python_code
stringlengths
0
34.9k
from abc import ABC, abstractmethod from typing import Optional, Dict, Any, List, Tuple, NamedTuple from dpu_utils.ptutils import BaseComponent from mlcomponents.embeddings import SequenceEmbedder class SeqDecoder(BaseComponent, ABC): def __init__(self, name: str, token_encoder: SequenceEmbedder, hyperparameters: Optional[Dict[str, Any]] = None ) -> None: super(SeqDecoder, self).__init__(name, hyperparameters) self.__target_token_encoder = token_encoder START = '[CLS]' END = '[SEP]' InputOutputSequence = NamedTuple('InputOutputSequence', [ ('input_sequence', List[str]), ('output_sequence', List[str]), ]) @property def target_token_encoder(self): return self.__target_token_encoder def _add_start_end(self, sequence: List[str]) -> List[str]: return [SeqDecoder.START] + sequence + [SeqDecoder.END] def _load_metadata_from_sample(self, data_to_load: 'SeqDecoder.InputOutputSequence') -> None: self.target_token_encoder.load_metadata_from_sample(self._add_start_end(data_to_load.output_sequence)) @abstractmethod def load_data_from_sample(self, data_to_load: 'SeqDecoder.InputOutputSequence') -> Any: pass def _reset_component_metrics(self) -> None: self._num_minibatches = 0 self._loss_sum = 0 def _component_metrics(self) -> Dict[str, float]: return { 'Total Decoder Loss': self._loss_sum / self._num_minibatches } @abstractmethod def compute_likelihood(self, *, memories, memories_lengths, initial_state, additional_decoder_input, return_debug_info: bool = False, **kwargs): pass @abstractmethod def greedy_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int = 40, additional_decoder_input = None) -> List[Tuple[List[List[str]], List[float]]]: pass @abstractmethod def beam_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int = 40, max_beam_size: int = 5, additional_decoder_input = None) -> List[Tuple[List[List[str]], List[float]]]: pass
from .seqdecoder import SeqDecoder from .grudecoder import GruDecoder from .grucopyingdecoder import GruCopyingDecoder from .luongattention import LuongAttention __all__ = [SeqDecoder, GruDecoder, GruCopyingDecoder, LuongAttention]
from typing import Optional, Dict, Any, NamedTuple, List, Tuple import numpy as np import torch from dpu_utils.mlutils import Vocabulary import torch from torch import nn from data.spanutils import get_copyable_spans from mlcomponents.embeddings import TokenSequenceEmbedder from mlcomponents.seqdecoding import SeqDecoder, LuongAttention BIG_NUMBER = 100 class GruSpanCopyingDecoder(SeqDecoder): def __init__(self, name: str, token_encoder: TokenSequenceEmbedder, standard_attention: Optional[LuongAttention]=None, copy_attention: Optional[LuongAttention]=None, hyperparameters: Optional[Dict[str, Any]]=None, include_summarizing_network: bool = True, pre_trained_gru: Optional[nn.GRU] = None ) -> None: super(GruSpanCopyingDecoder, self).__init__(name, token_encoder, hyperparameters) self.__output_gru = pre_trained_gru # type: Optional[nn.GRU] self.__standard_attention = standard_attention # type: Optional[LuongAttention] self.__copy_attention = copy_attention # type: Optional[LuongAttention] self.__dropout_layer = None # type: Optional[nn.Dropout] self.__include_summarizing_network = include_summarizing_network self.__summarization_layer = None self.reset_metrics() def _finalize_component_metadata_and_model(self) -> None: if self.__output_gru is None: self.