python_code
stringlengths 0
34.9k
|
---|
from distutils.core import setup
from setuptools import find_packages
# When publishing the Docker image, a script checks for the first line with "version" and an equals sign to get the version.
version='1.0.0'
install_requires = [
'bokeh>=0.13',
'expiringdict>=1.1.4',
'injector>=0.16.2',
'joblib>=0.13.2',
'keras>=2.3',
'mmh3~=3.0.0',
'numpy',
# Required for saving plots.
'selenium>=3.141.0',
'scikit-multiflow>=0.3.0',
'spacy>=2.2',
'tqdm>=4.19',
]
test_deps = [
'pytest',
]
setup(
name='decai',
version=version,
packages=find_packages(),
url='https://github.com/microsoft/0xDeCA10B',
license='MIT',
author="Justin D. Harris",
author_email='',
description="Simulate Decentralized & Collaborative AI for Sharing Updatable Models.",
install_requires=install_requires,
tests_require=test_deps,
extras_require=dict(
test=test_deps,
),
)
|
import json
from collections import defaultdict
from dataclasses import dataclass
from itertools import cycle
from logging import Logger
from operator import itemgetter
from pathlib import Path
from typing import List, Dict
from bokeh import colors
from bokeh.io import export_png
from bokeh.models import FuncTickFormatter, Legend, PrintfTickFormatter, AdaptiveTicker
from bokeh.plotting import figure, output_file
from injector import Injector, inject
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent
@inject
@dataclass
class SimulationCombiner(object):
_logger: Logger
def combine(self, runs: List[Dict], img_save_path: str):
"""
Combine runs from several files.
:param paths: The paths to the runs to combine.
"""
output_file('combined_plots.html')
plot = figure(title="Balances & Accuracy on Hidden Test Set", )
plot.width = 800
plot.height = 800
plot.xaxis.axis_label = "Time (days)"
plot.yaxis.axis_label = "Percent"
plot.title.text_font_size = '20pt'
plot.xaxis.major_label_text_font_size = '16pt'
plot.xaxis.axis_label_text_font_size = '16pt'
plot.yaxis.major_label_text_font_size = '16pt'
plot.yaxis.axis_label_text_font_size = '16pt'
plot.xaxis[0].ticker = AdaptiveTicker(base=5 * 24 * 60 * 60)
plot.xgrid[0].ticker = AdaptiveTicker(base=24 * 60 * 60)
# JavaScript code.
plot.xaxis[0].formatter = FuncTickFormatter(code="""
return (tick / 86400).toFixed(0);
""")
plot.yaxis[0].formatter = PrintfTickFormatter(format="%0.1f%%")
# TODO Make plot wider (or maybe it's ok for the paper).
good_colors = cycle([
colors.named.green,
colors.named.lawngreen,
colors.named.darkgreen,
colors.named.limegreen,
])
bad_colors = cycle([
colors.named.red,
colors.named.darkred,
colors.named.orangered,
colors.named.indianred,
])
accuracy_colors = cycle([
colors.named.blue,
colors.named.cadetblue,
colors.named.cornflowerblue,
colors.named.darkblue,
])
baseline_accuracy_colors = cycle([
colors.named.black,
colors.named.darkgrey,
colors.named.slategrey,
colors.named.darkslategrey,
])
line_dashes = cycle([
'solid',
'dashed',
'dotted',
'dotdash',
'dashdot',
])
legend = []
for run in runs:
name = run['name']
path = run['path']
line_dash = next(line_dashes)
self._logger.info("Opening \"%s\".", path)
with open(path) as f:
data = json.load(f)
baseline_accuracy = data['baselineAccuracy']
if baseline_accuracy is not None:
self._logger.debug("Baseline accuracy: %s", baseline_accuracy)
r = plot.ray(x=[0], y=[baseline_accuracy * 100], length=0, angle=0, line_width=2,
line_dash=line_dash,
color=next(baseline_accuracy_colors))
legend.append((f"{name} accuracy when trained with all data: {baseline_accuracy * 100:0.1f}%", [r]))
agents: Dict[str, Agent] = dict()
for agent in data['agents']:
agent = Agent(**agent)
agents[agent.address] = agent
l = plot.line(x=[d['t'] for d in data['accuracies']],
y=[d['accuracy'] * 100 for d in data['accuracies']],
line_dash=line_dash,
line_width=2,
color=next(accuracy_colors),
)
legend.append((f"{name} Accuracy", [l]))
agent_balance_data = defaultdict(list)
for balance_data in data['balances']:
agent = balance_data['a']
agent_balance_data[agent].append(
(balance_data['t'], balance_data['b'] * 100 / agents[agent].start_balance))
for agent_id, balance_data in sorted(agent_balance_data.items(), key=itemgetter(0)):
agent = agents[agent_id]
if agent.good:
color = next(good_colors)
else:
color = next(bad_colors)
l = plot.line(x=list(map(itemgetter(0), balance_data)),
y=list(map(itemgetter(1), balance_data)),
line_dash=line_dash,
line_width=2,
color=color,
)
legend.append((f"{name} {agent.address} Agent Balance", [l]))
self._logger.info("Done going through runs.")
legend = Legend(items=legend, location='center_left')
plot.add_layout(legend, 'above')
plot.legend.label_text_font_size = '12pt'
self._logger.info("Saving image to: %s", img_save_path)
export_png(plot, img_save_path)
if __name__ == '__main__':
inj = Injector([
LoggingModule,
])
s = inj.get(SimulationCombiner)
path = Path(__file__, '../../..').resolve()
paths = dict(
fitness=dict(
nb=path / 'saved_runs/1578937397-fitness-nb.json',
ncc=path / 'saved_runs/1578938741-fitness-ncc.json',
perceptron=path / 'saved_runs/1578934493-fitness-perceptron.json',
),
imdb=dict(
nb=path / 'saved_runs/1580943847-imdb-nb-simulation_data.json',
ncc=path / 'saved_runs/1580945025-imdb-ncc-simulation_data.json',
perceptron=path / 'saved_runs/1580945565-imdb-perceptron-simulation_data.json',
),
news=dict(
nb=path / 'saved_runs/1580941815-news-nb-simulation_data.json',
ncc=path / 'saved_runs/1580941258-news-ncc-simulation_data.json',
perceptron=path / 'saved_runs/1580940494-news-perceptron-simulation_data.json',
),
)
for dataset in paths.keys():
s.combine([
dict(name="NB",
path=paths[dataset]['nb']
),
dict(name="NCC",
path=paths[dataset]['ncc']
),
dict(name="Perceptron",
path=paths[dataset]['perceptron']
),
],
path / f'saved_runs/combined-{dataset}.png')
|
import json
import logging
import os
import random
import time
from dataclasses import asdict, dataclass
from functools import partial
from itertools import cycle
from logging import Logger
from platform import uname
from queue import PriorityQueue
from threading import Thread
from typing import List
import numpy as np
from bokeh import colors
from bokeh.document import Document
from bokeh.io import export_png
from bokeh.models import AdaptiveTicker, ColumnDataSource, FuncTickFormatter, PrintfTickFormatter
from bokeh.plotting import curdoc, figure
from injector import inject
from tornado import gen
from tqdm import tqdm
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.collab_trainer import CollaborativeTrainer
from decai.simulation.contract.incentive.prediction_market import MarketPhase, PredictionMarket
from decai.simulation.contract.objects import Address, Msg, RejectException, TimeMock
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.data.featuremapping.feature_index_mapper import FeatureIndexMapper
@dataclass
class Agent:
"""
A user to run in the simulator.
"""
address: Address
start_balance: float
mean_deposit: float
stdev_deposit: float
mean_update_wait_s: float
stdev_update_wait_time: float = 1
pay_to_call: float = 0
good: bool = True
prob_mistake: float = 0
calls_model: bool = False
def __post_init__(self):
assert self.start_balance > self.mean_deposit
def __lt__(self, other):
return self.address < other.address
def get_next_deposit(self) -> int:
while True:
result = int(random.normalvariate(self.mean_deposit, self.stdev_deposit))
if result > 0:
return result
def get_next_wait_s(self) -> int:
while True:
result = int(random.normalvariate(self.mean_update_wait_s, self.stdev_update_wait_time))
if result >= 1:
return result
class Simulator(object):
"""
A simulator for Decentralized & Collaborative AI.
"""
@inject
def __init__(self,
balances: Balances,
data_loader: DataLoader,
decai: CollaborativeTrainer,
feature_index_mapper: FeatureIndexMapper,
logger: Logger,
time_method: TimeMock,
):
self._balances = balances
self._data_loader = data_loader
self._decai = decai
self._feature_index_mapper = feature_index_mapper
self._logger = logger
self._time = time_method
self._warned_about_saving_plot = False
def save_plot_image(self, plot, plot_save_path):
try:
export_png(plot, filename=plot_save_path)
except Exception as e:
if self._warned_about_saving_plot:
return
show_error_details = True
message = "Could not save picture of the plot."
try:
# Check if in WSL.
show_error_details = not ('microsoft' in uname().release.lower())
except:
pass
if show_error_details:
self._logger.exception(message, exc_info=e)
else:
self._logger.warning(f"{message} %s", e)
self._warned_about_saving_plot = True
def simulate(self,
agents: List[Agent],
baseline_accuracy: float = None,
init_train_data_portion: float = 0.1,
pm_test_sets: list = None,
accuracy_plot_wait_s=2E5,
train_size: int = None, test_size: int = None,
filename_indicator: str = None
):
"""
Run a simulation.
:param agents: The agents that will interact with the data.
:param baseline_accuracy: The baseline accuracy of the model.
Usually the accuracy on a hidden test set when the model is trained with all data.
:param init_train_data_portion: The portion of the data to initially use for training. Must be [0,1].
:param pm_test_sets: The test sets for the prediction market incentive mechanism.
:param accuracy_plot_wait_s: The amount of time to wait in seconds between plotting the accuracy.
:param train_size: The amount of training data to use.
:param test_size: The amount of test data to use.
:param filename_indicator: Path of the filename to create for the run.
"""
assert 0 <= init_train_data_portion <= 1
# Data to save.
save_data = dict(agents=[asdict(a) for a in agents],
baselineAccuracy=baseline_accuracy,
initTrainDataPortion=init_train_data_portion,
accuracies=[],
balances=[],
)
time_for_filenames = int(time.time())
save_path = f'saved_runs/{time_for_filenames}-{filename_indicator}-simulation_data.json'
model_save_path = f'saved_runs/{time_for_filenames}-{filename_indicator}-model.json'
plot_save_path = f'saved_runs/{time_for_filenames}-{filename_indicator}.png'
self._logger.info("Saving run info to \"%s\".", save_path)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
# Set up plots.
doc: Document = curdoc()
doc.title = "DeCAI Simulation"
plot = figure(title="Balances & Accuracy on Hidden Test Set",
)
plot.width = 800
plot.height = 600
plot.xaxis.axis_label = "Time (days)"
plot.yaxis.axis_label = "Percent"
plot.title.text_font_size = '20pt'
plot.xaxis.major_label_text_font_size = '20pt'
plot.xaxis.axis_label_text_font_size = '20pt'
plot.yaxis.major_label_text_font_size = '20pt'
plot.yaxis.axis_label_text_font_size = '20pt'
plot.xaxis[0].ticker = AdaptiveTicker(base=5 * 24 * 60 * 60)
plot.xgrid[0].ticker = AdaptiveTicker(base=24 * 60 * 60)
balance_plot_sources_per_agent = dict()
good_colors = cycle([
colors.named.green,
colors.named.lawngreen,
colors.named.darkgreen,
colors.named.limegreen,
])
bad_colors = cycle([
colors.named.red,
colors.named.darkred,
])
for agent in agents:
source = ColumnDataSource(dict(t=[], b=[]))
assert agent.address not in balance_plot_sources_per_agent
balance_plot_sources_per_agent[agent.address] = source
if agent.calls_model:
color = 'blue'
line_dash = 'dashdot'
elif agent.good:
color = next(good_colors)
line_dash = 'dotted'
else:
color = next(bad_colors)
line_dash = 'dashed'
plot.line(x='t', y='b',
line_dash=line_dash,
line_width=2,
source=source,
color=color,
legend=f"{agent.address} Balance")
plot.legend.location = 'top_left'
plot.legend.label_text_font_size = '12pt'
# JavaScript code.
plot.xaxis[0].formatter = FuncTickFormatter(code="""
return (tick / 86400).toFixed(0);
""")
plot.yaxis[0].formatter = PrintfTickFormatter(format="%0.1f%%")
acc_source = ColumnDataSource(dict(t=[], a=[]))
if baseline_accuracy is not None:
plot.ray(x=[0], y=[baseline_accuracy * 100], length=0, angle=0, line_width=2,
legend=f"Accuracy when trained with all data: {baseline_accuracy * 100:0.1f}%")
plot.line(x='t', y='a',
line_dash='solid',
line_width=2,
source=acc_source,
color='black',
legend="Current Accuracy")
@gen.coroutine
def plot_cb(agent: Agent, t, b):
source = balance_plot_sources_per_agent[agent.address]
source.stream(dict(t=[t], b=[b * 100 / agent.start_balance]))
save_data['balances'].append(dict(t=t, a=agent.address, b=b))
@gen.coroutine
def plot_accuracy_cb(t, a):
acc_source.stream(dict(t=[t], a=[a * 100]))
save_data['accuracies'].append(dict(t=t, accuracy=a))
continuous_evaluation = not isinstance(self._decai.im, PredictionMarket)
def task():
(x_train, y_train), (x_test, y_test) = \
self._data_loader.load_data(train_size=train_size, test_size=test_size)
classifications = self._data_loader.classifications()
x_train, x_test, feature_index_mapping = self._feature_index_mapper.map(x_train, x_test)
x_train_len = x_train.shape[0]
init_idx = int(x_train_len * init_train_data_portion)
self._logger.info("Initializing model with %d out of %d samples.",
init_idx, x_train_len)
x_init_data, y_init_data = x_train[:init_idx], y_train[:init_idx]
x_remaining, y_remaining = x_train[init_idx:], y_train[init_idx:]
save_model = isinstance(self._decai.im, PredictionMarket) and self._decai.im.reset_model_during_reward_phase
self._decai.model.init_model(x_init_data, y_init_data, save_model)
if self._logger.isEnabledFor(logging.DEBUG):
s = self._decai.model.evaluate(x_init_data, y_init_data)
self._logger.debug("Initial training data evaluation: %s", s)
if len(x_remaining) > 0:
s = self._decai.model.evaluate(x_remaining, y_remaining)
self._logger.debug("Remaining training data evaluation: %s", s)
else:
self._logger.debug("There is no more remaining data to evaluate.")
self._logger.info("Evaluating initial model.")
accuracy = self._decai.model.log_evaluation_details(x_test, y_test)
self._logger.info("Initial test set accuracy: %0.2f%%", accuracy * 100)
t = self._time()
doc.add_next_tick_callback(
partial(plot_accuracy_cb, t=t, a=accuracy))
q = PriorityQueue()
random.shuffle(agents)
for agent in agents:
self._balances.initialize(agent.address, agent.start_balance)
q.put((self._time() + agent.get_next_wait_s(), agent))
doc.add_next_tick_callback(
partial(plot_cb, agent=agent, t=t, b=agent.start_balance))
unclaimed_data = []
next_data_index = 0
next_accuracy_plot_time = 1E4
desc = "Processing agent requests"
current_time = 0
with tqdm(desc=desc,
unit_scale=True, mininterval=2, unit=" requests",
total=len(x_remaining),
) as pbar:
while not q.empty():
# For now assume sending a transaction (editing) is free (no gas)
# since it should be relatively cheaper than the deposit required to add data.
# It may not be cheaper than calling `report`.
if next_data_index >= len(x_remaining):
if not continuous_evaluation or len(unclaimed_data) == 0:
break
current_time, agent = q.get()
update_balance_plot = False
if current_time > next_accuracy_plot_time:
self._logger.debug("Evaluating.")
next_accuracy_plot_time += accuracy_plot_wait_s
accuracy = self._decai.model.evaluate(x_test, y_test)
doc.add_next_tick_callback(
partial(plot_accuracy_cb, t=current_time, a=accuracy))
if continuous_evaluation:
self._logger.debug("Unclaimed data: %d", len(unclaimed_data))
pbar.set_description(f"{desc} ({len(unclaimed_data)} unclaimed)")
with open(save_path, 'w') as f:
json.dump(save_data, f, separators=(',', ':'))
self._decai.model.export(model_save_path, classifications,
feature_index_mapping=feature_index_mapping)
if os.path.exists(plot_save_path):
os.remove(plot_save_path)
self.save_plot_image(plot, plot_save_path)
self._time.set_time(current_time)
balance = self._balances[agent.address]
if balance > 0 and next_data_index < len(x_remaining):
# Pick data.
x, y = x_remaining[next_data_index], y_remaining[next_data_index]
if agent.calls_model:
# Only call the model if it's good.
if random.random() < accuracy:
update_balance_plot = True
self._decai.predict(Msg(agent.address, agent.pay_to_call), x)
else:
if not agent.good:
y = 1 - y
if agent.prob_mistake > 0 and random.random() < agent.prob_mistake:
y = 1 - y
# Bad agents always contribute.
# Good agents will only work if the model is doing well.
# Add a bit of chance they will contribute since 0.85 accuracy is okay.
if not agent.good or random.random() < accuracy + 0.15:
value = agent.get_next_deposit()
if value > balance:
value = balance
msg = Msg(agent.address, value)
try:
self._decai.add_data(msg, x, y)
# Don't need to plot every time. Plot less as we get more data.
update_balance_plot = next_data_index / len(x_remaining) + 0.1 < random.random()
balance = self._balances[agent.address]
if continuous_evaluation:
unclaimed_data.append((current_time, agent, x, y))
next_data_index += 1
pbar.update()
except RejectException:
# Probably failed because they didn't pay enough which is okay.
# Or if not enough time has passed since data was attempted to be added
# which is okay too because a real contract would reject this
# because the smallest unit of time we can use is 1s.
if self._logger.isEnabledFor(logging.DEBUG):
self._logger.exception("Error adding data.")
