GROUP BY bin_id; """ class ColumnType(str, enum.Enum): FLOAT = "float" INT = "int" CLASS_LABEL = "class_label" class Histogram(TypedDict): hist: list[int] bin_edges: list[float] class NumericalStatisticsItem(TypedDict): nan_count: int nan_proportion: float min: float max: float mean: float median: float std: float histogram: Histogram class CategoricalStatisticsItem(TypedDict): nan_count: int nan_proportion: float n_unique: int frequencies: dict[str, int] class StatisticsPerColumnItem(TypedDict): column_name: str column_type: ColumnType column_statistics: Union[NumericalStatisticsItem, CategoricalStatisticsItem] class SplitDescriptiveStatisticsResponse(TypedDict): num_examples: int statistics: list[StatisticsPerColumnItem] def generate_bins( min_value: Union[int, float], max_value: Union[int, float], column_name: str, column_type: ColumnType, n_bins: int, ) -> pd.DataFrame: """ Returns: pandas.DataFrame with bin edges to insert into database to perform histogram computation with duckdb """ if column_type is ColumnType.FLOAT: bin_size = (max_value - min_value) / n_bins bin_edges = np.arange(min_value, max_value, bin_size).astype(float).tolist() if len(bin_edges) != n_bins: raise StatisticsComputationError( f"Incorrect number of bins generated for {column_name=}, expected {n_bins}, got {len(bin_edges)}." ) elif column_type is ColumnType.INT: bin_size = np.ceil((max_value - min_value + 1) / n_bins) bin_edges = np.arange(min_value, max_value + 1, bin_size).astype(int).tolist() if len(bin_edges) > n_bins: raise StatisticsComputationError( f"Incorrect number of bins generated for {column_name=}, expected {n_bins}, got {len(bin_edges)}." ) else: raise ValueError(f"Incorrect column type of {column_name=}: {column_type}. ") bin_max_edges = bin_edges[1:] + [max_value + 1] # add 1 to include exact max values in the last bin return pd.DataFrame.from_dict( {"bin_id": list(range(len(bin_edges))), "bin_min": bin_edges, "bin_max": bin_max_edges} ) def compute_histogram( con: duckdb.DuckDBPyConnection, column_name: str, parquet_filename: Path, column_type: ColumnType, min_value: Union[int, float], max_value: Union[int, float], n_bins: int, n_samples: Optional[int] = None, ) -> Histogram: bins_df = generate_bins( min_value=min_value, max_value=max_value, column_name=column_name, column_type=column_type, n_bins=n_bins ) n_bins = bins_df.shape[0] # create auxiliary table with bin edges con.sql(f"CREATE OR REPLACE TEMPORARY TABLE {BINS_TABLE_NAME} AS SELECT * from bins_df") # nosec compute_hist_command = COMPUTE_HIST_COMMAND.format( parquet_filename=parquet_filename, bins_table_name=BINS_TABLE_NAME, column_name=column_name ) logging.debug(f"Compute histogram for {column_name=}") # query returns list of tuples (bin_id, bin_max, n_count): hist_query_result = dict(con.sql(compute_hist_command).fetchall()) # dict bin_id -> n_samples if len(hist_query_result) > n_bins + 1: raise StatisticsComputationError( f"Got unexpected result during histogram computation for {column_name=}: returned more bins than" f" requested. {n_bins=} {hist_query_result=}. " ) hist = [] for bin_idx in range(n_bins): # no key in query result = no examples in this range, so we put 0 hist.append(hist_query_result.get(bin_idx, 0)) if n_samples and sum(hist) != n_samples: raise StatisticsComputationError( f"Got unexpected result during histogram computation for {column_name=}: " f" histogram sum and number of non-null samples don't match, histogram sum={sum(hist)}, {n_samples=}" ) bins = bins_df["bin_min"].round(DECIMALS).tolist() bins = bins + [np.round(max_value, DECIMALS).item()] # put exact max value back to bins return Histogram(hist=hist, bin_edges=bins) def compute_numerical_statistics( con: duckdb.DuckDBPyConnection, column_name: str, parquet_filename: Path, n_bins: int, n_samples: int, column_type: ColumnType, ) -> NumericalStatisticsItem: logging.debug(f"Compute min, max, mean, median, std and proportion of null values for {column_name=}") min_max_mean_median_std_command = COMPUTE_MIN_MAX_MEAN_MEDIAN_STD_COMMAND.format( column_name=column_name, parquet_filename=parquet_filename ) minimum, maximum, mean, median, std = con.sql(min_max_mean_median_std_command).fetchall()[0] logging.debug(f"{minimum=}, {maximum=}, {mean=}, {median=}, {std=}") nan_count_command = COMPUTE_NAN_COUNTS_COMMAND.format(column_name=column_name, parquet_filename=parquet_filename) nan_count = con.sql(nan_count_command).fetchall()[0][0] nan_proportion = np.round(nan_count / n_samples, DECIMALS).item() if nan_count else 0.0 logging.debug(f"{nan_count=} {nan_proportion=}") histogram = compute_histogram( con, column_name, parquet_filename, min_value=minimum, max_value=maximum, column_type=column_type, n_bins=n_bins, n_samples=n_samples - nan_count, ) if column_type == ColumnType.FLOAT: minimum, maximum, mean, median, std = np.round([minimum, maximum, mean, median, std], DECIMALS).tolist() elif column_type == ColumnType.INT: mean, median, std = np.round([mean, median, std], DECIMALS).tolist() else: raise ValueError(f"Incorrect column type of {column_name=}: {column_type}") return NumericalStatisticsItem( nan_count=nan_count, nan_proportion=nan_proportion, min=minimum, max=maximum, mean=mean, median=median, std=std, histogram=histogram, ) def compute_categorical_statistics( con: duckdb.DuckDBPyConnection, column_name: str, parquet_filename: Path, class_label_names: list[str], n_samples: int, ) -> CategoricalStatisticsItem: categorical_counts_query = COMPUTE_CATEGORIES_COUNTS_COMMAND.format( column_name=column_name, parquet_filename=parquet_filename ) categories: list[tuple[int, int]] = con.sql( categorical_counts_query ).fetchall() # list of tuples (idx, num_samples) frequencies, nan_count = {}, 0 for cat_id, freq in categories: if cat_id is not None: frequencies[class_label_names[cat_id]] = freq else: nan_count = freq nan_proportion = np.round(nan_count / n_samples, DECIMALS).item() if nan_count != 0 else 0.0 logging.debug(f"Statistics for {column_name=} computed") return CategoricalStatisticsItem( nan_count=nan_count, nan_proportion=nan_proportion, n_unique=len(categories) - 1 if nan_count else len(categories), frequencies=frequencies, ) def compute_descriptive_statistics_response( dataset: str, config: str, split: str, local_parquet_directory: Path, hf_token: Optional[str], parquet_revision: str, histogram_num_bins: int, max_parquet_size_bytes: int, ) -> SplitDescriptiveStatisticsResponse: """ Compute statistics and get response for the `split-descriptive-statistics` step. Currently, integers, floats and ClassLabel features are supported. Args: dataset (`str`): Name of a dataset. config (`str`): Requested dataset configuration name. split (`str`): Requested dataset split. local_parquet_directory (`Path`): Path to a local directory where the dataset's parquet files are stored. We download these files locally because it enables fast querying and statistics computation. hf_token (`str`, `optional`): An app authentication token with read access to all the datasets. parquet_revision (`str`): The git revision (e.g. "refs/convert/parquet") from where to download the dataset's parquet files. histogram_num_bins (`int`): (Maximum) number of bins to compute histogram for numerical data. The resulting number of bins might be lower than the requested one for integer data. max_parquet_size_bytes (`int`): The maximum size in bytes of the dataset's parquet files to compute statistics. Datasets with bigger size are ignored. Returns: `SplitDescriptiveStatisticsResponse`: An object with the statistics response for a requested split, per each numerical (int and float) or ClassLabel feature. Raises the following errors: - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step does not have the expected format. - [`libcommon.exceptions.ParquetResponseEmptyError`] If response for `config-parquet-and-info` doesn't have any parquet files. - [`libcommon.exceptions.SplitWithTooBigParquetError`] If requested split's parquet files size exceeds the provided `max_parquet_size_bytes`. - [`libcommon.exceptions.NoSupportedFeaturesError`] If requested dataset doesn't have any supported for statistics computation features. Currently, floats, integers and ClassLabels are supported. - [`libcommon.exceptions.StatisticsComputationError`] If there was some unexpected behaviour during statistics computation. """ logging.info(f"Compute descriptive statistics for {dataset=}, {config=}, {split=}") config_parquet_and_info_step = "config-parquet-and-info" parquet_and_info_best_response = get_previous_step_or_raise( kinds=[config_parquet_and_info_step], dataset=dataset, config=config, ) content_parquet_and_info = parquet_and_info_best_response.response["content"] try: split_parquet_files = [ parquet_file for parquet_file in content_parquet_and_info["parquet_files"] if parquet_file["config"] == config and parquet_file["split"] == split ] dataset_info = content_parquet_and_info["dataset_info"] except KeyError as e: raise PreviousStepFormatError( ( f"Previous step '{config_parquet_and_info_step}' did not return the expected content: " "'parquet_files' or 'dataset_info'. " ), e, ) from e if not split_parquet_files: raise ParquetResponseEmptyError("No parquet files found.") features = dataset_info.get("features") if features is None: raise PreviousStepFormatError( f"Previous step '{config_parquet_and_info_step}' did not return the expected content: " "no features found in 'dataset_info'. " ) split_parquets_size = sum(parquet_file["size"] for parquet_file in split_parquet_files) if split_parquets_size > max_parquet_size_bytes: raise SplitWithTooBigParquetError( f"Statistics computation is limited to split parquets under {max_parquet_size_bytes} bytes. " f"Current size of sum of split parquets is {split_parquets_size} bytes." ) # store data as local parquet files for fast querying os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" logging.info(f"Downloading remote parquet files to a local directory {local_parquet_directory}. ") for parquet_file in split_parquet_files: # For directories like "partial-train" for the file at "en/partial-train/0000.parquet" in the C4 dataset. # Note that "-" is forbidden for split names so it doesn't create directory names collisions. split_directory = parquet_file["url"].rsplit("/", 2)[1] hf_hub_download( repo_type=REPO_TYPE, revision=parquet_revision, repo_id=dataset, filename=f"{config}/{split_directory}/{parquet_file['filename']}", local_dir=local_parquet_directory, local_dir_use_symlinks=False, token=hf_token, cache_dir=local_parquet_directory, ) local_parquet_glob_path = Path(local_parquet_directory) / config / f"{split}/*.parquet" stats: list[StatisticsPerColumnItem] = [] num_examples = dataset_info["splits"][split]["num_examples"] categorical_features = { feature_name: feature for feature_name, feature in features.items() if isinstance(feature, dict) and feature.get("_type") == "ClassLabel" } numerical_features = { feature_name: feature for feature_name, feature in features.items() if isinstance(feature, dict) and feature.get("_type") == "Value" and feature.get("dtype") in NUMERICAL_DTYPES } if not categorical_features and not numerical_features: raise NoSupportedFeaturesError( "No columns for statistics computation found. Currently supported feature types are: " f"{NUMERICAL_DTYPES} and ClassLabel. " ) con = duckdb.connect(":memory:") # we don't load data in local db file, use local parquet file instead # configure duckdb extensions con.sql(f"SET extension_directory='{local_parquet_directory}';") con.sql("INSTALL httpfs") con.sql("LOAD httpfs") con.sql("SET enable_progress_bar=true;") # compute for ClassLabels (we are sure that these are discrete categories) if categorical_features: logging.info(f"Compute statistics for categorical columns {categorical_features}") for feature_name, feature in tqdm(categorical_features.items()): logging.debug(f"Compute statistics for ClassLabel feature '{feature_name}'") class_label_names = feature["names"] cat_column_stats: CategoricalStatisticsItem = compute_categorical_statistics( con, feature_name, class_label_names=class_label_names, n_samples=num_examples, parquet_filename=local_parquet_glob_path, ) stats.append( StatisticsPerColumnItem( column_name=feature_name, column_type=ColumnType.CLASS_LABEL, column_statistics=cat_column_stats, ) ) if numerical_features: logging.info(f"Compute min, max, mean, median, std, histogram for numerical columns {numerical_features}. ") for feature_name, feature in tqdm(numerical_features.items()): column_type = ColumnType.FLOAT if feature["dtype"] in FLOAT_DTYPES else ColumnType.INT num_column_stats: NumericalStatisticsItem = compute_numerical_statistics( con, feature_name, parquet_filename=local_parquet_glob_path, n_bins=histogram_num_bins, n_samples=num_examples, column_type=column_type, ) stats.append( StatisticsPerColumnItem( column_name=feature_name, column_type=column_type, column_statistics=num_column_stats, ) ) con.close() return SplitDescriptiveStatisticsResponse( num_examples=num_examples, statistics=sorted(stats, key=lambda x: x["column_name"]) ) class SplitDescriptiveStatisticsJobRunner(SplitJobRunnerWithCache): descriptive_statistics_config: DescriptiveStatisticsConfig def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, statistics_cache_directory: StrPath, ): super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, cache_directory=Path(statistics_cache_directory), ) self.descriptive_statistics_config = app_config.descriptive_statistics @staticmethod def get_job_type() -> str: return "split-descriptive-statistics" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_DESCRIPTIVE_STATISTICS_VERSION def compute(self) -> CompleteJobResult: if self.cache_subdirectory is None: raise CacheDirectoryNotInitializedError("Cache directory has not been initialized.") return CompleteJobResult( compute_descriptive_statistics_response( dataset=self.dataset, config=self.config, split=self.split, local_parquet_directory=self.cache_subdirectory, hf_token=self.app_config.common.hf_token, parquet_revision=self.descriptive_statistics_config.parquet_revision, histogram_num_bins=self.descriptive_statistics_config.histogram_num_bins, max_parquet_size_bytes=self.descriptive_statistics_config.max_parquet_size_bytes, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/descriptive_statistics.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_COUNT_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from worker.dtos import CompleteJobResult, OptInOutUrlsCountResponse from worker.job_runners.split.split_job_runner import SplitJobRunner def compute_opt_in_out_urls_count_response( dataset: str, config: str, split: str, ) -> OptInOutUrlsCountResponse: logging.info(f"get opt-in-out-urls-count for dataset={dataset} config={config} split={split}") opt_in_out_urls_scan = get_previous_step_or_raise( kinds=["split-opt-in-out-urls-scan"], dataset=dataset, config=config, split=split ) try: content = opt_in_out_urls_scan.response["content"] opt_in_out_urls_count = OptInOutUrlsCountResponse( has_urls_columns=content["has_urls_columns"], num_opt_in_urls=content["num_opt_in_urls"], num_opt_out_urls=content["num_opt_out_urls"], num_scanned_rows=content["num_scanned_rows"], num_urls=content["num_urls"], urls_columns=content["urls_columns"], full_scan=content["full_scan"], ) except KeyError as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e return opt_in_out_urls_count class SplitOptInOutUrlsCountJobRunner(SplitJobRunner): @staticmethod def get_job_type() -> str: return "split-opt-in-out-urls-count" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_OPT_IN_OUT_URLS_COUNT_VERSION def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_opt_in_out_urls_count_response( dataset=self.dataset, config=self.config, split=self.split, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/opt_in_out_urls_count.