__output_gru = nn.GRU( input_size=self.target_token_encoder.embedding_size + self.get_hyperparameter('additional_inputs_size'), hidden_size=self.get_hyperparameter('hidden_size'), num_layers=self.get_hyperparameter('num_layers'), batch_first=True ) else: # Make sure that GRU is compatible assert self.__output_gru.hidden_size == self.get_hyperparameter('hidden_size') assert self.__output_gru.num_layers == self.get_hyperparameter('num_layers') assert self.__output_gru.input_size == self.target_token_encoder.embedding_size + self.get_hyperparameter('additional_inputs_size') assert self.__output_gru.batch_first self.__dropout_layer = nn.Dropout(p=self.get_hyperparameter('dropout_rate')) if self.__include_summarizing_network: self.__summarization_layer = nn.Linear( self.get_hyperparameter('initial_state_size') + self.get_hyperparameter('additional_initial_state_inputs_size'), self.get_hyperparameter('hidden_size') * self.get_hyperparameter('num_layers'), bias=False ) else: assert self.get_hyperparameter('initial_state_size') + self.get_hyperparameter('additional_initial_state_inputs_size') ==\ self.get_hyperparameter('hidden_size') * self.get_hyperparameter('num_layers'), 'Initial states sizes do not match.' self.__hidden_to_output = nn.Parameter(torch.randn(self.get_hyperparameter('hidden_size'), self.target_token_encoder.embedding_size, dtype=torch.float, requires_grad=True)) k = 3 if self.get_hyperparameter('use_max_pool_span_repr') else 2 self.__hidden_to_end_span_query_vector = nn.Parameter( torch.randn(k*self.get_hyperparameter('memories_hidden_dimension'), self.get_hyperparameter('hidden_size'), dtype=torch.float, requires_grad=True)) self.__vocabulary_bias = nn.Parameter(torch.zeros(len(self.target_token_encoder.vocabulary), dtype=torch.float, requires_grad=True)) # A constant array with the relative span-lengths span_lengths = np.zeros((self.get_hyperparameter('max_memories_length'), self.get_hyperparameter('max_memories_length')), dtype=np.int32) for i in range(self.get_hyperparameter('max_memories_length')): for j in range(i, self.get_hyperparameter('max_memories_length')): span_lengths[i, j] = j - i + 1 self.__span_lengths = span_lengths @classmethod def default_hyperparameters(cls) -> Dict[str, Any]: return { 'dropout_rate': 0.2, 'hidden_size': 64, 'initial_state_size': 64, 'num_layers': 1, 'memories_hidden_dimension': 128, 'additional_initial_state_inputs_size': 0, 'additional_inputs_size': 0, 'max_memories_length': 25, # Ablations for the model 'use_max_pool_span_repr': False, # Default: False 'marginalize_over_copying_decisions': True, # Default: True 'teacher_force_longest': False # Default: False } TensorizedData = NamedTuple('GruSpanCopyingDecoderTensorizedData', [ ('output_sequence', Any), ('copy_spans', np.ndarray) ]) def load_data_from_sample(self, data_to_load: SeqDecoder.InputOutputSequence) -> Optional['GruSpanCopyingDecoder.TensorizedData']: max_seq_len = self.target_token_encoder.get_hyperparameter('max_seq_length') target_output_sequence = self._add_start_end(data_to_load.output_sequence)[:max_seq_len] copyable_spans = get_copyable_spans(data_to_load.input_sequence[:max_seq_len], target_output_sequence) if self.get_hyperparameter('teacher_force_longest'): teacher_forced_spans = np.zeros_like(copyable_spans) for k in range(copyable_spans.shape[0]): copyable_ranges = np.nonzero(copyable_spans[k]) if len(copyable_ranges[0]) == 0: continue max_i, max_j = max(zip(*copyable_ranges), key=lambda x: x[1]- x[0]) teacher_forced_spans[k, max_i, max_j] = True copyable_spans = teacher_forced_spans return