python_code
stringlengths
0
290k
repo_name
stringclasses
30 values
file_path
stringlengths
6
125
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from http import HTTPStatus from typing import Any from libcommon.constants import PROCESSING_STEP_DATASET_INFO_VERSION from libcommon.exceptions import PreviousStepFormatError from libcommon.simple_cache import ( CacheEntryDoesNotExistError, get_previous_step_or_raise, get_response, ) from worker.dtos import DatasetInfoResponse, JobResult, PreviousJob from worker.job_runners.dataset.dataset_job_runner import DatasetJobRunner def compute_dataset_info_response(dataset: str) -> tuple[DatasetInfoResponse, float]: """ Get the response of dataset-info for one specific dataset on huggingface.co. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. Returns: (`DatasetInfoResponse`, `float`): Tuple of an object with the dataset_info response and progress float value from 0. to 1. which corresponds to the percentage of dataset configs correctly processed and included in current response (some configs might not exist in cache yet or raise errors). Raises the following errors: - [`libcommon.simple_cache.CachedArtifactError`] If the previous step gave an error. - [`libcommon.exceptions.PreviousStepFormatError`] If the content of the previous step doesn't have the expected format. """ logging.info(f"get dataset_info for {dataset=}") config_names_best_response = get_previous_step_or_raise(kinds=["dataset-config-names"], dataset=dataset) content = config_names_best_response.response["content"] if "config_names" not in content: raise PreviousStepFormatError("Previous step did not return the expected content: 'config_names'.") try: config_infos: dict[str, Any] = {} total = 0 pending, failed = [], [] partial = False for config_item in content["config_names"]: config = config_item["config"] total += 1 try: config_response = get_response(kind="config-info", dataset=dataset, config=config) except CacheEntryDoesNotExistError: logging.debug(f"No response found in previous step for {dataset=} {config=}: 'config-info'.") pending.append( PreviousJob( kind="config-info", dataset=dataset, config=config, split=None, ) ) continue if config_response["http_status"] != HTTPStatus.OK: logging.debug(f"Previous step gave an error: {config_response['http_status']}") failed.append( PreviousJob( kind="config-info", dataset=dataset, config=config, split=None, ) ) continue config_infos[config] = config_response["content"]["dataset_info"] partial = partial or config_response["content"]["partial"] except Exception as e: raise PreviousStepFormatError("Previous step did not return the expected content.", e) from e progress = (total - len(pending)) / total if total else 1.0 return DatasetInfoResponse(dataset_info=config_infos, pending=pending, failed=failed, partial=partial), progress class DatasetInfoJobRunner(DatasetJobRunner): @staticmethod def get_job_type() -> str: return "dataset-info" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_INFO_VERSION def compute(self) -> JobResult: response_content, progress = compute_dataset_info_response(dataset=self.dataset) return JobResult(response_content, progress=progress)
datasets-server-main
services/worker/src/worker/job_runners/dataset/info.py
# SPDX-License-Identifier: Apache-2.0 # Copyright 2022 The HuggingFace Authors. import logging from typing import Optional from datasets import get_dataset_config_names from datasets.data_files import EmptyDatasetError as _EmptyDatasetError from libcommon.constants import PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION from libcommon.exceptions import ( ConfigNamesError, DatasetModuleNotInstalledError, DatasetWithTooManyConfigsError, EmptyDatasetError, ) from worker.dtos import CompleteJobResult, ConfigNameItem, DatasetConfigNamesResponse from worker.job_runners.dataset.dataset_job_runner import ( DatasetJobRunnerWithDatasetsCache, ) def compute_config_names_response( dataset: str, max_number: int, hf_token: Optional[str] = None, ) -> DatasetConfigNamesResponse: """ Get the response of dataset-config-names for one specific dataset on huggingface.co. Dataset can be private or gated if you pass an acceptable token. It is assumed that the dataset exists and can be accessed using the token. Args: dataset (`str`): A namespace (user or an organization) and a repo name separated by a `/`. hf_token (`str`, *optional*): An authentication token (See https://huggingface.co/settings/token) Returns: `DatasetConfigNamesResponse`: An object with the list of config names. Raises the following errors: - [`libcommon.exceptions.EmptyDatasetError`] The dataset is empty. - [`libcommon.exceptions.DatasetModuleNotInstalledError`] The dataset tries to import a module that is not installed. - [`libcommon.exceptions.ConfigNamesError`] If the list of configs could not be obtained using the datasets library. """ logging.info(f"get config names for dataset={dataset}") # get the list of splits in streaming mode try: config_name_items: list[ConfigNameItem] = [ {"dataset": dataset, "config": str(config)} for config in sorted(get_dataset_config_names(path=dataset, token=hf_token)) ] except _EmptyDatasetError as err: raise EmptyDatasetError("The dataset is empty.", cause=err) from err except ImportError as err: raise DatasetModuleNotInstalledError( "The dataset tries to import a module that is not installed.", cause=err ) from err except Exception as err: raise ConfigNamesError("Cannot get the config names for the dataset.", cause=err) from err number_of_configs = len(config_name_items) if number_of_configs > max_number: raise DatasetWithTooManyConfigsError( f"The maximum number of configs allowed is {max_number}, dataset has {number_of_configs} configs." ) return DatasetConfigNamesResponse(config_names=config_name_items) class DatasetConfigNamesJobRunner(DatasetJobRunnerWithDatasetsCache): @staticmethod def get_job_type() -> str: return "dataset-config-names" @staticmethod def get_job_runner_version() -> int: return PROCESSING_STEP_DATASET_CONFIG_NAMES_VERSION def compute(self) -> CompleteJobResult: return CompleteJobResult( compute_config_names_response( dataset=self.dataset, hf_token=self.app_config.common.hf_token, max_number=self.app_config.config_names.max_number, ) )
datasets-server-main
services/worker/src/worker/job_runners/dataset/config_names.py
import argparse import glob import multiprocessing as mp import os import pickle import random import struct import numpy as np from datasets import load_from_disk from tqdm import tqdm from transformers import GPT2Tokenizer, T5Tokenizer parser = argparse.ArgumentParser(description="Load a dataset.") parser.add_argument("--name", type=str, required=True) parser.add_argument("--save_dir", type=str, required=True) parser.add_argument("--source_dir", type=str, required=True) parser.add_argument("--split", type=str, default="train") parser.add_argument("--tokenize", action="store_true") parser.add_argument("--tokenizer", type=str, default="gpt2") parser.add_argument("--pre_sep", type=bytes, default=b"\xff\xff") parser.add_argument("--post_sep", type=bytes, default=b"") parser.add_argument("--sampling_rate", type=float, default=1.0) args = parser.parse_args() if args.tokenize: if args.tokenizer == "gpt2": tokenizer = GPT2Tokenizer.from_pretrained("gpt2") elif args.tokenizer == "t5": tokenizer = T5Tokenizer.from_pretrained("t5-small") else: raise split = args.split dataset_name = args.name source_dir = args.source_dir + "/" + dataset_name save_dir = args.save_dir + "/" + dataset_name + "_" + str(args.sampling_rate).replace(".", "") print("Loading", dataset_name) ds = load_from_disk(source_dir) ds = ds[split] print("Done loading") print("Sampling rate", args.sampling_rate) pre_sep = args.pre_sep post_sep = args.post_sep UID = 0 def sep(): global UID UID += 1 return pre_sep + struct.pack("<I", UID) + post_sep def tok(x): if args.tokenize: out = tokenizer.encode(x.decode("utf8")) out = np.array(out, dtype=np.uint16).view(np.uint8).tobytes() else: out = x return out if not os.path.exists(save_dir): os.mkdir(save_dir) fout = open(os.path.join(save_dir, dataset_name + "." + split), "wb") pos_to_id = {} #with mp.get_context("fork").Pool(mp.cpu_count()) as p: sizes = [0] # IF ROOTS: # for directory in glob.glob(source_dir + "*"): # print(directory) # ds = load_from_disk(directory) # ds = ds[split] for i, b in tqdm(enumerate(ds)): if random.random() > args.sampling_rate: continue if b["text_length"] > 188944: continue next_line = sep() + b["text"].encode("utf8") fout.write(next_line) pos_to_id[sizes[-1]] = i sizes.append(sizes[-1] + len(next_line)) open(os.path.join(save_dir, dataset_name + "." + split + ".size"), "wb").write( np.array(sizes, dtype=np.uint64).tobytes() ) with open(os.path.join(save_dir, dataset_name + "." + split + ".pos2id.pkl"), "wb") as f: pickle.dump(pos_to_id, f)
datablations-main
filtering/deduplication/hf_dataset_to_file.py
import argparse import glob import os from functools import partial from multiprocessing import Pool, cpu_count from datasets import DatasetDict, load_from_disk def save_dataset(dataset_name, base_dir, sample_size=100000, token=None): print("Processing", dataset_name) ds = load_from_disk(base_dir + dataset_name) ds.shuffle() while sample_size > len(ds["train"]): sample_size //= 10 small_ds = DatasetDict({"train": ds["train"].select(range(sample_size))}) small_ds.push_to_hub("ola13/small-" + dataset_name, private=True, token=token) print("Pushed", dataset_name, "to hub.") if __name__ == "__main__": """ Run the following in the terminal where you execute the code (replace the XXX with your actual token): ``` export HUGGINGFACE_TOKEN=hf_XXXXXXXXXXXXXXX ``` """ HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") if HUGGINGFACE_TOKEN is None: raise RuntimeError("Hugging Face token not specified.") parser = argparse.ArgumentParser() parser.add_argument( "--base_dir", type=str, required=True, ) parser.add_argument( "--sample_size", type=int, default=100000, ) args = parser.parse_args() files = glob.glob(args.base_dir + "/*") datasets = [f.split("/")[-1] for f in files] print(datasets) workers = cpu_count() print("Number of workers:", workers) pool = Pool(workers) pool.map( partial(save_dataset, base_dir=args.base_dir, sample_size=args.sample_size, token=HUGGINGFACE_TOKEN), datasets, ) pool.close() pool.join()
datablations-main
filtering/deduplication/save_dataset_sample.py
import os from multiprocessing import cpu_count from datasets import load_dataset HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") print(HUGGINGFACE_TOKEN) oscar = load_dataset( "oscar-corpus/OSCAR-2201", "en", use_auth_token=HUGGINGFACE_TOKEN, num_proc=cpu_count(), ignore_verifications=True ) oscar.save_to_disk("/home/piktus_huggingface_co/lumi/oscar/")
datablations-main
filtering/deduplication/save_dataset.py
import os from collections import Counter from datasets import load_dataset HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") oscar = load_dataset( "oscar-corpus/OSCAR-2201", "en", use_auth_token=HUGGINGFACE_TOKEN, num_proc=128, ignore_verifications=True, ) # oscar.save_to_disk("/home/piktus_huggingface_co/lumi/oscar/") oscar_ids = oscar["train"]["id"] print("Number of Oscar IDs", len(oscar_ids)) unique_ids = Counter(oscar_ids) print(unique_ids.most_common(10))
datablations-main
filtering/deduplication/download_oscar.py
import jsonlines from collections import defaultdict from datasets import load_from_disk, load_dataset, concatenate_datasets from multiprocessing import Pool, cpu_count from tqdm import tqdm oscar = load_from_disk("/home/piktus_huggingface_co/lumi/preprocessed_data/oscar-dedup-exapanded/") # oscar = load_dataset("ola13/small-oscar")["train"] oscar_shards = {} for i in tqdm(range(160)): oscar_shards[i] = oscar.shard(num_shards=160, index=i) def filter_shards(shard_id): print("Processing shard {}".format(shard_id)) shard_lines = [] for line in tqdm(oscar_shards[shard_id]): # if len(line["text"]) < 500: if (line["included_in_dedup"] and line["dup_ratio"] == 0.0) or ((not line["included_in_dedup"]) and (not line["has_dup_25"])): shard_lines.append({"text": line["text"]}) return shard_lines pool = Pool(160) results = pool.map(filter_shards, [i for i in range(160)]) pool.close() pool.join() with jsonlines.open('/home/piktus_huggingface_co/lumi/preprocessed_data/oscar-dedup-25-exapanded.jsonl', mode='w') as writer: for shard_lines in results: writer.write_all(shard_lines)
datablations-main
filtering/deduplication/filter_oscar_jsonl.py
import argparse import os import sys from datasets import load_dataset sys.path.append("/home/piktus_huggingface_co/lumi/text-dedup") print(sys.path) from text_dedup.suffix_array import suffix_array def get_args(): """ parser = argparse.ArgumentParser() parser.add_argument('--name', type=str, required=True, help="Path to the dataset you're using on the HF hub. Pass e.g. `csv` or `json` and `data_files=path_on_disk` to load something locally") parser.add_argument('--subset', type=str, default=None, help="Subset of the dataset you're using, if needed") parser.add_argument('--data_files', type=str, default=None, help="Path to the dataset on disk if using local files") parser.add_argument('--path_on_disk', type=str, required=True, help="Path to the Rust dedup implem on your disk, see https://github.com/google-research/deduplicate-text-datasets") parser.add_argument('--cache_dir', type=str, required=True, help="Where all the suffix tree files will get built") return parser.parse_args() """ def generator_from_dataset(dataset): for item in dataset: yield item["text"] if __name__ == "__main__": # args = get_args() # dataset = load_dataset(args.name, args.subset, data_files=args.data_files, use_auth_token=True, split="train") # corpus = generator_from_dataset(dataset) ds = load_dataset("ola13/small-oscar", use_auth_token=os.environ.get("HUGGINGFACE_TOKEN")) deduplicator = suffix_array( ds["train"], dedup_name="test", k=10, merge_strategy="overlapping", google_repo_path="/home/piktus_huggingface_co/lumi/deduplicate-text-datasets/", output_dir="/mnt/disks/looking_glass_storage/dedup", column="text", ) # suffix_array(k=10, merge_strategy='overlapping', google_repo_path=args.path_on_disk, cache_dir=args.cache_dir) # slices = deduplicator.fit_predict(corpus) # for sentence, intervals in zip(corpus, slices): # print(sentence) # print([sentence.encode('utf-8')[s].decode('utf-8', errors='ignore') for s in intervals])
datablations-main
filtering/deduplication/suffix_dedup.py
from datasets import load_from_disk import string def find_whitespace(text): for i, c in enumerate(text): if c in string.whitespace: yield i def def get_segmentation(text, passage_tokens, overlap_tokens): whitespace_idx = [-1] + list(find_whitespace(text)) unique_tokens = passage_tokens - overlap_tokens passages = [] for i in range(0, len(whitespace_idx), unique_tokens): if i + passage_tokens >= len(whitespace_idx): passages.append((whitespace_idx[i] + 1, len(text))) break passages.append((whitespace_idx[i] + 1, whitespace_idx[i + passage_tokens] + 1)) return passages if __name__ == "__main__": oscar = load_from_disk("/home/piktus_huggingface_co/lumi/preprocessed_data/oscar_025")["train"] with open("/home/piktus_huggingface_co/lumi/preprocessed_data/oscar_025/queries.txt", "w") as queries: for line in oscar: text = line["text"] whitespace_idx = [-1] + list(find_whitespace(text)) for i in whitespace_idx: if i + 101 < len(text): queries.write(text[i+1:i+101] + "\n")
datablations-main
filtering/deduplication/dedup_oscar.py
import argparse import ast import glob import os from datasets import DatasetDict, concatenate_datasets, load_from_disk def get_perplexity(meta): meta = ast.literal_eval(meta) if isinstance(meta, str) else meta perplexity_score = meta["perplexity_score"] return float(perplexity_score) if __name__ == "__main__": """ Export your huggingface token which gives access to the `bigscience-catalogue-lm-data` organization. Run the following in the terminal where you execute the code (replace the XXX with your actual token): ``` export HUGGINGFACE_TOKEN=hf_XXXXXXXXXXXXXXX ``` """ HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") if HUGGINGFACE_TOKEN is None: raise RuntimeError("Hugging Face token not specified.") parser = argparse.ArgumentParser() parser.add_argument( "--base_dir", type=str, default="/mnt/disks/looking_glass_storage/data/perplexity_filtered/lumi/", ) parser.add_argument( "--sample_size", type=int, default=100000, ) args = parser.parse_args() files = glob.glob(args.base_dir + "roots_en_*") dataset_names = [f.split("/")[-1] for f in files] print(dataset_names) datasets = [] for dataset_name in dataset_names: print("Processing", dataset_name) ds = load_from_disk(args.base_dir + dataset_name) ds = ds["train"] updated_dataset = ds.map( lambda example: { "text": example["text"], "meta": {"perplexity_score": get_perplexity(example["meta"])}, }, num_proc=48, ) datasets.append(updated_dataset) roots_en = concatenate_datasets(datasets) roots_en.shuffle() small_roots_en = DatasetDict({"train": roots_en.select(range(args.sample_size))}) small_roots_en.push_to_hub("ola13/small-roots_en", private=True, token=HUGGINGFACE_TOKEN) print("Pushed roots_en to hub.")
datablations-main
filtering/deduplication/save_roots_sample.py
import argparse import os import pickle from bisect import bisect_right from collections import defaultdict from multiprocessing import cpu_count from datasets import load_from_disk from tqdm import tqdm def get_pairs(byterange): """ Returns pairs generated by https://github.com/google-research/deduplicate-text-datasets#collecting-the-duplicates-together """ print("Getting pairs") pairs = [] with open(byterange, "r") as f: save = False for line in tqdm(f): if line.strip() == "out": save = True continue if save: left, right = line.strip().split() pairs.append((int(left), int(right))) print("num pairs", len(pairs)) return pairs def get_bytes(pairs, data): """ Return bytes constituring the duplicated substring. There seems to be something off here, see: https://github.com/google-research/deduplicate-text-datasets/issues/24 """ print("Getting bytes") byte_array = [] for left, right in tqdm(pairs): byte_array.append(data[left:right]) print("byte_array size", len(byte_array)) return byte_array def get_doc_id(pos, pos2id, pos2id_list): """ Gets id of the datapoint at position. """ pos = bisect_right(pos2id_list, pos) doc_id = pos2id[pos2id_list[pos - 1]] return doc_id def get_url(row, dataset_name): if dataset_name == "oscar": return row["meta"]["warc_headers"]["warc-target-uri"] if dataset_name == "the_pile" or dataset_name == "roots_en": return None return None if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dataset_name", "-d", type=str, required=True, ) parser.add_argument( "--base_dir", "-b", type=str, required=True, ) args = parser.parse_args() dataset_name = args.dataset_name base_dir = args.base_dir HUGGINGFACE_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") print("Loading", dataset_name) dataset = load_from_disk("/home/piktus_huggingface_co/lumi/preprocessed_data/{}".format(dataset_name))["train"] dataset_raw = load_from_disk("/home/piktus_huggingface_co/lumi/{}".format(dataset_name))["train"] print("Done loading", dataset_name) data_path = base_dir + "/{ds}.train".format(ds=dataset_name) byterange = base_dir + "/{ds}.train.byterange".format(ds=dataset_name) pairs = get_pairs(byterange) data = open(data_path, "rb").read() pos2id = pickle.load(open(base_dir + "/{ds}.train.pos2id.pkl".format(ds=dataset_name), "rb")) pos2id_list = sorted(pos2id.keys()) doc_pairs = defaultdict(list) dup_len = defaultdict(int) doc_bytes = defaultdict(list) repetitions = defaultdict(set) clusters = defaultdict(set) included_docs = set() print("Getting bytes") byte_array = [] for left, right in tqdm(pairs): byte_array.append(data[left:right]) print("byte_array size", len(byte_array)) print("Calculating repetitions") for (l, r), b in tqdm(zip(pairs, byte_array)): i = get_doc_id(l, pos2id, pos2id_list) doc_pairs[i].append((l, r)) dup_len[i] += (r - l) doc_bytes[i].append(b) repetitions[b].add(i) print( "Singleton pairs:", sum(1 for i in doc_pairs.keys() if len(doc_pairs[i]) == 1) ) for idx in pos2id.values(): included_docs.add(idx) print("Num included", len(included_docs)) print("Calculating clusters") for i, _ in tqdm(doc_pairs.items()): c = set() for rep in doc_bytes[i]: c |= repetitions[rep] clusters[i] = c # cleanup del byterange del data del pos2id del pos2id_list del pairs def add_duplication_info(example, idx): example["text"] = dataset_raw[idx]["text"] text_length = len(example["text"]) example["text_length"] = text_length example["url"] = get_url(example, dataset_name) example["domain"] = example["url"].split("/")[2] if example["url"] is not None else None example["dup_ratio"] = dup_len[idx] / text_length example["pairs"] = doc_pairs[idx] example["repetitions"] = doc_bytes[idx] example["included_in_dedup"] = idx in included_docs example["cluster"] = clusters[idx] return example print("Mapping") dataset = dataset.map(add_duplication_info, num_proc=max(1, cpu_count() - 32), with_indices=True, new_fingerprint="13") dataset.save_to_disk("/home/piktus_huggingface_co/lumi/preprocessed_data/{}-dedup".format(dataset_name)) dataset.push_to_hub( "datablations/{}-dedup".format(dataset_name), private=True, token=os.environ.get("HUGGINGFACE_TOKEN"), )
datablations-main
filtering/deduplication/add_dedup_info.py
# import csv import pandas as pd import string from datasets import load_dataset from tqdm import tqdm def find_whitespace(text): for i, c in enumerate(text): if c in string.whitespace: yield i oscar_small = pd.DataFrame(load_dataset("ola13/small-oscar")["train"][:10]) query_length = 100 with open("queries.bin", "wb") as f: for idx, line in tqdm(oscar_small.iterrows()): text = line["text"] whitespace_idx = [-1] + list(find_whitespace(text)) for i in whitespace_idx[::2]: if i + query_length + 1 < len(text): query = text[(i + 1) : (i + query_length + 1)] query_in_bytes = query.encode("utf-8") size = len(query_in_bytes) bytes_representation = size.to_bytes(4, "little") f.write(bytes_representation) f.write(query_in_bytes)
datablations-main
filtering/deduplication/save_rust_format.py
""" muP Preparation from https://github.com/microsoft/mutransformers#basic-usage-of-models !git clone https://github.com/microsoft/mutransformers.git %cd mutransformers !pip install -r requirements.txt !pip install -e . !pip install -q datasets With our CC-like architectures we found that 7m params & 100M tokens -> 8.1 loss 1b1 params & 100M tokens -> 6.6 loss 2b8 params & 100M tokens -> 7.5 loss So looking to run the last two, which in our CC setup have the hyperparams: (d_model ffw_size kv_size n_heads n_layers) PARAM_1143M=(1792 7168 128 14 26) PARAM_2980M=(2560 10240 128 20 34) target_config -> base_config: Divide width by 10 to 20 / Generally have 128 as width ; Adapt num_attention_heads, too (128 hidden & 8 heads) base_config -> delta_config: Multiply hidden size by 2 Do small HP optim on LR at small scale: Run tiny grid search at 64 hidden size (200M params) on init std 0.1 / default; make same warmup as prior experiments; Use batch size from prior experiments; Use cosine deacying to 10% Then use those HPs found for 1B & 2b8 models """ ### Cosine Annealing with Warmup from ### https://github.com/Lightning-Universe/lightning-bolts/blob/master/pl_bolts/optimizers/lr_scheduler.py import warnings import math from typing import List from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler class LinearWarmupCosineAnnealingLR(_LRScheduler): """Sets the learning rate of each parameter group to follow a linear warmup schedule between warmup_start_lr and base_lr followed by a cosine annealing schedule between base_lr and eta_min. .. warning:: It is recommended to call :func:`.step()` for :class:`LinearWarmupCosineAnnealingLR` after each iteration as calling it after each epoch will keep the starting lr at warmup_start_lr for the first epoch which is 0 in most cases. .. warning:: passing epoch to :func:`.step()` is being deprecated and comes with an EPOCH_DEPRECATION_WARNING. It calls the :func:`_get_closed_form_lr()` method for this scheduler instead of :func:`get_lr()`. Though this does not change the behavior of the scheduler, when passing epoch param to :func:`.step()`, the user should call the :func:`.step()` function before calling train and validation methods. Example: >>> layer = nn.Linear(10, 1) >>> optimizer = Adam(layer.parameters(), lr=0.02) >>> scheduler = LinearWarmupCosineAnnealingLR(optimizer, warmup_epochs=10, max_epochs=40) >>> # >>> # the default case >>> for epoch in range(40): ... # train(...) ... # validate(...) ... scheduler.step() >>> # >>> # passing epoch param case >>> for epoch in range(40): ... scheduler.step(epoch) ... # train(...) ... # validate(...) """ def __init__( self, optimizer: Optimizer, warmup_epochs: int, max_epochs: int, warmup_start_lr: float = 0.0, eta_min: float = 0.0, last_epoch: int = -1, ) -> None: """ Args: optimizer (Optimizer): Wrapped optimizer. warmup_epochs (int): Maximum number of iterations for linear warmup max_epochs (int): Maximum number of iterations warmup_start_lr (float): Learning rate to start the linear warmup. Default: 0. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. """ self.warmup_epochs = warmup_epochs self.max_epochs = max_epochs self.warmup_start_lr = warmup_start_lr self.eta_min = eta_min super().__init__(optimizer, last_epoch) def get_lr(self) -> List[float]: """Compute learning rate using chainable form of the scheduler.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning, ) if self.last_epoch == 0: return [self.warmup_start_lr] * len(self.base_lrs) if self.last_epoch < self.warmup_epochs: return [ group["lr"] + (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] if self.last_epoch == self.warmup_epochs: return self.base_lrs if (self.last_epoch - 1 - self.max_epochs) % (2 * (self.max_epochs - self.warmup_epochs)) == 0: return [ group["lr"] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / (self.max_epochs - self.warmup_epochs))) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] return [ (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) / ( 1 + math.cos( math.pi * (self.last_epoch - self.warmup_epochs - 1) / (self.max_epochs - self.warmup_epochs) ) ) * (group["lr"] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups ] def _get_closed_form_lr(self) -> List[float]: """Called when epoch is passed as a param to the `step` function of the scheduler.""" if self.last_epoch < self.warmup_epochs: return [ self.warmup_start_lr + self.last_epoch * (base_lr - self.warmup_start_lr) / (self.warmup_epochs - 1) for base_lr in self.base_lrs ] return [ self.eta_min + 0.5 * (base_lr - self.eta_min) * (1 + math.cos(math.pi * (self.last_epoch - self.warmup_epochs) / (self.max_epochs - self.warmup_epochs))) for base_lr in self.base_lrs ] TARGET_CONFIG = { "test": { "hidden_size": 1024, "intermediate_size": 1024*4, "num_attention_heads": 32, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 4, }, "200M": { # 203668480 "hidden_size": 1024, "intermediate_size": 1024*4, "num_attention_heads": 32, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 4, }, "800M": { # 709326848 "hidden_size": 1024*2, "intermediate_size": 1024*4*2, "num_attention_heads": 32*2, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 2, }, "1B": { # 1516975104 "hidden_size": 1024*3, "intermediate_size": 1024*4*3, "num_attention_heads": 32*2, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 2, }, "2B": { # 1766073088 "hidden_size": int(1024*3.25), "intermediate_size": int(1024*3.25)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 256, "per_device_train_batch_size": 1, }, "2B5": { # 2626613248 "hidden_size": int(1024*4), "intermediate_size": int(1024*4)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 512, "per_device_train_batch_size": 1, }, "3B": { # 2951208704 "hidden_size": int(1024*4.25), "intermediate_size": int(1024*4.25)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 512, "per_device_train_batch_size": 1, }, "3B5": { # 3294678528 "hidden_size": int(1024*4.5), "intermediate_size": int(1024*4.5)*4, "num_attention_heads": 32*4, "num_layers": 12, "batch_size": 512, "per_device_train_batch_size": 1, }, "1B1": { "hidden_size": 1792, "intermediate_size": 1792*4, "num_attention_heads": 14, "num_layers": 26, "batch_size": 256, "per_device_train_batch_size": 1, }, "2B8": { "hidden_size": 2560, "intermediate_size": 2560*4, "num_attention_heads": 20, "num_layers": 34, "batch_size": 512, "per_device_train_batch_size": 1, }, } CONFIG_TO_RUN = "2B" # MODIFY BASED ON DESIRED CONFIG USE_MUP = True RUN_OFFLINE = True # method-params-tokens model_name = "sp" if not USE_MUP else "mup" model_name += f"-{CONFIG_TO_RUN}".lower() model_name += "-100m" BASE_HIDDEN = 128 BASE_INTERMEDIATE = 256 BASE_NUM_ATTENTION_HEADS = 8 LR = 1e-3 if USE_MUP else 2e-4 # MUP default LR & SP default LR INIT_RANGE = 0.01 # MUP default init range if RUN_OFFLINE: import os os.environ["HF_DATASETS_OFFLINE"] = "1" BATCH_SIZE = TARGET_CONFIG[CONFIG_TO_RUN]["batch_size"] if USE_MUP: from mutransformers import GPT2Config, GPT2LMHeadModel from mup import make_base_shapes, set_base_shapes, MuAdamW # define a base model base_config = GPT2Config( hidden_size=BASE_HIDDEN, intermediate_size=BASE_INTERMEDIATE, num_attention_heads=BASE_NUM_ATTENTION_HEADS, initializer_range=INIT_RANGE, ) base_model = GPT2LMHeadModel(config=base_config) # define a delta models where we vary all "widths" we want to vary delta_config = GPT2Config( hidden_size=BASE_HIDDEN*2, intermediate_size=BASE_INTERMEDIATE*2, num_attention_heads=BASE_NUM_ATTENTION_HEADS*2, initializer_range=INIT_RANGE, ) delta_model = GPT2LMHeadModel(config=delta_config) # define a base shape object based on comparing delta_model against base_model base_shapes = make_base_shapes(base_model, delta_model, savefile='gpt256.bsh') # define target model target_config = GPT2Config( hidden_size=TARGET_CONFIG[CONFIG_TO_RUN]["hidden_size"], intermediate_size=TARGET_CONFIG[CONFIG_TO_RUN]["intermediate_size"], num_attention_heads=TARGET_CONFIG[CONFIG_TO_RUN]["num_attention_heads"], num_layers=TARGET_CONFIG[CONFIG_TO_RUN]["num_layers"], initializer_range=INIT_RANGE, use_cache=False, ) else: from transformers import GPT2Config, GPT2LMHeadModel # define target model target_config = GPT2Config( hidden_size=TARGET_CONFIG[CONFIG_TO_RUN]["hidden_size"], intermediate_size=TARGET_CONFIG[CONFIG_TO_RUN]["intermediate_size"], num_attention_heads=TARGET_CONFIG[CONFIG_TO_RUN]["num_attention_heads"], num_layers=TARGET_CONFIG[CONFIG_TO_RUN]["num_layers"], use_cache=False, ) target_model = GPT2LMHeadModel(config=target_config) if USE_MUP: # set base shapes set_base_shapes(target_model, base_shapes) # you can alternatively load base shape from file # set_base_shapes(target_model, 'bert256.bsh') # re-initialize target_model.apply(target_model._init_weights) # make sure to use mup optimizers for training optimizer = MuAdamW(target_model.parameters(), lr=LR) else: from transformers import AdamW optimizer = AdamW(target_model.parameters(), lr=LR) import numpy as np model_parameters = filter(lambda p: p.requires_grad, target_model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) print("Number of trainable parameters: ", params) """ Training code Train billion parameter models on 100M tokens of C4 Adapted from: https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb """ from datasets import load_dataset # git clone https://huggingface.co/datasets/datablations/c4-100m datasets = load_dataset('./c4-100m') # wget https://huggingface.co/datasets/allenai/c4/resolve/main/en/c4-validation.00000-of-00008.json.gz # val_dataset = load_dataset('json', data_files='c4-validation.00000-of-00008.json.gz')['train'] val_dataset = load_dataset('json', data_files='c4-validation.*-of-00008.json.gz')['train'] # val_dataset = load_dataset('c4', 'en', split='validation[:10%]') datasets["validation"] = val_dataset datasets = datasets.select_columns("text") from transformers import AutoTokenizer, Trainer, TrainingArguments tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenized_datasets = datasets.map(lambda x: tokenizer(x["text"]), batched=True, num_proc=4, remove_columns=["text"]) block_size = tokenizer.model_max_length def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result lm_datasets = tokenized_datasets.map( group_texts, batched=True, batch_size=1000, num_proc=4, ) num_steps = len(lm_datasets["train"]) // BATCH_SIZE scheduler = LinearWarmupCosineAnnealingLR( optimizer, warmup_epochs=num_steps // 100, # 1% of training steps max_epochs=num_steps, eta_min=LR / 10, # Decay to 10% of LR ) per_device_train_batch_size = TARGET_CONFIG[CONFIG_TO_RUN]["per_device_train_batch_size"] gradient_accumulation_steps = BATCH_SIZE // per_device_train_batch_size training_args = TrainingArguments( model_name, evaluation_strategy="steps", weight_decay=0.01, push_to_hub=not(RUN_OFFLINE), per_device_train_batch_size=per_device_train_batch_size, per_device_eval_batch_size=32, num_train_epochs=1, gradient_accumulation_steps=gradient_accumulation_steps, save_steps=100, bf16=True, #gradient_checkpointing=True, # Use if OOM ) # If loading pre-trained model for eval #from mutransformers import GPT2Config, GPT2LMHeadModel #from mup import make_base_shapes, set_base_shapes, MuAdamW #model_name = "mup-2b-100m-e3" #target_model = GPT2LMHeadModel.from_pretrained(model_name) #set_base_shapes(target_model, base_shapes) #set_base_shapes(target_model, 'gpt256.bsh') trainer = Trainer( model=target_model, args=training_args, train_dataset=lm_datasets["train"], # .select(range(256)), # Testing eval_dataset=lm_datasets["validation"], optimizers=(optimizer, scheduler), # Use mup optimizer & cosine scheduler ) if USE_MUP: del base_model del delta_model trainer.train() # Continue training # trainer.train("checkpoint-100") if RUN_OFFLINE: trainer.save_model(model_name) else: trainer.push_to_hub() import math eval_results = trainer.evaluate() print(f"Loss: {eval_results['eval_loss']:.4f}") print(f"Perplexity: {math.exp(eval_results['eval_loss']):.4f}") import json with open(f"{model_name}-full.json", "w") as f: json.dump(eval_results, f)
datablations-main
training/mup.py
import os import shutil # shutil.rmtree() checkpoint_dirs = [dir_name for dir_name in os.listdir() if dir_name.startswith('checkpoint')] for dir_name in checkpoint_dirs: latest_file_path = os.path.join(dir_name, 'latest') with open(latest_file_path, 'r') as f: latest_checkpoint = f.read().strip() if not os.path.exists(os.path.join(dir_name, latest_checkpoint)): print(f"Deleting directory {dir_name} because checkpoint {latest_checkpoint} does not exist in it.") shutil.rmtree(dir_name) #break #os.rmdir(dir_name)
datablations-main
utils/cleandirs.py
#!/usr/bin/env python # this script converts results.json: # # "results": { # "arc_challenge": { # "acc": 0.24232081911262798, # "acc_stderr": 0.01252159329580012, # "acc_norm": 0.2764505119453925, # "acc_norm_stderr": 0.013069662474252425 # }, # # into a format expected by a spreadsheet, which is: # # task metric value err # arc_challenge acc xxx yyy # arc_challenge acc_norm xxx yyy # arc_challenge f1 xxx yyy # # usage: # report-to-csv.py results.json import sys import statistics import json import io import csv results_file = sys.argv[1] csv_file = results_file.replace("json", "csv") print(f"Converting {results_file} to {csv_file}") with io.open(results_file, 'r', encoding='utf-8') as f: raw_results = json.load(f) results = {} for ds_name, v in sorted(raw_results.items()): results[ds_name.split("/")[-1]] = v with io.open(csv_file, 'w', encoding='utf-8') as f: writer = csv.writer(f) writer.writerow(["dataset", "fewshots", "prompt", "metric", "value"]) for ds_name, v in sorted(results.items()): medians = [] for fewshots, v_sub in sorted(v.items()): acc_scores, bleu_scores, rouge_scores = [], [], [] for prompt_name, res in sorted(v_sub.items()): # T0 Eval if "evaluation" in res: for metric, value in sorted(res["evaluation"].items()): writer.writerow([ds_name, fewshots, prompt_name, metric, value]) if metric == "accuracy": acc_scores.append(value) # LM Eval Harness Generation elif "rouge2_fmeasure" in res: writer.writerow([ds_name, fewshots, prompt_name, "rouge2_fmeasure", res["rouge2_fmeasure"]]) rouge_scores.append(res["rouge2_fmeasure"]) # LM Eval Harness Accuracy elif "acc" in res: writer.writerow([ds_name, fewshots, prompt_name, "acc", res["acc"]]) acc_scores.append(res["acc"]) #elif "bleu" in res: # # Make sure BLEU is 0-1 not 0-100 # writer.writerow([ds_name, prompt_name, "bleu", res["bleu"] / 100]) # bleu_scores.append(res["bleu"] / 100) if acc_scores: median = statistics.median(acc_scores) medians.append(median) writer.writerow([ds_name, fewshots, "median", "accuracy", median]) elif bleu_scores: median = statistics.median(bleu_scores) medians.append(median) writer.writerow([ds_name, fewshots, "median", "bleu", median]) elif rouge_scores: median = statistics.median(rouge_scores) medians.append(median) writer.writerow([ds_name, fewshots, "median", "rouge2_fmeasure", median]) if medians: writer.writerow([ds_name, fewshots, "average", "multiple", statistics.mean(medians)])
datablations-main
utils/csv_generative.py
def full_flops(dataset_size, hidden_size, num_heads, num_layers, seq_len=2048, vocab_size=32000, ffw_size=None): if ffw_size is None: ffw_size = 4 * hidden_size embeddings_flops = 2 * seq_len * vocab_size * hidden_size attention_kqv_proj = 2 * 3 * seq_len * hidden_size * hidden_size attention_kq_logits = 2 * seq_len * seq_len * hidden_size attention_softmax = 3* num_heads* seq_len * seq_len attention_softmax_q_red = 2 * seq_len * seq_len * hidden_size attention_final_layer = 2 * seq_len * hidden_size * hidden_size dense_flops = 2 * seq_len * (hidden_size * ffw_size + ffw_size * hidden_size) final_logits = 2 * seq_len * hidden_size * vocab_size total_flops = embeddings_flops + num_layers*(attention_kqv_proj + attention_kq_logits +\ attention_softmax + attention_softmax_q_red + attention_final_layer + \ dense_flops) + final_logits return total_flops*3 * dataset_size/seq_len def params(hidden_size, num_heads, num_layers, seq_len=2048, vocab_size=32000, ffw_size=None, relative_attention=False): if ffw_size is None: ffw_size = 4 * hidden_size per_layer = 4*hidden_size*hidden_size # attention per_layer += 4*hidden_size # attention bias per_layer += 2 * ffw_size * hidden_size # dense per_layer += ffw_size + hidden_size # dense bias per_layer += 2 * hidden_size # layer norm if relative_attention: per_layer += hidden_size*hidden_size # relative position embeddings according to Dai et al. embeddings = 1 * hidden_size*vocab_size + vocab_size if not relative_attention: embeddings += seq_len*hidden_size N = num_layers * (per_layer) + embeddings return N def simple_flops(dataset_size, hidden_size, num_heads, num_layers, seq_len=2048, vocab_size=32000, ffw_size=None, relative_attention=False): if ffw_size is None: ffw_size = 4 * hidden_size return 6 * params(hidden_size=hidden_size, num_heads=num_heads, num_layers=num_layers, seq_len=seq_len, vocab_size=vocab_size, ffw_size=ffw_size, relative_attention=relative_attention) * dataset_size def get_dataset_size(flops, hidden_size, num_heads, num_layers, seq_len=2048, vocab_size=32000, ffw_size=None, relative_attention=True): return flops / (6 * params(hidden_size=hidden_size, num_heads=num_heads, num_layers=num_layers, seq_len=seq_len, vocab_size=vocab_size, ffw_size=ffw_size, relative_attention=relative_attention))
datablations-main
utils/flops-params_py.py
""" Saves a merged.json file in the provided directory python merge_all_json.py DIRECTORY """ import json import os from pathlib import Path import sys from typing import Dict def find_all_json(root_dir: Path): if root_dir.is_file(): if root_dir.name.endswith(".json"): return [root_dir] else: return [] all_jsons = [] for path in root_dir.iterdir(): all_jsons += find_all_json(path) return all_jsons def sort_dict(dictionary: Dict) -> Dict: results = {} for key, value in sorted(dictionary.items(), key=lambda item: item[0]): new_value = value if isinstance(value, dict): new_value = sort_dict(new_value) elif isinstance(value, list): new_value = sorted(value) results[key] = new_value return results def main(): # find all json file in directory root_dir = Path(sys.argv[1]) out_path = os.path.join(root_dir, "merged.json") if os.path.exists(out_path): os.remove(out_path) all_jsons = find_all_json(root_dir) # merge results = {} for json_file in all_jsons: with open(json_file, "r") as fi: data = json.load(fi) if str(json_file.name).startswith("slim"): print(f"Parsing {json_file} as bigscience/lm-eval-harness file.") fewshots = data["config"]["num_fewshot"] for dic in data["results"]: key = dic["task_name"] # Same dataset but not really comparable if "en-fr" in dic["prompt_name"]: key += "_en-fr" elif "fr-en" in dic["prompt_name"]: key += "_fr-en" elif "hi-en" in dic["prompt_name"]: key += "_hi-en" elif "en-hi" in dic["prompt_name"]: key += "_en-hi" sub_key = dic["prompt_name"] results.setdefault(key, {}) results[key].setdefault(fewshots, {}) results[key][fewshots].setdefault(sub_key, {}) results[key][fewshots][sub_key] = { **results[key][fewshots][sub_key], **{subk: subv for subk, subv in dic.items() if type(subv) in [int, float]} } elif str(json_file.name).startswith("agg"): print(f"Skipping {json_file} from bigscience/lm-eval-harness.") continue else: print(f"Parsing {json_file} as bigscience/t-zero file.") key = f"{data['dataset_name']}_{data['dataset_config_name']}" fewshots = 0 if key in results: assert data["template_name"] not in results results.setdefault(key, {}) results[key].setdefault(fewshots, {}) results[key][fewshots][data["template_name"]] = data else: results[key] = { fewshots: { data["template_name"]: data } } # sort sorted_results = sort_dict(results) # write with open(out_path, "w") as fo: json.dump(sorted_results, fo) if __name__ == "__main__": main()
datablations-main
utils/merge_generative.py
#!/usr/bin/env python # creates a local auth token file which can then be safely used by other programs without leaking # the password in public git import getpass import json from pathlib import Path from huggingface_hub import HfApi HUB_DATA_PATH_SHARED = "/pfs/lustrep4/scratch/project_462000119/muennighoff/nov-2022-bettercom/.hub_info.json" #HUB_DATA_PATH = Path(__file__).resolve().parent / ".hub_info.json" username = input("Hub username: ") password = getpass.getpass("Hub password: ") email = input("Hub email: ") auth_token = HfApi().login(username=username, password=password) data = dict(username=username, email=email, auth_token=auth_token) #print(data) with open(HUB_DATA_PATH_SHARED, 'w') as f: json.dump(data, f)
datablations-main
utils/hub_auth.py
""" Script for searching through logs to look for failing nodes. """ import sys import re NODE_RANK_RE = re.compile(r'Launching on (\S+) \((\d+)/(\d+)\)') ERROR_STRINGS = [ 'Segmentation fault', 'Failed to initialize RSMI device mutex', 'ERROR:torch.distributed.elastic.multiprocessing.api:failed', ] if len(sys.argv) != 3: print(f'usage: {sys.argv[0]} STDERR-LOG STDOUT-LOG') sys.exit(1) rank_to_node, node_count = {}, None with open(sys.argv[2]) as f: for line in f: m = NODE_RANK_RE.search(line) if not m: continue node, rank, count = m.groups() rank, count = int(rank), int(count) if node_count is None: node_count = count else: assert node_count == count assert rank not in rank_to_node rank_to_node[rank] = node with open(sys.argv[1]) as f: for line in f: if any(e in line for e in ERROR_STRINGS): line = line.rstrip('\n') try: rank = int(line.split(':')[0]) except: print(f'failed to parse rank: {line}', file=sys.stderr) continue print(f'{rank_to_node[rank]}\t{line}')
datablations-main
utils/errornodes.py
#!/usr/bin/env python # # This tool automatically pushes newly added and modified files into the hub repo, if they match the # provided one or more patterns. # # If the program fails to run the first time make sure to run `hub-auth.py` to authenticate and save # the token, and user name/email locally which will then be used by this program to alter the config # of the target repo to automatically commit as the user you authenticated with. This is needed when # pushing as someone else, which is the case here, as we want the software to always work and not # depend on the developer's git setup. # # Example: # # hub-sync.py --repo-path /hf/Megatron-DeepSpeed-master/output_dir/tensorboard/ --patterns '*tfevents*' # # multiple patterns can be passed import argparse import io import json import os import re import subprocess import sys from collections import defaultdict from fnmatch import fnmatch from huggingface_hub import HfApi, HfFolder, Repository from pathlib import Path from typing import List, Optional, Union # normally using a globally shared hub data, but can override it with the local token if need be HUB_DATA_PATH_SHARED = "/gpfsdswork/projects/rech/six/commun/auth/.hub_info.json" # for now disabling local, since it leads to outdated auth tokens HUB_DATA_PATH_LOCAL = Path(__file__).resolve().parent / ".hub_info.json" HUB_AUTH_TOKEN_PATH = "/gpfsdswork/projects/rech/six/commun/auth/.hub_auth" # map https://git-scm.com/docs/git-status#_short_format # # ' ' = unmodified # M = modified # A = added # D = deleted # R = renamed # C = copied # U = updated but unmerged # X Y Meaning # ------------------------------------------------- # [AMD] not updated # M [ MD] updated in index # A [ MD] added to index # D deleted from index # R [ MD] renamed in index # C [ MD] copied in index # [MARC] index and work tree matches # [ MARC] M work tree changed since index # [ MARC] D deleted in work tree # [ D] R renamed in work tree # [ D] C copied in work tree # ------------------------------------------------- # D D unmerged, both deleted # A U unmerged, added by us # U D unmerged, deleted by them # U A unmerged, added by them # D U unmerged, deleted by us # A A unmerged, both added # U U unmerged, both modified # ------------------------------------------------- # ? ? untracked # ! ! ignored git_status_lookup = { "?": "untracked", "M": "modified", "A": "added", "D": "deleted", "R": "renamed", "C": "copied", "U": "updated_unmerged", } def get_git_files_by_status(local_dir): try: git_status = subprocess.run( ["git", "status", "-s"], stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=local_dir, ).stdout.strip() except subprocess.CalledProcessError as exc: raise EnvironmentError(exc.stderr) if len(git_status) == 0: return {} file_statuses = [status.strip() for status in git_status.split("\n")] # create a dict of lists for each long key in git_status_lookup files = defaultdict(list) for l in file_statuses: k, v = l.split(' ', 1) k = k.strip()[0] # get first column # remap to sensible name k = git_status_lookup.get(k, "unknown") files[k].append(v) #print(files) return files # XXX: this should be PR'ed into https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/repository.py # after adjusting the API self, self.local_dir def get_untracked_files(local_dir) -> List[str]: """ Returns a list of untracked files in the working directory """ key = "untracked" files_by_status = get_git_files_by_status(local_dir) return files_by_status[key] if key in files_by_status else [] def get_modified_files(local_dir) -> List[str]: """ Returns a list of modified files in the working directory """ key = "modified" files_by_status = get_git_files_by_status(local_dir) return files_by_status[key] if key in files_by_status else [] def get_new_and_modified_files(local_dir) -> List[str]: """ Returns a list of untracked and modified files in the working directory recursively. It will include relative path for files under sub-dirs that are untracked. """ try: cmd = "git ls-files --modified --others --exclude-standard".split() output = subprocess.run( cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=local_dir, ).stdout.strip() except subprocess.CalledProcessError as exc: raise EnvironmentError(exc.stderr) if len(output) == 0: return [] return [f.strip() for f in output.split("\n")] def run_cmd(cmd, local_dir): try: git_status = subprocess.run( cmd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, encoding="utf-8", cwd=local_dir, ).stdout.strip() except subprocess.CalledProcessError as exc: raise EnvironmentError(exc.stderr) return git_status def hub_config_repo(hub_data, local_dir): # if we have the bot user email set, that means we have done this process already # but some users don't have any `user.email` set, so recover gracefully if that's the case try: cmd = f"git config user.email" email = run_cmd(cmd.split(), local_dir) if len(email) > 0 and email == hub_data['email']: return except: pass print(f"* Detected a new clone. Setting it up for {hub_data['username']}") # to work as another user we need # 1. their user.email ( but also user.name is required but can be anything) cmd = f"git config user.email {hub_data['email']}" run_cmd(cmd.split(), local_dir) cmd = f"git config user.name {hub_data['username']}" run_cmd(cmd.split(), local_dir) # 2. pre-auth the repo # a. get url cmd = "git remote get-url origin" url = run_cmd(cmd.split(), local_dir) # b. extract just the huggingface.co/app-test-user/test-tensorboard part repo_part_url = re.sub(r'https.*(?=huggingface)', '', url, 0, re.M) cmd = f"git remote set-url origin --push https://{hub_data['username']}:{hub_data['auth_token']}@{repo_part_url}" run_cmd(cmd.split(), local_dir) def get_hub_data(): """ To simplify the setup of different projects we use a common hug info data file at HUB_DATA_PATH_SHARED. But if desired it can be overridden with a local data file at HUB_DATA_PATH_LOCAL """ # if os.path.isfile(HUB_DATA_PATH_LOCAL): # hub_data_path = HUB_DATA_PATH_LOCAL if os.path.isfile(HUB_DATA_PATH_SHARED): hub_data_path = HUB_DATA_PATH_SHARED else: raise FileNotFoundError(f"Couldn't locate {HUB_DATA_PATH_SHARED}. " "Please run hub-auth.py first") with io.open(hub_data_path, 'r', encoding='utf-8') as f: return json.load(f) def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--patterns", nargs='+', default=None, required=True, type=str, help="one or more patterns of files to match to add to the hub - make sure to quote those!") parser.add_argument("--repo-path", type=str, required=True, help="path to the already cloned repo") parser.add_argument("-d", "--debug", action='store_true', help="enable debug") return parser.parse_args() def main(): args = get_args() if not (os.path.isdir(args.repo_path) and os.path.isdir(f"{args.repo_path}/.git")): raise FileNotFoundError(f"Directory '{args.repo_path}' either doesn't exist or it's not a git clone directory. " "Clone the desired repo first to '{args.repo_path}'.") if len(args.patterns) == 0: raise ValueError("At least one --pattern is required.") print(f"* Processing {args.repo_path}") if args.debug: print(f"Tracking {len(args.patterns)} patterns:") print(''.join(f"- {x}\n" for x in args.patterns)) hub_data = get_hub_data() repo = Repository(args.repo_path) hub_config_repo(hub_data, local_dir=args.repo_path) files_dict = get_git_files_by_status(args.repo_path) # we want untracked and modified files uncommitted_files = get_new_and_modified_files(args.repo_path) total_to_commit = 0 if len(uncommitted_files) > 0: print(f"* Found {len(uncommitted_files)} uncommitted files:") if args.debug: print(''.join(f"- {f}\n" for f in uncommitted_files)) for pattern in args.patterns: # *** new and modified files *** # check that these are the files that match the pattern passed to git_add uncommitted_files_matched = [f for f in uncommitted_files if fnmatch(f, pattern)] print(f"* Found {len(uncommitted_files_matched)} uncommitted files matching pattern: {pattern}:") if args.debug: print(''.join(f"- {f}\n" for f in uncommitted_files_matched)) if len(uncommitted_files_matched) > 0: total_to_commit += len(uncommitted_files_matched) # # auto_lfs_track requires huggingface-hub-0.0.15, but transformers forces 0.0.12 repo.git_add(pattern=pattern) # , auto_lfs_track=True) repo.git_commit(commit_message="new data") if total_to_commit: print(f"* Pushing {total_to_commit} files") repo.git_push() print("* Pushed") else: print("* Detected no new or modified files. Nothing to push.") if __name__ == "__main__": main()
datablations-main
utils/hub_sync.py
import argparse import os from typing import List, Dict import subprocess import shlex import numpy as np import pyarrow as pa from datasets import load_dataset, Dataset, concatenate_datasets from tqdm import tqdm def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--name', type=str, required=True, help="Path to the dataset you're using on the HF hub. Pass e.g. `csv` or `json` and `data_files=path_on_disk` to load something locally") parser.add_argument('--subset', type=str, default=None, help="Subset of the dataset you're using, if needed") parser.add_argument('--data_files', type=str, default=None, help="Path to the dataset on disk if using local files") parser.add_argument('--ratios', nargs='+', type=float, help="Subsampling ratios", required=True) parser.add_argument('--names', nargs='+', type=str, help="Names for the produced subsets", required=False) parser.add_argument('--pre_shuffle', action="store_true", help="Whether to shuffle the dataset in advance") parser.add_argument('--shuffle_seed', type=int, default=0, help="Shuffling seed") return parser.parse_args() def get_size_per_example(texts: List[str]) -> Dict: size_values = [len(text.encode()) for text in texts] examples = {"bytes_len": size_values} return examples def get_total_byte_size(dataset): return pa.compute.sum(dataset.data["bytes_len"]).as_py() def output_path(args, ratio, name): if name is None: name = f"{ratio}_subsample" if args.data_files is not None: # assumes there's an extension path = args.data_files.split(".")[:-1] path += f"_{name}" path += ".jsonl" else: path = f"{args.name}_{args.subset}_{name}.jsonl" return os.path.abspath(path) if __name__ == "__main__": args = get_args() if args.names is None: args.names = [None] * len(args.ratios) else: assert len(args.names) == len(args.ratios) dataset = load_dataset(args.name, args.subset, data_files=args.data_files, num_proc=os.cpu_count(), split="train") dataset = dataset.map( get_size_per_example, batched=True, num_proc=os.cpu_count(), batch_size=1024, input_columns=["text"], ) if args.pre_shuffle: # this is going to be incredibly slow on large datasets dataset = dataset.shuffle(args.shuffle_seed) dataset = dataset.flatten_indices(num_proc=os.cpu_count()) cumsum_sizes = pa.compute.cumulative_sum(dataset.data["bytes_len"]) cumsum_ds = Dataset(pa.Table.from_arrays([cumsum_sizes], names=["cumsum_sizes"])) dataset = concatenate_datasets([dataset, cumsum_ds], axis=1) total_size = dataset[-1]["cumsum_sizes"] dataset = dataset.with_format("numpy") ratios_and_names = sorted(list(zip(args.ratios, args.names)), key=lambda x: x[0], reverse=True) base_file = args.data_files assert dataset._indices is None for ratio, name in tqdm(ratios_and_names): cutoff_point = np.searchsorted(dataset["cumsum_sizes"], total_size * ratio) if base_file is None: subset = dataset.select(range(cutoff_point)).remove_columns(["bytes_len", "cumsum_sizes"]) assert subset._indices is None subset.to_json(output_path(args, ratio, name), num_proc=64, batch_size=100_000) base_file = output_path(args, ratio, name) else: subprocess.run(shlex.split(f"head -{cutoff_point} {base_file}"), stdout=open(output_path(args, ratio, name), "w"), check=True)
datablations-main
utils/hf_dataset_subsampling.py
############################################################################### # Language Modeling on Penn Tree Bank # # This file generates new sentences sampled from the language model # ############################################################################### import argparse import torch from torch.autograd import Variable import data parser = argparse.ArgumentParser(description='PyTorch PTB Language Model') # Model parameters. parser.add_argument('--data', type=str, default='./data/penn', help='location of the data corpus') parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (LSTM, QRNN)') parser.add_argument('--checkpoint', type=str, default='./model.pt', help='model checkpoint to use') parser.add_argument('--outf', type=str, default='generated.txt', help='output file for generated text') parser.add_argument('--words', type=int, default='1000', help='number of words to generate') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--temperature', type=float, default=1.0, help='temperature - higher will increase diversity') parser.add_argument('--log-interval', type=int, default=100, help='reporting interval') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) if args.temperature < 1e-3: parser.error("--temperature has to be greater or equal 1e-3") with open(args.checkpoint, 'rb') as f: model = torch.load(f) model.eval() if args.model == 'QRNN': model.reset() if args.cuda: model.cuda() else: model.cpu() corpus = data.Corpus(args.data) ntokens = len(corpus.dictionary) hidden = model.init_hidden(1) input = Variable(torch.rand(1, 1).mul(ntokens).long(), volatile=True) if args.cuda: input.data = input.data.cuda() with open(args.outf, 'w') as outf: for i in range(args.words): output, hidden = model(input, hidden) word_weights = output.squeeze().data.div(args.temperature).exp().cpu() word_idx = torch.multinomial(word_weights, 1)[0] input.data.fill_(word_idx) word = corpus.dictionary.idx2word[word_idx] outf.write(word + ('\n' if i % 20 == 19 else ' ')) if i % args.log_interval == 0: print('| Generated {}/{} words'.format(i, args.words))