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import copy import logging import os from pathlib import Path from typing import Any, Optional import duckdb from datasets.features.features import Features, FeatureType, Value, _visit from huggingface_hub import hf_hub_download from huggingface_hub._commit_api import ( CommitOperation, CommitOperationAdd, CommitOperationDelete, ) from huggingface_hub.hf_api import HfApi from huggingface_hub.utils._errors import HfHubHTTPError, RepositoryNotFoundError from libcommon.constants import PROCESSING_STEP_SPLIT_DUCKDB_INDEX_VERSION from libcommon.exceptions import ( CacheDirectoryNotInitializedError, CreateCommitError, DatasetNotFoundError, DuckDBIndexFileNotFoundError, LockedDatasetTimeoutError, NoIndexableColumnsError, ParquetResponseEmptyError, PreviousStepFormatError, SplitWithTooBigParquetError, ) from libcommon.processing_graph import ProcessingStep from libcommon.queue import lock from libcommon.simple_cache import get_previous_step_or_raise from libcommon.storage import StrPath from libcommon.utils import JobInfo, SplitHubFile from worker.config import AppConfig, DuckDbIndexConfig from worker.dtos import CompleteJobResult from worker.job_runners.split.split_job_runner import SplitJobRunnerWithCache from worker.utils import ( HF_HUB_HTTP_ERROR_RETRY_SLEEPS, LOCK_GIT_BRANCH_RETRY_SLEEPS, create_branch, hf_hub_url, retry, ) DATASET_TYPE = "dataset" STRING_FEATURE_DTYPE = "string" VALUE_FEATURE_TYPE = "Value" DUCKDB_DEFAULT_INDEX_FILENAME = "index.duckdb" CREATE_SEQUENCE_COMMAND = "CREATE OR REPLACE SEQUENCE serial START 0 MINVALUE 0;" CREATE_INDEX_COMMAND = "PRAGMA create_fts_index('data', '__hf_index_id', {columns}, overwrite=1);" CREATE_TABLE_COMMAND = "CREATE OR REPLACE TABLE data AS SELECT nextval('serial') AS __hf_index_id, {columns} FROM" INSTALL_EXTENSION_COMMAND = "INSTALL '{extension}';" LOAD_EXTENSION_COMMAND = "LOAD '{extension}';" SET_EXTENSIONS_DIRECTORY_COMMAND = "SET extension_directory='{directory}';" REPO_TYPE = "dataset" HUB_DOWNLOAD_CACHE_FOLDER = "cache" class DuckdbIndexWithFeatures(SplitHubFile): features: Optional[dict[str, Any]] def get_indexable_columns(features: Features) -> list[str]: indexable_columns: list[str] = [] for column, feature in features.items(): indexable = False def check_indexable(feature: FeatureType) -> None: nonlocal indexable if isinstance(feature, Value) and feature.dtype == "string": indexable = True _visit(feature, check_indexable) if indexable: indexable_columns.append(column) return indexable_columns def compute_index_rows( job_id: str, dataset: str, config: str, split: str, duckdb_index_file_directory: Path, target_revision: str, hf_endpoint: str, commit_message: str, url_template: str, hf_token: Optional[str], max_parquet_size_bytes: int, extensions_directory: Optional[str], committer_hf_token: Optional[str], ) -> DuckdbIndexWithFeatures: logging.info(f"get split-duckdb-index for dataset={dataset} config={config} split={split}") # get parquet urls and dataset_info config_parquet_and_info_step = "config-parquet-and-info" parquet_and_info_best_response = get_previous_step_or_raise( kinds=[config_parquet_and_info_step], dataset=dataset, config=config, ) content_parquet_and_info = parquet_and_info_best_response.response["content"] try: split_parquet_files = [ parquet_file for parquet_file in content_parquet_and_info["parquet_files"] if parquet_file["config"] == config and parquet_file["split"] == split ] split_parquets_size = sum(parquet_file["size"] for parquet_file in split_parquet_files) if split_parquets_size > max_parquet_size_bytes: raise SplitWithTooBigParquetError( f"The indexing is limited to split parquets under {max_parquet_size_bytes} bytes. " f"Current size of sum of split parquets is {split_parquets_size} bytes." ) parquet_file_names = [parquet_file["filename"] for parquet_file in split_parquet_files] if not parquet_file_names: raise ParquetResponseEmptyError("No parquet files found.") # For directories like "partial-train" for the file at "en/partial-train/0000.parquet" in the C4 dataset. # Note that "-" is forbidden for split names so it doesn't create directory names collisions. split_directory = split_parquet_files[0]["url"].rsplit("/", 2)[1] # get the features features = content_parquet_and_info["dataset_info"]["features"] column_names = ",".join('"' + column + '"' for column in list(features.keys())) # look for indexable columns (= possibly nested columns containing string data) # copy the features is needed but will be fixed with https://github.com/huggingface/datasets/pull/6189 indexable_columns = ",".join( '"' + column + '"' for column in get_indexable_columns(Features.from_dict(copy.deepcopy(features))) ) if not indexable_columns: raise NoIndexableColumnsError("No string columns available to index.") except KeyError as e: raise PreviousStepFormatError( f"Previous step '{config_parquet_and_info_step}' did not return the expected content.", e ) from e # index all columns db_path = duckdb_index_file_directory.resolve() / DUCKDB_DEFAULT_INDEX_FILENAME con = duckdb.connect(str(db_path.resolve())) # configure duckdb extensions if extensions_directory is not None: con.execute(SET_EXTENSIONS_DIRECTORY_COMMAND.format(directory=extensions_directory)) con.execute(INSTALL_EXTENSION_COMMAND.format(extension="httpfs")) con.execute(LOAD_EXTENSION_COMMAND.format(extension="httpfs")) con.execute(INSTALL_EXTENSION_COMMAND.format(extension="fts")) con.execute(LOAD_EXTENSION_COMMAND.format(extension="fts")) logging.debug(CREATE_SEQUENCE_COMMAND) con.sql(CREATE_SEQUENCE_COMMAND) # see https://pypi.org/project/hf-transfer/ for more details about how to enable hf_transfer os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" for parquet_file in parquet_file_names: hf_hub_download( repo_type=REPO_TYPE, revision=target_revision, repo_id=dataset, filename=f"{config}/{split_directory}/{parquet_file}", local_dir=duckdb_index_file_directory, local_dir_use_symlinks=False, token=hf_token, cache_dir=duckdb_index_file_directory, ) all_split_parquets = f"{duckdb_index_file_directory}/{config}/{split_directory}/*.parquet" create_command_sql = f"{CREATE_TABLE_COMMAND.format(columns=column_names)} '{all_split_parquets}';" logging.debug(create_command_sql) con.sql(create_command_sql) # TODO: by default, 'porter' stemmer is being used, use a specific one by dataset language in the future # see https://duckdb.org/docs/extensions/full_text_search.html for more details about 'stemmer' parameter create_index_sql = CREATE_INDEX_COMMAND.format(columns=indexable_columns) logging.debug(create_index_sql) con.sql(create_index_sql) con.close() hf_api = HfApi(endpoint=hf_endpoint, token=hf_token) committer_hf_api = HfApi(endpoint=hf_endpoint, token=committer_hf_token) index_file_location = f"{config}/{split_directory}/{DUCKDB_DEFAULT_INDEX_FILENAME}" try: with lock.git_branch( dataset=dataset, branch=target_revision, owner=job_id, sleeps=LOCK_GIT_BRANCH_RETRY_SLEEPS ): logging.debug(f"try to create branch for {dataset=} with {target_revision=} on {hf_endpoint=}") create_branch( dataset=dataset, target_revision=target_revision, hf_api=hf_api, committer_hf_api=committer_hf_api, ) logging.debug(f"get dataset info for {dataset=} with {target_revision=}") target_dataset_info = hf_api.dataset_info(repo_id=dataset, revision=target_revision, files_metadata=False) all_repo_files: set[str] = {f.rfilename for f in target_dataset_info.siblings} delete_operations: list[CommitOperation] = [] if index_file_location in all_repo_files: delete_operations.append(CommitOperationDelete(path_in_repo=index_file_location)) logging.debug(f"delete operations for {dataset=} {delete_operations=}") # send the files to the target revision add_operations: list[CommitOperation] = [ CommitOperationAdd(path_in_repo=index_file_location, path_or_fileobj=db_path.resolve()) ] logging.debug(f"add operations for {dataset=} {add_operations=}") retry_create_commit = retry(on=[HfHubHTTPError], sleeps=HF_HUB_HTTP_ERROR_RETRY_SLEEPS)( committer_hf_api.create_commit ) try: retry_create_commit( repo_id=dataset, repo_type=DATASET_TYPE, revision=target_revision, operations=delete_operations + add_operations, commit_message=commit_message, parent_commit=target_dataset_info.sha, ) except RuntimeError as e: if e.__cause__ and isinstance(e.__cause__, HfHubHTTPError): raise CreateCommitError( message=( f"Commit {commit_message} could not be created on the Hub (after" f" {len(HF_HUB_HTTP_ERROR_RETRY_SLEEPS)} attempts)." ), cause=e.__cause__, ) from e.__cause__ raise e logging.debug(f"create commit {commit_message} for {dataset=} {add_operations=}") # call the API again to get the index file target_dataset_info = hf_api.dataset_info(repo_id=dataset, revision=target_revision, files_metadata=True) logging.debug(f"dataset info for {dataset=} {target_dataset_info=}") except TimeoutError as err: raise LockedDatasetTimeoutError("the dataset is currently locked, please try again later.") from err except RepositoryNotFoundError as err: raise DatasetNotFoundError("The dataset does not exist on the Hub.") from err repo_files = [ repo_file for repo_file in target_dataset_info.siblings if repo_file.rfilename == index_file_location ] if not repo_files or len(repo_files) != 1: logging.warning(f"Found {len(repo_files)} index files, should be only 1") raise DuckDBIndexFileNotFoundError("No index file was found") repo_file = repo_files[0] if repo_file.size is None: raise ValueError(f"Cannot get size of {repo_file.rfilename}") # we added the __hf_index_id column for the index features["__hf_index_id"] = {"dtype": "int64", "_type": "Value"} return DuckdbIndexWithFeatures( dataset=dataset, config=config, split=split, url=hf_hub_url( repo_id=dataset, filename=repo_file.rfilename, hf_endpoint=hf_endpoint, revision=target_revision, url_template=url_template, ), filename=Path(repo_file.rfilename).name, size=repo_file.size, features=features, ) class SplitDuckDbIndexJobRunner(SplitJobRunnerWithCache): duckdb_index_config: DuckDbIndexConfig def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, duckdb_index_cache_directory: StrPath, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, cache_directory=Path(duckdb_index_cache_directory), ) self.duckdb_index_config = app_config.duckdb_index @staticmethod def get_job_type() -> str: return "split-duckdb-index" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_DUCKDB_INDEX_VERSION def compute(self) -> CompleteJobResult: if self.cache_subdirectory is None: raise CacheDirectoryNotInitializedError("Cache directory has not been initialized.") return CompleteJobResult( compute_index_rows( job_id=self.job_info["job_id"], dataset=self.dataset, config=self.config, split=self.split, duckdb_index_file_directory=self.cache_subdirectory, hf_token=self.app_config.common.hf_token, url_template=self.duckdb_index_config.url_template, commit_message=self.duckdb_index_config.commit_message, extensions_directory=self.duckdb_index_config.extensions_directory, committer_hf_token=self.duckdb_index_config.committer_hf_token, hf_endpoint=self.app_config.common.hf_endpoint, target_revision=self.duckdb_index_config.target_revision, max_parquet_size_bytes=self.duckdb_index_config.max_parquet_size_bytes, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/duckdb_index.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.constants import PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from libcommon.utils import is_image_url from worker.dtos import ( CompleteJobResult, ImageUrlColumnsResponse, SplitFirstRowsResponse, ) from worker.job_runners.split.split_job_runner import SplitJobRunner STRING_FEATURE_DTYPE = "string" VALUE_FEATURE_TYPE = "Value" URL_COLUMN_RATION = 0.3 def compute_image_url_columns( dataset: str, config: str, split: str, ) -> ImageUrlColumnsResponse: """ Get the response of split-image-url-columns cache for a specific split of a dataset from huggingface.co. The response is not used directly in the API but it is an input for split-opt-in-out-urls-scan processing step. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. split (`str`): A split name. Returns: [`ImageUrlColumnsResponse`]: The list of image url columns. Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get image-url-columns for dataset={dataset} config={config} split={split}") # get the first rows from previous job upstream_response = get_previous_step_or_raise( kinds=["split-first-rows-from-streaming", "split-first-rows-from-parquet"], dataset=dataset, config=config, split=split, ) try: first_rows_response = upstream_response.response upstream_response_content = SplitFirstRowsResponse( dataset=dataset, config=config, split=split, features=first_rows_response["content"]["features"], rows=first_rows_response["content"]["rows"], truncated=first_rows_response["content"]["truncated"] if "truncated" in first_rows_response["content"] else None, ) features = upstream_response_content["features"] first_rows = upstream_response_content["rows"] except KeyError as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e # look for image URLs columns using the first rows string_columns = [ feature["name"] for feature in features if "dtype" in feature["type"] and "_type" in feature["type"] and feature["type"]["dtype"] == STRING_FEATURE_DTYPE and feature["type"]["_type"] == VALUE_FEATURE_TYPE ] first_rows_size = len(first_rows) if first_rows_size == 0: return ImageUrlColumnsResponse( columns=[], ) urls_columns = [] for string_column in string_columns: urls_count = sum( 1 for row in first_rows if isinstance(row["row"].get(string_column), str) and is_image_url(text=row["row"][string_column]) ) if urls_count and urls_count / first_rows_size > URL_COLUMN_RATION: urls_columns.append(string_column) return ImageUrlColumnsResponse( columns=urls_columns, ) class SplitImageUrlColumnsJobRunner(SplitJobRunner): @staticmethod def get_job_type() -> str: return "split-image-url-columns" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_IMAGE_URL_COLUMNS_VERSION def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_image_url_columns( dataset=self.dataset, config=self.config, split=self.split, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/image_url_columns.