self.TensorizedData( output_sequence=self.target_token_encoder.load_data_from_sample(target_output_sequence), copy_spans=copyable_spans ) def initialize_minibatch(self) -> Dict[str, Any]: return { 'output_sequences': self.target_token_encoder.initialize_minibatch(), 'copy_spans': [] } def extend_minibatch_by_sample(self, datapoint: 'GruSpanCopyingDecoder.TensorizedData', accumulated_minibatch_data: Dict[str, Any]) -> bool: continue_extending = self.target_token_encoder.extend_minibatch_by_sample( datapoint=datapoint.output_sequence, accumulated_minibatch_data=accumulated_minibatch_data['output_sequences']) accumulated_minibatch_data['copy_spans'].append(datapoint.copy_spans) return continue_extending def finalize_minibatch(self, accumulated_minibatch_data: Dict[str, Any]) -> Dict[str, Any]: accumulated_copy_spans = accumulated_minibatch_data['copy_spans'] max_out_length = min(self.target_token_encoder.get_hyperparameter('max_seq_length'), max(c.shape[0] for c in accumulated_copy_spans)) max_in_length = min(self.get_hyperparameter('max_memories_length'), max(c.shape[1] for c in accumulated_copy_spans)) padded_copy_spans = np.zeros((len(accumulated_copy_spans), max_out_length-1, max_in_length, max_in_length), dtype=np.bool) for i, copy_span in enumerate(accumulated_copy_spans): copy_spans = accumulated_copy_spans[i] out_seq_size = min(max_out_length, copy_spans.shape[0]) inp_seq_size = min(max_in_length, copy_spans.shape[1]) # Start from 1 because of <sos> padded_copy_spans[i, :out_seq_size-1, :inp_seq_size, :inp_seq_size] = copy_spans[1:out_seq_size, :inp_seq_size, :inp_seq_size] return { 'output_sequences': self.target_token_encoder.finalize_minibatch(accumulated_minibatch_data['output_sequences']), 'copyable_spans': torch.tensor(padded_copy_spans, dtype=torch.uint8, device=self.device) } def forward(self, *, memories, memories_lengths, initial_state, copyable_spans, output_sequences: Dict[str, Any], input_sequence_token_embeddings=None, additional_decoder_input=None, **kwargs): likelihood = self.compute_likelihood(memories=memories, memories_lengths=memories_lengths, initial_state=initial_state, copyable_spans=copyable_spans, output_sequences=output_sequences, input_sequence_token_embeddings=input_sequence_token_embeddings, additional_decoder_input=additional_decoder_input, normalize=True) loss = -likelihood.mean() with torch.no_grad(): self._num_minibatches += 1 self._loss_sum += float(loss) return loss def __get_output_logprobs(self, decoded_token_embeddings, state, memories, memory_lengths, additional_decoder_input=None): if additional_decoder_input is not None: tiled_inputs = additional_decoder_input.unsqueeze(1).repeat(1, decoded_token_embeddings.size(1), 1) # B x max-out-len-1 x D decoded_token_embeddings = torch.cat([decoded_token_embeddings, tiled_inputs], dim=-1) # B x max-out-len-1 x 2*D output_states, h_out = self.__output_gru.forward(decoded_token_embeddings, state) # B x max-out-len-1 x H output_states = output_states.contiguous() output_states_flat = self.__standard_attention.forward( memories=memories, memories_length=memory_lengths, lookup_vectors=output_states) # (B * max-out-len - 1) x H output_states_w_attention = output_states_flat.view(output_states.shape) output_logits = torch.einsum('blh,hd,vd->blv', output_states_w_attention, self.__hidden_to_output, self.target_token_encoder.embedding_matrix) + self.__vocabulary_bias.unsqueeze(0).unsqueeze(0) copy_output_states_flat = self.