awd-lstm-lm-master
generate.py
import torch import torch.nn as nn from torch.autograd import Variable from embed_regularize import embedded_dropout from locked_dropout import LockedDropout from weight_drop import WeightDrop class RNNModel(nn.Module): """Container module with an encoder, a recurrent module, and a decoder.""" def __init__(self, rnn_type, ntoken, ninp, nhid, nlayers, dropout=0.5, dropouth=0.5, dropouti=0.5, dropoute=0.1, wdrop=0, tie_weights=False): super(RNNModel, self).__init__() self.lockdrop = LockedDropout() self.idrop = nn.Dropout(dropouti) self.hdrop = nn.Dropout(dropouth) self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) assert rnn_type in ['LSTM', 'QRNN', 'GRU'], 'RNN type is not supported' if rnn_type == 'LSTM': self.rnns = [torch.nn.LSTM(ninp if l == 0 else nhid, nhid if l != nlayers - 1 else (ninp if tie_weights else nhid), 1, dropout=0) for l in range(nlayers)] if wdrop: self.rnns = [WeightDrop(rnn, ['weight_hh_l0'], dropout=wdrop) for rnn in self.rnns] if rnn_type == 'GRU': self.rnns = [torch.nn.GRU(ninp if l == 0 else nhid, nhid if l != nlayers - 1 else ninp, 1, dropout=0) for l in range(nlayers)] if wdrop: self.rnns = [WeightDrop(rnn, ['weight_hh_l0'], dropout=wdrop) for rnn in self.rnns] elif rnn_type == 'QRNN': from torchqrnn import QRNNLayer self.rnns = [QRNNLayer(input_size=ninp if l == 0 else nhid, hidden_size=nhid if l != nlayers - 1 else (ninp if tie_weights else nhid), save_prev_x=True, zoneout=0, window=2 if l == 0 else 1, output_gate=True) for l in range(nlayers)] for rnn in self.rnns: rnn.linear = WeightDrop(rnn.linear, ['weight'], dropout=wdrop) print(self.rnns) self.rnns = torch.nn.ModuleList(self.rnns) self.decoder = nn.Linear(nhid, ntoken) # Optionally tie weights as in: # "Using the Output Embedding to Improve Language Models" (Press & Wolf 2016) # https://arxiv.org/abs/1608.05859 # and # "Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling" (Inan et al. 2016) # https://arxiv.org/abs/1611.01462 if tie_weights: #if nhid != ninp: # raise ValueError('When using the tied flag, nhid must be equal to emsize') self.decoder.weight = self.encoder.weight self.init_weights() self.rnn_type = rnn_type self.ninp = ninp self.nhid = nhid self.nlayers = nlayers self.dropout = dropout self.dropouti = dropouti self.dropouth = dropouth self.dropoute = dropoute self.tie_weights = tie_weights def reset(self): if self.rnn_type == 'QRNN': [r.reset() for r in self.rnns] def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.fill_(0) self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden, return_h=False): emb = embedded_dropout(self.encoder, input, dropout=self.dropoute if self.training else 0) #emb = self.idrop(emb) emb = self.lockdrop(emb, self.dropouti) raw_output = emb new_hidden = [] #raw_output, hidden = self.rnn(emb, hidden) raw_outputs = [] outputs = [] for l, rnn in enumerate(self.rnns): current_input = raw_output raw_output, new_h = rnn(raw_output, hidden[l]) new_hidden.append(new_h) raw_outputs.append(raw_output) if l != self.nlayers - 1: #self.hdrop(raw_output) raw_output = self.lockdrop(raw_output, self.dropouth) outputs.append(raw_output) hidden = new_hidden output = self.lockdrop(raw_output, self.dropout) outputs.append(output) result = output.view(output.size(0)*output.size(1), output.size(2)) if return_h: return result, hidden, raw_outputs, outputs return result, hidden def init_hidden(self, bsz): weight = next(self.parameters()).data if self.rnn_type == 'LSTM': return [(Variable(weight.new(1, bsz, self.nhid if l != self.nlayers - 1 else (self.ninp if self.tie_weights else self.nhid)).zero_()), Variable(weight.new(1, bsz, self.nhid if l != self.nlayers - 1 else (self.ninp if self.tie_weights else self.nhid)).zero_())) for l in range(self.nlayers)] elif self.rnn_type == 'QRNN' or self.rnn_type == 'GRU': return [Variable(weight.new(1, bsz, self.nhid if l != self.nlayers - 1 else (self.ninp if self.tie_weights else self.nhid)).zero_()) for l in range(self.nlayers)]
awd-lstm-lm-master
model.py
from torch.autograd import Variable def repackage_hidden(h): """Wraps hidden states in new Variables, to detach them from their history.""" if type(h) == Variable: return Variable(h.data) else: return tuple(repackage_hidden(v) for v in h) def batchify(data, bsz, args): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() if args.cuda: data = data.cuda() return data def get_batch(source, i, args, seq_len=None, evaluation=False): seq_len = min(seq_len if seq_len else args.bptt, len(source) - 1 - i) data = Variable(source[i:i+seq_len], volatile=evaluation) target = Variable(source[i+1:i+1+seq_len].view(-1)) return data, target
awd-lstm-lm-master
utils.py
import argparse import time import math import numpy as np import torch import torch.nn as nn from torch.autograd import Variable import data import model from utils import batchify, get_batch, repackage_hidden parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model') parser.add_argument('--data', type=str, default='data/penn', help='location of the data corpus') parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (LSTM, QRNN)') parser.add_argument('--save', type=str,default='best.pt', help='model to use the pointer over') parser.add_argument('--cuda', action='store_false', help='use CUDA') parser.add_argument('--bptt', type=int, default=5000, help='sequence length') parser.add_argument('--window', type=int, default=3785, help='pointer window length') parser.add_argument('--theta', type=float, default=0.6625523432485668, help='mix between uniform distribution and pointer softmax distribution over previous words') parser.add_argument('--lambdasm', type=float, default=0.12785920428335693, help='linear mix between only pointer (1) and only vocab (0) distribution') args = parser.parse_args() ############################################################################### # Load data ############################################################################### corpus = data.Corpus(args.data) eval_batch_size = 1 test_batch_size = 1 #train_data = batchify(corpus.train, args.batch_size) val_data = batchify(corpus.valid, test_batch_size, args) test_data = batchify(corpus.test, test_batch_size, args) ############################################################################### # Build the model ############################################################################### ntokens = len(corpus.dictionary) criterion = nn.CrossEntropyLoss() def one_hot(idx, size, cuda=True): a = np.zeros((1, size), np.float32) a[0][idx] = 1 v = Variable(torch.from_numpy(a)) if cuda: v = v.cuda() return v def evaluate(data_source, batch_size=10, window=args.window): # Turn on evaluation mode which disables dropout. if args.model == 'QRNN': model.reset() model.eval() total_loss = 0 ntokens = len(corpus.dictionary) hidden = model.init_hidden(batch_size) next_word_history = None pointer_history = None for i in range(0, data_source.size(0) - 1, args.bptt): if i > 0: print(i, len(data_source), math.exp(total_loss / i)) data, targets = get_batch(data_source, i, evaluation=True, args=args) output, hidden, rnn_outs, _ = model(data, hidden, return_h=True) rnn_out = rnn_outs[-1].squeeze() output_flat = output.view(-1, ntokens) ### # Fill pointer history start_idx = len(next_word_history) if next_word_history is not None else 0 next_word_history = torch.cat([one_hot(t.data[0], ntokens) for t in targets]) if next_word_history is None else torch.cat([next_word_history, torch.cat([one_hot(t.data[0], ntokens) for t in targets])]) #print(next_word_history) pointer_history = Variable(rnn_out.data) if pointer_history is None else torch.cat([pointer_history, Variable(rnn_out.data)], dim=0) #print(pointer_history) ### # Built-in cross entropy # total_loss += len(data) * criterion(output_flat, targets).data[0] ### # Manual cross entropy # softmax_output_flat = torch.nn.functional.softmax(output_flat) # soft = torch.gather(softmax_output_flat, dim=1, index=targets.view(-1, 1)) # entropy = -torch.log(soft) # total_loss += len(data) * entropy.mean().data[0] ### # Pointer manual cross entropy loss = 0 softmax_output_flat = torch.nn.functional.softmax(output_flat) for idx, vocab_loss in enumerate(softmax_output_flat): p = vocab_loss if start_idx + idx > window: valid_next_word = next_word_history[start_idx + idx - window:start_idx + idx] valid_pointer_history = pointer_history[start_idx + idx - window:start_idx + idx] logits = torch.mv(valid_pointer_history, rnn_out[idx]) theta = args.theta ptr_attn = torch.nn.functional.softmax(theta * logits).view(-1, 1) ptr_dist = (ptr_attn.expand_as(valid_next_word) * valid_next_word).sum(0).squeeze() lambdah = args.lambdasm p = lambdah * ptr_dist + (1 - lambdah) * vocab_loss ### target_loss = p[targets[idx].data] loss += (-torch.log(target_loss)).data[0] total_loss += loss / batch_size ### hidden = repackage_hidden(hidden) next_word_history = next_word_history[-window:] pointer_history = pointer_history[-window:] return total_loss / len(data_source) # Load the best saved model. with open(args.save, 'rb') as f: if not args.cuda: model = torch.load(f, map_location=lambda storage, loc: storage) else: model = torch.load(f) print(model) # Run on val data. val_loss = evaluate(val_data, test_batch_size) print('=' * 89) print('| End of pointer | val loss {:5.2f} | val ppl {:8.2f}'.format( val_loss, math.exp(val_loss))) print('=' * 89) # Run on test data. test_loss = evaluate(test_data, test_batch_size) print('=' * 89) print('| End of pointer | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89)
awd-lstm-lm-master
pointer.py
import numpy as np import torch from torch.autograd import Variable def embedded_dropout(embed, words, dropout=0.1, scale=None): if dropout: mask = embed.weight.data.new().resize_((embed.weight.size(0), 1)).bernoulli_(1 - dropout).expand_as(embed.weight) / (1 - dropout) mask = Variable(mask) masked_embed_weight = mask * embed.weight else: masked_embed_weight = embed.weight if scale: masked_embed_weight = scale.expand_as(masked_embed_weight) * masked_embed_weight padding_idx = embed.padding_idx if padding_idx is None: padding_idx = -1 X = embed._backend.Embedding.apply(words, masked_embed_weight, padding_idx, embed.max_norm, embed.norm_type, embed.scale_grad_by_freq, embed.sparse ) return X if __name__ == '__main__': V = 50 h = 4 bptt = 10 batch_size = 2 embed = torch.nn.Embedding(V, h) words = np.random.random_integers(low=0, high=V-1, size=(batch_size, bptt)) words = torch.LongTensor(words) words = Variable(words) origX = embed(words) X = embedded_dropout(embed, words) print(origX) print(X)
awd-lstm-lm-master
embed_regularize.py
import torch from torch.nn import Parameter from functools import wraps class WeightDrop(torch.nn.Module): def __init__(self, module, weights, dropout=0, variational=False): super(WeightDrop, self).__init__() self.module = module self.weights = weights self.dropout = dropout self.variational = variational self._setup() def widget_demagnetizer_y2k_edition(*args, **kwargs): # We need to replace flatten_parameters with a nothing function # It must be a function rather than a lambda as otherwise pickling explodes # We can't write boring code though, so ... WIDGET DEMAGNETIZER Y2K EDITION! # (╯°□°)╯︵ ┻━┻ return def _setup(self): # Terrible temporary solution to an issue regarding compacting weights re: CUDNN RNN if issubclass(type(self.module), torch.nn.RNNBase): self.module.flatten_parameters = self.widget_demagnetizer_y2k_edition for name_w in self.weights: print('Applying weight drop of {} to {}'.format(self.dropout, name_w)) w = getattr(self.module, name_w) del self.module._parameters[name_w] self.module.register_parameter(name_w + '_raw', Parameter(w.data)) def _setweights(self): for name_w in self.weights: raw_w = getattr(self.module, name_w + '_raw') w = None if self.variational: mask = torch.autograd.Variable(torch.ones(raw_w.size(0), 1)) if raw_w.is_cuda: mask = mask.cuda() mask = torch.nn.functional.dropout(mask, p=self.dropout, training=True) w = mask.expand_as(raw_w) * raw_w else: w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training) setattr(self.module, name_w, w) def forward(self, *args): self._setweights() return self.module.forward(*args) if __name__ == '__main__': import torch from weight_drop import WeightDrop # Input is (seq, batch, input) x = torch.autograd.Variable(torch.randn(2, 1, 10)).cuda() h0 = None ### print('Testing WeightDrop') print('=-=-=-=-=-=-=-=-=-=') ### print('Testing WeightDrop with Linear') lin = WeightDrop(torch.nn.Linear(10, 10), ['weight'], dropout=0.9) lin.cuda() run1 = [x.sum() for x in lin(x).data] run2 = [x.sum() for x in lin(x).data] print('All items should be different') print('Run 1:', run1) print('Run 2:', run2) assert run1[0] != run2[0] assert run1[1] != run2[1] print('---') ### print('Testing WeightDrop with LSTM') wdrnn = WeightDrop(torch.nn.LSTM(10, 10), ['weight_hh_l0'], dropout=0.9) wdrnn.cuda() run1 = [x.sum() for x in wdrnn(x, h0)[0].data] run2 = [x.sum() for x in wdrnn(x, h0)[0].data] print('First timesteps should be equal, all others should differ') print('Run 1:', run1) print('Run 2:', run2) # First time step, not influenced by hidden to hidden weights, should be equal assert run1[0] == run2[0] # Second step should not assert run1[1] != run2[1] print('---')
awd-lstm-lm-master
weight_drop.py
import argparse import time import math import numpy as np import torch import torch.nn as nn from torch.autograd import Variable import data import model from utils import batchify, get_batch, repackage_hidden parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model') parser.add_argument('--data', type=str, default='data/penn/', help='location of the data corpus') parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (LSTM, QRNN, GRU)') parser.add_argument('--emsize', type=int, default=400, help='size of word embeddings') parser.add_argument('--nhid', type=int, default=1150, help='number of hidden units per layer') parser.add_argument('--nlayers', type=int, default=3, help='number of layers') parser.add_argument('--lr', type=float, default=30, help='initial learning rate') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--epochs', type=int, default=8000, help='upper epoch limit') parser.add_argument('--batch_size', type=int, default=80, metavar='N', help='batch size') parser.add_argument('--bptt', type=int, default=70, help='sequence length') parser.add_argument('--dropout', type=float, default=0.4, help='dropout applied to layers (0 = no dropout)') parser.add_argument('--dropouth', type=float, default=0.3, help='dropout for rnn layers (0 = no dropout)') parser.add_argument('--dropouti', type=float, default=0.65, help='dropout for input embedding layers (0 = no dropout)') parser.add_argument('--dropoute', type=float, default=0.1, help='dropout to remove words from embedding layer (0 = no dropout)') parser.add_argument('--wdrop', type=float, default=0.5, help='amount of weight dropout to apply to the RNN hidden to hidden matrix') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--nonmono', type=int, default=5, help='random seed') parser.add_argument('--cuda', action='store_false', help='use CUDA') parser.add_argument('--log-interval', type=int, default=200, metavar='N', help='report interval') randomhash = ''.join(str(time.time()).split('.')) parser.add_argument('--save', type=str, default=randomhash+'.pt', help='path to save the final model') parser.add_argument('--alpha', type=float, default=2, help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)') parser.add_argument('--beta', type=float, default=1, help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)') parser.add_argument('--wdecay', type=float, default=1.2e-6, help='weight decay applied to all weights') parser.add_argument('--resume', type=str, default='', help='path of model to resume') parser.add_argument('--optimizer', type=str, default='sgd', help='optimizer to use (sgd, adam)') parser.add_argument('--when', nargs="+", type=int, default=[-1], help='When (which epochs) to divide the learning rate by 10 - accepts multiple') args = parser.parse_args() args.tied = True # Set the random seed manually for reproducibility. np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) ############################################################################### # Load data ############################################################################### def model_save(fn): with open(fn, 'wb') as f: torch.save([model, criterion, optimizer], f) def model_load(fn): global model, criterion, optimizer with open(fn, 'rb') as f: model, criterion, optimizer = torch.load(f) import os import hashlib fn = 'corpus.{}.data'.format(hashlib.md5(args.data.encode()).hexdigest()) if os.path.exists(fn): print('Loading cached dataset...') corpus = torch.load(fn) else: print('Producing dataset...') corpus = data.Corpus(args.data) torch.save(corpus, fn) eval_batch_size = 10 test_batch_size = 1 train_data = batchify(corpus.train, args.batch_size, args) val_data = batchify(corpus.valid, eval_batch_size, args) test_data = batchify(corpus.test, test_batch_size, args) ############################################################################### # Build the model ############################################################################### from splitcross import SplitCrossEntropyLoss criterion = None ntokens = len(corpus.dictionary) model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.dropouth, args.dropouti, args.dropoute, args.wdrop, args.tied) ### if args.resume: print('Resuming model ...') model_load(args.resume) optimizer.param_groups[0]['lr'] = args.lr model.dropouti, model.dropouth, model.dropout, args.dropoute = args.dropouti, args.dropouth, args.dropout, args.dropoute if args.wdrop: from weight_drop import WeightDrop for rnn in model.rnns: if type(rnn) == WeightDrop: rnn.dropout = args.wdrop elif rnn.zoneout > 0: rnn.zoneout = args.wdrop ### if not criterion: splits = [] if ntokens > 500000: # One Billion # This produces fairly even matrix mults for the buckets: # 0: 11723136, 1: 10854630, 2: 11270961, 3: 11219422 splits = [4200, 35000, 180000] elif ntokens > 75000: # WikiText-103 splits = [2800, 20000, 76000] print('Using', splits) criterion = SplitCrossEntropyLoss(args.emsize, splits=splits, verbose=False) ### params = list(model.parameters()) + list(criterion.parameters()) if args.cuda: model = model.cuda() criterion = criterion.cuda() params = list(model.parameters()) + list(criterion.parameters()) ### total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in params if x.size()) print('Args:', args) print('Model total parameters:', total_params) ############################################################################### # Training code ############################################################################### def evaluate(data_source, batch_size=10): # Turn on evaluation mode which disables dropout. model.eval() if args.model == 'QRNN': model.reset() total_loss = 0 ntokens = len(corpus.dictionary) hidden = model.init_hidden(batch_size) for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i, args, evaluation=True) output, hidden = model(data, hidden) total_loss += len(data) * criterion(model.decoder.weight, model.decoder.bias, output, targets).data hidden = repackage_hidden(hidden) return total_loss[0] / len(data_source) def train(): # Turn on training mode which enables dropout. if args.model == 'QRNN': model.reset() total_loss = 0 start_time = time.time() ntokens = len(corpus.dictionary) hidden = model.init_hidden(args.batch_size) batch, i = 0, 0 while i < train_data.size(0) - 1 - 1: bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2. # Prevent excessively small or negative sequence lengths seq_len = max(5, int(np.random.normal(bptt, 5))) # There's a very small chance that it could select a very long sequence length resulting in OOM # seq_len = min(seq_len, args.bptt + 10) lr2 = optimizer.param_groups[0]['lr'] optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt model.train() data, targets = get_batch(train_data, i, args, seq_len=seq_len) # Starting each batch, we detach the hidden state from how it was previously produced. # If we didn't, the model would try backpropagating all the way to start of the dataset. hidden = repackage_hidden(hidden) optimizer.zero_grad() output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True) raw_loss = criterion(model.decoder.weight, model.decoder.bias, output, targets) loss = raw_loss # Activiation Regularization if args.alpha: loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:]) # Temporal Activation Regularization (slowness) if args.beta: loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:]) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. if args.clip: torch.nn.utils.clip_grad_norm(model.parameters(), args.clip) optimizer.step() total_loss += raw_loss.data optimizer.param_groups[0]['lr'] = lr2 if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss[0] / args.log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:05.5f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f} | bpc {:8.3f}'.format( epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'], elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss), cur_loss / math.log(2))) total_loss = 0 start_time = time.time() ### batch += 1 i += seq_len # Loop over epochs. lr = args.lr best_val_loss = [] stored_loss = 100000000 # At any point you can hit Ctrl + C to break out of training early. try: optimizer = None if args.optimizer == 'sgd': optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.wdecay) if args.optimizer == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.wdecay) for epoch in range(1, args.epochs+1): epoch_start_time = time.time() train() if 't0' in optimizer.param_groups[0]: tmp = {} for prm in model.parameters(): tmp[prm] = prm.data.clone() prm.data = optimizer.state[prm]['ax'].clone() val_loss2 = evaluate(val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f} | valid bpc {:8.3f}'.format( epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss), val_loss / math.log(2))) print('-' * 89) if val_loss2 < stored_loss: model_save(args.save) print('Saving Averaged!') stored_loss = val_loss2 for prm in model.parameters(): prm.data = tmp[prm].clone() else: val_loss = evaluate(val_data, eval_batch_size) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f} | valid bpc {:8.3f}'.format( epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss), val_loss / math.log(2))) print('-' * 89) if val_loss < stored_loss: model_save(args.save) print('Saving model (new best validation)') stored_loss = val_loss if args.optimizer == 'sgd' and 't0' not in optimizer.param_groups[0] and (len(best_val_loss)>args.nonmono and val_loss > min(best_val_loss[:-args.nonmono])): print('Switching to ASGD') optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay) if epoch in args.when: print('Saving model before learning rate decreased') model_save('{}.e{}'.format(args.save, epoch)) print('Dividing learning rate by 10') optimizer.param_groups[0]['lr'] /= 10. best_val_loss.append(val_loss) except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') # Load the best saved model. model_load(args.save) # Run on test data. test_loss = evaluate(test_data, test_batch_size) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f} | test bpc {:8.3f}'.format( test_loss, math.exp(test_loss), test_loss / math.log(2))) print('=' * 89)
awd-lstm-lm-master
main.py
from collections import defaultdict import torch import torch.nn as nn import numpy as np class SplitCrossEntropyLoss(nn.Module): r'''SplitCrossEntropyLoss calculates an approximate softmax''' def __init__(self, hidden_size, splits, verbose=False): # We assume splits is [0, split1, split2, N] where N >= |V| # For example, a vocab of 1000 words may have splits [0] + [100, 500] + [inf] super(SplitCrossEntropyLoss, self).__init__() self.hidden_size = hidden_size self.splits = [0] + splits + [100 * 1000000] self.nsplits = len(self.splits) - 1 self.stats = defaultdict(list) self.verbose = verbose # Each of the splits that aren't in the head require a pretend token, we'll call them tombstones # The probability given to this tombstone is the probability of selecting an item from the represented split if self.nsplits > 1: self.tail_vectors = nn.Parameter(torch.zeros(self.nsplits - 1, hidden_size)) self.tail_bias = nn.Parameter(torch.zeros(self.nsplits - 1)) def logprob(self, weight, bias, hiddens, splits=None, softmaxed_head_res=None, verbose=False): # First we perform the first softmax on the head vocabulary and the tombstones if softmaxed_head_res is None: start, end = self.splits[0], self.splits[1] head_weight = None if end - start == 0 else weight[start:end] head_bias = None if end - start == 0 else bias[start:end] # We only add the tombstones if we have more than one split if self.nsplits > 1: head_weight = self.tail_vectors if head_weight is None else torch.cat([head_weight, self.tail_vectors]) head_bias = self.tail_bias if head_bias is None else torch.cat([head_bias, self.tail_bias]) # Perform the softmax calculation for the word vectors in the head for all splits # We need to guard against empty splits as torch.cat does not like random lists head_res = torch.nn.functional.linear(hiddens, head_weight, bias=head_bias) softmaxed_head_res = torch.nn.functional.log_softmax(head_res) if splits is None: splits = list(range(self.nsplits)) results = [] running_offset = 0 for idx in splits: # For those targets in the head (idx == 0) we only need to return their loss if idx == 0: results.append(softmaxed_head_res[:, :-(self.nsplits - 1)]) # If the target is in one of the splits, the probability is the p(tombstone) * p(word within tombstone) else: start, end = self.splits[idx], self.splits[idx + 1] tail_weight = weight[start:end] tail_bias = bias[start:end] # Calculate the softmax for the words in the tombstone tail_res = torch.nn.functional.linear(hiddens, tail_weight, bias=tail_bias) # Then we calculate p(tombstone) * p(word in tombstone) # Adding is equivalent to multiplication in log space head_entropy = (softmaxed_head_res[:, -idx]).contiguous() tail_entropy = torch.nn.functional.log_softmax(tail_res) results.append(head_entropy.view(-1, 1) + tail_entropy) if len(results) > 1: return torch.cat(results, dim=1) return results[0] def split_on_targets(self, hiddens, targets): # Split the targets into those in the head and in the tail split_targets = [] split_hiddens = [] # Determine to which split each element belongs (for each start split value, add 1 if equal or greater) # This method appears slower at least for WT-103 values for approx softmax #masks = [(targets >= self.splits[idx]).view(1, -1) for idx in range(1, self.nsplits)] #mask = torch.sum(torch.cat(masks, dim=0), dim=0) ### # This is equally fast for smaller splits as method below but scales linearly mask = None for idx in range(1, self.nsplits): partial_mask = targets >= self.splits[idx] mask = mask + partial_mask if mask is not None else partial_mask ### #masks = torch.stack([targets] * (self.nsplits - 1)) #mask = torch.sum(masks >= self.split_starts, dim=0) for idx in range(self.nsplits): # If there are no splits, avoid costly masked select if self.nsplits == 1: split_targets, split_hiddens = [targets], [hiddens] continue # If all the words are covered by earlier targets, we have empties so later stages don't freak out if sum(len(t) for t in split_targets) == len(targets): split_targets.append([]) split_hiddens.append([]) continue # Are you in our split? tmp_mask = mask == idx split_targets.append(torch.masked_select(targets, tmp_mask)) split_hiddens.append(hiddens.masked_select(tmp_mask.unsqueeze(1).expand_as(hiddens)).view(-1, hiddens.size(1))) return split_targets, split_hiddens def forward(self, weight, bias, hiddens, targets, verbose=False): if self.verbose or verbose: for idx in sorted(self.stats): print('{}: {}'.format(idx, int(np.mean(self.stats[idx]))), end=', ') print() total_loss = None if len(hiddens.size()) > 2: hiddens = hiddens.view(-1, hiddens.size(2)) split_targets, split_hiddens = self.split_on_targets(hiddens, targets) # First we perform the first softmax on the head vocabulary and the tombstones start, end = self.splits[0], self.splits[1] head_weight = None if end - start == 0 else weight[start:end] head_bias = None if end - start == 0 else bias[start:end] # We only add the tombstones if we have more than one split if self.nsplits > 1: head_weight = self.tail_vectors if head_weight is None else torch.cat([head_weight, self.tail_vectors]) head_bias = self.tail_bias if head_bias is None else torch.cat([head_bias, self.tail_bias]) # Perform the softmax calculation for the word vectors in the head for all splits # We need to guard against empty splits as torch.cat does not like random lists combo = torch.cat([split_hiddens[i] for i in range(self.nsplits) if len(split_hiddens[i])]) ### all_head_res = torch.nn.functional.linear(combo, head_weight, bias=head_bias) softmaxed_all_head_res = torch.nn.functional.log_softmax(all_head_res) if self.verbose or verbose: self.stats[0].append(combo.size()[0] * head_weight.size()[0]) running_offset = 0 for idx in range(self.nsplits): # If there are no targets for this split, continue if len(split_targets[idx]) == 0: continue # For those targets in the head (idx == 0) we only need to return their loss if idx == 0: softmaxed_head_res = softmaxed_all_head_res[running_offset:running_offset + len(split_hiddens[idx])] entropy = -torch.gather(softmaxed_head_res, dim=1, index=split_targets[idx].view(-1, 1)) # If the target is in one of the splits, the probability is the p(tombstone) * p(word within tombstone) else: softmaxed_head_res = softmaxed_all_head_res[running_offset:running_offset + len(split_hiddens[idx])] if self.verbose or verbose: start, end = self.splits[idx], self.splits[idx + 1] tail_weight = weight[start:end] self.stats[idx].append(split_hiddens[idx].size()[0] * tail_weight.size()[0]) # Calculate the softmax for the words in the tombstone tail_res = self.logprob(weight, bias, split_hiddens[idx], splits=[idx], softmaxed_head_res=softmaxed_head_res) # Then we calculate p(tombstone) * p(word in tombstone) # Adding is equivalent to multiplication in log space head_entropy = softmaxed_head_res[:, -idx] # All indices are shifted - if the first split handles [0,...,499] then the 500th in the second split will be 0 indexed indices = (split_targets[idx] - self.splits[idx]).view(-1, 1) # Warning: if you don't squeeze, you get an N x 1 return, which acts oddly with broadcasting tail_entropy = torch.gather(torch.nn.functional.log_softmax(tail_res), dim=1, index=indices).squeeze() entropy = -(head_entropy + tail_entropy) ### running_offset += len(split_hiddens[idx]) total_loss = entropy.float().sum() if total_loss is None else total_loss + entropy.float().sum() return (total_loss / len(targets)).type_as(weight) if __name__ == '__main__': np.random.seed(42) torch.manual_seed(42) if torch.cuda.is_available(): torch.cuda.manual_seed(42) V = 8 H = 10 N = 100 E = 10 embed = torch.nn.Embedding(V, H) crit = SplitCrossEntropyLoss(hidden_size=H, splits=[V // 2]) bias = torch.nn.Parameter(torch.ones(V)) optimizer = torch.optim.SGD(list(embed.parameters()) + list(crit.parameters()), lr=1) for _ in range(E): prev = torch.autograd.Variable((torch.rand(N, 1) * 0.999 * V).int().long()) x = torch.autograd.Variable((torch.rand(N, 1) * 0.999 * V).int().long()) y = embed(prev).squeeze() c = crit(embed.weight, bias, y, x.view(N)) print('Crit', c.exp().data[0]) logprobs = crit.logprob(embed.weight, bias, y[:2]).exp() print(logprobs) print(logprobs.sum(dim=1)) optimizer.zero_grad() c.backward() optimizer.step()
awd-lstm-lm-master
splitcross.py
import argparse import time import math import numpy as np np.random.seed(331) import torch import torch.nn as nn from torch.autograd import Variable import data import model from utils import batchify, get_batch, repackage_hidden parser = argparse.ArgumentParser(description='PyTorch PennTreeBank RNN/LSTM Language Model') parser.add_argument('--data', type=str, default='data/penn/', help='location of the data corpus') parser.add_argument('--model', type=str, default='LSTM', help='type of recurrent net (RNN_TANH, RNN_RELU, LSTM, GRU)') parser.add_argument('--emsize', type=int, default=400, help='size of word embeddings') parser.add_argument('--nhid', type=int, default=1150, help='number of hidden units per layer') parser.add_argument('--nlayers', type=int, default=3, help='number of layers') parser.add_argument('--lr', type=float, default=30, help='initial learning rate') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--epochs', type=int, default=8000, help='upper epoch limit') parser.add_argument('--batch_size', type=int, default=80, metavar='N', help='batch size') parser.add_argument('--bptt', type=int, default=70, help='sequence length') parser.add_argument('--dropout', type=float, default=0.4, help='dropout applied to layers (0 = no dropout)') parser.add_argument('--dropouth', type=float, default=0.3, help='dropout for rnn layers (0 = no dropout)') parser.add_argument('--dropouti', type=float, default=0.65, help='dropout for input embedding layers (0 = no dropout)') parser.add_argument('--dropoute', type=float, default=0.1, help='dropout to remove words from embedding layer (0 = no dropout)') parser.add_argument('--wdrop', type=float, default=0.5, help='amount of weight dropout to apply to the RNN hidden to hidden matrix') parser.add_argument('--tied', action='store_false', help='tie the word embedding and softmax weights') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--nonmono', type=int, default=5, help='random seed') parser.add_argument('--cuda', action='store_false', help='use CUDA') parser.add_argument('--log-interval', type=int, default=200, metavar='N', help='report interval') randomhash = ''.join(str(time.time()).split('.')) parser.add_argument('--save', type=str, default=randomhash+'.pt', help='path to save the final model') parser.add_argument('--alpha', type=float, default=2, help='alpha L2 regularization on RNN activation (alpha = 0 means no regularization)') parser.add_argument('--beta', type=float, default=1, help='beta slowness regularization applied on RNN activiation (beta = 0 means no regularization)') parser.add_argument('--wdecay', type=float, default=1.2e-6, help='weight decay applied to all weights') args = parser.parse_args() # Set the random seed manually for reproducibility. torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") else: torch.cuda.manual_seed(args.seed) ############################################################################### # Load data ############################################################################### corpus = data.Corpus(args.data) eval_batch_size = 10 test_batch_size = 1 train_data = batchify(corpus.train, args.batch_size, args) val_data = batchify(corpus.valid, eval_batch_size, args) test_data = batchify(corpus.test, test_batch_size, args) ############################################################################### # Build the model ############################################################################### ntokens = len(corpus.dictionary) model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid, args.nlayers, args.dropout, args.dropouth, args.dropouti, args.dropoute, args.wdrop, args.tied) if args.cuda: model.cuda() total_params = sum(x.size()[0] * x.size()[1] if len(x.size()) > 1 else x.size()[0] for x in model.parameters()) print('Args:', args) print('Model total parameters:', total_params) criterion = nn.CrossEntropyLoss() ############################################################################### # Training code ############################################################################### def evaluate(data_source, batch_size=10): # Turn on evaluation mode which disables dropout. if args.model == 'QRNN': model.reset() model.eval() total_loss = 0 ntokens = len(corpus.dictionary) hidden = model.init_hidden(batch_size) for i in range(0, data_source.size(0) - 1, args.bptt): data, targets = get_batch(data_source, i, args, evaluation=True) output, hidden = model(data, hidden) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).data hidden = repackage_hidden(hidden) return total_loss[0] / len(data_source) def train(): # Turn on training mode which enables dropout. if args.model == 'QRNN': model.reset() total_loss = 0 start_time = time.time() ntokens = len(corpus.dictionary) hidden = model.init_hidden(args.batch_size) batch, i = 0, 0 while i < train_data.size(0) - 1 - 1: bptt = args.bptt if np.random.random() < 0.95 else args.bptt / 2. # Prevent excessively small or negative sequence lengths seq_len = max(5, int(np.random.normal(bptt, 5))) # There's a very small chance that it could select a very long sequence length resulting in OOM seq_len = min(seq_len, args.bptt + 10) lr2 = optimizer.param_groups[0]['lr'] optimizer.param_groups[0]['lr'] = lr2 * seq_len / args.bptt model.train() data, targets = get_batch(train_data, i, args, seq_len=seq_len) # Starting each batch, we detach the hidden state from how it was previously produced. # If we didn't, the model would try backpropagating all the way to start of the dataset. hidden = repackage_hidden(hidden) optimizer.zero_grad() output, hidden, rnn_hs, dropped_rnn_hs = model(data, hidden, return_h=True) raw_loss = criterion(output.view(-1, ntokens), targets) loss = raw_loss # Activiation Regularization loss = loss + sum(args.alpha * dropped_rnn_h.pow(2).mean() for dropped_rnn_h in dropped_rnn_hs[-1:]) # Temporal Activation Regularization (slowness) loss = loss + sum(args.beta * (rnn_h[1:] - rnn_h[:-1]).pow(2).mean() for rnn_h in rnn_hs[-1:]) loss.backward() # `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs. torch.nn.utils.clip_grad_norm(model.parameters(), args.clip) optimizer.step() total_loss += raw_loss.data optimizer.param_groups[0]['lr'] = lr2 if batch % args.log_interval == 0 and batch > 0: cur_loss = total_loss[0] / args.log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // args.bptt, optimizer.param_groups[0]['lr'], elapsed * 1000 / args.log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() ### batch += 1 i += seq_len # Load the best saved model. with open(args.save, 'rb') as f: model = torch.load(f) # Loop over epochs. lr = args.lr stored_loss = evaluate(val_data) best_val_loss = [] # At any point you can hit Ctrl + C to break out of training early. try: #optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, weight_decay=args.wdecay) optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay) for epoch in range(1, args.epochs+1): epoch_start_time = time.time() train() if 't0' in optimizer.param_groups[0]: tmp = {} for prm in model.parameters(): tmp[prm] = prm.data.clone() prm.data = optimizer.state[prm]['ax'].clone() val_loss2 = evaluate(val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss2, math.exp(val_loss2))) print('-' * 89) if val_loss2 < stored_loss: with open(args.save, 'wb') as f: torch.save(model, f) print('Saving Averaged!') stored_loss = val_loss2 for prm in model.parameters(): prm.data = tmp[prm].clone() if (len(best_val_loss)>args.nonmono and val_loss2 > min(best_val_loss[:-args.nonmono])): print('Done!') import sys sys.exit(1) optimizer = torch.optim.ASGD(model.parameters(), lr=args.lr, t0=0, lambd=0., weight_decay=args.wdecay) #optimizer.param_groups[0]['lr'] /= 2. best_val_loss.append(val_loss2) except KeyboardInterrupt: print('-' * 89) print('Exiting from training early') # Load the best saved model. with open(args.save, 'rb') as f: model = torch.load(f) # Run on test data. test_loss = evaluate(test_data, test_batch_size) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89)
awd-lstm-lm-master
finetune.py
import torch import torch.nn as nn from torch.autograd import Variable class LockedDropout(nn.Module): def __init__(self): super().__init__() def forward(self, x, dropout=0.5): if not self.training or not dropout: return x m = x.data.new(1, x.size(1), x.size(2)).bernoulli_(1 - dropout) mask = Variable(m, requires_grad=False) / (1 - dropout) mask = mask.expand_as(x) return mask * x
awd-lstm-lm-master
locked_dropout.py
import os import torch from collections import Counter class Dictionary(object): def __init__(self): self.word2idx = {} self.idx2word = [] self.counter = Counter() self.total = 0 def add_word(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 token_id = self.word2idx[word] self.counter[token_id] += 1 self.total += 1 return self.word2idx[word] def __len__(self): return len(self.idx2word) class Corpus(object): def __init__(self, path): self.dictionary = Dictionary() self.train = self.tokenize(os.path.join(path, 'train.txt')) self.valid = self.tokenize(os.path.join(path, 'valid.txt')) self.test = self.tokenize(os.path.join(path, 'test.txt')) def tokenize(self, path): """Tokenizes a text file.""" assert os.path.exists(path) # Add words to the dictionary with open(path, 'r') as f: tokens = 0 for line in f: words = line.split() + ['<eos>'] tokens += len(words) for word in words: self.dictionary.add_word(word) # Tokenize file content with open(path, 'r') as f: ids = torch.LongTensor(tokens) token = 0 for line in f: words = line.split() + ['<eos>'] for word in words: ids[token] = self.dictionary.word2idx[word] token += 1 return ids
awd-lstm-lm-master
data.py
#!/usr/bin/env python # coding=utf-8 import os import sys import zipfile if os.path.exists('train.txt'): print('Tokenized enwik8 already exists - skipping processing') sys.exit() data = zipfile.ZipFile('enwik8.zip').read('enwik8') print('Length of enwik8: {}'.format(len(data))) num_test_chars = 5000000 train_data = data[: -2 * num_test_chars] valid_data = data[-2 * num_test_chars: -num_test_chars] test_data = data[-num_test_chars:] for fn, part in [('train.txt', train_data), ('valid.txt', valid_data), ('test.txt', test_data)]: print('{} will have {} bytes'.format(fn, len(part))) print('- Tokenizing...') part_str = ' '.join([str(c) if c != ord('\n') else '\n' for c in part]) print('- Writing...') f = open(fn, 'w').write(part_str) f = open(fn + '.raw', 'wb').write(part)
awd-lstm-lm-master
data/enwik8/prep_enwik8.py
import os import deepspeed import torch.distributed as dist from distill_bloom import build_train_val_test_dataset from distill_bloom import parse_args args = parse_args() local_rank = int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) deepspeed.init_distributed("nccl") rank = dist.get_rank() if rank == 0: train_ds, val, test = build_train_val_test_dataset(args) print(f"The total dataset includes: {len(train_ds)} subsets") for i, train_data in enumerate(train_ds): print(f"Train dataset: {i} has {len(train_data)} samples") for data in train_data: print("Text: ", data['text']) break
distill-bloom-deepspeed-main
test_dataset.py
# usage: # deepspeed --num_gpus 8 teacher-inference-script.py --name bigscience/bloom # # to run benchmarks: # deepspeed --num_gpus 8 teacher-inference-script.py --name bigscience/bloom --benchmark # # This is going to improve, but at the moment, the process is a bit cumbersome - we first use # 1. use Deepspeed-ZeRO to instantiate the model on GPUs, w/o loading the checkpoints, # 2. free the allocated storage # 3. start Deepspeed-Inference and only now load the checkpoint # 4. run generate # Done. # import gc import glob import io import json import math import os import time from pathlib import Path import deepspeed import torch import torch.distributed as dist from huggingface_hub import snapshot_download from transformers import AutoConfig, AutoModelForCausalLM from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock from transformers.utils import is_offline_mode from distill_bloom import build_train_val_test_dataset, DistributedDataset, DistributedDataLoader from distill_bloom import parse_args, DeepSpeedInitWrapper, print_rank0 # Arguments args = parse_args() local_rank = int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) # World size is the number of GPUs deepspeed.init_distributed("nccl") rank = dist.get_rank() ## Check the args assert (world_size % args.global_batch_size) == 0, "micro_batch_size must be divisible by num_gpus" ds_init = DeepSpeedInitWrapper(args) ds_init.init_deepspeed_inference() model_name = ds_init.repo_root # Wait that all processes have correctly initiliazed DeepSpeed dist.barrier() print_rank0(f"*** Loading the model {model_name}") config = AutoConfig.from_pretrained(model_name) # Construct model with fake meta tensors, later will be replaced during ds-inference ckpt load with deepspeed.OnDevice(dtype=ds_init.dtype, device="meta"): model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) model = model.eval() # checkpoints_json=None model = deepspeed.init_inference( model, mp_size=world_size, base_dir=ds_init.repo_root, dtype=getattr(torch, ds_init.infer_dtype), checkpoint=ds_init.checkpoints_json, **ds_init.kwargs, ) model = model.module # Dataset building - each rank will have a different shard of the dataset train_ds, _, _ = build_train_val_test_dataset(args) data_loader = DistributedDataLoader( train_ds, rank=rank, world_size=world_size, batch_size=1 ) dist.barrier() def generate_logits(inputs): """returns a list of zipped inputs, outputs and number of new tokens""" inputs = inputs.to(torch.cuda.current_device()) outputs = model(inputs).logits return outputs def generate_logits_batch(data_loader): for batch in data_loader: inputs = batch['text'] # as a sanity check, I used to check that inputs are different for each rank inputs = inputs.to(torch.cuda.current_device()) outputs = model(inputs).logits # Here we leave the return statement for debugging purposes # But in practice at this point we would probably call # dist.barrier() and send the logits together with the input # to the student model return outputs # warmup is a must if measuring speed as it's when all the optimizations are performed # e.g. on 8x80 a100 the first pass of 100 tokens takes 23sec, and the next one is 4secs print_rank0(f"*** Running generate warmup") # _ = generate_logits(inputs) _ = generate_logits_batch(data_loader) print_rank0(f"*** Running generate") t_generate_start = time.time() # generated = generate_logits(inputs) generated = generate_logits_batch(data_loader) print(rank, generated.shape) t_generate_span = time.time() - t_generate_start
distill-bloom-deepspeed-main
teacher-inference-script.py
# Dataset imports from .arguments.arguments import parse_args from .dataset.get_dataset import build_train_val_test_dataset from .dataset.dataloader import DistributedDataset, DistributedDataLoader # Arguments import from .init_wrapper import DeepSpeedInitWrapper, print_rank0
distill-bloom-deepspeed-main
distill_bloom/__init__.py
# usage: # deepspeed --num_gpus 8 teacher-inference-script.py --name bigscience/bloom # # to run benchmarks: # deepspeed --num_gpus 8 teacher-inference-script.py --name bigscience/bloom --benchmark # # This is going to improve, but at the moment, the process is a bit cumbersome - we first use # 1. use Deepspeed-ZeRO to instantiate the model on GPUs, w/o loading the checkpoints, # 2. free the allocated storage # 3. start Deepspeed-Inference and only now load the checkpoint # 4. run generate # Done. # import gc import glob import io import json import math import os import time from argparse import ArgumentParser from pathlib import Path import deepspeed import torch import torch.distributed as dist from huggingface_hub import snapshot_download from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock from transformers.utils import is_offline_mode # the Deepspeed team made these so it's super fast to load (~1 minute), rather than wait 10-20min loading time. tp_presharded_models = [ "microsoft/bloom-deepspeed-inference-int8", "microsoft/bloom-deepspeed-inference-fp16", ] t_start = time.time() num_tokens = 100 parser = ArgumentParser() parser.add_argument("--name", required=True, type=str, help="model_name") parser.add_argument( "--dtype", type=str, help="float16 or int8", choices=["int8", "float16"], default="float16", ) parser.add_argument( "--local_rank", required=False, type=int, help="used by dist launchers" ) parser.add_argument("--batch_size", default=1, type=int, help="batch size") parser.add_argument( "--benchmark", action="store_true", help="additionally run benchmark" ) args = parser.parse_args() local_rank = int(os.getenv("LOCAL_RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) deepspeed.init_distributed("nccl") rank = dist.get_rank() def print_rank0(*msg): if rank != 0: return print(*msg) ### Model loading and instantiating on GPUs def get_repo_root(model_name_or_path, revision=None): # checks if online or not if is_offline_mode(): print_rank0("Offline mode: forcing local_files_only=True") local_files_only = True else: local_files_only = False # loads files from hub cached_repo_dir = snapshot_download( model_name_or_path, allow_patterns=["*"], local_files_only=local_files_only, revision=revision, ) return cached_repo_dir def get_checkpoint_files(model_name_or_path, revision=None, force_offline=True): if not force_offline: # checks if online or not if is_offline_mode(): print_rank0("Offline mode: forcing local_files_only=True") local_files_only = True else: local_files_only = False # loads files from hub cached_repo_dir = snapshot_download( model_name_or_path, allow_patterns=["*"], local_files_only=True, revision=revision, ) else: cached_repo_dir = model_name_or_path # extensions: .bin | .pt # creates a list of paths from all downloaded files in cache dir file_list = [ str(entry) for entry in Path(cached_repo_dir).rglob("*.[bp][it][n]") if entry.is_file() ] return file_list model_name = args.name infer_dtype = args.dtype tp_presharded_mode = True if model_name in tp_presharded_models else False # print(get_checkpoint_files(model_name)) print_rank0(f"*** Loading the model {model_name}") tokenizer = AutoTokenizer.from_pretrained(model_name) config = AutoConfig.from_pretrained(model_name) # XXX: can't automatically derive dtype via config's `from_pretrained` # dtype = torch.bfloat16 if model_name in ["bigscience/bloom", "bigscience/bigscience-small-testing"] else torch.float16 # use one of these args to `init_inference` # 1. injection_policy is the slower version, but it's plain pytorch so it'll always work # 2. replace_with_kernel_inject is the faster one (fast fused kernels) kernel_inject = True # kernel_inject = False if kernel_inject: # XXX: for now ds-inference only works with fp16 dtype = torch.float16 else: dtype = torch.bfloat16 if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage("pre-from-pretrained", force=True) # Construct model with fake meta tensors, later will be replaced during ds-inference ckpt load with deepspeed.OnDevice(dtype=dtype, device="meta"): model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) if args.benchmark: deepspeed.runtime.utils.see_memory_usage("post-from-pretrained", force=True) model = model.eval() if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage("post-init-ds-zero-init", force=True) ### Deepspeed-Inference Loading checkpoints_json = "checkpoints.json" def write_checkponts_json(): with io.open(checkpoints_json, "w", encoding="utf-8") as f: # checkpoint_files = glob.glob(f"{checkpoint_dir}/*bin") checkpoint_files = get_checkpoint_files(model_name) # print("Checkpoint files:", checkpoint_files) data = {"type": "BLOOM", "checkpoints": checkpoint_files, "version": 1.0} json.dump(data, f) if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage("pre-ds-inference-init", force=True) if kernel_inject: kwargs = dict(replace_with_kernel_inject=True) else: kwargs = dict( injection_policy={BloomBlock: ("self_attention.dense", "mlp.dense_4h_to_h")} ) # TODO: this fails even if the model is present locally # repo_root = get_repo_root(model_name) repo_root = model_name if tp_presharded_mode: # tp presharded repos come with their own checkpoints config file checkpoints_json = os.path.join(repo_root, "ds_inference_config.json") else: # for normal bloom repo we need to write the checkpoints config file if rank == 0: write_checkponts_json() dist.barrier() # checkpoints_json=None model = deepspeed.init_inference( model, mp_size=world_size, base_dir=repo_root, dtype=getattr(torch, infer_dtype), checkpoint=checkpoints_json, **kwargs, ) if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage("post-ds-inference-init", force=True) model = model.module if args.benchmark: t_ready = time.time() ### Generate print_rank0(f"*** Starting to generate {num_tokens} tokens with bs={args.batch_size}") input_sentences = [ "DeepSpeed is a machine learning framework", "He is working on", "He has a", "He got all", "Everyone is happy and I can", "The new movie that got Oscar this year", "In the far far distance from our galaxy,", "Peace is the only way", ] if args.batch_size > len(input_sentences): # dynamically extend to support larger bs by repetition input_sentences *= math.ceil(args.batch_size / len(input_sentences)) generate_kwargs = dict(max_new_tokens=num_tokens, do_sample=False) print_rank0(f"Generate args {generate_kwargs}") inputs = input_sentences[: args.batch_size] def generate(): """returns a list of zipped inputs, outputs and number of new tokens""" input_tokens = tokenizer.batch_encode_plus( inputs, return_tensors="pt", padding=True ) for t in input_tokens: if torch.is_tensor(input_tokens[t]): input_tokens[t] = input_tokens[t].to(torch.cuda.current_device()) outputs = model.generate(**input_tokens, **generate_kwargs) input_tokens_lengths = [x.shape[0] for x in input_tokens.input_ids] output_tokens_lengths = [x.shape[0] for x in outputs] total_new_tokens = [ o - i for i, o in zip(input_tokens_lengths, output_tokens_lengths) ] outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) return zip(inputs, outputs, total_new_tokens) # warmup is a must if measuring speed as it's when all the optimizations are performed # e.g. on 8x80 a100 the first pass of 100 tokens takes 23sec, and the next one is 4secs print_rank0(f"*** Running generate warmup") _ = generate() print_rank0(f"*** Running generate") t_generate_start = time.time() generated = generate() t_generate_span = time.time() - t_generate_start for i, o, _ in generated: print_rank0(f"{'-'*60}\nin={i}\nout={o}\n") if args.benchmark: torch.cuda.empty_cache() gc.collect() deepspeed.runtime.utils.see_memory_usage("end-of-run", force=True) ### Benchmark # benchmark it! if args.benchmark: print_rank0(f"*** Running benchmark") # warm up for i in range(1): _ = generate() torch.cuda.synchronize() # benchmark t0 = time.time() cycles = 5 total_new_tokens_generated = 0 for i in range(cycles): generated = generate() total_new_tokens_generated += sum(new_tokens for _, _, new_tokens in generated) torch.cuda.synchronize() througput = (time.time() - t0) / (total_new_tokens_generated) print_rank0( f""" *** Performance stats: Throughput per token including tokenize: {througput*1000:.2f} msecs Start to ready to generate: {t_ready - t_start:.3f} secs Tokenize and generate {total_new_tokens_generated} (bs={args.batch_size}) tokens: {t_generate_span:.3f} secs Start to finish: {t_ready - t_start + t_generate_span:.3f} secs """ )
distill-bloom-deepspeed-main
distill_bloom/teacher-inference-script.py