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from datasets import Audio, Features, Image from fsspec.implementations.http import HTTPFileSystem from libcommon.constants import ( PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION, PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, ) from libcommon.exceptions import ( RowsPostProcessingError, TooBigContentError, TooManyColumnsError, ) from libcommon.parquet_utils import Indexer, TooBigRows from libcommon.processing_graph import ProcessingGraph, ProcessingStep from libcommon.storage import StrPath from libcommon.utils import JobInfo, Row, RowItem from libcommon.viewer_utils.features import get_cell_value, to_features_list from worker.config import AppConfig, FirstRowsConfig from worker.dtos import CompleteJobResult, JobRunnerInfo, SplitFirstRowsResponse from worker.job_runners.split.split_job_runner import SplitJobRunner from worker.utils import create_truncated_row_items, get_json_size def transform_rows( dataset: str, config: str, split: str, rows: list[RowItem], features: Features, assets_base_url: str, assets_directory: StrPath, ) -> list[Row]: return [ { featureName: get_cell_value( dataset=dataset, config=config, split=split, row_idx=row_idx, cell=row["row"][featureName] if featureName in row["row"] else None, featureName=featureName, fieldType=fieldType, assets_base_url=assets_base_url, assets_directory=assets_directory, ) for (featureName, fieldType) in features.items() } for row_idx, row in enumerate(rows) ] def compute_first_rows_response( dataset: str, config: str, split: str, assets_base_url: str, min_cell_bytes: int, rows_max_bytes: int, rows_max_number: int, rows_min_number: int, columns_max_number: int, assets_directory: StrPath, indexer: Indexer, ) -> SplitFirstRowsResponse: logging.info(f"get first-rows for dataset={dataset} config={config} split={split}") rows_index = indexer.get_rows_index( dataset=dataset, config=config, split=split, ) # validate the features features = rows_index.parquet_index.features if features and len(features) > columns_max_number: raise TooManyColumnsError( f"The number of columns ({len(features)}) exceeds the maximum supported number of columns" f" ({columns_max_number}). This is a current limitation of the datasets viewer. You can reduce the number" " of columns if you want the viewer to work." ) # validate size of response without the rows features_list = to_features_list(features=features) response_features_only: SplitFirstRowsResponse = { "dataset": dataset, "config": config, "split": split, "features": features_list, "rows": [], "truncated": False, } surrounding_json_size = get_json_size(response_features_only) if surrounding_json_size > rows_max_bytes: raise TooBigContentError( f"The size of the content of the first rows ({surrounding_json_size}) exceeds the maximum" f" supported size ({rows_max_bytes} B) even after truncation. Please report the issue." ) # get the rows try: pa_table = rows_index.query(offset=0, length=rows_max_number) all_fetched = rows_index.parquet_index.num_rows_total <= rows_max_number except TooBigRows as err: raise TooBigContentError(str(err)) rows = [ RowItem( { "row_idx": idx, "row": row, "truncated_cells": [], } ) for idx, row in enumerate(pa_table.to_pylist()) ] # transform the rows, if needed (e.g. save the images or audio to the assets, and return their URL) try: transformed_rows = transform_rows( dataset=dataset, config=config, split=split, rows=rows, features=features, assets_base_url=assets_base_url, assets_directory=assets_directory, ) except Exception as err: raise RowsPostProcessingError( "Server error while post-processing the split rows. Please report the issue.", cause=err, ) from err # truncate the rows to fit within the restrictions, and prepare them as RowItems columns_to_keep_untruncated = [col for col, feature in features.items() if isinstance(feature, (Image, Audio))] row_items, truncated = create_truncated_row_items( rows=transformed_rows, min_cell_bytes=min_cell_bytes, rows_max_bytes=rows_max_bytes - surrounding_json_size, rows_min_number=rows_min_number, columns_to_keep_untruncated=columns_to_keep_untruncated, ) response = response_features_only response["rows"] = row_items response["truncated"] = (not all_fetched) or truncated return response class SplitFirstRowsFromParquetJobRunner(SplitJobRunner): assets_directory: StrPath first_rows_config: FirstRowsConfig indexer: Indexer @staticmethod def get_job_type() -> str: return "split-first-rows-from-parquet" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_PARQUET_VERSION @staticmethod def get_parallel_job_runner() -> JobRunnerInfo: return JobRunnerInfo( job_runner_version=PROCESSING_STEP_SPLIT_FIRST_ROWS_FROM_STREAMING_VERSION, job_type="split-first-rows-from-streaming", ) def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, processing_graph: ProcessingGraph, assets_directory: StrPath, parquet_metadata_directory: StrPath, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, ) self.first_rows_config = app_config.first_rows self.assets_directory = assets_directory self.assets_base_url = app_config.assets.base_url self.parquet_metadata_directory = parquet_metadata_directory self.indexer = Indexer( processing_graph=processing_graph, hf_token=self.app_config.common.hf_token, parquet_metadata_directory=parquet_metadata_directory, httpfs=HTTPFileSystem(headers={"authorization": f"Bearer {self.app_config.common.hf_token}"}), unsupported_features=[], all_columns_supported_datasets_allow_list="all", max_arrow_data_in_memory=app_config.rows_index.max_arrow_data_in_memory, ) def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_first_rows_response( dataset=self.dataset, config=self.config, split=self.split, assets_base_url=self.assets_base_url, assets_directory=self.assets_directory, min_cell_bytes=self.first_rows_config.min_cell_bytes, rows_max_bytes=self.first_rows_config.max_bytes, rows_max_number=self.first_rows_config.max_number, rows_min_number=self.first_rows_config.min_number, columns_max_number=self.first_rows_config.columns_max_number, indexer=self.indexer, ) )
datasets-server-main
services/worker/src/worker/job_runners/split/first_rows_from_parquet.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from typing import Optional from datasets import get_dataset_split_names from datasets.builder import ManualDownloadError from datasets.data_files import EmptyDatasetError as _EmptyDatasetError from libcommon.constants import ( PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION, PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION, ) from libcommon.exceptions import ( DatasetManualDownloadError, EmptyDatasetError, SplitNamesFromStreamingError, ) from worker.dtos import CompleteJobResult, FullSplitItem, JobRunnerInfo, SplitsList from worker.job_runners.config.config_job_runner import ConfigJobRunnerWithDatasetsCache def compute_split_names_from_streaming_response( dataset: str, config: str, hf_token: Optional[str] = None, ) -> SplitsList: """ Get the response of config-split-names-from-streaming for one specific dataset and config on huggingface.co. Dataset can be private or gated if you pass an acceptable token. It is assumed that the dataset exists and can be accessed using the token, and that the config exists in the dataset. This function relies on the streaming mode if the splits are not directly defined in the dataset config. See https://github.dev/huggingface/datasets/blob/e183a269067575db8765ee979bd8523d14a1adae/src/datasets/inspect.py#L389-L390 The config-split-names-from-streaming response generated by this function does not include stats about the split, like the size or number of samples. See dataset-info or dataset-size for that. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. hf_token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) Returns: `SplitsList`: An object with the list of split names for the dataset and config. Raises the following errors: - [`libcommon.exceptions.DatasetManualDownloadError`]: If the dataset requires manual download. - [`libcommon.exceptions.EmptyDatasetError`] The dataset is empty. - [`libcommon.exceptions.SplitsNamesError`] If the list of splits could not be obtained using the datasets library. """ logging.info(f"get split names for dataset={dataset}, config={config}") try: split_name_items: list[FullSplitItem] = [ {"dataset": dataset, "config": config, "split": str(split)} for split in get_dataset_split_names(path=dataset, config_name=config, token=hf_token) ] except ManualDownloadError as err: raise DatasetManualDownloadError(f"{dataset=} requires manual download.", cause=err) from err except _EmptyDatasetError as err: raise EmptyDatasetError("The dataset is empty.", cause=err) from err except Exception as err: raise SplitNamesFromStreamingError( f"Cannot get the split names for the config '{config}' of the dataset.", cause=err, ) from err return SplitsList(splits=split_name_items) class ConfigSplitNamesFromStreamingJobRunner(ConfigJobRunnerWithDatasetsCache): @staticmethod def get_job_type() -> str: return "config-split-names-from-streaming" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION @staticmethod def get_parallel_job_runner() -> JobRunnerInfo: return JobRunnerInfo( job_runner_version=PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION, job_type="config-split-names-from-info", ) def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_split_names_from_streaming_response( dataset=self.dataset, config=self.config, hf_token=self.app_config.common.hf_token, ) )
datasets-server-main
services/worker/src/worker/job_runners/config/split_names_from_streaming.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import PROCESSING_STEP_CONFIG_PARQUET_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from worker.dtos import CompleteJobResult, ConfigParquetResponse from worker.job_runners.config.config_job_runner import ConfigJobRunner def compute_parquet_response(dataset: str, config: str) -> ConfigParquetResponse: """ Get the response of /parquet for one specific dataset on huggingface.co. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. Returns: `ConfigParquetResponse`: An object with the parquet_response (list of parquet files). Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get parquet files for dataset={dataset}, config={config}") previous_step = "config-parquet-and-info" config_parquet_and_info_best_response = get_previous_step_or_raise( kinds=[previous_step], dataset=dataset, config=config ) content = config_parquet_and_info_best_response.response["content"] try: parquet_files = [ parquet_file for parquet_file in content["parquet_files"] if parquet_file.get("config") == config ] # sort by filename, which ensures the shards are in order: 00000, 00001, 00002, ... parquet_files.sort(key=lambda x: (x["split"], x["filename"])) if "features" in content["dataset_info"] and isinstance(content["dataset_info"]["features"], dict): features = content["dataset_info"]["features"] else: # (July 23) we can remove this later and raise an error instead (can be None for backward compatibility) features = None partial = content["partial"] except KeyError as e: raise PreviousStepFormatError("Previous step did not return the expected content: 'parquet_files'.", e) from e return ConfigParquetResponse(parquet_files=parquet_files, features=features, partial=partial) class ConfigParquetJobRunner(ConfigJobRunner): @staticmethod def get_job_type() -> str: return "config-parquet" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_PARQUET_VERSION def compute(self) -> CompleteJobResult: return CompleteJobResult(compute_parquet_response(dataset=self.dataset, config=self.config))
datasets-server-main
services/worker/src/worker/job_runners/config/parquet.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from pathlib import Path from libcommon.exceptions import ParameterMissingError from libcommon.processing_graph import ProcessingStep from libcommon.utils import JobInfo from worker.config import AppConfig from worker.job_runners._job_runner_with_datasets_cache import ( JobRunnerWithDatasetsCache, ) from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner from worker.utils import check_config_exists class ConfigJobRunner(DatasetJobRunner): config: str def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, ) -> None: super().__init__(job_info=job_info, app_config=app_config, processing_step=processing_step) if job_info["params"]["config"] is None: raise ParameterMissingError("'config' parameter is required") self.config = job_info["params"]["config"] def validate(self) -> None: check_config_exists(dataset=self.dataset, config=self.config) class ConfigJobRunnerWithDatasetsCache(JobRunnerWithDatasetsCache, ConfigJobRunner): def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, ) -> None: JobRunnerWithDatasetsCache.__init__( self=self, job_info=job_info, app_config=app_config, processing_step=processing_step, hf_datasets_cache=hf_datasets_cache, ) ConfigJobRunner.__init__( self=self, job_info=job_info, app_config=app_config, processing_step=processing_step, )
datasets-server-main
services/worker/src/worker/job_runners/config/config_job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/src/worker/job_runners/config/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import functools import logging import os import re from collections.abc import Callable, Generator from contextlib import ExitStack from fnmatch import fnmatch from multiprocessing.pool import ThreadPool from pathlib import Path from types import TracebackType from typing import Any, Optional, TypeVar, Union from unittest.mock import patch from urllib.parse import unquote import datasets import datasets.config import datasets.info import numpy as np import pyarrow as pa import pyarrow.parquet as pq import requests from datasets import DownloadConfig, Features, load_dataset_builder from datasets.arrow_writer import ParquetWriter from datasets.builder import DatasetBuilder, ManualDownloadError from datasets.data_files import EmptyDatasetError as _EmptyDatasetError from datasets.download import StreamingDownloadManager from datasets.packaged_modules.parquet.parquet import Parquet as ParquetBuilder from datasets.splits import SplitDict, SplitInfo from datasets.utils.file_utils import ( get_authentication_headers_for_url, http_head, is_relative_path, url_or_path_join, ) from datasets.utils.py_utils import asdict, map_nested from huggingface_hub._commit_api import ( CommitOperation, CommitOperationAdd, CommitOperationCopy, CommitOperationDelete, ) from huggingface_hub.hf_api import CommitInfo, DatasetInfo, HfApi, RepoFile from huggingface_hub.hf_file_system import HfFileSystem from huggingface_hub.utils._errors import HfHubHTTPError, RepositoryNotFoundError from libcommon.constants import ( PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS, PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_BINARY_DATASETS, PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS, PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_VERSION, ) from libcommon.dataset import get_dataset_info_for_supported_datasets from libcommon.exceptions import ( ConfigNamesError, CreateCommitError, DatasetInBlockListError, DatasetManualDownloadError, DatasetNotFoundError, DatasetWithTooManyParquetFilesError, EmptyDatasetError, ExternalFilesSizeRequestConnectionError, ExternalFilesSizeRequestError, ExternalFilesSizeRequestHTTPError, ExternalFilesSizeRequestTimeoutError, FileSystemError, LockedDatasetTimeoutError, PreviousStepFormatError, UnsupportedExternalFilesError, ) from libcommon.processing_graph import ProcessingStep from libcommon.queue import lock from libcommon.simple_cache import get_previous_step_or_raise from libcommon.utils import JobInfo, SplitHubFile from tqdm.contrib.concurrent import thread_map from worker.config import AppConfig, ParquetAndInfoConfig from worker.dtos import CompleteJobResult, ConfigParquetAndInfoResponse from worker.job_runners.config.config_job_runner import ConfigJobRunnerWithDatasetsCache from worker.utils import ( HF_HUB_HTTP_ERROR_RETRY_SLEEPS, LOCK_GIT_BRANCH_RETRY_SLEEPS, create_branch, hf_hub_url, retry, ) DATASET_TYPE = "dataset" MAX_FILES_PER_DIRECTORY = 10_000 # hf hub limitation MAX_OPERATIONS_PER_COMMIT = 500 # For paths like "en/partial-train/0000.parquet" in the C4 dataset. # Note that "-" is forbidden for split names so it doesn't create directory names collisions. PARTIAL_SPLIT_PREFIX = "partial-" T = TypeVar("T") def repo_file_rfilename_sort_key(repo_file: RepoFile) -> str: if not isinstance(repo_file.rfilename, str): # check type for mypy raise ValueError(f"Expected a string for repo_file.rfilename, but got a '{type(repo_file.rfilename)}'.") return repo_file.rfilename class ParquetFile: def __init__( self, local_file: str, local_dir: str, config: str, split: str, shard_idx: int, partial: bool = False ): if not local_file.startswith(local_dir): raise ValueError(f"{local_file} is not in {local_dir}") if shard_idx >= MAX_FILES_PER_DIRECTORY: raise DatasetWithTooManyParquetFilesError( "The dataset has too many parquet files and can't be uploaded in the parquet directory " f"because it exceeds the maximum number of files per directory ({MAX_FILES_PER_DIRECTORY})." ) self.local_file = local_file self.local_dir = local_dir self.config = config self.split = split self.shard_idx = shard_idx self.partial = partial @property def path_in_repo(self) -> str: partial_prefix = PARTIAL_SPLIT_PREFIX if self.partial else "" # Using 4 digits is ok since MAX_FILES_PER_DIRECTORY == 10_000 return f"{self.config}/{partial_prefix}{self.split}/{self.shard_idx:04d}.parquet" filename_pattern = re.compile("^[0-9]{4}\\.parquet$") def parse_repo_filename(filename: str) -> tuple[str, str]: if not filename_pattern.match(os.path.basename(filename)): raise ValueError(f"Cannot parse {filename}") parts = filename.split("/") if len(parts) != 3: raise