__copy_attention.forward( memories=memories, memories_length=memory_lengths, lookup_vectors=output_states) # (B * max_out_len - 1) x H, B x max_out_len - 1 x max_inp_len copy_output_states = copy_output_states_flat.view(output_states.shape) # B x (max_out_len - 1) x H memory_a = memories.unsqueeze(1).repeat_interleave(repeats=memories.shape[1], dim=1) # B x max-in-len x max-in-len x H memory_b = memories.unsqueeze(2).repeat_interleave(repeats=memories.shape[1], dim=2) # B x max-in-len x max-in-len x H all_memory_pairs = [memory_a, memory_b] if self.get_hyperparameter('use_max_pool_span_repr'): # An additional representation of the span by max pooling the encoder states. max_input_length = memories.shape[1] all_memories = memories.reshape((memories.shape[0], 1, 1, max_input_length, memories.shape[2])) # B x 1 x 1 x max-in-len x H all_memories = all_memories.repeat((1, max_input_length, max_input_length, 1, 1)) # B x max-in-len x max-in-len x max-in-len x H range = torch.arange(max_input_length, device=self.device) # valid_range_elements[i,j,k] = True if i <=j and i<=k<=j valid_range_elements = (range.reshape(-1, 1, 1) <= range.reshape(1, 1, -1)) & (range.reshape(1, 1, -1) <= range.reshape(1, -1, 1)) # max-in-len x max-in-len x max-in-len invalid_range_elements = ~valid_range_elements # max-in-len x max-in-len x max-in-len all_memories.masked_fill_(mask=invalid_range_elements.unsqueeze(0).unsqueeze(-1), value=0) span_representation2, _ = all_memories.max(dim=-2) # B x max-in-len x max-in-len x H all_memory_pairs.append(span_representation2) all_memory_pairs = torch.cat(all_memory_pairs, dim=-1) # B x max-in-len x max-in-len x 3H copy_span_logits = torch.einsum('bmnh,hd,bld->blmn', all_memory_pairs, self.__hidden_to_end_span_query_vector, copy_output_states) # Fill lower-triangular with -inf (end of span should not be before start) and removed padded memories length range = torch.arange(copy_span_logits.shape[-1], device=self.device) copy_span_logits.masked_fill_( mask= range.unsqueeze(-1).gt(range.unsqueeze(0)).unsqueeze(0).unsqueeze(0) | torch.arange(memories.shape[1], device=self.device).unsqueeze(0).ge(memory_lengths.unsqueeze(-1)).unsqueeze(1).unsqueeze(-1), # B x max_out_len - 1 x max_in_len x max_in_len value=float('-inf') ) all_action_logits = torch.cat([output_logits, copy_span_logits.flatten(-2)], dim=-1) # B x max_out_len-1 x V + max_in_len*max_in_len all_action_logprobs = nn.functional.log_softmax(all_action_logits, dim=-1) generation_logprobs = all_action_logprobs[:, :, :output_logits.shape[-1]] # B x max_out_len-1 x V copy_span_logprobs = all_action_logprobs[:, :, output_logits.shape[-1]:].reshape(copy_span_logits.shape) return generation_logprobs, copy_span_logprobs, h_out def compute_likelihood(self, *, memories, memories_lengths, initial_state, copyable_spans, output_sequences: Dict[str, Any], input_sequence_token_embeddings=None, data_as_demonstrator_rate: float=0, normalize: bool=False, additional_decoder_input=None, return_debug_info: bool = False): # copyable_spans: B x max_out_len-1 x max-inp-len x max-inp-len if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) initial_state = torch.reshape(initial_state, (memories.shape[0], self.get_hyperparameter('num_layers'), self.get_hyperparameter('hidden_size'))).transpose(0, 1).contiguous() # num_layers x B x H target_token_embeddings, sequence_lengths = self.target_token_encoder.forward(as_packed_sequence=False, **output_sequences) # B x max_len x D and B target_token_embeddings = target_token_embeddings[:, :-1] generation_logprobs, copy_span_logprobs, _ = self.