if balance > 0:
q.put((current_time + agent.get_next_wait_s(), agent))
claimed_indices = []
for i in range(len(unclaimed_data)):
added_time, adding_agent, x, classification = unclaimed_data[i]
if current_time - added_time < self._decai.im.refund_time_s:
break
if next_data_index >= len(x_remaining) \
and current_time - added_time < self._decai.im.any_address_claim_wait_time_s:
break
balance = self._balances[agent.address]
msg = Msg(agent.address, balance)
if current_time - added_time > self._decai.im.any_address_claim_wait_time_s:
# Attempt to take the entire deposit.
try:
self._decai.report(msg, x, classification, added_time, adding_agent.address)
update_balance_plot = True
except RejectException:
if self._logger.isEnabledFor(logging.DEBUG):
self._logger.exception("Error taking reward.")
elif adding_agent.address == agent.address:
try:
self._decai.refund(msg, x, classification, added_time)
update_balance_plot = True
except RejectException:
if self._logger.isEnabledFor(logging.DEBUG):
self._logger.exception("Error getting refund.")
else:
try:
self._decai.report(msg, x, classification, added_time, adding_agent.address)
update_balance_plot = True
except RejectException:
if self._logger.isEnabledFor(logging.DEBUG):
self._logger.exception("Error taking reward.")
stored_data = self._decai.data_handler.get_data(x, classification,
added_time, adding_agent.address)
if stored_data.claimable_amount <= 0:
claimed_indices.append(i)
for i in claimed_indices[::-1]:
unclaimed_data.pop(i)
if update_balance_plot:
balance = self._balances[agent.address]
doc.add_next_tick_callback(
partial(plot_cb, agent=agent, t=current_time, b=balance))
self._logger.info("Done going through data.")
if continuous_evaluation:
pbar.set_description(f"{desc} ({len(unclaimed_data)} unclaimed)")
if isinstance(self._decai.im, PredictionMarket):
self._time.add_time(agents[0].get_next_wait_s())
self._decai.im.end_market()
for i, test_set_portion in enumerate(pm_test_sets):
if i != self._decai.im.test_reveal_index:
self._decai.im.verify_next_test_set(test_set_portion)
with tqdm(desc="Processing contributions",
unit_scale=True, mininterval=2, unit=" contributions",
total=self._decai.im.get_num_contributions_in_market(),
) as pbar:
finished_first_round_of_rewards = False
while self._decai.im.remaining_bounty_rounds > 0:
self._time.add_time(agents[0].get_next_wait_s())
self._decai.im.process_contribution()
pbar.update()
if not finished_first_round_of_rewards:
accuracy = self._decai.im.prev_acc
# If we plot too often then we end up with a blob instead of a line.
if random.random() < 0.1:
doc.add_next_tick_callback(
partial(plot_accuracy_cb, t=self._time(), a=accuracy))
if self._decai.im.state == MarketPhase.REWARD_RESTART:
finished_first_round_of_rewards = True
if self._decai.im.reset_model_during_reward_phase:
# Update the accuracy after resetting all data.
accuracy = self._decai.im.prev_acc
else:
# Use the accuracy after training with all data.
pass
doc.add_next_tick_callback(
partial(plot_accuracy_cb, t=self._time(), a=accuracy))
pbar.total += self._decai.im.get_num_contributions_in_market()
self._time.add_time(self._time() * 0.001)
for agent in agents:
balance = self._balances[agent.address]
market_bal = self._decai.im._market_balances[agent.address]
self._logger.debug("\"%s\" market balance: %0.2f Balance: %0.2f",
agent.address, market_bal, balance)
doc.add_next_tick_callback(
partial(plot_cb, agent=agent, t=self._time(), b=max(balance + market_bal, 0)))
self._time.add_time(self._time() * 0.02)
for agent in agents:
msg = Msg(agent.address, 0)
# Find data submitted by them.
data = None
for key, stored_data in self._decai.data_handler:
if stored_data.sender == agent.address:
data = key[0]
break
if data is not None:
self._decai.refund(msg, np.array(data), stored_data.classification, stored_data.time)
balance = self._balances[agent.address]
doc.add_next_tick_callback(
partial(plot_cb, agent=agent, t=self._time(), b=balance))
self._logger.info("Balance for \"%s\": %.2f (%+.2f%%)",
agent.address, balance,
(balance - agent.start_balance) / agent.start_balance * 100)
else:
self._logger.warning("No data submitted by \"%s\" was found."
"\nWill not update it's balance.", agent.address)
self._logger.info("Done issuing rewards.")
accuracy = self._decai.model.log_evaluation_details(x_test, y_test)
doc.add_next_tick_callback(
partial(plot_accuracy_cb, t=current_time + 100, a=accuracy))
with open(save_path, 'w') as f:
json.dump(save_data, f, separators=(',', ':'))
self._decai.model.export(model_save_path, classifications, feature_index_mapping=feature_index_mapping)
if os.path.exists(plot_save_path):
os.remove(plot_save_path)
self.save_plot_image(plot, plot_save_path)
doc.add_root(plot)
thread = Thread(target=task)
thread.start()
|
import os
import sys
import math
from injector import inject, Injector
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.decision_tree import DecisionTreeModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.data.titanic_data_loader import TitanicDataModule
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
class Runner(object):
@inject
def __init__(self,
data: DataLoader,
simulator: Simulator,
):
self._data = data
self._s = simulator
def run(self):
init_train_data_portion = 0.10
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good",
start_balance=10_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=10 * 60,
),
# Malicious: determined with the goal of disrupting others.
Agent(address="Bad",
start_balance=10_000,
mean_deposit=10,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
]
# Start the simulation.
self._s.simulate(agents,
baseline_accuracy=0.806,
init_train_data_portion=init_train_data_portion,
accuracy_plot_wait_s=math.inf,
)
# Run with `bokeh serve PATH`.
if __name__.startswith('bk_script_'):
# Set up the data, model, and incentive mechanism.
inj = Injector([
DecisionTreeModule,
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
TitanicDataModule,
])
inj.get(Runner).run()
if __name__ == '__main__':
# Play the game.
inj = Injector([
DecisionTreeModule(regression=False),
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
TitanicDataModule
])
d = inj.get(DataLoader)
(x_train, y_train), (x_test, y_test) = d.load_data()
c = inj.get(Classifier)
c.init_model(x_train, y_train)
score = c.evaluate(x_train, y_train)
import random
for _ in range(10):
i = random.randrange(len(x_train))
print(f"{i:04d}: {x_train[i]}: {y_train[i]}")
print(f"Prediction: {c.predict(x_train[i])}")
print(f"Evaluation on training data: {score * 100:0.2f}%")
if len(x_test) > 0:
score = c.evaluate(x_test, y_test)
print(f"Evaluation on test data: {score * 100:0.2f}%")
|
import json
import os
import random
import sys
from collections import Counter
from typing import cast
import math
import numpy as np
from injector import inject, Injector
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.decision_tree import DecisionTreeModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.data.ttt_data_loader import TicTacToeDataModule, TicTacToeDataLoader
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
class Runner(object):
@inject
def __init__(self,
data: DataLoader,
simulator: Simulator,
):
self._data = data
self._s = simulator
def run(self):
init_train_data_portion = 0.10
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good",
start_balance=10_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=10 * 60,
),
# Malicious: determined with the goal of disrupting others.
Agent(address="Bad",
start_balance=10_000,
mean_deposit=10,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
]
# Start the simulation.
self._s.simulate(agents,
baseline_accuracy=0.44,
init_train_data_portion=init_train_data_portion,
accuracy_plot_wait_s=math.inf,
)
# Run with `bokeh serve PATH`.
if __name__.startswith('bk_script_'):
# Set up the data, model, and incentive mechanism.
inj = Injector([
DecisionTreeModule,
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
TicTacToeDataModule,
])
inj.get(Runner).run()
def _map_pos(tic_tac_toe, board, pos):
assert 0 <= pos < board.size
return pos // tic_tac_toe.width, pos % tic_tac_toe.width
def play_game(classifier, tic_tac_toe):
board = np.zeros((tic_tac_toe.width, tic_tac_toe.length), dtype=np.int8)
if random.random() < 0.5:
# Machine is playing.
pos = classifier.predict(board.flatten())
board[_map_pos(tic_tac_toe, board, pos)] = 1
m = {0: '#', 1: 'O', -1: 'X'}
map_symbols = np.vectorize(lambda x: m[x])
def print_board(b):
print(np.array2string(map_symbols(b), formatter={'str_kind': lambda x: x}))
print(f"The machine is O. You are X.\nPositions:\n{np.arange(board.size).reshape(board.shape)}")
while True:
if np.count_nonzero(board) == board.size:
print("TIE")
break
# Person's turn.
print_board(board)
while True:
pos = input("Where would you like to go?")
pos = _map_pos(tic_tac_toe, board, int(pos.strip()))
if board[pos] == 0:
board[pos] = -1
break
else:
print("There is already a value there.")
winner = tic_tac_toe.get_winner(board)
if winner is not None:
print("You WIN!")
break
# Machine's turn.
original_pos = classifier.predict(board.flatten())
pos = _map_pos(tic_tac_toe, board, original_pos)
if board[pos] != 0:
print(f"Machine picked a spot that already has a marker ({original_pos}). This probably means a draw.")
print_board(board)
break
board[pos] = 1
winner = tic_tac_toe.get_winner(board)
if winner is not None:
print("You lose :(")
break
print_board(board)
def evaluate_on_self(classifier, tic_tac_toe):
print("Evaluating by playing against itself.")
def _run_game(board, next_player):
if next_player == -1:
# Flip the board since the bot always thinks it is 1.
board_for_prediction = -board
else:
board_for_prediction = board
pos = classifier.predict(board_for_prediction.flatten())
pos = _map_pos(tic_tac_toe, board, pos)
if board[pos] != 0:
return "TIE", np.count_nonzero(board == next_player)
board[pos] = next_player
if tic_tac_toe.get_winner(board):
return next_player, np.count_nonzero(board == next_player)
else:
return _run_game(board, -1 if next_player == 1 else 1)
# Start with empty board and let the model pick where to start.
board = np.zeros((tic_tac_toe.width, tic_tac_toe.length), dtype=np.int8)
winner, num_moves = _run_game(board, 1)
if winner == 1:
print(f"When model starts: WINS in {num_moves} moves.")
elif isinstance(winner, str):
print(f"When model starts: {winner} in {num_moves} moves.")
else:
print(f"When model starts: LOSES. Winner has {num_moves} moves.")
winners = Counter()
winner_move_counts = []
for start_pos in range(board.size):
board = np.zeros((tic_tac_toe.width, tic_tac_toe.length), dtype=np.int8)
board[_map_pos(tic_tac_toe, board, start_pos)] = -1
winner, num_moves = _run_game(board, 1)
winners[winner] += 1
winner_move_counts.append(num_moves)
print("Winners when -1 starts in each position:")
print(json.dumps(winners, indent=2))
print(f"Winner move counts:\n{winner_move_counts}")
print(f"Avg # winner moves: {np.average(winner_move_counts)}")
if __name__ == '__main__':
# Play the game.
inj = Injector([
DecisionTreeModule,
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
TicTacToeDataModule,
])
ttt = inj.get(DataLoader)
assert isinstance(ttt, TicTacToeDataLoader)
ttt = cast(TicTacToeDataLoader, ttt)
# To train on all data.
# ttt._train_split = 1
(x_train, y_train), (x_test, y_test) = ttt.load_data()
c = inj.get(Classifier)
c.init_model(x_train, y_train)
score = c.evaluate(x_train, y_train)
print(f"Evaluation on training data: {score}")
if len(x_test) > 0:
score = c.evaluate(x_test, y_test)
print(f"Evaluation on test data: {score}")
evaluate_on_self(c, ttt)
while True:
play_game(c, ttt)
|
import os
import sys
import math
from injector import inject, Injector
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.decision_tree import DecisionTreeModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.data.bhp_data_loader import BhpDataModule
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
class Runner(object):
@inject
def __init__(self,
data: DataLoader,
simulator: Simulator,
):
self._data = data
self._s = simulator
def run(self):
init_train_data_portion = 0.10
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good",
start_balance=10_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=10 * 60,
),
# Malicious: determined with the goal of disrupting others.
Agent(address="Bad",
start_balance=10_000,
mean_deposit=10,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
]
# Start the simulation.
self._s.simulate(agents,
baseline_accuracy=0.44,
init_train_data_portion=init_train_data_portion,
accuracy_plot_wait_s=math.inf,
)
# Run with `bokeh serve PATH`.
if __name__.startswith('bk_script_'):
# Set up the data, model, and incentive mechanism.
inj = Injector([
DecisionTreeModule,
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
BhpDataModule,
])
inj.get(Runner).run()
if __name__ == '__main__':
# Play the game.
inj = Injector([
DecisionTreeModule(regression=True),
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
BhpDataModule,
])
d = inj.get(DataLoader)
(x_train, y_train), (x_test, y_test) = d.load_data()
c = inj.get(Classifier)
c.init_model(x_train, y_train)
score = c.evaluate(x_train, y_train)
import random
for _ in range(10):
i = random.randrange(len(x_train))
print(f"{i:04d}: {x_train[i]}: {y_train[i]}")
print(f"Prediction: {c.predict(x_train[i])}")
print(f"Evaluation on training data: {score}")
if len(x_test) > 0:
score = c.evaluate(x_test, y_test)
print(f"Evaluation on test data: {score}")
|
import logging
from dataclasses import dataclass, field
from logging import Logger
from injector import Module, provider, singleton
@dataclass
class LoggingModule(Module):
_log_level: int = field(default=logging.INFO)
@provider
@singleton
def provide_logger(self) -> Logger:
result = logging.Logger('decai')
result.setLevel(self._log_level)
f = logging.Formatter('%(asctime)s [%(levelname)s] - %(name)s:%(filename)s:%(funcName)s\n%(message)s')
h = logging.StreamHandler()
h.setFormatter(f)
result.addHandler(h)
return result
|
import os
import sys
from typing import Optional
from injector import Injector
from decai.simulation.contract.classification.perceptron import PerceptronModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.data.imdb_data_loader import ImdbDataModule
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
num_words = 1000
train_size: Optional[int] = None
if train_size is None:
init_train_data_portion = 0.08
else:
init_train_data_portion = 100 / train_size
def main():
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good",
start_balance=10_000,
mean_deposit=50,
stdev_deposit=10,
mean_update_wait_s=10 * 60,
prob_mistake=0.0001,
),
# Malicious: A determined agent with the goal of disrupting others.
Agent(address="Bad",
start_balance=10_000,
mean_deposit=100,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
# One that just calls the model and pays to use the model.
Agent(address="Caller",
start_balance=30_000,
mean_deposit=0,
stdev_deposit=0,
mean_update_wait_s=2 * 60 * 60,
calls_model=True,
pay_to_call=50
),
]
# No caller (assume free to call).
agents = agents[:-1]
# Set up the data, model, and incentive mechanism.
inj = Injector([
DefaultCollaborativeTrainerModule,
ImdbDataModule(num_words=num_words),
LoggingModule,
PerceptronModule,
StakeableImModule,
])
s = inj.get(Simulator)
# Accuracy on hidden test set after training with all training data:
baseline_accuracies = {
100: 0.6210,
200: 0.6173,
1000: 0.7945,
10000: 0.84692,
20000: 0.8484,
}
# Start the simulation.
s.simulate(agents,
baseline_accuracy=baseline_accuracies[num_words],
init_train_data_portion=init_train_data_portion,
train_size=train_size,
)
# Run with `bokeh serve PATH`.
if __name__.startswith('bk_script_'):
main()
|
import os
import sys
import math
from injector import inject, Injector
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.classification.perceptron import PerceptronModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.incentive_mechanism import IncentiveMechanism
from decai.simulation.contract.incentive.prediction_market import PredictionMarket, PredictionMarketImModule
from decai.simulation.contract.objects import Msg
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.data.imdb_data_loader import ImdbDataModule
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
num_words = 1000
class Runner(object):
@inject
def __init__(self,
balances: Balances,
data: DataLoader,
im: IncentiveMechanism,
simulator: Simulator,
):
assert isinstance(im, PredictionMarket)
self._balances = balances
self._data = data
self._im = im
self._s = simulator
def run(self):
initializer_address = 'initializer'