ValueError(f"Invalid filename: {filename}") config, split, _ = parts if split.startswith(PARTIAL_SPLIT_PREFIX): split = split[len(PARTIAL_SPLIT_PREFIX) :] # noqa: E203 return config, split def create_parquet_file_item( repo_file: RepoFile, dataset: str, config: str, hf_endpoint: str, target_revision: str, url_template: str, ) -> SplitHubFile: if repo_file.size is None: raise ValueError(f"Cannot get size of {repo_file.rfilename}") _, split = parse_repo_filename(repo_file.rfilename) return { "dataset": dataset, "config": config, "split": split, "url": hf_hub_url( repo_id=dataset, filename=repo_file.rfilename, hf_endpoint=hf_endpoint, revision=target_revision, url_template=url_template, ), "filename": Path(repo_file.rfilename).name, "size": repo_file.size, } def raise_if_blocked( dataset: str, blocked_datasets: list[str], ) -> None: """ Raise an error if the dataset is in the list of blocked datasets Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. blocked_datasets (`list[str]`): The list of blocked datasets. If empty, no dataset is blocked. Patterns are supported, e.g. "open-llm-leaderboard/*" Returns: `None` Raises the following errors: - [`libcommon.exceptions.DatasetInBlockListError`] If the dataset is in the list of blocked datasets. """ for blocked_dataset in blocked_datasets: if fnmatch(dataset, blocked_dataset): raise DatasetInBlockListError( "The parquet conversion has been disabled for this dataset for now. Please open an issue in" " https://github.com/huggingface/datasets-server if you want this dataset to be supported." ) def is_parquet_builder_with_hub_files(builder: DatasetBuilder) -> bool: if not isinstance(builder, ParquetBuilder) or not builder.config.data_files: return False for split in builder.config.data_files: for data_file in builder.config.data_files[split]: if not data_file.startswith(f"hf://datasets/{builder.repo_id}@"): return False return True def _is_too_big_from_hub( dataset_info: DatasetInfo, max_dataset_size: int, ) -> bool: """ Raise an error if the dataset is too big to be converted to parquet, as measured by the sum of the repository files sizes given by the Hub. Args: dataset_info (`DatasetInfo`): The dataset info max_dataset_size (`int`): The maximum size of the dataset in bytes """ dataset_size: int = sum(sibling.size for sibling in dataset_info.siblings if sibling.size is not None) return bool(dataset_size > max_dataset_size) def _is_too_big_from_datasets( info: datasets.DatasetInfo, max_dataset_size: int, ) -> bool: """ Raise an error if the dataset is too big to be converted to parquet, as measured by the sum of the configs sizes given by the datasets library Args: info (`datasets.DatasetInfo`): Dataset info from the datasets library max_dataset_size (`int`): The maximum size of the dataset in bytes """ dataset_size = info.dataset_size if info.dataset_size is not None else 0 return bool(dataset_size > max_dataset_size) def raise_if_requires_manual_download( builder: DatasetBuilder, hf_endpoint: str, hf_token: Optional[str], ) -> None: """ Raise an error if the dataset requires manual download. Args: builder (`datasets.builder.DatasetBuilder`): A dataset builder instance to check. hf_endpoint (`str`): The Hub endpoint (for example: "https://huggingface.co"). hf_token (`str`, *optional*): An app authentication token with read access to all the datasets. Returns: `None` Raises: [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError): If the datasets.config.HF_ENDPOINT is not set to the expected value. [`libcommon.exceptions.DatasetManualDownloadError`]: If the dataset requires manual download. """ if datasets.config.HF_ENDPOINT != hf_endpoint: raise ValueError( f"Invalid datasets.config.HF_ENDPOINT value: '{datasets.config.HF_ENDPOINT}'. Please set it to:" f" '{hf_endpoint}'." ) try: builder._check_manual_download( StreamingDownloadManager(base_path=builder.base_path, download_config=DownloadConfig(token=hf_token)) ) except ManualDownloadError as err: raise DatasetManualDownloadError(f"dataset={builder.repo_id} requires manual download.", cause=err) from err def is_dataset_too_big( dataset_info: DatasetInfo, builder: DatasetBuilder, hf_endpoint: str, hf_token: Optional[str], max_dataset_size: int, max_external_data_files: int, ) -> bool: """ Check: - the size of the dataset repository - the size in dataset info - the size and number of external files Args: dataset_info (`DatasetInfo`): The dataset info builder (`datasets.builder.DatasetBuilder`): A dataset builder instance to check. hf_endpoint (`str`): The Hub endpoint (for example: "https://huggingface.co") hf_token (`str`, `optional`): An app authentication token with read access to all the datasets. revision (`str`): The git revision (e.g. "main" or sha) of the dataset max_dataset_size (`int`): The maximum size of a dataset in bytes. If the dataset is under the limit (which means that the size can be fetched), it will be allowed. max_external_data_files (`int`): The maximum number of external data files (i.e. not hosted on HF). If the dataset is under the limit (which means that the files can be fetched), it will be allowed. Returns: `ParquetResponseResult`: An object with the parquet_response (dataset and list of parquet files) and the dataset_git_revision (sha) if any. Raises the following errors: - [`libcommon.exceptions.UnsupportedExternalFilesError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestHTTPError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestConnectionError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestTimeoutError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If the datasets.config.HF_ENDPOINT is not set to the expected value """ if datasets.config.HF_ENDPOINT != hf_endpoint: raise ValueError( f"Invalid datasets.config.HF_ENDPOINT value: '{datasets.config.HF_ENDPOINT}'. Please set it to:" f" '{hf_endpoint}'." ) return ( _is_too_big_from_hub(dataset_info=dataset_info, max_dataset_size=max_dataset_size) or _is_too_big_from_datasets( builder.info, max_dataset_size=max_dataset_size, ) or _is_too_big_from_external_data_files( builder=builder, max_dataset_size=max_dataset_size, max_external_data_files=max_external_data_files, hf_token=hf_token, ) ) class EmptySplitsError(Exception): pass class SplitInfoFormatError(Exception): pass class EmptyConfigNameError(Exception): pass class EmptyDownloadSizeError(Exception): pass class EmptyFeaturesError(Exception): pass def _request_size(url: str, hf_token: Optional[str] = None) -> Optional[int]: headers = get_authentication_headers_for_url(url, token=hf_token) response = http_head(url, headers=headers, max_retries=3) response.raise_for_status() size = response.headers.get("Content-Length") if response.ok else None return int(size) if size is not None else size class _MockStreamingDownloadManager(StreamingDownloadManager): # type: ignore def __init__(self, *args: Any, **kwargs: Any) -> None: super().__init__(*args, **kwargs) self.ext_data_files: list[str] = [] def download(self, url_or_urls: Any) -> Any: url_or_urls = map_nested( self._download, url_or_urls, map_tuple=True, parallel_min_length=np.inf, # ^ parallel_min_length has int type, but is currently used in datasets for a comparison only # and it works with np.inf. No conversion is involved # (would raise: OverflowError: cannot convert float infinity to integer) ) return url_or_urls def _download(self, urlpath: Any) -> str: urlpath_str = str(urlpath) if is_relative_path(urlpath_str): # append the relative path to the base_path urlpath_str = url_or_path_join(self._base_path, urlpath_str) elif not urlpath_str.startswith(self._base_path): # it's an external file self.ext_data_files.append(urlpath_str) return urlpath_str def _is_too_big_from_external_data_files( builder: DatasetBuilder, max_dataset_size: int, max_external_data_files: int, hf_token: Optional[str] ) -> bool: # Packaged dataset modules only load data files that are inside the dataset repository. # No need to check them since they're already caught by `raise_if_too_big_from_hub` if type(builder).__module__.startswith("datasets."): return False # For datasets with a loading script however, we need to check the downloaded files mock_dl_manager = _MockStreamingDownloadManager( base_path=builder.base_path, download_config=DownloadConfig(token=hf_token) ) try: builder._split_generators(mock_dl_manager) except (requests.exceptions.RequestException, NotImplementedError) as error: if isinstance(error, NotImplementedError): # we can ignore the errors from functions not implemented in streaming mode like `.extract()` on TAR files if "is not implemented in streaming mode." not in str(error): raise UnsupportedExternalFilesError( ( "Couldn't get the list of external files in `_split_generators` because it doesn't support" f" streaming:\n{error}" ), error, ) from error elif isinstance(error, requests.exceptions.HTTPError): raise ExternalFilesSizeRequestHTTPError( ( "Couldn't get the list of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error elif isinstance(error, requests.exceptions.ConnectionError): raise ExternalFilesSizeRequestConnectionError( ( "Couldn't get the list of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error elif isinstance(error, requests.exceptions.Timeout): raise ExternalFilesSizeRequestTimeoutError( ( "Couldn't get the list of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error else: raise ExternalFilesSizeRequestError( ( "Couldn't get the list of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error ext_data_files = mock_dl_manager.ext_data_files if len(ext_data_files) > max_external_data_files: return True elif ext_data_files: try: with ThreadPool(16) as pool: total_size = 0 get_size = functools.partial(_request_size, hf_token=hf_token) for i, size in enumerate(pool.imap_unordered(get_size, ext_data_files)): if size is not None: total_size += size return total_size > max_dataset_size return False except requests.exceptions.RequestException as error: if isinstance(error, requests.exceptions.HTTPError): raise ExternalFilesSizeRequestHTTPError( ( "Couldn't get the size of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error elif isinstance(error, requests.exceptions.ConnectionError): raise ExternalFilesSizeRequestConnectionError( ( "Couldn't get the size of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error elif isinstance(error, requests.exceptions.Timeout): raise ExternalFilesSizeRequestTimeoutError( ( "Couldn't get the size of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error else: raise ExternalFilesSizeRequestError( ( "Couldn't get the size of external files in `_split_generators` because a request" f" failed:\n{error}\nPlease consider moving your data files in this dataset repository instead" " (e.g. inside a data/ folder)." ), error, ) from error return False def get_writer_batch_size_from_info(ds_config_info: datasets.info.DatasetInfo) -> Optional[int]: """ Get the writer_batch_size that defines the maximum row group size in the parquet files. The default in `datasets` is 1,000 but we lower it to 100 for image datasets. This allows to optimize random access to parquet file, since accessing 1 row requires to read its entire row group. Args: ds_config_info (`datasets.info.DatasetInfo`): Dataset info from `datasets`. Returns: writer_batch_size (`Optional[int]`): Writer batch size to pass to a dataset builder. If `None`, then it will use the `datasets` default. """ if "Audio(" in str(ds_config_info.features): return PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS elif "Image(" in str(ds_config_info.features): return PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS elif "'binary'" in str(ds_config_info.features): return PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_ROW_GROUP_SIZE_FOR_BINARY_DATASETS else: return None def get_writer_batch_size_from_row_group_size( num_rows: int, row_group_byte_size: int, max_row_group_byte_size: int, factor_of: int = 100, divide_step: int = 10 ) -> int: """ Get the writer_batch_size that defines the maximum row group size in the parquet files, given a sample row group size that mught be too big. This allows to optimize random access to parquet file, since accessing 1 row requires to read its entire row group. Args: num_rows (`int`): Number of rows in the sample row group. row_group_byte_size (`int`): Number of bytes of uncompressed data in the sample row group. max_row_group_byte_size (`int`): Maximum number of bytes of uncompressed data for batches that will be passed to a dataset builder. Returns: writer_batch_size (`Optional[int]`): Writer batch size to pass to a dataset builder. """ writer_batch_size = max(num_rows // factor_of * factor_of, factor_of) writer_batch_byte_size = row_group_byte_size * writer_batch_size / num_rows while writer_batch_size > factor_of and writer_batch_byte_size > max_row_group_byte_size: writer_batch_size = max(writer_batch_size // divide_step // factor_of * factor_of, factor_of) writer_batch_byte_size = row_group_byte_size * writer_batch_size / num_rows return writer_batch_size def copy_parquet_files(builder: DatasetBuilder) -> list[CommitOperationCopy]: """Copy parquet files by copying the git LFS pointer files""" data_files = builder.config.data_files if not data_files: raise EmptyDatasetError("Empty parquet data_files") parquet_operations = [] total_num_parquet_files = sum(len(data_files[split]) for split in data_files) if total_num_parquet_files >= MAX_FILES_PER_DIRECTORY: raise DatasetWithTooManyParquetFilesError( f"The dataset has {total_num_parquet_files} parquet files and can't be linked in the parquet directory " f"because it exceeds the maximum number of files per directory ({MAX_FILES_PER_DIRECTORY})." ) for split in data_files: for shard_idx, data_file in enumerate(data_files[split]): # data_file format for hub files is hf://datasets/{repo_id}@{revision}/{path_in_repo} src_revision, src_path_in_repo = data_file.split("@")[1].split("/", 1) src_revision = unquote(src_revision) src_path_in_repo = unquote(src_path_in_repo) path_in_repo = f"{builder.config.name}/{split}/{shard_idx:04d}.parquet" parquet_operations.append( CommitOperationCopy( src_path_in_repo=src_path_in_repo, path_in_repo=path_in_repo, src_revision=src_revision ) ) return parquet_operations class NotAParquetFileError(ValueError): """When a remote parquet file can't be parsed""" pass class ParquetValidationError(ValueError): """When a parquet file is not validated for copy""" class TooBigRowGroupsError(ParquetValidationError): """When a parquet file has row groups that are too big for copy""" def __init__(self, *args: object, num_rows: int, row_group_byte_size: int) -> None: super().__init__(*args) self.num_rows = num_rows self.row_group_byte_size = row_group_byte_size def get_parquet_file_and_size(url: str, hf_endpoint: str, hf_token: Optional[str]) -> tuple[pq.ParquetFile, int]: fs = HfFileSystem(endpoint=hf_endpoint, token=hf_token) f = fs.open(url) return pq.ParquetFile(f), f.size def retry_and_validate_get_parquet_file_and_size( url: str, hf_endpoint: str, hf_token: Optional[str], validate: Optional[Callable[[pq.ParquetFile], None]] ) -> tuple[pq.ParquetFile, int]: try: sleeps = [1, 1, 1, 10, 10, 10] pf, size = retry(on=[pa.ArrowInvalid], sleeps=sleeps)(get_parquet_file_and_size)(url, hf_endpoint, hf_token) if validate: validate(pf) return pf, size except RuntimeError as err: if err.__cause__ and isinstance(err.__cause__, pa.ArrowInvalid): raise NotAParquetFileError(f"Not a parquet file: '{url}'") from err.