import io, json from pathlib import Path import torch import torch.distributed as dist from transformers.models.bloom.modeling_bloom import BloomBlock as BloomBlock class DeepSpeedInitWrapper(object): r""" This is a wrapper around DeepSpeed inference / training script initialisation. It is used to initialise the DeepSpeed engine and load the necessary variables to correctly load the model and run inference. Args: args (:obj:`argparse.Namespace`): The parsed arguments from the command line. This contains all the arguments for training and inference. The `model_path` argument is used to load the model from the specified path. """ def __init__(self, args): r""" We need to store the rank of the current process since `write_checkpoints` is called only on rank 0. """ self.rank = dist.get_rank() self.checkpoints_json = "checkpoints.json" self.repo_root = args.teacher_model_path self.infer_dtype = "float16" def init_deepspeed_inference(self): r""" This function is a wrapper around the first lines that are called inside https://github.com/huggingface/transformers-bloom-inference/blob/main/bloom-inference-scripts/bloom-ds-inference.py """ tp_presharded_models = [ "microsoft/bloom-deepspeed-inference-int8", "microsoft/bloom-deepspeed-inference-fp16", ] tp_presharded_mode = True if self.repo_root in tp_presharded_models else False # use one of these args to `init_inference` # 1. injection_policy is the slower version, but it's plain pytorch so it'll always work # 2. replace_with_kernel_inject is the faster one (fast fused kernels) kernel_inject = True # kernel_inject = False if kernel_inject: # XXX: for now ds-inference only works with fp16 self.dtype = torch.float16 else: self.dtype = torch.bfloat16 if kernel_inject: self.kwargs = dict(replace_with_kernel_inject=True) else: self.kwargs = dict( injection_policy={BloomBlock: ("self_attention.dense", "mlp.dense_4h_to_h")} ) if tp_presharded_mode: # tp presharded repos come with their own checkpoints config file checkpoints_json = os.path.join(self.repo_root, "ds_inference_config.json") else: # for normal bloom repo we need to write the checkpoints config file if self.rank == 0: write_checkponts_json(self.repo_root , self.rank, self.checkpoints_json) # dist.barrier() def print_rank0(*msg, rank=0): if rank != 0: return print(*msg) def get_checkpoint_files(model_name_or_path, rank=0,revision=None, force_offline=True): if not force_offline: # checks if online or not if is_offline_mode(): print_rank0("Offline mode: forcing local_files_only=True", rank) local_files_only = True else: local_files_only = False # loads files from hub cached_repo_dir = snapshot_download( model_name_or_path, allow_patterns=["*"], local_files_only=True, revision=revision, ) else: cached_repo_dir = model_name_or_path # extensions: .bin | .pt # creates a list of paths from all downloaded files in cache dir file_list = [ str(entry) for entry in Path(cached_repo_dir).rglob("*.[bp][it][n]") if entry.is_file() ] return file_list def write_checkponts_json(model_name, rank=0, checkpoints_json="checkpoints.json"): with io.open(checkpoints_json, "w", encoding="utf-8") as f: # checkpoint_files = glob.glob(f"{checkpoint_dir}/*bin") checkpoint_files = get_checkpoint_files(model_name, rank) # print("Checkpoint files:", checkpoint_files) data = {"type": "BLOOM", "checkpoints": checkpoint_files, "version": 1.0} json.dump(data, f)
distill-bloom-deepspeed-main
distill_bloom/init_wrapper.py
import torch.distributed as dist from .utils import build_dataset_group def build_train_val_test_dataset(args): r""" This function wraps all the dataset building functions from megatron. """ if args.train_samples: train_samples = args.train_samples else: train_samples = args.train_iters * args.global_batch_size eval_iters = (args.train_iters // args.eval_interval + 1) * args.eval_iters test_iters = args.eval_iters train_val_test_num_samples = [ train_samples, eval_iters * args.global_batch_size, test_iters * args.global_batch_size, ] train_ds, valid_ds, test_ds = None, None, None print("> building train, validation, and test datasets for GPT ...") # Option 1 of data loading using --data-path if args.data_path: train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) # Option 2 of data loading using --(train|valid|test)-weighted-split-paths elif args.train_weighted_split_paths: assigned_train_valid_test = [] if args.train_weighted_split_paths is not None: train_ds = [] assigned_train_valid_test.append("train") if args.valid_weighted_split_paths is not None: valid_ds = [] assigned_train_valid_test.append("valid") if args.test_weighted_split_paths is not None: test_ds = [] assigned_train_valid_test.append("test") for s in assigned_train_valid_test: data_groups = zip( eval(f"args.{s}_weighted_split_paths"), eval(f"args.{s}_weighted_split_weights"), eval(f"args.{s}_weighted_split_splits"), eval(f"args.{s}_weighted_split_names"), ) for paths, weights, splits, name in data_groups: d = build_dataset_group( name, paths, weights, splits, args.data_impl, train_val_test_num_samples, args.seq_length, args.seed, (not args.mmap_warmup), train_valid_test=s, ) eval(f"{s}_ds").append(d) else: raise NotImplementedError("No dataloading argument passed") print("> finished creating GPT datasets ...") return train_ds, valid_ds, test_ds
distill-bloom-deepspeed-main
distill_bloom/dataset/get_dataset.py
import os import time import numpy as np import torch from .megatron import mpu def print_rank_0(message): """If distributed is initialized, print only on rank 0.""" if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print(message, flush=True) else: print(message, flush=True) class GPTDataset(torch.utils.data.Dataset): def __init__( self, name, data_prefix, documents, indexed_dataset, num_samples, seq_length, seed, ): self.name = name self.indexed_dataset = indexed_dataset # Checks assert np.min(documents) >= 0 assert np.max(documents) < indexed_dataset.sizes.shape[0] # Build index mappings. self.doc_idx, self.sample_idx, self.shuffle_idx = _build_index_mappings( self.name, data_prefix, documents, self.indexed_dataset.sizes, num_samples, seq_length, seed, ) def __len__(self): # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) return self.sample_idx.shape[0] - 1 def __getitem__(self, idx): # Get the shuffled index. idx = self.shuffle_idx[idx] # Start and end documents and offsets. doc_index_f = self.sample_idx[idx][0] doc_index_l = self.sample_idx[idx + 1][0] offset_f = self.sample_idx[idx][1] offset_l = self.sample_idx[idx + 1][1] # If we are within the same document, just extract the chunk. if doc_index_f == doc_index_l: sample = self.indexed_dataset.get( self.doc_idx[doc_index_f], offset=offset_f, length=offset_l - offset_f + 1, ) else: # Otherwise, get the rest of the initial document. sample_list = [ self.indexed_dataset.get(self.doc_idx[doc_index_f], offset=offset_f) ] # Loop over all in between documents and add the entire document. for i in range(doc_index_f + 1, doc_index_l): sample_list.append(self.indexed_dataset.get(self.doc_idx[i])) # And finally add the relevant portion of last document. sample_list.append( self.indexed_dataset.get(self.doc_idx[doc_index_l], length=offset_l + 1) ) sample = np.concatenate(sample_list) return {"text": np.array(sample, dtype=np.int64)} def _build_index_mappings( name, data_prefix, documents, sizes, num_samples, seq_length, seed, cutoff_last_epoch=0.95, ): """Build doc-idx, sample-idx, and shuffle-idx. doc-idx: is an array (ordered) of documents to be used in training. sample-idx: is the start document index and document offset for each training sample. shuffle-idx: maps the sample index into a random index into sample-idx. """ # Number of tokens in each epoch and number of required epochs. tokens_per_epoch = _num_tokens(documents, sizes) num_epochs = _num_epochs(tokens_per_epoch, seq_length, num_samples) # rng state np_rng = np.random.RandomState(seed=seed) # Filename of the index mappings. _filename = data_prefix _filename += "_{}_indexmap".format(name) _filename += "_{}ns".format(num_samples) _filename += "_{}sl".format(seq_length) _filename += "_{}s".format(seed) doc_idx_filename = _filename + "_doc_idx.npy" sample_idx_filename = _filename + "_sample_idx.npy" shuffle_idx_filename = _filename + "_shuffle_idx.npy" # Build the indexed mapping if not exist. if torch.distributed.get_rank() == 0: if ( (not os.path.isfile(doc_idx_filename)) or (not os.path.isfile(sample_idx_filename)) or (not os.path.isfile(shuffle_idx_filename)) ): print_rank_0( " > WARNING: could not find index map files, building " "the indices on rank 0 ..." ) # For the last epoch, decide whether include the entire epoch # in the global shuffle or not. # If we need only one epoch, then separating last epoch does # not mean anything. if num_epochs == 1: separate_last_epoch = False print( " > only one epoch required, setting separate_last_epoch to False", flush=True, ) else: # Get the number of samples for the last epoch num_samples_from_epochs_minus_one = ( (num_epochs - 1) * tokens_per_epoch - 1 ) // seq_length last_epoch_num_samples = num_samples - num_samples_from_epochs_minus_one assert last_epoch_num_samples >= 0, ( f"last epoch number of samples {last_epoch_num_samples} should be" " non-negative." ) num_samples_per_epoch = (tokens_per_epoch - 1) // seq_length assert last_epoch_num_samples <= num_samples_per_epoch, ( f"last epoch number of samples {last_epoch_num_samples} exceeded" f" max value {num_samples_per_epoch}." ) # If we have less than cutoff_last_epoch * samples_per_epoch of the samples for the last epoch, # seperate out the epoch and treat it differently. separate_last_epoch = last_epoch_num_samples < int( cutoff_last_epoch * num_samples_per_epoch ) if separate_last_epoch: string = ( " > last epoch number of samples ({}) is smaller " "than {}% of number of samples per epoch ({}), " "setting separate_last_epoch to True" ) else: string = ( " > last epoch number of samples ({}) is larger " "than {}% of number of samples per epoch ({}), " "setting separate_last_epoch to False" ) print( string.format( last_epoch_num_samples, cutoff_last_epoch * 100, num_samples_per_epoch, ), flush=True, ) # doc-idx. start_time = time.time() doc_idx = _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch) np.save(doc_idx_filename, doc_idx, allow_pickle=True) print_rank_0( " > elasped time to build and save doc-idx mapping " "(seconds): {:4f}".format(time.time() - start_time) ) # sample-idx. start_time = time.time() # Use C++ implementation for speed. # First compile and then import. from .megatron import helpers assert doc_idx.dtype == np.int32 assert sizes.dtype == np.int32 sample_idx = helpers.build_sample_idx( sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch ) # sample_idx = _build_sample_idx(sizes, doc_idx, seq_length, # num_epochs, tokens_per_epoch) np.save(sample_idx_filename, sample_idx, allow_pickle=True) print_rank_0( " > elasped time to build and save sample-idx mapping " "(seconds): {:4f}".format(time.time() - start_time) ) # shuffle-idx. start_time = time.time() # -1 is due to data structure used to retieve the index: # sample i --> [sample_idx[i], sample_idx[i+1]) if separate_last_epoch: num_samples_ = num_samples_from_epochs_minus_one else: num_samples_ = sample_idx.shape[0] - 1 shuffle_idx = _build_shuffle_idx( num_samples_, sample_idx.shape[0] - 1, np_rng ) np.save(shuffle_idx_filename, shuffle_idx, allow_pickle=True) print_rank_0( " > elasped time to build and save shuffle-idx mapping" " (seconds): {:4f}".format(time.time() - start_time) ) # This should be a barrier but nccl barrier assumes # device_index=rank which is not the case for model # parallel case # counts = torch.cuda.LongTensor([1]) # torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group()) # torch.distributed.all_reduce(counts, group=mpu.get_pipeline_model_parallel_group()) # assert counts[0].item() == ( # torch.distributed.get_world_size() // # torch.distributed.get_world_size(group=mpu.get_tensor_model_parallel_group())) # Load mappings. start_time = time.time() print_rank_0(" > loading doc-idx mapping from {}".format(doc_idx_filename)) doc_idx = np.load(doc_idx_filename, allow_pickle=True, mmap_mode="r") print_rank_0(" > loading sample-idx mapping from {}".format(sample_idx_filename)) sample_idx = np.load(sample_idx_filename, allow_pickle=True, mmap_mode="r") print_rank_0(" > loading shuffle-idx mapping from {}".format(shuffle_idx_filename)) shuffle_idx = np.load(shuffle_idx_filename, allow_pickle=True, mmap_mode="r") print_rank_0( " loaded indexed file in {:3.3f} seconds".format(time.time() - start_time) ) print_rank_0(" total number of samples: {}".format(sample_idx.shape[0])) print_rank_0(" total number of epochs: {}".format(num_epochs)) return doc_idx, sample_idx, shuffle_idx def _num_tokens(documents, sizes): """Total number of tokens in the dataset.""" return np.sum(sizes[documents]) def _num_epochs(tokens_per_epoch, seq_length, num_samples): """Based on number of samples and sequence lenght, calculate how many epochs will be needed.""" num_epochs = 0 total_tokens = 0 while True: num_epochs += 1 total_tokens += tokens_per_epoch # -1 is because we need to retrieve seq_length + 1 token each time # but the last token will overlap with the first token of the next # sample except for the last sample. if ((total_tokens - 1) // seq_length) >= num_samples: return num_epochs def _build_doc_idx(documents, num_epochs, np_rng, separate_last_epoch): """Build an array with length = number-of-epochs * number-of-dcuments. Each index is mapped to a corresponding document.""" if not separate_last_epoch or num_epochs == 1: doc_idx = np.mgrid[0:num_epochs, 0 : len(documents)][1] doc_idx[:] = documents doc_idx = doc_idx.reshape(-1) doc_idx = doc_idx.astype(np.int32) np_rng.shuffle(doc_idx) return doc_idx doc_idx_first = _build_doc_idx(documents, num_epochs - 1, np_rng, False) doc_idx_last = _build_doc_idx(documents, 1, np_rng, False) return np.concatenate((doc_idx_first, doc_idx_last)) def _build_sample_idx(sizes, doc_idx, seq_length, num_epochs, tokens_per_epoch): """Sample index mapping is a 2D array with sizes [number-of-samples + 1, 2] where [..., 0] contains the index into `doc_idx` and [..., 1] is the starting offset in that document.""" # Total number of samples. For -1 see comments in `_num_epochs`. num_samples = (num_epochs * tokens_per_epoch - 1) // seq_length sample_idx = np.zeros([num_samples + 1, 2], dtype=np.int32) # Index into sample_idx. sample_index = 0 # Index into doc_idx. doc_idx_index = 0 # Begining offset for each document. doc_offset = 0 # Start with first document and no offset. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 while sample_index <= num_samples: # Start with a fresh sequence. remaining_seq_length = seq_length + 1 while remaining_seq_length != 0: # Get the document length. doc_id = doc_idx[doc_idx_index] doc_length = sizes[doc_id] - doc_offset # And add it to the current sequence. remaining_seq_length -= doc_length # If we have more than a full sequence, adjust offset and set # remaining length to zero so we return from the while loop. # Note that -1 here is for the same reason we have -1 in # `_num_epochs` calculations. if remaining_seq_length <= 0: doc_offset += remaining_seq_length + doc_length - 1 remaining_seq_length = 0 else: # Otherwise, start from the begining of the next document. doc_idx_index += 1 doc_offset = 0 # Record the sequence. sample_idx[sample_index][0] = doc_idx_index sample_idx[sample_index][1] = doc_offset sample_index += 1 return sample_idx def _build_shuffle_idx(num_samples, total_size, np_rng): """Build the range [0, size) and shuffle.""" print( " > building shuffle index with split [0, {}) and [{}, {}) ...".format( num_samples, num_samples, total_size ), flush=True, ) dtype_ = np.uint32 if total_size >= (np.iinfo(np.uint32).max - 1): dtype_ = np.int64 shuffle_idx_first = np.arange(start=0, stop=num_samples, step=1, dtype=dtype_) np_rng.shuffle(shuffle_idx_first) if num_samples == total_size: return shuffle_idx_first shuffle_idx_last = np.arange( start=num_samples, stop=total_size, step=1, dtype=dtype_ ) np_rng.shuffle(shuffle_idx_last) return np.concatenate((shuffle_idx_first, shuffle_idx_last))
distill-bloom-deepspeed-main
distill_bloom/dataset/gpt_dataset.py
import time import numpy as np import torch from .gpt_dataset import GPTDataset from .indexed_dataset import (IndexedDataset, MMapIndexedDataset, create_doc_idx, data_file_path, index_file_path) def print_rank_0(message): """If distributed is initialized, print only on rank 0.""" if torch.distributed.is_initialized(): if torch.distributed.get_rank() == 0: print(message, flush=True) else: print(message, flush=True) def infer_dataset_impl(path): if IndexedDataset.exists(path): with open(index_file_path(path), "rb") as f: magic = f.read(8) if magic == IndexedDataset._HDR_MAGIC: return "cached" elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]: return "mmap" else: return None else: print(f"Dataset does not exist: {path}") print( "Path should be a basename that both .idx and .bin can be appended to get" " full filenames." ) return None def get_train_valid_test_split_(splits_string, size): r""" Get dataset splits from comma or '/' separated string list. `splits_string` expects an string of 3 sets of integers, summing up to `1000`. Returns: The proportion of the dataset to be used for training, validation and testing. """ splits = [] if splits_string.find(",") != -1: splits = [float(s) for s in splits_string.split(",")] elif splits_string.find("/") != -1: splits = [float(s) for s in splits_string.split("/")] else: splits = [float(splits_string)] while len(splits) < 3: splits.append(0.0) splits = splits[:3] splits_sum = sum(splits) assert splits_sum > 0.0 splits = [split / splits_sum for split in splits] splits_index = [0] for index, split in enumerate(splits): splits_index.append(splits_index[index] + int(round(split * float(size)))) diff = splits_index[-1] - size for index in range(1, len(splits_index)): splits_index[index] -= diff assert len(splits_index) == 4 assert splits_index[-1] == size return splits_index def analyze_data_prefix(data_prefix): # The data prefix should be in the format of: # weight-1, data-prefix-1, weight-2, data-prefix-2, .. assert len(data_prefix) % 2 == 0 num_datasets = len(data_prefix) // 2 weights = [0] * num_datasets prefixes = [0] * num_datasets for i in range(num_datasets): weights[i] = float(data_prefix[2 * i]) prefixes[i] = (data_prefix[2 * i + 1]).strip() # Normalize weights weight_sum = 0.0 for weight in weights: weight_sum += weight assert weight_sum > 0.0 weights = [weight / weight_sum for weight in weights] return prefixes, weights def get_split_by_range_(range_string, size): """Get dataset splits based on a range: range_string is in the form START%:END% for e.g. 0.2:0.8 outputs an array of two values [start_index, end_index] """ # some checks that range is given in the correct form splits = [float(i) for i in range_string.split(":")] assert len(splits) == 2, "splits should be passed as start:end" assert splits[0] <= 1 and splits[1] <= 1 splits_sum = sum(splits) assert splits_sum > 0.0 splits_index = [round(s * float(size)) for s in splits] assert len(splits_index) == 2 return splits_index def get_datasets_weights_and_num_samples(data_prefix, train_valid_test_num_samples): # Add 0.5% (the 1.005 factor) so in case the blending dataset does # not uniformly distribute the number of samples, we still have # samples left to feed to the network. prefixes, weights = analyze_data_prefix(data_prefix) datasets_train_valid_test_num_samples = [] for weight in weights: datasets_train_valid_test_num_samples.append( [ int(math.ceil(val * weight * 1.005)) for val in train_valid_test_num_samples ] ) return prefixes, weights, datasets_train_valid_test_num_samples def build_dataset_group( dataset_group_name, paths, weights, splits, data_impl, train_valid_test_num_samples, seq_length, seed, skip_warmup, train_valid_test, ): """ Build a single dataset group corresponding to Option 2 of data loading see arguments.py a dataset group is passed on the following form GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2, WEIGHT2 START:END PATH2 or alternatively GIVEN_NAME PATH1 # for a single dataset to be used fully """ assert train_valid_test in ["train", "valid", "test"] # Single dataset. if len(paths) == 1: dataset = _build_single_datasets( paths[0], splits[0], data_impl, train_valid_test_num_samples, seq_length, seed, skip_warmup, dataset_group_name, train_valid_test, ) return dataset # Blending dataset. else: data_prefix = [] # data_prefix is on the shape: # ["WEIGHT1", "PATH1", "WEIGHT2", "PATH2", "WEIGHT3", "PATH3"] for w, p in zip(weights, paths): data_prefix += [w, p] output = get_datasets_weights_and_num_samples( data_prefix, train_valid_test_num_samples ) prefixes, weights, datasets_train_valid_test_num_samples = output # Build individual datasets. datasets = [] for i in range(len(prefixes)): ds = _build_single_datasets( prefixes[i], splits[i], data_impl, datasets_train_valid_test_num_samples[i], seq_length, seed, skip_warmup, dataset_group_name, train_valid_test, ) datasets.append(ds) all_datasets = BlendableDataset(datasets, weights) return all_datasets def make_dataset(path, impl, skip_warmup=False): if not IndexedDataset.exists(path): print(f"Dataset does not exist: {path}") print( "Path should be a basename that both .idx and .bin can be appended to get" " full filenames." ) return None if impl == "infer": impl = infer_dataset_impl(path) if impl == "lazy" and IndexedDataset.exists(path): return IndexedDataset(path) elif impl == "cached" and IndexedDataset.exists(path): return IndexedCachedDataset(path) elif impl == "mmap" and MMapIndexedDataset.exists(path): return MMapIndexedDataset(path, skip_warmup) print(f"Unknown dataset implementation: {impl}") return None def get_indexed_dataset_(path, data_impl, skip_warmup): """Build indexed dataset.""" print_rank_0(" > building dataset index ...") start_time = time.time() indexed_dataset = make_dataset(path, data_impl, skip_warmup) print_rank_0( " > finished creating indexed dataset in {:4f} seconds".format( time.time() - start_time ) ) print_rank_0(" number of documents: {}".format(indexed_dataset.sizes.shape[0])) return indexed_dataset def build_dataset_group( dataset_group_name, paths, weights, splits, data_impl, train_valid_test_num_samples, seq_length, seed, skip_warmup, train_valid_test, ): """ Build a single dataset group corresponding to Option 2 of data loading see arguments.py a dataset group is passed on the following form GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2, WEIGHT2 START:END PATH2 or alternatively GIVEN_NAME PATH1 # for a single dataset to be used fully """ assert train_valid_test in ["train", "valid", "test"] # Single dataset. if len(paths) == 1: dataset = _build_single_datasets( paths[0], splits[0], data_impl, train_valid_test_num_samples, seq_length, seed, skip_warmup, dataset_group_name, train_valid_test, ) return dataset # Blending dataset. else: data_prefix = [] # data_prefix is on the shape: # ["WEIGHT1", "PATH1", "WEIGHT2", "PATH2", "WEIGHT3", "PATH3"] for w, p in zip(weights, paths): data_prefix += [w, p] output = get_datasets_weights_and_num_samples( data_prefix, train_valid_test_num_samples ) prefixes, weights, datasets_train_valid_test_num_samples = output # Build individual datasets. datasets = [] for i in range(len(prefixes)): ds = _build_single_datasets( prefixes[i], splits[i], data_impl, datasets_train_valid_test_num_samples[i], seq_length, seed, skip_warmup, dataset_group_name, train_valid_test, ) datasets.append(ds) all_datasets = BlendableDataset(datasets, weights) return all_datasets def _build_single_datasets( data_prefix, range_string, data_impl, train_valid_test_num_samples, seq_length, seed, skip_warmup, dataset_group_name, train_valid_test, ): """Build a single dataset""" assert train_valid_test in ["train", "valid", "test"] index = ["train", "valid", "test"].index(train_valid_test) # Indexed dataset. indexed_dataset = get_indexed_dataset_(data_prefix, data_impl, skip_warmup) total_num_of_documents = indexed_dataset.sizes.shape[0] # this corresponds to option2 for data loading on the form # WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2, WEIGHT3 START:END PATH3 # splits here is an array of size 2 [start_index, end_index] splits = get_split_by_range_(range_string=range_string, size=total_num_of_documents) # Print stats about the splits. print_rank_0(" > dataset split:") print_rank_0(" {}:".format(dataset_group_name)) print_rank_0( " document indices in [{}, {}) total of {} documents".format( splits[0], splits[1], splits[1] - splits[0] ) ) def build_dataset(name): dataset = None if splits[1] > splits[0]: documents = np.arange( start=splits[0], stop=splits[1], step=1, dtype=np.int32 ) dataset = GPTDataset( name, data_prefix, documents, indexed_dataset, train_valid_test_num_samples[index], seq_length, seed, ) return dataset dataset = build_dataset(dataset_group_name) return dataset
distill-bloom-deepspeed-main
distill_bloom/dataset/utils.py
import torch class DistributedDataset(torch.utils.data.Dataset): r""" Wrapper for torch.utils.data.Dataset to make it distributed. Args: dataset (torch.utils.data.Dataset): Dataset to be distributed. rank (int): Rank of the current process. world_size (int): Number of processes in the distributed group. """ def __init__(self, dataset, rank, world_size): self.dataset = dataset self.current_dataset_index = 0 self.current_dataset = dataset[self.current_dataset_index] self.rank = rank self.world_size = world_size def _update_dataset(self): self.current_dataset_index += 1 if self.current_dataset_index >= len(self.dataset): self.current_dataset_index = 0 self.current_dataset = self.dataset[self.current_dataset_index] def __getitem__(self, index): r""" Loads a unique sample from the dataset. First tries to load the sample from the current dataset. If the current dataset is exhausted, it moves to the next dataset. """ try: item = self.current_dataset[(index*self.world_size) + self.rank] except IndexError: self._update_dataset() item = self.current_dataset[(index*self.world_size) + self.rank] return item def __len__(self): r""" Returns the length of the dataset. It corresponds to the total lenght of all the datasets in the dataset list. """ total_length = list(map(lambda x: len(x), self.dataset)) return sum(total_length) class DistributedDataLoader(torch.utils.data.DataLoader): r""" Wrapper around torch.utils.data.DataLoader to support distributed training. """ def __init__(self, dataset, rank, world_size, **kwargs): self.dataset = DistributedDataset(dataset, rank, world_size) super().__init__(self.dataset, **kwargs)
distill-bloom-deepspeed-main
distill_bloom/dataset/dataloader.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # copied from fairseq/fairseq/data/indexed_dataset.py # Removed IndexedRawTextDataset since it relied on Fairseq dictionary # other slight modifications to remove fairseq dependencies # Added document index to index file and made it accessible. # An empty sentence no longer separates documents. import os import shutil import stat import struct from functools import lru_cache from itertools import accumulate import numpy as np import torch def best_fitting_dtype(vocab_size=None): if vocab_size is not None and vocab_size < 65500: return np.uint16 else: return np.int32 def get_available_dataset_impl(): return ["lazy", "cached", "mmap"] def infer_dataset_impl(path): if IndexedDataset.exists(path): with open(index_file_path(path), "rb") as f: magic = f.read(8) if magic == IndexedDataset._HDR_MAGIC: return "cached" elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]: return "mmap" else: return None else: print(f"Dataset does not exist: {path}") print( "Path should be a basename that both .idx and .bin can be appended to get" " full filenames." ) return None def make_builder(out_file, impl, dtype=None): if impl == "mmap": assert dtype is not None return MMapIndexedDatasetBuilder(out_file, dtype=dtype) else: assert dtype is None return IndexedDatasetBuilder(out_file) def make_dataset(path, impl, skip_warmup=False): if not IndexedDataset.exists(path): print(f"Dataset does not exist: {path}") print( "Path should be a basename that both .idx and .bin can be appended to get" " full filenames." ) return None if impl == "infer": impl = infer_dataset_impl(path) if impl == "lazy" and IndexedDataset.exists(path): return IndexedDataset(path) elif impl == "cached" and IndexedDataset.exists(path): return IndexedCachedDataset(path) elif impl == "mmap" and MMapIndexedDataset.exists(path): return MMapIndexedDataset(path, skip_warmup) print(f"Unknown dataset implementation: {impl}") return None def dataset_exists(path, impl): if impl == "mmap": return MMapIndexedDataset.exists(path) else: return IndexedDataset.exists(path) def read_longs(f, n): a = np.empty(n, dtype=np.int64) f.readinto(a) return a def write_longs(f, a): f.write(np.array(a, dtype=np.int64)) dtypes = { 1: np.uint8, 2: np.int8, 3: np.int16, 4: np.int32, 5: np.int64, 6: np.float, 7: np.double, 8: np.uint16, } def code(dtype): for k in dtypes.keys(): if dtypes[k] == dtype: return k raise ValueError(dtype) def index_file_path(prefix_path): return prefix_path + ".idx" def data_file_path(prefix_path): return prefix_path + ".bin" def create_doc_idx(sizes): doc_idx = [0] for i, s in enumerate(sizes): if s == 0: doc_idx.append(i + 1) return doc_idx class IndexedDataset(torch.utils.data.Dataset): """Loader for IndexedDataset""" _HDR_MAGIC = b"TNTIDX\x00\x00" def __init__(self, path): super().__init__() self.path = path self.data_file = None self.read_index(path) def read_index(self, path): with open(index_file_path(path), "rb") as f: magic = f.read(8) print(magic, self._HDR_MAGIC) assert magic == self._HDR_MAGIC, ( "Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly." ) version = f.read(8) assert struct.unpack("<Q", version) == (1,) code, self.element_size = struct.unpack("<QQ", f.read(16)) self.dtype = dtypes[code] self._len, self.s = struct.unpack("<QQ", f.read(16)) self.doc_count = struct.unpack("<Q", f.read(8)) self.dim_offsets = read_longs(f, self._len + 1) self.data_offsets = read_longs(f, self._len + 1) self.sizes = read_longs(f, self.s) self.doc_idx = read_longs(f, self.doc_count) def read_data(self, path): self.data_file = open(data_file_path(path), "rb", buffering=0) def check_index(self, i): if i < 0 or i >= self._len: raise IndexError("index out of range") def __del__(self): if self.data_file: self.data_file.close() # @lru_cache(maxsize=8) def __getitem__(self, idx): if not self.data_file: self.read_data(self.path) if isinstance(idx, int): i = idx self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) return a elif isinstance(idx, slice): start, stop, step = idx.indices(len(self)) if step != 1: raise ValueError("Slices into indexed_dataset must be contiguous") sizes = self.sizes[self.dim_offsets[start] : self.dim_offsets[stop]] size = sum(sizes) a = np.empty(size, dtype=self.dtype) self.data_file.seek(self.data_offsets[start] * self.element_size) self.data_file.readinto(a) offsets = list(accumulate(sizes)) sents = np.split(a, offsets[:-1]) return sents def __len__(self): return self._len def num_tokens(self, index): return self.sizes[index] def size(self, index): return self.sizes[index] @staticmethod def exists(path): return os.path.exists(index_file_path(path)) and os.path.exists( data_file_path(path) ) @property def supports_prefetch(self): return False # avoid prefetching to save memory class IndexedCachedDataset(IndexedDataset): def __init__(self, path): super().__init__(path) self.cache = None self.cache_index = {} @property def supports_prefetch(self): return True def prefetch(self, indices): if all(i in self.cache_index for i in indices): return if not self.data_file: self.read_data(self.path) indices = sorted(set(indices)) total_size = 0 for i in indices: total_size += self.data_offsets[i + 1] - self.data_offsets[i] self.cache = np.empty(total_size, dtype=self.dtype) ptx = 0 self.cache_index.clear() for i in indices: self.cache_index[i] = ptx size = self.data_offsets[i + 1] - self.data_offsets[i] a = self.cache[ptx : ptx + size] self.data_file.seek(self.data_offsets[i] * self.element_size) self.data_file.readinto(a) ptx += size if self.data_file: # close and delete data file after prefetch so we can pickle self.data_file.close() self.data_file = None # @lru_cache(maxsize=8) def __getitem__(self, idx): if isinstance(idx, int): i = idx self.check_index(i) tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]] a = np.empty(tensor_size, dtype=self.dtype) ptx = self.cache_index[i] np.copyto(a, self.cache[ptx : ptx + a.size]) return a elif isinstance(idx, slice): # Hack just to make this work, can optimizer later if necessary sents = [] for i in range(*idx.indices(len(self))): sents.append(self[i]) return sents class IndexedDatasetBuilder(object): element_sizes = { np.uint8: 1, np.int8: 1, np.uint16: 2, np.int16: 2, np.int32: 4, np.int64: 8, np.float: 4, np.double: 8, } @staticmethod def write_header(fout, dtype, numdata, numsize, numdoc): """Writes header for cached indexed dataset to given file handle, return number of bytes written. """ startpos = fout.tell() fout.write(IndexedDataset._HDR_MAGIC) fout.write(struct.pack("<Q", 1)) fout.write(struct.pack("<Q", code(dtype))) fout.write(struct.pack("<Q", IndexedDatasetBuilder.element_sizes[dtype])) fout.write(struct.pack("<Q", numdata - 1)) fout.write(struct.pack("<Q", numsize)) fout.write(struct.pack("<Q", numdoc)) endpos = fout.tell() return endpos - startpos def __init__(self, out_file, dtype=np.int32): self.out_file = open(out_file, "wb") self.dtype = dtype self.data_offsets = [0] self.dim_offsets = [0] self.sizes = [] self.element_size = self.element_sizes[self.dtype] self.doc_idx = [0] def add_item(self, tensor): bytes = self.out_file.write(np.array(tensor.numpy(), dtype=self.dtype)) self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size) for s in tensor.size(): self.sizes.append(s) self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size())) def end_document(self): self.doc_idx.append(len(self.sizes)) def merge_file_(self, another_file): index = IndexedDataset(another_file) assert index.dtype == self.dtype doc_offset = len(self.sizes) begin = self.data_offsets[-1] for data_offset in index.data_offsets[1:]: self.data_offsets.append(begin + data_offset) self.sizes.extend(index.sizes) begin = self.dim_offsets[-1] for dim_offset in index.dim_offsets[1:]: self.dim_offsets.append(begin + dim_offset) self.doc_idx.extend((doc_offset + index.doc_idx)[1:]) with open(data_file_path(another_file), "rb") as f: while True: data = f.read(1024) if data: self.out_file.write(data) else: break def finalize(self, index_file): self.out_file.close() index = open(index_file, "wb") IndexedDatasetBuilder.write_header( index, self.dtype, len(self.data_offsets), len(self.sizes), len(self.doc_idx), ) write_longs(index, self.dim_offsets) write_longs(index, self.data_offsets) write_longs(index, self.sizes) write_longs(index, self.doc_idx) index.close() def _warmup_mmap_file(path): with open(path, "rb") as stream: while stream.read(100 * 1024 * 1024): pass def exscan_from_cumsum_(arr): # given an array holding the result of an inclusive scan (cumsum), # convert to an exclusive scan (shift to the right) # [10, 30, 35, 50] --> [0, 10, 30, 35] if arr.size > 1: arr[1:] = arr[:-1] if arr.size > 0: arr[0] = 0 def get_pointers_with_total(sizes, elemsize, dtype): """Return a numpy array of type np.dtype giving the byte offsets. Multiplies values in the sizes array by elemsize (bytes), and then computes an exclusive scan to get byte offsets. Returns the total number of bytes as second item in a tuple. """ # scale values in sizes array by elemsize to get sizes in bytes pointers = np.array(sizes, dtype=dtype) pointers *= elemsize np.cumsum(pointers, axis=0, out=pointers) # get total number of bytes from all sizes (last element) bytes_last = pointers[-1] if len(sizes) > 0 else 0 # convert to byte offsets exscan_from_cumsum_(pointers) return pointers, bytes_last class MMapIndexedDataset(torch.utils.data.Dataset): class Index(object): _HDR_MAGIC = b"MMIDIDX\x00\x00" @staticmethod def write_header(fout, dtype, numsizes, numdocs): """Writes header for mmap indexed dataset to given file handle, return number of bytes written. """ startpos = fout.tell() fout.write(MMapIndexedDataset.Index._HDR_MAGIC) fout.write(struct.pack("<Q", 1)) fout.write(struct.pack("<B", code(dtype))) fout.write(struct.pack("<Q", numsizes)) fout.write(struct.pack("<Q", numdocs)) endpos = fout.tell() return endpos - startpos @classmethod def writer(cls, path, dtype): class _Writer(object): def __enter__(self): self._file = open(path, "wb") return self @staticmethod def _get_pointers(sizes, npdtype): """Return a numpy array of byte offsets given a list of sizes. Multiplies values in the sizes array by dtype size (bytes), and then computes an exclusive scan to get byte offsets. """ # compute element sizes in bytes pointers, _ = get_pointers_with_total( sizes, dtype().itemsize, npdtype ) return pointers def write(self, sizes, doc_idx): MMapIndexedDataset.Index.write_header( self._file, dtype, len(sizes), len(doc_idx) ) sizes32 = np.array(sizes, dtype=np.int32) self._file.write(sizes32.tobytes(order="C")) del sizes32 pointers = self._get_pointers(sizes, np.int64) self._file.write(pointers.tobytes(order="C")) del pointers doc_idx = np.array(doc_idx, dtype=np.int64) self._file.write(doc_idx.tobytes(order="C")) def __exit__(self, exc_type, exc_val, exc_tb): self._file.close() return _Writer() def __init__(self, path, skip_warmup=False): with open(path, "rb") as stream: magic_test = stream.read(9) assert self._HDR_MAGIC == magic_test, ( "Index file doesn't match expected format. " "Make sure that --dataset-impl is configured properly." ) version = struct.unpack("<Q", stream.read(8)) assert (1,) == version (dtype_code,) = struct.unpack("<B", stream.read(1)) self._dtype = dtypes[dtype_code] self._dtype_size = self._dtype().itemsize self._len = struct.unpack("<Q", stream.read(8))[0] self._doc_count = struct.unpack("<Q", stream.read(8))[0] offset = stream.tell() if not skip_warmup: _warmup_mmap_file(path) self._bin_buffer_mmap = np.memmap(path, mode="r", order="C") self._bin_buffer = memoryview(self._bin_buffer_mmap) print(" reading sizes...") self._sizes = np.frombuffer( self._bin_buffer, dtype=np.int32, count=self._len, offset=offset ) print(" reading pointers...") self._pointers = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self._len, offset=offset + self._sizes.nbytes, ) print(" reading document index...") self._doc_idx = np.frombuffer( self._bin_buffer, dtype=np.int64, count=self._doc_count, offset=offset + self._sizes.nbytes + self._pointers.nbytes, ) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap @property def dtype(self): return self._dtype @property def sizes(self): return self._sizes @property def doc_idx(self): return self._doc_idx @lru_cache(maxsize=8) def __getitem__(self, i): return self._pointers[i], self._sizes[i] def __len__(self): return self._len def __init__(self, path, skip_warmup=False): super().__init__() self._path = None self._index = None self._bin_buffer = None self._do_init(path, skip_warmup) def __getstate__(self): return self._path def __setstate__(self, state): self._do_init(state) def _do_init(self, path, skip_warmup): self._path = path self._index = self.Index(index_file_path(self._path), skip_warmup) if not skip_warmup: print(" warming up data mmap file...") _warmup_mmap_file(data_file_path(self._path)) print(" creating numpy buffer of mmap...") self._bin_buffer_mmap = np.memmap( data_file_path(self._path), mode="r", order="C" ) print(" creating memory view of numpy buffer...") self._bin_buffer = memoryview(self._bin_buffer_mmap) def __del__(self): self._bin_buffer_mmap._mmap.close() del self._bin_buffer_mmap del self._index def __len__(self): return len(self._index) # @lru_cache(maxsize=8) def __getitem__(self, idx): if isinstance(idx, int): ptr, size = self._index[idx] np_array = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr ) return np_array elif isinstance(idx, slice): start, stop, step = idx.indices(len(self)) if step != 1: raise ValueError("Slices into indexed_dataset must be contiguous") ptr = self._index._pointers[start] sizes = self._index._sizes[idx] offsets = list(accumulate(sizes)) total_size = sum(sizes) np_array = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr ) sents = np.split(np_array, offsets[:-1]) return sents def get(self, idx, offset=0, length=None): """Retrieves a single item from the dataset with the option to only return a portion of the item. get(idx) is the same as [idx] but get() does not support slicing. """ ptr, size = self._index[idx] if length is None: length = size - offset ptr += offset * np.dtype(self._index.dtype).itemsize np_array = np.frombuffer( self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr ) return np_array @property def sizes(self): return self._index.sizes def size(self, index): return self._index.sizes[index] @property def doc_idx(self): return self._index.doc_idx def get_doc_idx(self): return self._index._doc_idx def set_doc_idx(self, doc_idx_): self._index._doc_idx = doc_idx_ @property def supports_prefetch(self): return False @staticmethod def exists(path): return os.path.exists(index_file_path(path)) and os.path.exists( data_file_path(path) ) @property def dtype(self): return self._index.dtype class MMapIndexedDatasetBuilder(object): def __init__(self, out_file, dtype=np.int64): self._data_file = open(out_file, "wb") self._dtype = dtype self._sizes = [] self._doc_idx = [0] def add_item(self, tensor): np_array = np.array(tensor.numpy(), dtype=self._dtype) self._data_file.write(np_array.tobytes(order="C")) self._sizes.append(np_array.size) def end_document(self): self._doc_idx.append(len(self._sizes)) def merge_file_(self, another_file): # Concatenate index index = MMapIndexedDataset.Index(index_file_path(another_file)) assert index.dtype == self._dtype total_len = len(index.sizes) + len(self._sizes) print( f" concat {another_file} size={len(index.sizes)} for a total size of" f" {total_len}" ) offset = len(self._sizes) self._sizes.extend(index.sizes) self._doc_idx.extend((offset + index.doc_idx)[1:]) # Concatenate data with open(data_file_path(another_file), "rb") as f: shutil.copyfileobj(f, self._data_file) def finalize(self, index_file): self._data_file.close() with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index: index.write(self._sizes, self._doc_idx) # To merge a set of binary files, one can simply concatenate them in order. # We stat each binary file to determine its size, execute a scan to compute # the byte offset where the calling rank should write its data, seek to proper # spot, and copy each file. def gather_files_dist_bin(outfile, filelist, distctx): """Concatenate binary files in filelist into a new file given by outfile""" # lookup size of each of our binary files filesizes = [os.stat(data_file_path(f))[stat.ST_SIZE] for f in filelist] # compute total bytes of the merged file and the offset # at which this rank will write data from its files numbytes = sum(filesizes) count = distctx.sum(numbytes) offset = distctx.exscan(numbytes) # We first write to a temporary file name. We rename to the final name # if successful or delete the temporary file if not. # This way if the final name appears, the user knows it's a valid file. finalname = data_file_path(outfile) finalnametmp = finalname + ".tmp" # First delete the final file if it already exists distctx.remove(finalname) # Catch I/O errors from any process err = None try: # Create shared output file and pre-truncate to its final size. with distctx.open(finalnametmp, truncate=count) as fout: # Seek to appropriate starting offset in the merged file. fout.seek(offset) # Copy in contents of each of our files. for f in filelist: with open(data_file_path(f), "rb") as fsrc: shutil.copyfileobj(fsrc, fout) except Exception as e: err = e # Check that all ranks wrote successfully. # This will raise an exception all on ranks if we detect # an exception on any rank. distctx.allraise_if(err) # Everyone wrote their part successfully. # Rename the temporary file to the final file. distctx.rename(finalnametmp, finalname) def write_list_at_offset(fout, file_offset, vals, shift, elem_offset, dtype): """Write list of vals to fout starting at an offset given by file_offset, elem_offset, and dtype. Copies list of values in vals to a numpy array of type dtype. Adds a constant shift value to all elements. Writes the numpy array to the file handle at given offset and scaled by size of the datatype. offset = file_offset + elem_offset * dtype().itemsize Parameters ---------- fout : file handle Open file handle to which to write list of vals file_offset : int Byte offset within the file where the global list starts vals : list[int] List of values to be written shift : int Value to add to each element in vals before writing (use 0 for no change) elem_offset : int Zero-based element index where vals starts within the global list. This value is scaled by dtype().itemsize to convert to a corresponding byte offset. dtype : np.dtype numpy datatype to be used when writing the list to the file """ # Make a copy of the vals list using the requested datatype. npvals = np.array(vals, dtype=dtype) # Shift values in the list by a constant value. npvals += shift # Seek to proper offset for this rank and write # values into file, stored as given datatype. fout.seek(file_offset + elem_offset * dtype().itemsize) fout.write(npvals.tobytes(order="C")) def gather_files_dist_check_dtype(filelist, dtype_rank_consistent, dtype_code, distctx): # Verify that no rank has found an inconsistent value in its own set of files. # This includes an allreduce to verify that dtype_rank_consistent is True everywhere. distctx.allassert( dtype_rank_consistent, "Some rank found inconsistent dtype values" ) # Verify that at least one rank found a dtype value. # Because of the bcast, the the value of first_dtype_code is the same on all ranks. first_dtype_code = distctx.bcast_first(dtype_code) assert ( first_dtype_code is not None ), "Failed to find a dtype value in any index file" # Verify that the dtype is consistent on all ranks, if a rank has a dtype value. distctx.allassert( dtype_code == first_dtype_code or dtype_code is None, "Different dtype values detected in index files", ) # return the dtype return dtypes[first_dtype_code] def gather_files_dist_idx_cached(outfile, filelist, distctx): # Read each index file and append items to our lists sizes = [] data_offsets = [0] dim_offsets = [0] doc_idx = [0] dtype_rank_consistent = ( True # whether this rank identifies inconsistent dtype values in its files ) dtype_value = None # the current dtype code to compare against, if any for f in filelist: # read index file for this file index = IndexedDataset(f) # append its size, data, dim, and doc entries to our lists doc_offset = len(sizes) sizes.extend(index.sizes) data_offsets.extend(index.data_offsets[1:] + data_offsets[-1]) dim_offsets.extend(index.dim_offsets[1:] + dim_offsets[-1]) doc_idx.extend(index.doc_idx[1:] + doc_offset) # check that the dtype in this index matches the dtype in our other files dtype_code = code(index.dtype) if dtype_value is None: dtype_value = dtype_code if dtype_value != dtype_code: dtype_rank_consistent = False # Check that we have consistent dtypes in all files from all ranks, # and return the dtype being used. dtype = gather_files_dist_check_dtype( filelist, dtype_rank_consistent, dtype_value, distctx ) # Capture the last value in the data array before we delete any items. # Note this may be zero on any rank that has no items, # but zero is the correct value in that case. # We use this last value to compute a shift value that # is later be added to each element in our data list. data_shift = distctx.exscan(data_offsets[-1]) # Drop the zero entry from the lists that start with # a "0" value unless we're rank 0. if distctx.rank != 0: del data_offsets[0] del dim_offsets[0] del doc_idx[0] # Compute total number of entires in data, size, dim, # and doc_idx lists across all ranks. Also compute the offset # of the calling rank for each list considering the number # of entries for all ranks before the calling rank. numdata = len(data_offsets) numsize = len(sizes) numdim = len(dim_offsets) numdoc = len(doc_idx) global_data_count = distctx.sum(numdata) global_size_count = distctx.sum(numsize) global_dim_count = distctx.sum(numdim) global_doc_count = distctx.sum(numdoc) global_data_offset = distctx.exscan(numdata) global_size_offset = distctx.exscan(numsize) global_dim_offset = distctx.exscan(numdim) global_doc_offset = distctx.exscan(numdoc) # We first write to a temporary file name. We rename to the final name # if successful or delete the temporary file if not. # This way if the final name appears, the user knows it's a valid file. finalname = index_file_path(outfile) finalnametmp = finalname + ".tmp" # First delete the final file if it already exists distctx.remove(finalname) # Catch and I/O errors to later determine whether all ranks wrote successfully. err = None try: # Create shared output file with distctx.open(finalnametmp) as fout: # Have rank 0 write the file header file_offset = 0 if distctx.rank == 0: try: file_offset = fout.tell() file_offset += IndexedDatasetBuilder.write_header( fout, dtype, global_data_count, global_size_count, global_doc_count, ) except Exception as e: err = e distctx.allraise_if(err) # Broadcast current file position from rank 0. file_offset = distctx.bcast(file_offset, root=0) # The dimension list records the offset within # the sizes list for each sentence. # We shift our dimension index values to account for the number of size values # that come before the calling rank which is in global_size_offset. write_list_at_offset( fout, file_offset, dim_offsets, global_size_offset, global_dim_offset, np.int64, ) file_offset += global_dim_count * np.int64().itemsize # The data index records the element offset to the start of each # sentence within the binary data file. Note that this is an # element offset, not a byte offset. Each element is pyhsically stored # in the data file as dtype().itemsize bytes. # We shift the data index values according to the number of elements that # come before the calling rank, which is stored in data_shift. write_list_at_offset( fout, file_offset, data_offsets, data_shift, global_data_offset, np.int64, ) file_offset += global_data_count * np.int64().itemsize # Each sentence is stored as a tensor. # The tensor for each sentence can be multidimensional. # The number of tensor dimensions per sentence is variable, # and the size of each dimension of a sentence is arbitrary. # The size list records a flattened list of the sizes # for each dimension of a sentence. # No shift value is needed. write_list_at_offset( fout, file_offset, sizes, 0, global_size_offset, np.int64 ) file_offset += global_size_count * np.int64().itemsize # The document index records the offset within the sizes # array for the first sentence of each document. # We shift the document index values for number of size values that # come before the calling rank which is in global_size_offset. write_list_at_offset( fout, file_offset, doc_idx, global_size_offset, global_doc_offset, np.int64, ) file_offset += global_doc_count * np.int64().itemsize except Exception as e: # if we encounter any exception while writing, store it for later err = e # Check that all ranks wrote successfully distctx.allraise_if(err) # Everyone wrote their part successfully. # Rename the temporary file to the final file. distctx.rename(finalnametmp, finalname) def gather_files_dist_idx_mmap(outfile, filelist, distctx): # Read each index file and append items to the size and doc_idx lists sizes = [] doc_idx = [0] dtype_rank_consistent = ( True # whether rank identifies inconsistent dtype values in its files ) dtype_value = None # the current dtype code to compare against, if any for f in filelist: # read index file for this file index = MMapIndexedDataset.Index(index_file_path(f)) # append its size and doc entries to our lists docs_offset = len(sizes) sizes.extend(index.sizes) doc_idx.extend(index.doc_idx[1:] + docs_offset) # check that the dtype in this index matches the dtype in our other files dtype_code = code(index.dtype) if dtype_value is None: dtype_value = dtype_code if dtype_value != dtype_code: dtype_rank_consistent = False # Check that we have consistent dtypes in all files from all ranks, # and return the dtype being used. dtype = gather_files_dist_check_dtype( filelist, dtype_rank_consistent, dtype_value, distctx ) # Drop the zero entry from the lists that start with # a "0" value unless we're rank 0 if distctx.rank != 0: del doc_idx[0] # Compute total number of size and document index # values across all ranks. Also compute the offset # of the calling rank for each value considering # the values of sizes/docs for all ranks before the # calling rank. numsizes = len(sizes) numdocs = len(doc_idx) global_size_count = distctx.sum(numsizes) global_docs_count = distctx.sum(numdocs) global_size_offset = distctx.exscan(numsizes) global_docs_offset = distctx.exscan(numdocs) # Compute local byte offsets for each of our sentences given # the token count and byte size of the vocab dtype. pointers, pointers_bytes = get_pointers_with_total( sizes, dtype().itemsize, np.int64 ) # Determine total number of bytes for all sentences on ranks # before the calling rank. pointer_offset = distctx.exscan(pointers_bytes) # We first write to a temporary file name. We rename to the final name # if successful or delete the temporary file if not. # This way if the final name appears, the user knows it's a valid file. finalname = index_file_path(outfile) finalnametmp = finalname + ".tmp" # First delete the final file if it already exists distctx.remove(finalname) # Catch and I/O errors to later determine whether all ranks wrote successfully. err = None try: # Create shared output file with distctx.open(finalnametmp) as fout: # Have rank 0 write the file header file_offset = 0 if distctx.rank == 0: try: file_offset = fout.tell() file_offset += MMapIndexedDataset.Index.write_header( fout, dtype, global_size_count, global_docs_count ) except Exception as e: err = e distctx.allraise_if(err) # Broadcast current file position from rank 0. file_offset = distctx.bcast(file_offset, root=0) # The list of size values from each rank are # concatenated and stored as int32. write_list_at_offset( fout, file_offset, sizes, 0, global_size_offset, np.int32 ) file_offset += global_size_count * np.int32().itemsize # The pointer values store the byte offset to each sentence when in memory. # A sentence has a variable number of tokens, given by # its corresponding entry in the size array. Each token # of a sentence is stored in units of type dtype, which consumes # dtype().itemsize bytes (often a standard type that is just # large enough to represent all elements of the vocabulary). # Since the pointers array is the same length as the sizes array, # we use global_size_offset and global_size_count to position # within the file for writing the pointer values. write_list_at_offset( fout, file_offset, pointers, pointer_offset, global_size_offset, np.int64, ) file_offset += global_size_count * np.int64().itemsize # The document index points to the position in the sizes # array for the starting sentence of each document. # A variable number of sentences can be in each document. # We shift the document index for number of sentences that # come before the calling rank which is in global_size_offset. write_list_at_offset( fout, file_offset, doc_idx, global_size_offset, global_docs_offset, np.int64, ) file_offset += global_docs_count * np.int64().itemsize except Exception as e: # if we encounter any exception while writing, store it for later err = e # Check that all ranks wrote successfully distctx.allraise_if(err) # Everyone wrote their part successfully. # Rename the temporary file to the final file. distctx.rename(finalnametmp, finalname) # Verify that all files in filelist are of the same index type. # Returns the identified type {cached, mmap} as a string. def gather_files_dist_check_impltype(filelist, distctx): # Sanity check for typos in file names. # Check that a data file exists for each of our files. all_files_exist = all([os.path.exists(data_file_path(f)) for f in filelist]) # Check that all ranks have all of their files. distctx.allassert(all_files_exist, "Some rank is missing its input file") # map type string to an integer for easier bcast, use 0 for unknown implmap = {"cached": 1, "mmap": 2} # check that all files in filelist are of the same type sametype = True ourtype = None for f in filelist: # read header of index file to determine its type impl = infer_dataset_impl(f) implval = implmap[impl] if impl in implmap else 0 # check that the type matches our other files if ourtype is None: ourtype = implval if ourtype != implval: sametype = False # Check that all ranks have the same type, # and that there is no unknown type. # This checks that: # - all of our own files (if any) are of the same type AND # - either we have no files or the type of our files match the broadcast type AND # - the broadcast type is of a known type: {cached, mmap} bcasttype = distctx.bcast_first(ourtype) matchtype = ( sametype and (ourtype is None or ourtype == bcasttype) and bcasttype != 0 ) distctx.allassert(matchtype, "Cannot merge dataset files of different types") # map back to return index string name for key in implmap.keys(): if implmap[key] == bcasttype: return key # raise exception if key for bcasttype was not found raise UnreachableCode def gather_files_dist(filemain, filelist, distctx): """Collectively merge files into a new output file specified in filemain. Each rank contributes a distinct list of zero or more files in filelist, and each rank directly merges its set of files into filemain. It is allowed for the input files in filelist to only be readable from the calling process. In particular, the input files specified by the calling process may be in storage that only the calling process can access, like /dev/shm or a node-local SSD. The output file in filemain should be in a location that is writable by all processes. NOTE: This uses parallel writes to a shared file to achieve high write bandwidth. To do so, this implementation seeks beyond the end of the file to write at different offsets from different processes via the seek() method on a python file handle. The behavior of seek() is not well documented, but it seems to map to fseek()/lseek(), and it works as desired on POSIX-compliant file systems like Lustre and GPFS.""" # Check that at least one input file is listed filecount = distctx.sum(len(filelist)) assert filecount > 0, "All ranks have no input files to merge" # Check that files are all of the same index type indexstr = gather_files_dist_check_impltype(filelist, distctx) # Concatenate the data files gather_files_dist_bin(filemain, filelist, distctx) # Combine index files into a single index file if indexstr == "cached": gather_files_dist_idx_cached(filemain, filelist, distctx) elif indexstr == "mmap": gather_files_dist_idx_mmap(filemain, filelist, distctx) def get_start_end(count, rank, numranks): """Return (start, end) index values for calling rank to evenly divide count items among numranks. Example usage: start, end = get_start_end(len(itemlist), distctx.rank, distctx.numranks) sublist = itemlist[start:end] Parameters ---------- count : int Total number of items to be divided rank : int Rank of the calling process, within range of [0, numranks) numranks : int Number of ranks by which to divide count items Returns ---------- (start, end) : tuple(int) Start and end index values that define the [start, end) range for rank """ num, remainder = divmod(count, numranks) if rank < remainder: start = (num + 1) * rank end = start + num + 1 else: start = (num + 1) * remainder + num * (rank - remainder) end = start + num return start, end def merge_files_dist(filemain, filelist, distctx): """Merge list of indexed datasets into a single indexed dataset named in filemain. Given a list of indexed datasets in filelist, and the set of processes defined by the distributed environment in distctx, collectively merge files into a new, single output indexed dataset named in filemain. This overwrites filemain if it already exists. It does not delete the input datasets in filelist. The input parameters filemain and filelist must be identical on all calling processes, and all processes in distctx must call this method collectively. It requires that all ranks be able to read any file in filelist, and all ranks must be able to write to the single output file named in filemain.""" # TODO: if file sizes vary significantly, it might be better to consider # file size when splitting the list to different ranks. # evenly divide list of files among ranks start, end = get_start_end(len(filelist), distctx.rank, distctx.numranks) sublist = filelist[start:end] # delegate merge to gather implementation return gather_files_dist(filemain, sublist, distctx)