total_bounty = 100_000
train_size = 10_000
test_size = 1000
init_train_data_portion = 10 / train_size
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good 1",
start_balance=10_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=10 * 60,
),
Agent(address="Good 2",
start_balance=10_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=20 * 60,
),
Agent(address="Good 3",
start_balance=10_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=30 * 60,
),
# Malicious: determined with the goal of disrupting others.
Agent(address="Bad 1",
start_balance=10_000,
mean_deposit=10,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
Agent(address="Bad 2",
start_balance=10_000,
mean_deposit=10,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
]
self._balances.initialize(initializer_address, total_bounty)
(x_train, y_train), (x_test, y_test) = self._data.load_data(train_size=train_size, test_size=test_size)
init_idx = int(len(x_train) * init_train_data_portion)
assert init_idx > 0
x_init_data, y_init_data = x_train[:init_idx], y_train[:init_idx]
x_remaining, y_remaining = x_train[init_idx:], y_train[init_idx:]
# Split test set into pieces.
num_pieces = 10
test_dataset_hashes, test_sets = self._im.get_test_set_hashes(num_pieces, x_test, y_test)
# Ending criteria:
min_length_s = 1_000
min_num_contributions = len(x_remaining)
save_model = isinstance(self._im, PredictionMarket) and self._im.reset_model_during_reward_phase
self._im.model.init_model(x_init_data, y_init_data, save_model)
test_reveal_index = self._im.initialize_market(Msg(initializer_address, total_bounty),
test_dataset_hashes,
min_length_s, min_num_contributions)
assert 0 <= test_reveal_index < len(test_dataset_hashes)
self._im.reveal_init_test_set(test_sets[test_reveal_index])
# Accuracy on hidden test set after training with all training data:
baseline_accuracies = {
100: 0.6210,
200: 0.6173,
1000: 0.7945,
10000: 0.84692,
20000: 0.8484,
}
# Start the simulation.
self._s.simulate(agents,
baseline_accuracy=baseline_accuracies[num_words],
init_train_data_portion=init_train_data_portion,
pm_test_sets=test_sets,
accuracy_plot_wait_s=math.inf,
train_size=train_size,
)
# Run with `bokeh serve PATH`.
if __name__.startswith('bk_script_'):
# Set up the data, model, and incentive mechanism.
inj = Injector([
DefaultCollaborativeTrainerModule,
ImdbDataModule(num_words=num_words),
LoggingModule,
PerceptronModule,
PredictionMarketImModule,
])
inj.get(Runner).run()
|
import os
import re
import sys
from injector import Injector
from sklearn.naive_bayes import MultinomialNB
from decai.simulation.contract.classification.ncc_module import NearestCentroidClassifierModule
from decai.simulation.contract.classification.perceptron import PerceptronModule
from decai.simulation.contract.classification.scikit_classifier import SciKitClassifierModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.data.featuremapping.hashing.murmurhash3 import MurmurHash3Module
from decai.simulation.data.fitness_data_loader import FitnessDataModule
from decai.simulation.data.imdb_data_loader import ImdbDataModule
from decai.simulation.data.news_data_loader import NewsDataModule
from decai.simulation.data.offensive_data_loader import OffensiveDataModule
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
datasets = dict(
fitness=dict(module=FitnessDataModule,
train_size=3500, test_size=1500,
),
imdb=dict(module=ImdbDataModule(num_words=1000),
train_size=None, test_size=None,
),
news=dict(module=NewsDataModule,
train_size=None, test_size=None,
),
offensive=dict(module=OffensiveDataModule,
train_size=None, test_size=None,
),
)
models = dict(
nb=dict(module=SciKitClassifierModule(MultinomialNB),
baseline_accuracy=dict(
# train_size, test_size = 3500, 1500
fitness=0.97,
# train_size, test_size = None, None
imdb=0.8323,
# train_size, test_size = None, None
news=0.8181,
)),
ncc=dict(module=NearestCentroidClassifierModule,
baseline_accuracy=dict(
# train_size, test_size = 3500, 1500
fitness=0.9513,
# train_size, test_size = None, None
imdb=0.7445,
# train_size, test_size = None, None
news=0.6727,
)),
perceptron=dict(module=PerceptronModule,
baseline_accuracy=dict(
# train_size, test_size = 3500, 1500
fitness=0.9507,
# train_size, test_size = None, None
imdb=0.73,
# train_size, test_size = None, None
news=0.9003,
)),
)
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good",
start_balance=10_000,
mean_deposit=50,
stdev_deposit=10,
mean_update_wait_s=10 * 60,
prob_mistake=0.0001,
),
# Malicious: A determined agent with the goal of disrupting others.
Agent(address="Bad",
start_balance=10_000,
mean_deposit=100,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
# One that just calls the model and pays to use the model.
Agent(address="Caller",
start_balance=30_000,
mean_deposit=0,
stdev_deposit=0,
mean_update_wait_s=2 * 60 * 60,
calls_model=True,
pay_to_call=50
),
]
def main():
global agents
# This file is set up to use different models and datasets.
dataset = 'offensive'
model_type = 'nb'
assert dataset in datasets
assert model_type in models
train_size = datasets[dataset]['train_size']
test_size = datasets[dataset]['test_size']
if train_size is None:
init_train_data_portion = 0.08
else:
init_train_data_portion = 100 / train_size
# No caller (assume free to call).
agents = agents[:-1]
# Set up the data, model, and incentive mechanism.
inj = Injector([
DefaultCollaborativeTrainerModule,
datasets[dataset]['module'],
MurmurHash3Module,
LoggingModule,
models[model_type]['module'],
StakeableImModule,
])
s = inj.get(Simulator)
# Start the simulation.
s.simulate(agents,
baseline_accuracy=models[model_type]['baseline_accuracy'].get(dataset),
init_train_data_portion=init_train_data_portion,
train_size=train_size,
test_size=test_size,
filename_indicator=f"{dataset}-{model_type}"
)
# Run with `bokeh serve PATH`.
if re.match('bk_script_|bokeh_app_', __name__):
main()
else:
print("`__name__` didn't match the pattern. Bokeh app will not run.")
|
import os
import sys
import math
from injector import inject, Injector
from sklearn.naive_bayes import MultinomialNB
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.scikit_classifier import SciKitClassifierModule
from decai.simulation.contract.collab_trainer import DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.data.titanic_data_loader import TitanicDataModule
from decai.simulation.logging_module import LoggingModule
from decai.simulation.simulate import Agent, Simulator
# For `bokeh serve`.
sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
# FIXME Using MultinomialNB might not work well with the Titanic dataset because it requires discrete features.
class Runner(object):
@inject
def __init__(self,
data: DataLoader,
simulator: Simulator,
):
self._data = data
self._s = simulator
def run(self):
init_train_data_portion = 0.10
# Set up the agents that will act in the simulation.
agents = [
# Good
Agent(address="Good",
start_balance=1_000,
mean_deposit=5,
stdev_deposit=1,
mean_update_wait_s=10 * 60,
),
# Malicious: determined with the goal of disrupting others.
Agent(address="Bad",
start_balance=1_000,
mean_deposit=10,
stdev_deposit=3,
mean_update_wait_s=1 * 60 * 60,
good=False,
),
]
# Start the simulation.
self._s.simulate(agents,
baseline_accuracy=0.791,
init_train_data_portion=init_train_data_portion,
accuracy_plot_wait_s=math.inf,
)
# Run with `bokeh serve PATH`.
if __name__.startswith('bk_script_'):
# Set up the data, model, and incentive mechanism.
inj = Injector([
SciKitClassifierModule(MultinomialNB),
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
TitanicDataModule,
])
inj.get(Runner).run()
if __name__ == '__main__':
# Play the game.
inj = Injector([
SciKitClassifierModule(MultinomialNB),
DefaultCollaborativeTrainerModule,
LoggingModule,
StakeableImModule,
TitanicDataModule
])
d = inj.get(DataLoader)
(x_train, y_train), (x_test, y_test) = d.load_data()
c = inj.get(Classifier)
c.init_model(x_train, y_train)
score = c.evaluate(x_train, y_train)
print(f"Evaluation on training data: {score * 100:0.2f}%")
if len(x_test) > 0:
score = c.evaluate(x_test, y_test)
print(f"Evaluation on test data: {score * 100:0.2f}%")
|
from abc import ABC, abstractmethod
from injector import Module, inject, singleton
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.data.data_handler import DataHandler
from decai.simulation.contract.incentive.incentive_mechanism import IncentiveMechanism
from decai.simulation.contract.objects import Msg, SmartContract
class CollaborativeTrainer(ABC, SmartContract):
"""
Base class for the main interface to create simulations of a training model in a smart contract.
"""
def __init__(self,
balances: Balances,
data_handler: DataHandler,
incentive_mechanism: IncentiveMechanism,
model: Classifier,
):
super().__init__()
self.data_handler = data_handler
self.im = incentive_mechanism
self.model = model
self._balances = balances
@abstractmethod
def add_data(self, msg: Msg, data, label):
"""
Update the model with one data sample.
:param msg: Standard message to pass to any method of a smart contract.
:param data: A single sample of training data for the model.
:param label: The label for `data`.
"""
pass
@abstractmethod
def predict(self, msg: Msg, data):
"""
:param msg: Standard message to pass to any method of a smart contract.
:param data:
:return: The predicted classification/label for `data`.
"""
pass
@abstractmethod
def refund(self, msg: Msg, data, classification, added_time: int):
"""
Attempt a refund for the deposit given with submitted data.
Must be called by the address that originally submitted the data.
:param msg: Standard message to pass to any method of a smart contract.
:param data: The data for which to attempt a refund.
:param classification: The label originally submitted with `data`.
:param added_time :The time when the data was added.
"""
pass
@abstractmethod
def report(self, msg: Msg, data, classification, added_time: int, original_author: str):
"""
Report bad or old data and attempt to get a reward.
:param msg: Standard message to pass to any method of a smart contract.
:param data: The data to report.
:param classification: The label originally submitted with `data`.
:param added_time :The time when the data was added.
:param original_author: The address that originally added the data.
"""
pass
@singleton
class DefaultCollaborativeTrainer(CollaborativeTrainer):
"""
Default implementation of the main interface.
"""
@inject
def __init__(self,
balances: Balances,
data_handler: DataHandler,
incentive_mechanism: IncentiveMechanism,
model: Classifier,
):
kwargs = dict(locals())
del kwargs['self']
del kwargs['__class__']
super().__init__(**kwargs)
self.data_handler.owner = self.address
self.im.owner = self.address
self.model.owner = self.address
def predict(self, msg: Msg, data):
self.im.distribute_payment_for_prediction(msg.sender, msg.value)
return self.model.predict(data)
# FUNCTIONS FOR HANDLING DATA
def add_data(self, msg: Msg, data, classification):
# Consider making sure duplicate data isn't added until it's been claimed.
cost, update_model = self.im.handle_add_data(msg.sender, msg.value, data, classification)
self.data_handler.handle_add_data(msg.sender, cost, data, classification)
if update_model:
self.model.update(data, classification)
# In Solidity the message's value gets taken automatically.
# Here we do this at the end in case something failed while trying to add data.
self._balances.send(msg.sender, self.address, cost)
def refund(self, msg: Msg, data, classification, added_time: int):
(claimable_amount, claimed_by_submitter, stored_data) = \
self.data_handler.handle_refund(msg.sender, data, classification, added_time)
prediction = self.model.predict(data)
refund_amount = self.im.handle_refund(msg.sender, stored_data,
claimable_amount, claimed_by_submitter, prediction)
self._balances.send(self.address, msg.sender, refund_amount)
# The Solidity version doesn't need this extra function call because if there is an error earlier,
# then the changes automatically get reverted.
self.data_handler.update_claimable_amount(msg.sender, stored_data, refund_amount)
def report(self, msg: Msg, data, classification, added_time: int, original_author: str):
claimed_by_reporter, stored_data = \
self.data_handler.handle_report(msg.sender, data, classification, added_time, original_author)
prediction = lambda: self.model.predict(data)
reward_amount = self.im.handle_report(msg.sender, stored_data, claimed_by_reporter, prediction)
self.data_handler.update_claimable_amount(msg.sender, stored_data, reward_amount)
self._balances.send(self.address, msg.sender, reward_amount)
class DefaultCollaborativeTrainerModule(Module):
def configure(self, binder):
binder.bind(CollaborativeTrainer, to=DefaultCollaborativeTrainer)
|
from dataclasses import dataclass, field
from logging import Logger
from typing import Dict
from injector import inject, singleton
from decai.simulation.contract.objects import Address
@inject
@singleton
@dataclass
class Balances(object):
"""
Tracks balances in the simulation.
"""
_logger: Logger
_balances: Dict[Address, float] = field(default_factory=dict, init=False)
def __contains__(self, address: Address):
"""
:param address: A participant's address.
:return: `True` if the address is in the simulation, `False` otherwise.
"""
return address in self._balances
def __getitem__(self, address: Address) -> float:
"""
:param address: A participant's address.
:return: The balance for `address`.
"""
return self._balances[address]
def get_all(self) -> Dict[Address, float]:
"""
:return: A copy of the balances.
"""
return dict(self._balances)
def initialize(self, address: Address, start_balance: float):
""" Initialize a participant's balance. """
assert address not in self._balances, f"'{address}' already has a balance."
self._balances[address] = start_balance
def send(self, sending_address: Address, receiving_address: Address, amount):
""" Send funds from one participant to another. """
assert amount >= 0
if amount > 0:
sender_balance = self._balances[sending_address]
if sender_balance < amount:
self._logger.warning(f"'{sending_address} has {sender_balance} < {amount}.\n"
f"Will only send {sender_balance}.")
amount = sender_balance
self._balances[sending_address] -= amount
if receiving_address not in self._balances:
self.initialize(receiving_address, amount)
else:
self._balances[receiving_address] += amount
|
# Objects for all smart contracts.
from dataclasses import dataclass, field
from typing import Optional
from injector import singleton
Address = str
""" An address that can receive funds and participate in training models. """
@dataclass
class Msg:
"""
A message sent to a smart contract.
:param sender: The sender's address.
:param value: Amount sent with the message.
"""
sender: Address
# Need to use float since the numbers might be large. They should still actually be integers.
value: float
class RejectException(Exception):
"""
The smart contract rejected the transaction.
"""
pass
class SmartContract(object):
"""
A fake smart contract.
"""
def __init__(self):
self.address: Address = f'{type(self).__name__}-{id(self)}'
""" The address of this contract. """
self.owner: Optional[Address] = None
""" The owner of this contract. """
@singleton
@dataclass
class TimeMock(object):
"""
Helps fake the current time (in seconds).
Ideally the value returned is an integer (like `now` in Solidity) but this is not guaranteed.
Normally in an Ethereum smart contract `now` can be called.
To speed up simulations, use this class to get the current time.
"""
_time: float = field(default=0, init=False)
def __call__(self, *args, **kwargs):
""" Get the currently set time (in seconds). """
return self._time
def add_time(self, amount):
""" Add `amount` (in seconds) to the current time. """
self._time += amount
def set_time(self, time_value):
""" Set the time to return when `time()` is called. """
self._time = time_value
def time(self):
""" Get the currently set time (in seconds). """
return self._time
|
from collections import Counter
from injector import inject
from sklearn.neighbors import NearestCentroid
# Purposely not a singleton so that it is easy to get a model that has not been initialized.
@inject
class NearestCentroidClassifier(NearestCentroid):
def fit(self, X, y):
self._num_samples_per_centroid = Counter(y)
super().fit(X, y)
def partial_fit(self, training_data, labels):
# Assume len(training_data) == len(labels) == 1
# Assume centroids are indexed by class 0-N.
sample = training_data[0]
label = labels[0]
n = self._num_samples_per_centroid[label]
self.centroids_[label] = (self.centroids_[label] * n + sample) / (n + 1)
self._num_samples_per_centroid[label] = n + 1
|
import os
from sklearn.linear_model import SGDClassifier
from decai.simulation.contract.classification.scikit_classifier import SciKitClassifierModule
class PerceptronModule(SciKitClassifierModule):
def __init__(self, class_weight=None):
super().__init__(
_model_initializer=lambda: SGDClassifier(
loss='perceptron',
n_jobs=max(1, os.cpu_count() - 2),
random_state=0xDeCA10B,
learning_rate='optimal',
class_weight=class_weight,
# Don't really care about tol, just setting it to remove a warning.
tol=1e-3,
penalty=None))
|
import logging
from abc import ABC, abstractmethod
from typing import List
from decai.simulation.contract.objects import SmartContract
from decai.simulation.data.featuremapping.feature_index_mapper import FeatureIndexMapping
class Classifier(ABC, SmartContract):
"""
A classifier that can take a data sample as input and return a predict classification/label for the data.
"""
@abstractmethod
def evaluate(self, data, labels) -> float:
"""
Evaluate the model.
:param data: Data samples.
:param labels: The ground truth labels for `data`.
:return: The accuracy for the given test set.
"""
pass
@abstractmethod
def log_evaluation_details(self, data, labels, level=logging.INFO) -> float:
"""
Log some evaluation details.
:param data: Data samples.
:param labels: The ground truth labels for `data`.
:param level: The level at which to log.
:return: The accuracy for the given test set.
"""
pass
@abstractmethod
def init_model(self, training_data, labels, save_model=False):
"""
Fit the model to a specific dataset.
:param training_data: The data to use to train the model.
:param labels: The ground truth labels for `data`.
:param save_model: `True` if the model should be saved, `False` otherwise.
"""
pass
@abstractmethod
def predict(self, data):
"""
:param data: The data or features for one sample.
:return: The predicted classification or label for `data`.
"""
pass
@abstractmethod
def update(self, data, classification):
"""
Update the classifier with one data sample.
:param data: The training data or features for one sample.
:param classification: The label for `data`.
"""
pass
@abstractmethod
def reset_model(self):
"""
Re-initialize the model to the same state it was in after `init_model` was called.
"""
pass
@abstractmethod
def export(self,
path: str,
classifications: List[str] = None,
model_type: str = None,
feature_index_mapping: FeatureIndexMapping = None):
"""
Export the model in a format for the demo Node.js code to load.
:param path: The path to save the exported model to.
:param classifications: The classifications output by the model.
:param model_type: The type of the model.
:param feature_index_mapping: Mapping of the feature indices. Mainly for sparse models that were converted to dense ones.
"""
pass
|
import json
import logging
import os
import time
from dataclasses import dataclass
from logging import Logger
from pathlib import Path
from typing import Any, Callable, List
import joblib
import numpy as np
import scipy.sparse
from injector import ClassAssistedBuilder, Module, inject, provider
from sklearn.linear_model import SGDClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.naive_bayes import MultinomialNB
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.ncc import NearestCentroidClassifier
from decai.simulation.data.featuremapping.feature_index_mapper import FeatureIndexMapping
# Purposely not a singleton so that it is easy to get a model that has not been initialized.
@inject
@dataclass
class SciKitClassifier(Classifier):
"""
Classifier for a scikit-learn like model.