__cause__ else: raise err class ParquetFileValidator: """ Validate the Parquet files before they are copied to the target revision. In particular we check that the row group size is not too big, otherwise the dataset viewer doesn't work correctly. Note: we only validate the first parquet files (default 5 first files). We don't want to check the biggest row group of all the dataset, but rather just get the order of magnitude of the size. Otherwise we might end up converting a dataset that has 99% good row groups but 1% that is a bit too big, which is overkill. """ def __init__(self, max_row_group_byte_size: int, max_validation: int = 5) -> None: self.max_row_group_byte_size = max_row_group_byte_size self.num_validations = 0 self.max_validations = max_validation def validate(self, pf: pq.ParquetFile) -> None: if self.num_validations >= self.max_validations: return row_group_metadata = pf.metadata.row_group(0) row_group_size = row_group_metadata.total_byte_size if row_group_metadata.total_byte_size > self.max_row_group_byte_size: raise TooBigRowGroupsError( ( f"Parquet file has too big row groups. First row group has {row_group_size} which exceeds the" f" limit of {self.max_row_group_byte_size}" ), num_rows=row_group_metadata.num_rows, row_group_byte_size=row_group_metadata.total_byte_size, ) self.num_validations += 1 def fill_builder_info( builder: DatasetBuilder, hf_endpoint: str, hf_token: Optional[str], validate: Optional[Callable[[pq.ParquetFile], None]], ) -> None: """Fill the builder DatasetInfo from the copied parquet files""" data_files = builder.config.data_files if not data_files: raise EmptyDatasetError("Empty parquet data_files") builder.info.builder_name = builder.name builder.info.dataset_name = builder.dataset_name builder.info.config_name = builder.config.name builder.info.version = builder.config.version builder.info.splits = SplitDict() builder.info.download_size = 0 builder.info.dataset_size = 0 for split in data_files: split = str(split) # in case it's a NamedSplit try: parquet_files_and_sizes: list[tuple[pq.ParquetFile, int]] = thread_map( functools.partial( retry_and_validate_get_parquet_file_and_size, hf_endpoint=hf_endpoint, hf_token=hf_token, validate=validate, ), data_files[split], unit="pq", disable=True, ) parquet_files, sizes = zip(*parquet_files_and_sizes) except ParquetValidationError: raise except Exception as e: raise FileSystemError(f"Could not read the parquet files: {e}") from e if parquet_files: first_pf = parquet_files[0] if builder.info.features is None: builder.info.features = Features.from_arrow_schema(first_pf.schema_arrow) first_row_group = first_pf.read_row_group(0) compression_ratio = first_row_group.nbytes / first_row_group.num_rows num_examples = sum(parquet_file.metadata.num_rows for parquet_file in parquet_files) approx_num_bytes = int(compression_ratio * num_examples) builder.info.splits.add(SplitInfo(split, num_bytes=approx_num_bytes, num_examples=num_examples)) builder.info.download_size += sum(sizes) builder.info.dataset_size += approx_num_bytes class limit_parquet_writes: """ Context manager that limits the number of bytes a `DatasetBuilder` can write to parquet. It works by monitoring the calls to `pq.ParquetWriter.write_table` and stopping the `GeneratorBasedBuilder._generate_examples` and `ArrowBasedBuilder._generate_tables` generators once we reach the maximum number of bytes. Since the generator is stopped after we reach the maximum number of bytes, the actual number of bytes generated might be slightly higher than the requested limit. Example of usage: ```python builder = load_dataset_builder("squad") max_dataset_size = 10_000_000 with limit_parquet_writes(builder, max_dataset_size=max_dataset_size) as limiter: builder.download_and_prepare(file_format="parquet") assert builder.info.dataset_size == limiter.total_bytes < max_dataset_size + epsilon ``` The limiter is usually used with a `StreamingDownloadManager` to not have to download the full dataset: ```python builder = load_dataset_builder("squad") max_dataset_size = 10_000_000 dl_manager = StreamingDownloadManager(...) for split_generator in builder._split_generators(dl_manager): with limit_parquet_writes(builder, max_dataset_size=max_dataset_size): builder._prepare_split(split_generator=split_generator, file_format="parquet") ``` """ def __init__( self, builder: Union[datasets.builder.GeneratorBasedBuilder, datasets.builder.ArrowBasedBuilder], max_dataset_size: int, ) -> None: self.total_bytes = 0 self.builder = builder self.max_dataset_size = max_dataset_size self.exit_stack = ExitStack() def __enter__(self) -> "limit_parquet_writes": limiter = self class _TrackedParquetWriter(pq.ParquetWriter): # type: ignore """Count on-the-fly how many bytes are written""" def track_write_table(self, pa_table: pa.Table) -> None: limiter.total_bytes += pa_table.nbytes def write_table(self, pa_table: pa.Table, row_group_size: Optional[int] = None) -> None: self.track_write_table(pa_table) super().write_table(pa_table, row_group_size=row_group_size) def limited_generator( generator: Callable[..., Generator[T, None, None]] ) -> Callable[..., Generator[T, None, None]]: """Stop the underlying generator once we reach the maximum dataset size""" @functools.wraps(generator) def wrapped(*args: Any, **kwargs: Any) -> Generator[T, None, None]: for item in generator(*args, **kwargs): if limiter.total_bytes < limiter.max_dataset_size: yield item else: break return wrapped self.exit_stack.enter_context(patch.object(ParquetWriter, "_WRITER_CLASS", _TrackedParquetWriter)) if isinstance(self.builder, datasets.builder.GeneratorBasedBuilder): self.exit_stack.enter_context( patch.object(self.builder, "_generate_examples", limited_generator(self.builder._generate_examples)) ) else: self.exit_stack.enter_context( patch.object(self.builder, "_generate_tables", limited_generator(self.builder._generate_tables)) ) return self def __exit__( self, exc_type: Optional[type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> None: return self.exit_stack.close() def list_generated_parquet_files(builder: DatasetBuilder, partial: bool = False) -> list[ParquetFile]: """List the parquet files generated by `builder.download_and_prepare` in the `builder.cache_dir`.""" if not builder.info.splits: raise EmptyDatasetError("No split found after generating parquet files") split_dict = builder.info.splits local_parquet_files: list[ParquetFile] = [] for split, split_info in split_dict.items(): # We know the `datasets` library uses a template for the shards names: # - {builder.dataset_name}-{split}.parquet if there is only one shard # - {builder.dataset_name}-{split}-{shard_idx:05d}-of-{num_shards:05d}.parquet otherwise num_shards = len(split_info.shard_lengths) if isinstance(split_info.shard_lengths, list) else 1 filename_suffix = "-{shard_idx:05d}-of-" + f"{num_shards:05d}" if num_shards > 1 else "" filename = f"{builder.dataset_name}-{split}{filename_suffix}.parquet" local_parquet_files.extend( [ ParquetFile( local_file=os.path.join( builder.cache_dir, filename.format(shard_idx=shard_idx), ), local_dir=builder.cache_dir, config=builder.config.name, split=split, shard_idx=shard_idx, partial=partial, ) for shard_idx in range(num_shards) ] ) return local_parquet_files def stream_convert_to_parquet( builder: DatasetBuilder, max_dataset_size: Optional[int], writer_batch_size: Optional[int] = None ) -> tuple[list[CommitOperationAdd], bool]: """Stream and prepare the dataset as parquet files and fills the builder info.""" writer_batch_size = writer_batch_size or get_writer_batch_size_from_info(builder.info) if writer_batch_size is not None and ( builder._writer_batch_size is None or builder._writer_batch_size > writer_batch_size ): builder._writer_batch_size = writer_batch_size dl_manager = StreamingDownloadManager( base_path=builder.base_path, download_config=DownloadConfig(token=builder.token, storage_options=builder.storage_options), dataset_name=builder.name, data_dir=builder.config.data_dir, ) os.makedirs(builder.cache_dir, exist_ok=True) split_dict = SplitDict(dataset_name=builder.name) splits_generators = {sg.name: sg for sg in builder._split_generators(dl_manager)} prepare_split_kwargs: dict[str, Any] = ( {"check_duplicate_keys": True} if isinstance(builder, datasets.builder.GeneratorBasedBuilder) else {} ) partial = False for split in splits_generators: split_dict.add(splits_generators[split].split_info) if max_dataset_size is None: builder._prepare_split( split_generator=splits_generators[split], file_format="parquet", **prepare_split_kwargs ) else: with limit_parquet_writes(builder, max_dataset_size=max_dataset_size) as limiter: builder._prepare_split( split_generator=splits_generators[split], file_format="parquet", **prepare_split_kwargs ) partial = partial or limiter.total_bytes >= max_dataset_size builder.info.splits = split_dict builder.info.dataset_size = sum(split.num_bytes for split in builder.info.splits.values()) builder.info.download_size = None builder.info.size_in_bytes = None # send the files to the target revision local_parquet_files = list_generated_parquet_files(builder, partial=partial) parquet_operations: list[CommitOperationAdd] = [ CommitOperationAdd(path_in_repo=parquet_file.path_in_repo, path_or_fileobj=parquet_file.local_file) for parquet_file in local_parquet_files ] return parquet_operations, partial def convert_to_parquet(builder: DatasetBuilder) -> list[CommitOperationAdd]: """Download and prepare the dataset as parquet files and fills the builder info.""" # prepare the parquet files locally writer_batch_size = get_writer_batch_size_from_info(builder.info) if writer_batch_size is not None and ( builder._writer_batch_size is None or builder._writer_batch_size > writer_batch_size ): builder._writer_batch_size = writer_batch_size builder.download_and_prepare( file_format="parquet" ) # the parquet files are stored in the cache dir and it fills the info local_parquet_files = list_generated_parquet_files(builder) # send the files to the target revision parquet_operations: list[CommitOperationAdd] = [ CommitOperationAdd(path_in_repo=parquet_file.path_in_repo, path_or_fileobj=parquet_file.local_file) for parquet_file in local_parquet_files ] logging.debug(f"{parquet_operations=}") return parquet_operations def create_commits( hf_api: HfApi, repo_id: str, operations: list[CommitOperation], *, commit_message: str, revision: Optional[str] = None, parent_commit: Optional[str] = None, max_operations_per_commit: int = MAX_OPERATIONS_PER_COMMIT, ) -> list[CommitInfo]: """ Creates one or several commits in the given dataset repo, deleting & uploading files as needed. Args: hf_api (`huggingface_hub.HfApi`): The HfApi to use to commit the operations. repo_id (`str`): The repository in which the commit will be created, for example: `"username/my_dataset"` operations (`Iterable` of [`huggingface_hub.hf_api.CommitOperation`]): An iterable of operations to include in the commit, either: - [`huggingface_hub.hf_api.CommitOperationAdd`] to upload a file - [`huggingface_hub.hf_api.CommitOperationDelete`] to delete a file - [`huggingface_hub.hf_api.CommitOperationCopy`] to copy a file commit_message (`str`): The summary (first line) of the commit that will be created. commit_description (`str`, *optional*): The description of the commit that will be created token (`str`, *optional*): Authentication token, obtained with `HfApi.login` method. Will default to the stored token. repo_type (`str`, *optional*): Set to `"dataset"` or `"space"` if uploading to a dataset or space, `None` or `"model"` if uploading to a model. Default is `None`. revision (`str`, *optional*): The git revision to commit from. Defaults to the head of the `"main"` branch. parent_commit (`str`, *optional*): The OID / SHA of the parent commit, as a hexadecimal string. Shorthands (7 first characters) are also supported. If specified and `create_pr` is `False`, the commit will fail if `revision` does not point to `parent_commit`. If specified and `create_pr` is `True`, the pull request will be created from `parent_commit`. Specifying `parent_commit` ensures the repo has not changed before committing the changes, and can be especially useful if the repo is updated / committed to concurrently. max_operations_per_commit (`int`, *optional*): The max number of operations per commit, to avoid time out errors from the Hub. Defaults to 500. Returns: [`list[huggingface_hub.CommitInfo]`]: List of [`CommitInfo`] containing information about the newly created commit (commit hash, commit url, pr url, commit message,...). Raises: [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If commit message is empty. [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If parent commit is not a valid commit OID. [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If the Hub API returns an HTTP 400 error (bad request) [`huggingface_hub.utils.RepositoryNotFoundError`]: If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo does not exist. [`libcommon.exceptions.CreateCommitError`]: If one of the commits could not be created on the Hub. """ commit_infos: list[CommitInfo] = [] offsets = range(0, len(operations), max_operations_per_commit) for commit_idx, offset in enumerate(offsets): batch_msg = f" (step {commit_idx + 1} of {len(offsets)})" if len(offsets) > 1 else "" retry_create_commit = retry(on=[HfHubHTTPError], sleeps=HF_HUB_HTTP_ERROR_RETRY_SLEEPS)(hf_api.create_commit) try: commit_info = retry_create_commit( repo_id=repo_id, repo_type=DATASET_TYPE, revision=revision, operations=operations[offset : offset + max_operations_per_commit], # noqa: E203 commit_message=commit_message + batch_msg, parent_commit=commit_infos[-1].oid if commit_infos else parent_commit, ) except RuntimeError as e: if e.__cause__ and isinstance(e.__cause__, HfHubHTTPError): raise CreateCommitError( message=( f"Commit {commit_idx}/{len(offsets)} could not be created on the Hub (after" f" {len(HF_HUB_HTTP_ERROR_RETRY_SLEEPS)} attempts)." ), cause=e.__cause__, ) from e.__cause__ raise e commit_infos.append(commit_info) return commit_infos def get_delete_operations( parquet_operations: list[CommitOperationAdd], all_repo_files: set[str], config_names: set[str], config: str ) -> list[CommitOperationDelete]: # - get files that will be preserved in repo: # 1. parquet files belonging to any other config (otherwise outdated files might be preserved) # 2. duckdb files belonging to any config # 3. .gitattributes pattern_in_any_config_dir = re.compile(f"^({'|'.join(re.escape(conf) for conf in config_names)})/") pattern_in_any_other_config_dir = re.compile( f"^({'|'.join(re.escape(conf) for conf in config_names.difference({config}))})/" ) files_to_ignore: set[str] = { file for file in all_repo_files if (pattern_in_any_other_config_dir.match(file) and file.endswith(".parquet")) or (pattern_in_any_config_dir.match(file) and file.endswith(".duckdb")) }.union({".gitattributes"}) # - get files to be deleted - all files except for: # - the files to be preserved # - parquet files obtained for current config at this processing step files_to_add = [operation.path_in_repo for operation in parquet_operations] files_to_delete = all_repo_files - set(files_to_add).union(files_to_ignore) delete_operations = [CommitOperationDelete(path_in_repo=file) for file in files_to_delete] logging.debug(f"{delete_operations=}") return delete_operations def commit_parquet_conversion( hf_api: HfApi, committer_hf_api: HfApi, dataset: str, config: str, config_names: set[str], parquet_operations: list[CommitOperation], commit_message: str, target_revision: Optional[str], ) -> list[CommitInfo]: """ Creates one or several commits in the given dataset repo, deleting & uploading files as needed. Args: hf_api (`huggingface_hub.HfApi`): The HfApi to get the dataset info. committer_hf_api (`huggingface_hub.HfApi`): The HfApi to use to commit the operations. dataset (`str`): The dataset in which the commit will be created, for example: `"username/my_dataset"` config (`str`): The dataset configuration. config_names (`list[str]`): The list of all the configurations of this dataset. This is used to clean the other fiels and directories in the repo, if any. parquet_operations (`list[huggingface_hub.hf_api.CommitOperation]`): List of commit operation for the parquet conversion. It could be file additions or file copies for example. commit_message (`str`): The summary (first line) of the commit that will be created. target_revision (`str`, *optional*): The git revision to commit