distill-bloom-deepspeed-main
distill_bloom/dataset/indexed_dataset.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .initialize import (get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from .utils import VocabUtility class _VocabParallelCrossEntropy(torch.autograd.Function): @staticmethod def forward(ctx, vocab_parallel_logits, target): # Maximum value along vocab dimension across all GPUs. logits_max = torch.max(vocab_parallel_logits, dim=-1)[0] torch.distributed.all_reduce( logits_max, op=torch.distributed.ReduceOp.MAX, group=get_tensor_model_parallel_group(), ) # Subtract the maximum value. vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1)) # Get the partition's vocab indecies get_vocab_range = VocabUtility.vocab_range_from_per_partition_vocab_size partition_vocab_size = vocab_parallel_logits.size()[-1] rank = get_tensor_model_parallel_rank() world_size = get_tensor_model_parallel_world_size() vocab_start_index, vocab_end_index = get_vocab_range( partition_vocab_size, rank, world_size ) # Create a mask of valid vocab ids (1 means it needs to be masked). target_mask = (target < vocab_start_index) | (target >= vocab_end_index) masked_target = target.clone() - vocab_start_index masked_target[target_mask] = 0 # Get predicted-logits = logits[target]. # For Simplicity, we convert logits to a 2-D tensor with size # [*, partition-vocab-size] and target to a 1-D tensor of size [*]. logits_2d = vocab_parallel_logits.view(-1, partition_vocab_size) masked_target_1d = masked_target.view(-1) arange_1d = torch.arange( start=0, end=logits_2d.size()[0], device=logits_2d.device ) predicted_logits_1d = logits_2d[arange_1d, masked_target_1d] predicted_logits_1d = predicted_logits_1d.clone().contiguous() predicted_logits = predicted_logits_1d.view_as(target) predicted_logits[target_mask] = 0.0 # All reduce is needed to get the chunks from other GPUs. torch.distributed.all_reduce( predicted_logits, op=torch.distributed.ReduceOp.SUM, group=get_tensor_model_parallel_group(), ) # Sum of exponential of logits along vocab dimension across all GPUs. exp_logits = vocab_parallel_logits torch.exp(vocab_parallel_logits, out=exp_logits) sum_exp_logits = exp_logits.sum(dim=-1) torch.distributed.all_reduce( sum_exp_logits, op=torch.distributed.ReduceOp.SUM, group=get_tensor_model_parallel_group(), ) # Loss = log(sum(exp(logits))) - predicted-logit. loss = torch.log(sum_exp_logits) - predicted_logits # Store softmax, target-mask and masked-target for backward pass. exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1)) ctx.save_for_backward(exp_logits, target_mask, masked_target_1d) return loss @staticmethod def backward(ctx, grad_output): # Retreive tensors from the forward path. softmax, target_mask, masked_target_1d = ctx.saved_tensors # All the inputs have softmax as thier gradient. grad_input = softmax # For simplicity, work with the 2D gradient. partition_vocab_size = softmax.size()[-1] grad_2d = grad_input.view(-1, partition_vocab_size) # Add the gradient from matching classes. arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=grad_2d.device) grad_2d[arange_1d, masked_target_1d] -= 1.0 - target_mask.view(-1).float() # Finally elementwise multiplication with the output gradients. grad_input.mul_(grad_output.unsqueeze(dim=-1)) return grad_input, None def vocab_parallel_cross_entropy(vocab_parallel_logits, target): """Helper function for the cross entropy.""" return _VocabParallelCrossEntropy.apply(vocab_parallel_logits, target)
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/cross_entropy.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model and data parallel groups.""" import torch from .utils import ensure_divisibility # Intra-layer model parallel group that the current rank belongs to. _TENSOR_MODEL_PARALLEL_GROUP = None # Inter-layer model parallel group that the current rank belongs to. _PIPELINE_MODEL_PARALLEL_GROUP = None # Model parallel group (both intra- and pipeline) that the current rank belongs to. _MODEL_PARALLEL_GROUP = None # Embedding group. _EMBEDDING_GROUP = None # Data parallel group that the current rank belongs to. _DATA_PARALLEL_GROUP = None _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = None _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None # These values enable us to change the mpu sizes on the fly. _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = None _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = None _MPU_TENSOR_MODEL_PARALLEL_RANK = None _MPU_PIPELINE_MODEL_PARALLEL_RANK = None # A list of global ranks for each pipeline group to ease calculation of the source # rank when broadcasting from the first or last pipeline stage _PIPELINE_GLOBAL_RANKS = None def is_unitialized(): """Useful for code segments that may be accessed with or without mpu initialization """ return _DATA_PARALLEL_GROUP is None def initialize_model_parallel( tensor_model_parallel_size_=1, pipeline_model_parallel_size_=1, virtual_pipeline_model_parallel_size_=None, ): """ Initialize model data parallel groups. Arguments: tensor_model_parallel_size: number of GPUs used to parallelize model tensor. pipeline_model_parallel_size: number of GPUs used to parallelize model pipeline. Let's say we have a total of 16 GPUs denoted by g0 ... g15 and we use 2 GPUs to parallelize the model tensor, and 4 GPUs to parallelize the model pipeline. The present function will create 8 tensor model-parallel groups, 4 pipeline model-parallel groups and 8 data-parallel groups as: 8 data_parallel groups: [g0, g2], [g1, g3], [g4, g6], [g5, g7], [g8, g10], [g9, g11], [g12, g14], [g13, g15] 8 tensor model-parallel groups: [g0, g1], [g2, g3], [g4, g5], [g6, g7], [g8, g9], [g10, g11], [g12, g13], [g14, g15] 4 pipeline model-parallel groups: [g0, g4, g8, g12], [g1, g5, g9, g13], [g2, g6, g10, g14], [g3, g7, g11, g15] Note that for efficiency, the caller should make sure adjacent ranks are on the same DGX box. For example if we are using 2 DGX-1 boxes with a total of 16 GPUs, rank 0 to 7 belong to the first box and ranks 8 to 15 belong to the second box. """ if torch.distributed.get_rank() == 0: print( "> initializing tensor model parallel with size {}".format( tensor_model_parallel_size_ ) ) print( "> initializing pipeline model parallel with size {}".format( pipeline_model_parallel_size_ ) ) # Get world size and rank. Ensure some consistencies. assert torch.distributed.is_initialized() world_size = torch.distributed.get_world_size() tensor_model_parallel_size = min(tensor_model_parallel_size_, world_size) pipeline_model_parallel_size = min(pipeline_model_parallel_size_, world_size) ensure_divisibility( world_size, tensor_model_parallel_size * pipeline_model_parallel_size ) data_parallel_size = world_size // ( tensor_model_parallel_size * pipeline_model_parallel_size ) num_tensor_model_parallel_groups = world_size // tensor_model_parallel_size num_pipeline_model_parallel_groups = world_size // pipeline_model_parallel_size num_data_parallel_groups = world_size // data_parallel_size if virtual_pipeline_model_parallel_size_ is not None: global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = 0 _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = ( virtual_pipeline_model_parallel_size_ ) rank = torch.distributed.get_rank() # Build the data-parallel groups. global _DATA_PARALLEL_GROUP assert _DATA_PARALLEL_GROUP is None, "data parallel group is already initialized" all_data_parallel_group_ranks = [] for i in range(pipeline_model_parallel_size): start_rank = i * num_pipeline_model_parallel_groups end_rank = (i + 1) * num_pipeline_model_parallel_groups for j in range(tensor_model_parallel_size): ranks = range(start_rank + j, end_rank, tensor_model_parallel_size) all_data_parallel_group_ranks.append(list(ranks)) group = torch.distributed.new_group(ranks) if rank in ranks: _DATA_PARALLEL_GROUP = group # Build the model-parallel groups. global _MODEL_PARALLEL_GROUP assert _MODEL_PARALLEL_GROUP is None, "model parallel group is already initialized" for i in range(data_parallel_size): ranks = [ data_parallel_group_ranks[i] for data_parallel_group_ranks in all_data_parallel_group_ranks ] group = torch.distributed.new_group(ranks) if rank in ranks: _MODEL_PARALLEL_GROUP = group # Build the tensor model-parallel groups. global _TENSOR_MODEL_PARALLEL_GROUP assert ( _TENSOR_MODEL_PARALLEL_GROUP is None ), "tensor model parallel group is already initialized" for i in range(num_tensor_model_parallel_groups): ranks = range( i * tensor_model_parallel_size, (i + 1) * tensor_model_parallel_size ) group = torch.distributed.new_group(ranks) if rank in ranks: _TENSOR_MODEL_PARALLEL_GROUP = group # Build the pipeline model-parallel groups and embedding groups # (first and last rank in each pipeline model-parallel group). global _PIPELINE_MODEL_PARALLEL_GROUP global _PIPELINE_GLOBAL_RANKS assert ( _PIPELINE_MODEL_PARALLEL_GROUP is None ), "pipeline model parallel group is already initialized" global _EMBEDDING_GROUP assert _EMBEDDING_GROUP is None, "embedding group is already initialized" for i in range(num_pipeline_model_parallel_groups): ranks = range(i, world_size, num_pipeline_model_parallel_groups) group = torch.distributed.new_group(ranks) if rank in ranks: _PIPELINE_MODEL_PARALLEL_GROUP = group _PIPELINE_GLOBAL_RANKS = ranks # Setup embedding group (to exchange gradients between # first and last stages). if len(ranks) > 1: embedding_ranks = [ranks[0], ranks[-1]] else: embedding_ranks = ranks group = torch.distributed.new_group(embedding_ranks) if rank in embedding_ranks: _EMBEDDING_GROUP = group def model_parallel_is_initialized(): """Check if model and data parallel groups are initialized.""" if ( _TENSOR_MODEL_PARALLEL_GROUP is None or _PIPELINE_MODEL_PARALLEL_GROUP is None or _DATA_PARALLEL_GROUP is None ): return False return True def get_model_parallel_group(): """Get the model parallel group the caller rank belongs to.""" assert _MODEL_PARALLEL_GROUP is not None, "model parallel group is not initialized" return _MODEL_PARALLEL_GROUP def get_tensor_model_parallel_group(): """Get the tensor model parallel group the caller rank belongs to.""" assert ( _TENSOR_MODEL_PARALLEL_GROUP is not None ), "intra_layer_model parallel group is not initialized" return _TENSOR_MODEL_PARALLEL_GROUP def get_pipeline_model_parallel_group(): """Get the pipeline model parallel group the caller rank belongs to.""" assert ( _PIPELINE_MODEL_PARALLEL_GROUP is not None ), "pipeline_model parallel group is not initialized" return _PIPELINE_MODEL_PARALLEL_GROUP def get_data_parallel_group(): """Get the data parallel group the caller rank belongs to.""" assert _DATA_PARALLEL_GROUP is not None, "data parallel group is not initialized" return _DATA_PARALLEL_GROUP def get_embedding_group(): """Get the embedding group the caller rank belongs to.""" assert _EMBEDDING_GROUP is not None, "embedding group is not initialized" return _EMBEDDING_GROUP def set_tensor_model_parallel_world_size(world_size): """Set the tensor model parallel size""" global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE = world_size def set_pipeline_model_parallel_world_size(world_size): """Set the pipeline model parallel size""" global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE = world_size def get_tensor_model_parallel_world_size(): """Return world size for the tensor model parallel group.""" global _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE if _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE is not None: return _MPU_TENSOR_MODEL_PARALLEL_WORLD_SIZE return torch.distributed.get_world_size(group=get_tensor_model_parallel_group()) def get_model_parallel_world_size(): assert ( get_pipeline_model_parallel_world_size() == 1 ), "legacy get_model_parallel_world_size is only supported if PP is disabled" return get_tensor_model_parallel_world_size() def get_pipeline_model_parallel_world_size(): """Return world size for the pipeline model parallel group.""" global _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE if _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE is not None: return _MPU_PIPELINE_MODEL_PARALLEL_WORLD_SIZE return torch.distributed.get_world_size(group=get_pipeline_model_parallel_group()) def set_tensor_model_parallel_rank(rank): """Set tensor model parallel rank.""" global _MPU_TENSOR_MODEL_PARALLEL_RANK _MPU_TENSOR_MODEL_PARALLEL_RANK = rank def set_pipeline_model_parallel_rank(rank): """Set pipeline model parallel rank.""" global _MPU_PIPELINE_MODEL_PARALLEL_RANK _MPU_PIPELINE_MODEL_PARALLEL_RANK = rank def get_tensor_model_parallel_rank(): """Return my rank for the tensor model parallel group.""" global _MPU_TENSOR_MODEL_PARALLEL_RANK if _MPU_TENSOR_MODEL_PARALLEL_RANK is not None: return _MPU_TENSOR_MODEL_PARALLEL_RANK return torch.distributed.get_rank(group=get_tensor_model_parallel_group()) def get_model_parallel_rank(): assert ( get_pipeline_model_parallel_world_size() == 1 ), "legacy get_model_parallel_rank is only supported if PP is disabled" return get_tensor_model_parallel_rank() def get_pipeline_model_parallel_rank(): """Return my rank for the pipeline model parallel group.""" global _MPU_PIPELINE_MODEL_PARALLEL_RANK if _MPU_PIPELINE_MODEL_PARALLEL_RANK is not None: return _MPU_PIPELINE_MODEL_PARALLEL_RANK return torch.distributed.get_rank(group=get_pipeline_model_parallel_group()) def is_pipeline_first_stage(ignore_virtual=False): """Return True if in the first pipeline model-parallel stage, False otherwise.""" if not ignore_virtual: if ( get_virtual_pipeline_model_parallel_world_size() is not None and get_virtual_pipeline_model_parallel_rank() != 0 ): return False return get_pipeline_model_parallel_rank() == 0 def is_pipeline_last_stage(ignore_virtual=False): """Return True if in the last pipeline model-parallel stage, False otherwise.""" if not ignore_virtual: virtual_pipeline_model_parallel_world_size = ( get_virtual_pipeline_model_parallel_world_size() ) if ( virtual_pipeline_model_parallel_world_size is not None and get_virtual_pipeline_model_parallel_rank() != (virtual_pipeline_model_parallel_world_size - 1) ): return False return get_pipeline_model_parallel_rank() == ( get_pipeline_model_parallel_world_size() - 1 ) def get_virtual_pipeline_model_parallel_rank(): """Return the virtual pipeline-parallel rank.""" global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK return _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK def set_virtual_pipeline_model_parallel_rank(rank): """Set the virtual pipeline-parallel rank.""" global _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK _VIRTUAL_PIPELINE_MODEL_PARALLEL_RANK = rank def get_virtual_pipeline_model_parallel_world_size(): """Return the virtual pipeline-parallel world size.""" global _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE return _VIRTUAL_PIPELINE_MODEL_PARALLEL_WORLD_SIZE def get_tensor_model_parallel_src_rank(): """Calculate the global rank corresponding to the first local rank in the tensor model parallel group.""" global_rank = torch.distributed.get_rank() local_world_size = get_tensor_model_parallel_world_size() return (global_rank // local_world_size) * local_world_size def get_pipeline_model_parallel_first_rank(): assert ( _PIPELINE_GLOBAL_RANKS is not None ), "Pipeline parallel group is not initialized" return _PIPELINE_GLOBAL_RANKS[0] def get_pipeline_model_parallel_last_rank(): assert ( _PIPELINE_GLOBAL_RANKS is not None ), "Pipeline parallel group is not initialized" last_rank_local = get_pipeline_model_parallel_world_size() - 1 return _PIPELINE_GLOBAL_RANKS[last_rank_local] def get_pipeline_model_parallel_next_rank(): assert ( _PIPELINE_GLOBAL_RANKS is not None ), "Pipeline parallel group is not initialized" rank_in_pipeline = get_pipeline_model_parallel_rank() world_size = get_pipeline_model_parallel_world_size() return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline + 1) % world_size] def get_pipeline_model_parallel_prev_rank(): assert ( _PIPELINE_GLOBAL_RANKS is not None ), "Pipeline parallel group is not initialized" rank_in_pipeline = get_pipeline_model_parallel_rank() world_size = get_pipeline_model_parallel_world_size() return _PIPELINE_GLOBAL_RANKS[(rank_in_pipeline - 1) % world_size] def get_data_parallel_world_size(): """Return world size for the data parallel group.""" return torch.distributed.get_world_size(group=get_data_parallel_group()) def get_data_parallel_rank(): """Return my rank for the data parallel group.""" return torch.distributed.get_rank(group=get_data_parallel_group()) def destroy_model_parallel(): """Set the groups to none.""" global _TENSOR_MODEL_PARALLEL_GROUP _TENSOR_MODEL_PARALLEL_GROUP = None global _PIPELINE_MODEL_PARALLEL_GROUP _PIPELINE_MODEL_PARALLEL_GROUP = None global _DATA_PARALLEL_GROUP _DATA_PARALLEL_GROUP = None
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/initialize.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model parallel utility interface.""" from .cross_entropy import vocab_parallel_cross_entropy from .data import broadcast_data from .initialize import (destroy_model_parallel, get_data_parallel_group, get_data_parallel_rank, get_data_parallel_world_size, get_embedding_group, get_model_parallel_group, get_model_parallel_rank, get_model_parallel_world_size, get_pipeline_model_parallel_first_rank, get_pipeline_model_parallel_group, get_pipeline_model_parallel_last_rank, get_pipeline_model_parallel_next_rank, get_pipeline_model_parallel_prev_rank, get_pipeline_model_parallel_rank, get_pipeline_model_parallel_world_size, get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_src_rank, get_tensor_model_parallel_world_size, get_virtual_pipeline_model_parallel_rank, initialize_model_parallel, is_pipeline_first_stage, is_pipeline_last_stage, is_unitialized, model_parallel_is_initialized, set_pipeline_model_parallel_rank, set_pipeline_model_parallel_world_size, set_tensor_model_parallel_rank, set_tensor_model_parallel_world_size, set_virtual_pipeline_model_parallel_rank) from .mappings import (copy_to_tensor_model_parallel_region, gather_from_tensor_model_parallel_region, reduce_from_tensor_model_parallel_region, scatter_to_tensor_model_parallel_region) from .utils import divide, split_tensor_along_last_dim # from .layers import ColumnParallelLinear # from .layers import RowParallelLinear # from .layers import VocabParallelEmbedding # from .layers import (set_tensor_model_parallel_attributes, # set_defaults_if_not_set_tensor_model_parallel_attributes, # copy_tensor_model_parallel_attributes) # from .random import checkpoint # from .random import get_cuda_rng_tracker # from .random import init_checkpointed_activations_memory_buffer # from .random import model_parallel_cuda_manual_seed # from .random import reset_checkpointed_activations_memory_buffer # from .random import gather_split_1d_tensor # from .random import split_tensor_into_1d_equal_chunks
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/__init__.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Parts of the code here are adapted from PyTorch # repo: https://github.com/pytorch/pytorch import contextlib import torch from megatron import get_args from megatron.memory import allocate_mem_buff from torch import _C from torch.cuda import _lazy_call from torch.cuda import device as device_ctx_manager from torch.utils.checkpoint import detach_variable from .initialize import (get_data_parallel_rank, get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) # Default name for the model parallel rng tracker. _MODEL_PARALLEL_RNG_TRACKER_NAME = "model-parallel-rng" # Whether apply model parallelsim to checkpointed hidden states. _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER = None def init_checkpointed_activations_memory_buffer(): """Initialize the memory buffer for the checkpointed activations.""" args = get_args() upper_bound_sequence_length = max( args.seq_length if args.seq_length is not None else 0, args.decoder_seq_length if args.decoder_seq_length is not None else 0, ) per_layer = ( args.micro_batch_size * upper_bound_sequence_length * args.hidden_size // args.tensor_model_parallel_size ) assert ( args.num_layers % args.checkpoint_num_layers == 0 ), "number of layers is not divisible by checkpoint-num-layers" num_checkpointer_layers = args.num_layers // args.checkpoint_num_layers numel = per_layer * num_checkpointer_layers dtype = torch.half if not args.fp16: dtype = torch.float global _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER assert ( _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER is None ), "checkpointed activations memory buffer is already allocated." _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER = allocate_mem_buff( "checkpointed activations", numel, dtype, track_usage=False ) def reset_checkpointed_activations_memory_buffer(): """Reset the memory used for checkpointing.""" if _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER is not None: _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER.reset() def _set_cuda_rng_state(new_state, device=-1): """Sets the random number generator state of the current GPU. Argumentss: new_state (torch.ByteTensor): The desired state This function is adapted from PyTorch repo (torch.cuda.set_rng_state) with a single change: the input state is not cloned. Cloning caused major performance issues for +4 GPU cases. """ if hasattr(_C, "_cuda_setRNGState") and callable(_C._cuda_setRNGState): # older PyTorch def cb(): with device_ctx_manager(device): _C._cuda_setRNGState(new_state) else: # newer PyTorch if device == -1: device = torch.device("cuda") elif isinstance(device, str): device = torch.device(device) elif isinstance(device, int): device = torch.device("cuda", device) def cb(): idx = device.index if idx is None: idx = torch.cuda.current_device() default_generator = torch.cuda.default_generators[idx] default_generator.set_state(new_state) _lazy_call(cb) def split_tensor_into_1d_equal_chunks(tensor): """Break a tensor into equal 1D chunks.""" data = tensor.view(-1) partition_size = torch.numel(data) // get_tensor_model_parallel_world_size() start_index = partition_size * get_tensor_model_parallel_rank() end_index = start_index + partition_size return data[start_index:end_index] def gather_split_1d_tensor(tensor): """Opposite of above function, gather values from model parallel ranks.""" world_size = get_tensor_model_parallel_world_size() numel = torch.numel(tensor) numel_gathered = world_size * numel gathered = torch.empty( numel_gathered, dtype=tensor.dtype, device=torch.cuda.current_device(), requires_grad=False, ) chunks = [gathered[i * numel : (i + 1) * numel] for i in range(world_size)] torch.distributed.all_gather( chunks, tensor, group=get_tensor_model_parallel_group() ) return gathered class CudaRNGStatesTracker: """Tracker for the cuda RNG states. Using the `add` method, a cuda rng state is initialized based on the input `seed` and is assigned to `name`. Later, by forking the rng state, we can perform operations and return to our starting cuda state. """ def __init__(self): # Map from a string name to the cuda rng state. self.states_ = {} # Seeds are just for book keeping and ensure no seed is set twice. self.seeds_ = set() def reset(self): """Set to the initial state (no tracker).""" self.states_ = {} self.seeds_ = set() def get_states(self): """Get rng states. Copy the dictionary so we have direct pointers to the states, not just a pointer to the dictionary.""" states = {} for name in self.states_: states[name] = self.states_[name] return states def set_states(self, states): """Set the rng states. For efficiency purposes, we do not check the size of seed for compatibility.""" self.states_ = states def add(self, name, seed): """Track the rng state.""" # Check seed is not already used. if seed in self.seeds_: raise Exception("seed {} already exists".format(seed)) self.seeds_.add(seed) # Check that state is not already defined. if name in self.states_: raise Exception("cuda rng state {} already exists".format(name)) # Get the current rng state. orig_rng_state = torch.cuda.get_rng_state() # Set the new state and store it. torch.cuda.manual_seed(seed) self.states_[name] = torch.cuda.get_rng_state() # Reset rng state to what it was. _set_cuda_rng_state(orig_rng_state) @contextlib.contextmanager def fork(self, name=_MODEL_PARALLEL_RNG_TRACKER_NAME): """Fork the cuda rng state, perform operations, and exit with the original state.""" # Check if we have added the state if name not in self.states_: print(name, self.states_) raise Exception("cuda rng state {} is not added".format(name)) # Store current rng state. orig_cuda_rng_state = torch.cuda.get_rng_state() # Set rng state to the desired one _set_cuda_rng_state(self.states_[name]) # Do the stuff we wanted to do. try: yield finally: # Update the current rng state for later use. self.states_[name] = torch.cuda.get_rng_state() # And set the state to the original state we started with. _set_cuda_rng_state(orig_cuda_rng_state) # RNG tracker object. _CUDA_RNG_STATE_TRACKER = CudaRNGStatesTracker() def get_cuda_rng_tracker(): """Get cuda rng tracker.""" return _CUDA_RNG_STATE_TRACKER def model_parallel_cuda_manual_seed(seed): """Initialize model parallel cuda seed. This function should be called after the model parallel is initialized. Also, no torch.cuda.manual_seed should be called after this function. Basically, this is replacement for that function. Two set of RNG states are tracked: default state: This is for data parallelism and is the same among a set of model parallel GPUs but different across different model paralle groups. This is used for example for dropout in the non-tensor-model-parallel regions. tensor-model-parallel state: This state is different among a set of model parallel GPUs, but the same across data parallel groups. This is used for example for dropout in model parallel regions. """ # 2718 is just for fun and any POSITIVE value will work. offset = seed + 2718 tensor_model_parallel_seed = offset + get_tensor_model_parallel_rank() # Data parallel gets the original seed. data_parallel_seed = seed if torch.distributed.get_rank() == 0: print( "> initializing model parallel cuda seeds on global rank {}, " "model parallel rank {}, and data parallel rank {} with " "model parallel seed: {} and data parallel seed: {}".format( torch.distributed.get_rank(), get_tensor_model_parallel_rank(), get_data_parallel_rank(), tensor_model_parallel_seed, data_parallel_seed, ), flush=True, ) _CUDA_RNG_STATE_TRACKER.reset() # Set the default state. torch.cuda.manual_seed(data_parallel_seed) # and model parallel state. _CUDA_RNG_STATE_TRACKER.add( _MODEL_PARALLEL_RNG_TRACKER_NAME, tensor_model_parallel_seed ) class CheckpointFunction(torch.autograd.Function): """This function is adapted from torch.utils.checkpoint with two main changes: 1) torch.cuda.set_rng_state is replaced with `_set_cuda_rng_state` 2) the states in the model parallel tracker are also properly tracked/set/reset. """ @staticmethod def forward(ctx, run_function, *args): ctx.run_function = run_function # Copy the rng states. ctx.fwd_cpu_rng_state = torch.get_rng_state() ctx.fwd_cuda_rng_state = torch.cuda.get_rng_state() ctx.fwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states() with torch.no_grad(): outputs = run_function(*args) # Divide hidden states across model parallel group and only keep # the chunk corresponding to the current rank. if _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER is not None: ctx.input_0_shape = args[0].data.shape args[0].data = split_tensor_into_1d_equal_chunks(args[0].data) args[0].data = _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER.add(args[0].data) # Store everything. ctx.save_for_backward(*args) return outputs @staticmethod def backward(ctx, *args): if not torch.autograd._is_checkpoint_valid(): raise RuntimeError( "Checkpointing is not compatible with .grad(), " "please use .backward() if possible" ) inputs = ctx.saved_tensors if _CHECKPOINTED_ACTIVATIONS_MEMORY_BUFFER is not None: inputs[0].data = gather_split_1d_tensor(inputs[0].data) inputs[0].data = inputs[0].data.view(ctx.input_0_shape) # Store the current states. bwd_cpu_rng_state = torch.get_rng_state() bwd_cuda_rng_state = torch.cuda.get_rng_state() bwd_cuda_rng_state_tracker = get_cuda_rng_tracker().get_states() # Set the states to what it used to be before the forward pass. torch.set_rng_state(ctx.fwd_cpu_rng_state) _set_cuda_rng_state(ctx.fwd_cuda_rng_state) get_cuda_rng_tracker().set_states(ctx.fwd_cuda_rng_state_tracker) # Compute the forward pass. detached_inputs = detach_variable(inputs) with torch.enable_grad(): outputs = ctx.run_function(*detached_inputs) # Set the states back to what it was at the start of this function. torch.set_rng_state(bwd_cpu_rng_state) _set_cuda_rng_state(bwd_cuda_rng_state) get_cuda_rng_tracker().set_states(bwd_cuda_rng_state_tracker) if isinstance(outputs, torch.Tensor): outputs = (outputs,) torch.autograd.backward(outputs, args) grads = tuple( inp.grad if isinstance(inp, torch.Tensor) else inp for inp in detached_inputs ) return (None,) + grads def checkpoint(function, *args): """Checkpoint a model or part of the model. This has been directly copied from torch.utils.checkpoint.""" return CheckpointFunction.apply(function, *args)
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/random.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch def ensure_divisibility(numerator, denominator): """Ensure that numerator is divisible by the denominator.""" assert numerator % denominator == 0, "{} is not divisible by {}".format( numerator, denominator ) def divide(numerator, denominator): """Ensure that numerator is divisible by the denominator and return the division value.""" ensure_divisibility(numerator, denominator) return numerator // denominator def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False): """Split a tensor along its last dimension. Arguments: tensor: input tensor. num_partitions: number of partitions to split the tensor contiguous_split_chunks: If True, make each chunk contiguous in memory. """ # Get the size and dimension. last_dim = tensor.dim() - 1 last_dim_size = divide(tensor.size()[last_dim], num_partitions) # Split. tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) # Note: torch.split does not create contiguous tensors by default. if contiguous_split_chunks: return tuple(chunk.contiguous() for chunk in tensor_list) return tensor_list class VocabUtility: """Split the vocabulary into `world_size` chunks amd return the first and last index of the vocabulary belonging to the `rank` partition: Note that indecies in [fist, last)""" @staticmethod def vocab_range_from_per_partition_vocab_size( per_partition_vocab_size, rank, world_size ): index_f = rank * per_partition_vocab_size index_l = index_f + per_partition_vocab_size return index_f, index_l @staticmethod def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size): per_partition_vocab_size = divide(global_vocab_size, world_size) return VocabUtility.vocab_range_from_per_partition_vocab_size( per_partition_vocab_size, rank, world_size )
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/utils.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Parts of the code here are adapted from PyTorch # repo: https://github.com/pytorch/pytorch import math from functools import partial import deepspeed.runtime.activation_checkpointing.checkpointing as ds_checkpointing import torch import torch.nn.functional as F import torch.nn.init as init from megatron import get_args, mpu from torch.nn.parameter import Parameter from ..model.fused_layer_norm import MixedFusedLayerNorm as LayerNorm from .initialize import (get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from .mappings import (copy_to_tensor_model_parallel_region, gather_from_tensor_model_parallel_region, reduce_from_tensor_model_parallel_region, scatter_to_tensor_model_parallel_region) from .random import get_cuda_rng_tracker from .utils import VocabUtility, divide, split_tensor_along_last_dim _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS = { "tensor_model_parallel": False, "partition_dim": -1, "partition_stride": 1, } def param_is_not_tensor_parallel_duplicate(param): return ( hasattr(param, "tensor_model_parallel") and param.tensor_model_parallel ) or (get_tensor_model_parallel_rank() == 0) def set_tensor_model_parallel_attributes(tensor, is_parallel, dim, stride): # Make sure the attributes are not set. for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS: assert not hasattr(tensor, attribute) # Set the attributes. setattr(tensor, "tensor_model_parallel", is_parallel) setattr(tensor, "partition_dim", dim) setattr(tensor, "partition_stride", stride) def set_defaults_if_not_set_tensor_model_parallel_attributes(tensor): def maybe_set(attribute, value): if not hasattr(tensor, attribute): setattr(tensor, attribute, value) for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS: maybe_set(attribute, _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS[attribute]) def copy_tensor_model_parallel_attributes(destination_tensor, source_tensor): def maybe_copy(attribute): if hasattr(source_tensor, attribute): setattr(destination_tensor, attribute, getattr(source_tensor, attribute)) for attribute in _MODEL_PARALLEL_ATTRIBUTE_DEFAULTS: maybe_copy(attribute) def _initialize_affine_weight_gpu(weight, init_method, partition_dim, stride=1): """Initialize affine weight for model parallel on GPU.""" set_tensor_model_parallel_attributes( tensor=weight, is_parallel=True, dim=partition_dim, stride=stride ) if ds_checkpointing.is_configured(): global get_cuda_rng_tracker get_cuda_rng_tracker = ds_checkpointing.get_cuda_rng_tracker with get_cuda_rng_tracker().fork(): init_method(weight) def _initialize_affine_weight_cpu( weight, output_size, input_size, per_partition_size, partition_dim, init_method, stride=1, return_master_weight=False, ): """Initialize affine weight for model parallel. Build the master weight on all processes and scatter the relevant chunk.""" set_tensor_model_parallel_attributes( tensor=weight, is_parallel=True, dim=partition_dim, stride=stride ) # Initialize master weight master_weight = torch.empty( output_size, input_size, dtype=torch.float, requires_grad=False ) init_method(master_weight) args = get_args() master_weight = master_weight.to(dtype=args.params_dtype) # Split and copy per_partition_per_stride_size = divide(per_partition_size, stride) weight_list = torch.split( master_weight, per_partition_per_stride_size, dim=partition_dim ) rank = get_tensor_model_parallel_rank() world_size = get_tensor_model_parallel_world_size() my_weight_list = weight_list[rank::world_size] with torch.no_grad(): torch.cat(my_weight_list, dim=partition_dim, out=weight) if return_master_weight: return master_weight return None def xavier_uniform_tensor_parallel_(tensor, gain=1.0, tp_degree=1): r""" This is a modified torch.nn.init.xavier_uniform_ with changes to support partitioned on the vocab size dim embedding with tensor parallel. Additional args: - tp_degree: degree of tensor parallel Note: the code assumes all partitions are equal in size """ # receptive_field_size=1 as dim==2, so we don't need init._calculate_fan_in_and_fan_out fan_out, fan_in = tensor.shape fan_out *= tp_degree # tp splits on num_embeddings dim std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation return torch.nn.init._no_grad_uniform_(tensor, -a, a) class VocabParallelEmbedding(torch.nn.Module): """Embedding parallelized in the vocabulary dimension. This is mainly adapted from torch.nn.Embedding and all the default values are kept. Arguments: num_embeddings: vocabulary size. embedding_dim: size of hidden state. init_method: method to initialize weights. """ def __init__(self, num_embeddings, embedding_dim, init_method=init.xavier_normal_): super(VocabParallelEmbedding, self).__init__() # Keep the input dimensions. self.num_embeddings = num_embeddings self.embedding_dim = embedding_dim # Set the defaults for compatibility. self.padding_idx = None self.max_norm = None self.norm_type = 2.0 self.scale_grad_by_freq = False self.sparse = False self._weight = None self.tensor_model_parallel_size = get_tensor_model_parallel_world_size() # Divide the weight matrix along the vocabulary dimension. ( self.vocab_start_index, self.vocab_end_index, ) = VocabUtility.vocab_range_from_global_vocab_size( self.num_embeddings, get_tensor_model_parallel_rank(), self.tensor_model_parallel_size, ) self.num_embeddings_per_partition = ( self.vocab_end_index - self.vocab_start_index ) # Allocate weights and initialize. args = get_args() # only the first stage embedding runs this class' forward. The head's embedding does its own # thing, so don't waste memory allocating LN weights. if mpu.is_pipeline_first_stage() and ( args.use_bnb_optimizer or args.embed_layernorm ): self.norm = LayerNorm(embedding_dim) if args.use_bnb_optimizer: # for BNB we ignore the passed init_method and use torch.nn.init.xavier_uniform_ # modified to calculate std on the unpartitioned embedding init_method = partial( xavier_uniform_tensor_parallel_, tp_degree=self.tensor_model_parallel_size, ) if args.use_cpu_initialization: self.weight = Parameter( torch.empty( self.num_embeddings_per_partition, self.embedding_dim, dtype=args.params_dtype, ) ) _initialize_affine_weight_cpu( self.weight, self.num_embeddings, self.embedding_dim, self.num_embeddings_per_partition, 0, init_method, ) else: self.weight = Parameter( torch.empty( self.num_embeddings_per_partition, self.embedding_dim, device=torch.cuda.current_device(), dtype=args.params_dtype, ) ) _initialize_affine_weight_gpu( self.weight, init_method, partition_dim=0, stride=1 ) if args.use_bnb_optimizer: from bitsandbytes.optim import GlobalOptimManager GlobalOptimManager.get_instance().override_config( self.weight, "optim_bits", 32 ) GlobalOptimManager.get_instance().register_parameters(self.weight) def forward(self, input_): if torch.any(input_ >= self.num_embeddings): raise ValueError( "There is an input id in the input that is greater than the highest" f" possible input id.\nInput: {input_}\nnum_embeddings:" f" {self.num_embeddings}" ) if self.tensor_model_parallel_size > 1: # Build the mask. input_mask = (input_ < self.vocab_start_index) | ( input_ >= self.vocab_end_index ) # Mask the input. masked_input = input_.clone() - self.vocab_start_index masked_input[input_mask] = 0 else: # input_ is garanted to be in the range [0:self.vocab_end_index - self.vocab_start_index] thanks to the first check masked_input = input_ # Get the embeddings. output_parallel = F.embedding( masked_input, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) # Mask the output embedding. if self.tensor_model_parallel_size > 1: output_parallel[input_mask, :] = 0.0 # Reduce across all the model parallel GPUs. output = reduce_from_tensor_model_parallel_region(output_parallel) if hasattr(self, "norm"): output = self.norm(output) return output class ColumnParallelLinear(torch.nn.Module): """Linear layer with column parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its second dimension as A = [A_1, ..., A_p]. Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias gather_output: If true, call all-gether on output and make Y avaiable to all GPUs, otherwise, every GPU will have its output which is Y_i = XA_i init_method: method to initialize weights. Note that bias is always set to zero. stride: For the strided linear layers. keep_master_weight_for_test: This was added for testing and should be set to False. It returns the master weights used for initialization. skip_bias_add: This was added to enable performance optimations where bias can be fused with other elementwise operations. we skip adding bias but instead return it. """ def __init__( self, input_size, output_size, bias=True, gather_output=True, init_method=init.xavier_normal_, stride=1, keep_master_weight_for_test=False, skip_bias_add=False, ): super(ColumnParallelLinear, self).__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.gather_output = gather_output # Divide the weight matrix along the last dimension. world_size = get_tensor_model_parallel_world_size() self.output_size_per_partition = divide(output_size, world_size) self.skip_bias_add = skip_bias_add # Parameters. # Note: torch.nn.functional.linear performs XA^T + b and as a result # we allocate the transpose. # Initialize weight. args = get_args() if args.use_cpu_initialization: self.weight = Parameter( torch.empty( self.output_size_per_partition, self.input_size, dtype=args.params_dtype, ) ) self.master_weight = _initialize_affine_weight_cpu( self.weight, self.output_size, self.input_size, self.output_size_per_partition, 0, init_method, stride=stride, return_master_weight=keep_master_weight_for_test, ) else: self.weight = Parameter( torch.empty( self.output_size_per_partition, self.input_size, device=torch.cuda.current_device(), dtype=args.params_dtype, ) ) _initialize_affine_weight_gpu( self.weight, init_method, partition_dim=0, stride=stride ) if bias: if args.use_cpu_initialization: self.bias = Parameter( torch.empty(self.output_size_per_partition, dtype=args.params_dtype) ) else: self.bias = Parameter( torch.empty( self.output_size_per_partition, device=torch.cuda.current_device(), dtype=args.params_dtype, ) ) set_tensor_model_parallel_attributes(self.bias, True, 0, stride) # Always initialize bias to zero. with torch.no_grad(): self.bias.zero_() else: self.register_parameter("bias", None) def forward(self, input_): # Set up backprop all-reduce. input_parallel = copy_to_tensor_model_parallel_region(input_) # Matrix multiply. bias = self.bias if not self.skip_bias_add else None output_parallel = F.linear(input_parallel, self.weight, bias) if self.gather_output: # All-gather across the partitions. output = gather_from_tensor_model_parallel_region(output_parallel) else: output = output_parallel output_bias = self.bias if self.skip_bias_add else None return output, output_bias class RowParallelLinear(torch.nn.Module): """Linear layer with row parallelism. The linear layer is defined as Y = XA + b. A is parallelized along its first dimension and X along its second dimension as: - - | A_1 | | . | A = | . | X = [X_1, ..., X_p] | . | | A_p | - - Arguments: input_size: first dimension of matrix A. output_size: second dimension of matrix A. bias: If true, add bias. Note that bias is not parallelized. input_is_parallel: If true, we assume that the input is already split across the GPUs and we do not split again. init_method: method to initialize weights. Note that bias is always set to zero. stride: For the strided linear layers. keep_master_weight_for_test: This was added for testing and should be set to False. It returns the master weights used for initialization. skip_bias_add: This was added to enable performance optimations where bias can be fused with other elementwise operations. we skip adding bias but instead return it. """ def __init__( self, input_size, output_size, bias=True, input_is_parallel=False, init_method=init.xavier_normal_, stride=1, keep_master_weight_for_test=False, skip_bias_add=False, ): super(RowParallelLinear, self).__init__() # Keep input parameters self.input_size = input_size self.output_size = output_size self.input_is_parallel = input_is_parallel # Divide the weight matrix along the last dimension. world_size = get_tensor_model_parallel_world_size() self.input_size_per_partition = divide(input_size, world_size) self.skip_bias_add = skip_bias_add # Parameters. # Note: torch.nn.functional.linear performs XA^T + b and as a result # we allocate the transpose. # Initialize weight. args = get_args() if args.use_cpu_initialization: self.weight = Parameter( torch.empty( self.output_size, self.input_size_per_partition, dtype=args.params_dtype, ) ) self.master_weight = _initialize_affine_weight_cpu( self.weight, self.output_size, self.input_size, self.input_size_per_partition, 1, init_method, stride=stride, return_master_weight=keep_master_weight_for_test, ) else: self.weight = Parameter( torch.empty( self.output_size, self.input_size_per_partition, device=torch.cuda.current_device(), dtype=args.params_dtype, ) ) _initialize_affine_weight_gpu( self.weight, init_method, partition_dim=1, stride=stride ) if bias: if args.use_cpu_initialization: self.bias = Parameter( torch.empty(self.output_size, dtype=args.params_dtype) ) else: self.bias = Parameter( torch.empty( self.output_size, device=torch.cuda.current_device(), dtype=args.params_dtype, ) ) # Always initialize bias to zero. with torch.no_grad(): self.bias.zero_() else: self.register_parameter("bias", None) self.bias_tp_auto_sync = args.sync_tp_duplicated_parameters def forward(self, input_): # Set up backprop all-reduce. if self.input_is_parallel: input_parallel = input_ else: input_parallel = scatter_to_tensor_model_parallel_region(input_) # Matrix multiply. output_parallel = F.linear(input_parallel, self.weight) # All-reduce across all the partitions. output_ = reduce_from_tensor_model_parallel_region(output_parallel) if self.bias_tp_auto_sync: torch.distributed.all_reduce( self.bias, op=torch.distributed.ReduceOp.AVG, group=mpu.get_tensor_model_parallel_group(), ) if not self.skip_bias_add: output = output_ + self.bias if self.bias is not None else output_ output_bias = None else: output = output_ output_bias = self.bias return output, output_bias
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/layers.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .initialize import (get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_src_rank) _MAX_DATA_DIM = 5 def _check_data_types(keys, data, target_dtype): """Check that all the keys have the same target data type.""" for key in keys: assert ( data[key].dtype == target_dtype ), "{} has data type {} which is different than {}".format( key, data[key].dtype, target_dtype ) def _build_key_size_numel_dictionaries(keys, data): """Build the size on rank 0 and broadcast.""" max_dim = _MAX_DATA_DIM sizes = [0 for _ in range(max_dim) for _ in keys] # Pack the sizes on rank zero. if get_tensor_model_parallel_rank() == 0: offset = 0 for key in keys: assert data[key].dim() < max_dim, "you should increase MAX_DATA_DIM" size = data[key].size() for i, s in enumerate(size): sizes[i + offset] = s offset += max_dim # Move to GPU and broadcast. sizes_cuda = torch.cuda.LongTensor(sizes) torch.distributed.broadcast( sizes_cuda, get_tensor_model_parallel_src_rank(), group=get_tensor_model_parallel_group(), ) # Move back to cpu and unpack. sizes_cpu = sizes_cuda.cpu() key_size = {} key_numel = {} total_numel = 0 offset = 0 for key in keys: i = 0 size = [] numel = 1 while sizes_cpu[offset + i] > 0: this_size = sizes_cpu[offset + i] size.append(this_size) numel *= this_size i += 1 key_size[key] = size key_numel[key] = numel total_numel += numel offset += max_dim return key_size, key_numel, total_numel def broadcast_data(keys, data, datatype): """Broadcast data from rank zero of each model parallel group to the members of the same model parallel group. Arguments: keys: list of keys in the data disctionary to be broadcasted data: data dictionary of string keys and cpu tensor values. datatype: torch data type of all tensors in data associated with keys. """ # Build (key, size) and (key, number of elements) dictionaries along # with the total number of elements on all ranks. key_size, key_numel, total_numel = _build_key_size_numel_dictionaries(keys, data) # Pack on rank zero. if get_tensor_model_parallel_rank() == 0: # Check that all keys have the same data type. _check_data_types(keys, data, datatype) # Flatten the data associated with the keys flatten_data = torch.cat( [data[key].contiguous().view(-1) for key in keys], dim=0 ).cuda() else: flatten_data = torch.empty( total_numel, device=torch.cuda.current_device(), dtype=datatype ) # Broadcast torch.distributed.broadcast( flatten_data, get_tensor_model_parallel_src_rank(), group=get_tensor_model_parallel_group(), ) # Unpack output = {} offset = 0 for key in keys: size = key_size[key] numel = key_numel[key] output[key] = flatten_data.narrow(0, offset, numel).view(size) offset += numel return output
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/data.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from .initialize import (get_tensor_model_parallel_group, get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) from .utils import split_tensor_along_last_dim def _reduce(input_): """All-reduce the the input tensor across model parallel group.""" # Bypass the function if we are using only 1 GPU. if get_tensor_model_parallel_world_size() == 1: return input_ # All-reduce. torch.distributed.all_reduce(input_, group=get_tensor_model_parallel_group()) return input_ def _split(input_): """Split the tensor along its last dimension and keep the corresponding slice.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ # Split along last dimension. input_list = split_tensor_along_last_dim(input_, world_size) # Note: torch.split does not create contiguous tensors by default. rank = get_tensor_model_parallel_rank() output = input_list[rank].contiguous() return output def _gather(input_): """Gather tensors and concatinate along the last dimension.""" world_size = get_tensor_model_parallel_world_size() # Bypass the function if we are using only 1 GPU. if world_size == 1: return input_ # Size and dimension. last_dim = input_.dim() - 1 rank = get_tensor_model_parallel_rank() tensor_list = [torch.empty_like(input_) for _ in range(world_size)] tensor_list[rank] = input_ torch.distributed.all_gather( tensor_list, input_, group=get_tensor_model_parallel_group() ) # Note: torch.cat already creates a contiguous tensor. output = torch.cat(tensor_list, dim=last_dim).contiguous() return output class _CopyToModelParallelRegion(torch.autograd.Function): """Pass the input to the model parallel region.""" @staticmethod def symbolic(graph, input_): return input_ @staticmethod def forward(ctx, input_): return input_ @staticmethod def backward(ctx, grad_output): return _reduce(grad_output) class _ReduceFromModelParallelRegion(torch.autograd.Function): """All-reduce the input from the model parallel region.""" @staticmethod def symbolic(graph, input_): return _reduce(input_) @staticmethod def forward(ctx, input_): return _reduce(input_) @staticmethod def backward(ctx, grad_output): return grad_output class _ScatterToModelParallelRegion(torch.autograd.Function): """Split the input and keep only the corresponding chuck to the rank.""" @staticmethod def symbolic(graph, input_): return _split(input_) @staticmethod def forward(ctx, input_): return _split(input_) @staticmethod def backward(ctx, grad_output): return _gather(grad_output) class _GatherFromModelParallelRegion(torch.autograd.Function): """Gather the input from model parallel region and concatinate.""" @staticmethod def symbolic(graph, input_): return _gather(input_) @staticmethod def forward(ctx, input_): return _gather(input_) @staticmethod def backward(ctx, grad_output): return _split(grad_output) # ----------------- # Helper functions. # ----------------- def copy_to_tensor_model_parallel_region(input_): return _CopyToModelParallelRegion.apply(input_) def reduce_from_tensor_model_parallel_region(input_): return _ReduceFromModelParallelRegion.apply(input_) def scatter_to_tensor_model_parallel_region(input_): return _ScatterToModelParallelRegion.apply(input_) def gather_from_tensor_model_parallel_region(input_): return _GatherFromModelParallelRegion.apply(input_)