"""
_logger: Logger
_model_initializer: Callable[[], Any]
_model = None
def __post_init__(self):
self._original_model_path = Path('saved_models') / f'{time.time()}-{id(self)}.joblib'
def evaluate(self, data, labels) -> float:
assert self._model is not None, "The model has not been initialized yet."
assert isinstance(data, np.ndarray) or scipy.sparse.isspmatrix(data), \
f"The data must be a matrix. Got: {type(data)}"
assert isinstance(labels, np.ndarray), "The labels must be an array."
self._logger.debug("Evaluating.")
return self._model.score(data, labels)
def log_evaluation_details(self, data, labels, level=logging.INFO) -> float:
assert self._model is not None, "The model has not been initialized yet."
assert isinstance(data, np.ndarray), "The data must be an array."
assert isinstance(labels, np.ndarray), "The labels must be an array."
self._logger.debug("Evaluating.")
predicted_labels = self._model.predict(data)
result = accuracy_score(labels, predicted_labels)
if self._logger.isEnabledFor(level):
m = confusion_matrix(labels, predicted_labels)
report = classification_report(labels, predicted_labels)
self._logger.log(level,
"Confusion matrix:\n%s"
"\nReport:\n%s"
"\nAccuracy: %0.2f%%",
m, report, result * 100)
return result
def init_model(self, training_data, labels, save_model=False):
assert self._model is None, "The model has already been initialized."
self._logger.debug("Initializing model.")
self._model = self._model_initializer()
self._logger.debug("training_data.shape: %s. dtype: %s", training_data.shape, training_data.dtype)
self._model.fit(training_data, labels)
if save_model:
self._logger.debug("Saving model to \"%s\".", self._original_model_path)
os.makedirs(os.path.dirname(self._original_model_path), exist_ok=True)
joblib.dump(self._model, self._original_model_path)
def predict(self, data):
assert self._model is not None, "The model has not been initialized yet."
assert isinstance(data, np.ndarray), "The data must be an array."
return self._model.predict([data])[0]
def update(self, data, classification):
assert self._model is not None, "The model has not been initialized yet."
self._model.partial_fit([data], [classification])
def reset_model(self):
assert self._model is not None, "The model has not been initialized yet."
assert self._original_model_path.exists(), "The model has not been saved. Perhaps saving was disabled."
self._logger.debug("Loading model from \"%s\".", self._original_model_path)
self._model = joblib.load(self._original_model_path)
def export(self,
path: str,
classifications: List[str] = None,
model_type: str = None,
feature_index_mapping: FeatureIndexMapping = None):
assert self._model is not None, "The model has not been initialized yet."
if isinstance(self._model, SGDClassifier) and self._model.loss == 'perceptron':
if classifications is None:
classifications = ["0", "1"]
model = {
'type': model_type or 'sparse perceptron',
'classifications': classifications,
'weights': self._model.coef_[0].tolist(),
'intercept': self._model.intercept_[0],
}
if feature_index_mapping is not None:
if model_type is None:
model['type'] = 'sparse perceptron'
weights = model['weights']
del model['weights']
weights = {str(i): v for (i, v) in zip(feature_index_mapping, weights) if v != 0}
model['sparseWeights'] = weights
elif isinstance(self._model, MultinomialNB):
if classifications is None:
classifications = list(map(str, range(self._model.feature_count_.shape[1])))
feature_counts = []
for class_features in self._model.feature_count_:
class_feature_counts = []
for index, count in enumerate(class_features):
if count != 0:
# Counts should already be integers.
if feature_index_mapping is not None:
index = feature_index_mapping[index]
class_feature_counts.append((index, int(count)))
feature_counts.append(class_feature_counts)
model = {
'type': model_type or 'naive bayes',
'classifications': classifications,
'classCounts': self._model.class_count_.astype(dtype=np.int64).tolist(),
'featureCounts': feature_counts,
'totalNumFeatures': self._model.feature_count_.shape[1],
'smoothingFactor': self._model.alpha,
}
elif isinstance(self._model, NearestCentroidClassifier):
if feature_index_mapping is not None:
if model_type is None:
model_type = 'sparse nearest centroid classifier'
centroids = dict()
if classifications is None:
classifications = list(map(str, range(len(self.centroids_))))
for i, classification in enumerate(classifications):
centroid = self._model.centroids_[i].tolist()
if feature_index_mapping is not None:
centroid = {str(i): v for (i, v) in zip(feature_index_mapping, centroid) if v != 0}
centroids[classification] = dict(
centroid=centroid,
dataCount=self._model._num_samples_per_centroid[i])
model = {
'type': model_type or 'nearest centroid classifier',
'centroids': centroids,
}
else:
raise Exception("Unrecognized model type.")
with open(path, 'w') as f:
json.dump(model, f, separators=(',', ':'))
@dataclass
class SciKitClassifierModule(Module):
"""
Module to provide SciKit Learn Classifier like models.
"""
_model_initializer: Any
# Purposely not a singleton so that it is easy to get a model that has not been initialized.
@provider
def provide_classifier(self, builder: ClassAssistedBuilder[SciKitClassifier]) -> Classifier:
return builder.build(
_model_initializer=self._model_initializer,
)
|
from decai.simulation.contract.classification.ncc import NearestCentroidClassifier
from decai.simulation.contract.classification.scikit_classifier import SciKitClassifierModule
class NearestCentroidClassifierModule(SciKitClassifierModule):
def __init__(self):
super().__init__(
_model_initializer=NearestCentroidClassifier)
|
from skmultiflow.trees import HAT, RegressionHAT
from decai.simulation.contract.classification.scikit_classifier import SciKitClassifierModule
class DecisionTreeModule(SciKitClassifierModule):
def __init__(self, regression=False):
if regression:
model_initializer = lambda: RegressionHAT(
# leaf_prediction='mc'
)
else:
model_initializer = lambda: HAT(
# leaf_prediction='mc',
# nominal_attributes=[ 4],
)
super().__init__(_model_initializer=model_initializer)
|
import unittest
import numpy as np
from injector import Injector
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.ncc_module import NearestCentroidClassifierModule
from decai.simulation.logging_module import LoggingModule
class TestNearestCentroidClassifier(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.inj = Injector([
LoggingModule,
NearestCentroidClassifierModule,
])
def test_partial_fit(self):
model = self.inj.get(Classifier)
data = [
[-1.0, -1.0, ],
[-0.5, -0.5, ],
[+1.0, +1.0],
[+0.5, +0.5],
]
labels = [0, 0, 1, 1, ]
data = np.array(data)
labels = np.array(labels)
model.init_model(data, labels)
self.assertEqual(1, model.evaluate(data, labels))
sample = np.array([0.1, 0.1, ])
self.assertEqual(1, model.predict(sample))
# Update a point beyond `sample` so that `sample` gets a new label.
model.update(np.array([0.3, 0.3, ]), 0)
self.assertEqual(0, model.predict(sample))
self.assertEqual(1, model.evaluate(data, labels))
def test_partial_fit_2(self):
model = self.inj.get(Classifier)
data = [
[0, -1.0, ],
[0, -0.5, ],
[0, +1.0],
[0, +0.5],
]
labels = [0, 0, 1, 1, ]
data = np.array(data)
labels = np.array(labels)
model.init_model(data, labels)
self.assertEqual(1, model.evaluate(data, labels))
sample = np.array([0, +0.1, ])
self.assertEqual(1, model.predict(sample))
# Update a point beyond `sample` so that `sample` gets a new label.
model.update(np.array([0, 0, ]), 0)
self.assertEqual(0, model.predict(sample))
self.assertEqual(1, model.evaluate(data, labels))
|
import random
import unittest
import numpy as np
from injector import Injector
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.classification.perceptron import PerceptronModule
from decai.simulation.contract.collab_trainer import CollaborativeTrainer, DefaultCollaborativeTrainerModule
from decai.simulation.contract.incentive.stakeable import StakeableImModule
from decai.simulation.contract.objects import Msg, RejectException, TimeMock
from decai.simulation.logging_module import LoggingModule
def _ground_truth(data):
return data[0] * data[2]
class TestCollaborativeTrainer(unittest.TestCase):
@classmethod
def setUpClass(cls):
inj = Injector([
DefaultCollaborativeTrainerModule,
LoggingModule,
PerceptronModule,
StakeableImModule,
])
cls.balances = inj.get(Balances)
cls.decai = inj.get(CollaborativeTrainer)
cls.time_method = inj.get(TimeMock)
cls.good_address = 'sender'
initial_balance = 1E6
cls.balances.initialize(cls.good_address, initial_balance)
msg = Msg(cls.good_address, cls.balances[cls.good_address])
X = np.array([
# Initialization Data
[0, 0, 0],
[1, 1, 1],
# Data to Add
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
])
y = np.array([_ground_truth(x) for x in X])
cls.decai.model.init_model(np.array([X[0, :], X[1, :]]),
np.array([y[0], y[1]]))
score = cls.decai.model.evaluate(X, y)
assert score != 1, "Model shouldn't fit the data yet."
# Add all data.
first_added_time = None
for i in range(X.shape[0]):
x = X[i]
cls.time_method.set_time(cls.time_method() + 1)
if first_added_time is None:
first_added_time = cls.time_method()
cls.decai.add_data(msg, x, y[i])
for _ in range(1000):
score = cls.decai.model.evaluate(X, y)
if score >= 1:
break
i = random.randint(0, X.shape[0] - 1)
x = X[i]
cls.time_method.set_time(cls.time_method() + 1)
cls.decai.add_data(msg, x, y[i])
assert score == 1, "Model didn't fit the data."
bal = cls.balances[msg.sender]
assert bal < initial_balance, "Adding data should have a cost."
# Make sure sender has some good data refunded so that they can report data later.
cls.time_method.set_time(cls.time_method() + cls.decai.im.refund_time_s + 1)
cls.decai.refund(msg, X[0], y[0], first_added_time)
assert cls.balances[msg.sender] > bal, "Refunding should return value."
def test_predict(self):
data = np.array([0, 1, 0])
correct_class = _ground_truth(data)
prediction = self.decai.model.predict(data)
self.assertEqual(prediction, correct_class)
def test_refund(self):
data = np.array([0, 2, 0])
correct_class = _ground_truth(data)
orig_address = "Orig"
bal = 1E5
self.balances.initialize(orig_address, bal)
msg = Msg(orig_address, 1E3)
self.time_method.set_time(self.time_method() + 1)
added_time = self.time_method()
self.decai.add_data(msg, data, correct_class)
self.assertLess(self.balances[orig_address], bal)
# Add same data from another address.
msg = Msg(self.good_address, 1E3)
self.time_method.set_time(self.time_method() + 1)
bal = self.balances[self.good_address]
self.decai.add_data(msg, data, correct_class)
self.assertLess(self.balances[self.good_address], bal)
# Original address refunds.
msg = Msg(orig_address, 1E3)
bal = self.balances[orig_address]
self.time_method.set_time(self.time_method() + self.decai.im.refund_time_s + 1)
self.decai.refund(msg, data, correct_class, added_time)
self.assertGreater(self.balances[orig_address], bal)
def test_report(self):
data = np.array([0, 0, 0])
correct_class = _ground_truth(data)
submitted_classification = 1 - correct_class
# Add bad data.
malicious_address = 'malicious'
self.balances.initialize(malicious_address, 1E6)
bal = self.balances[malicious_address]
msg = Msg(malicious_address, bal)
self.time_method.set_time(self.time_method() + 1)
added_time = self.time_method()
self.decai.add_data(msg, data, submitted_classification)
self.assertLess(self.balances[malicious_address], bal,
"Adding data should have a cost.")
self.time_method.set_time(self.time_method() + self.decai.im.refund_time_s + 1)
# Can't refund.
msg = Msg(malicious_address, self.balances[malicious_address])
try:
self.decai.refund(msg, data, submitted_classification, added_time)
self.fail("Should have failed.")
except RejectException as e:
self.assertEqual("The model doesn't agree with your contribution.", e.args[0])
bal = self.balances[self.good_address]
msg = Msg(self.good_address, bal)
self.decai.report(msg, data, submitted_classification, added_time, malicious_address)
self.assertGreater(self.balances[self.good_address], bal)
def test_report_take_all(self):
data = np.array([0, 0, 0])
correct_class = _ground_truth(data)
submitted_classification = 1 - correct_class
# Add bad data.
malicious_address = 'malicious_take_backer'
self.balances.initialize(malicious_address, 1E6)
bal = self.balances[malicious_address]
msg = Msg(malicious_address, bal)
self.time_method.set_time(self.time_method() + 1)
added_time = self.time_method()
self.decai.add_data(msg, data, submitted_classification)
self.assertLess(self.balances[malicious_address], bal,
"Adding data should have a cost.")
self.time_method.set_time(self.time_method() + self.decai.im.any_address_claim_wait_time_s + 1)
# Can't refund.
msg = Msg(malicious_address, self.balances[malicious_address])
try:
self.decai.refund(msg, data, submitted_classification, added_time)
self.fail("Should have failed.")
except RejectException as e:
self.assertEqual("The model doesn't agree with your contribution.", e.args[0])
bal = self.balances[malicious_address]
msg = Msg(malicious_address, bal)
self.decai.report(msg, data, submitted_classification, added_time, malicious_address)
self.assertGreater(self.balances[malicious_address], bal)
def test_reset(self):
inj = Injector([
LoggingModule,
PerceptronModule,
])
m = inj.get(Classifier)
X = np.array([
# Initialization Data
[0, 0, 0],
[1, 1, 1],
])
y = np.array([_ground_truth(x) for x in X])
m.init_model(X, y, save_model=True)
data = np.array([
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
])
original_predictions = [m.predict(x) for x in data]
labels = np.array([_ground_truth(x) for x in data])
for x, y in zip(data, labels):
m.update(x, y)
predictions_after_training = [m.predict(x) for x in data]
self.assertNotEqual(original_predictions, predictions_after_training)
m.reset_model()
new_predictions = [m.predict(x) for x in data]
self.assertEqual(original_predictions, new_predictions)
|
from collections import Counter
from logging import Logger
import math
from injector import inject, Module, singleton
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.data.data_handler import StoredData
from decai.simulation.contract.incentive.incentive_mechanism import IncentiveMechanism
from decai.simulation.contract.objects import Address, RejectException, TimeMock
@singleton
class Stakeable(IncentiveMechanism):
"""
The Deposit, Take, Reward IM.
A deposit is required to add data.
Later that deposit can be reclaimed if the model still agrees with the contribution.
"""
@inject
def __init__(self,
# Injected
balances: Balances,
logger: Logger,
time_method: TimeMock,
# Parameters
refund_time_s=60 * 60 * 24 * 1,
any_address_claim_wait_time_s=60 * 60 * 24 * 9,
cost_weight=1,
):
super().__init__(refund_time_s=refund_time_s, any_address_claim_wait_time_s=any_address_claim_wait_time_s)
self._balances = balances
self._logger = logger
self._time = time_method
# Make sure there is at least a week for the refund.
min_refund_window_s = 60 * 60 * 24 * 7
assert self.any_address_claim_wait_time_s > self.refund_time_s + min_refund_window_s, "Claim time is not enough."
self.cost_weight = cost_weight
self.num_good_data_per_user = Counter()
self.total_num_good_data = 0
self._last_update_time_s = int(self._time())
def distribute_payment_for_prediction(self, sender, value):
if value > 0:
for agent_address, num_good in self.num_good_data_per_user.items():
# Round down like Solidity would.
# Also helps avoid errors for possible rounding so
# total value distributed < value.
self._balances.send(sender, agent_address, int(value * num_good / self.total_num_good_data))
def get_next_add_data_cost(self, data, classification) -> float:
"""
:param data: A single sample of training data for the model.
:param classification: The label for `data`.
:return: The current cost to update a model with a specific sample of training data.
"""
current_time_s = int(self._time())
# TODO Limit how many times a data point can be added if the model already classifies right for it?
# TODO Add cost to flip all data?
# TODO Add discount if already submitted good data?
# Convert to integers like in Solidity.
time_since_last_update_s = int((current_time_s - self._last_update_time_s))
if time_since_last_update_s <= 0:
raise RejectException("Not enough time has passed since the last update.")