from. Defaults to the head of the `"main"` branch. Returns: [`list[huggingface_hub.CommitInfo]`]: List of [`CommitInfo`] containing information about the newly created commit (commit hash, commit url, pr url, commit message,...). Raises: [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If commit message is empty. [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If parent commit is not a valid commit OID. [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If the Hub API returns an HTTP 400 error (bad request) [`huggingface_hub.utils.RepositoryNotFoundError`]: If repository is not found (error 404): wrong repo_id/repo_type, private but not authenticated or repo does not exist. [`libcommon.exceptions.CreateCommitError`]: If one of the commits could not be created on the Hub. """ target_dataset_info = hf_api.dataset_info(repo_id=dataset, revision=target_revision, files_metadata=False) all_repo_files: set[str] = {f.rfilename for f in target_dataset_info.siblings} delete_operations = get_delete_operations( parquet_operations=parquet_operations, all_repo_files=all_repo_files, config_names=config_names, config=config ) operations = delete_operations + parquet_operations return create_commits( committer_hf_api, repo_id=dataset, revision=target_revision, operations=operations, commit_message=commit_message, parent_commit=target_dataset_info.sha, ) def compute_config_parquet_and_info_response( job_id: str, dataset: str, config: str, hf_endpoint: str, hf_token: Optional[str], committer_hf_token: Optional[str], source_revision: str, target_revision: str, commit_message: str, url_template: str, blocked_datasets: list[str], max_dataset_size: int, max_external_data_files: int, max_row_group_byte_size_for_copy: int, no_max_size_limit_datasets: list[str], ) -> ConfigParquetAndInfoResponse: """ Get the response of config-parquet-and-info for one specific dataset and config on huggingface.co. It is assumed that the dataset can be accessed with the token. Args: job_id (`str`): The id of the current Job. It is used to lock the access to the parquet conversion branch on the Hub. dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): Dataset configuration name hf_endpoint (`str`): The Hub endpoint (for example: "https://huggingface.co") hf_token (`str`, `optional`): An app authentication token with read access to all the datasets. committer_hf_token (`str`, `optional`): An app authentication token with write access. It must be part of the `datasets-maintainers` organization (to create the refs/convert/parquet "branch" and push to it) source_revision (`str`): The git revision (e.g. "main" or sha) of the dataset used to prepare the parquet files target_revision (`str`): The target git revision (e.g. "refs/convert/parquet") of the dataset where to store the parquet files commit_message (`str`): The commit message to use when storing the parquet files url_template (`str`): The template to use to build the parquet file url blocked_datasets (`list[str]`): The list of blocked datasets. If empty, no dataset is blocked. max_dataset_size (`int`): The maximum size of a dataset in bytes. If the dataset is under the limit (which means that the size can be fetched), it will be allowed. max_external_data_files (`int`): The maximum number of external data files of a dataset. This is for datasets with loading scripts only. max_row_group_byte_size_for_copy (`int`): The maximum size in bytes of parquet files that are allowed to be copied without being converted. no_max_size_limit_datasets (`list[str]`): List of datasets that should be fully converted (no partial conversion). Returns: `ConfigParquetAndInfoResponse`: An object with the config_parquet_and_info_response (dataset info and list of parquet files). Raises the following errors: - [`libcommon.exceptions.DatasetNotFoundError`]: if the dataset does not exist, or if the token does not give the sufficient access to the dataset, - ['requests.exceptions.HTTPError'](https://requests.readthedocs.io/en/latest/api/#requests.HTTPError) any other error when asking access - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.CreateCommitError`]: If one of the commits could not be created on the Hub. - [`libcommon.exceptions.DatasetInBlockListError`] If the dataset is in the list of blocked datasets. - [`libcommon.exceptions.DatasetManualDownloadError`]: If the dataset requires manual download. - [`libcommon.exceptions.DatasetRevisionNotFoundError`] If the revision does not exist or cannot be accessed using the token. - [`libcommon.exceptions.DatasetTooBigFromDatasetsError`] If the dataset is too big to be converted to parquet, as measured by the sum of the configs sizes given by the datasets library. - [`libcommon.exceptions.DatasetTooBigFromHubError`] If the dataset is too big to be converted to parquet, as measured by the sum of the repository files sizes given by the Hub. - [`libcommon.exceptions.EmptyDatasetError`] The dataset is empty. - [`libcommon.exceptions.ConfigNamesError`] If the list of configurations could not be obtained using the datasets library. - [`libcommon.exceptions.DatasetWithTooManyExternalFilesError`] If the dataset has too many external files to be converted to parquet - [`libcommon.exceptions.DatasetWithTooBigExternalFilesError`] If the dataset is too big external files be converted to parquet - [`libcommon.exceptions.UnsupportedExternalFilesError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestHTTPError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestConnectionError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestTimeoutError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.ExternalFilesSizeRequestError`] If we failed to get the external files sizes to make sure we can convert the dataset to parquet - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) If the datasets.config.HF_ENDPOINT is not set to the expected value """ logging.info(f"get parquet files and dataset info for {dataset=} {config=}") raise_if_blocked(dataset=dataset, blocked_datasets=blocked_datasets) logging.info(f"getting config names for {dataset=}") previous_step = "dataset-config-names" config_names_best_response = get_previous_step_or_raise(kinds=[previous_step], dataset=dataset) config_names_content = config_names_best_response.response["content"] if "config_names" not in config_names_content: raise PreviousStepFormatError("Previous step did not return the expected content: 'config_names'.") if not isinstance(config_names_content["config_names"], list): raise PreviousStepFormatError( "Previous step did not return the expected content.", TypeError(f"config_names should be a list, but got {type(config_names_content['config_names'])}"), ) config_names = {config_name_item["config"] for config_name_item in config_names_content["config_names"]} if config not in config_names: raise ConfigNamesError(f"{config=} does not exist in {dataset=}") hf_api = HfApi(endpoint=hf_endpoint, token=hf_token) committer_hf_api = HfApi(endpoint=hf_endpoint, token=committer_hf_token) download_config = DownloadConfig(delete_extracted=True) try: builder = load_dataset_builder( path=dataset, name=config, revision=source_revision, token=hf_token, download_config=download_config, ) except _EmptyDatasetError as err: raise EmptyDatasetError(f"{dataset=} is empty.", cause=err) from err except FileNotFoundError as err: raise DatasetNotFoundError("The dataset, or the revision, does not exist on the Hub.") from err partial = False if is_parquet_builder_with_hub_files(builder): try: parquet_operations = copy_parquet_files(builder) validate = ParquetFileValidator(max_row_group_byte_size=max_row_group_byte_size_for_copy).validate fill_builder_info(builder, hf_endpoint=hf_endpoint, hf_token=hf_token, validate=validate) except TooBigRowGroupsError as err: # aim for a writer_batch_size that is factor of 100 # and with a batch_byte_size that is smaller than max_row_group_byte_size_for_copy writer_batch_size = get_writer_batch_size_from_row_group_size( num_rows=err.num_rows, row_group_byte_size=err.row_group_byte_size, max_row_group_byte_size=max_row_group_byte_size_for_copy, ) parquet_operations, partial = stream_convert_to_parquet( builder, max_dataset_size=None if dataset in no_max_size_limit_datasets else max_dataset_size, writer_batch_size=writer_batch_size, ) else: raise_if_requires_manual_download( builder=builder, hf_endpoint=hf_endpoint, hf_token=hf_token, ) dataset_info = get_dataset_info_for_supported_datasets( dataset=dataset, hf_endpoint=hf_endpoint, hf_token=hf_token, revision=source_revision, files_metadata=True ) if is_dataset_too_big( dataset_info=dataset_info, builder=builder, hf_endpoint=hf_endpoint, hf_token=hf_token, max_dataset_size=max_dataset_size, max_external_data_files=max_external_data_files, ): parquet_operations, partial = stream_convert_to_parquet( builder, max_dataset_size=None if dataset in no_max_size_limit_datasets else max_dataset_size ) else: parquet_operations = convert_to_parquet(builder) try: # ^ timeouts after ~7 minutes with lock.git_branch( dataset=dataset, branch=target_revision, owner=job_id, sleeps=LOCK_GIT_BRANCH_RETRY_SLEEPS ): # create the target revision if we managed to get the parquet files and it does not exist yet # (clone from initial commit to avoid cloning all repo's files) create_branch( dataset=dataset, target_revision=target_revision, hf_api=hf_api, committer_hf_api=committer_hf_api, ) # commit the parquet files commit_parquet_conversion( hf_api=hf_api, committer_hf_api=committer_hf_api, dataset=dataset, config=config, parquet_operations=parquet_operations, config_names=config_names, target_revision=target_revision, commit_message=commit_message, ) # call the API again to get the list of parquet files target_dataset_info = hf_api.dataset_info(repo_id=dataset, revision=target_revision, files_metadata=True) except TimeoutError as err: raise LockedDatasetTimeoutError("the dataset is currently locked, please try again later.") from err except RepositoryNotFoundError as err: raise DatasetNotFoundError("The dataset does not exist on the Hub (was deleted during job).") from err repo_files = [ repo_file for repo_file in target_dataset_info.siblings if repo_file.rfilename.startswith(f"{config}/") and repo_file.rfilename.endswith(".parquet") ] repo_files.sort(key=repo_file_rfilename_sort_key) # we might want to check if the sha of the parquet files is the same as the one we just uploaded # we could also check that the list of parquet files is exactly what we expect # let's not over engineer this for now. After all, what is on the Hub is the source of truth # and the /parquet response is more a helper to get the list of parquet files return ConfigParquetAndInfoResponse( parquet_files=[ create_parquet_file_item( repo_file=repo_file, dataset=dataset, config=config, hf_endpoint=hf_endpoint, target_revision=target_revision, url_template=url_template, ) for repo_file in repo_files ], dataset_info=asdict(builder.info), partial=partial, ) class ConfigParquetAndInfoJobRunner(ConfigJobRunnerWithDatasetsCache): parquet_and_info_config: ParquetAndInfoConfig @staticmethod def get_job_type() -> str: return "config-parquet-and-info" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_PARQUET_AND_INFO_VERSION def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, hf_datasets_cache=hf_datasets_cache, ) self.parquet_and_info_config = app_config.parquet_and_info def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_config_parquet_and_info_response( job_id=self.job_info["job_id"], dataset=self.dataset, config=self.config, hf_endpoint=self.app_config.common.hf_endpoint, hf_token=self.app_config.common.hf_token, committer_hf_token=self.parquet_and_info_config.committer_hf_token, source_revision=self.parquet_and_info_config.source_revision, target_revision=self.parquet_and_info_config.target_revision, commit_message=self.parquet_and_info_config.commit_message, url_template=self.parquet_and_info_config.url_template, blocked_datasets=self.parquet_and_info_config.blocked_datasets, max_dataset_size=self.parquet_and_info_config.max_dataset_size, max_external_data_files=self.parquet_and_info_config.max_external_data_files, max_row_group_byte_size_for_copy=self.parquet_and_info_config.max_row_group_byte_size_for_copy, no_max_size_limit_datasets=self.parquet_and_info_config.no_max_size_limit_datasets, ) )
datasets-server-main
services/worker/src/worker/job_runners/config/parquet_and_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import PROCESSING_STEP_CONFIG_SIZE_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from worker.dtos import CompleteJobResult, ConfigSize, ConfigSizeResponse, SplitSize from worker.job_runners.config.config_job_runner import ConfigJobRunner def compute_config_size_response(dataset: str, config: str) -> ConfigSizeResponse: """ Get the response of config-size for one specific dataset and config on huggingface.co. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. Returns: `ConfigSizeResponse`: An object with the size_response. Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get size for dataset={dataset}, config={config}") dataset_info_best_response = get_previous_step_or_raise( kinds=["config-parquet-and-info"], dataset=dataset, config=config ) content = dataset_info_best_response.response["content"] if "dataset_info" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'dataset_info'.") if not isinstance(content["dataset_info"], dict): raise PreviousStepFormatError( "Previous step did not return the expected content.", TypeError(f"dataset_info should be a dict, but got {type(content['dataset_info'])}"), ) try: config_info = content["dataset_info"] num_columns = len(config_info["features"]) split_sizes: list[SplitSize] = [ { "dataset": dataset, "config": config, "split": split_info["name"], "num_bytes_parquet_files": sum( x["size"] for x in content["parquet_files"] if x["config"] == config and x["split"] == split_info["name"] ), "num_bytes_memory": split_info["num_bytes"] if "num_bytes" in split_info else 0, "num_rows": split_info["num_examples"] if "num_examples" in split_info else 0, "num_columns": num_columns, } for split_info in config_info["splits"].values() ] config_size = ConfigSize( { "dataset": dataset, "config": config, "num_bytes_original_files": config_info.get("download_size"), "num_bytes_parquet_files": sum(split_size["num_bytes_parquet_files"] for split_size in split_sizes), "num_bytes_memory": sum(split_size["num_bytes_memory"] for split_size in split_sizes), "num_rows": sum(split_size["num_rows"] for split_size in split_sizes), "num_columns": num_columns, } ) partial = content["partial"] except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e return ConfigSizeResponse( { "size": { "config": config_size, "splits": split_sizes, }, "partial": partial, } ) class ConfigSizeJobRunner(ConfigJobRunner): @staticmethod def get_job_type() -> str: return "config-size" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_SIZE_VERSION def compute(self) -> CompleteJobResult: return CompleteJobResult(compute_config_size_response(dataset=self.dataset, config=self.config))
datasets-server-main