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/mappings.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import sys import mpu import torch import torch.nn.functional as F from commons import (IdentityLayer, initialize_distributed, print_separator, set_random_seed) from mpu.cross_entropy import vocab_parallel_cross_entropy sys.path.append("../..") def torch_cross_entropy(batch_size, seq_length, vocab_size, logits_scale, seed): set_random_seed(seed) identity = IdentityLayer( (batch_size, seq_length, vocab_size), scale=logits_scale ).cuda() logits = identity() target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size) loss = ( F.cross_entropy( logits.view(-1, logits.size()[-1]), target.view(-1), reduction="none" ) .view_as(target) .mean() ) loss.backward() return loss, identity.weight.grad def mpu_cross_entropy(batch_size, seq_length, vocab_size, logits_scale, seed): set_random_seed(seed) identity = IdentityLayer( (batch_size, seq_length, vocab_size), scale=logits_scale ).cuda() logits = identity() logits_parallel = mpu.scatter_to_tensor_model_parallel_region(logits) target = torch.cuda.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size) loss = vocab_parallel_cross_entropy(logits_parallel, target).mean() loss.backward() return loss, identity.weight.grad def test_cross_entropy(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing cross entropy with model parallel size {} ...".format( tensor_model_parallel_size ) ) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() batch_size = 13 seq_length = 17 vocab_size_per_partition = 11 logits_scale = 1000.0 vocab_size = vocab_size_per_partition * tensor_model_parallel_size seed = 1234 loss_torch, grad_torch = torch_cross_entropy( batch_size, seq_length, vocab_size, logits_scale, seed ) loss_mpu, grad_mpu = mpu_cross_entropy( batch_size, seq_length, vocab_size, logits_scale, seed ) error = loss_torch.sub_(loss_mpu).abs().max() print( " max error in loss on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 error = grad_torch.sub_(grad_mpu).abs().max() print( " max error in grad on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # Reset groups mpu.destroy_tensor_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") if __name__ == "__main__": initialize_distributed() world_size = torch.distributed.get_world_size() tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test cross entropy") test_cross_entropy(tensor_model_parallel_size) tensor_model_parallel_size *= 2
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/test_cross_entropy.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import sys import mpu import torch import torch.nn.init as init from commons import initialize_distributed, print_separator, set_random_seed from mpu import layers from torch.nn.parameter import Parameter sys.path.append("../..") def test_parallel_embedding(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing parallel embedding with model parallel size {} ...".format( tensor_model_parallel_size ) ) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() batch_size = 17 seq_length = 23 vocab_size = 48 hidden_size = 16 seed = 1236 set_random_seed(123) input_data = ( torch.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size).cuda() ) loss_weight = torch.randn([batch_size, seq_length, hidden_size]).cuda() set_random_seed(seed) embedding_original = torch.nn.Embedding(vocab_size, hidden_size).cuda() output = embedding_original(input_data) loss_original = torch.mul(output, loss_weight).sum() loss_original.backward() set_random_seed(seed) embedding_parallel = layers.ParallelEmbedding( vocab_size, hidden_size, init_method=init.normal_ ).cuda() output = embedding_parallel(input_data) loss_parallel = torch.mul(output, loss_weight).sum() loss_parallel.backward() set_random_seed(seed) embedding_vocab_parallel = layers.VocabParallelEmbedding( vocab_size, hidden_size, init_method=init.normal_ ).cuda() output = embedding_vocab_parallel(input_data) loss_vocab_parallel = torch.mul(output, loss_weight).sum() loss_vocab_parallel.backward() torch.distributed.barrier() error = loss_parallel.sub(loss_original).abs() print( " error in loss (parallel) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-12, "error: {}".format(error) torch.distributed.barrier() error = loss_vocab_parallel.sub(loss_original).abs() print( " error in loss (vocab parallel) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-12, "error: {}".format(error) weight_grad_orig = torch.split( embedding_original.weight.grad, hidden_size // tensor_model_parallel_size, 1 )[mpu.get_tensor_model_parallel_rank()] error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max() print( " error in grad (parallel) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-12, "error: {}".format(error) weight_grad_orig = torch.split( embedding_original.weight.grad, vocab_size // tensor_model_parallel_size, 0 )[mpu.get_tensor_model_parallel_rank()] error = embedding_vocab_parallel.weight.grad.sub(weight_grad_orig).abs().max() print( " error in grad (vocab parallel) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-12, "error: {}".format(error) # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def test_initialize_affine_weight(tensor_model_parallel_size): mpu.initialize_model_parallel(tensor_model_parallel_size) if torch.distributed.get_rank() == 0: print( "> testing initialize_affine_weight with model parallel size: {}".format( tensor_model_parallel_size ) ) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed = 12345 input_size_coeff = 13 input_size = input_size_coeff * tensor_model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * tensor_model_parallel_size # --------------- # Column parallel # --------------- weight = torch.empty(output_size_coeff, input_size) set_random_seed(seed) layers._initialize_affine_weight( weight, output_size, input_size, output_size_coeff, 0, torch.nn.init.normal_ ) # Target. set_random_seed(seed) master_weight = torch.empty(output_size, input_size) torch.nn.init.normal_(master_weight) rank = mpu.get_tensor_model_parallel_rank() my_weight = ( torch.split(master_weight, output_size_coeff, dim=0)[rank].contiguous().clone() ) # Compare. error = weight.sub(my_weight).abs().max() torch.distributed.barrier() print( " column parallel max error (should be zero) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # ------------ # Row parallel # ------------ weight = torch.empty(output_size, input_size_coeff) set_random_seed(seed) mpu.layers._initialize_affine_weight( weight, output_size, input_size, input_size_coeff, 1, torch.nn.init.normal_ ) # Target. set_random_seed(seed) master_weight = torch.empty(output_size, input_size) torch.nn.init.normal_(master_weight) rank = mpu.get_tensor_model_parallel_rank() my_weight = ( torch.split(master_weight, input_size_coeff, dim=1)[rank].contiguous().clone() ) # Compare. error = weight.sub(my_weight).abs().max() torch.distributed.barrier() print( " row parallel max error (should be zero) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") class IdentityLayer2D(torch.nn.Module): def __init__(self, m, n): super(IdentityLayer2D, self).__init__() self.weight = Parameter(torch.Tensor(m, n)) torch.nn.init.xavier_normal_(self.weight) def forward(self): return self.weight def test_column_parallel_linear(tensor_model_parallel_size): mpu.initialize_model_parallel(tensor_model_parallel_size) if torch.distributed.get_rank() == 0: print( "> testing ColumnParallelLinear with model parallel size: {}".format( tensor_model_parallel_size ) ) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * tensor_model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * tensor_model_parallel_size batch_size = 7 # Network identity_layer = IdentityLayer2D(batch_size, input_size).cuda() linear_layer = mpu.ColumnParallelLinear( input_size, output_size, keep_master_weight_for_test=True ).cuda() loss_weight = torch.randn([batch_size, output_size]).cuda() # Forward input_ = identity_layer() output = linear_layer(input_) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() # Values. dLdY = loss_weight X = identity_layer.weight A = linear_layer.master_weight.cuda() dLdA = torch.matmul(dLdY.t(), X) dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1) dLdX = torch.matmul(dLdY, A) rank = mpu.get_tensor_model_parallel_rank() my_dLdA = torch.split(dLdA, output_size_coeff, dim=0)[rank].contiguous().clone() error = my_dLdA.sub(linear_layer.weight.grad).abs().max() torch.distributed.barrier() print( " error in dLdA on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 my_dLdb = torch.split(dLdb, output_size_coeff, dim=0)[rank].contiguous().clone() error = my_dLdb.sub(linear_layer.bias.grad).abs().max() torch.distributed.barrier() print( " error in dLdb on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 error = dLdX.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print( " error in dLdX on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") def test_row_parallel_linear(tensor_model_parallel_size): mpu.initialize_model_parallel(tensor_model_parallel_size) if torch.distributed.get_rank() == 0: print( "> testing RowParallelLinear with model parallel size: {}".format( tensor_model_parallel_size ) ) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * tensor_model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * tensor_model_parallel_size batch_size = 7 # Network identity_layer = IdentityLayer2D(batch_size, input_size).cuda() linear_layer = mpu.RowParallelLinear( input_size, output_size, keep_master_weight_for_test=True ).cuda() loss_weight = torch.randn([batch_size, output_size]).cuda() # Forward input_ = identity_layer() output = linear_layer(input_) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() # Values. dLdY = loss_weight X = identity_layer.weight A = linear_layer.master_weight.cuda() dLdA = torch.matmul(dLdY.t(), X) dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1) dLdX = torch.matmul(dLdY, A) rank = mpu.get_tensor_model_parallel_rank() my_dLdA = torch.split(dLdA, input_size_coeff, dim=1)[rank].contiguous().clone() error = my_dLdA.sub(linear_layer.weight.grad).abs().max() torch.distributed.barrier() print( " error in dLdA on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 error = dLdb.sub(linear_layer.bias.grad).abs().max() torch.distributed.barrier() print( " error in dLdb on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 error = dLdX.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print( " error in dLdX on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") class IdentityLayer3D(torch.nn.Module): def __init__(self, m, n, k): super(IdentityLayer3D, self).__init__() self.weight = Parameter(torch.Tensor(m, n, k)) torch.nn.init.xavier_normal_(self.weight) def forward(self): return self.weight def parallel_self_attention( tensor_model_parallel_size, num_att_heads_per_partition, hidden_size_per_att_head, dropout_prob, batch_size, sequence_length, ): mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed = 12345 set_random_seed(seed) num_att_heads = num_att_heads_per_partition * torch.distributed.get_world_size() hidden_size = hidden_size_per_att_head * num_att_heads # Network identity_layer = IdentityLayer3D(batch_size, sequence_length, hidden_size).cuda() attention_layer = mpu.BertParallelSelfAttention( hidden_size, num_att_heads, dropout_prob ).cuda() loss_weight = torch.randn([batch_size, sequence_length, hidden_size]).cuda() attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).cuda() # Forward input_ = identity_layer() output = attention_layer(input_, attention_mask) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() rank = mpu.get_tensor_model_parallel_rank() mpu.destroy_model_parallel() return ( rank, hidden_size, tensor_model_parallel_size, loss, attention_layer, identity_layer, ) def test_parallel_self_attention(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing ParallelSelfAttention with model parallel size: {}".format( tensor_model_parallel_size ) ) num_att_heads_per_partition = 3 hidden_size_per_att_head = 7 dropout_prob = 0.0 # has to be zero batch_size = 5 sequence_length = 13 ( rank_1, hideen_size_1, tensor_model_parallel_size_1, loss_1, attention_layer_1, identity_layer_1, ) = parallel_self_attention( 1, num_att_heads_per_partition, hidden_size_per_att_head, dropout_prob, batch_size, sequence_length, ) ( rank, hidden_size, tensor_model_parallel_size, loss, attention_layer, identity_layer, ) = parallel_self_attention( tensor_model_parallel_size, num_att_heads_per_partition, hidden_size_per_att_head, dropout_prob, batch_size, sequence_length, ) assert hideen_size_1 == hidden_size error = loss_1.sub(loss).abs().max() torch.distributed.barrier() print( " loss error on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 5.0e-6 my_lin_grad_list = torch.split( attention_layer_1.query_key_value.weight.grad, hidden_size // tensor_model_parallel_size, 0, )[rank::tensor_model_parallel_size] my_lin_grad = torch.cat(my_lin_grad_list, dim=0) error = my_lin_grad.sub(attention_layer.query_key_value.weight.grad).abs().max() torch.distributed.barrier() print( " weight gradient error on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 5.0e-6 error = identity_layer_1.weight.grad.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print( " input gradient error on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 5.0e-6 torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") def parallel_transformer( tensor_model_parallel_size, num_att_heads_per_partition, hidden_size_per_att_head, batch_size, sequence_length, ): mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed = 12345 set_random_seed(seed) num_att_heads = num_att_heads_per_partition * torch.distributed.get_world_size() hidden_size = hidden_size_per_att_head * num_att_heads intermediate_size = 4 * hidden_size # Network identity_layer = IdentityLayer3D(batch_size, sequence_length, hidden_size).cuda() transformer_layer = mpu.BertParallelTransformerLayer( hidden_size, intermediate_size, num_att_heads, 0.0, 0.0, torch.nn.functional.relu, 1.0e-5, ).cuda() loss_weight = torch.randn([batch_size, sequence_length, hidden_size]).cuda() attention_mask = torch.randn([batch_size, 1, 1, sequence_length]).cuda() # Forward input_ = identity_layer() output = transformer_layer(input_, attention_mask) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() rank = mpu.get_tensor_model_parallel_rank() mpu.destroy_model_parallel() return ( rank, hidden_size, tensor_model_parallel_size, loss, transformer_layer, identity_layer, ) def test_parallel_transformer_layer(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing ParallelTransformerLayer with model parallel size: {}".format( tensor_model_parallel_size ) ) num_att_heads_per_partition = 3 hidden_size_per_att_head = 7 batch_size = 5 sequence_length = 13 ( rank_1, hidden_size_1, tensor_model_parallel_size_1, loss_1, transformer_layer_1, identity_layer_1, ) = parallel_transformer( 1, num_att_heads_per_partition, hidden_size_per_att_head, batch_size, sequence_length, ) ( rank, hidden_size, tensor_model_parallel_size, loss, transformer_layer, identity_layer, ) = parallel_transformer( tensor_model_parallel_size, num_att_heads_per_partition, hidden_size_per_att_head, batch_size, sequence_length, ) error = loss_1.sub(loss).abs().max() torch.distributed.barrier() print( " loss error on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 5.0e-5, "error: {}".format(error) error = identity_layer_1.weight.grad.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print( " input gradient error on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 5.0e-5, "error: {}".format(error) torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") if __name__ == "__main__": torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False initialize_distributed() world_size = torch.distributed.get_world_size() print_separator("test initialize affine weight") tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: test_initialize_affine_weight(tensor_model_parallel_size) tensor_model_parallel_size *= 2 tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test parallel embedding") test_parallel_embedding(tensor_model_parallel_size) tensor_model_parallel_size *= 2 print_separator("test column-parallel linear") tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: test_column_parallel_linear(tensor_model_parallel_size) tensor_model_parallel_size *= 2 print_separator("test row-parallel linear") tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: test_row_parallel_linear(tensor_model_parallel_size) tensor_model_parallel_size *= 2 print_separator("test parallel self-attention") tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: test_parallel_self_attention(tensor_model_parallel_size) tensor_model_parallel_size *= 2 print_separator("test parallel transformer") tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: test_parallel_transformer_layer(tensor_model_parallel_size) tensor_model_parallel_size *= 2
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/test_layers.py
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/__init__.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import random import mpu import numpy import torch class IdentityLayer(torch.nn.Module): def __init__(self, size, scale=1.0): super(IdentityLayer, self).__init__() self.weight = torch.nn.Parameter(scale * torch.randn(size)) def forward(self): return self.weight def set_random_seed(seed): """Set random seed for reproducability.""" random.seed(seed) numpy.random.seed(seed) torch.manual_seed(seed) mpu.model_parallel_cuda_manual_seed(seed) def initialize_distributed(backend="nccl"): """Initialize torch.distributed.""" # Get local rank in case it is provided. parser = argparse.ArgumentParser() parser.add_argument( "--local_rank", type=int, default=None, help="local rank passed from distributed launcher", ) args = parser.parse_args() local_rank = args.local_rank # Get rank and world size. rank = int(os.getenv("RANK", "0")) world_size = int(os.getenv("WORLD_SIZE", "1")) print( "> initializing torch.distributed with local rank: {}, " "rank: {}, world size: {}".format(local_rank, rank, world_size) ) # Set the device id. device = rank % torch.cuda.device_count() if local_rank is not None: device = local_rank torch.cuda.set_device(device) # Call the init process. init_method = "tcp://" master_ip = os.getenv("MASTER_ADDR", "localhost") master_port = os.getenv("MASTER_PORT", "6000") init_method += master_ip + ":" + master_port torch.distributed.init_process_group( backend=backend, world_size=world_size, rank=rank, init_method=init_method ) def print_separator(message): torch.distributed.barrier() filler_len = (78 - len(message)) // 2 filler = "-" * filler_len string = "\n" + filler + " {} ".format(message) + filler if torch.distributed.get_rank() == 0: print(string, flush=True) torch.distributed.barrier()
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/commons.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import operator import sys import mpu import torch from commons import initialize_distributed, print_separator from mpu import data as data_utils sys.path.append("../..") def test_broadcast_data(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing broadcast_data with model parallel size {} ...".format( tensor_model_parallel_size ) ) mpu.initialize_model_parallel(tensor_model_parallel_size) torch.manual_seed(1234 + mpu.get_data_parallel_rank()) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() key_size_t = { "key1": [7, 11], "key2": [8, 2, 1], "key3": [13], "key4": [5, 1, 2], "key5": [5, 12], } keys = list(key_size_t.keys()) data = {} data_t = {} for key in key_size_t: data[key] = torch.LongTensor(size=key_size_t[key]).random_(0, 1000) data_t[key] = data[key].clone() data["keyX"] = torch.FloatTensor(size=(5,)).random_(0, 1000) data_t["keyX"] = data["keyX"].clone() if mpu.get_tensor_model_parallel_rank() != 0: data = None data_utils._check_data_types(keys, data_t, torch.int64) key_size, key_numel, total_numel = data_utils._build_key_size_numel_dictionaries( keys, data ) for key in keys: assert key_size[key] == key_size_t[key] total_numel_t = 0 for key in keys: target_size = functools.reduce(operator.mul, key_size_t[key], 1) assert key_numel[key] == target_size total_numel_t += target_size assert total_numel == total_numel_t data_b = data_utils.broadcast_data(keys, data, torch.int64) for key in keys: tensor = data_t[key].cuda() assert data_b[key].sub(tensor).abs().max() == 0 # Reset groups mpu.destroy_tensor_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") if __name__ == "__main__": initialize_distributed() world_size = torch.distributed.get_world_size() tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test test broadcast data") test_broadcast_data(tensor_model_parallel_size) tensor_model_parallel_size *= 2
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/test_data.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import mpu import torch from commons import initialize_distributed, print_separator sys.path.append("../..") def test_initialize_model_parallel(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing initialize_model_parallel with size {} ...".format( tensor_model_parallel_size ) ) tensor_model_parallel_size_ = min( tensor_model_parallel_size, torch.distributed.get_world_size() ) assert not mpu.model_parallel_is_initialized() mpu.initialize_model_parallel(tensor_model_parallel_size_) assert mpu.model_parallel_is_initialized() # Checks. def check(group, world_size, rank): assert world_size == torch.distributed.get_world_size(group=group) assert rank == torch.distributed.get_rank(group=group) # Model parallel. world_size = tensor_model_parallel_size_ rank = torch.distributed.get_rank() % tensor_model_parallel_size_ assert world_size == mpu.get_tensor_model_parallel_world_size() assert rank == mpu.get_tensor_model_parallel_rank() check(mpu.get_tensor_model_parallel_group(), world_size, rank) # Data parallel. world_size = torch.distributed.get_world_size() // tensor_model_parallel_size_ rank = torch.distributed.get_rank() // tensor_model_parallel_size assert world_size == mpu.get_data_parallel_world_size() assert rank == mpu.get_data_parallel_rank() check(mpu.get_data_parallel_group(), world_size, rank) # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size_): if torch.distributed.get_rank() == 0: print( "> testing get_tensor_model_parallel_src_rank with size {} ...".format( tensor_model_parallel_size_ ) ) tensor_model_parallel_size = min( tensor_model_parallel_size_, torch.distributed.get_world_size() ) assert not mpu.model_parallel_is_initialized() mpu.initialize_model_parallel(tensor_model_parallel_size) assert mpu.model_parallel_is_initialized() # Checks src_rank = torch.distributed.get_rank() - mpu.get_tensor_model_parallel_rank() assert mpu.get_tensor_model_parallel_src_rank() == src_rank # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") if __name__ == "__main__": initialize_distributed() world_size = torch.distributed.get_world_size() tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test initialize model parallel") test_initialize_model_parallel(tensor_model_parallel_size) print_separator("test model parallel source rank") test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size) tensor_model_parallel_size *= 2
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/test_initialize.py
# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import mpu import torch from commons import initialize_distributed, print_separator sys.path.append("../..") def test_set_cuda_rng_state(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing set_rng_state with size {} ...".format( tensor_model_parallel_size ) ) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() size = 123 seed = 1234 torch.cuda.manual_seed(1234) tensor = torch.cuda.FloatTensor(size) # Get the state rng_state = torch.cuda.get_rng_state() rng_state_copy = rng_state.clone() # Do some stuff. for _ in range(5): torch.randn(size, out=tensor) result_1 = tensor.clone() assert rng_state.sub(rng_state_copy).max() == 0 assert torch.cuda.get_rng_state().sub(rng_state_copy).max() > 0 # State should be different. new_rng_state = torch.cuda.get_rng_state() max_diff = new_rng_state.sub(rng_state).max() print( " max diff in rng state (should be non-zero) on global rank {}: {}".format( torch.distributed.get_rank(), max_diff ) ) assert max_diff > 0 # Reset the rng state and do the same stuff. mpu.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) mpu.random._set_cuda_rng_state(rng_state) for _ in range(5): torch.randn(size, out=tensor) result_2 = tensor.clone() # Results should be the same error = result_2.sub(result_1).abs().max() print( " max error in generated tensors (should be zero) on " "global rank {}: {}".format(torch.distributed.get_rank(), error) ) assert error < 1.0e-6 # Input state should have remained intact. error = rng_state.sub(rng_state_copy).max() print( " max error in rng state (should be zero) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error == 0 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def test_cuda_rng_tracker(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing cuda rng tracker with size {} ...".format( tensor_model_parallel_size ) ) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() seed_1 = 1234 seed_2 = 4321 size = [12, 21] tensor = torch.cuda.FloatTensor(size) # Set to seed_1 and generate two tensors. torch.cuda.manual_seed(seed_1) torch.randn(size, out=tensor) target_11 = tensor.clone() torch.randn(size, out=tensor) target_12 = tensor.clone() # Set to seed_2 and generate two tensors. torch.cuda.manual_seed(seed_2) torch.randn(size, out=tensor) target_21 = tensor.clone() torch.randn(size, out=tensor) target_22 = tensor.clone() # Now if we interleave seed_1 and seed_2, # we should still get the same tensors torch.cuda.manual_seed(seed_1) mpu.get_cuda_rng_tracker().add("test", seed_2) torch.randn(size, out=tensor) result_11 = tensor.clone() with mpu.get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_21 = tensor.clone() torch.randn(size, out=tensor) result_12 = tensor.clone() with mpu.get_cuda_rng_tracker().fork("test"): torch.randn(size, out=tensor) result_22 = tensor.clone() diff = result_11.sub(result_21).abs().max() diff = min(diff, result_12.sub(result_22).abs().max()) print( " max diff in generated tensors (should be non-zero) on " "global rank {}: {}".format(torch.distributed.get_rank(), diff) ) assert diff > 1.0e-6 error = max( result_11.sub(target_11).abs().max(), result_12.sub(target_12).abs().max() ) error = max(error, result_21.sub(target_21).abs().max()) error = max(error, result_22.sub(target_22).abs().max()) print( " max error in generated tensors (should be zero) on " "global rank {}: {}".format(torch.distributed.get_rank(), error) ) assert error < 1.0e-6 # Reset the tracker mpu.get_cuda_rng_tracker().reset() # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def test_model_parallel_cuda_manual_seed(tensor_model_parallel_size): if torch.distributed.get_rank() == 0: print( "> testing model parallel cuda manual seed with size {} ...".format( tensor_model_parallel_size ) ) mpu.initialize_model_parallel(tensor_model_parallel_size) tensor_model_parallel_size = mpu.get_tensor_model_parallel_world_size() mpu.model_parallel_cuda_manual_seed(12345) assert torch.cuda.initial_seed() == 12345 with mpu.get_cuda_rng_tracker().fork(): assert torch.cuda.initial_seed() == ( 12345 + 2718 + mpu.get_tensor_model_parallel_rank() ) # Reset the tracker mpu.get_cuda_rng_tracker().reset() # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") if __name__ == "__main__": initialize_distributed() world_size = torch.distributed.get_world_size() tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test set rng state") test_set_cuda_rng_state(tensor_model_parallel_size) tensor_model_parallel_size *= 2 tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test cuda rng tracker") test_cuda_rng_tracker(tensor_model_parallel_size) tensor_model_parallel_size *= 2 tensor_model_parallel_size = 1 while tensor_model_parallel_size <= world_size: print_separator("test model parallel cuda manual seed") test_model_parallel_cuda_manual_seed(tensor_model_parallel_size) tensor_model_parallel_size *= 2
distill-bloom-deepspeed-main
distill_bloom/dataset/megatron/mpu/tests/test_random.py
# coding=utf-8 # Copyright 2020 Optuna, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Logging utilities. """ import logging import os import sys import threading from functools import wraps from logging import CRITICAL # NOQA from logging import DEBUG # NOQA from logging import ERROR # NOQA from logging import FATAL # NOQA from logging import INFO # NOQA from logging import NOTSET # NOQA from logging import WARN # NOQA from logging import WARNING # NOQA from typing import Optional _lock = threading.Lock() _default_handler: Optional[logging.Handler] = None log_levels = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } _default_log_level = logging.WARNING def _get_default_logging_level(): """ If MEGATRON_DEEPSPEED_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is not - fall back to ``_default_log_level`` """ env_level_str = os.getenv("MEGATRON_DEEPSPEED_VERBOSITY", None) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option MEGATRON_DEEPSPEED_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys()) }" ) return _default_log_level def _get_library_name() -> str: return __name__.split(".")[0] def _get_library_root_logger() -> logging.Logger: return logging.getLogger(_get_library_name()) def _configure_library_root_logger() -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _default_handler = logging.StreamHandler() # Set sys.stderr as stream. _default_handler.flush = sys.stderr.flush # Apply our default configuration to the library root logger. library_root_logger = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) library_root_logger.propagate = False def _reset_library_root_logger() -> None: global _default_handler with _lock: if not _default_handler: return library_root_logger = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) _default_handler = None def get_log_levels_dict(): return log_levels def get_logger(name: Optional[str] = None) -> logging.Logger: """ Return a logger with the specified name. This function is not supposed to be directly accessed unless you are writing a custom transformers module. """ if name is None: name = _get_library_name() _configure_library_root_logger() return logging.getLogger(name) def get_verbosity() -> int: """ Return the current level for the 🤗 Transformers's root logger as an int. Returns: :obj:`int`: The logging level. .. note:: 🤗 Transformers has following logging levels: - 50: ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - 40: ``transformers.logging.ERROR`` - 30: ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - 20: ``transformers.logging.INFO`` - 10: ``transformers.logging.DEBUG`` """ _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def set_verbosity(verbosity: int) -> None: """ Set the verbosity level for the 🤗 Transformers's root logger. Args: verbosity (:obj:`int`): Logging level, e.g., one of: - ``transformers.logging.CRITICAL`` or ``transformers.logging.FATAL`` - ``transformers.logging.ERROR`` - ``transformers.logging.WARNING`` or ``transformers.logging.WARN`` - ``transformers.logging.INFO`` - ``transformers.logging.DEBUG`` """ _configure_library_root_logger() _get_library_root_logger().setLevel(verbosity) def set_verbosity_info(): """Set the verbosity to the :obj:`INFO` level.""" return set_verbosity(INFO) def set_verbosity_warning(): """Set the verbosity to the :obj:`WARNING` level.""" return set_verbosity(WARNING) def set_verbosity_debug(): """Set the verbosity to the :obj:`DEBUG` level.""" return set_verbosity(DEBUG) def set_verbosity_error(): """Set the verbosity to the :obj:`ERROR` level.""" return set_verbosity(ERROR) def disable_default_handler() -> None: """Disable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def enable_default_handler() -> None: """Enable the default handler of the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def add_handler(handler: logging.Handler) -> None: """adds a handler to the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(handler) def remove_handler(handler: logging.Handler) -> None: """removes given handler from the HuggingFace Transformers's root logger.""" _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(handler) def disable_propagation() -> None: """ Disable propagation of the library log outputs. Note that log propagation is disabled by default. """ _configure_library_root_logger() _get_library_root_logger().propagate = False def enable_propagation() -> None: """ Enable propagation of the library log outputs. Please disable the HuggingFace Transformers's default handler to prevent double logging if the root logger has been configured. """ _configure_library_root_logger() _get_library_root_logger().propagate = True def enable_explicit_format() -> None: """ Enable explicit formatting for every HuggingFace Transformers's logger. The explicit formatter is as follows: :: [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: formatter = logging.Formatter( "[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(formatter) def reset_format() -> None: """ Resets the formatting for HuggingFace Transformers's loggers. All handlers currently bound to the root logger are affected by this method. """ handlers = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(None)
distill-bloom-deepspeed-main
distill_bloom/arguments/logging.py
# Arguments for distillation import argparse import collections import os import re import time import deepspeed from .logging import log_levels def parse_args(extra_args_provider=None, defaults={}, ignore_unknown_args=False): r""" Helper function to parse all necessarly arguments to perform teacher / student distillation """ parser = argparse.ArgumentParser(description="Main Arguments", allow_abbrev=False) # HF model arguments parser = _add_hf_model_args(parser) # Regularization arguments parser = _add_regularization_args(parser) # Dataset paths parser = _add_data_args(parser) # DeepSpeed args parser = deepspeed.add_config_arguments(parser) # Training args parser = _add_training_args(parser) # Validation args parser = _add_validation_args(parser) # Initialization args parser = _add_initialization_args(parser) # Distriubted args parser = _add_distributed_args(parser) # Mixed precision args parser = _add_mixed_precision_args(parser) # Parse args args = parser.parse_args() if args.data_path: assert args.train_weighted_split_paths is None, message setattr(args, "valid_weighted_split_names", None) setattr(args, "valid_weighted_split_weights", None) setattr(args, "valid_weighted_split_splits", None) setattr(args, "test_weighted_split_names", None) setattr(args, "test_weighted_split_weights", None) setattr(args, "test_weighted_split_splits", None) # args.split default value in the args is None it is set here in order # to check that it does not to overlap with the 2nd mode of data loading if args.split is None: args.split = "969, 30, 1" if ( args.train_weighted_split_paths or args.valid_weighted_split_paths or args.test_weighted_split_paths ): assert args.data_path is None and args.split is None, message return args def _add_hf_model_args(parser, log_levels=log_levels): r""" A wrapper function to add arguments for loading HF models """ group = parser.add_argument_group(title="network parameters") # Teacher & student paths group.add_argument( "--teacher-model-path", type=str, help="path to load the teacher weights from" ) group.add_argument( "--student-model-path", type=str, help="path to load the teacher weights from" ) group.add_argument( "--kill-switch-path", type=str, help=( "path to look for a kill switch, which if found will automatically exit the" " program" ), ) # TODO: assess if we need those arguments in the future group.add_argument( "--log-level", type=str, choices=list(log_levels.keys()), help=( "Logger log level to use on the main process. Possible choices are the log" " levels as strings: 'debug', 'info', 'warning', 'error' and 'critical'," " plus a 'passive' level which doesn't set anything and lets the" " application set the level." ), ) group.add_argument( "--log-level-replica", type=str, choices=list(log_levels.keys()), help="Logger log level to use on replicas. Same choices as ``log_level``", ) return parser def _add_regularization_args(parser): r""" Network regularization arguments - modify them at your own risk """ group = parser.add_argument_group(title="regularization") group.add_argument( "--attention-dropout", type=float, default=0.1, help="Post attention dropout probability.", ) group.add_argument( "--hidden-dropout", type=float, default=0.1, help="Dropout probability for hidden state transformer.", ) group.add_argument( "--weight-decay", type=float, default=0.01, help="Weight decay coefficient for L2 regularization.", ) group.add_argument( "--clip-grad", type=float, default=1.0, help="Gradient clipping based on global L2 norm.", ) group.add_argument( "--adam-beta1", type=float, default=0.9, help=( "First coefficient for computing running averages " "of gradient and its square" ), ) group.add_argument( "--adam-beta2", type=float, default=0.999, help=( "Second coefficient for computing running averages " "of gradient and its square" ), ) group.add_argument( "--adam-eps", type=float, default=1e-08, help="Term added to the denominator to improvenumerical stability", ) group.add_argument( "--sgd-momentum", type=float, default=0.9, help="Momentum factor for sgd" ) return parser def _add_data_args(parser): r""" Wrapper function to add arguments for loading data - this function is directly copied from Megatron-DeepSpeed """ group = parser.add_argument_group(title="data and dataloader") # option 1 for data loading (mutually exclusive with option2) group.add_argument( "--data-path", nargs="*", default=None, help=( "Path to the training dataset. Accepted format:" "1) a single data path, 2) multiple datasets in the" "form: dataset1-weight dataset1-path dataset2-weight " "dataset2-path ..." ), ) group.add_argument( "--split", type=str, default=None, help=( "Comma-separated list of proportions for training," " validation, and test split. For example the split " "`90,5,5` will use 90%% of data for training, 5%% for " "validation and 5%% for test." ), ) # option 2 for data loading (mutually exclusive with option1) # helper class to parse the --xxx-weighted-split-paths # note here two args are set: extra valid dataset paths and names class parse_data_paths(argparse.Action): def __call__(self, parser, args, values, option_string=None): if option_string == "--train-weighted-split-paths": assert len(values) == 1, "Only 1 dataset group is allowed to" "be passed for the argument --train-weighted-split-paths" # make sure string given in the correct format err_message = "Each data group should be input on the following format" '"GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2"' "where START < END" for v in values: # each prefix consists several datasets separated by commas prefix = ":".join(v.split(":")[1:]) # remove GIVEN_NAME datasets = prefix.split(",") # check if each dataset is formatted like `WEIGHT START:END PATH` for d in datasets: assert len(d.split()) == 3, err_message start, end = d.split()[1].split(":") assert float(start) < float(end), err_message names = [v.split(":")[0] for v in values] prefixes = [":".join(v.split(":")[1:]).strip() for v in values] weights = [[d.split()[0] for d in p.split(",")] for p in prefixes] splits = [[d.split()[1] for d in p.split(",")] for p in prefixes] paths = [[d.split()[2] for d in p.split(",")] for p in prefixes] # # to keep consistency with Option 1 of data loading (through --data-path) # # paths will contain strings on the following form # # "WEIGHTS1 PATH1 WEIGHTS2 PATH2 WEIGHTS3 PATH3" for each dataset group # # while data will be parsed in additional arguments below # paths_option1_style = [] # for p, w in zip(paths, weights): # paths_option1_style.append(" ".join([f"{w_i} {p_i}" for p_i, w_i in zip(p,w)])) # setattr(args, self.dest, paths_option1_style) setattr(args, self.dest, paths) setattr(args, self.dest.replace("paths", "weights"), weights) setattr(args, self.dest.replace("paths", "splits"), splits) setattr(args, self.dest.replace("paths", "names"), names) group.add_argument( "--train-weighted-split-paths", nargs="*", default=None, help=( "Weights, splits and paths to groups of datasets" "Accepted format: ONE dataset groups could be" "submitted in the following form between double quotes" '"GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2"' 'e.g.: "NAME_ABC: 0.6 0:0.6 A, 0.3 0:1 B, 0.1 0:1 C" ' "WEIGHT is used to up and down sample each dataset A,B,C in the group" "START:END indicates the split portion of the dataset" ), action=parse_data_paths, ) group.add_argument( "--valid-weighted-split-paths", nargs="*", default=None, help=( "Weights, splits and paths to groups of datasets" "Accepted format: one or many dataset groups could be" "submitted in the following form each between double quotes" '"GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2"' 'e.g.: "NAME_ABC: 0.6 0.6:0.8 A, 0.3 0:1 B, 0.1 0:1 C" ' '"NAME_CDE: 0.6 0.6:0.8 C, 0.3 0:1 D, 0.1 0:1 E" ' "validation will be run on each of those groups independently" ), action=parse_data_paths, ) group.add_argument( "--test-weighted-split-paths", nargs="*", default=None, help=( "Weights, splits and paths to groups of datasets" "Accepted format: one or many dataset groups could be" "submitted in the following form each between double quotes" '"GIVEN_NAME WEIGHT1 START:END PATH1, WEIGHT2 START:END PATH2"' 'e.g.: "NAME_ABC: 0.6 0.6:0.8 A, 0.3 0:1 B, 0.1 0:1 C" ' '"NAME_CDE: 0.6 0.6:0.8 C, 0.3 0:1 D, 0.1 0:1 E" ' "test will be run on each of those groups independently" ), action=parse_data_paths, ) class parse_data_paths_path(argparse.Action): def __call__(self, parser, args, values, option_string=None): expected_option_strings = [ "--train-weighted-split-paths-path", "--valid-weighted-split-paths-path", "--test-weighted-split-paths-path", ] assert ( option_string in expected_option_strings ), f"Expected {option_string} to be in {expected_option_strings}" with open(values, "r") as fi: lines = fi.readlines() assert ( len(lines) == 1 ), f"Got multiple lines {len(lines)} instead of 1 expected" assert ( lines[0][-2:] == '"\n' and lines[0][0] == '"' ), f"Invalid input format, got {lines}" values = lines[0][1:-2].split('" "') weighted_split_paths_dest = re.sub(r"_path$", "", self.dest) weighted_split_paths_option = re.sub( r"-path$", "", self.option_strings[0] ) setattr(args, weighted_split_paths_dest, values) parse_data_paths( option_strings=[weighted_split_paths_option], dest=weighted_split_paths_dest, )(parser, args, values, option_string=weighted_split_paths_option) group.add_argument( "--train-weighted-split-paths-path", type=str, action=parse_data_paths_path, default=None, ) group.add_argument( "--valid-weighted-split-paths-path", type=str, action=parse_data_paths_path, default=None, ) group.add_argument( "--test-weighted-split-paths-path", type=str, action=parse_data_paths_path, default=None, ) group.add_argument( "--log-path", type=str, default=None, help="Path to the save arguments file." ) group.add_argument( "--vocab-file", type=str, default=None, help="Path to the vocab file." ) group.add_argument( "--merge-file", type=str, default=None, help="Path to the BPE merge file." ) group.add_argument( "--vocab-extra-ids", type=int, default=0, help=( "Number of additional vocabulary tokens. " "They are used for span masking in the T5 model" ), ) group.add_argument( "--seq-length", type=int, default=None, help="Maximum sequence length to process.", ) group.add_argument( "--encoder-seq-length", type=int, default=None, help=( "Maximum encoder sequence length to process." "This should be exclusive of --seq-length" ), ) group.add_argument( "--decoder-seq-length", type=int, default=None, help="Maximum decoder sequence length to process.", ) group.add_argument( "--retriever-seq-length", type=int, default=256, help="Maximum sequence length for the biencoder model for retriever", ) group.add_argument( "--sample-rate", type=float, default=1.0, help="sample rate for training data. Supposed to be 0 < sample_rate < 1", ) group.add_argument( "--mask-prob", type=float, default=0.15, help="Probability of replacing a token with mask.", ) group.add_argument( "--short-seq-prob", type=float, default=0.1, help="Probability of producing a short sequence.", ) group.add_argument("--mmap-warmup", action="store_true", help="Warm up mmap files.") group.add_argument( "--num-workers", type=int, default=2, help="Dataloader number of workers." ) group.add_argument( "--valid-num-workers", type=int, default=2, help="Dataloader number of workers for validation.", ) group.add_argument( "--tokenizer-type", type=str, default=None, choices=[ "BertWordPieceLowerCase", "BertWordPieceCase", "GPT2BPETokenizer", "PretrainedFromHF", ], help="What type of tokenizer to use.", ) group.add_argument( "--tokenizer-name-or-path", type=str, default=None, help="Name or path of the huggingface tokenizer.", ) group.add_argument( "--data-impl", type=str, default="infer", choices=["lazy", "cached", "mmap", "infer"], help="Implementation of indexed datasets.", ) group.add_argument( "--reset-position-ids", action="store_true", help="Reset posistion ids after end-of-document token.", ) group.add_argument( "--reset-attention-mask", action="store_true", help=( "Reset self attention maske after end-of-document token. Attention between" " tokens from different documents is null." ), ) group.add_argument( "--eod-mask-loss", action="store_true", help="Mask loss for the end of document tokens.", ) group.add_argument( "--loss-on-targets-only", action="store_true", help="Mask loss on input sequence.", ) group.add_argument( "--reweight-loss-based-on-position-frequency", action="store_true", help=( "Some objectives require us to sample loss_mask. This might introduce bias" " towards specific positions. This option tries to un-bias the loss by" " reweighting loss on specific positions based on how frequently we train" " on that position.This is mostly used for prefix_lm training" ), ) group.add_argument( "--noise-density", type=float, default=None, help="Span corruption noise density", ) group.add_argument( "--mean-noise-span-length", type=int, default=None, help="Span corruption mean noise span length", ) return parser def _add_training_args(parser): group = parser.add_argument_group(title="training") group.add_argument( "--micro-batch-size", type=int, default=None, help=( "Batch size per model instance (local batch size). " "Global batch size is local batch size times data " "parallel size times number of micro batches." ), ) group.add_argument( "--batch-size", type=int, default=None, help="Old batch size parameter, do not use. Use --micro-batch-size instead", ) group.add_argument( "--global-batch-size", type=int, default=None, help=( "Training batch size. If set, it should be a " "multiple of micro-batch-size times data-parallel-size. " "If this value is None, then " "use micro-batch-size * data-parallel-size as the " "global batch size. This choice will result in 1 for " "number of micro-batches." ), ) group.add_argument( "--rampup-batch-size", nargs="*", default=None, help=( "Batch size ramp up with the following values:" " --rampup-batch-size <start batch size> " " <batch size increment> " " <ramp-up samples> " "For example: " " --rampup-batch-size 16 8 300000 " " --global-batch-size 1024 " "will start with global batch size 16 and over " " (1024 - 16) / 8 = 126 intervals will increase " "the batch size linearly to 1024. In each interval " "we will use approximately 300000 / 126 = 2380 samples." ), ) group.add_argument( "--checkpoint-activations", action="store_true", help=( "Checkpoint activation to allow for training " "with larger models, sequences, and batch sizes." ), ) group.add_argument( "--distribute-checkpointed-activations", action="store_true", help="If set, distribute checkpointed activations across model parallel group.", ) group.add_argument( "--checkpoint-num-layers", type=int, default=1, help="chunk size (number of layers) for checkpointing.", ) group.add_argument( "--train-iters", type=int, default=None, help=( "Total number of iterations to train over all " "training runs. Note that either train-iters or " "train-samples should be provided." ), ) group.add_argument( "--train-samples", type=int, default=None, help=( "Total number of samples to train over all " "training runs. Note that either train-iters or " "train-samples should be provided." ), ) group.add_argument( "--train-tokens", type=int, default=None, help="Total number of tokens to train over all training runs.", ) group.add_argument( "--log-interval", type=int, default=100, help="Report loss and timing interval." ) group.add_argument( "--exit-interval", type=int, default=None, help="Exit the program after the iteration is divisible by this value.", ) group.add_argument( "--exit-duration-in-mins", type=int, default=None, help="Exit the program after this many minutes.", ) group.add_argument( "--tensorboard-dir", type=str, default=None, help="Write TensorBoard logs to this directory.", ) group.add_argument( "--no-masked-softmax-fusion", action="store_false", help="Disable fusion of query_key_value scaling, masking, and softmax.", dest="masked_softmax_fusion", ) group.add_argument( "--no-bias-gelu-fusion", action="store_false", help="Disable bias and gelu fusion.", dest="bias_gelu_fusion", ) group.add_argument( "--no-bias-dropout-fusion", action="store_false", help="Disable bias and dropout fusion.", dest="bias_dropout_fusion", ) group.add_argument( "--optimizer", type=str, default="adam", choices=["adam", "sgd"], help="Optimizer function", ) group.add_argument( "--use-bnb-optimizer", action="store_true", help=( "Use bitsandbytes optimizer for efficient training," "please refer https://github.com/facebookresearch/bitsandbytes." ), dest="use_bnb_optimizer", ) group.add_argument( "--dataloader-type", type=str, default=None, choices=["single", "cyclic"], help="Single pass vs multiple pass data loader", ) group.add_argument( "--cpu-optimizer", action="store_true", help="Run optimizer on CPU" ) group.add_argument( "--cpu_torch_adam", action="store_true", help="Use Torch Adam as optimizer on CPU.", ) group.add_argument( "--codecarbon-dir", type=str, default=None, help="Write CodeCarbon logs to this directory.", ) group.add_argument( "--eval-only", type=bool, required=False, help=( "If set to True, no train step will be performed." "and only the evaluation on the `valid` and `test` sets " "will be performed" ), ) group.add_argument( "--skip-train-iteration-range", type=str, nargs="+", default=None, help=( "Iteration ranges to skip. The values are one or more dash-separated" " ranges. e.g., 101-200 251-300." ), ) group.add_argument( "--inference", action="store_true", help=( "Very basic inference mode: not allocating optim/lr - requires ZERO_STAGE=0" ), ) group.add_argument( "--abort-on-unmet-fused-kernel-constraints", action="store_true", help=( "If set to True, the program will abort if the constraints for loading a" " fused kernel aren't met" ), ) group.add_argument( "--pp-partition-method", type=str, default=None, help=( "Use to override the pipeline stages partitioning method. e.g.," " 'type:transformer|embedding'" ), ) return parser def _add_validation_args(parser): group = parser.add_argument_group(title="validation") group.add_argument( "--eval-iters", type=int, default=100, help="Number of iterations to run for evaluationvalidation/test for.", ) group.add_argument( "--eval-interval", type=int, default=1000, help="Interval between running evaluation on validation set.", ) return parser def _add_initialization_args(parser): group = parser.add_argument_group(title="initialization") group.add_argument( "--seed", type=int, default=1234, help="Random seed used for python, numpy, pytorch, and cuda.", ) group.add_argument( "--init-method-std", type=float, default=0.02, help=( "Standard deviation of the zero mean normal " "distribution used for weight initialization." ), ) group.add_argument( "--init-method-xavier-uniform", action="store_true", help="Enable Xavier uniform parameter initialization", ) return parser def _add_distributed_args(parser): group = parser.add_argument_group(title="distributed") group.add_argument( "--tensor-model-parallel-size", type=int, default=1, help="Degree of tensor model parallelism.", ) group.add_argument( "--student-tensor-model-parallel-size", type=int, default=1, help="Degree of tensor model parallelism.", ) group.add_argument( "--pipeline-model-parallel-size", type=int, default=1, help="Degree of pipeline model parallelism.", ) group.add_argument( "--student-pipeline-model-parallel-size", type=int, default=1, help="Degree of pipeline model parallelism.", ) group.add_argument( "--model-parallel-size", type=int, default=None, help=( "Old model parallel argument, do not use. Use " "--tensor-model-parallel-size instead." ), ) group.add_argument( "--num-layers-per-virtual-pipeline-stage", type=int, default=None, help="Number of layers per virtual pipeline stage", ) group.add_argument( "--distributed-backend", default="nccl", choices=["nccl", "gloo"], help="Which backend to use for distributed training.", ) group.add_argument( "--DDP-impl", default="local", choices=["local", "torch"], help="which DistributedDataParallel implementation to use.", ) group.add_argument( "--use-contiguous-buffers-in-ddp", action="store_true", help=( "If set, use contiguous buffer in DDP. Note that " "this option only works woth local DDP." ), ) group.add_argument( "--no-scatter-gather-tensors-in-pipeline", action="store_false", help="Use scatter/gather to optimize communication of tensors in pipeline", dest="scatter_gather_tensors_in_pipeline", ) group.add_argument( "--local_rank", type=int, default=None, help="local rank passed from distributed launcher.", ) group.add_argument( "--lazy-mpu-init", type=bool, required=False, help=( "If set to True, initialize_megatron() " "skips DDP initialization and returns function to " "complete it instead.Also turns on " "--use-cpu-initialization flag. This is for " "external DDP manager." ), ) group.add_argument( "--use-cpu-initialization", action="store_true", default=None, help="If set, affine parallel weights initialization uses CPU", ) return parser def _add_mixed_precision_args(parser): group = parser.add_argument_group(title="mixed precision") group.add_argument("--fp16", action="store_true", help="Run model in fp16 mode.") group.add_argument( "--bf16", action="store_true", help="Run model in bfloat16 mode." ) return parser
distill-bloom-deepspeed-main
distill_bloom/arguments/arguments.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from setuptools import setup from setuptools import find_packages extras = {} extras["quality"] = ["black ~= 23.1", "ruff >= 0.0.241", "hf-doc-builder >= 0.3.0", "urllib3 < 2.0.0"] extras["docs"] = [] extras["test_prod"] = ["pytest", "pytest-xdist", "pytest-subtests", "parameterized"] extras["test_dev"] = ["datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed", "tqdm"] extras["testing"] = extras["test_prod"] + extras["test_dev"] extras["rich"] = ["rich"] extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard"] extras["dev"] = extras["quality"] + extras["testing"] + extras["rich"] extras["sagemaker"] = [ "sagemaker", # boto3 is a required package in sagemaker ] setup( name="accelerate", version="0.20.0.dev0", description="Accelerate", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="deep learning", license="Apache", author="The HuggingFace team", author_email="sylvain@huggingface.co", url="https://github.com/huggingface/accelerate", package_dir={"": "src"}, packages=find_packages("src"), entry_points={ "console_scripts": [ "accelerate=accelerate.commands.accelerate_cli:main", "accelerate-config=accelerate.commands.config:main", "accelerate-launch=accelerate.commands.launch:main", ] }, python_requires=">=3.7.0", install_requires=["numpy>=1.17", "packaging>=20.0", "psutil", "pyyaml", "torch>=1.6.0"], extras_require=extras, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], ) # Release checklist # 1. Change the version in __init__.py and setup.py. # 2. Commit these changes with the message: "Release: VERSION" # 3. Add a tag in git to mark the release: "git tag VERSION -m 'Adds tag VERSION for pypi' " # Push the tag to git: git push --tags origin main # 4. Run the following commands in the top-level directory: # python setup.py bdist_wheel # python setup.py sdist # 5. Upload the package to the pypi test server first: # twine upload dist/* -r pypitest # twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/ # 6. Check that you can install it in a virtualenv by running: # pip install -i https://testpypi.python.org/pypi accelerate # accelerate env # accelerate test # 7. Upload the final version to actual pypi: # twine upload dist/* -r pypi # 8. Add release notes to the tag in github once everything is looking hunky-dory. # 9. Update the version in __init__.py, setup.py to the new version "-dev" and push to master
accelerate-wip-main