# We really want to think about the time in hours
# (divide by 3600 but this is in the square root of the denominator so we multiply by sqrt(3600)).
# Equivalent to: cost = self.cost_weight / int(math.sqrt(time_since_last_update_s * 3600))
result = self.cost_weight * 60 / int(math.sqrt(time_since_last_update_s))
result = int(result)
# Make sure there is a minimum cost to adding data.
if result < 1:
result = 1
return result
def handle_add_data(self, contributor_address: Address, msg_value: float, data, classification) -> (float, bool):
cost = self.get_next_add_data_cost(data, classification)
update_model = True
if cost > msg_value:
raise RejectException(f"Did not pay enough. Sent {msg_value} < {cost}")
self._last_update_time_s = self._time()
return (cost, update_model)
def handle_refund(self, submitter: str, stored_data: StoredData,
claimable_amount: float, claimed_by_submitter: bool,
prediction) -> float:
result = claimable_amount
# Do not need to check submitter == stored_data.sender because DataHandler already did it.
if claimed_by_submitter:
raise RejectException("Deposit already claimed by submitter.")
if result <= 0:
raise RejectException("There is no reward left to claim.")
current_time_s = int(self._time())
if current_time_s - stored_data.time <= self.refund_time_s:
raise RejectException("Not enough time has passed.")
if callable(prediction):
prediction = prediction()
if prediction != stored_data.classification:
raise RejectException("The model doesn't agree with your contribution.")
self.num_good_data_per_user[submitter] += 1
self.total_num_good_data += 1
return result
def handle_report(self, reporter: str, stored_data: StoredData, claimed_by_reporter: bool, prediction) -> float:
if stored_data.claimable_amount <= 0:
raise RejectException("There is no reward left to claim.")
current_time_s = int(self._time())
if current_time_s - stored_data.time >= self.any_address_claim_wait_time_s:
# Enough time has passed, give the entire remaining deposit to the reporter.
self._logger.debug("Giving all remaining deposit to \"%s\".", reporter)
result = stored_data.claimable_amount
return result
# Don't allow someone to claim back their own deposit if their data was wrong.
# They can still claim it from another address but they will have had to have sent good data from that address.
if reporter == stored_data.sender:
raise RejectException("Cannot take your own deposit. Ask for a refund instead.")
if claimed_by_reporter:
raise RejectException("Deposit already claimed by reporter.")
if current_time_s - stored_data.time <= self.refund_time_s:
raise RejectException("Not enough time has passed.")
if callable(prediction):
prediction = prediction()
if prediction == stored_data.classification:
raise RejectException("The model should not agree with the contribution.")
num_good = self.num_good_data_per_user[reporter]
if num_good <= 0:
raise RejectException(f"No good data was verified by reporter '{reporter}'.")
result = stored_data.initial_deposit * num_good / self.total_num_good_data
# Handle possible rounding errors or if there is too little to divide to reporters.
if result <= 0 or result > stored_data.claimable_amount:
result = stored_data.claimable_amount
return result
class StakeableImModule(Module):
def configure(self, binder):
binder.bind(IncentiveMechanism, to=Stakeable)
|
import random
from collections import Counter, defaultdict
from dataclasses import dataclass, field
from enum import Enum
from hashlib import sha256
from logging import Logger
from typing import Dict, List, Optional, Tuple
import math
import numpy as np
from injector import ClassAssistedBuilder, inject, Module, provider, singleton
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.classification.classifier import Classifier
from decai.simulation.contract.data.data_handler import StoredData
from decai.simulation.contract.incentive.incentive_mechanism import IncentiveMechanism
from decai.simulation.contract.objects import Address, Msg, RejectException, TimeMock
class MarketPhase(Enum):
""" Phases for the current market. """
# Phases are in chronological order.
INITIALIZATION = 0
""" The market is being initialized and awaiting for the requested test set index to be revealed. """
PARTICIPATION = 1
""" The market is open to data contributions. """
REVEAL_TEST_SET = 2
""" The market will no longer accept data and the test set must be revealed before rewards can be calculated. """
REWARD = 3
""" No more data contributions are being accepted but rewards still need to be calculated. """
REWARD_RESTART = 4
"""
Same as `REWARD` but contributions have just been filtered out
and the iteration needs to restart with the remaining contributions.
"""
REWARD_COLLECT = 5
""" The reward values have been computed and are ready to be collected. """
@dataclass
class _Contribution:
"""
A contribution to train data.
This is stored for convenience but for some applications, storing the data could be very expensive,
instead, hashes could be stored and during the reward phase,
the hash can be used to verify data as data is re-submitted.
Note: this is not in the spirit of the prediction market (the current state should be public)
since the model would not actually be updated and the submitted data would be private
so new data contributors have very limited information.
"""
contributor_address: Address
data: np.array
classification: int
balance: int
"""
Initially this is the amount deposited with this contribution.
If contributions are not grouped by contributor, then while calculating rewards this gets updated to be the balance
for this particular contribution, to know if it should get kicked out of the reward phase.
"""
score: Optional[int] = field(default=None, init=False)
"""
The score for this contribution.
Mainly used for when contributions are not grouped.
"""
accuracy: Optional[float] = field(default=None, init=False)
""" The accuracy of the model on the test set after adding this contribution. """
class PredictionMarket(IncentiveMechanism):
"""
An IM where rewards are computed based on how the model's performance changes with respect to a test set.
For now, for the purposes of the simulation, the market is only intended to be run once.
Eventually this class and the actual smart contract implementation of it
should support restarting the market with a new bounty once a market has ended.
"""
@inject
def __init__(self,
# Injected
balances: Balances,
logger: Logger,
model: Classifier,
time_method: TimeMock,
# Parameters
any_address_claim_wait_time_s=60 * 60 * 24 * 7,
# Configuration Options
allow_greater_deposit=False,
group_contributions=False,
reset_model_during_reward_phase=False,
):
super().__init__(any_address_claim_wait_time_s=any_address_claim_wait_time_s)
self._balances = balances
self._logger = logger
self.model = model
self._time = time_method
# Configuration Options
self._allow_greater_deposit = allow_greater_deposit
self._group_contributions = group_contributions
self._reset_model_during_reward_phase = reset_model_during_reward_phase
self._market_earliest_end_time_s = None
self._market_balances: Dict[Address, float] = defaultdict(float)
""" Keeps track of balances in the market. """
self._next_data_index = None
self.min_stake = 1
"""
The minimum required amount to deposit.
Should be at least 1 to handle the worst case where the contribution takes the accuracy from 1 to 0.
"""
self.state = None
@property
def reset_model_during_reward_phase(self):
return self._reset_model_during_reward_phase
def distribute_payment_for_prediction(self, sender, value):
pass
def get_num_contributions_in_market(self):
"""
:return: The total number of contributions currently in the market.
This can decrease as "bad" contributors are removed during the reward phase.
"""
return len(self._market_data)
# Methods in chronological order of the PM.
@staticmethod
def hash_test_set(test_set):
"""
:param test_set: A test set.
:return: The hash of `test_set`.
"""
return sha256(str(test_set).encode()).hexdigest()
@staticmethod
def get_test_set_hashes(num_pieces, x_test, y_test) -> Tuple[list, list]:
"""
Helper to break the test set into `num_pieces` to initialize the market.
:param num_pieces: The number of pieces to break the test set into.
:param x_test: The features for the test set.
:param y_test: The labels for `x_test`.
:return: tuple
A list of `num_pieces` hashes for each portion of the test set.
The test set divided into `num_pieces`.
"""
test_sets = []
test_dataset_hashes = []
assert len(x_test) == len(y_test) >= num_pieces
for i in range(num_pieces):
start = int(i / num_pieces * len(x_test))
end = int((i + 1) / num_pieces * len(x_test))
test_set = list(zip(x_test[start:end], y_test[start:end]))
test_sets.append(test_set)
test_dataset_hashes.append(PredictionMarket.hash_test_set(test_set))
assert sum(len(t) for t in test_sets) == len(x_test)
return test_dataset_hashes, test_sets
def initialize_market(self, msg: Msg,
test_dataset_hashes: List[str],
# Ending criteria:
min_length_s: int, min_num_contributions: int) -> int:
"""
Initialize the prediction market.
:param msg: Indicates the one posting the bounty and the amount being committed for the bounty.
The total bounty should be an integer since it also represents the number of "rounds" in the PM.
:param test_dataset_hashes: The committed hashes for the portions of the test set.
:param min_length_s: The minimum length in seconds of the market.
:param min_num_contributions: The minimum number of contributions before ending the market.
:return: The index of the test set that must be revealed.
"""
assert self._market_earliest_end_time_s is None
assert self._next_data_index is None, "The market end has already been triggered."
assert self.state is None
self.bounty_provider = msg.sender
self.total_bounty = msg.value
self.remaining_bounty_rounds = self.total_bounty
self.test_set_hashes = test_dataset_hashes
assert len(self.test_set_hashes) > 1
self.test_reveal_index = random.randrange(len(self.test_set_hashes))
self.next_test_set_index_to_verify = 0
if self.next_test_set_index_to_verify == self.test_reveal_index:
self.next_test_set_index_to_verify += 1
self._market_data: List[_Contribution] = []
self.min_num_contributions = min_num_contributions
self._market_earliest_end_time_s = self._time() + min_length_s
self.reward_phase_end_time_s = None
self.prev_acc = None
self.original_acc = None
# Pay the owner since it will be the owner distributing funds using `handle_refund` and `handle_reward` later.
self._balances.send(self.bounty_provider, self.owner, self.total_bounty)
self.state = MarketPhase.INITIALIZATION
return self.test_reveal_index
def add_test_set_hashes(self, msg: Msg, more_test_set_hashes: List[str]) -> int:
"""
(Optional)
Add more hashes for portions of the test set to reveal.
This helps in case not all hashes can be sent in one transaction.
:param msg: The message for this transaction.
The sender must be the bounty provider.
:param more_test_set_hashes: More committed hashes for the portions of the test set.
:return: The index of the test set that must be revealed.
"""
assert self.state == MarketPhase.INITIALIZATION
assert msg.sender == self.bounty_provider
# Ensure that a new test set is given and the sender isn't just trying to get a new random index.
assert len(more_test_set_hashes) > 0, "You must give at least one hash."
self.test_set_hashes += more_test_set_hashes
self.test_reveal_index = random.randrange(len(self.test_set_hashes))
self.next_test_set_index_to_verify = 0
if self.next_test_set_index_to_verify == self.test_reveal_index:
self.next_test_set_index_to_verify += 1
return self.test_reveal_index
def verify_test_set(self, index: int, test_set_portion):
"""
Verify that a portion of the test set matches the committed to hash.
:param index: The index of the test set in the originally committed list of hashes.
:param test_set_portion: The portion of the test set to reveal.
"""
assert 0 <= index < len(self.test_set_hashes)
assert len(test_set_portion) > 0
test_set_hash = self.hash_test_set(test_set_portion)
assert test_set_hash == self.test_set_hashes[index]
def reveal_init_test_set(self, test_set_portion):
"""
Reveal the required portion of the full test set.
:param test_set_portion: The portion of the test set that must be revealed before started the Participation Phase.
"""
assert self.state == MarketPhase.INITIALIZATION
self.verify_test_set(self.test_reveal_index, test_set_portion)
self.state = MarketPhase.PARTICIPATION
def handle_add_data(self, contributor_address: Address, msg_value: float, data, classification) -> (float, bool):
# Allow them to stake as much as they want to ensure they get included in future rounds.
assert self.state == MarketPhase.PARTICIPATION, f'Current state is: {self.state}.'
if msg_value < self.min_stake:
raise RejectException(f"Did not pay enough. Sent {msg_value} < {self.min_stake}")
if self._allow_greater_deposit:
cost = msg_value
else:
cost = self.min_stake
update_model = False
self._market_data.append(_Contribution(contributor_address, data, classification, cost))
self._market_balances[contributor_address] += cost
return (cost, update_model)
def end_market(self):
"""
Signal the end of the prediction market.
"""
assert self.state == MarketPhase.PARTICIPATION, f'Current state is: {self.state}.'
if self.get_num_contributions_in_market() < self.min_num_contributions \
and self._time() < self._market_earliest_end_time_s:
raise RejectException("Can't end the market yet.")
self._logger.info("Ending market.")
self.state = MarketPhase.REVEAL_TEST_SET
self._next_data_index = 0
self.test_data, self.test_labels = [], []
def verify_next_test_set(self, test_set_portion):
assert self.state == MarketPhase.REVEAL_TEST_SET
self.verify_test_set(self.next_test_set_index_to_verify, test_set_portion)
test_data, test_labels = zip(*test_set_portion)
self.test_data += test_data
self.test_labels += test_labels
self.next_test_set_index_to_verify += 1
if self.next_test_set_index_to_verify == self.test_reveal_index:
self.next_test_set_index_to_verify += 1
if self.next_test_set_index_to_verify == len(self.test_set_hashes):
self.state = MarketPhase.REWARD_RESTART
self.test_data = np.array(self.test_data)
self.test_labels = np.array(self.test_labels)
def process_contribution(self):
"""
Reward Phase:
Process the next data contribution.
"""
assert self.remaining_bounty_rounds > 0, "The market has ended."
if self.state == MarketPhase.REWARD_RESTART:
self._next_data_index = 0
self._logger.debug("Remaining bounty rounds: %s", self.remaining_bounty_rounds)
self._scores = defaultdict(float)
if self._reset_model_during_reward_phase:
# The paper implies that we should not retrain the model and instead only train once.
# The problem there is that a contributor is affected by bad contributions
# between them and the last counted contribution after bad contributions are filtered out.
self.model.reset_model()
if self.prev_acc is None:
# XXX This evaluation can be expensive and likely won't work in Ethereum.
# We need to find a more efficient way to do this or let a contributor proved they did it.
self.prev_acc = self.model.evaluate(self.test_data, self.test_labels)
self.original_acc = self.prev_acc
self._logger.debug("Accuracy: %0.2f%%", self.prev_acc * 100)
elif not self._reset_model_during_reward_phase:
# When calculating rewards, the score, the same accuracy for the initial model should be used.
self.prev_acc = self.original_acc
self._num_market_contributions: Dict[Address, int] = Counter()
self._worst_contribution: Optional[_Contribution] = None
self._worst_contributor: Optional[Address] = None
self._min_score = math.inf
self.state = MarketPhase.REWARD
else:
assert self.state == MarketPhase.REWARD
contribution = self._market_data[self._next_data_index]
self._num_market_contributions[contribution.contributor_address] += 1
self.model.update(contribution.data, contribution.classification)
if not self._reset_model_during_reward_phase and contribution.accuracy is None:
# XXX Potentially expensive gas cost.
contribution.accuracy = self.model.evaluate(self.test_data, self.test_labels)
self._next_data_index += 1
iterated_through_all_contributions = self._next_data_index >= self.get_num_contributions_in_market()
if iterated_through_all_contributions \
or not self._group_contributions \
or self._market_data[self._next_data_index].contributor_address != contribution.contributor_address:
# Need to compute score.
if self._reset_model_during_reward_phase:
# XXX Potentially expensive gas cost.
acc = self.model.evaluate(self.test_data, self.test_labels)
else:
acc = contribution.accuracy
score_change = acc - self.prev_acc
if self._group_contributions:
new_score = self._scores[contribution.contributor_address] = \
self._scores[contribution.contributor_address] + score_change
else:
new_score = contribution.score = score_change
if new_score < self._min_score:
self._min_score = new_score
if self._group_contributions:
self._worst_contributor = contribution.contributor_address
else:
self._worst_contribution = contribution
elif self._group_contributions and self._worst_contributor == contribution.contributor_address:
# Their score increased, they might not be the worst anymore.
# Optimize: use a heap.
self._worst_contributor, self._min_score = min(self._scores.items(), key=lambda x: x[1])
self.prev_acc = acc
if iterated_through_all_contributions:
# Find min score and remove that address from the list.
self._logger.debug("Minimum score: %.2f", self._min_score)
if self._min_score < 0:
if self._group_contributions:
num_rounds = self._market_balances[self._worst_contributor] / -self._min_score
else:
num_rounds = self._worst_contribution.balance / -self._min_score
if num_rounds > self.remaining_bounty_rounds:
num_rounds = self.remaining_bounty_rounds
self._logger.debug("Will simulate %.2f rounds.", num_rounds)
self.remaining_bounty_rounds -= num_rounds
if self.remaining_bounty_rounds == 0:
self._end_reward_phase(num_rounds)
else:
if self._group_contributions:
participants_to_remove = set()
for participant, score in self._scores.items():
self._logger.debug("Score for \"%s\": %.2f", participant, score)
self._market_balances[participant] += score * num_rounds
if self._market_balances[participant] < self._num_market_contributions[participant]:
# They don't have enough left to stake next time.
participants_to_remove.add(participant)
self._market_data: List[_Contribution] = list(
filter(lambda c: c.contributor_address not in participants_to_remove,
self._market_data))
else:
for contribution in self._market_data:
contribution.balance += contribution.score * num_rounds
if contribution.balance < 1:
# Contribution is going to get kicked out.
self._market_balances[contribution.contributor_address] += contribution.balance
self._market_data: List[_Contribution] = \
list(filter(lambda c: c.balance >= 1, self._market_data))
if self.get_num_contributions_in_market() == 0:
self.state = MarketPhase.REWARD_COLLECT
self.remaining_bounty_rounds = 0
self.reward_phase_end_time_s = self._time()
else:
self.state = MarketPhase.REWARD_RESTART
else:
num_rounds = self.remaining_bounty_rounds
self.remaining_bounty_rounds = 0
self._end_reward_phase(num_rounds)
def _end_reward_phase(self, num_rounds):
"""
Distribute rewards.
:param num_rounds: The number of rounds remaining.
"""
self._logger.debug("Dividing remaining bounty amongst all remaining contributors to simulate %.2f rounds.",
num_rounds)
self.reward_phase_end_time_s = self._time()
self.state = MarketPhase.REWARD_COLLECT
if self._group_contributions:
for participant, score in self._scores.items():
self._logger.debug("Score for \"%s\": %.2f", participant, score)
self._market_balances[participant] += score * num_rounds
else:
for contribution in self._market_data:
self._market_balances[contribution.contributor_address] += \
contribution.score * num_rounds
self._market_data = []
def handle_refund(self, submitter: Address, stored_data: StoredData,
claimable_amount: float, claimed_by_submitter: bool,
prediction) -> float:
assert self.remaining_bounty_rounds == 0, "The reward phase has not finished processing contributions."
assert self.state == MarketPhase.REWARD_COLLECT
result = self._market_balances[submitter]
self._logger.debug("Reward for \"%s\": %.2f", submitter, result)
if result > 0:
del self._market_balances[submitter]
else:
result = 0
return result
def handle_report(self, reporter: Address, stored_data: StoredData, claimed_by_reporter: bool, prediction) -> float:
assert self.state == MarketPhase.REWARD_COLLECT, "The reward phase has not finished processing contributions."
assert self.remaining_bounty_rounds == 0
assert self.reward_phase_end_time_s > 0
if self._time() - self.reward_phase_end_time_s >= self.any_address_claim_wait_time_s:
submitter = stored_data.sender
result = self._market_balances[submitter]
if result > 0:
self._logger.debug("Giving reward for \"%s\" to \"%s\". Reward: %s", submitter, reporter, result)
del self._market_balances[reporter]
else:
result = 0
return result
@dataclass
class PredictionMarketImModule(Module):
allow_greater_deposit: bool = field(default=False)
group_contributions: bool = field(default=False)
reset_model_during_reward_phase: bool = field(default=False)
@provider
@singleton
def provide_data_loader(self, builder: ClassAssistedBuilder[PredictionMarket]) -> IncentiveMechanism:
return builder.build(
allow_greater_deposit=self.allow_greater_deposit,
group_contributions=self.group_contributions,
reset_model_during_reward_phase=self.reset_model_during_reward_phase,
)
|
from abc import ABC, abstractmethod
import math
from decai.simulation.contract.data.data_handler import StoredData
from decai.simulation.contract.objects import Address, SmartContract
class IncentiveMechanism(ABC, SmartContract):
"""
Defines incentives for others to contribute "good" quality data.