services/worker/src/worker/job_runners/config/size.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from http import HTTPStatus from libcommon.constants import PROCESSING_STEP_CONFIG_IS_VALID_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from worker.dtos import IsValidResponse, JobResult from worker.job_runners.config.config_job_runner import ConfigJobRunner def compute_is_valid_response(dataset: str, config: str) -> tuple[IsValidResponse, float]: """ Get the response of /is-valid for one specific dataset config on huggingface.co. A dataset config is valid if any of the artifacts for any of the steps is valid. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. Returns: `tuple[IsValidResponse, float]`: The response (viewer, preview, search) and the progress. """ logging.info(f"get is-valid response for {dataset=} {config=}") split_names_response = get_previous_step_or_raise( kinds=["config-split-names-from-streaming", "config-split-names-from-info"], dataset=dataset, config=config, ) content = split_names_response.response["content"] if "splits" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'splits'.") preview = False viewer = False search = False try: total = 0 pending = 0 for split_item in content["splits"]: split = split_item["split"] total += 1 try: response = get_response(kind="split-is-valid", dataset=dataset, config=config, split=split) except CacheEntryDoesNotExistError: logging.debug("No response found in previous step for this dataset: 'split-is-valid'.") pending += 1 continue if response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {response['http_status']}.") continue split_is_valid_content = response["content"] preview = preview or split_is_valid_content["preview"] viewer = viewer or split_is_valid_content["viewer"] search = search or split_is_valid_content["search"] except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e progress = (total - pending) / total if total else 1.0 return ( IsValidResponse( preview=preview, viewer=viewer, search=search, ), progress, ) class ConfigIsValidJobRunner(ConfigJobRunner): @staticmethod def get_job_type() -> str: return "config-is-valid" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_IS_VALID_VERSION def compute(self) -> JobResult: response_content, progress = compute_is_valid_response(dataset=self.dataset, config=self.config) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/config/is_valid.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from libcommon.constants import PROCESSING_STEP_CONFIG_OPT_IN_OUT_URLS_COUNT_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from worker.dtos import JobResult, OptInOutUrlsCountResponse from worker.job_runners.config.config_job_runner import ConfigJobRunner def compute_opt_in_out_urls_scan_response(dataset: str, config: str) -> tuple[OptInOutUrlsCountResponse, float]: logging.info(f"get config-opt-in-out-urls-count for dataset={dataset} config={config}") split_names_response = get_previous_step_or_raise( kinds=["config-split-names-from-streaming", "config-split-names-from-info"], dataset=dataset, config=config, ) content = split_names_response.response["content"] if "splits" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'splits'.") urls_columns = [] num_opt_in_urls = 0 num_opt_out_urls = 0 num_urls = 0 num_scanned_rows = 0 full_scan_count = 0 try: total = 0 pending = 0 for split_item in content["splits"]: split = split_item["split"] total += 1 try: response = get_response( kind="split-opt-in-out-urls-count", dataset=dataset, config=config, split=split ) except CacheEntryDoesNotExistError: logging.debug("No response found in previous step for this dataset: 'split-opt-in-out-urls-count'.") pending += 1 continue if response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {response['http_status']}.") continue split_opt_in_out_content = response["content"] urls_columns.extend(split_opt_in_out_content["urls_columns"]) num_opt_in_urls += split_opt_in_out_content["num_opt_in_urls"] num_opt_out_urls += split_opt_in_out_content["num_opt_out_urls"] num_urls += split_opt_in_out_content["num_urls"] num_scanned_rows += split_opt_in_out_content["num_scanned_rows"] full_scan_count += 1 if split_opt_in_out_content["full_scan"] else 0 except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e unique_urls_columns = sorted(list(set(urls_columns))) has_urls_columns = len(unique_urls_columns) > 0 progress = (total - pending) / total if total else 1.0 full_scan = full_scan_count == total return ( OptInOutUrlsCountResponse( urls_columns=unique_urls_columns, has_urls_columns=has_urls_columns, num_opt_in_urls=num_opt_in_urls, num_opt_out_urls=num_opt_out_urls, num_scanned_rows=num_scanned_rows, num_urls=num_urls, full_scan=full_scan, ), progress, ) class ConfigOptInOutUrlsCountJobRunner(ConfigJobRunner): @staticmethod def get_job_type() -> str: return "config-opt-in-out-urls-count" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_OPT_IN_OUT_URLS_COUNT_VERSION def compute(self) -> JobResult: response_content, progress = compute_opt_in_out_urls_scan_response(dataset=self.dataset, config=self.config) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/config/opt_in_out_urls_count.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from libcommon.constants import ( PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION, PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION, ) from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from worker.dtos import CompleteJobResult, FullSplitItem, JobRunnerInfo, SplitsList from worker.job_runners.config.config_job_runner import ConfigJobRunner def compute_split_names_from_info_response(dataset: str, config: str) -> SplitsList: """ Get the response of 'config-split-names-from-info' for one specific dataset and config on huggingface.co computed from cached response in dataset-info step. The 'config-split-names-from-info' response generated by this function does not include stats about the split, like the size or number of samples. See dataset-info or dataset-size for that. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. Returns: `SplitsList`: An object with the list of split names for the dataset and config. Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get split names from dataset info for dataset={dataset}, config={config}") config_info_best_response = get_previous_step_or_raise(kinds=["config-info"], dataset=dataset, config=config) try: splits_content = config_info_best_response.response["content"]["dataset_info"]["splits"] except Exception as e: raise PreviousStepFormatError("Previous step 'config-info' did not return the expected content.") from e split_name_items: list[FullSplitItem] = [ {"dataset": dataset, "config": config, "split": str(split)} for split in splits_content ] return SplitsList(splits=split_name_items) class ConfigSplitNamesFromInfoJobRunner(ConfigJobRunner): @staticmethod def get_job_type() -> str: return "config-split-names-from-info" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_INFO_VERSION @staticmethod def get_parallel_job_runner() -> JobRunnerInfo: return JobRunnerInfo( job_runner_version=PROCESSING_STEP_CONFIG_SPLIT_NAMES_FROM_STREAMING_VERSION, job_type="config-split-names-from-streaming", ) def compute(self) -> CompleteJobResult: return CompleteJobResult(compute_split_names_from_info_response(dataset=self.dataset, config=self.config))
datasets-server-main
services/worker/src/worker/job_runners/config/split_names_from_info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import functools import logging from typing import Optional from fsspec.implementations.http import HTTPFileSystem from libcommon.constants import PROCESSING_STEP_CONFIG_PARQUET_METADATA_VERSION from libcommon.exceptions import ( FileSystemError, ParquetResponseEmptyError, PreviousStepFormatError, ) from libcommon.processing_graph import ProcessingStep from libcommon.simple_cache import get_previous_step_or_raise from libcommon.storage import StrPath from libcommon.utils import JobInfo, SplitHubFile from libcommon.viewer_utils.parquet_metadata import create_parquet_metadata_file from tqdm.contrib.concurrent import thread_map from worker.config import AppConfig from worker.dtos import ( CompleteJobResult, ConfigParquetMetadataResponse, ParquetFileMetadataItem, ) from worker.job_runners.config.config_job_runner import ConfigJobRunner from worker.utils import get_parquet_file def create_parquet_metadata_file_from_remote_parquet( parquet_file_item: SplitHubFile, fs: HTTPFileSystem, hf_token: Optional[str], parquet_metadata_directory: StrPath ) -> ParquetFileMetadataItem: try: parquet_file = get_parquet_file(url=parquet_file_item["url"], fs=fs, hf_token=hf_token) except Exception as e: raise FileSystemError(f"Could not read the parquet files: {e}") from e parquet_metadata_subpath = create_parquet_metadata_file( dataset=parquet_file_item["dataset"], config=parquet_file_item["config"], split=parquet_file_item["split"], parquet_file_metadata=parquet_file.metadata, filename=parquet_file_item["filename"], parquet_metadata_directory=parquet_metadata_directory, ) return ParquetFileMetadataItem( dataset=parquet_file_item["dataset"], config=parquet_file_item["config"], split=parquet_file_item["split"], url=parquet_file_item["url"], filename=parquet_file_item["filename"], size=parquet_file_item["size"], num_rows=parquet_file.metadata.num_rows, parquet_metadata_subpath=parquet_metadata_subpath, ) def compute_parquet_metadata_response( dataset: str, config: str, hf_token: Optional[str], parquet_metadata_directory: StrPath ) -> ConfigParquetMetadataResponse: """ Store the config's parquet metadata on the disk and return the list of local metadata files. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): A configuration name. hf_token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) parquet_metadata_directory (`str` or `pathlib.Path`): The directory where the parquet metadata files are stored. Returns: `ConfigParquetMetadataResponse`: An object with the list of parquet metadata files. <Tip> Raises the following errors: - [`~libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`~libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format - [`~libcommon.exceptions.ParquetResponseEmptyError`] If the previous step provided an empty list of parquet files. - [`~libcommon.exceptions.FileSystemError`] If the HfFileSystem couldn't access the parquet files. </Tip> """ logging.info(f"get parquet files for dataset={dataset}, config={config}") config_parquet_best_response = get_previous_step_or_raise(kinds=["config-parquet"], dataset=dataset, config=config) try: parquet_files_content = config_parquet_best_response.response["content"]["parquet_files"] parquet_file_items: list[SplitHubFile] = [ parquet_file_item for parquet_file_item in parquet_files_content if parquet_file_item["config"] == config ] if not parquet_file_items: raise ParquetResponseEmptyError("No parquet files found.") content = config_parquet_best_response.response["content"] if "features" in content and isinstance(content["features"], dict): features = content["features"] # config-parquet version<6 didn't have features else: # (July 23) we can remove this later and raise an error instead (can be None for backward compatibility) features = None partial = config_parquet_best_response.response["content"]["partial"] except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.") from e fs = HTTPFileSystem() desc = f"{dataset}/{config}" parquet_files_metadata: list[ParquetFileMetadataItem] = thread_map( functools.partial( create_parquet_metadata_file_from_remote_parquet, fs=fs, hf_token=hf_token, parquet_metadata_directory=parquet_metadata_directory, ), parquet_file_items, desc=desc, unit="pq", disable=True, ) return ConfigParquetMetadataResponse( parquet_files_metadata=parquet_files_metadata, features=features, partial=partial ) class ConfigParquetMetadataJobRunner(ConfigJobRunner): parquet_metadata_directory: StrPath @staticmethod def get_job_type() -> str: return "config-parquet-metadata" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_PARQUET_METADATA_VERSION def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, parquet_metadata_directory: StrPath, ) -> None: super().__init__( job_info=job_info, app_config=app_config, processing_step=processing_step, ) self.parquet_metadata_directory = parquet_metadata_directory def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_parquet_metadata_response( dataset=self.dataset, config=self.config, hf_token=self.app_config.common.hf_token, parquet_metadata_directory=self.parquet_metadata_directory, ) )
datasets-server-main
services/worker/src/worker/job_runners/config/parquet_metadata.py
import logging from libcommon.constants import PROCESSING_STEP_CONFIG_INFO_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from worker.dtos import CompleteJobResult, ConfigInfoResponse from worker.job_runners.config.config_job_runner import ConfigJobRunner def compute_config_info_response(dataset: str, config: str) -> ConfigInfoResponse: """ Get the response of config-info for one specific config of a specific dataset on huggingface.co. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. config (`str`): Dataset configuration name Returns: `ConfigInfoResponse`: An object with the dataset_info response for requested config. Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step doesn't have the expected format. """ logging.info(f"get dataset_info for {dataset=} and {config=}") previous_step = "config-parquet-and-info" dataset_info_best_response = get_previous_step_or_raise(kinds=[previous_step], dataset=dataset, config=config) content = dataset_info_best_response.response["content"] try: config_info = content["dataset_info"] partial = content["partial"] except Exception as e: raise PreviousStepFormatError( f"Previous step '{previous_step}' did not return the expected content: 'dataset_info'.", e ) from e if not isinstance(config_info, dict): raise PreviousStepFormatError( "Previous step did not return the expected content.", TypeError(f"dataset_info should be a dict, but got {type(config_info)}"), ) return ConfigInfoResponse(dataset_info=config_info, partial=partial) class ConfigInfoJobRunner(ConfigJobRunner): @staticmethod def get_job_type() -> str: return "config-info" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_CONFIG_INFO_VERSION def compute(self) -> CompleteJobResult: return CompleteJobResult(compute_config_info_response(dataset=self.dataset, config=self.config))
datasets-server-main