setup.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from transformers import AutoModelForCausalLM, AutoTokenizer from accelerate.big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from accelerate.hooks import remove_hook_from_submodules from accelerate.test_utils import require_cuda, require_mps, require_multi_gpu, require_torch_min_version, slow from accelerate.utils import offload_state_dict class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class ModelForTestTiedWeights(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(4, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 4) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class BiggerModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.linear2 = nn.Linear(4, 5) self.batchnorm = nn.BatchNorm1d(5) self.linear3 = nn.Linear(5, 6) self.linear4 = nn.Linear(6, 5) def forward(self, x): return self.linear4(self.linear3(self.batchnorm(self.linear2(self.linear1(x))))) # To test preload_module_classes class ModuleWithUnusedSubModules(nn.Module): def __init__(self, input_dim, output_dim): super().__init__() self.linear = nn.Linear(input_dim, output_dim) def forward(self, x): return x @ self.linear.weight.t() + self.linear.bias class ModelWithUnusedSubModulesForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = ModuleWithUnusedSubModules(3, 4) self.linear2 = ModuleWithUnusedSubModules(4, 5) self.batchnorm = nn.BatchNorm1d(5) self.linear3 = ModuleWithUnusedSubModules(5, 6) self.linear4 = ModuleWithUnusedSubModules(6, 5) def forward(self, x): return self.linear4(self.linear3(self.batchnorm(self.linear2(self.linear1(x))))) @require_torch_min_version(version="1.9.0") class BigModelingTester(unittest.TestCase): def test_init_empty_weights(self): # base use with init_empty_weights(): module = nn.Linear(4, 5) self.assertEqual(module.weight.device, torch.device("meta")) # base use with buffers, they are not touched with init_empty_weights(): module = nn.BatchNorm1d(4) self.assertEqual(module.weight.device, torch.device("meta")) self.assertEqual(module.running_mean.device, torch.device("cpu")) # Use with include_buffers=True with init_empty_weights(include_buffers=True): module = nn.BatchNorm1d(4) self.assertEqual(module.weight.device, torch.device("meta")) self.assertEqual(module.running_mean.device, torch.device("meta")) # Double check we didn't break PyTorch module = nn.BatchNorm1d(4) self.assertEqual(module.weight.device, torch.device("cpu")) self.assertEqual(module.running_mean.device, torch.device("cpu")) def test_init_empty_weights_very_large_model(self): # This is a 100 billion parameters model. with init_empty_weights(): _ = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) @require_cuda def test_init_on_device_cuda(self): device = torch.device("cuda:0") with init_on_device(device): model = nn.Linear(10, 10) self.assertEqual(model.weight.device, device) self.assertEqual(model.weight.device, device) @require_mps def test_init_on_device_mps(self): device = torch.device("mps:0") with init_on_device(device): model = nn.Linear(10, 10) self.assertEqual(model.weight.device, device) self.assertEqual(model.weight.device, device) def test_cpu_offload(self): model = ModelForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") cpu_offload(model, execution_device=device) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) cpu_offload(model, execution_device=device, offload_buffers=True) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) def test_cpu_offload_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") cpu_offload(model, execution_device=device, preload_module_classes=["ModuleWithUnusedSubModules"]) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) cpu_offload( model, execution_device=device, offload_buffers=True, preload_module_classes=["ModuleWithUnusedSubModules"], ) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) @slow @require_cuda def test_cpu_offload_gpt2(self): tokenizer = AutoTokenizer.from_pretrained("gpt2") inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(0) gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") cpu_offload(gpt2, execution_device=0) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) def test_disk_offload(self): model = ModelForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") with TemporaryDirectory() as tmp_dir: disk_offload(model, tmp_dir, execution_device=device) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) with TemporaryDirectory() as tmp_dir: disk_offload(model, tmp_dir, execution_device=device, offload_buffers=True) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) def test_disk_offload_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() x = torch.randn(2, 3) expected = model(x) device = torch.device(0 if torch.cuda.is_available() else "cpu") with TemporaryDirectory() as tmp_dir: disk_offload( model, tmp_dir, execution_device=device, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) # Clean up for next test. remove_hook_from_submodules(model) with TemporaryDirectory() as tmp_dir: disk_offload( model, tmp_dir, execution_device=device, offload_buffers=True, preload_module_classes=["ModuleWithUnusedSubModules"], ) output = model(x) self.assertTrue( torch.allclose(expected, output.cpu(), 1e-4, 1e-5), msg=f"Expected: {expected}\nActual: {output.cpu()}" ) @slow @require_cuda def test_disk_offload_gpt2(self): tokenizer = AutoTokenizer.from_pretrained("gpt2") inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(0) gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") with TemporaryDirectory() as tmp_dir: disk_offload(gpt2, tmp_dir, execution_device=0) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) @require_cuda def test_dispatch_model(self): model = ModelForTest() device_map = {"linear1": "disk", "batchnorm": "cpu", "linear2": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_dispatch_model_tied_weights(self): model = ModelForTestTiedWeights() model.linear1.weight = model.linear2.weight device_map = {"linear1": 0, "batchnorm": 0, "linear2": 0} dispatch_model(model, device_map) self.assertIs(model.linear2.weight, model.linear1.weight) @require_multi_gpu def test_dispatch_model_multi_gpu(self): model = BiggerModelForTest() device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model(model, device_map, offload_dir=tmp_dir) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @slow @require_multi_gpu def test_dispatch_model_gpt2_on_two_gpus(self): tokenizer = AutoTokenizer.from_pretrained("gpt2") inputs = tokenizer("Hello world! My name is", return_tensors="pt").to(0) gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") # Dispatch on GPUs 0 and 1 device_map = { "transformer.wte": 0, "transformer.wpe": 0, "transformer.ln_f": 1, "lm_head": 0, } for i in range(12): device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1 gpt2 = dispatch_model(gpt2, device_map) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) # Dispatch with a bit of CPU offload gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") for i in range(4): device_map[f"transformer.h.{i}"] = "cpu" gpt2 = dispatch_model(gpt2, device_map) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) # Dispatch with a bit of CPU and disk offload gpt2 = AutoModelForCausalLM.from_pretrained("gpt2") for i in range(2): device_map[f"transformer.h.{i}"] = "disk" with TemporaryDirectory() as tmp_dir: state_dict = { k: p for k, p in gpt2.state_dict().items() if "transformer.h.0" in k or "transformer.h.1" in k } offload_state_dict(tmp_dir, state_dict) gpt2 = dispatch_model(gpt2, device_map, offload_dir=tmp_dir) outputs = gpt2.generate(inputs["input_ids"]) self.assertEqual( tokenizer.decode(outputs[0].tolist()), "Hello world! My name is Kiyoshi, and I'm a student at the University of Tokyo", ) @require_cuda def test_dispatch_model_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model( model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_multi_gpu def test_dispatch_model_with_unused_submodules_multi_gpu(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "disk", "batchnorm": "cpu", "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: dispatch_model( model, device_map, offload_dir=tmp_dir, preload_module_classes=["ModuleWithUnusedSubModules"] ) output = model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_load_checkpoint_and_dispatch(self): model = ModelForTest() device_map = {"linear1": "cpu", "batchnorm": "cpu", "linear2": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelForTest() new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=device_map) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.weight.device, torch.device(0)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_multi_gpu def test_load_checkpoint_and_dispatch_multi_gpu(self): model = BiggerModelForTest() device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = BiggerModelForTest() new_model = load_checkpoint_and_dispatch(new_model, checkpoint, device_map=device_map) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.weight.device, torch.device("meta")) self.assertEqual(new_model.linear3.weight.device, torch.device(0)) self.assertEqual(new_model.linear4.weight.device, torch.device(1)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_load_checkpoint_and_dispatch_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 0} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelWithUnusedSubModulesForTest() new_model = load_checkpoint_and_dispatch( new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"] ) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear3.linear.weight.device, torch.device(0)) self.assertEqual(new_model.linear4.linear.weight.device, torch.device(0)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_multi_gpu def test_load_checkpoint_and_dispatch_multi_gpu_with_unused_submodules(self): model = ModelWithUnusedSubModulesForTest() device_map = {"linear1": "cpu", "linear2": "cpu", "batchnorm": 0, "linear3": 0, "linear4": 1} x = torch.randn(2, 3) expected = model(x) with TemporaryDirectory() as tmp_dir: checkpoint = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), checkpoint) new_model = ModelWithUnusedSubModulesForTest() new_model = load_checkpoint_and_dispatch( new_model, checkpoint, device_map=device_map, preload_module_classes=["ModuleWithUnusedSubModules"] ) # CPU-offloaded weights are on the meta device while waiting for the forward pass. self.assertEqual(new_model.linear1.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear2.linear.weight.device, torch.device("meta")) self.assertEqual(new_model.linear3.linear.weight.device, torch.device(0)) self.assertEqual(new_model.linear4.linear.weight.device, torch.device(1)) output = new_model(x) self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5)) @require_cuda def test_cpu_offload_with_hook(self): model1 = torch.nn.Linear(4, 5) model1, hook1 = cpu_offload_with_hook(model1) self.assertEqual(model1.weight.device, torch.device("cpu")) inputs = torch.randn(3, 4) outputs = model1(inputs) self.assertEqual(outputs.device, torch.device(0)) self.assertEqual(model1.weight.device, torch.device(0)) hook1.offload() self.assertEqual(model1.weight.device, torch.device("cpu")) model2 = torch.nn.Linear(5, 5) model2, hook2 = cpu_offload_with_hook(model2, prev_module_hook=hook1) self.assertEqual(model2.weight.device, torch.device("cpu")) outputs = model1(inputs) self.assertEqual(outputs.device, torch.device(0)) self.assertEqual(model1.weight.device, torch.device(0)) outputs = model2(outputs) self.assertEqual(outputs.device, torch.device(0)) self.assertEqual(model1.weight.device, torch.device("cpu")) self.assertEqual(model2.weight.device, torch.device(0)) hook2.offload() self.assertEqual(model2.weight.device, torch.device("cpu")) @slow @require_multi_gpu def test_dispatch_model_bnb(self): """Tests that `dispatch_model` quantizes int8 layers""" from huggingface_hub import hf_hub_download from transformers import AutoConfig, AutoModel from transformers.utils.bitsandbytes import replace_8bit_linear with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) # TODO: @younesbelkada remove the positional arg on the next `transformers` release model = replace_8bit_linear(model, modules_to_not_convert=["lm_head"]) # TODO: @younesbelkada remove this block on the next `transformers` release for p in model.parameters(): p.requires_grad = False model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin") model = load_checkpoint_and_dispatch( model, checkpoint=model_path, # device_map="auto", device_map="balanced", ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) self.assertTrue(model.h[-1].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[-1].self_attention.query_key_value.weight.device.index == 1) @slow def test_dipatch_model_int8_simple(self): """Tests that `dispatch_model` quantizes int8 layers""" from huggingface_hub import hf_hub_download from transformers import AutoConfig, AutoModel from transformers.utils.bitsandbytes import replace_8bit_linear with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) # TODO: @younesbelkada remove the positional arg on the next `transformers` release model = replace_8bit_linear(model, modules_to_not_convert=["lm_head"]) # TODO: @younesbelkada remove this block on the next `transformers` release for p in model.parameters(): p.requires_grad = False model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin") # test with auto model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map="auto", ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) # TODO: @younesbelkada remove the positional arg on the next `transformers` release model = replace_8bit_linear(model, modules_to_not_convert=["lm_head"]) for p in model.parameters(): p.requires_grad = False # test with str device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": torch.device("cuda:0")}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) # TODO: @younesbelkada remove the positional arg on the next `transformers` release model = replace_8bit_linear(model, modules_to_not_convert=["lm_head"]) # TODO: @younesbelkada remove this block on the next `transformers` release for p in model.parameters(): p.requires_grad = False # test with torch.device device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": "cuda:0"}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.int8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) @slow @unittest.skip("Un-skip in the next transformers release") def test_dipatch_model_fp4_simple(self): """Tests that `dispatch_model` quantizes fp4 layers""" from huggingface_hub import hf_hub_download from transformers import AutoConfig, AutoModel, BitsAndBytesConfig from transformers.utils.bitsandbytes import replace_with_bnb_linear with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) quantization_config = BitsAndBytesConfig(load_in_4bit=True) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) model_path = hf_hub_download("bigscience/bloom-560m", "pytorch_model.bin") # test with auto model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map="auto", ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) # test with str device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": torch.device("cuda:0")}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0) with init_empty_weights(): model = AutoModel.from_config(AutoConfig.from_pretrained("bigscience/bloom-560m")) model = replace_with_bnb_linear( model, modules_to_not_convert=["lm_head"], quantization_config=quantization_config ) # test with torch.device device map model = load_checkpoint_and_dispatch( model, checkpoint=model_path, device_map={"": "cuda:0"}, ) self.assertTrue(model.h[0].self_attention.query_key_value.weight.dtype == torch.uint8) self.assertTrue(model.h[0].self_attention.query_key_value.weight.device.index == 0)
accelerate-wip-main
tests/test_big_modeling.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class OptimizerTester(unittest.TestCase): def test_accelerated_optimizer_pickling(self): model = torch.nn.Linear(10, 10) optimizer = torch.optim.SGD(model.parameters(), 0.1) accelerator = Accelerator() optimizer = accelerator.prepare(optimizer) try: pickle.loads(pickle.dumps(optimizer)) except Exception as e: self.fail(f"Accelerated optimizer pickling failed with {e}") AcceleratorState._reset_state()
accelerate-wip-main
tests/test_optimizer.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate.data_loader import ( BatchSamplerShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class RandomIterableDataset(IterableDataset): # For testing, an iterable dataset of random length def __init__(self, p_stop=0.01, max_length=1000): self.p_stop = p_stop self.max_length = max_length def __iter__(self): count = 0 stop = False while not stop and count < self.max_length: yield count count += 1 stop = random.random() < self.p_stop class DataLoaderTester(unittest.TestCase): def check_batch_sampler_shards(self, batch_sampler, expected, split_batches=False, even_batches=True): batch_sampler_shards = [ BatchSamplerShard(batch_sampler, 2, i, split_batches=split_batches, even_batches=even_batches) for i in range(2) ] batch_sampler_lists = [list(batch_sampler_shard) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(shard) for shard in batch_sampler_shards], [len(e) for e in expected]) self.assertListEqual(batch_sampler_lists, expected) def test_batch_sampler_shards_with_no_splits(self): # Check the shards when the dataset is a round multiple of total batch size. batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is a round multiple of batch size but not total batch size. batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=False) expected = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected) def test_batch_sampler_shards_with_splits(self): # Check the shards when the dataset is a round multiple of batch size. batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) # Check the shards when the dataset is not a round multiple of batch size. batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) # Check the shards when the dataset is not a round multiple of batch size or num_processes. batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=False) expected = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) def test_batch_sampler_shards_with_no_splits_no_even(self): # Check the shards when the dataset is a round multiple of total batch size. batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is a round multiple of batch size but not total batch size. batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=False) expected = [[[0, 1]], []] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) def test_batch_sampler_shards_with_splits_no_even(self): # Check the shards when the dataset is a round multiple of batch size. batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size. batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size or num_processes. batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=False) expected = [[[0, 1]], []] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) def test_batch_sampler_with_varying_batch_size(self): batch_sampler = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] batch_sampler_shards = [BatchSamplerShard(batch_sampler, 2, i, even_batches=False) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]), 3) self.assertEqual(len(batch_sampler_shards[1]), 2) self.assertListEqual(list(batch_sampler_shards[0]), [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]), [[3, 4], [9, 10, 11]]) def check_iterable_dataset_shards( self, dataset, seed, batch_size, drop_last=False, num_processes=2, split_batches=False ): random.seed(seed) reference = list(dataset) iterable_dataset_shards = [ IterableDatasetShard( dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i, split_batches=split_batches, ) for i in range(num_processes) ] iterable_dataset_lists = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(seed) iterable_dataset_lists.append(list(iterable_dataset_shard)) shard_batch_size = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size first_list = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(l), len(first_list)) self.assertTrue(len(l) % shard_batch_size == 0) observed = [] for idx in range(0, len(first_list), shard_batch_size): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(reference) < len(observed): reference += reference self.assertListEqual(observed, reference[: len(observed)]) def test_iterable_dataset_shard(self): seed = 42 dataset = RandomIterableDataset() self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=True) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=True) # Edge case with a very small dataset dataset = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=True) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=True) def test_skip_batch_sampler(self): batch_sampler = BatchSampler(range(16), batch_size=4, drop_last=False) new_batch_sampler = SkipBatchSampler(batch_sampler, 2) self.assertListEqual(list(new_batch_sampler), [[8, 9, 10, 11], [12, 13, 14, 15]]) def test_skip_data_loader(self): dataloader = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def test_skip_first_batches(self): dataloader = DataLoader(list(range(16)), batch_size=4) new_dataloader = skip_first_batches(dataloader, num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]])
accelerate-wip-main
tests/test_data_loader.py
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class MockLaunchConfig(SageMakerConfig): compute_environment = ComputeEnvironment.AMAZON_SAGEMAKER fp16 = True ec2_instance_type = "ml.p3.2xlarge" iam_role_name = "accelerate_sagemaker_execution_role" profile = "hf-sm" region = "us-east-1" num_machines = 1 base_job_name = "accelerate-sagemaker-1" pytorch_version = "1.6" transformers_version = "4.4" training_script = "train.py" success_training_script_args = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] fail_training_script_args = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class SageMakerLaunch(unittest.TestCase): def test_args_convert(self): # If no defaults are changed, `to_kwargs` returns an empty dict. converted_args = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args) assert isinstance(converted_args["model_name_or_path"], str) assert isinstance(converted_args["do_train"], bool) assert isinstance(converted_args["epochs"], int) assert isinstance(converted_args["learning_rate"], float) assert isinstance(converted_args["max_steps"], float) with pytest.raises(ValueError): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
accelerate-wip-main
tests/test_sagemaker.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import unittest from collections import UserDict, namedtuple import torch from accelerate.test_utils.testing import require_cuda, require_torch_min_version from accelerate.test_utils.training import RegressionModel from accelerate.utils import ( convert_outputs_to_fp32, extract_model_from_parallel, find_device, patch_environment, recursively_apply, send_to_device, ) ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c") class UtilsTester(unittest.TestCase): def test_send_to_device(self): tensor = torch.randn(5, 2) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") result1 = send_to_device(tensor, device) self.assertTrue(torch.equal(result1.cpu(), tensor)) result2 = send_to_device((tensor, [tensor, tensor], 1), device) self.assertIsInstance(result2, tuple) self.assertTrue(torch.equal(result2[0].cpu(), tensor)) self.assertIsInstance(result2[1], list) self.assertTrue(torch.equal(result2[1][0].cpu(), tensor)) self.assertTrue(torch.equal(result2[1][1].cpu(), tensor)) self.assertEqual(result2[2], 1) result2 = send_to_device({"a": tensor, "b": [tensor, tensor], "c": 1}, device) self.assertIsInstance(result2, dict) self.assertTrue(torch.equal(result2["a"].cpu(), tensor)) self.assertIsInstance(result2["b"], list) self.assertTrue(torch.equal(result2["b"][0].cpu(), tensor)) self.assertTrue(torch.equal(result2["b"][1].cpu(), tensor)) self.assertEqual(result2["c"], 1) result3 = send_to_device(ExampleNamedTuple(a=tensor, b=[tensor, tensor], c=1), device) self.assertIsInstance(result3, ExampleNamedTuple) self.assertTrue(torch.equal(result3.a.cpu(), tensor)) self.assertIsInstance(result3.b, list) self.assertTrue(torch.equal(result3.b[0].cpu(), tensor)) self.assertTrue(torch.equal(result3.b[1].cpu(), tensor)) self.assertEqual(result3.c, 1) result4 = send_to_device(UserDict({"a": tensor, "b": [tensor, tensor], "c": 1}), device) self.assertIsInstance(result4, UserDict) self.assertTrue(torch.equal(result4["a"].cpu(), tensor)) self.assertIsInstance(result4["b"], list) self.assertTrue(torch.equal(result4["b"][0].cpu(), tensor)) self.assertTrue(torch.equal(result4["b"][1].cpu(), tensor)) self.assertEqual(result4["c"], 1) def test_honor_type(self): with self.assertRaises(TypeError) as cm: _ = recursively_apply(torch.tensor, (torch.tensor(1), 1), error_on_other_type=True) self.assertEqual( str(cm.exception), "Unsupported types (<class 'int'>) passed to `tensor`. Only nested list/tuple/dicts of objects that are valid for `is_torch_tensor` should be passed.", ) def test_patch_environment(self): with patch_environment(aa=1, BB=2): self.assertEqual(os.environ.get("AA"), "1") self.assertEqual(os.environ.get("BB"), "2") self.assertNotIn("AA", os.environ) self.assertNotIn("BB", os.environ) def test_can_undo_convert_outputs(self): model = RegressionModel() model._original_forward = model.forward model.forward = convert_outputs_to_fp32(model.forward) model = extract_model_from_parallel(model, keep_fp32_wrapper=False) _ = pickle.dumps(model) @require_cuda def test_can_undo_fp16_conversion(self): model = RegressionModel() model._original_forward = model.forward model.forward = torch.cuda.amp.autocast(dtype=torch.float16)(model.forward) model.forward = convert_outputs_to_fp32(model.forward) model = extract_model_from_parallel(model, keep_fp32_wrapper=False) _ = pickle.dumps(model) @require_cuda @require_torch_min_version(version="2.0") def test_dynamo(self): model = RegressionModel() model._original_forward = model.forward model.forward = torch.cuda.amp.autocast(dtype=torch.float16)(model.forward) model.forward = convert_outputs_to_fp32(model.forward) model.forward = torch.compile(model.forward, backend="inductor") inputs = torch.randn(4, 10).cuda() _ = model(inputs) def test_extract_model(self): model = RegressionModel() # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU distributed_model = torch.nn.parallel.DataParallel(model) model_unwrapped = extract_model_from_parallel(distributed_model) self.assertEqual(model, model_unwrapped) @require_torch_min_version(version="2.0") def test_dynamo_extract_model(self): model = RegressionModel() compiled_model = torch.compile(model) # could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU distributed_model = torch.nn.parallel.DataParallel(model) distributed_compiled_model = torch.compile(distributed_model) compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model) self.assertEqual(compiled_model._orig_mod, compiled_model_unwrapped._orig_mod) def test_find_device(self): self.assertEqual(find_device([1, "a", torch.tensor([1, 2, 3])]), torch.device("cpu")) self.assertEqual(find_device({"a": 1, "b": torch.tensor([1, 2, 3])}), torch.device("cpu")) self.assertIsNone(find_device([1, "a"]))
accelerate-wip-main
tests/test_utils.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class MultiCPUTester(unittest.TestCase): def test_cpu(self): debug_launcher(test_script.main) def test_ops(self): debug_launcher(test_ops.main)
accelerate-wip-main
tests/test_cpu.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def raise_fake_out_of_memory(): raise RuntimeError("CUDA out of memory.") class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class MemoryTest(unittest.TestCase): def test_memory_implicit(self): batch_sizes = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(batch_size): nonlocal batch_sizes batch_sizes.append(batch_size) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(batch_sizes, [128, 64, 32, 16, 8]) def test_memory_explicit(self): batch_sizes = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(batch_size, arg1): nonlocal batch_sizes batch_sizes.append(batch_size) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arg1 bs, arg1 = mock_training_loop_function("hello") self.assertListEqual(batch_sizes, [128, 64, 32, 16, 8]) self.assertListEqual([bs, arg1], [8, "hello"]) def test_start_zero(self): @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(batch_size): pass with self.assertRaises(RuntimeError) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero.", cm.exception.args[0]) def test_approach_zero(self): @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(batch_size): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(RuntimeError) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero.", cm.exception.args[0]) def test_verbose_guard(self): @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(batch_size, arg1, arg2): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(TypeError) as cm: mock_training_loop_function(128, "hello", "world") self.assertIn("Batch size was passed into `f`", cm.exception.args[0]) self.assertIn("`f(arg1='hello', arg2='world')", cm.exception.args[0]) def test_any_other_error(self): @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(batch_size): raise ValueError("Oops, we had an error!") with self.assertRaises(ValueError) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!", cm.exception.args[0]) @require_cuda def test_release_memory(self): starting_memory = torch.cuda.memory_allocated() model = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated(), starting_memory) model = release_memory(model) self.assertEqual(torch.cuda.memory_allocated(), starting_memory)
accelerate-wip-main
tests/test_memory_utils.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, require_torch_min_version, ) from accelerate.utils import get_launch_prefix, patch_environment @require_huggingface_suite @require_torch_min_version(version="1.8.0") class MetricTester(unittest.TestCase): def setUp(self): mod_file = inspect.getfile(accelerate.test_utils) self.test_file_path = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 self.test_metrics = test_metrics @require_cpu def test_metric_cpu_noop(self): debug_launcher(self.test_metrics.main, num_processes=1) @require_cpu def test_metric_cpu_multi(self): debug_launcher(self.test_metrics.main) @require_single_gpu def test_metric_gpu(self): self.test_metrics.main() @require_multi_gpu def test_metric_gpu_multi(self): print(f"Found {torch.cuda.device_count()} devices.") cmd = get_launch_prefix() + [f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy())
accelerate-wip-main
tests/test_metrics.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler, get_launch_prefix @dataclass class MockClass(KwargsHandler): a: int = 0 b: bool = False c: float = 3.0 class DataLoaderTester(unittest.TestCase): def test_kwargs_handler(self): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs(), {}) self.assertDictEqual(MockClass(a=2).to_kwargs(), {"a": 2}) self.assertDictEqual(MockClass(a=2, b=True).to_kwargs(), {"a": 2, "b": True}) self.assertDictEqual(MockClass(a=2, c=2.25).to_kwargs(), {"a": 2, "c": 2.25}) @require_cuda def test_grad_scaler_kwargs(self): # If no defaults are changed, `to_kwargs` returns an empty dict. scaler_handler = GradScalerKwargs(init_scale=1024, growth_factor=2) AcceleratorState._reset_state() accelerator = Accelerator(mixed_precision="fp16", kwargs_handlers=[scaler_handler]) print(accelerator.use_fp16) scaler = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale, 1024.0) self.assertEqual(scaler._growth_factor, 2.0) # Check the other values are at the default self.assertEqual(scaler._backoff_factor, 0.5) self.assertEqual(scaler._growth_interval, 2000) self.assertEqual(scaler._enabled, True) @require_multi_gpu def test_ddp_kwargs(self): cmd = get_launch_prefix() cmd += [f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(cmd, env=os.environ.copy()) if __name__ == "__main__": ddp_scaler = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) accelerator = Accelerator(kwargs_handlers=[ddp_scaler]) model = torch.nn.Linear(100, 200) model = accelerator.prepare(model) # Check the values changed in kwargs error_msg = "" observed_bucket_cap_map = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
accelerate-wip-main
tests/test_kwargs_handlers.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import torch from accelerate import Accelerator, debug_launcher from accelerate.state import AcceleratorState, GradientState from accelerate.test_utils import require_cpu, require_huggingface_suite from accelerate.utils import GradientAccumulationPlugin def one_cycle_test(num_processes=2, step_scheduler_with_optimizer=True, split_batches=False): accelerator = Accelerator(step_scheduler_with_optimizer=step_scheduler_with_optimizer, split_batches=split_batches) model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=1.0) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=2, epochs=1) model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) # Optimizer has stepped scheduler.step() if step_scheduler_with_optimizer or (num_processes == 1): assert ( scheduler.scheduler.last_epoch == num_processes ), f"Last Epoch ({scheduler.scheduler.last_epoch}) != Num Processes ({num_processes})" else: assert ( scheduler.scheduler.last_epoch != num_processes ), f"Last Epoch ({scheduler.scheduler.last_epoch}) == Num Processes ({num_processes})" def lambda_test(num_processes=2, step_scheduler_with_optimizer=True, split_batches=False): accelerator = Accelerator(step_scheduler_with_optimizer=step_scheduler_with_optimizer, split_batches=split_batches) model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=1.0) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda n: 1 - n / 10) model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) # Optimizer has stepped optimizer._is_overflow = False scheduler.step() expected_lr = 1 - (num_processes if (step_scheduler_with_optimizer and not split_batches) else 1) / 10 assert ( scheduler.get_last_lr()[0] == expected_lr ), f"Wrong lr found at first step, expected {expected_lr}, got {scheduler.get_last_lr()[0]}" # Optimizer has not stepped optimizer._is_overflow = True scheduler.step() if not step_scheduler_with_optimizer: expected_lr = 1 - 2 / 10 assert ( scheduler.get_last_lr()[0] == expected_lr ), f"Wrong lr found at second step, expected {expected_lr}, got {scheduler.get_last_lr()[0]}" def accumulation_test(num_processes: int = 2): """ With this test, an observed batch size of 64 should result in neglible differences in the scheduler after going through the correct number of steps. Uses single, two, and four steps to test. """ from transformers import get_linear_schedule_with_warmup steps = [1, 2, 4] for num_steps in steps: plugin = GradientAccumulationPlugin(num_steps=num_steps, adjust_scheduler=num_steps > 1) accelerator = Accelerator(gradient_accumulation_plugin=plugin) model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=10.0) scheduler = get_linear_schedule_with_warmup(optimizer=optimizer, num_warmup_steps=0, num_training_steps=20) model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) for i in range(10 * num_steps): with accelerator.accumulate(model): optimizer.step() scheduler.step() if i == (10 * num_steps - 2): assert ( scheduler.get_last_lr()[0] != 0 ), f"Wrong lr found at second-to-last step, expected non-zero, got {scheduler.get_last_lr()[0]}. num_steps: {num_steps}" assert ( scheduler.get_last_lr()[0] == 0 ), f"Wrong lr found at last step, expected 0, got {scheduler.get_last_lr()[0]}" GradientState._reset_state() @require_cpu class SchedulerTester(unittest.TestCase): def test_lambda_scheduler_steps_with_optimizer_single_process(self): debug_launcher(partial(lambda_test, num_processes=1), num_processes=1) debug_launcher(partial(lambda_test, num_processes=1, split_batches=True), num_processes=1) def test_one_cycle_scheduler_steps_with_optimizer_single_process(self): debug_launcher(partial(one_cycle_test, num_processes=1), num_processes=1) debug_launcher(partial(one_cycle_test, num_processes=1, split_batches=True), num_processes=1) def test_lambda_scheduler_not_step_with_optimizer_single_process(self): debug_launcher(partial(lambda_test, num_processes=1, step_scheduler_with_optimizer=False), num_processes=1) def test_one_cycle_scheduler_not_step_with_optimizer_single_process(self): debug_launcher(partial(one_cycle_test, num_processes=1, step_scheduler_with_optimizer=False), num_processes=1) def test_lambda_scheduler_steps_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(lambda_test) debug_launcher(partial(lambda_test, num_processes=1, split_batches=True), num_processes=1) def test_one_cycle_scheduler_steps_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(one_cycle_test) debug_launcher(partial(one_cycle_test, num_processes=1, split_batches=True), num_processes=1) def test_lambda_scheduler_not_step_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(partial(lambda_test, step_scheduler_with_optimizer=False)) def test_one_cycle_scheduler_not_step_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(partial(one_cycle_test, step_scheduler_with_optimizer=False)) @require_huggingface_suite def test_accumulation(self): AcceleratorState._reset_state(True) debug_launcher(partial(accumulation_test, num_processes=1)) debug_launcher(accumulation_test)
accelerate-wip-main
tests/test_scheduler.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest from collections import OrderedDict import torch import torch.nn as nn from accelerate import init_empty_weights from accelerate.test_utils import require_cuda, require_huggingface_suite, require_multi_gpu, require_safetensors from accelerate.test_utils.testing import require_torch_min_version from accelerate.utils.modeling import ( check_device_map, clean_device_map, compute_module_sizes, find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, ) class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) def sequential_model(num_layers): layers = OrderedDict([(f"linear{i}", nn.Linear(1000, 1000)) for i in range(1, num_layers + 1)]) return nn.Sequential(layers) @require_torch_min_version(version="1.9.0") class ModelingUtilsTester(unittest.TestCase): def check_set_module_tensor_for_device(self, model, device1, device2): self.assertEqual(model.linear1.weight.device, torch.device(device1)) with self.subTest("Access by submodule and direct name for a parameter"): set_module_tensor_to_device(model.linear1, "weight", device2) self.assertEqual(model.linear1.weight.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on device1 set_module_tensor_to_device(model.linear1, "weight", device1) set_module_tensor_to_device(model.linear1, "weight", device1, value=torch.randn(4, 3)) else: set_module_tensor_to_device(model.linear1, "weight", device1) self.assertEqual(model.linear1.weight.device, torch.device(device1)) with self.subTest("Access by module and full name for a parameter"): set_module_tensor_to_device(model, "linear1.weight", device2) self.assertEqual(model.linear1.weight.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on device1 set_module_tensor_to_device(model, "linear1.weight", device1) set_module_tensor_to_device(model, "linear1.weight", device1, value=torch.randn(4, 3)) else: set_module_tensor_to_device(model, "linear1.weight", device1) self.assertEqual(model.linear1.weight.device, torch.device(device1)) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device1)) with self.subTest("Access by submodule and direct name for a buffer"): set_module_tensor_to_device(model.batchnorm, "running_mean", device2) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on device1 set_module_tensor_to_device(model.batchnorm, "running_mean", device1) set_module_tensor_to_device(model.batchnorm, "running_mean", device1, value=torch.randn(4)) else: set_module_tensor_to_device(model.batchnorm, "running_mean", device1) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device1)) with self.subTest("Access by module and full name for a parameter"): set_module_tensor_to_device(model, "batchnorm.running_mean", device2) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device2)) if torch.device(device2) == torch.device("meta"): with self.assertRaises(ValueError): # We need a `value` to set the weight back on CPU set_module_tensor_to_device(model, "batchnorm.running_mean", device1) set_module_tensor_to_device(model, "batchnorm.running_mean", device1, value=torch.randn(4)) else: set_module_tensor_to_device(model, "batchnorm.running_mean", device1) self.assertEqual(model.batchnorm.running_mean.device, torch.device(device1)) def test_set_module_tensor_to_meta_and_cpu(self): model = ModelForTest() self.check_set_module_tensor_for_device(model, "cpu", "meta") @require_cuda def test_set_module_tensor_to_cpu_and_gpu(self): model = ModelForTest() self.check_set_module_tensor_for_device(model, "cpu", 0) @require_cuda def test_set_module_tensor_to_meta_and_gpu(self): model = ModelForTest().to(0) self.check_set_module_tensor_for_device(model, 0, "meta") @require_multi_gpu def test_set_module_tensor_between_gpus(self): model = ModelForTest().to(0) self.check_set_module_tensor_for_device(model, 0, 1) def test_set_module_tensor_sets_dtype(self): model = ModelForTest() set_module_tensor_to_device(model, "linear1.weight", "cpu", value=model.linear1.weight, dtype=torch.float16) self.assertEqual(model.linear1.weight.dtype, torch.float16) def test_named_tensors(self): model = nn.BatchNorm1d(4) named_tensors = named_module_tensors(model) self.assertListEqual( [name for name, _ in named_tensors], ["weight", "bias", "running_mean", "running_var", "num_batches_tracked"], ) named_tensors = named_module_tensors(model, include_buffers=False) self.assertListEqual([name for name, _ in named_tensors], ["weight", "bias"]) model = ModelForTest() named_tensors = named_module_tensors(model) self.assertListEqual([name for name, _ in named_tensors], []) named_tensors = named_module_tensors(model, recurse=True) self.assertListEqual( [name for name, _ in named_tensors], [ "linear1.weight", "linear1.bias", "batchnorm.weight", "batchnorm.bias", "linear2.weight", "linear2.bias", "batchnorm.running_mean", "batchnorm.running_var", "batchnorm.num_batches_tracked", ], ) named_tensors = named_module_tensors(model, include_buffers=False, recurse=True) self.assertListEqual( [name for name, _ in named_tensors], ["linear1.weight", "linear1.bias", "batchnorm.weight", "batchnorm.bias", "linear2.weight", "linear2.bias"], ) def test_find_tied_parameters(self): model = sequential_model(4) self.assertListEqual(find_tied_parameters(model), []) model.linear2.weight = model.linear1.weight self.assertListEqual(find_tied_parameters(model), [["linear1.weight", "linear2.weight"]]) model.linear4.weight = model.linear1.weight self.assertListEqual(find_tied_parameters(model), [["linear1.weight", "linear2.weight", "linear4.weight"]]) model = sequential_model(5) model.linear1.weight = model.linear4.weight model.linear2.weight = model.linear3.weight model.linear5.weight = model.linear2.weight tied_params = sorted(find_tied_parameters(model), key=lambda x: len(x)) self.assertListEqual( tied_params, [["linear1.weight", "linear4.weight"], ["linear2.weight", "linear3.weight", "linear5.weight"]] ) model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))])) model.block1.linear1.weight = model.block2.linear1.weight self.assertListEqual(find_tied_parameters(model), [["block1.linear1.weight", "block2.linear1.weight"]]) def test_retie_parameters(self): model = sequential_model(2) retie_parameters(model, [["linear1.weight", "linear2.weight"]]) self.assertIs(model.linear1.weight, model.linear2.weight) model = sequential_model(3) retie_parameters(model, [["linear1.weight", "linear2.weight", "linear3.weight"]]) self.assertIs(model.linear1.weight, model.linear2.weight) self.assertIs(model.linear1.weight, model.linear3.weight) model = sequential_model(5) retie_parameters( model, [["linear1.weight", "linear4.weight"], ["linear2.weight", "linear3.weight", "linear5.weight"]] ) self.assertIs(model.linear1.weight, model.linear4.weight) self.assertIs(model.linear2.weight, model.linear3.weight) self.assertIs(model.linear2.weight, model.linear5.weight) model = nn.Sequential(OrderedDict([("block1", sequential_model(4)), ("block2", sequential_model(4))])) retie_parameters(model, [["block1.linear1.weight", "block2.linear1.weight"]]) self.assertIs(model.block1.linear1.weight, model.block2.linear1.weight) def test_compute_module_sizes(self): model = ModelForTest() expected_sizes = {"": 236, "linear1": 64, "linear1.weight": 48, "linear1.bias": 16} expected_sizes.update({"linear2": 100, "linear2.weight": 80, "linear2.bias": 20}) expected_sizes.update({"batchnorm": 72, "batchnorm.weight": 16, "batchnorm.bias": 16}) expected_sizes.update( {"batchnorm.running_mean": 16, "batchnorm.running_var": 16, "batchnorm.num_batches_tracked": 8} ) module_sizes = compute_module_sizes(model) self.assertDictEqual(module_sizes, expected_sizes) model.half() expected_sizes = {k: s // 2 for k, s in expected_sizes.items()} # This one is not converted to half. expected_sizes["batchnorm.num_batches_tracked"] = 8 # This impacts batchnorm and total expected_sizes["batchnorm"] += 4 expected_sizes[""] += 4 module_sizes = compute_module_sizes(model) self.assertDictEqual(module_sizes, expected_sizes) def test_check_device_map(self): model = ModelForTest() check_device_map(model, {"": 0}) with self.assertRaises(ValueError): check_device_map(model, {"linear1": 0, "linear2": 1}) check_device_map(model, {"linear1": 0, "linear2": 1, "batchnorm": 1}) def shard_test_model(self, model, tmp_dir): module_index = { "linear1": "checkpoint_part1.bin", "batchnorm": "checkpoint_part2.bin", "linear2": "checkpoint_part3.bin", } index = {} for name, _ in model.state_dict().items(): module = name.split(".")[0] index[name] = module_index[module] with open(os.path.join(tmp_dir, "weight_map.index.json"), "w") as f: json.dump(index, f) for module, fname in module_index.items(): state_dict = {k: v for k, v in model.state_dict().items() if k.startswith(module)} full_fname = os.path.join(tmp_dir, fname) torch.save(state_dict, full_fname) def test_load_checkpoint_in_model(self): # Check with whole checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname) # Check with sharded index model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) index_file = os.path.join(tmp_dir, "weight_map.index.json") load_checkpoint_in_model(model, index_file) # Check with sharded checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) load_checkpoint_in_model(model, tmp_dir) @require_cuda def test_load_checkpoint_in_model_one_gpu(self): device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "cpu"} # Check with whole checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Check with sharded index model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) index_file = os.path.join(tmp_dir, "weight_map.index.json") load_checkpoint_in_model(model, index_file, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Check with sharded checkpoint folder model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) load_checkpoint_in_model(model, tmp_dir, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) @require_cuda def test_load_checkpoint_in_model_disk_offload(self): device_map = {"linear1": "cpu", "batchnorm": "disk", "linear2": "cpu"} model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) # Buffers are not offloaded by default self.assertEqual(model.batchnorm.running_mean.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map, offload_folder=tmp_dir, offload_buffers=True) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.running_mean.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) @require_multi_gpu def test_load_checkpoint_in_model_two_gpu(self): device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": 1} # Check with whole checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: fname = os.path.join(tmp_dir, "pt_model.bin") torch.save(model.state_dict(), fname) load_checkpoint_in_model(model, fname, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device(1)) # Check with sharded index model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) index_file = os.path.join(tmp_dir, "weight_map.index.json") load_checkpoint_in_model(model, index_file, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device(1)) # Check with sharded checkpoint model = ModelForTest() with tempfile.TemporaryDirectory() as tmp_dir: self.shard_test_model(model, tmp_dir) load_checkpoint_in_model(model, tmp_dir, device_map=device_map) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device(1)) def test_clean_device_map(self): # Regroup everything if all is on the same device self.assertDictEqual(clean_device_map({"a": 0, "b": 0, "c": 0}), {"": 0}) # Regroups children of level 1 on the same device self.assertDictEqual( clean_device_map({"a.x": 0, "a.y": 0, "b.x": 1, "b.y": 1, "c": 1}), {"a": 0, "b": 1, "c": 1} ) # Regroups children of level 2 on the same device self.assertDictEqual( clean_device_map({"a.x": 0, "a.y": 0, "b.x.0": 1, "b.x.1": 1, "b.y.0": 2, "b.y.1": 2, "c": 2}), {"a": 0, "b.x": 1, "b.y": 2, "c": 2}, ) def test_infer_auto_device_map(self): model = ModelForTest() # model has size 236: linear1 64, batchnorm 72, linear2 100 device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200}) # only linear1 fits on device 0 as we keep memory available for the maximum layer in case of offload self.assertDictEqual(device_map, {"linear1": 0, "batchnorm": 1, "linear2": 1}) device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 172, 2: 200}) # On device 1, we don't care about keeping size available for the max layer, so even if there is just the # size available for batchnorm + linear2, they fit here. self.assertDictEqual(device_map, {"linear1": 0, "batchnorm": 1, "linear2": 1}) model.linear1.weight = model.linear2.weight device_map = infer_auto_device_map(model, max_memory={0: 200, 1: 200}) # By tying weights, the whole model fits on device 0 self.assertDictEqual(device_map, {"": 0}) # When splitting a bigger model, the split is done at the layer level model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest()) device_map = infer_auto_device_map(model, max_memory={0: 500, 1: 500}) self.assertDictEqual(device_map, {"0": 0, "1.linear1": 0, "1.batchnorm": 0, "1.linear2": 1, "2": 1}) # With no_split_module_classes, it's done at that module level model = nn.Sequential(ModelForTest(), ModelForTest(), ModelForTest()) device_map = infer_auto_device_map( model, max_memory={0: 500, 1: 500}, no_split_module_classes=["ModelForTest"] ) self.assertDictEqual(device_map, {"0": 0, "1": 1, "2": 1}) def test_infer_auto_device_map_with_tied_weights(self): model = nn.Sequential( OrderedDict([("layer1", ModelForTest()), ("layer2", ModelForTest()), ("layer3", ModelForTest())]) ) model.layer3.linear2.weight = model.layer1.linear2.weight device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500}) expected = {"layer1": 0, "layer3.linear2": 0, "layer2": 1, "layer3.linear1": 1, "layer3.batchnorm": 1} self.assertDictEqual(device_map, expected) # With three weights tied together model.layer2.linear2.weight = model.layer1.linear2.weight device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500}) expected = { "layer1": 0, "layer2.linear2": 0, "layer3.linear2": 0, "layer2.linear1": 1, "layer2.batchnorm": 1, "layer3.linear1": 1, "layer3.batchnorm": 1, } self.assertDictEqual(device_map, expected) # With two groups of weights tied together model.layer2.linear1.weight = model.layer1.linear1.weight device_map = infer_auto_device_map(model, max_memory={0: 400, 1: 500}) expected = { "layer1": 0, "layer2.linear1": 0, "layer2.linear2": 0, "layer3.linear2": 0, "layer2.batchnorm": 1, "layer3.linear1": 1, "layer3.batchnorm": 1, } self.assertDictEqual(device_map, expected) @require_huggingface_suite def test_infer_auto_device_map_on_t0pp(self): from transformers import AutoConfig, AutoModelForSeq2SeqLM config = AutoConfig.from_pretrained("bigscience/T0pp") with init_empty_weights(): model = AutoModelForSeq2SeqLM.from_config(config) model.tie_weights() special_dtypes = {n: torch.float32 for n, _ in model.named_parameters() if "wo" in n} max_memory = {0: 10**10, 1: 10**10, "cpu": 10**10} device_map = infer_auto_device_map( model, no_split_module_classes=["T5Block"], dtype=torch.float16, max_memory=max_memory, special_dtypes=special_dtypes, ) # The 3 tied weights should all be on device 0 self.assertEqual(device_map["shared"], 0) self.assertEqual(device_map["encoder.embed_tokens"], 0) self.assertEqual(device_map["decoder.embed_tokens"], 0) @require_cuda def test_get_balanced_memory(self): model = ModelForTest() # model has size 236: linear1 64, batchnorm 72, linear2 100 max_memory = get_balanced_memory(model, max_memory={0: 200, 1: 200}) self.assertDictEqual({0: 200, 1: 200}, max_memory) max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 300}) self.assertDictEqual({0: 215, 1: 300}, max_memory) # Last device always get max memory to give more buffer and avoid accidental CPU offload max_memory = get_balanced_memory(model, max_memory={0: 300, 1: 500}) self.assertDictEqual({0: 215, 1: 500}, max_memory) # Last device always get max memory to give more buffer, even if CPU is provided max_memory = get_balanced_memory(model, max_memory={0: 300, "cpu": 1000}) self.assertDictEqual({0: 300, "cpu": 1000}, max_memory) # If we set a device to 0, it's not counted. max_memory = get_balanced_memory(model, max_memory={0: 0, 1: 300, 2: 300}) self.assertDictEqual({0: 0, 1: 215, 2: 300}, max_memory) @require_cuda @require_safetensors def test_load_state_dict(self): from safetensors.torch import save_file state_dict = {k: torch.randn(4, 5) for k in ["a", "b", "c"]} device_maps = [{"a": "cpu", "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": 0}] for device_map in device_maps: with tempfile.TemporaryDirectory() as tmp_dir: checkpoint_file = os.path.join(tmp_dir, "model.safetensors") save_file(state_dict, checkpoint_file, metadata={"format": "pt"}) loaded_state_dict = load_state_dict(checkpoint_file, device_map=device_map) for param, device in device_map.items(): device = device if device != "disk" else "cpu" self.assertEqual(loaded_state_dict[param].device, torch.device(device))
accelerate-wip-main
tests/test_modeling_utils.py