"""
def __init__(self, refund_time_s=math.inf, any_address_claim_wait_time_s=math.inf):
super().__init__()
self.refund_time_s = refund_time_s
"""
Amount of time to wait to get a refund back.
Once this amount of time has passed, the entire deposit can be reclaimed.
Also once this amount of time has passed, the deposit (in full or in part) can be taken by others.
Default to not allowing refunds.
"""
self.any_address_claim_wait_time_s = any_address_claim_wait_time_s
"""
Amount of time after which anyone can take someone's entire remaining deposit.
The purpose of this is to help ensure that value does not get "stuck" in a contract.
This must be greater than the required amount of time to wait for attempting a refund.
Contracts may want to enforce that this is much greater than the amount of time to wait for attempting a refund
to give even more time to get the deposit back and not let others take too much.
"""
@abstractmethod
def distribute_payment_for_prediction(self, sender: str, value: float):
"""
Share `value` with those that submit data.
:param sender: The address of the one calling prediction.
:param value: The amount sent with the request to call prediction.
"""
pass
@abstractmethod
def handle_add_data(self, contributor_address: Address, msg_value: float, data, classification) \
-> (float, bool):
"""
Determine if the request to add data is acceptable.
:param contributor_address: The address of the one attempting to add data
:param msg_value: The value sent with the initial transaction to add data.
:param data: A single sample of training data for the model.
:param classification: The label for `data`.
:return: tuple
The cost required to add new data.
`True` if the model should be updated, `False` otherwise.
"""
pass
@abstractmethod
def handle_refund(self, submitter: str, stored_data: StoredData,
claimable_amount: float, claimed_by_submitter: bool,
prediction) -> float:
"""
Notify that a refund is being attempted.
:param submitter: The address of the one attempting a refund.
:param stored_data: The data for which a refund is being attempted.
:param claimable_amount: The amount that can be claimed for the refund.
:param claimed_by_submitter: True if the data has already been claimed by `submitter`, otherwise false.
:param prediction: The current prediction of the model for data
or a callable with no parameters to lazily get the prediction of the model on the data.
:return: The amount to refund to `submitter`.
"""
pass
@abstractmethod
def handle_report(self, reporter: str, stored_data: StoredData, claimed_by_reporter: bool, prediction) \
-> float:
"""
Notify that data is being reported as bad or old.
:param reporter: The address of the one reporting about the data.
:param stored_data: The data being reported.
:param claimed_by_reporter: True if the data has already been claimed by `reporter`, otherwise false.
:param prediction: The current prediction of the model for data
or a callable with no parameters to lazily get the prediction of the model on the data.
:return: The amount to reward to `reporter`.
"""
pass
|
import unittest
from collections import defaultdict
from typing import cast
from injector import Injector
from decai.simulation.contract.balances import Balances
from decai.simulation.contract.classification.perceptron import PerceptronModule
from decai.simulation.contract.data.data_handler import StoredData
from decai.simulation.contract.incentive.incentive_mechanism import IncentiveMechanism
from decai.simulation.contract.incentive.prediction_market import MarketPhase, \
PredictionMarket, PredictionMarketImModule
from decai.simulation.contract.objects import Msg, TimeMock
from decai.simulation.data.data_loader import DataLoader
from decai.simulation.data.simple_data_loader import SimpleDataModule
from decai.simulation.logging_module import LoggingModule
class TestPredictionMarket(unittest.TestCase):
def test_market_like_original_paper(self):
inj = Injector([
SimpleDataModule,
LoggingModule,
PerceptronModule,
PredictionMarketImModule(
allow_greater_deposit=False,
group_contributions=False,
reset_model_during_reward_phase=False,
),
])
balances = inj.get(Balances)
data = inj.get(DataLoader)
im = cast(PredictionMarket, inj.get(IncentiveMechanism))
im.owner = 'owner'
assert isinstance(im, PredictionMarket)
init_train_data_portion = 0.2
initializer_address = 'initializer'
total_bounty = 100_000
balances.initialize(initializer_address, total_bounty)
good_contributor_address = 'good_contributor'
initial_good_balance = 10_000
balances.initialize(good_contributor_address, initial_good_balance)
bad_contributor_address = 'bad_contributor'
initial_bad_balance = 10_000
balances.initialize(bad_contributor_address, initial_bad_balance)
(x_train, y_train), (x_test, y_test) = data.load_data()
init_idx = int(len(x_train) * init_train_data_portion)
assert init_idx > 0
x_init_data, y_init_data = x_train[:init_idx], y_train[:init_idx]
x_remaining, y_remaining = x_train[init_idx:], y_train[init_idx:]
# Split test set into pieces.
num_pieces = 10
test_dataset_hashes, test_sets = im.get_test_set_hashes(num_pieces, x_test, y_test)
# Ending criteria:
min_length_s = 100
min_num_contributions = min(len(x_remaining), 100)
# Commitment Phase
self.assertIsNone(im.state)
im.model.init_model(x_init_data, y_init_data, save_model=True)
hashes_split = 3
test_reveal_index = im.initialize_market(Msg(initializer_address, total_bounty),
test_dataset_hashes[:hashes_split],
min_length_s, min_num_contributions)
assert 0 <= test_reveal_index < len(test_dataset_hashes)
self.assertEqual(MarketPhase.INITIALIZATION, im.state)
test_reveal_index = im.add_test_set_hashes(Msg(initializer_address, 0), test_dataset_hashes[hashes_split:])
assert 0 <= test_reveal_index < len(test_dataset_hashes)
self.assertEqual(MarketPhase.INITIALIZATION, im.state)
im.reveal_init_test_set(test_sets[test_reveal_index])
self.assertEqual(MarketPhase.PARTICIPATION, im.state)
# Participation Phase
value = 100
total_deposits = defaultdict(float)
for i in range(min_num_contributions):
data = x_remaining[i]
classification = y_remaining[i]
if i % 2 == 0:
contributor = good_contributor_address
else:
contributor = bad_contributor_address
classification = 1 - classification
cost, _ = im.handle_add_data(contributor, value, data, classification)
self.assertEqual(im.min_stake, cost, "Cost should be the minimum stake because of the options passed in.")
balances.send(contributor, im.owner, cost)
total_deposits[contributor] += cost
# Reward Phase
self.assertEqual(MarketPhase.PARTICIPATION, im.state)
im.end_market()
self.assertEqual(MarketPhase.REVEAL_TEST_SET, im.state)
for i, test_set_portion in enumerate(test_sets):
if i != test_reveal_index:
im.verify_next_test_set(test_set_portion)
self.assertEqual(MarketPhase.REWARD_RESTART, im.state)
while im.remaining_bounty_rounds > 0:
im.process_contribution()
# Collect rewards.
self.assertEqual(MarketPhase.REWARD_COLLECT, im.state)
for contributor in [good_contributor_address, bad_contributor_address]:
# Don't need to pass the right StoredData.
# noinspection PyTypeChecker
reward = im.handle_refund(contributor, None, 0, False, None)
balances.send(im.owner, contributor, reward)
self.assertGreater(total_deposits[good_contributor_address], 0)
self.assertGreater(total_deposits[bad_contributor_address], 0)
# General checks that should be true for a market with a reasonably sensitive model.
self.assertLess(balances[im.owner], total_bounty,
f"Some of the bounty should be distributed.\n"
f"Balances: {balances.get_all()}")
self.assertLess(0, balances[im.owner])
# Sometimes the bad contributor happens to get some value but not much.
self.assertAlmostEqual(balances[bad_contributor_address], initial_bad_balance, delta=2,
msg=f"The bad contributor should lose funds.\n"
f"Balances: {balances.get_all()}")
self.assertGreater(balances[good_contributor_address], initial_good_balance)
self.assertLess(balances[bad_contributor_address], balances[good_contributor_address])
self.assertLessEqual(balances[good_contributor_address] - balances[bad_contributor_address],
total_bounty)
self.assertEqual(initial_good_balance + initial_bad_balance + total_bounty,
balances[good_contributor_address] + balances[bad_contributor_address] +
balances[im.owner],
"Should be a zero-sum.")
def test_market(self):
inj = Injector([
SimpleDataModule,
LoggingModule,
PerceptronModule,
PredictionMarketImModule(
allow_greater_deposit=True,
group_contributions=True,
reset_model_during_reward_phase=True,
),
])
balances = inj.get(Balances)
data = inj.get(DataLoader)
im = cast(PredictionMarket, inj.get(IncentiveMechanism))
im.owner = 'owner'
assert isinstance(im, PredictionMarket)
init_train_data_portion = 0.2
initializer_address = 'initializer'
total_bounty = 100_000
balances.initialize(initializer_address, total_bounty)
good_contributor_address = 'good_contributor'
initial_good_balance = 10_000
balances.initialize(good_contributor_address, initial_good_balance)
bad_contributor_address = 'bad_contributor'
initial_bad_balance = 10_000
balances.initialize(bad_contributor_address, initial_bad_balance)
(x_train, y_train), (x_test, y_test) = data.load_data()
init_idx = int(len(x_train) * init_train_data_portion)
assert init_idx > 0
x_init_data, y_init_data = x_train[:init_idx], y_train[:init_idx]
x_remaining, y_remaining = x_train[init_idx:], y_train[init_idx:]
# Split test set into pieces.
num_pieces = 10
test_dataset_hashes, test_sets = im.get_test_set_hashes(num_pieces, x_test, y_test)
# Ending criteria:
min_length_s = 100
min_num_contributions = min(len(x_remaining), 100)
# Commitment Phase
self.assertIsNone(im.state)
im.model.init_model(x_init_data, y_init_data, save_model=True)
hashes_split = 3
test_reveal_index = im.initialize_market(Msg(initializer_address, total_bounty),
test_dataset_hashes[:hashes_split],
min_length_s, min_num_contributions)
assert 0 <= test_reveal_index < len(test_dataset_hashes)
self.assertEqual(MarketPhase.INITIALIZATION, im.state)
test_reveal_index = im.add_test_set_hashes(Msg(initializer_address, 0), test_dataset_hashes[hashes_split:])
assert 0 <= test_reveal_index < len(test_dataset_hashes)
self.assertEqual(MarketPhase.INITIALIZATION, im.state)
im.reveal_init_test_set(test_sets[test_reveal_index])
self.assertEqual(MarketPhase.PARTICIPATION, im.state)
# Participation Phase
value = 100
total_deposits = defaultdict(float)
for i in range(min_num_contributions):
data = x_remaining[i]
classification = y_remaining[i]
if i % 2 == 0:
contributor = good_contributor_address
else:
contributor = bad_contributor_address
classification = 1 - classification
cost, _ = im.handle_add_data(contributor, value, data, classification)
balances.send(contributor, im.owner, cost)
total_deposits[contributor] += cost
# Reward Phase
self.assertEqual(MarketPhase.PARTICIPATION, im.state)
im.end_market()
self.assertEqual(MarketPhase.REVEAL_TEST_SET, im.state)
for i, test_set_portion in enumerate(test_sets):
if i != test_reveal_index:
im.verify_next_test_set(test_set_portion)
self.assertEqual(MarketPhase.REWARD_RESTART, im.state)
while im.remaining_bounty_rounds > 0:
im.process_contribution()
# Collect rewards.
self.assertEqual(MarketPhase.REWARD_COLLECT, im.state)
for contributor in [good_contributor_address, bad_contributor_address]:
# Don't need to pass the right StoredData.
# noinspection PyTypeChecker
reward = im.handle_refund(contributor, None, 0, False, None)
balances.send(im.owner, contributor, reward)
self.assertGreater(total_deposits[good_contributor_address], 0)
self.assertGreater(total_deposits[bad_contributor_address], 0)
# General checks that should be true for a market with a reasonably sensitive model.
self.assertLess(balances[im.owner], total_bounty,
f"Some of the bounty should be distributed.\n"
f"Balances: {balances.get_all()}")
self.assertLess(0, balances[im.owner])
self.assertLess(balances[bad_contributor_address], initial_bad_balance)
self.assertGreater(balances[good_contributor_address], initial_good_balance)
self.assertLess(balances[bad_contributor_address], balances[good_contributor_address])
self.assertLessEqual(balances[good_contributor_address] - balances[bad_contributor_address],
total_bounty)
self.assertEqual(initial_good_balance + initial_bad_balance + total_bounty,
balances[good_contributor_address] + balances[bad_contributor_address] +
balances[im.owner],
"Should be a zero-sum.")
self.assertEqual(initial_bad_balance - total_deposits[bad_contributor_address],
balances[bad_contributor_address],
"The bad contributor should lose all of their deposits.")
def test_report(self):
inj = Injector([
SimpleDataModule,
LoggingModule,
PerceptronModule,
PredictionMarketImModule(
allow_greater_deposit=True,
group_contributions=True,
reset_model_during_reward_phase=True,
),
])
balances = inj.get(Balances)
data = inj.get(DataLoader)
im = cast(PredictionMarket, inj.get(IncentiveMechanism))
im.owner = 'owner'
time_method = inj.get(TimeMock)
assert isinstance(im, PredictionMarket)
init_train_data_portion = 0.2
initializer_address = 'initializer'
total_bounty = 100_000
balances.initialize(initializer_address, total_bounty)
good_contributor_address = 'good_contributor'
initial_good_balance = 10_000
balances.initialize(good_contributor_address, initial_good_balance)
bad_contributor_address = 'bad_contributor'
initial_bad_balance = 10_000
balances.initialize(bad_contributor_address, initial_bad_balance)
(x_train, y_train), (x_test, y_test) = data.load_data()
init_idx = int(len(x_train) * init_train_data_portion)
assert init_idx > 0
x_init_data, y_init_data = x_train[:init_idx], y_train[:init_idx]
x_remaining, y_remaining = x_train[init_idx:], y_train[init_idx:]
# Split test set into pieces.
num_pieces = 10
test_dataset_hashes, test_sets = im.get_test_set_hashes(num_pieces, x_test, y_test)
# Ending criteria:
min_length_s = 100
min_num_contributions = min(len(x_remaining), 100)
# Commitment Phase
self.assertIsNone(im.state)
im.model.init_model(x_init_data, y_init_data, save_model=True)
test_reveal_index = im.initialize_market(Msg(initializer_address, total_bounty),
test_dataset_hashes,
min_length_s, min_num_contributions)
self.assertEqual(MarketPhase.INITIALIZATION, im.state)
assert 0 <= test_reveal_index < len(test_dataset_hashes)
im.reveal_init_test_set(test_sets[test_reveal_index])
self.assertEqual(MarketPhase.PARTICIPATION, im.state)
# Participation Phase
value = 100
total_deposits = defaultdict(float)
stored_data = None
for i in range(min_num_contributions):
time_method.add_time(60)
data = x_remaining[i]
classification = y_remaining[i]
if i % 2 == 0:
contributor = good_contributor_address
else:
contributor = bad_contributor_address
classification = 1 - classification
cost, _ = im.handle_add_data(contributor, value, data, classification)
if stored_data is None:
stored_data = StoredData(classification, time_method(), contributor, cost, cost)
balances.send(contributor, im.owner, cost)
total_deposits[contributor] += cost
# Reward Phase
self.assertEqual(MarketPhase.PARTICIPATION, im.state)
im.end_market()
time_method.add_time(60)
self.assertEqual(MarketPhase.REVEAL_TEST_SET, im.state)
for i, test_set_portion in enumerate(test_sets):
if i != test_reveal_index:
im.verify_next_test_set(test_set_portion)
self.assertEqual(MarketPhase.REWARD_RESTART, im.state)
while im.remaining_bounty_rounds > 0:
time_method.add_time(60)
im.process_contribution()
# Collect rewards.
self.assertEqual(MarketPhase.REWARD_COLLECT, im.state)
# Get some stored data.
# Make sure reporting doesn't work yet.
reward = im.handle_report(bad_contributor_address, stored_data, False, None)
self.assertEqual(0, reward, "There should be no reward yet.")
time_method.add_time(im.any_address_claim_wait_time_s)
reward = im.handle_report(bad_contributor_address, stored_data, False, None)
balances.send(im.owner, bad_contributor_address, reward)
# Don't need to pass the right StoredData.
# noinspection PyTypeChecker
reward = im.handle_refund(bad_contributor_address, None, 0, False, None)
balances.send(im.owner, bad_contributor_address, reward)
# General checks that should be true for a market with a reasonably sensitive model.
self.assertLess(balances[im.owner], total_bounty,
f"Some of the bounty should be distributed.\n"
f"Balances: {balances.get_all()}")
self.assertLess(0, balances[im.owner])
self.assertGreater(total_deposits[good_contributor_address], 0)
self.assertGreater(total_deposits[bad_contributor_address], 0)
# The bad contributor profited because they reported the good contributor.
self.assertGreater(balances[bad_contributor_address], initial_bad_balance)
self.assertLess(balances[good_contributor_address], initial_good_balance)
self.assertLess(balances[good_contributor_address], balances[bad_contributor_address])
self.assertLessEqual(balances[bad_contributor_address] - balances[good_contributor_address],
total_bounty)
self.assertEqual(initial_good_balance + initial_bad_balance + total_bounty,
balances[good_contributor_address] + balances[bad_contributor_address] +
balances[im.owner],
"Should be a zero-sum.")
self.assertEqual(initial_good_balance - total_deposits[good_contributor_address],
balances[good_contributor_address],
"The good contributor should lose all of their deposits.")
|
from collections import defaultdict
from dataclasses import dataclass, field
from typing import Dict
import numpy as np
from injector import inject, singleton
from decai.simulation.contract.objects import Address, RejectException, SmartContract, TimeMock
@dataclass
class StoredData:
# Storing the data is not necessary. data: object
classification: object
time: int
sender: Address
# Need to use float since the numbers might be large. They should still actually be integers.
initial_deposit: float
"""
The amount that was initially given to deposit this data.