services/worker/src/worker/job_runners/config/info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from libcommon.constants import PROCESSING_STEP_DATASET_SPLIT_NAMES_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_best_response, get_previous_step_or_raise from worker.dtos import ( DatasetSplitNamesResponse, FailedConfigItem, FullConfigItem, FullSplitItem, JobResult, ) from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_dataset_split_names_response(dataset: str) -> tuple[DatasetSplitNamesResponse, float]: """ Get the response of /splits for one specific dataset on huggingface.co computed from responses cached in 'config-split-names-from-info' or 'config-split-names-from-streaming' steps. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. Returns: `DatasetSplitNamesResponse`: An object with a list of split names for the dataset [splits], a list of pending configs to be processed [pending] and the list of errors [failed] by config. Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get dataset split names for dataset={dataset}") # Get the config names from the previous steps config_names_best_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) content = config_names_best_response.response["content"] if "config_names" not in content: raise PreviousStepFormatError("'dataset-config-names' did not return the expected content: 'config_names'.") config_names = [config_name_item["config"] for config_name_item in content["config_names"]] if any(not isinstance(config_name, str) for config_name in config_names): raise PreviousStepFormatError("Previous step 'dataset-config-names' did not return a list of config names.") split_names_cache_kinds = ["config-split-names-from-info", "config-split-names-from-streaming"] try: splits: list[FullSplitItem] = [] pending: list[FullConfigItem] = [] failed: list[FailedConfigItem] = [] total = 0 for config in config_names: total += 1 best_response = get_best_response(split_names_cache_kinds, dataset=dataset, config=config) if best_response.response["error_code"] == "CachedResponseNotFound": logging.debug( "No response (successful or erroneous) found in cache for the previous steps" f" '{split_names_cache_kinds}' for this dataset." ) pending.append(FullConfigItem({"dataset": dataset, "config": config})) continue if best_response.response["http_status"] != HTTPStatus.OK: logging.debug(f"No successful response found in the previous steps {split_names_cache_kinds}.") failed.append( FailedConfigItem( { "dataset": dataset, "config": config, "error": best_response.response["content"], } ) ) continue splits.extend( [ FullSplitItem({"dataset": dataset, "config": config, "split": split_content["split"]}) for split_content in best_response.response["content"]["splits"] ] ) except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e progress = (total - len(pending)) / total if total else 1.0 return ( DatasetSplitNamesResponse( { "splits": splits, "pending": pending, "failed": failed, } ), progress, ) class DatasetSplitNamesJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-split-names" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_SPLIT_NAMES_VERSION def compute(self) -> JobResult: response_content, progress = compute_dataset_split_names_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/split_names.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from libcommon.constants import PROCESSING_STEP_DATASET_PARQUET_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from libcommon.utils import SplitHubFile from worker.dtos import ( ConfigParquetResponse, DatasetParquetResponse, JobResult, PreviousJob, ) from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_parquet_response(dataset: str) -> tuple[DatasetParquetResponse, float]: """ Get the response of dataset-parquet for one specific dataset on huggingface.co. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. Returns: `DatasetParquetResponse`: An object with the parquet_response (list of parquet files). Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get parquet files for dataset={dataset}") config_names_best_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) content = config_names_best_response.response["content"] if "config_names" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'config_names'.") try: parquet_files: list[SplitHubFile] = [] total = 0 pending = [] failed = [] partial = False for config_item in content["config_names"]: config = config_item["config"] total += 1 try: response = get_response(kind="config-parquet", dataset=dataset, config=config) except CacheEntryDoesNotExistError: logging.debug("No response found in previous step for this dataset: 'config-parquet' endpoint.") pending.append( PreviousJob( { "kind": "config-parquet", "dataset": dataset, "config": config, "split": None, } ) ) continue if response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {response['http_status']}.") failed.append( PreviousJob( { "kind": "config-parquet", "dataset": dataset, "config": config, "split": None, } ) ) continue config_parquet_content = ConfigParquetResponse( parquet_files=response["content"]["parquet_files"], partial=response["content"]["partial"], features=None, # we can keep it None since we don't pass it to DatasetParquetResponse anyway ) parquet_files.extend(config_parquet_content["parquet_files"]) partial = partial or config_parquet_content["partial"] except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e progress = (total - len(pending)) / total if total else 1.0 return ( DatasetParquetResponse(parquet_files=parquet_files, pending=pending, failed=failed, partial=partial), progress, ) class DatasetParquetJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-parquet" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_PARQUET_VERSION def compute(self) -> JobResult: response_content, progress = compute_parquet_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/parquet.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors.
datasets-server-main
services/worker/src/worker/job_runners/dataset/__init__.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from libcommon.constants import PROCESSING_STEP_DATASET_HUB_CACHE_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import get_previous_step_or_raise from worker.dtos import DatasetHubCacheResponse, JobResult from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_hub_cache_response(dataset: str) -> tuple[DatasetHubCacheResponse, float]: """ Get the content of a /sse/hub-cache SSE for one specific dataset on huggingface.co. Its purpose is specific to the Hub, and we won't ensure backward compatibility for this step. It provides information about: - the capabilities of the dataset: preview and viewer - the number of rows and if the dataset is partial Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. Returns: `tuple[DatasetHubCacheResponse, float]`: The response and the progress. """ logging.info(f"get hub_cache response for {dataset=}") is_valid_response = get_previous_step_or_raise(kinds=["dataset-is-valid"], dataset=dataset) content = is_valid_response.response["content"] if ( "preview" not in content or not isinstance(content["preview"], bool) or "viewer" not in content or not isinstance(content["viewer"], bool) ): raise PreviousStepFormatError( "Previous step 'dataset-is-valid' did not return the expected content: 'preview', 'viewer' or 'progress'." ) preview = content["preview"] viewer = content["viewer"] is_valid_progress = is_valid_response.response["progress"] size_response = get_previous_step_or_raise(kinds=["dataset-size"], dataset=dataset) content = size_response.response["content"] if ( "partial" not in content or not isinstance(content["partial"], bool) or "size" not in content or "dataset" not in content["size"] or "num_rows" not in content["size"]["dataset"] or not isinstance(content["size"]["dataset"]["num_rows"], int) ): raise PreviousStepFormatError( "Previous step 'dataset-size' did not return the expected content: 'partial' or 'size.dataset.num_rows'." ) partial = content["partial"] num_rows = content["size"]["dataset"]["num_rows"] size_progress = size_response.response["progress"] progress = min((p for p in [is_valid_progress, size_progress] if p is not None), default=0.0) return ( DatasetHubCacheResponse( preview=preview, viewer=viewer, partial=partial, num_rows=num_rows, ), progress, ) class DatasetHubCacheJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-hub-cache" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_HUB_CACHE_VERSION def compute(self) -> JobResult: response_content, progress = compute_hub_cache_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/hub_cache.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from typing import Optional from libcommon.constants import PROCESSING_STEP_DATASET_SIZE_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from worker.dtos import ( ConfigSize, ConfigSizeResponse, DatasetSize, DatasetSizeResponse, JobResult, PreviousJob, SplitSize, ) from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_sizes_response(dataset: str) -> tuple[DatasetSizeResponse, float]: """ Get the response of dataset-size for one specific dataset on huggingface.co. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. Returns: `DatasetSizeResponse`: An object with the sizes_response. Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step has not the expected format """ logging.info(f"get sizes for dataset={dataset}") config_names_best_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) content = config_names_best_response.response["content"] if "config_names" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'config_names'.") try: split_sizes: list[SplitSize] = [] config_sizes: list[ConfigSize] = [] total = 0 pending = [] failed = [] partial = False for config_item in content["config_names"]: config = config_item["config"] total += 1 try: response = get_response(kind="config-size", dataset=dataset, config=config) except CacheEntryDoesNotExistError: logging.debug("No response found in previous step for this dataset: 'config-size' endpoint.") pending.append( PreviousJob( { "kind": "config-size", "dataset": dataset, "config": config, "split": None, } ) ) continue if response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {response['http_status']}.") failed.append( PreviousJob( { "kind": "config-size", "dataset": dataset, "config": config, "split": None, } ) ) continue config_size_content = ConfigSizeResponse( size=response["content"]["size"], partial=response["content"]["partial"] ) config_sizes.append(config_size_content["size"]["config"]) split_sizes.extend(config_size_content["size"]["splits"]) partial = partial or config_size_content["partial"] num_bytes_original_files: Optional[int] = 0 for config_size in config_sizes: if num_bytes_original_files is not None and isinstance(config_size["num_bytes_original_files"], int): num_bytes_original_files += config_size["num_bytes_original_files"] else: num_bytes_original_files = None break dataset_size: DatasetSize = { "dataset": dataset, "num_bytes_original_files": num_bytes_original_files, "num_bytes_parquet_files": sum(config_size["num_bytes_parquet_files"] for config_size in config_sizes), "num_bytes_memory": sum(config_size["num_bytes_memory"] for config_size in config_sizes), "num_rows": sum(config_size["num_rows"] for config_size in config_sizes), } except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e progress = (total - len(pending)) / total if total else 1.0 return ( DatasetSizeResponse( { "size": { "dataset": dataset_size, "configs": config_sizes, "splits": split_sizes, }, "pending": pending, "failed": failed, "partial": partial, } ), progress, ) class DatasetSizeJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-size" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_SIZE_VERSION def compute(self) -> JobResult: response_content, progress = compute_sizes_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/size.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. from pathlib import Path from libcommon.exceptions import ParameterMissingError from libcommon.processing_graph import ProcessingStep from libcommon.utils import JobInfo from worker.config import AppConfig from worker.job_runner import JobRunner from worker.job_runners._job_runner_with_datasets_cache import ( JobRunnerWithDatasetsCache, ) class DatasetJobRunner(JobRunner): dataset: str def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, ) -> None: super().__init__(job_info=job_info, app_config=app_config, processing_step=processing_step) if job_info["params"]["dataset"] is None: raise ParameterMissingError("'dataset' parameter is required") self.dataset = job_info["params"]["dataset"] class DatasetJobRunnerWithDatasetsCache(JobRunnerWithDatasetsCache, DatasetJobRunner): def __init__( self, job_info: JobInfo, app_config: AppConfig, processing_step: ProcessingStep, hf_datasets_cache: Path, ) -> None: JobRunnerWithDatasetsCache.__init__( self=self, job_info=job_info, app_config=app_config, processing_step=processing_step, hf_datasets_cache=hf_datasets_cache, ) DatasetJobRunner.__init__( self=self, job_info=job_info, app_config=app_config, processing_step=processing_step, )
datasets-server-main
services/worker/src/worker/job_runners/dataset/dataset_job_runner.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2023 The HuggingFace Authors. import logging from http import HTTPStatus from libcommon.constants import PROCESSING_STEP_DATASET_IS_VALID_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from worker.dtos import IsValidResponse, JobResult from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_is_valid_response(dataset: str) -> tuple[IsValidResponse, float]: """ Get the response of /is-valid for one specific dataset on huggingface.co. A dataset is valid if at least one response of any of the artifacts for any of the steps (for viewer and preview) is valid. The deprecated `valid` field is an "or" of the `preview` and `viewer` fields. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. Returns: `tuple[IsValidResponse, float]`: The response (viewer, preview, search) and the progress. """ logging.info(f"get is-valid response for {dataset=}") config_names_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) content = config_names_response.response["content"] if "config_names" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'config_names'.") preview = False viewer = False search = False try: total = 0 pending = 0 for config_item in content["config_names"]: config = config_item["config"] total += 1 try: response = get_response(kind="config-is-valid", dataset=dataset, config=config) except CacheEntryDoesNotExistError: logging.debug("No response found in previous step for this dataset: 'config-is-valid'.") pending += 1 continue if response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {response['http_status']}.") continue config_is_valid_content = response["content"] preview = preview or config_is_valid_content["preview"] viewer = viewer or config_is_valid_content["viewer"] search = search or config_is_valid_content["search"] except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e progress = (total - pending) / total if total else 1.0 return ( IsValidResponse( preview=preview, viewer=viewer, search=search, ), progress, ) class DatasetIsValidJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-is-valid" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_IS_VALID_VERSION def compute(self) -> JobResult: response_content, progress = compute_is_valid_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/is_valid.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from libcommon.constants import PROCESSING_STEP_DATASET_OPT_IN_OUT_URLS_COUNT_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from worker.dtos import JobResult, OptInOutUrlsCountResponse from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_opt_in_out_urls_count_response(dataset: str) -> tuple[OptInOutUrlsCountResponse, float]: logging.info(f"get opt-in-out-urls-count for dataset={dataset}") config_names_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) content = config_names_response.response["content"] if "config_names" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'config_names'.") urls_columns = [] num_opt_in_urls = 0 num_opt_out_urls = 0 num_urls = 0 num_scanned_rows = 0 full_scan_count = 0 try: total = 0 pending = 0 for config_item in content["config_names"]: config = config_item["config"] total += 1 try: response = get_response(kind="config-opt-in-out-urls-count", dataset=dataset, config=config) except CacheEntryDoesNotExistError: logging.debug("No response found in previous step for this dataset: 'config-opt-in-out-urls-count'.") pending += 1 continue if response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {response['http_status']}.") continue else: if response["progress"] and response["progress"] < 1.0: logging.debug(f"Previous step is still in progress: {response['progress']}.") pending += 1 continue split_opt_in_out_content = response["content"] urls_columns.extend(split_opt_in_out_content["urls_columns"]) num_opt_in_urls += split_opt_in_out_content["num_opt_in_urls"] num_opt_out_urls += split_opt_in_out_content["num_opt_out_urls"] num_urls += split_opt_in_out_content["num_urls"] num_scanned_rows += split_opt_in_out_content["num_scanned_rows"] full_scan_count += 1 if split_opt_in_out_content["full_scan"] else 0 except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e unique_urls_columns = sorted(list(set(urls_columns))) has_urls_columns = len(unique_urls_columns) > 0 progress = (total - pending) / total if total else 1.0 full_scan = full_scan_count == total return ( OptInOutUrlsCountResponse( urls_columns=unique_urls_columns, has_urls_columns=has_urls_columns, num_opt_in_urls=num_opt_in_urls, num_opt_out_urls=num_opt_out_urls, num_scanned_rows=num_scanned_rows, num_urls=num_urls, full_scan=full_scan, ), progress, ) class DatasetOptInOutUrlsCountJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-opt-in-out-urls-count" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_OPT_IN_OUT_URLS_COUNT_VERSION def compute(self) -> JobResult: response_content, progress = compute_opt_in_out_urls_count_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/opt_in_out_urls_count.py