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def create_components(): model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=1.0) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=2, epochs=1) train_dl = DataLoader(TensorDataset(torch.tensor([1, 2, 3]))) valid_dl = DataLoader(TensorDataset(torch.tensor([4, 5, 6]))) return model, optimizer, scheduler, train_dl, valid_dl def get_signature(model): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def load_random_weights(model): state = torch.nn.Linear(*tuple(model.weight.T.shape)).state_dict() model.load_state_dict(state) class AcceleratorTester(AccelerateTestCase): @require_cuda def test_accelerator_can_be_reinstantiated(self): _ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(ValueError): _ = Accelerator(cpu=True) def test_mutable_states(self): accelerator = Accelerator() state = GradientState() assert state.num_steps == 1 accelerator.gradient_accumulation_steps = 4 assert state.num_steps == 4 assert state.sync_gradients is True accelerator.sync_gradients = False assert state.sync_gradients is False GradientState._reset_state() def test_prepared_objects_are_referenced(self): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() ( prepared_model, prepared_optimizer, prepared_scheduler, prepared_train_dl, prepared_valid_dl, ) = accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def test_free_memory_dereferences_prepared_components(self): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def test_env_var_device(self): """Tests that setting the torch device with ACCELERATE_TORCH_DEVICE overrides default device.""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*args, **kwargs): pass with patch("torch.cuda.set_device", noop), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64"): accelerator = Accelerator() self.assertEqual(str(accelerator.state.device), "cuda:64") def test_save_load_model(self): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) model_signature = get_signature(model) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(tmpdirname) # make sure random weights don't match load_random_weights(model) self.assertTrue(abs(model_signature - get_signature(model)) > 1e-3) # make sure loaded weights match accelerator.load_state(tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) def test_save_load_model_with_hooks(self): accelerator = Accelerator() model, optimizer, scheduler, train_dl, valid_dl = create_components() accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl) model_signature = get_signature(model) # saving hook def save_config(models, weights, output_dir): config = {"class_name": models[0].__class__.__name__} with open(os.path.join(output_dir, "data.json"), "w") as f: json.dump(config, f) # loading hook def load_config(models, input_dir): with open(os.path.join(input_dir, "data.json"), "r") as f: config = json.load(f) models[0].class_name = config["class_name"] save_hook = accelerator.register_save_state_pre_hook(save_config) load_hook = accelerator.register_load_state_pre_hook(load_config) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(tmpdirname) # make sure random weights don't match with hooks load_random_weights(model) self.assertTrue(abs(model_signature - get_signature(model)) > 1e-3) # random class name to verify correct one is loaded model.class_name = "random" # make sure loaded weights match with hooks accelerator.load_state(tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(tmpdirname) # make sure random weights don't match with hooks removed load_random_weights(model) self.assertTrue(abs(model_signature - get_signature(model)) > 1e-3) # random class name to verify correct one is loaded model.class_name = "random" # make sure loaded weights match with hooks removed accelerator.load_state(tmpdirname) self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) @slow def test_accelerator_bnb(self): """Tests that the accelerator can be used with the BNB library.""" from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_8bit=True, device_map={"": 0}, ) accelerator = Accelerator() # This should work model = accelerator.prepare(model) @slow def test_accelerator_bnb_cpu_error(self): """Tests that the accelerator can be used with the BNB library. This should fail as we are trying to load a model that is loaded between cpu and gpu""" from transformers import AutoModelForCausalLM accelerator = Accelerator() with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) device_map = infer_auto_device_map(model) device_map["lm_head"] = "cpu" model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", device_map=device_map, load_in_8bit=True, llm_int8_enable_fp32_cpu_offload=True ) # This should not work and get value error with self.assertRaises(ValueError): model = accelerator.prepare(model) @slow @require_multi_gpu def test_accelerator_bnb_multi_gpu(self): """Tests that the accelerator can be used with the BNB library.""" from transformers import AutoModelForCausalLM with init_empty_weights(): model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) device_map = infer_auto_device_map(model) device_map["lm_head"] = 1 model = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_8bit=True, device_map=device_map, ) accelerator = Accelerator() # This should not work and get value error with self.assertRaises(ValueError): _ = accelerator.prepare(model) @require_cuda def test_accelerator_cpu_flag_prepare(self): model = torch.nn.Linear(10, 10) sgd = torch.optim.SGD(model.parameters(), lr=0.01) accelerator = Accelerator(cpu=True) _ = accelerator.prepare(sgd)
accelerate-wip-main
tests/test_accelerator.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import json import logging import os import re import subprocess import tempfile import unittest import zipfile from pathlib import Path from typing import Optional from unittest import mock # We use TF to parse the logs from accelerate import Accelerator from accelerate.test_utils.testing import ( MockingTestCase, TempDirTestCase, require_comet_ml, require_tensorboard, require_wandb, skip, ) from accelerate.tracking import CometMLTracker, GeneralTracker from accelerate.utils import is_comet_ml_available if is_comet_ml_available(): from comet_ml import OfflineExperiment logger = logging.getLogger(__name__) @require_tensorboard class TensorBoardTrackingTest(unittest.TestCase): def test_init_trackers(self): project_name = "test_project_with_config" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="tensorboard", logging_dir=dirpath) config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers(project_name, config) accelerator.end_training() for child in Path(f"{dirpath}/{project_name}").glob("*/**"): log = list(filter(lambda x: x.is_file(), child.iterdir()))[0] self.assertNotEqual(str(log), "") def test_log(self): project_name = "test_project_with_log" with tempfile.TemporaryDirectory() as dirpath: accelerator = Accelerator(log_with="tensorboard", project_dir=dirpath) accelerator.init_trackers(project_name) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() # Logged values are stored in the outermost-tfevents file and can be read in as a TFRecord # Names are randomly generated each time log = list(filter(lambda x: x.is_file(), Path(f"{dirpath}/{project_name}").iterdir()))[0] self.assertNotEqual(str(log), "") def test_project_dir(self): with self.assertRaisesRegex(ValueError, "Logging with `tensorboard` requires a `logging_dir`"): _ = Accelerator(log_with="tensorboard") with tempfile.TemporaryDirectory() as dirpath: _ = Accelerator(log_with="tensorboard", project_dir=dirpath) with tempfile.TemporaryDirectory() as dirpath: _ = Accelerator(log_with="tensorboard", logging_dir=dirpath) @require_wandb @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) class WandBTrackingTest(TempDirTestCase, MockingTestCase): def setUp(self): super().setUp() # wandb let's us override where logs are stored to via the WANDB_DIR env var self.add_mocks(mock.patch.dict(os.environ, {"WANDB_DIR": self.tmpdir})) @staticmethod def parse_log(log: str, section: str, record: bool = True): """ Parses wandb log for `section` and returns a dictionary of all items in that section. Section names are based on the output of `wandb sync --view --verbose` and items starting with "Record" in that result """ # Big thanks to the W&B team for helping us parse their logs pattern = rf"{section} ([\S\s]*?)\n\n" if record: pattern = rf"Record: {pattern}" cleaned_record = re.findall(pattern, log)[0] # A config if section == "config" or section == "history": cleaned_record = re.findall(r'"([a-zA-Z0-9_.,]+)', cleaned_record) return {key: val for key, val in zip(cleaned_record[0::2], cleaned_record[1::2])} # Everything else else: return dict(re.findall(r'(\w+): "([^\s]+)"', cleaned_record)) @skip def test_wandb(self): project_name = "test_project_with_config" accelerator = Accelerator(log_with="wandb") config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} kwargs = {"wandb": {"tags": ["my_tag"]}} accelerator.init_trackers(project_name, config, kwargs) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() # The latest offline log is stored at wandb/latest-run/*.wandb for child in Path(f"{self.tmpdir}/wandb/latest-run").glob("*"): if child.is_file() and child.suffix == ".wandb": content = subprocess.check_output( ["wandb", "sync", "--view", "--verbose", str(child)], env=os.environ.copy() ).decode("utf8", "ignore") break # Check HPS through careful parsing and cleaning logged_items = self.parse_log(content, "config") self.assertEqual(logged_items["num_iterations"], "12") self.assertEqual(logged_items["learning_rate"], "0.01") self.assertEqual(logged_items["some_boolean"], "false") self.assertEqual(logged_items["some_string"], "some_value") self.assertEqual(logged_items["some_string"], "some_value") # Run tags logged_items = self.parse_log(content, "run", False) self.assertEqual(logged_items["tags"], "my_tag") # Actual logging logged_items = self.parse_log(content, "history") self.assertEqual(logged_items["total_loss"], "0.1") self.assertEqual(logged_items["iteration"], "1") self.assertEqual(logged_items["my_text"], "some_value") self.assertEqual(logged_items["_step"], "0") # Comet has a special `OfflineExperiment` we need to use for testing def offline_init(self, run_name: str, tmpdir: str): self.run_name = run_name self.writer = OfflineExperiment(project_name=run_name, offline_directory=tmpdir) logger.info(f"Initialized offline CometML project {self.run_name}") logger.info("Make sure to log any initial configurations with `self.store_init_configuration` before training!") @require_comet_ml @mock.patch.object(CometMLTracker, "__init__", offline_init) class CometMLTest(unittest.TestCase): @staticmethod def get_value_from_key(log_list, key: str, is_param: bool = False): "Extracts `key` from Comet `log`" for log in log_list: j = json.loads(log)["payload"] if is_param and "param" in j.keys(): if j["param"]["paramName"] == key: return j["param"]["paramValue"] if "log_other" in j.keys(): if j["log_other"]["key"] == key: return j["log_other"]["val"] if "metric" in j.keys(): if j["metric"]["metricName"] == key: return j["metric"]["metricValue"] def test_init_trackers(self): with tempfile.TemporaryDirectory() as d: tracker = CometMLTracker("test_project_with_config", d) accelerator = Accelerator(log_with=tracker) config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers(None, config) accelerator.end_training() log = os.listdir(d)[0] # Comet is nice, it's just a zip file here # We parse the raw logs p = os.path.join(d, log) archive = zipfile.ZipFile(p, "r") log = archive.open("messages.json").read().decode("utf-8") list_of_json = log.split("\n")[:-1] self.assertEqual(self.get_value_from_key(list_of_json, "num_iterations", True), 12) self.assertEqual(self.get_value_from_key(list_of_json, "learning_rate", True), 0.01) self.assertEqual(self.get_value_from_key(list_of_json, "some_boolean", True), False) self.assertEqual(self.get_value_from_key(list_of_json, "some_string", True), "some_value") def test_log(self): with tempfile.TemporaryDirectory() as d: tracker = CometMLTracker("test_project_with_config", d) accelerator = Accelerator(log_with=tracker) accelerator.init_trackers(None) values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() log = os.listdir(d)[0] # Comet is nice, it's just a zip file here # We parse the raw logs p = os.path.join(d, log) archive = zipfile.ZipFile(p, "r") log = archive.open("messages.json").read().decode("utf-8") list_of_json = log.split("\n")[:-1] self.assertEqual(self.get_value_from_key(list_of_json, "curr_step", True), 0) self.assertEqual(self.get_value_from_key(list_of_json, "total_loss"), 0.1) self.assertEqual(self.get_value_from_key(list_of_json, "iteration"), 1) self.assertEqual(self.get_value_from_key(list_of_json, "my_text"), "some_value") class MyCustomTracker(GeneralTracker): "Basic tracker that writes to a csv for testing" _col_names = [ "total_loss", "iteration", "my_text", "learning_rate", "num_iterations", "some_boolean", "some_string", ] name = "my_custom_tracker" requires_logging_directory = False def __init__(self, dir: str): self.f = open(f"{dir}/log.csv", "w+") self.writer = csv.DictWriter(self.f, fieldnames=self._col_names) self.writer.writeheader() @property def tracker(self): return self.writer def store_init_configuration(self, values: dict): logger.info("Call init") self.writer.writerow(values) def log(self, values: dict, step: Optional[int]): logger.info("Call log") self.writer.writerow(values) def finish(self): self.f.close() class CustomTrackerTestCase(unittest.TestCase): def test_init_trackers(self): with tempfile.TemporaryDirectory() as d: tracker = MyCustomTracker(d) accelerator = Accelerator(log_with=tracker) config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"} accelerator.init_trackers("Some name", config) accelerator.end_training() with open(f"{d}/log.csv", "r") as f: data = csv.DictReader(f) data = next(data) truth = { "total_loss": "", "iteration": "", "my_text": "", "learning_rate": "0.01", "num_iterations": "12", "some_boolean": "False", "some_string": "some_value", } self.assertDictEqual(data, truth) def test_log(self): with tempfile.TemporaryDirectory() as d: tracker = MyCustomTracker(d) accelerator = Accelerator(log_with=tracker) accelerator.init_trackers("Some name") values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"} accelerator.log(values, step=0) accelerator.end_training() with open(f"{d}/log.csv", "r") as f: data = csv.DictReader(f) data = next(data) truth = { "total_loss": "0.1", "iteration": "1", "my_text": "some_value", "learning_rate": "", "num_iterations": "", "some_boolean": "", "some_string": "", } self.assertDictEqual(data, truth)
accelerate-wip-main
tests/test_tracking.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu, require_torch_min_version class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class PreForwardHook(ModelHook): def pre_forward(self, module, *args, **kwargs): return (args[0] + 1,) + args[1:], kwargs class PostForwardHook(ModelHook): def post_forward(self, module, output): return output + 1 @require_torch_min_version(version="1.9.0") class HooksModelTester(unittest.TestCase): def test_add_and_remove_hooks(self): test_model = ModelForTest() test_hook = ModelHook() add_hook_to_module(test_model, test_hook) self.assertEqual(test_model._hf_hook, test_hook) self.assertTrue(hasattr(test_model, "_old_forward")) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, "forward") self.assertListEqual(list(inspect.signature(test_model.forward).parameters), ["x"]) remove_hook_from_module(test_model) self.assertFalse(hasattr(test_model, "_hf_hook")) self.assertFalse(hasattr(test_model, "_old_forward")) def test_append_and_remove_hooks(self): test_model = ModelForTest() test_hook = ModelHook() add_hook_to_module(test_model, test_hook) add_hook_to_module(test_model, test_hook, append=True) self.assertEqual(isinstance(test_model._hf_hook, SequentialHook), True) self.assertEqual(len(test_model._hf_hook.hooks), 2) self.assertTrue(hasattr(test_model, "_old_forward")) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__, "forward") self.assertListEqual(list(inspect.signature(test_model.forward).parameters), ["x"]) remove_hook_from_module(test_model) self.assertFalse(hasattr(test_model, "_hf_hook")) self.assertFalse(hasattr(test_model, "_old_forward")) def test_pre_forward_hook_is_executed(self): test_model = ModelForTest() x = torch.randn(2, 3) expected = test_model(x + 1) expected2 = test_model(x + 2) test_hook = PreForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) self.assertTrue(torch.allclose(output1, expected, atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain test_hook = PreForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) self.assertTrue(torch.allclose(output1, expected, atol=1e-5)) # You need to use the sequential hook to chain two or more hooks test_hook = SequentialHook(PreForwardHook(), PreForwardHook()) add_hook_to_module(test_model, test_hook) output2 = test_model(x) assert torch.allclose(output2, expected2, atol=1e-5) def test_post_forward_hook_is_executed(self): test_model = ModelForTest() x = torch.randn(2, 3) output = test_model(x) test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) self.assertTrue(torch.allclose(output1, output + 1, atol=1e-5)) # Attaching a hook to a model when it already has one replaces, does not chain test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) self.assertTrue(torch.allclose(output1, output + 1, atol=1e-5)) # You need to use the sequential hook to chain two or more hooks test_hook = SequentialHook(PostForwardHook(), PostForwardHook()) add_hook_to_module(test_model, test_hook) output2 = test_model(x) assert torch.allclose(output2, output + 2, atol=1e-5) def test_no_grad_in_hook(self): test_model = ModelForTest() x = torch.randn(2, 3) output = test_model(x) test_hook = PostForwardHook() add_hook_to_module(test_model, test_hook) output1 = test_model(x) self.assertTrue(torch.allclose(output1, output + 1)) self.assertTrue(output1.requires_grad) test_hook.no_grad = True output1 = test_model(x) self.assertFalse(output1.requires_grad) @require_multi_gpu def test_align_devices_as_model_parallelism(self): model = ModelForTest() # Everything is on CPU self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # This will move each submodule on different devices add_hook_to_module(model.linear1, AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm, AlignDevicesHook(execution_device=0)) add_hook_to_module(model.linear2, AlignDevicesHook(execution_device=1)) self.assertEqual(model.linear1.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.weight.device, torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device, torch.device(0)) self.assertEqual(model.linear2.weight.device, torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(model, AlignDevicesHook(io_same_device=True)) x = torch.randn(2, 3).to(0) output = model(x) self.assertEqual(output.device, torch.device(0)) def test_align_devices_as_cpu_offload(self): model = ModelForTest() # Everything is on CPU self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # This will move each submodule on different devices hook_kwargs = {"execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True} add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.linear1.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("meta")) # Buffers are not included in the offload by default, so are on the execution device device = torch.device(hook_kwargs["execution_device"]) self.assertEqual(model.batchnorm.running_mean.device, device) x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, device) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.linear1) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.linear2) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Now test with buffers included in the offload hook_kwargs = { "execution_device": 0 if torch.cuda.is_available() else "cpu", "offload": True, "offload_buffers": True, } add_hook_to_module(model.linear1, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.batchnorm, AlignDevicesHook(**hook_kwargs)) add_hook_to_module(model.linear2, AlignDevicesHook(**hook_kwargs)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.linear1.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.running_mean.device, torch.device("meta")) x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, device) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.linear1) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.linear2) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) def test_attach_align_device_hook_as_cpu_offload(self): model = ModelForTest() # Everything is on CPU self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # This will move each submodule on different devices execution_device = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook(model, execution_device=execution_device, offload=True) # Parameters have been offloaded, so on the meta device self.assertEqual(model.linear1.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("meta")) # Buffers are not included in the offload by default, so are on the execution device device = torch.device(execution_device) self.assertEqual(model.batchnorm.running_mean.device, device) x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, device) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Now test with buffers included in the offload attach_align_device_hook(model, execution_device=execution_device, offload=True, offload_buffers=True) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.linear1.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.running_mean.device, torch.device("meta")) x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, device) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) def test_attach_align_device_hook_as_cpu_offload_with_weight_map(self): model = ModelForTest() # Everything is on CPU self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # This will move each submodule on different devices execution_device = 0 if torch.cuda.is_available() else "cpu" attach_align_device_hook( model, execution_device=execution_device, offload=True, weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.linear1.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("meta")) # Buffers are not included in the offload by default, so are on the execution device device = torch.device(execution_device) self.assertEqual(model.batchnorm.running_mean.device, device) x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, device) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu")) # Now test with buffers included in the offload attach_align_device_hook( model, execution_device=execution_device, offload=True, weights_map=model.state_dict(), offload_buffers=True, ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.linear1.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.weight.device, torch.device("meta")) self.assertEqual(model.linear2.weight.device, torch.device("meta")) self.assertEqual(model.batchnorm.running_mean.device, torch.device("meta")) x = torch.randn(2, 3) output = model(x) self.assertEqual(output.device, device) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(model) self.assertEqual(model.linear1.weight.device, torch.device("cpu")) self.assertEqual(model.batchnorm.weight.device, torch.device("cpu")) self.assertEqual(model.linear2.weight.device, torch.device("cpu"))
accelerate-wip-main
tests/test_hooks.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import get_launch_prefix, patch_environment class MultiGPUTester(unittest.TestCase): def setUp(self): mod_file = inspect.getfile(accelerate.test_utils) self.test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) self.data_loop_file_path = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "test_distributed_data_loop.py"] ) self.operation_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_ops.py"]) @require_multi_gpu def test_multi_gpu(self): print(f"Found {torch.cuda.device_count()} devices.") cmd = get_launch_prefix() + [f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_multi_gpu def test_multi_gpu_ops(self): print(f"Found {torch.cuda.device_count()} devices.") cmd = get_launch_prefix() + [f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}") with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_multi_gpu def test_pad_across_processes(self): cmd = get_launch_prefix() + [f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_multi_gpu def test_distributed_data_loop(self): """ This TestCase checks the behaviour that occurs during distributed training or evaluation, when the batch size does not evenly divide the dataset size. """ print(f"Found {torch.cuda.device_count()} devices, using 2 devices only") cmd = get_launch_prefix() + [f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices="0,1"): execute_subprocess_async(cmd, env=os.environ.copy()) if __name__ == "__main__": accelerator = Accelerator() shape = (accelerator.state.process_index + 2, 10) tensor = torch.randint(0, 10, shape).to(accelerator.device) error_msg = "" tensor1 = accelerator.pad_across_processes(tensor) if tensor1.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensor1.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensor1[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensor1[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." tensor2 = accelerator.pad_across_processes(tensor, pad_first=True) if tensor2.shape[0] != accelerator.state.num_processes + 1: error_msg += f"Found shape {tensor2.shape} but should have {accelerator.state.num_processes + 1} at dim 0." index = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensor2[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensor2[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
accelerate-wip-main
tests/test_multigpu.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_multi_gpu, require_single_gpu, test_sync, ) from accelerate.utils import get_launch_prefix, patch_environment class SyncScheduler(unittest.TestCase): def setUp(self): mod_file = inspect.getfile(accelerate.test_utils) self.test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_sync.py"]) @require_cpu def test_gradient_sync_cpu_noop(self): debug_launcher(test_sync.main, num_processes=1) @require_cpu def test_gradient_sync_cpu_multi(self): debug_launcher(test_sync.main) @require_single_gpu def test_gradient_sync_gpu(self): test_sync.main() @require_multi_gpu def test_gradient_sync_gpu_multi(self): print(f"Found {torch.cuda.device_count()} devices.") cmd = get_launch_prefix() + [f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy())
accelerate-wip-main
tests/test_grad_sync.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A simple launcher script for TPU training Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py :: >>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other arguments of your training script) """ import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).") # positional parser.add_argument( "training_script", type=str, help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ), ) # rest from the training program parser.add_argument("training_script_args", nargs=REMAINDER) return parser.parse_args() def main(): args = parse_args() # Import training_script as a module. script_fpath = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) mod_name = script_fpath.stem mod = importlib.import_module(mod_name) # Patch sys.argv sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores) if __name__ == "__main__": main()
accelerate-wip-main
tests/xla_spawn.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, is_torch_version, load_offloaded_weight, offload_state_dict, offload_weight, ) class ModelForTest(nn.Module): def __init__(self): super().__init__() self.linear1 = nn.Linear(3, 4) self.batchnorm = nn.BatchNorm1d(4) self.linear2 = nn.Linear(4, 5) def forward(self, x): return self.linear2(self.batchnorm(self.linear1(x))) class OffloadTester(unittest.TestCase): def test_offload_state_dict(self): model = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, model.state_dict()) index_file = os.path.join(tmp_dir, "index.json") self.assertTrue(os.path.isfile(index_file)) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: weight_file = os.path.join(tmp_dir, f"{key}.dat") self.assertTrue(os.path.isfile(weight_file)) # TODO: add tests on the fact weights are properly loaded def test_offload_weight(self): dtypes = [torch.float16, torch.float32] if is_torch_version(">=", "1.10"): dtypes.append(torch.bfloat16) for dtype in dtypes: weight = torch.randn(2, 3, dtype=dtype) with TemporaryDirectory() as tmp_dir: index = offload_weight(weight, "weight", tmp_dir, {}) weight_file = os.path.join(tmp_dir, "weight.dat") self.assertTrue(os.path.isfile(weight_file)) self.assertDictEqual(index, {"weight": {"shape": [2, 3], "dtype": str(dtype).split(".")[1]}}) new_weight = load_offloaded_weight(weight_file, index["weight"]) self.assertTrue(torch.equal(weight, new_weight)) def test_offload_weights_loader(self): model = ModelForTest() state_dict = model.state_dict() cpu_part = {k: v for k, v in state_dict.items() if "linear2" not in k} disk_part = {k: v for k, v in state_dict.items() if "linear2" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, disk_part) weight_map = OffloadedWeightsLoader(state_dict=cpu_part, save_folder=tmp_dir) # Every key is there with the right value self.assertEqual(sorted(weight_map), sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(param, weight_map[key])) cpu_part = {k: v for k, v in state_dict.items() if "weight" in k} disk_part = {k: v for k, v in state_dict.items() if "weight" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, disk_part) weight_map = OffloadedWeightsLoader(state_dict=cpu_part, save_folder=tmp_dir) # Every key is there with the right value self.assertEqual(sorted(weight_map), sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(param, weight_map[key])) with TemporaryDirectory() as tmp_dir: offload_state_dict(tmp_dir, state_dict) # Duplicates are removed weight_map = OffloadedWeightsLoader(state_dict=cpu_part, save_folder=tmp_dir) # Every key is there with the right value self.assertEqual(sorted(weight_map), sorted(state_dict.keys())) for key, param in state_dict.items(): self.assertTrue(torch.allclose(param, weight_map[key])) def test_extract_submodules_state_dict(self): state_dict = {"a.1": 0, "a.10": 1, "a.2": 2} extracted = extract_submodules_state_dict(state_dict, ["a.1", "a.2"]) self.assertDictEqual(extracted, {"a.1": 0, "a.2": 2}) state_dict = {"a.1.a": 0, "a.10.a": 1, "a.2.a": 2} extracted = extract_submodules_state_dict(state_dict, ["a.1", "a.2"]) self.assertDictEqual(extracted, {"a.1.a": 0, "a.2.a": 2})
accelerate-wip-main
tests/test_offload.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class AccelerateLauncherTester(unittest.TestCase): """ Test case for verifying the `accelerate launch` CLI operates correctly. If a `default_config.yaml` file is located in the cache it will temporarily move it for the duration of the tests. """ mod_file = inspect.getfile(accelerate.test_utils) test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_cli.py"]) base_cmd = ["accelerate", "launch"] config_folder = Path.home() / ".cache/huggingface/accelerate" config_file = "default_config.yaml" config_path = config_folder / config_file changed_path = config_folder / "_default_config.yaml" test_config_path = Path("tests/test_configs") @classmethod def setUpClass(cls): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def tearDownClass(cls): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def test_no_config(self): cmd = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy()) def test_config_compatibility(self): for config in sorted(self.test_config_path.glob("**/*.yaml")): with self.subTest(config_file=config): execute_subprocess_async( self.base_cmd + ["--config_file", str(config), self.test_file_path], env=os.environ.copy() ) def test_accelerate_test(self): execute_subprocess_async(["accelerate", "test"], env=os.environ.copy()) class TpuConfigTester(unittest.TestCase): """ Test case for verifying the `accelerate tpu-config` CLI passes the right `gcloud` command. """ tpu_name = "test-tpu" tpu_zone = "us-central1-a" command = "ls" cmd = ["accelerate", "tpu-config"] base_output = "cd /usr/share" command_file = "tests/test_samples/test_command_file.sh" gcloud = "Running gcloud compute tpus tpu-vm ssh" @staticmethod def clean_output(output): return "".join(output).rstrip() def test_base(self): output = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"], return_stdout=True, ) self.assertEqual( self.clean_output(output), f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", ) def test_base_backward_compatibility(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=True, ) self.assertEqual( self.clean_output(output), f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", ) def test_with_config_file(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"], return_stdout=True ) self.assertEqual( self.clean_output(output), f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all', ) def test_with_config_file_and_command(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"], return_stdout=True, ) self.assertEqual( self.clean_output(output), f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all", ) def test_with_config_file_and_multiple_command(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", 'echo "Hello World"', "--debug", ], return_stdout=True, ) self.assertEqual( self.clean_output(output), f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all', ) def test_with_config_file_and_command_file(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"], return_stdout=True, ) self.assertEqual( self.clean_output(output), f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all', ) def test_with_config_file_and_command_file_backward_compatibility(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=True, ) self.assertEqual( self.clean_output(output), f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all', ) def test_accelerate_install(self): output = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"], return_stdout=True, ) self.assertEqual( self.clean_output(output), f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all', ) def test_accelerate_install_version(self): output = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ], return_stdout=True, ) self.assertEqual( self.clean_output(output), f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all', )
accelerate-wip-main
tests/test_cli.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class MultiTPUTester(unittest.TestCase): def setUp(self): mod_file = inspect.getfile(accelerate.test_utils) self.test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_script.py"]) self.test_dir = os.path.sep.join(inspect.getfile(self.__class__).split(os.path.sep)[:-1]) @require_tpu def test_tpu(self): distributed_args = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() cmd = [sys.executable] + distributed_args execute_subprocess_async(cmd, env=os.environ.copy())
accelerate-wip-main
tests/test_tpu.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) EXCLUDE_EXAMPLES = [ "cross_validation.py", "gradient_accumulation.py", "local_sgd.py", "multi_process_metrics.py", "memory.py", "automatic_gradient_accumulation.py", "fsdp_with_peak_mem_tracking.py", "deepspeed_with_config_support.py", "megatron_lm_gpt_pretraining.py", ] class ExampleDifferenceTests(unittest.TestCase): """ This TestCase checks that all of the `complete_*` scripts contain all of the information found in the `by_feature` scripts, line for line. If one fails, then a complete example does not contain all of the features in the features scripts, and should be updated. Each example script should be a single test (such as `test_nlp_example`), and should run `one_complete_example` twice: once with `parser_only=True`, and the other with `parser_only=False`. This is so that when the test failures are returned to the user, they understand if the discrepancy lies in the `main` function, or the `training_loop` function. Otherwise it will be unclear. Also, if there are any expected differences between the base script used and `complete_nlp_example.py` (the canonical base script), these should be included in `special_strings`. These would be differences in how something is logged, print statements, etc (such as calls to `Accelerate.log()`) """ def one_complete_example( self, complete_file_name: str, parser_only: bool, secondary_filename: str = None, special_strings: list = None ): """ Tests a single `complete` example against all of the implemented `by_feature` scripts Args: complete_file_name (`str`): The filename of a complete example parser_only (`bool`): Whether to look at the main training function, or the argument parser secondary_filename (`str`, *optional*): A potential secondary base file to strip all script information not relevant for checking, such as "cv_example.py" when testing "complete_cv_example.py" special_strings (`list`, *optional*): A list of strings to potentially remove before checking no differences are left. These should be diffs that are file specific, such as different logging variations between files. """ self.maxDiff = None by_feature_path = os.path.abspath(os.path.join("examples", "by_feature")) examples_path = os.path.abspath("examples") for item in os.listdir(by_feature_path): if item not in EXCLUDE_EXAMPLES: item_path = os.path.join(by_feature_path, item) if os.path.isfile(item_path) and ".py" in item_path: with self.subTest( tested_script=complete_file_name, feature_script=item, tested_section="main()" if parser_only else "training_function()", ): diff = compare_against_test( os.path.join(examples_path, complete_file_name), item_path, parser_only, secondary_filename ) diff = "\n".join(diff) if special_strings is not None: for string in special_strings: diff = diff.replace(string, "") self.assertEqual(diff, "") def test_nlp_examples(self): self.one_complete_example("complete_nlp_example.py", True) self.one_complete_example("complete_nlp_example.py", False) def test_cv_examples(self): cv_path = os.path.abspath(os.path.join("examples", "cv_example.py")) special_strings = [ " " * 16 + "{\n\n", " " * 20 + '"accuracy": eval_metric["accuracy"],\n\n', " " * 20 + '"f1": eval_metric["f1"],\n\n', " " * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', " " * 20 + '"epoch": epoch,\n\n', " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py", True, cv_path, special_strings) self.one_complete_example("complete_cv_example.py", False, cv_path, special_strings) @mock.patch.dict(os.environ, {"TESTING_MOCKED_DATALOADERS": "1"}) class FeatureExamplesTests(TempDirTestCase): clear_on_setup = False @classmethod def setUpClass(cls): super().setUpClass() cls._tmpdir = tempfile.mkdtemp() cls.configPath = os.path.join(cls._tmpdir, "default_config.yml") write_basic_config(save_location=cls.configPath) cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(cls._tmpdir) def test_checkpointing_by_epoch(self): testargs = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, "epoch_0"))) def test_checkpointing_by_steps(self): testargs = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() _ = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir, "step_2"))) def test_load_states_by_epoch(self): testargs = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir, "epoch_0")} """.split() output = run_command(self._launch_args + testargs, return_stdout=True) self.assertNotIn("epoch 0:", output) self.assertIn("epoch 1:", output) def test_load_states_by_steps(self): testargs = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir, "step_2")} """.split() output = run_command(self._launch_args + testargs, return_stdout=True) if torch.cuda.is_available(): num_processes = torch.cuda.device_count() else: num_processes = 1 if num_processes > 1: self.assertNotIn("epoch 0:", output) self.assertIn("epoch 1:", output) else: self.assertIn("epoch 0:", output) self.assertIn("epoch 1:", output) @slow def test_cross_validation(self): testargs = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ, {"TESTING_MOCKED_DATALOADERS": "0"}): output = run_command(self._launch_args + testargs, return_stdout=True) results = ast.literal_eval(re.findall("({.+})", output)[-1]) self.assertGreaterEqual(results["accuracy"], 0.75) def test_multi_process_metrics(self): testargs = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ, {"WANDB_MODE": "offline"}) def test_tracking(self): with tempfile.TemporaryDirectory() as tmpdir: testargs = f""" examples/by_feature/tracking.py --with_tracking --logging_dir {tmpdir} """.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(tmpdir, "tracking"))) def test_gradient_accumulation(self): testargs = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs) def test_local_sgd(self): testargs = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs)
accelerate-wip-main
tests/test_examples.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, get_launch_prefix, set_seed logger = logging.getLogger(__name__) def dummy_dataloaders(a=2, b=3, batch_size=16, n_train_batches: int = 10, n_valid_batches: int = 2): "Generates a tuple of dummy DataLoaders to test with" def get_dataset(n_batches): x = torch.randn(batch_size * n_batches, 1) return TensorDataset(x, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1)) train_dataset = get_dataset(n_train_batches) valid_dataset = get_dataset(n_valid_batches) train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=batch_size, num_workers=4) return (train_dataloader, valid_dataloader) def train(num_epochs, model, dataloader, optimizer, accelerator, scheduler=None): "Trains for `num_epochs`" rands = [] for epoch in range(num_epochs): # Train quickly model.train() for batch in dataloader: x, y = batch outputs = model(x) loss = torch.nn.functional.mse_loss(outputs, y) accelerator.backward(loss) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class DummyModel(nn.Module): "Simple model to do y=mx+b" def __init__(self): super().__init__() self.a = nn.Parameter(torch.randn(1)) self.b = nn.Parameter(torch.randn(1)) def forward(self, x): return x * self.a + self.b class CheckpointTest(unittest.TestCase): def test_with_save_limit(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(total_limit=1, project_dir=tmpdir, automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir)), 1) def test_can_resume_training_with_folder(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() # Train baseline accelerator = Accelerator() model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial initial = os.path.join(tmpdir, "initial") accelerator.save_state(initial) (a, b) = model.a.item(), model.b.item() opt_state = optimizer.state_dict() ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator) (a1, b1) = model.a.item(), model.b.item() opt_state1 = optimizer.state_dict() # Train partially set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() accelerator = Accelerator() model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) accelerator.load_state(initial) (a2, b2) = model.a.item(), model.b.item() opt_state2 = optimizer.state_dict() self.assertEqual(a, a2) self.assertEqual(b, b2) self.assertEqual(opt_state, opt_state2) test_rands = train(2, model, train_dataloader, optimizer, accelerator) # Save everything checkpoint = os.path.join(tmpdir, "checkpoint") accelerator.save_state(checkpoint) # Load everything back in and make sure all states work accelerator.load_state(checkpoint) test_rands += train(1, model, train_dataloader, optimizer, accelerator) (a3, b3) = model.a.item(), model.b.item() opt_state3 = optimizer.state_dict() self.assertEqual(a1, a3) self.assertEqual(b1, b3) self.assertEqual(opt_state1, opt_state3) self.assertEqual(ground_truth_rands, test_rands) def test_can_resume_training(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) # Save initial accelerator.save_state() (a, b) = model.a.item(), model.b.item() opt_state = optimizer.state_dict() ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator) (a1, b1) = model.a.item(), model.b.item() opt_state1 = optimizer.state_dict() # Train partially set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=True) accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader ) accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0")) (a2, b2) = model.a.item(), model.b.item() opt_state2 = optimizer.state_dict() self.assertEqual(a, a2) self.assertEqual(b, b2) self.assertEqual(opt_state, opt_state2) test_rands = train(2, model, train_dataloader, optimizer, accelerator) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1")) test_rands += train(1, model, train_dataloader, optimizer, accelerator) (a3, b3) = model.a.item(), model.b.item() opt_state3 = optimizer.state_dict() self.assertEqual(a1, a3) self.assertEqual(b1, b3) self.assertEqual(opt_state1, opt_state3) self.assertEqual(ground_truth_rands, test_rands) def test_invalid_registration(self): t = torch.tensor([1, 2, 3]) t1 = torch.tensor([2, 3, 4]) net = DummyModel() opt = torch.optim.Adam(net.parameters()) accelerator = Accelerator() with self.assertRaises(ValueError) as ve: accelerator.register_for_checkpointing(t, t1, net, opt) message = str(ve.exception) self.assertTrue("Item at index 0" in message) self.assertTrue("Item at index 1" in message) self.assertFalse("Item at index 2" in message) self.assertFalse("Item at index 3" in message) def test_with_scheduler(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) # Save initial accelerator.save_state() scheduler_state = scheduler.state_dict() train(3, model, train_dataloader, optimizer, accelerator, scheduler) self.assertNotEqual(scheduler_state, scheduler.state_dict()) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_0")) self.assertEqual(scheduler_state, scheduler.state_dict()) def test_checkpoint_deletion(self): with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) model = DummyModel() project_config = ProjectConfiguration(automatic_checkpoint_naming=True, total_limit=2) # Train baseline accelerator = Accelerator(project_dir=tmpdir, project_config=project_config) model = accelerator.prepare(model) # Save 3 states: for _ in range(11): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_0"))) self.assertTrue(os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_9"))) self.assertTrue(os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_10"))) @require_cuda def test_map_location(self): cmd = get_launch_prefix() cmd += [f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)] execute_subprocess_async(cmd, env=os.environ.copy()) if __name__ == "__main__": savedir = "/tmp/accelerate/state_checkpointing" model = DummyModel() optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) train_dataloader, valid_dataloader = dummy_dataloaders() project_config = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline accelerator = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) model, optimizer, train_dataloader, valid_dataloader, scheduler = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) model, optimizer = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: param_device = group["params"][0].device break assert param_device.type == accelerator.device.type model = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: param_device = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: param_device = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
accelerate-wip-main
tests/test_state_checkpointing.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import io import itertools import json import os import tempfile from copy import deepcopy from pathlib import Path import torch from parameterized import parameterized from torch.utils.data import DataLoader from transformers import AutoModel, AutoModelForCausalLM, get_scheduler from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed from transformers.utils import is_torch_bf16_available import accelerate from accelerate.accelerator import Accelerator from accelerate.scheduler import AcceleratedScheduler from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_deepspeed, require_multi_gpu, slow, ) from accelerate.test_utils.training import RegressionDataset from accelerate.utils.dataclasses import DeepSpeedPlugin from accelerate.utils.deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, ) from accelerate.utils.other import patch_environment set_seed(42) T5_SMALL = "t5-small" T5_TINY = "patrickvonplaten/t5-tiny-random" GPT2_TINY = "sshleifer/tiny-gpt2" ZERO2 = "zero2" ZERO3 = "zero3" FP16 = "fp16" BF16 = "bf16" CUSTOM_OPTIMIZER = "custom_optimizer" CUSTOM_SCHEDULER = "custom_scheduler" DS_OPTIMIZER = "deepspeed_optimizer" DS_SCHEDULER = "deepspeed_scheduler" stages = [ZERO2, ZERO3] optims = [CUSTOM_OPTIMIZER, DS_OPTIMIZER] schedulers = [CUSTOM_SCHEDULER, DS_SCHEDULER] if is_torch_bf16_available(): dtypes = [FP16, BF16] else: dtypes = [FP16] def parameterized_custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test params = list(itertools.product(stages, dtypes)) optim_scheduler_params = list(itertools.product(optims, schedulers)) @require_deepspeed @require_cuda class DeepSpeedConfigIntegration(AccelerateTestCase): def setUp(self): super().setUp() self._test_file_path = inspect.getfile(self.__class__) path = Path(self._test_file_path).resolve() self.test_file_dir_str = str(path.parents[0]) self.ds_config_file = dict( zero2=f"{self.test_file_dir_str}/ds_config_zero2.json", zero3=f"{self.test_file_dir_str}/ds_config_zero3.json", ) # use self.get_config_dict(stage) to use these to ensure the original is not modified with io.open(self.ds_config_file[ZERO2], "r", encoding="utf-8") as f: config_zero2 = json.load(f) with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: config_zero3 = json.load(f) # The following setting slows things down, so don't enable it by default unless needed by a test. # It's in the file as a demo for users since we want everything to work out of the box even if slower. config_zero3["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = False self.ds_config_dict = dict(zero2=config_zero2, zero3=config_zero3) self.dist_env = dict( ACCELERATE_USE_DEEPSPEED="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def get_config_dict(self, stage): # As some tests modify the dict, always make a copy return deepcopy(self.ds_config_dict[stage]) @parameterized.expand(stages, name_func=parameterized_custom_name_func) def test_deepspeed_plugin(self, stage): # Test zero3_init_flag will be set to False when ZeRO stage != 3 deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) self.assertFalse(deepspeed_plugin.zero3_init_flag) deepspeed_plugin.deepspeed_config = None # Test zero3_init_flag will be set to True only when ZeRO stage == 3 deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=3, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) self.assertTrue(deepspeed_plugin.zero3_init_flag) deepspeed_plugin.deepspeed_config = None # Test config files are loaded correctly deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[stage], zero3_init_flag=True) if stage == ZERO2: self.assertFalse(deepspeed_plugin.zero3_init_flag) elif stage == ZERO3: self.assertTrue(deepspeed_plugin.zero3_init_flag) # Test `gradient_accumulation_steps` is set to 1 if unavailable in config file with tempfile.TemporaryDirectory() as dirpath: ds_config = self.get_config_dict(stage) del ds_config["gradient_accumulation_steps"] with open(os.path.join(dirpath, "ds_config.json"), "w") as out_file: json.dump(ds_config, out_file) deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=os.path.join(dirpath, "ds_config.json")) self.assertEqual(deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"], 1) deepspeed_plugin.deepspeed_config = None # Test `ValueError` is raised if `zero_optimization` is unavailable in config file with tempfile.TemporaryDirectory() as dirpath: ds_config = self.get_config_dict(stage) del ds_config["zero_optimization"] with open(os.path.join(dirpath, "ds_config.json"), "w") as out_file: json.dump(ds_config, out_file) with self.assertRaises(ValueError) as cm: deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=os.path.join(dirpath, "ds_config.json")) self.assertTrue( "Please specify the ZeRO optimization config in the DeepSpeed config." in str(cm.exception) ) deepspeed_plugin.deepspeed_config = None # Test `deepspeed_config_process` deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[stage]) kwargs = { "fp16.enabled": True, "bf16.enabled": False, "optimizer.params.lr": 5e-5, "optimizer.params.weight_decay": 0.0, "scheduler.params.warmup_min_lr": 0.0, "scheduler.params.warmup_max_lr": 5e-5, "scheduler.params.warmup_num_steps": 0, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1.0, "train_batch_size": 16, "zero_optimization.reduce_bucket_size": 5e5, "zero_optimization.stage3_prefetch_bucket_size": 5e5, "zero_optimization.stage3_param_persistence_threshold": 5e5, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } deepspeed_plugin.deepspeed_config_process(**kwargs) for ds_key_long, value in kwargs.items(): config, ds_key = deepspeed_plugin.hf_ds_config.find_config_node(ds_key_long) if config.get(ds_key) is not None: self.assertEqual(config.get(ds_key), value) # Test mismatches mismatches = { "optimizer.params.lr": 1e-5, "optimizer.params.weight_decay": 1e-5, "gradient_accumulation_steps": 2, } with self.assertRaises(ValueError) as cm: new_kwargs = deepcopy(kwargs) new_kwargs.update(mismatches) deepspeed_plugin.deepspeed_config_process(**new_kwargs) for key in mismatches.keys(): self.assertTrue( key in str(cm.exception), f"{key} is not in the exception message:\n{cm.exception}", ) # Test `ValueError` is raised if some config file fields with `auto` value is missing in `kwargs` deepspeed_plugin.deepspeed_config["optimizer"]["params"]["lr"] = "auto" with self.assertRaises(ValueError) as cm: del kwargs["optimizer.params.lr"] deepspeed_plugin.deepspeed_config_process(**kwargs) self.assertTrue("`optimizer.params.lr` not found in kwargs." in str(cm.exception)) @parameterized.expand([FP16, BF16], name_func=parameterized_custom_name_func) def test_accelerate_state_deepspeed(self, dtype): AcceleratorState._reset_state(True) deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=ZERO2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) with mockenv_context(**self.dist_env): state = Accelerator(mixed_precision=dtype, deepspeed_plugin=deepspeed_plugin).state self.assertTrue(state.deepspeed_plugin.deepspeed_config[dtype]["enabled"]) def test_init_zero3(self): deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=3, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, zero3_init_flag=True, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin) # noqa: F841 from transformers.deepspeed import is_deepspeed_zero3_enabled self.assertTrue(is_deepspeed_zero3_enabled()) @parameterized.expand(optim_scheduler_params, name_func=parameterized_custom_name_func) def test_prepare_deepspeed(self, optim_type, scheduler_type): # 1. Testing with one of the ZeRO Stages is enough to test the `_prepare_deepspeed` function. # Here we test using ZeRO Stage 2 with FP16 enabled. from deepspeed.runtime.engine import DeepSpeedEngine kwargs = { "optimizer.params.lr": 5e-5, "optimizer.params.weight_decay": 0.0, "scheduler.params.warmup_min_lr": 0.0, "scheduler.params.warmup_max_lr": 5e-5, "scheduler.params.warmup_num_steps": 0, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1.0, "train_batch_size": 16, "zero_optimization.reduce_bucket_size": 5e5, "zero_optimization.stage3_prefetch_bucket_size": 5e5, "zero_optimization.stage3_param_persistence_threshold": 5e5, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } if optim_type == CUSTOM_OPTIMIZER and scheduler_type == CUSTOM_SCHEDULER: # Test custom optimizer + custom scheduler deepspeed_plugin = DeepSpeedPlugin( gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=False, zero3_init_flag=False, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) self.assertTrue( "You cannot create a `DummyOptim` without specifying an optimizer in the config file." in str(cm.exception) ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) self.assertTrue( "You cannot create a `DummyScheduler` without specifying a scheduler in the config file." in str(cm.exception) ) with self.assertRaises(ValueError) as cm: model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler) self.assertTrue( "When using DeepSpeed `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders " "or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file" "or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`." in str(cm.exception) ) model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) self.assertTrue(accelerator.deepspeed_config["zero_allow_untested_optimizer"]) self.assertTrue(accelerator.deepspeed_config["train_batch_size"], 16) self.assertEqual(type(model), DeepSpeedEngine) self.assertEqual(type(optimizer), DeepSpeedOptimizerWrapper) self.assertEqual(type(lr_scheduler), AcceleratedScheduler) self.assertEqual(type(accelerator.deepspeed_engine_wrapped), DeepSpeedEngineWrapper) elif optim_type == DS_OPTIMIZER and scheduler_type == DS_SCHEDULER: # Test DeepSpeed optimizer + DeepSpeed scheduler deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[ZERO2]) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=10, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=5, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) self.assertTrue( "You cannot specify an optimizer in the config file and in the code at the same time" in str(cm.exception) ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) self.assertTrue( "You cannot specify a scheduler in the config file and in the code at the same time" in str(cm.exception) ) with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) self.assertTrue( "You cannot specify a scheduler in the config file and in the code at the same time" in str(cm.exception) ) model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) self.assertTrue(type(model) == DeepSpeedEngine) self.assertTrue(type(optimizer) == DeepSpeedOptimizerWrapper) self.assertTrue(type(lr_scheduler) == DeepSpeedSchedulerWrapper) self.assertTrue(type(accelerator.deepspeed_engine_wrapped) == DeepSpeedEngineWrapper) elif optim_type == CUSTOM_OPTIMIZER and scheduler_type == DS_SCHEDULER: # Test custom optimizer + DeepSpeed scheduler deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[ZERO2]) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=10, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=5, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) del accelerator.state.deepspeed_plugin.deepspeed_config["optimizer"] model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) self.assertTrue(type(model) == DeepSpeedEngine) self.assertTrue(type(optimizer) == DeepSpeedOptimizerWrapper) self.assertTrue(type(lr_scheduler) == DeepSpeedSchedulerWrapper) self.assertTrue(type(accelerator.deepspeed_engine_wrapped) == DeepSpeedEngineWrapper) elif optim_type == DS_OPTIMIZER and scheduler_type == CUSTOM_SCHEDULER: # Test deepspeed optimizer + custom scheduler deepspeed_plugin = DeepSpeedPlugin(hf_ds_config=self.ds_config_file[ZERO2]) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=10, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=5, shuffle=False) model = AutoModel.from_pretrained(GPT2_TINY) optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=1000, ) dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) del accelerator.state.deepspeed_plugin.deepspeed_config["scheduler"] with self.assertRaises(ValueError) as cm: model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, lr_scheduler ) self.assertTrue( "You can only specify `accelerate.utils.DummyScheduler` in the code when using `accelerate.utils.DummyOptim`." in str(cm.exception) ) def test_save_checkpoints(self): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, ) del deepspeed_plugin.deepspeed_config["bf16"] kwargs = { "optimizer.params.lr": 5e-5, "optimizer.params.weight_decay": 0.0, "scheduler.params.warmup_min_lr": 0.0, "scheduler.params.warmup_max_lr": 5e-5, "scheduler.params.warmup_num_steps": 0, "train_micro_batch_size_per_gpu": 16, "gradient_clipping": 1.0, "train_batch_size": 16, "zero_optimization.reduce_bucket_size": 5e5, "zero_optimization.stage3_prefetch_bucket_size": 5e5, "zero_optimization.stage3_param_persistence_threshold": 5e5, "zero_optimization.stage3_gather_16bit_weights_on_model_save": False, } with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision="fp16") kwargs["train_batch_size"] = ( kwargs["train_micro_batch_size_per_gpu"] * deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"] * accelerator.num_processes ) accelerator.state.deepspeed_plugin.deepspeed_config_process(**kwargs) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModelForCausalLM.from_pretrained("gpt2") dummy_optimizer = DummyOptim(params=model.parameters()) dummy_lr_scheduler = DummyScheduler(dummy_optimizer) model, _, train_dataloader, eval_dataloader, _ = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) with self.assertRaises(ValueError) as cm: accelerator.get_state_dict(model) msg = ( "Cannot get 16bit model weights because `stage3_gather_16bit_weights_on_model_save` in DeepSpeed config is False. " "To save the model weights in 16bit, set `stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed config file or " "set `zero3_save_16bit_model` to True when using `accelerate config`. " "To save the full checkpoint, run `model.save_checkpoint(save_dir)` and use `zero_to_fp32.py` to recover weights." ) self.assertTrue(msg in str(cm.exception)) def test_autofill_dsconfig(self): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, ) del deepspeed_plugin.deepspeed_config["bf16"] del deepspeed_plugin.deepspeed_config["fp16"] with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin) train_set = RegressionDataset(length=80) eval_set = RegressionDataset(length=20) train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True) eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False) model = AutoModelForCausalLM.from_pretrained("gpt2") dummy_optimizer = DummyOptim(params=model.parameters(), lr=5e-5, weight_decay=1e-4) dummy_lr_scheduler = DummyScheduler(dummy_optimizer, warmup_num_steps=10, total_num_steps=1000) hidden_size = model.config.hidden_size model, _, train_dataloader, eval_dataloader, _ = accelerator.prepare( model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler ) self.assertEqual(accelerator.deepspeed_config["train_micro_batch_size_per_gpu"], 16) self.assertEqual(accelerator.deepspeed_config["train_batch_size"], 16) self.assertEqual(accelerator.deepspeed_config["optimizer"]["params"]["lr"], 5e-5) self.assertEqual(accelerator.deepspeed_config["optimizer"]["params"]["weight_decay"], 1e-4) self.assertEqual(accelerator.deepspeed_config["scheduler"]["params"]["warmup_min_lr"], 0.0) self.assertEqual(accelerator.deepspeed_config["scheduler"]["params"]["warmup_max_lr"], 5e-5) self.assertEqual(accelerator.deepspeed_config["scheduler"]["params"]["warmup_num_steps"], 10) self.assertEqual(accelerator.deepspeed_config["gradient_clipping"], 1.0) self.assertEqual( accelerator.deepspeed_config["zero_optimization"]["reduce_bucket_size"], hidden_size * hidden_size ) self.assertEqual( accelerator.deepspeed_config["zero_optimization"]["stage3_prefetch_bucket_size"], 0.9 * hidden_size * hidden_size, ) self.assertEqual( accelerator.deepspeed_config["zero_optimization"]["stage3_param_persistence_threshold"], 10 * hidden_size, ) self.assertFalse( accelerator.deepspeed_config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] ) @parameterized.expand([FP16, BF16], name_func=parameterized_custom_name_func) def test_autofill_dsconfig_from_ds_plugin(self, dtype): ds_config = self.ds_config_dict["zero3"] if dtype == BF16: del ds_config["fp16"] else: del ds_config["bf16"] ds_config[dtype]["enabled"] = "auto" ds_config["zero_optimization"]["stage"] = "auto" ds_config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] = "auto" ds_config["zero_optimization"]["offload_optimizer"]["device"] = "auto" ds_config["zero_optimization"]["offload_param"]["device"] = "auto" ds_config["gradient_accumulation_steps"] = "auto" ds_config["gradient_clipping"] = "auto" deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=ds_config, zero3_init_flag=True, gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, ) with mockenv_context(**self.dist_env): accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=dtype) deepspeed_plugin = accelerator.state.deepspeed_plugin self.assertEqual(deepspeed_plugin.deepspeed_config["gradient_clipping"], 1.0) self.assertEqual(deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"], 1) self.assertEqual(deepspeed_plugin.deepspeed_config["zero_optimization"]["stage"], 2) self.assertEqual( deepspeed_plugin.deepspeed_config["zero_optimization"]["offload_optimizer"]["device"], "cpu" ) self.assertEqual(deepspeed_plugin.deepspeed_config["zero_optimization"]["offload_param"]["device"], "cpu") self.assertTrue( deepspeed_plugin.deepspeed_config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"] ) self.assertTrue(deepspeed_plugin.deepspeed_config[dtype]["enabled"]) AcceleratorState._reset_state(True) diff_dtype = "bf16" if dtype == "fp16" else "fp16" with mockenv_context(**self.dist_env): with self.assertRaises(ValueError) as cm: accelerator = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=diff_dtype) self.assertTrue( f"`--mixed_precision` arg cannot be set to `{diff_dtype}` when `{dtype}` is set in the DeepSpeed config file." in str(cm.exception) ) def test_ds_config_assertions(self): ambiguous_env = self.dist_env.copy() ambiguous_env[ "ACCELERATE_CONFIG_DS_FIELDS" ] = "gradient_accumulation_steps,gradient_clipping,zero_stage,offload_optimizer_device,offload_param_device,zero3_save_16bit_model,mixed_precision" with mockenv_context(**ambiguous_env): with self.assertRaises(ValueError) as cm: deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[ZERO3], zero3_init_flag=True, gradient_accumulation_steps=1, gradient_clipping=1.0, zero_stage=ZERO2, offload_optimizer_device="cpu", offload_param_device="cpu", zero3_save_16bit_model=True, ) _ = Accelerator(deepspeed_plugin=deepspeed_plugin, mixed_precision=FP16) self.assertTrue( "If you are using an accelerate config file, remove others config variables mentioned in the above specified list." in str(cm.exception) ) @parameterized.expand(stages, name_func=parameterized_custom_name_func) def test_ds_config(self, stage): deepspeed_plugin = DeepSpeedPlugin( hf_ds_config=self.ds_config_file[stage], zero3_init_flag=True, ) self.assertEqual(deepspeed_plugin.zero_stage, int(stage.replace("zero", ""))) def test_basic_run(self): mod_file = inspect.getfile(accelerate.test_utils) test_file_path = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps", "test_performance.py"] ) with tempfile.TemporaryDirectory() as dirpath: cmd = [ "accelerate", "launch", "--num_processes=1", "--num_machines=1", "--machine_rank=0", "--mixed_precision=fp16", "--use_deepspeed", "--gradient_accumulation_steps=1", "--zero_stage=2", "--offload_optimizer_device=none", "--offload_param_device=none", test_file_path, "--model_name_or_path=distilbert-base-uncased", "--num_epochs=1", f"--output_dir={dirpath}", ] with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd, env=os.environ.copy()) @require_deepspeed @require_multi_gpu @slow class DeepSpeedIntegrationTest(TempDirTestCase): def setUp(self): super().setUp() self._test_file_path = inspect.getfile(self.