"""
claimable_amount: float
"""
The amount of the deposit that can still be claimed.
"""
claimed_by: Dict[Address, bool] = field(default_factory=lambda: defaultdict(bool))
@inject
@singleton
@dataclass
class DataHandler(SmartContract):
"""
Stores added training data and corresponding meta-data.
"""
_time: TimeMock
_added_data: Dict[tuple, StoredData] = field(default_factory=dict, init=False)
def __iter__(self):
return iter(self._added_data.items())
def _get_key(self, data, classification, added_time: int, original_author: Address):
if isinstance(data, np.ndarray):
# The `.tolist()` isn't necessary but is faster.
data = tuple(data.tolist())
else:
data = tuple(data)
return (data, classification, added_time, original_author)
def get_data(self, data, classification, added_time: int, original_author: Address) -> StoredData:
"""
:param data: The originally submitted features.
:param classification: The label originally submitted for `data`.
:param added_time: The time in seconds for which the data was added.
:param original_author: The address that originally added the data.
:return: The stored information for the data.
"""
key = self._get_key(data, classification, added_time, original_author)
result = self._added_data.get(key)
return result
def handle_add_data(self, contributor_address: Address, cost, data, classification):
"""
Log an attempt to add data
:param sender: The address of the one attempting to add data
:param cost: The cost required to add new data.
:param data: A single sample of training data for the model.
:param classification: The label for `data`.
"""
current_time_s = self._time()
key = self._get_key(data, classification, current_time_s, contributor_address)
if key in self._added_data:
raise RejectException("Data has already been added.")
d = StoredData(classification, current_time_s, contributor_address, cost, cost)
self._added_data[key] = d
def handle_refund(self, submitter: Address, data, classification, added_time: int) -> (float, bool, StoredData):
"""
Log a refund attempt.
:param submitter: The address of the one attempting a refund.
:param data: The data for which to attempt a refund.
:param classification: The label originally submitted for `data`.
:param added_time: The time in seconds for which the data was added.
:return:
The amount that can be claimed for the refund.
True if the data has already been claimed by `submitter`, otherwise false.
The stored data.
"""
stored_data = self.get_data(data, classification, added_time, submitter)
assert stored_data is not None, "Data not found."
assert stored_data.sender == submitter, "Data isn't from the sender."
claimable_amount = stored_data.claimable_amount
claimed_by_submitter = stored_data.claimed_by[submitter]
return (claimable_amount, claimed_by_submitter, stored_data)
def handle_report(self, reporter: Address, data, classification, added_time: int, original_author: Address) \
-> (bool, StoredData):
"""
Retrieve information about the data to report.
:param reporter: The address of the one reporting the data.
:param data: The data to report.
:param classification: The label originally submitted for `data`.
:param added_time: The time in seconds for which the data was added.
:param original_author: The address that originally added the data.
:return:
True if the data has already been claimed by `submitter`, otherwise false.
The stored data.
"""
stored_data = self.get_data(data, classification, added_time, original_author)
assert stored_data is not None, "Data not found."
claimed_by_reporter = stored_data.claimed_by[reporter]
# The Solidity implementation updates `stored_data.claimed_by` here which is fine.
# We do not update it here because if an error occurs while attempting a refund,
# then the change would have to be undone.
# Instead, `stored_data.claimed_by` is updated in `update_claimable_amount`.
return (claimed_by_reporter, stored_data)
def update_claimable_amount(self, receiver: Address, stored_data: StoredData, reward_amount: float):
# The Solidity implementation does the update in another place which is fine for it.
# Here we only update it once we're sure the refund can be completed successfully.
if reward_amount > 0:
stored_data.claimed_by[receiver] = True
stored_data.claimable_amount -= reward_amount
|
import unittest
from queue import PriorityQueue
from decai.simulation.simulate import Agent
class TestAgent(unittest.TestCase):
def test_queue(self):
q = PriorityQueue()
agents = [
Agent('a1', 10, 1, 1, 1),
Agent('a2', 10, 1, 1, 1),
Agent('a0', 10, 1, 1, 1),
]
[q.put((0, a)) for a in agents]
results = [q.get()[1].address for _ in agents]
self.assertEqual(['a0', 'a1', 'a2'], results)
|
from dataclasses import dataclass, field
from logging import Logger
from typing import List
import numpy as np
from injector import inject, Module
from sklearn.utils import shuffle
from tqdm import trange
from .data_loader import DataLoader
@inject
@dataclass
class TicTacToeDataLoader(DataLoader):
"""
Load data for Tic-Tac-Toe games.
Data is flattened `width` x `length` games.
The players are 1 and -1. The data is from the perspective of player 1, opponent is -1.
0 means no one has played in that position.
"""
_logger: Logger
_seed: int = field(default=2, init=False)
_train_split: float = field(default=0.7, init=False)
width: int = field(default=3, init=False)
length: int = field(default=3, init=False)
def classifications(self) -> List[str]:
return list(map(str, map(self.map_pos, range(self.width * self.length))))
def get_winner(self, board):
def get_single_winner(line: set):
if len(line) == 1:
val = next(iter(line))
if val != 0:
return val
return None
for row in range(self.width):
result = get_single_winner(set(board[row]))
if result is not None:
return result
for col in range(self.length):
result = get_single_winner(set(board[:, col]))
if result is not None:
return result
result = get_single_winner(set(board.diagonal()))
if result is not None:
return result
diag_vals = set(board[i, self.length - 1 - i] for i in range(self.width))
result = get_single_winner(diag_vals)
if result is not None:
return result
return None
def map_pos(self, pos):
return pos // self.width, pos % self.width
def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple):
X, y = [], []
bad_moves = set()
players = (1, -1)
assert self.width == self.length, "The following code assumes that the board is square."
def fill(board, start_pos, next_player, path):
# See if there is a winning move.
winner = None
for pos in range(start_pos, self.width * self.length):
i, j = self.map_pos(pos)
if board[i, j] != 0:
continue
_board = board.copy()
_board[i, j] = next_player
winner = self.get_winner(_board)
if winner is not None:
path.append((board, pos, next_player))
break
if winner is not None:
# Only count wins for one of the players to make setting up games simpler.
if winner == players[0]:
for history_board, history_position, history_player in path:
history_board = history_board.flatten()
if history_player == winner:
X.append(history_board)
y.append(history_position)
else:
bad_moves.add((tuple(-history_board.flatten()), -history_position))
else:
# Recurse.
for pos in range(start_pos, self.width * self.length):
i, j = self.map_pos(pos)
if board[i, j] != 0:
continue
_path = list(path)
_path.append((board, pos, next_player))
_board = board.copy()
_board[i, j] = next_player
fill(_board, start_pos, next_player=-1 if next_player == 1 else 1, path=_path)
self._logger.info("Loading Tic Tac Toe data.")
for init_pos in trange(self.width * self.length,
desc="Making boards",
unit_scale=True, mininterval=2, unit=" start positions"
):
pos = self.map_pos(init_pos)
for player in players:
board = np.zeros((self.width, self.length), dtype=np.int8)
path = [(board.copy(), init_pos, player)]
board[pos] = player
fill(board, init_pos + 1, next_player=-1 if player == 1 else 1, path=path)
# Remove bad moves.
# Note this might not help much depending on the model.
X, y = zip(*[(X[i], y[i]) for i in range(len(X)) if (tuple(X[i]), y[i]) not in bad_moves])
X, y = shuffle(X, y, random_state=self._seed)
split = int(self._train_split * len(X))
x_train, y_train = np.array(X[:split]), np.array(y[:split])
x_test, y_test = np.array(X[split:]), np.array(y[split:])
if train_size is not None:
x_train, y_train = x_train[:train_size], y_train[:train_size]
if test_size is not None:
x_test, y_test = x_test[:test_size], y_test[:test_size]
# Show some data.
# import random
# for _ in range(10):
# i = random.randrange(len(X))
# print(X[i].reshape((self.width, self.length)), y[i])
self._logger.info("Done loading data.\nCreated %d boards.", len(X))
return (x_train, y_train), (x_test, y_test)
class TicTacToeDataModule(Module):
def configure(self, binder):
binder.bind(DataLoader, TicTacToeDataLoader)
|
import os
from dataclasses import dataclass, field
from logging import Logger
from typing import List
import numpy as np
import pandas as pd
from injector import inject, Module
from sklearn.utils import shuffle
from decai.simulation.data.data_loader import DataLoader
@inject
@dataclass
class TitanicDataLoader(DataLoader):
"""
Load data for Titanic survivors.
https://www.kaggle.com/c/titanic/data
"""
_logger: Logger
_seed: int = field(default=231, init=False)
_train_split: float = field(default=0.7, init=False)
def classifications(self) -> List[str]:
return ["DIED", "SURVIVED"]
def _get_features(self, data: pd.DataFrame):
"""
Map the data to numbers.
Also uses some ideas from https://triangleinequality.wordpress.com/2013/09/08/basic-feature-engineering-with-the-titanic-data/
:param data: The data without labels.
:return: The data mapped to numbers.
"""
data.drop(columns=['PassengerId', 'Ticket'], inplace=True)
# , 'Name', 'Ticket', 'Cabin', 'Embarked'
title_tuples = (
(' Mr. ', ' Sir. ', ' Don. ', ' Major. ', ' Capt. ', ' Jonkheer. ', ' Rev. ', ' Col. '),
(' Mrs. ', ' Countess. ', ' Mme. ', ' Lady. '),
(' Miss. ', ' Mlle. ', ' Ms. '),
(' Master. ',),
(' Dr. ',),
)
title_to_num = {
' Mr. ': 0,
' Mrs. ': 1,
' Miss. ': 2,
' Master. ': 3,
}
def _get_title(row):
result = None
name = row['Name']
for index, titles in enumerate(title_tuples):
for t in titles:
if t in name:
result = titles[0]
if result == ' Dr. ':
if row['Sex'] == 'male':
result = ' Mr. '
else:
result = ' Mrs. '
assert result is not None, f"No title found in {row}."
result = title_to_num[result]
return result
def _get_cabin(row):
result = -1
cabin = row['Cabin']
if isinstance(cabin, str):
for c in 'ABCDEFGT':
if c in cabin:
result = ord(c) - ord('A')
break
return result
result = []
for index, row in data.iterrows():
if row['Sex'] == 'male':
sex = 0
else:
sex = 1
family_size = row['SibSp'] + row['Parch']
datum = [
row['Pclass'],
sex,
_get_title(row),
family_size,
# These features did not help:
# _get_cabin(row),
# row['Age'],
# row['Parch'],
# row['SibSp'],
# row['Fare'],
# row['Fare'] / (family_size + 1),
]
result.append(datum)
return result
def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple):
self._logger.info("Loading data.")
data_folder_path = os.path.join(__file__, '../../../../training_data/titanic')
if not os.path.exists(data_folder_path):
# TODO Attempt to download the data.
raise Exception(f"Could not find Titanic dataset at \"{data_folder_path}\"."
"\nYou must download it from https://www.kaggle.com/c/titanic/data.")
x_train = pd.read_csv(os.path.join(data_folder_path, 'train.csv'))
y_train = np.array(x_train['Survived'], np.int8)
x_train.drop(columns=['Survived'], inplace=True)
x_train = self._get_features(x_train)
x_train = np.array(x_train)
x_train, y_train = shuffle(x_train, y_train, random_state=self._seed)
train_split = int(len(x_train) * self._train_split)
x_test, y_test = x_train[train_split:], y_train[train_split:]
x_train, y_train = x_train[:train_split], y_train[:train_split]
if train_size is not None:
x_train, y_train = x_train[:train_size], y_train[:train_size]
if test_size is not None:
x_test, y_test = x_test[:test_size], y_test[:test_size]
self._logger.info("Done loading data.")
return (x_train, y_train), (x_test, y_test)
@dataclass
class TitanicDataModule(Module):
def configure(self, binder):
binder.bind(DataLoader, to=TitanicDataLoader)
|
from abc import ABC, abstractmethod
from typing import List
class DataLoader(ABC):
"""
Base class for providing simulation data.
"""
@abstractmethod
def classifications(self) -> List[str]:
"""
:return: The classifications for this dataset.
"""
pass
@abstractmethod
def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple):
"""
:return: Training Data, Test Data: (x_train, y_train), (x_test, y_test)
"""
pass
|
from dataclasses import dataclass
from logging import Logger
from typing import List
from injector import inject, Module
from keras.datasets import boston_housing
from decai.simulation.data.data_loader import DataLoader
@inject
@dataclass
class BhpDataLoader(DataLoader):
"""
Load data from Boston Housing Prices.
https://keras.io/datasets/#boston-housing-price-regression-dataset
"""
_logger: Logger
def classifications(self) -> List[str]:
raise NotImplementedError
def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple):
self._logger.info("Loading Boston housing prices data.")
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()
if train_size is not None:
x_train, y_train = x_train[:train_size], y_train[:train_size]
if test_size is not None:
x_test, y_test = x_test[:test_size], y_test[:test_size]
self._logger.info("Done loading data.")
return (x_train, y_train), (x_test, y_test)
@dataclass
class BhpDataModule(Module):
def configure(self, binder):
binder.bind(DataLoader, to=BhpDataLoader)
|
import itertools
import json
import os
import random
import time
from collections import Counter
from dataclasses import dataclass
from enum import Enum
from logging import Logger
from operator import itemgetter
from pathlib import Path
from typing import Collection, List, Optional, Tuple
import numpy as np
import pandas as pd
import spacy
from injector import ClassAssistedBuilder, inject, Module, provider, singleton
from sklearn.feature_extraction.text import TfidfVectorizer
from spacy.cli import download
from tqdm import tqdm
from .data_loader import DataLoader
class Label(Enum):
RELIABLE = 0
UNRELIABLE = 1
@dataclass
class News:
text: Optional[str]
label: Label
@inject
@dataclass
class _SignalMediaDataLoader(DataLoader):
"""
INCOMPLETE BECAUSE MAPPING THE SOURCE NAMES TO DOMAIN NAMES IS TRICKY.
See https://github.com/aldengolab/fake-news-detection/issues/4
Following logic of https://github.com/aldengolab/fake-news-detection.
Requires the Signal Media dataset from http://research.signalmedia.co/newsir16/signal-dataset.html to be at
simulation/training_data/news/sample-1M.jsonl
and https://github.com/OpenSourcesGroup/opensources with sources.json in simulation/training_data/news/
"""
_logger: Logger
_media_types = {'News'}
def classifications(self) -> List[str]:
raise NotImplementedError
def find_source_site(self, source_name: str, sources: Collection[str]) -> Optional[str]:
"""
:param source_name: The name of the source.
:param sources: Source domain names.
:return: The source domain name from `sources` or `None` if no mapping can be found.
"""
# TODO
result = None
return result
def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple):
data_folder_path = os.path.join(__file__, '../../../../training_data/news')
signal_data_path = os.path.join(data_folder_path, 'sample-1M.jsonl')
if not os.path.exists(signal_data_path):
raise Exception(f"Could not find the Signal Media dataset at \"{signal_data_path}\"."
"\nYou must obtain it from http://research.signalmedia.co/newsir16/signal-dataset.html"
f" and follow the instructions to obtain it. Then extract it to \"{signal_data_path}\".")
sources_path = os.path.join(data_folder_path, 'sources.json')
if not os.path.exists(sources_path):
raise Exception(f"Could not find the sources dataset at \"{sources_path}\"."
"\nYou must obtain it from https://github.com/OpenSourcesGroup/opensources and put"
f" sources.json in \"{data_folder_path}\".")
with open(sources_path) as f:
loaded_sources = json.load(f)
sources = dict()
for source, info in loaded_sources.items():
problem_types = (info['type'], info['2nd type'], info['3rd type'])
sources[source] = set(filter(None, problem_types))
self._logger.info("Found %d sources with labels.", len(sources))
# Name: website name in `sources`.
source_mapping = {}
not_found_flag = -1
with open(signal_data_path) as f:
for index, line in tqdm(enumerate(f),
desc="Filtering news articles",
unit_scale=True, mininterval=2, unit=" articles"
):
news = json.loads(line)
news_id = news['id']
title = news['title']
text = news['content']
source = news['source']
# media-type is either "News" or "Blog"
media_type = news['media-type']
published_date = news['published']
if media_type not in self._media_types:
continue
source_site = source_mapping.get(source)
if source_site is None:
source_site = self.find_source_site(source, sources)
if source_site is not None:
source_mapping[source] = source_site
else:
source_mapping[source] = not_found_flag
continue
elif source_site == not_found_flag:
continue
# TODO Use article and set label.
with open(os.path.join(data_folder_path, 'source_mapping.json')) as f:
sorted(source_mapping.items(), key=itemgetter(0))
self._logger.info("Found %d sources in the articles.", len(source_mapping))
# TODO Set up output.
(x_train, y_train), (x_test, y_test) = (None, None), (None, None)
if train_size is not None:
x_train, y_train = x_train[:train_size], y_train[:train_size]
if test_size is not None:
x_test, y_test = x_test[:test_size], y_test[:test_size]
self._logger.info("Done loading news data.")
return (x_train, y_train), (x_test, y_test)
@inject
@dataclass
class NewsDataLoader(DataLoader):
"""
Load data from news sources.
Requires data from https://www.kaggle.com/c/fake-news/data to be saved to "simulation/trainin_data/news/fake-news/train.csv".
"""
_logger: Logger
_train_split = 0.7
_replace_entities_enabled = False
"""
If True, entities will be replaced in text with the entity's label surrounded by angle brackets: "<LABEL>".
Accuracy with replacement: 0.9172
Accuracy without replacement: 0.9173
Disabled because using spaCy is slow, it will be tricky to use spaCy in JavaScript,
and it didn't change the evaluation metrics much.
"""
_entity_types_to_replace = {'PERSON', 'GPE', 'ORG', 'DATE', 'TIME', 'PERCENT',
'MONEY', 'QUANTITY', 'ORDINAL', 'CARDINAL'}
def classifications(self) -> List[str]:
return ["RELIABLE", "UNRELIABLE"]
def __post_init__(self):
spacy_model = 'en_core_web_lg'
download(spacy_model)
self._nlp = spacy.load(spacy_model, disable={'tagger', 'parser', 'textcat'})
def _load_kaggle_data(self, data_folder_path: str) -> Collection[News]:
"""
Load data from https://www.kaggle.com/c/fake-news/data.
"""
# Don't use the test data because it has no labels.
fake_news_data_path = os.path.join(data_folder_path, 'fake-news', 'train.csv')
if not os.path.exists(fake_news_data_path):
raise Exception(f"Could not find the Fake News dataset at \"{fake_news_data_path}\"."
"\nYou must obtain it from https://www.kaggle.com/c/fake-news/data.")
data = pd.read_csv(fake_news_data_path, na_values=dict(text=[]), keep_default_na=False)
result = []
for row in data.itertuples():
label = Label.RELIABLE if row.label == 0 else Label.UNRELIABLE
if len(row.text) > 0:
result.append(News(row.text, label))
# Consistent shuffle to aim for a mostly even distribution of labels.
random.shuffle(result, lambda: 0.618)
return result
def _replace_entities(self, doc) -> str:
# Remove names in text using spaCy.
result = doc.text
for ent in doc.ents[::-1]:
if ent.label_ in self._entity_types_to_replace:
result = result[:ent.start_char] + "<" + ent.label_ + ">" + result[ent.end_char:]
return result
def _pre_process_text(self, doc) -> str:
# TODO Remove name of news sources.
if self._replace_entities_enabled:
result = self._replace_entities(doc)
else:
assert isinstance(doc, str)
result = doc
return result
def _pre_process(self, news_articles: Collection[News], train_size: int, test_size: int) -> \
Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]:
self._logger.info("Getting features for %d articles.", len(news_articles))
# Only use binary features.
ngram_range = (2, 2)
# Don't use IDF because we need integer features.
t = TfidfVectorizer(max_features=1000, ngram_range=ngram_range, norm=None, use_idf=False)
test_start = len(news_articles) - test_size
x_train = map(lambda news: news.text, itertools.islice(news_articles, train_size))
x_test = map(lambda news: news.text, itertools.islice(news_articles, test_start, len(news_articles)))
if self._replace_entities_enabled:
self._logger.debug("Will replace entities.")
x_train = self._nlp.pipe(x_train, batch_size=128)
x_test = self._nlp.pipe(x_test, batch_size=128)
else:
self._logger.debug("Replacing entities is disabled.")
x_train = map(self._pre_process_text, x_train)
x_test = map(self._pre_process_text, x_test)
x_train = t.fit_transform(tqdm(x_train,
desc="Processing training data",
total=train_size,
unit_scale=True, mininterval=2,
unit=" articles"
)).toarray()
x_test = t.transform(tqdm(x_test,
desc="Processing testing data",
total=test_size,
unit_scale=True, mininterval=2,
unit=" articles"
)).toarray()
y_train = np.array([news.label.value for news in itertools.islice(news_articles, train_size)], np.int8)
y_test = np.array([news.label.value for news in itertools.islice(news_articles,
test_start, len(news_articles))], np.int8)
self._logger.debug("Training labels: %s", Counter(y_train))
self._logger.debug("Test labels: %s", Counter(y_test))
self._logger.info("Done getting features.")
return (x_train, y_train), (x_test, y_test)
def load_data(self, train_size: int = None, test_size: int = None) -> \
Tuple[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray]]:
self._logger.info("Loading news data.")
data_folder_path = os.path.join(__file__, '../../../../training_data/news')
# Look for cached data.
file_identifier = f'news-data-{train_size}-{test_size}-replace_ents_{self._replace_entities_enabled}.npy'
base_path = Path(os.path.dirname(__file__)) / 'cached_data'
os.makedirs(base_path, exist_ok=True)
cache_paths = {
'x_train': base_path / f'x_train-{file_identifier}',
'y_train': base_path / f'y_train-{file_identifier}',
'x_test': base_path / f'x_test-{file_identifier}',
'y_test': base_path / f'y_test-{file_identifier}'
}
# Use if modified in the last day.
if all([p.exists() for p in cache_paths.values()]) and \
all([time.time() - p.stat().st_mtime < 60 * 60 * 24 for p in cache_paths.values()]):
self._logger.info("Loaded cached News data from %s.", cache_paths)
return (np.load(cache_paths['x_train']), np.load(cache_paths['y_train'])), \
(np.load(cache_paths['x_test']), np.load(cache_paths['y_test']))
data = self._load_kaggle_data(data_folder_path)
# Separate train and test data.
if train_size is None:
if test_size is None:
train_size = int(self._train_split * len(data))
else:
train_size = len(data) - test_size
if test_size is None:
test_size = len(data) - train_size
if train_size + test_size > len(data):
raise Exception("There is not enough data for the requested sizes."
f"\n data size: {len(data)}"
f"\n train size: {train_size}"
f"\n test size: {test_size}")
(x_train, y_train), (x_test, y_test) = self._pre_process(data, train_size, test_size)
np.save(cache_paths['x_train'], x_train, allow_pickle=False)
np.save(cache_paths['y_train'], y_train, allow_pickle=False)
np.save(cache_paths['x_test'], x_test, allow_pickle=False)
np.save(cache_paths['y_test'], y_test, allow_pickle=False)
self._logger.info("Done loading news data.")
return (x_train, y_train), (x_test, y_test)
@dataclass
class NewsDataModule(Module):
@provider
@singleton
def provide_data_loader(self, builder: ClassAssistedBuilder[NewsDataLoader]) -> DataLoader:
return builder.build()
|
from dataclasses import dataclass
from logging import Logger
from typing import List
import numpy as np
from injector import Binder, inject, Module
from decai.simulation.data.data_loader import DataLoader
@inject
@dataclass
class SimpleDataLoader(DataLoader):
"""
Load simple data for testing.
"""
_logger: Logger
def classifications(self) -> List[str]:
return ["0", "1"]
def load_data(self, train_size: int = None, test_size: int = None) -> (tuple, tuple):
def _ground_truth(data):
if data[0] * data[2] > 0:
return 1
else:
return 0
x_train = np.array([
[0, 0, 0],
[1, 1, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[0, 0, 2],
[0, 2, 0],
[2, 0, 0],
[2, 0, 2],
[0, 0, -3],
[0, 3, 0],
[0, 3, -3],
[0, -3, 3],
[0, 0, 4],
[0, 4, 4],
[4, 0, 0],
[-6, 0, 0],
])
x_test = np.array([
[0, 2, 2],
[0, 1, -1],
[-1, 0, 0],
[0, -1, 0],
[1, -1, 2],
[0, 0, 3],
[0, -2, 0],
[0, 2, -2],
[3, 0, 0],
[-2, 0, 2],
[2, -2, 0],
])
if train_size is not None:
x_train = x_train[:train_size]
if test_size is not None:
x_test = x_test[:test_size]
y_train = [_ground_truth(x) for x in x_train]
y_test = [_ground_truth(x) for x in x_test]
return (x_train, y_train), (x_test, y_test)
class SimpleDataModule(Module):
"""
Set up a `DataLoader` mainly for testing.
"""
def configure(self, binder: Binder):
binder.bind(DataLoader, to=SimpleDataLoader)
|
import ast
import logging
import os
import re
import time
from collections import Counter
from dataclasses import dataclass, field
from logging import Logger
from pathlib import Path
from typing import List, Set, Tuple
import numpy as np
from injector import ClassAssistedBuilder, inject, Module, provider, singleton
from sklearn.utils import shuffle
from tqdm import tqdm
from .data_loader import DataLoader
@inject
@dataclass
class FitnessDataLoader(DataLoader):
"""
Load sport activity data from Endomondo.
Requires endomondoHR_proper.json from https://sites.google.com/eng.ucsd.edu/fitrec-project/home to be stored at simulation/training_data/fitness/endomondoHR_proper.json.
From the first 5K samples, the 2842 'bike' and 2158 'run' occurrences.
Some info from the fire 10K samples:
genders: 'male', 'unknown', 'female'
sports: 'bike', 'bike (transport)', 'run', 'kayaking', 'indoor cycling', 'mountain bike', 'orienteering',
'core stability training', 'walk', 'cross-country skiing', 'fitness walking', 'roller skiing'
"""
_logger: Logger
_seed: int = field(default=2, init=False)
_train_split: float = field(default=0.7, init=False)
_classes: Set[str] = field(default_factory=lambda: {'bike', 'run'}, init=False)
def classifications(self) -> List[str]:
return ["BIKING", "RUNNING"]
def load_data(self, train_size: int = None, test_size: int = None) -> (Tuple, Tuple):
self._logger.info("Loading Endomondo fitness data.")
# Look for cached data.
file_identifier = f'fitness-data-{train_size}-{test_size}.npy'
base_path = Path(os.path.dirname(__file__)) / 'cached_data'
os.makedirs(base_path, exist_ok=True)
cache_paths = {
'x_train': base_path / f'x_train-{file_identifier}',
'y_train': base_path / f'y_train-{file_identifier}',
'x_test': base_path / f'x_test-{file_identifier}',
'y_test': base_path / f'y_test-{file_identifier}'
}
# Use if modified in the last day.
if all([p.exists() for p in cache_paths.values()]) and \
all([time.time() - p.stat().st_mtime < 60 * 60 * 24 for p in cache_paths.values()]):
self._logger.info("Loaded cached Endomondo fitness data from %s.", cache_paths)
return (np.load(cache_paths['x_train']), np.load(cache_paths['y_train'])), \
(np.load(cache_paths['x_test']), np.load(cache_paths['y_test']))
data = []
labels = []
data_folder_path = Path(__file__, '../../../../training_data/fitness').resolve()
user_id_to_set = {}
sport_to_label = {
'bike': 0,
'run': 1
}
gender_to_index = {}
if train_size is not None and test_size is not None:
max_num_samples = train_size + test_size
else:
max_num_samples = 10_000
classes = '|'.join(self._classes)
classes_pattern = re.compile(f' \'sport\': \'({classes})\', ')
data_path = data_folder_path / 'endomondoHR_proper.json'
assert data_path.exists(), f"See the documentation for how to download the dataset. It must be stored at {data_path}"
with open(data_path) as f, \
tqdm(f,
desc="Loading data",
unit_scale=True, mininterval=2, unit=" samples",
total=max_num_samples,
) as pbar:
for line in f:
# TODO Keep users in train set mutually exclusive from users in test set.
# Check line before more expensive parsing.
if not classes_pattern.search(line):
continue
record = ast.literal_eval(line)
sport = record['sport']
if sport not in self._classes:
continue
if 'speed' not in record:
continue
label = sport_to_label[sport]
labels.append(label)
heart_rates = record['heart_rate']
gender = gender_to_index.setdefault(record['gender'], len(gender_to_index))
speeds = record['speed']
# Other fields:
# record['longitude']
# record['altitude']
# record['latitude']
# record['id']
# record['timestamp']
# record['userId']
data.append({
# Values to keep as they are:
'rawValues':
[
np.mean(heart_rates) / np.min(heart_rates),
np.median(heart_rates) / np.min(heart_rates),
np.max(speeds),
np.min(speeds),
np.mean(speeds),
np.median(speeds),
],
# Values that need to be converted:
'gender': gender,
})
pbar.update()
if len(data) >= max_num_samples:
break
if train_size is None:
if test_size is None:
train_size = int(self._train_split * len(data))
else:
train_size = len(data) - test_size
if test_size is None:
test_size = len(data) - train_size
# Thresholds for making sure features can be discretized for Naive Bayes.
# Just use training data to make thresholds.
thresholds = np.empty(len(data[0]['rawValues']), dtype=np.int32)
for i in range(len(data[0]['rawValues'])):
thresholds[i] = np.median([d['rawValues'][i] for d in data[:train_size]])
def _featurize(datum):
raw_values = np.array(thresholds < datum['rawValues'], dtype=np.int8)
gender_one_hot = np.zeros(len(gender_to_index), dtype=np.int8)
gender_one_hot[datum['gender']] = 1
return np.concatenate([raw_values, gender_one_hot])
if self._logger.isEnabledFor(logging.DEBUG):
self._logger.debug("Labels: %s", Counter(labels))
data, labels = shuffle(data, labels, random_state=self._seed)
x_train = np.array([_featurize(d) for d in data[:train_size]])
y_train = np.array(labels[:train_size])
x_test = np.array([_featurize(d) for d in data[-test_size:]])
y_test = np.array(labels[-test_size:])
np.save(cache_paths['x_train'], x_train, allow_pickle=False)
np.save(cache_paths['y_train'], y_train, allow_pickle=False)
np.save(cache_paths['x_test'], x_test, allow_pickle=False)
np.save(cache_paths['y_test'], y_test, allow_pickle=False)
self._logger.info("Done loading Endomondo fitness data.")
return (x_train, y_train), (x_test, y_test)
@dataclass
class FitnessDataModule(Module):
@provider
@singleton
def provide_data_loader(self, builder: ClassAssistedBuilder[FitnessDataLoader]) -> DataLoader:
return builder.build()
|
import html
import itertools
import os
from collections import Counter
from dataclasses import dataclass, field
from logging import Logger
from pathlib import Path
from typing import Dict, Iterator, List, Tuple
import numpy as np
import pandas as pd
import requests
from injector import ClassAssistedBuilder, Module, inject, provider, singleton
from scipy.sparse import csr_matrix
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.utils import shuffle
from tqdm import tqdm
from .data_loader import DataLoader
from .featuremapping.hashing.token_hash import TokenHash
@inject
@dataclass
class OffensiveDataLoader(DataLoader):
"""
Load offensive data from https://github.com/t-davidson/hate-speech-and-offensive-language.
"""
_logger: Logger
_token_hash: TokenHash
max_num_features: int
_seed: int = field(default=2, init=False)
_train_split: float = field(default=0.7, init=False)
_class_mapping = [
# Hate
0,
# Offensive
0,
# Neither (Safe)
1,
]
def classifications(self) -> List[str]:
return ["OFFENSIVE", "SAFE"]
def load_data(self, train_size: int = None, test_size: int = None) -> (Tuple, Tuple):
self._logger.info("Loading data.")
data_folder_path = Path(__file__,
'../../../../training_data/offensive/hate-speech-and-offensive-language').resolve()
if train_size is not None and test_size is not None:
max_num_samples = train_size + test_size
else:
max_num_samples = None
data_path = data_folder_path / 'labeled_data.csv'
if not data_path.exists():
data_url = 'https://github.com/t-davidson/hate-speech-and-offensive-language/raw/master/data/labeled_data.csv'
self._logger.info("Downloading data from \"%s\" to \"%s\".", data_url, data_path)
r = requests.get(data_url, allow_redirects=True)
r.raise_for_status()
os.makedirs(data_folder_path, exist_ok=True)
with open(data_path, 'wb') as f:
f.write(r.content)
loaded_data = pd.read_csv(data_path)
data = []
labels = []
class_index = list(loaded_data.columns).index('class') + 1
assert class_index > 0
for row in tqdm(loaded_data.itertuples(),
desc="Loading data",
unit_scale=True, mininterval=2, unit=" samples",
total=max_num_samples or len(loaded_data),
):
if max_num_samples is not None and len(data) > max_num_samples:
break
text = row.tweet
text = self._pre_process(text)
data.append(text)
labels.append(self._class_mapping[row[class_index]])
if train_size is None:
if test_size is None:
train_size = int(self._train_split * len(data))
else:
train_size = len(data) - test_size
if test_size is None:
test_size = len(data) - train_size
data, labels = shuffle(data, labels, random_state=self._seed)
x_train = itertools.islice(data, train_size)
# Compute the top features.
t = TfidfVectorizer(max_features=self.max_num_features, norm=None)
t.fit(tqdm(x_train,
desc="Computing top token features",
total=train_size,
unit_scale=True, mininterval=2,
unit=" texts"
))
top_tokens = t.get_feature_names()
self._logger.debug("Some top feature names: %s", top_tokens[:30])
tokenize = t.build_analyzer()
feature_tokens = set(t.get_feature_names())
def _featurize(text: str) -> Dict[int, int]:
result = Counter(tokenize(text))
return {self._token_hash.hash(token): count
for token, count in result.items()
if token in feature_tokens}
x_train = map(_featurize, itertools.islice(data, train_size))
x_train = self._build_sparse_matrix(x_train)
y_train = np.array(labels[:train_size])
x_test = map(_featurize, itertools.islice(data, len(data) - test_size, len(data)))
# TODO Might have to might sure it has the same number of columns as x_train.
x_test = self._build_sparse_matrix(x_test)
y_test = np.array(labels[-test_size:])
self._logger.info("Done loading data.")
return (x_train, y_train), (x_test, y_test)
def _pre_process(self, text: str) -> str:
""" Handle some simple pre-processing specific to this dataset. """
return html.unescape(text)
def _build_sparse_matrix(self, feature_mapped_data: Iterator[Dict[int, int]]):
# Make a sparse matrix following the term-document example from:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
data = []
indptr = [0]
indices = []
for feature_indices in feature_mapped_data:
if len(feature_indices) > 0:
i, d = zip(*feature_indices.items())
indices.extend(i)
data.extend(d)
indptr.append(len(indices))
return csr_matrix((data, indices, indptr), dtype=np.uint8)
@dataclass
class OffensiveDataModule(Module):
max_num_features: int = field(default=1000)
@provider
@singleton
def provide_data_loader(self, builder: ClassAssistedBuilder[OffensiveDataLoader]) -> DataLoader:
return builder.build(max_num_features=self.max_num_features)
|
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 67