__class__) path = Path(self._test_file_path).resolve() self.test_file_dir_str = str(path.parents[0]) self.ds_config_file = dict( zero2=f"{self.test_file_dir_str}/ds_config_zero2.json", zero3=f"{self.test_file_dir_str}/ds_config_zero3.json", ) self.stages = [1, 2, 3] self.zero3_offload_config = False self.performance_lower_bound = 0.82 self.peak_memory_usage_upper_bound = { "multi_gpu_fp16": 3200, "deepspeed_stage_1_fp16": 1600, "deepspeed_stage_2_fp16": 2500, "deepspeed_stage_3_zero_init_fp16": 2800, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "deepspeed_stage_3_cpu_offload_fp16": 1900, } self.n_train = 160 self.n_val = 160 mod_file = inspect.getfile(accelerate.test_utils) self.test_scripts_folder = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def test_performance(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_performance.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--mixed_precision=fp16", "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", ] for stage in self.stages: if stage == 1: continue cmd_stage = cmd.copy() cmd_stage.extend([f"--zero_stage={stage}"]) cmd_stage.extend(["--offload_optimizer_device=none", "--offload_param_device=none"]) if self.zero3_offload_config: with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: ds_config = json.load(f) del ds_config["bf16"] del ds_config["optimizer"]["params"]["torch_adam"] del ds_config["optimizer"]["params"]["adam_w_mode"] ds_config["fp16"]["enabled"] = True ds_config_path = os.path.join(self.tmpdir, "ds_config.json") with open(ds_config_path, "w") as out_file: json.dump(ds_config, out_file) cmd_stage.extend([f"--deepspeed_config_file={ds_config_path}"]) cmd_stage.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage, env=os.environ.copy()) def test_checkpointing(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_checkpointing.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--mixed_precision=fp16", "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", ] for stage in self.stages: if stage == 1: continue cmd_stage = cmd.copy() cmd_stage.extend([f"--zero_stage={stage}"]) cmd_stage.extend(["--offload_optimizer_device=none", "--offload_param_device=none"]) if self.zero3_offload_config: with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: ds_config = json.load(f) del ds_config["bf16"] del ds_config["optimizer"]["params"]["torch_adam"] del ds_config["optimizer"]["params"]["adam_w_mode"] ds_config["fp16"]["enabled"] = True ds_config_path = os.path.join(self.tmpdir, "ds_config.json") with open(ds_config_path, "w") as out_file: json.dump(ds_config, out_file) cmd_stage.extend([f"--deepspeed_config_file={ds_config_path}"]) cmd_stage.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage, env=os.environ.copy()) cmd_stage = cmd_stage[:-1] resume_from_checkpoint = os.path.join(self.tmpdir, "epoch_0") cmd_stage.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage, env=os.environ.copy()) def test_peak_memory_usage(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_peak_memory_usage.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): cmd_stage = cmd.copy() if "fp16" in spec: cmd_stage.extend(["--mixed_precision=fp16"]) if "multi_gpu" in spec: continue else: cmd_stage.extend( [ "--use_deepspeed", "--gradient_accumulation_steps=1", "--gradient_clipping=1", "--zero3_init_flag=True", "--zero3_save_16bit_model=True", ] ) for i in range(3): if f"stage_{i+1}" in spec: cmd_stage.extend([f"--zero_stage={i+1}"]) break cmd_stage.extend(["--offload_optimizer_device=none", "--offload_param_device=none"]) if "cpu_offload" in spec: with io.open(self.ds_config_file[ZERO3], "r", encoding="utf-8") as f: ds_config = json.load(f) del ds_config["bf16"] del ds_config["fp16"] del ds_config["optimizer"]["params"]["torch_adam"] del ds_config["optimizer"]["params"]["adam_w_mode"] ds_config_path = os.path.join(self.tmpdir, "ds_config.json") with open(ds_config_path, "w") as out_file: json.dump(ds_config, out_file) cmd_stage.extend([f"--deepspeed_config_file={ds_config_path}"]) cmd_stage.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_stage, env=os.environ.copy())
accelerate-wip-main
tests/deepspeed/test_deepspeed.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) BERT_BASE_CASED = "bert-base-cased" FP16 = "fp16" BF16 = "bf16" dtypes = [FP16, BF16] @require_fsdp @require_cuda class FSDPPluginIntegration(AccelerateTestCase): def setUp(self): super().setUp() self.dist_env = dict( ACCELERATE_USE_FSDP="true", MASTER_ADDR="localhost", MASTER_PORT="10999", RANK="0", LOCAL_RANK="0", WORLD_SIZE="1", ) def test_sharding_strategy(self): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): env = self.dist_env.copy() env["FSDP_SHARDING_STRATEGY"] = f"{i + 1}" env["FSDP_SHARDING_STRATEGY_NAME"] = strategy with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1)) def test_backward_prefetch(self): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(FSDP_BACKWARD_PREFETCH): env = self.dist_env.copy() env["FSDP_BACKWARD_PREFETCH"] = prefetch_policy with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch, BackwardPrefetch(i + 1)) def test_state_dict_type(self): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(FSDP_STATE_DICT_TYPE): env = self.dist_env.copy() env["FSDP_STATE_DICT_TYPE"] = state_dict_type with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type, StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.rank0_only) def test_auto_wrap_policy(self): model = AutoModel.from_pretrained(BERT_BASE_CASED) for policy in FSDP_AUTO_WRAP_POLICY: env = self.dist_env.copy() env["FSDP_AUTO_WRAP_POLICY"] = policy if policy == "TRANSFORMER_BASED_WRAP": env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "BertLayer" elif policy == "SIZE_BASED_WRAP": env["FSDP_MIN_NUM_PARAMS"] = "2000" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(model) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) env = self.dist_env.copy() env["FSDP_AUTO_WRAP_POLICY"] = "TRANSFORMER_BASED_WRAP" env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = "T5Layer" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() with self.assertRaises(Exception) as cm: fsdp_plugin.set_auto_wrap_policy(model) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) env = self.dist_env.copy() env["FSDP_AUTO_WRAP_POLICY"] = "SIZE_BASED_WRAP" env["FSDP_MIN_NUM_PARAMS"] = "0" with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(model) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def test_mixed_precision(self): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: env = self.dist_env.copy() env["ACCELERATE_MIXED_PRECISION"] = mp_dtype with mockenv_context(**env): accelerator = Accelerator() if mp_dtype == "fp16": dtype = torch.float16 elif mp_dtype == "bf16": dtype = torch.bfloat16 mp_policy = MixedPrecision(param_dtype=dtype, reduce_dtype=dtype, buffer_dtype=dtype) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy, mp_policy) if mp_dtype == FP16: self.assertTrue(isinstance(accelerator.scaler, ShardedGradScaler)) elif mp_dtype == BF16: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(True) def test_cpu_offload(self): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: env = self.dist_env.copy() env["FSDP_OFFLOAD_PARAMS"] = str(flag).lower() with mockenv_context(**env): fsdp_plugin = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload, CPUOffload(offload_params=flag)) @require_fsdp @require_multi_gpu @slow class FSDPIntegrationTest(TempDirTestCase): def setUp(self): super().setUp() self.performance_lower_bound = 0.82 self.performance_configs = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] self.peak_memory_usage_upper_bound = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } self.n_train = 160 self.n_val = 160 mod_file = inspect.getfile(accelerate.test_utils) self.test_scripts_folder = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def test_performance(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_performance.py") cmd = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: cmd_config = cmd.copy() for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): if strategy.lower() in config: cmd_config.append(f"--fsdp_sharding_strategy={i+1}") break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--performance_lower_bound={self.performance_lower_bound}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy()) def test_checkpointing(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_checkpointing.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): cmd_config = cmd.copy() cmd_config.append(f"--fsdp_sharding_strategy={i+1}") if strategy != "FULL_SHARD": continue state_dict_config_index = len(cmd_config) for state_dict_type in FSDP_STATE_DICT_TYPE: cmd_config = cmd_config[:state_dict_config_index] if state_dict_type == "SHARDED_STATE_DICT": continue cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", "--partial_train_epoch=1", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy()) cmd_config = cmd_config[:-1] resume_from_checkpoint = os.path.join(self.tmpdir, "epoch_0") cmd_config.extend( [ f"--resume_from_checkpoint={resume_from_checkpoint}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy()) def test_peak_memory_usage(self): self.test_file_path = os.path.join(self.test_scripts_folder, "test_peak_memory_usage.py") cmd = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): cmd_config = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(FSDP_SHARDING_STRATEGY): if strategy.lower() in spec: cmd_config.append(f"--fsdp_sharding_strategy={i+1}") break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f"--fsdp_auto_wrap_policy={policy}") break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, f"--output_dir={self.tmpdir}", f"--peak_memory_upper_bound={peak_mem_upper_bound}", f"--n_train={self.n_train}", f"--n_val={self.n_val}", ] ) with patch_environment(omp_num_threads=1): execute_subprocess_async(cmd_config, env=os.environ.copy())
accelerate-wip-main
tests/fsdp/test_fsdp.py
# Copyright 2022 The HuggingFace Team, the AllenNLP library authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script to close stale issue. Taken in part from the AllenNLP repository. https://github.com/allenai/allennlp. """ import os from datetime import datetime as dt from github import Github LABELS_TO_EXEMPT = [ "good first issue", "feature request", "wip", ] def main(): g = Github(os.environ["GITHUB_TOKEN"]) repo = g.get_repo("huggingface/accelerate") open_issues = repo.get_issues(state="open") for issue in open_issues: comments = sorted([comment for comment in issue.get_comments()], key=lambda i: i.created_at, reverse=True) last_comment = comments[0] if len(comments) > 0 else None current_time = dt.utcnow() days_since_updated = (current_time - issue.updated_at).days days_since_creation = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed") elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
accelerate-wip-main
utils/stale.py
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate hf_table_format = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) failed = [] group_info = [] no_error_payload = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} payload = [ { "type": "header", "text": { "type": "plain_text", "text": f"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] total_num_failed = 0 for log in Path().glob("*.log"): section_num_failed = 0 with open(log, "r") as f: for line in f: line = json.loads(line) if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) failed = [] log.unlink() message = "" all_files2failed = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" failed_table = [] files2failed = {} for test in failed_tests: data = test[0].split("::") data[0] = data[0].split("/")[-1] if data[0] not in files2failed: files2failed[data[0]] = [data[1:]] else: files2failed[data[0]] += [data[1:]] failed_table.append(data) files = [test[0] for test in failed_table] individual_files = list(set(files)) # Count number of instances in failed_tests table = [] for file in individual_files: table.append([file, len(files2failed[file])]) failed_table = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_files2failed.append(files2failed) if len(message) > 3000: err = "Too many failed tests, please see the full report in the Action results." offset = len(err) + 10 message = message[: 3000 - offset] + f"\n...\n```\n{err}" print(f"### {message}") else: message = "No failed tests! 🤗" print(f"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient client = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": md_report = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) action_button = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) response = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) ts = response.data["ts"] for failed_file in all_files2failed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name test_class = "" for i, row in enumerate(test_failures): if row[0] != test_class: test_class = row[0] else: test_failures[i][0] = "" payload = { "type": "section", "text": { "type": "mrkdwn", "text": f"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
accelerate-wip-main
utils/log_reports.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE, drop_last=(accelerator.mixed_precision == "fp8"), ) return train_dataloader, eval_dataloader def training_function(config, args): # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/nlp_example.py
import argparse import runhouse as rh import torch from nlp_example import training_function from accelerate.utils import PrepareForLaunch, patch_environment def launch_train(*args): num_processes = torch.cuda.device_count() print(f"Device count: {num_processes}") with patch_environment( world_size=num_processes, master_addr="127.0.01", master_port="29500", mixed_precision=args[1].mixed_precision ): launcher = PrepareForLaunch(training_function, distributed_type="MULTI_GPU") torch.multiprocessing.start_processes(launcher, args=args, nprocs=num_processes, start_method="spawn") if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/main/rh_primitives/cluster.html#hardware-setup # for cloud access setup instructions (if using on-demand hardware), and for API specifications. # on-demand GPU # gpu = rh.cluster(name='rh-cluster', instance_type='V100:1', provider='cheapest', use_spot=False) # single GPU gpu = rh.cluster(name="rh-cluster", instance_type="V100:4", provider="cheapest", use_spot=False) # multi GPU gpu.up_if_not() # on-prem GPU # gpu = rh.cluster( # ips=["ip_addr"], ssh_creds={ssh_user:"<username>", ssh_private_key:"<key_path>"}, name="rh-cluster" # ) # Set up remote function reqs = [ "pip:./", "transformers", "datasets", "evaluate", "tqdm", "scipy", "scikit-learn", "tensorboard", "torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117", ] launch_train_gpu = rh.function(fn=launch_train, system=gpu, reqs=reqs, name="train_bert_glue") # Define train args/config, run train function train_args = argparse.Namespace(cpu=False, mixed_precision="fp16") config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} launch_train_gpu(config, train_args, stream_logs=True) # Alternatively, we can just run as instructed in the README (but only because there's already a wrapper CLI): # gpu.install_packages(reqs) # gpu.run(['accelerate launch --multi_gpu accelerate/examples/nlp_example.py'])
accelerate-wip-main
examples/multigpu_remote_launcher.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a ResNet50 on the Oxford-IIT Pet Dataset # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## # Function to get the label from the filename def extract_label(fname): stem = fname.split(os.path.sep)[-1] return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0] class PetsDataset(Dataset): def __init__(self, file_names, image_transform=None, label_to_id=None): self.file_names = file_names self.image_transform = image_transform self.label_to_id = label_to_id def __len__(self): return len(self.file_names) def __getitem__(self, idx): fname = self.file_names[idx] raw_image = PIL.Image.open(fname) image = raw_image.convert("RGB") if self.image_transform is not None: image = self.image_transform(image) label = extract_label(fname) if self.label_to_id is not None: label = self.label_to_id[label] return {"image": image, "label": label} def training_function(config, args): # Initialize accelerator if args.with_tracking: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", logging_dir=args.logging_dir ) else: accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) image_size = config["image_size"] if not isinstance(image_size, (list, tuple)): image_size = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run, config) # Grab all the image filenames file_names = [os.path.join(args.data_dir, fname) for fname in os.listdir(args.data_dir) if fname.endswith(".jpg")] # Build the label correspondences all_labels = [extract_label(fname) for fname in file_names] id_to_label = list(set(all_labels)) id_to_label.sort() label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)} # Set the seed before splitting the data. np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Split our filenames between train and validation random_perm = np.random.permutation(len(file_names)) cut = int(0.8 * len(file_names)) train_split = random_perm[:cut] eval_split = random_perm[cut:] # For training we use a simple RandomResizedCrop train_tfm = Compose([RandomResizedCrop(image_size, scale=(0.5, 1.0)), ToTensor()]) train_dataset = PetsDataset( [file_names[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id ) # For evaluation, we use a deterministic Resize eval_tfm = Compose([Resize(image_size), ToTensor()]) eval_dataset = PetsDataset([file_names[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id) # Instantiate dataloaders. train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size, num_workers=4) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Freezing the base model for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True # We normalize the batches of images to be a bit faster. mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None].to(accelerator.device) std = torch.tensor(model.default_cfg["std"])[None, :, None, None].to(accelerator.device) # Instantiate optimizer optimizer = torch.optim.Adam(params=model.parameters(), lr=lr / 25) # Instantiate learning rate scheduler lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=lr, epochs=num_epochs, steps_per_epoch=len(train_dataloader)) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the starting epoch so files are named properly starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # Now we train the model for epoch in range(starting_epoch, num_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) model.eval() accurate = 0 num_elems = 0 for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["label"])) accurate_preds = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() eval_metric = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, }, step=overall_step, ) if checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument("--data_dir", required=True, help="The data folder on disk.") parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help="Location on where to store experiment tracking logs`", ) args = parser.parse_args() config = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/complete_cv_example.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # This example also demonstrates the checkpointing and sharding capabilities # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def training_function(config, args): # Initialize accelerator if args.with_tracking: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", logging_dir=args.logging_dir ) else: accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run, config) tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") metric = evaluate.load("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # Now we train the model for epoch in range(starting_epoch, num_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, }, step=epoch, ) if checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help="Location on where to store experiment tracking logs`", ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/complete_nlp_example.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a ResNet50 on the Oxford-IIT Pet Dataset # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## # Function to get the label from the filename def extract_label(fname): stem = fname.split(os.path.sep)[-1] return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0] class PetsDataset(Dataset): def __init__(self, file_names, image_transform=None, label_to_id=None): self.file_names = file_names self.image_transform = image_transform self.label_to_id = label_to_id def __len__(self): return len(self.file_names) def __getitem__(self, idx): fname = self.file_names[idx] raw_image = PIL.Image.open(fname) image = raw_image.convert("RGB") if self.image_transform is not None: image = self.image_transform(image) label = extract_label(fname) if self.label_to_id is not None: label = self.label_to_id[label] return {"image": image, "label": label} def training_function(config, args): # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) image_size = config["image_size"] if not isinstance(image_size, (list, tuple)): image_size = (image_size, image_size) # Grab all the image filenames file_names = [os.path.join(args.data_dir, fname) for fname in os.listdir(args.data_dir) if fname.endswith(".jpg")] # Build the label correspondences all_labels = [extract_label(fname) for fname in file_names] id_to_label = list(set(all_labels)) id_to_label.sort() label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)} # Set the seed before splitting the data. np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Split our filenames between train and validation random_perm = np.random.permutation(len(file_names)) cut = int(0.8 * len(file_names)) train_split = random_perm[:cut] eval_split = random_perm[cut:] # For training we use a simple RandomResizedCrop train_tfm = Compose([RandomResizedCrop(image_size, scale=(0.5, 1.0)), ToTensor()]) train_dataset = PetsDataset( [file_names[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id ) # For evaluation, we use a deterministic Resize eval_tfm = Compose([Resize(image_size), ToTensor()]) eval_dataset = PetsDataset([file_names[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id) # Instantiate dataloaders. train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4) eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size, num_workers=4) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id)) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Freezing the base model for param in model.parameters(): param.requires_grad = False for param in model.get_classifier().parameters(): param.requires_grad = True # We normalize the batches of images to be a bit faster. mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None].to(accelerator.device) std = torch.tensor(model.default_cfg["std"])[None, :, None, None].to(accelerator.device) # Instantiate optimizer optimizer = torch.optim.Adam(params=model.parameters(), lr=lr / 25) # Instantiate learning rate scheduler lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=lr, epochs=num_epochs, steps_per_epoch=len(train_dataloader)) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std outputs = model(inputs) loss = torch.nn.functional.cross_entropy(outputs, batch["label"]) accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() accurate = 0 num_elems = 0 for _, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch = {k: v.to(accelerator.device) for k, v in batch.items()} inputs = (batch["image"] - mean) / std with torch.no_grad(): outputs = model(inputs) predictions = outputs.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["label"])) accurate_preds = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() eval_metric = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}") def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument("--data_dir", required=True, help="The data folder on disk.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/cv_example.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # New Code # gradient_accumulation_steps = int(args.gradient_accumulation_steps) # Initialize accelerator accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(model): output = model(**batch) loss = output.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) # New Code # parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="The number of minibatches to be ran before gradients are accumulated.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/gradient_accumulation.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=batch_size) def inner_training_loop(batch_size): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/memory.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # New Code # gradient_accumulation_steps = int(args.gradient_accumulation_steps) local_sgd_steps = int(args.local_sgd_steps) # Initialize accelerator accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)") # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() with LocalSGD( accelerator=accelerator, model=model, local_sgd_steps=local_sgd_steps, enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(model): output = model(**batch) loss = output.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) # New Code # parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="The number of minibatches to be ran before gradients are accumulated.", ) parser.add_argument( "--local_sgd_steps", type=int, default=8, help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/local_sgd.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to combine both the gradient accumulation # and automatic batch size finder utilities of Accelerate to perfrom # automatic gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) observed_batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # New Code # # We use the `find_executable_batch_size` decorator, passing in the desired observed batch size # to train on. If a CUDA OOM error occurs, it will retry this loop cutting the batch size in # half each time. From this, we can calculate the number of gradient accumulation steps needed # and modify the Accelerator object as a result @find_executable_batch_size(starting_batch_size=int(observed_batch_size)) def inner_training_loop(batch_size): # Since we need to modify the outside accelerator object, we need to bring it # to the local scope nonlocal accelerator # We can calculate the number of gradient accumulation steps based on the current # batch size vs the starting batch size num_gradient_accumulation_steps = observed_batch_size // batch_size # And then set it in the Accelerator directly: accelerator.gradient_accumulation_steps = num_gradient_accumulation_steps # Next we need to free all of the stored model references in the Accelerator each time accelerator.free_memory() # And set the seed so our results are reproducable each reset set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # And perform gradient accumulation with accelerator.accumulate(model): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() # New Code # # We modify the starting batch size to be an observed batch size of 256, to guarentee an initial CUDA OOM config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 256} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/automatic_gradient_accumulation.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset without using HuggingFace Trainer. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from itertools import chain from pathlib import Path import datasets import torch import transformers from datasets import load_dataset from huggingface_hub import Repository from torch.utils.data import DataLoader from tqdm.auto import tqdm from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForCausalLM, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import get_full_repo_name from transformers.utils.versions import require_version from accelerate import Accelerator, DistributedType from accelerate.logging import get_logger from accelerate.utils import DummyOptim, DummyScheduler, set_seed logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--validation_split_percentage", default=5, help="The percentage of the train set used as validation set in case there's no validation split", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--block_size", type=int, default=None, help=( "Optional input sequence length after tokenization. The training dataset will be truncated in block of" " this size for training. Default to the model max input length for single sentence inputs (take into" " account special tokens)." ), ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", type=bool, default=False, help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) # New Code # # Whether to load the best model at the end of training parser.add_argument( "--load_best_model", action="store_true", help="Whether to load the best model at the end of training", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args() # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args # New Code # def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs): """Utility function for checkpointing model + optimizer dictionaries The main purpose for this is to be able to resume training from that instant again """ checkpoint_state_dict = { "epoch": epoch, "last_global_step": last_global_step, } # Add extra kwargs too checkpoint_state_dict.update(kwargs) success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict) status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}" if success: logging.info(f"Success {status_msg}") else: logging.warning(f"Failure {status_msg}") return # New Code # def load_training_checkpoint(model, load_dir, tag=None, **kwargs): """Utility function for checkpointing model + optimizer dictionaries The main purpose for this is to be able to resume training from that instant again """ _, checkpoint_state_dict = model.load_checkpoint(load_dir, tag=tag, **kwargs) epoch = checkpoint_state_dict["epoch"] last_global_step = checkpoint_state_dict["last_global_step"] del checkpoint_state_dict return (epoch, last_global_step) # New Code # def evaluate(args, model, eval_dataloader, accelerator, eval_dataset): model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size))) losses = torch.cat(losses) try: eval_loss = torch.mean(losses) perplexity = math.exp(eval_loss) except OverflowError: perplexity = float("inf") return perplexity, eval_loss def main(): args = parse_args() # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator = ( Accelerator(log_with=args.report_to, logging_dir=args.output_dir) if args.with_tracking else Accelerator() ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[:{args.validation_split_percentage}%]", ) raw_datasets["train"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[{args.validation_split_percentage}%:]", ) else: data_files = {} dataset_args = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{args.validation_split_percentage}%]", **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{args.validation_split_percentage}%:]", **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.config_name) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = AutoModelForCausalLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) with accelerator.main_process_first(): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on dataset", ) if args.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --block_size xxx." ) block_size = 1024 else: if args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=args.preprocessing_num_workers, load_from_cache_file=not args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) train_dataset = lm_datasets["train"] eval_dataset = lm_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] # New Code # # Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer optimizer_cls = ( torch.optim.AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate) # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties. if accelerator.distributed_type == DistributedType.TPU: model.tie_weights() # Scheduler and math around the number of training steps. # New Code # Get gradient accumulation steps from deepspeed config if available if accelerator.state.deepspeed_plugin is not None: args.gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch else: args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # New Code # # Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) else: lr_scheduler = DummyScheduler( optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Figure out how many steps we should save the Accelerator states if hasattr(args.checkpointing_steps, "isdigit"): checkpointing_steps = args.checkpointing_steps if args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: checkpointing_steps = None # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("clm_no_trainer", experiment_config) # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 best_metric = None best_metric_checkpoint = None # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: # New Code # # Loads the DeepSpeed checkpoint from the specified path _, last_global_step = load_training_checkpoint( model, args.resume_from_checkpoint, **{"load_optimizer_states": True, "load_lr_scheduler_states": True}, ) accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") resume_step = last_global_step starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 for step, batch in enumerate(train_dataloader): # We need to skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == starting_epoch: if resume_step is not None and step < resume_step: completed_steps += 1 continue outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps }" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break perplexity, eval_loss = evaluate(args, model, eval_dataloader, accelerator, eval_dataset) logger.info(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}") if args.with_tracking: accelerator.log( { "perplexity": perplexity, "eval_loss": eval_loss, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) # New Code # # Save the DeepSpeed checkpoint to the specified path checkpoint_model(args.output_dir, epoch, model, epoch, completed_steps) # New Code # # Tracks the best checkpoint and best metric if best_metric is None or best_metric > perplexity: best_metric = perplexity best_metric_checkpoint = os.path.join(args.output_dir, str(epoch)) accelerator.print(f"New best metric: {best_metric} at epoch {epoch}") accelerator.print(f"best_metric_checkpoint: {best_metric_checkpoint}") # New Code # # Loads the best checkpoint after the training is finished if args.load_best_model: _, last_global_step = load_training_checkpoint( model, "/".join(best_metric_checkpoint.split("/")[:-1]), tag=best_metric_checkpoint.split("/")[-1], **{"load_optimizer_states": True, "load_lr_scheduler_states": True}, ) # New Code # # Evaluates using the best checkpoint perplexity, eval_loss = evaluate(args, model, eval_dataloader, accelerator, eval_dataset) logger.info(f"Best model metrics: perplexity: {perplexity} eval_loss: {eval_loss}") if perplexity != best_metric: raise AssertionError( f"Best metric {best_metric} does not match the metric {perplexity} of the loaded best model." ) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) # New Code # # Saves the whole/unpartitioned fp16 model when in ZeRO Stage-3 to the output directory if # `stage3_gather_16bit_weights_on_model_save` is True in DeepSpeed Config file or # `zero3_save_16bit_model` is True in DeepSpeed Plugin. # For Zero Stages 1 and 2, models are saved as usual in the output directory. # The model name saved is `pytorch_model.bin` unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model), ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"perplexity": perplexity, "eval_loss": eval_loss.item()}, f) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/deepspeed_with_config_support.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather((predictions, batch["labels"])) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(eval_dataloader) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] references = references[: len(eval_dataloader.dataset) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/multi_process_metrics.py
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset without using HuggingFace Trainer. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from itertools import chain from pathlib import Path import datasets import torch import transformers from datasets import load_dataset from huggingface_hub import Repository from torch.utils.data import DataLoader from tqdm.auto import tqdm from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForCausalLM, AutoTokenizer, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry from transformers.utils.versions import require_version from accelerate import Accelerator, DistributedType from accelerate.logging import get_logger from accelerate.utils import MegatronLMDummyScheduler, set_seed # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.23.0.dev0") logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a causal language modeling task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--validation_split_percentage", default=5, help="The percentage of the train set used as validation set in case there's no validation split", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--block_size", type=int, default=None, help=( "Optional input sequence length after tokenization. The training dataset will be truncated in block of" " this size for training. Default to the model max input length for single sentence inputs (take into" " account special tokens)." ), ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files." ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args() # Sanity checks if args.dataset_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_clm_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator_log_kwargs = {} if args.with_tracking: accelerator_log_kwargs["log_with"] = args.report_to accelerator_log_kwargs["logging_dir"] = args.output_dir accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset(args.dataset_name, args.dataset_config_name) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[:{args.validation_split_percentage}%]", ) raw_datasets["train"] = load_dataset( args.dataset_name, args.dataset_config_name, split=f"train[{args.validation_split_percentage}%:]", ) else: data_files = {} dataset_args = {} if args.train_file is not None: data_files["train"] = args.train_file if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.train_file.split(".")[-1] if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{args.validation_split_percentage}%]", **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{args.validation_split_percentage}%:]", **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.config_name) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ) else: logger.info("Training new model from scratch") model = AutoModelForCausalLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) with accelerator.main_process_first(): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on dataset", ) if args.block_size is None: block_size = tokenizer.model_max_length if block_size > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --block_size xxx." ) block_size = 1024 else: if args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({args.block_size}) is larger than the maximum length for the model" f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=args.preprocessing_num_workers, load_from_cache_file=not args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) train_dataset = lm_datasets["train"] eval_dataset = lm_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader( eval_dataset, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "layer_norm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True # New Code # For Megatron-LM, we need to use `MegatronLMDummyScheduler` instead of regular schedulers if accelerator.distributed_type == DistributedType.MEGATRON_LM: lr_scheduler = MegatronLMDummyScheduler( optimizer=optimizer, total_num_steps=args.max_train_steps, warmup_num_steps=args.num_warmup_steps, ) else: lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps, num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # On TPU, the tie weights in our model have been disconnected, so we need to restore the ties. if accelerator.distributed_type == DistributedType.TPU: model.tie_weights() # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("clm_no_trainer", experiment_config) # Train! # New Code # For Megatron-LM, we need to get `global_batch_size` from megatron_lm_plugin # as it handles the specifics related to data parallelism, tensor model parallelism and pipeline parallelism if accelerator.distributed_type == DistributedType.MEGATRON_LM: total_batch_size = accelerator.state.megatron_lm_plugin.global_batch_size else: total_batch_size = ( args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(starting_epoch * num_update_steps_per_epoch) completed_steps = starting_epoch * num_update_steps_per_epoch for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 for step, batch in enumerate(train_dataloader): # We need to skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == starting_epoch: if resume_step is not None and step < resume_step: if step % args.gradient_accumulation_steps == 0: progress_bar.update(1) completed_steps += 1 continue with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0: output_dir = f"step_{completed_steps }" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) loss = outputs.loss # New Code # For Megatron-LM, the losses are already averaged across the data parallel group if accelerator.distributed_type == DistributedType.MEGATRON_LM: losses.append(loss) else: losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size))) try: if accelerator.distributed_type == DistributedType.MEGATRON_LM: losses = torch.tensor(losses) else: losses = torch.cat(losses) eval_loss = torch.mean(losses) perplexity = math.exp(eval_loss) except OverflowError: perplexity = float("inf") logger.info(f"epoch {epoch}: perplexity: {perplexity} eval_loss: {eval_loss}") if args.with_tracking: accelerator.log( { "perplexity": perplexity, "eval_loss": eval_loss, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) repo.push_to_hub( commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) # this is causing some issue with Megatron-LM when using `wandb` at the end of the main function. # Everything works fine inspite of commenting this out. (wandb finishes/closes the run without error) # if args.with_tracking: # accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() # New Code # For Megatron-LM, we need to save the model using `accelerator.save_state` if accelerator.distributed_type == DistributedType.MEGATRON_LM: accelerator.save_state(args.output_dir) else: unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump({"perplexity": perplexity}, f) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/megatron_lm_gpt_pretraining.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import os import evaluate import torch from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # - FSDP # # This example also demonstrates the checkpointing and sharding capabilities # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 # New Code # # Converting Bytes to Megabytes def b2mb(x): return int(x / 2**20) # New Code # # This context manager is used to track the peak memory usage of the process class TorchTracemalloc: def __enter__(self): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero self.begin = torch.cuda.memory_allocated() return self def __exit__(self, *exc): gc.collect() torch.cuda.empty_cache() self.end = torch.cuda.memory_allocated() self.peak = torch.cuda.max_memory_allocated() self.used = b2mb(self.end - self.begin) self.peaked = b2mb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # Initialize accelerator if args.with_tracking: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="wandb", logging_dir=args.logging_dir ) else: accelerator = Accelerator() accelerator.print(accelerator.distributed_type) if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: experiment_config = vars(args) accelerator.init_trackers("fsdp_glue_no_trainer", experiment_config) tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) datasets = load_dataset("glue", "mrpc") metric = evaluate.load("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained(args.model_name_or_path, return_dict=True) # New Code # # For FSDP feature, it is highly recommended and efficient to prepare the model before creating optimizer model = accelerator.prepare(model) accelerator.print(model) # Instantiate optimizer # New Code # # For FSDP feature, at present it doesn't support multiple parameter groups, # so we need to create a single parameter group for the whole model optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr, weight_decay=2e-4) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=10, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # New Code # # For FSDP feature, prepare everything except the model as we have already prepared the model # before creating the optimizer # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( optimizer, train_dataloader, eval_dataloader, lr_scheduler ) overall_step = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: num_epochs -= int(training_difference.replace("epoch_", "")) resume_step = None else: resume_step = int(training_difference.replace("step_", "")) num_epochs -= resume_step // len(train_dataloader) # If resuming by step, we also need to know exactly how far into the DataLoader we went resume_step = (num_epochs * len(train_dataloader)) - resume_step # Now we train the model for epoch in range(num_epochs): # New Code # # context manager to track the peak memory usage during the training epoch with TorchTracemalloc() as tracemalloc: model.train() if args.with_tracking: total_loss = 0 for step, batch in enumerate(train_dataloader): # We need to skip steps until we reach the resumed step if args.resume_from_checkpoint and epoch == 0: if resume_step is not None and step < resume_step: pass # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() # accelerator.print(lr_scheduler.get_lr()) overall_step += 1 if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) # New Code # # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the train : {}".format(b2mb(tracemalloc.begin))) accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used)) accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "Total Peak Memory consumed during the train (max): {}".format( tracemalloc.peaked + b2mb(tracemalloc.begin) ) ) # Logging the peak memory usage of the GPU to the tracker if args.with_tracking: accelerator.log( { "train_total_peak_memory": tracemalloc.peaked + b2mb(tracemalloc.begin), }, step=epoch, ) # New Code # # context manager to track the peak memory usage during the evaluation with TorchTracemalloc() as tracemalloc: model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(train_dataloader), }, step=epoch, ) if checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) # New Code # # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("Memory before entering the eval : {}".format(b2mb(tracemalloc.begin))) accelerator.print("Memory consumed at the end of the eval (end-begin): {}".format(tracemalloc.used)) accelerator.print("Peak Memory consumed during the eval (max-begin): {}".format(tracemalloc.peaked)) accelerator.print( "Total Peak Memory consumed during the eval (max): {}".format(tracemalloc.peaked + b2mb(tracemalloc.begin)) ) # Logging the peak memory usage of the GPU to the tracker if args.with_tracking: accelerator.log( { "eval_total_peak_memory": tracemalloc.peaked + b2mb(tracemalloc.begin), }, step=epoch, ) if args.with_tracking: accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help="Location on where to store experiment tracking logs`", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 1, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate-wip-main
examples/by_feature/fsdp_with_peak_mem_tracking.py