__get_output_logprobs(target_token_embeddings, initial_state, memories, memories_lengths, additional_decoder_input=additional_decoder_input) target_generated_tokens = output_sequences['token_ids'][:, 1:] generation_logprobs_flat = generation_logprobs.flatten(0, 1) generation_target_logprob = generation_logprobs_flat[ torch.arange(generation_logprobs_flat.shape[0]), target_generated_tokens.flatten(0, 1) ].view(target_generated_tokens.shape) # B x max_out_len - 1 # Reward an UNK only when we cannot copy can_copy = torch.flatten(copyable_spans, start_dim=-2).max(dim=-1)[0] # B x max_out_len - 1 target_is_unk = target_generated_tokens.eq( self.target_token_encoder.vocabulary.get_id_or_unk(Vocabulary.get_unk())) generation_target_logprob.masked_fill_( mask=can_copy.bool() & target_is_unk, value=float('-inf') ) # Marginalize over all actions if self.get_hyperparameter('marginalize_over_copying_decisions'): logprob_at_position = torch.zeros_like(can_copy, dtype=torch.float32) # B x max_out_len-1 max_in_length = copy_span_logprobs.shape[-1] max_out_length = logprob_at_position.shape[1] for i in range(max_out_length-1, -1, -1): copy_end_idxs = torch.tensor(i + self.__span_lengths[:max_in_length, :max_in_length], dtype=torch.int64, device=self.device)\ .clamp(0, max_out_length-1)\ .expand(logprob_at_position.shape[0], -1, -1) # B x max_in_len x max_in_len # TODO: This is const[i], precompute instead of __span_legths generation_after_copy_logprob = logprob_at_position.gather(dim=1, index=copy_end_idxs.flatten(-2)).reshape(copy_end_idxs.shape) # B x max_in_len x max_in_len marginalized_at_pos_copy_logprobs = copy_span_logprobs[:, i] + generation_after_copy_logprob # Mask invalid copy actions marginalized_at_pos_copy_logprobs.masked_fill_(mask=(1 - copyable_spans[:, i]).bool(), value=float('-inf')) action_logprobs = torch.cat([ (generation_target_logprob[:, i] + (logprob_at_position[:, i+1] if i < max_out_length -1 else 0)).unsqueeze(-1), marginalized_at_pos_copy_logprobs.flatten(-2) ], dim=-1) # B x 1 + max_inp_len * max_inp_len length_mask = (i < sequence_lengths-1).float() # -1 accounts for the <s> symbol logprob_at_position = logprob_at_position.clone() # To allow for grad propagation logprob_at_position[:, i] = torch.logsumexp(action_logprobs, dim=-1).clamp(min=float('-inf'), max=0) * length_mask correct_seq_gen_logprob = logprob_at_position[:, 0] # B else: copy_target_logprobs = copy_span_logprobs.masked_fill(mask=(1 - copyable_spans).bool(), value=float('-inf')) # B x max_out_len-1 x max_in_len x max_in_len copy_target_logprobs = copy_target_logprobs.flatten(2).logsumexp(dim=-1) # B x max_out_len-1 correct_seq_gen_logprob = torch.logsumexp(torch.stack([generation_target_logprob, copy_target_logprobs], dim=-1), dim=-1) # B x max_out_len-1 correct_seq_gen_logprob = correct_seq_gen_logprob.sum(dim=-1) if normalize: correct_seq_gen_logprob = correct_seq_gen_logprob / (sequence_lengths-1).float() if return_debug_info: return correct_seq_gen_logprob, { 'generation_logprobs': generation_logprobs.cpu().numpy(), 'copy_span_logprobs': copy_span_logprobs.cpu().numpy(), 'vocabulary': self.target_token_encoder.vocabulary } return correct_seq_gen_logprob def greedy_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int = 50, additional_decoder_input=None) -> List[Tuple[List[str], float]]: vocabulary = self.target_token_encoder.vocabulary if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) initial_state = torch.reshape(initial_state, (initial_state.shape[0], self.get_hyperparameter('num_layers'), self.get_hyperparameter('hidden_size'))).transpose(0, 1).contiguous() # num_layers x B x H current_decoder_state = initial_state # num_layers x B x H batch_size = memories.shape[0] next_tokens = torch.tensor( [[vocabulary.get_id_or_unk(self.START)]] * batch_size, device=self.device) # B x 1 is_done = np.zeros(next_tokens.shape[0], dtype=np.bool) predicted_tokens = [] # type: List[List[str]] predicted_logprobs = [] # type: List[List[float]] remaining_copied_span = [[] for _ in range(batch_size)] # type: List[List[str]] actions_taken = [[] for _ in range(batch_size)] for i in range(max_length): if np.all(is_done): max_length = i break # Embed next_tokens target_token_embeddings, _ = self.target_token_encoder.forward( as_packed_sequence=False, token_ids=next_tokens, lengths=None) # B x 1 x D generation_logprobs, copy_span_logprobs, current_decoder_state = self.__get_output_logprobs( target_token_embeddings, current_decoder_state, memories, memory_lengths, additional_decoder_input=additional_decoder_input ) generation_logprobs, token_to_generate = generation_logprobs.squeeze(1).max(dim=-1) generation_logprobs = generation_logprobs.cpu().numpy() token_to_generate = token_to_generate.squeeze(-1).cpu().numpy() # B copy_span_logprobs = copy_span_logprobs.squeeze(1) # B x max-inp-len (span-start) x max-inp-len (span-end) copy_target_span_logprobs, copy_span_idxs = copy_span_logprobs.flatten(start_dim=1).max(dim=-1) copy_target_span_logprobs = copy_target_span_logprobs.cpu().numpy() should_copy_logprobs = copy_target_span_logprobs copy_span_idxs = copy_span_idxs.cpu().numpy() copy_span_start = copy_span_idxs // copy_span_logprobs.shape[-1] # B copy_span_end = copy_span_idxs % copy_span_logprobs.shape[-1] # B assert np.all(copy_span_start <= copy_span_end) predicted_tokens_for_this_step = [] # type: List[str] predicted_logprobs_for_this_step = [] # type: List[float] for j in range(batch_size): if len(remaining_copied_span[j]) > 0: # We still have a copied span, keep copying... predicted_tokens_for_this_step.append(remaining_copied_span[j][0]) remaining_copied_span[j] = remaining_copied_span[j][1:] predicted_logprobs_for_this_step.append(0) # We have already "paid" the loss for this copy, when we decided to copy the span. else: if should_copy_logprobs[j] >= generation_logprobs[j]: # We copy span_to_be_copied = memories_str_representations[j][copy_span_start[j]: copy_span_end[j]+1] predicted_tokens_for_this_step.append(span_to_be_copied[0]) remaining_copied_span[j] = span_to_be_copied[1:] predicted_logprobs_for_this_step.append(copy_target_span_logprobs[j]) actions_taken[j].append(f'Copy Span {span_to_be_copied}') else: # We generate a token target_token_idx = token_to_generate[j] target_token = vocabulary.get_name_for_id(target_token_idx) predicted_tokens_for_this_step.append(target_token) predicted_logprobs_for_this_step.append(generation_logprobs[j]) actions_taken[j].append(f'Generating Token {target_token}') if predicted_tokens_for_this_step[-1] == self.END: is_done[j] = True predicted_logprobs.append(predicted_logprobs_for_this_step) predicted_tokens.append(predicted_tokens_for_this_step) next_tokens = torch.tensor([[vocabulary.get_id_or_unk(t)] for t in predicted_tokens_for_this_step], device=self.device) # Finally, convert ids to to strings predictions = [] # type: List[Tuple[List[List[str]], List[float]]] for i in range(batch_size): tokens = [predicted_tokens[j][i] for j in range(max_length)] try: end_idx = tokens.index(self.END) except ValueError: end_idx = max_length tokens = tokens[:end_idx] logprob = sum(float(predicted_logprobs[j][i]) for j in range(min(end_idx+1, max_length))) predictions.append(([tokens], [logprob])) # print(tokens, logprob, actions_taken[i]) return predictions def beam_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int = 150, beam_size: int = 20, max_search_size: int = 50, additional_decoder_input=None) -> List[Tuple[List[List[str]], List[float]]]: vocabulary = self.target_token_encoder.vocabulary if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) initial_state = torch.reshape(initial_state, (memories.shape[0], self.get_hyperparameter('num_layers'), self.get_hyperparameter('hidden_size'))).transpose(0, 1).contiguous() # num_layers x B x H current_decoder_state = initial_state # num_layers x B x H batch_size = memories.shape[0] next_tokens = torch.tensor( [[vocabulary.get_id_or_unk(self.START)]] * batch_size, device=self.device).unsqueeze(-1) # B x beam_size=1 x 1 is_done = [np.zeros(1, dtype=np.bool) for _ in range(batch_size)] # B x current_beam_size predicted_tokens = [[[] for _ in range(beam_size)] for _ in range(batch_size)] # type: List[List[List[str]]] predicted_logprobs = [[0 for _ in range(beam_size)] for _ in range(batch_size)] # type: List[List[float]] remaining_copied_span = [[[] for _ in range(beam_size)] for _ in range(batch_size)] # type: List[List[List[str]]] actions_taken = [[[] for _ in range(beam_size)] for _ in range(batch_size)] # type: List[List[List[str]]] for i in range(max_length): if np.all(is_done): break current_beam_size = (next_tokens.shape[0] * next_tokens.shape[1]) // batch_size # Embed next_tokens target_token_embeddings, _ = self.target_token_encoder.forward( as_packed_sequence=False, token_ids=next_tokens.flatten(0, 1), lengths=None) # B * current_beam_size x 1 x D generation_logprobs, copy_span_logprobs, current_decoder_state = self.__get_output_logprobs( target_token_embeddings, current_decoder_state, memories=memories.unsqueeze(1).expand(-1, current_beam_size, -1, -1).flatten(0,1), memory_lengths=memory_lengths.unsqueeze(1).expand(-1, current_beam_size).flatten(0, 1), additional_decoder_input=additional_decoder_input.unsqueeze(1).expand(-1, current_beam_size, -1).flatten(0, 1) if additional_decoder_input is not None else None ) current_decoder_state = current_decoder_state.transpose(0, 1).reshape( batch_size, current_beam_size, self.get_hyperparameter('num_layers'), -1) # B x current_beam_size x num_layers x H generation_logprobs, token_to_generate = generation_logprobs.squeeze(1).topk(max_search_size, dim=-1) generation_logprobs = generation_logprobs.reshape(batch_size, current_beam_size, max_search_size).cpu().numpy() # B x current_beam_size x max_search_size token_to_generate = token_to_generate.squeeze(-1).reshape(batch_size, current_beam_size, max_search_size).cpu().numpy() # B x current_beam_size x max_search_size copy_span_logprobs = copy_span_logprobs.squeeze(1) # B*current_beam_size x max-inp-len (span-start) x max-inp-len (span-end) num_topk = min(max_search_size, copy_span_logprobs.shape[-1] * (copy_span_logprobs.shape[-1] - 1) // 2) copy_target_span_logprobs, copy_span_idxs = copy_span_logprobs.flatten(start_dim=1).topk(num_topk, dim=-1) copy_target_span_logprobs = copy_target_span_logprobs.reshape(batch_size, current_beam_size, num_topk).cpu().numpy() # B x current_beam_size x num_topk copy_span_idxs = copy_span_idxs.reshape(batch_size, current_beam_size, num_topk).cpu().numpy() copy_span_start = copy_span_idxs // copy_span_logprobs.shape[-1] # B x current_beam_size x max_search_size copy_span_end = copy_span_idxs % copy_span_logprobs.shape[-1] # B x current_beam_size x max_search_size assert np.all(copy_span_start <= copy_span_end) predicted_tokens_for_this_step = [] next_decoder_state = np.zeros((batch_size, beam_size) + current_decoder_state.shape[-2:], dtype=np.float) for j in range(batch_size): beam_predicted_tokens = [] beam_predicted_logprobs = [] beam_remaining_copied_spans = [] beam_is_done = [] beam_state_idx = [] beam_action_taken = [] for k in range(current_beam_size): if is_done[j][k]: beam_predicted_tokens.append(predicted_tokens[j][k]) beam_remaining_copied_spans.append([]) beam_predicted_logprobs.append(predicted_logprobs[j][k]) beam_is_done.append(True) beam_state_idx.append(k) beam_action_taken.append(actions_taken[j][k]) continue if len(remaining_copied_span[j][k]) > 0: # We still have a copied span, keep copying... the beam of suggestions makes no sense here. beam_predicted_tokens.append(predicted_tokens[j][k] + remaining_copied_span[j][k][:1]) beam_remaining_copied_spans.append(remaining_copied_span[j][k][1:]) beam_predicted_logprobs.append(predicted_logprobs[j][k]) # We have already "paid" the loss for this copy, when we decided to copy the span. beam_is_done.append(remaining_copied_span[j][k][0] == self.END) beam_state_idx.append(k) beam_action_taken.append(actions_taken[j][k]) else: for l in range(num_topk): # Option 1: We copy span_to_be_copied = memories_str_representations[j][copy_span_start[j, k, l]: copy_span_end[j, k, l] + 1] assert copy_span_start[j, k, l] < copy_span_end[j, k, l] + 1 assert len(span_to_be_copied) > 0 beam_predicted_tokens.append(predicted_tokens[j][k] + span_to_be_copied[:1]) beam_remaining_copied_spans.append(span_to_be_copied[1:]) beam_predicted_logprobs.append(predicted_logprobs[j][k] + copy_target_span_logprobs[j, k, l]) beam_is_done.append(span_to_be_copied[0]==self.END) beam_state_idx.append(k) beam_action_taken.append(actions_taken[j][k] + ['Copy Span ' + str(span_to_be_copied)]) # Option 2: We generate a token target_token_idx = token_to_generate[j, k, l] target_token = vocabulary.get_name_for_id(target_token_idx) # There are rare cases where an empty sequence is predicted. Explicitly add the END token in those cases. beam_predicted_tokens.append(predicted_tokens[j][k] + [target_token]) beam_is_done.append(target_token == self.END) beam_remaining_copied_spans.append([]) beam_predicted_logprobs.append(predicted_logprobs[j][k] + generation_logprobs[j, k, l]) beam_state_idx.append(k) beam_action_taken.append(actions_taken[j][k] + ['Generate ' + target_token]) # Merge identical beams idxs_for_next_beam = np.argsort(beam_predicted_logprobs)[::-1] # Descending order to_ignore = set() for k in idxs_for_next_beam: if k in to_ignore: continue for l in range(k+1, len(beam_predicted_tokens)): if beam_predicted_tokens[k] == beam_predicted_tokens[l] and len(beam_remaining_copied_spans[l]) == 0 and len(beam_remaining_copied_spans[k]) == 0: # l can and should be merged into k to_ignore.add(l) beam_predicted_logprobs[k] = min(0, np.logaddexp(beam_predicted_logprobs[k], beam_predicted_logprobs[l])) if len(beam_action_taken[l]) < len(beam_action_taken[k]): beam_action_taken[k] = beam_action_taken[l] # Now merge all the beams and pick the top beam_size elements idxs_for_next_beam = np.argsort(beam_predicted_logprobs)[::-1] idxs_for_next_beam = [idx for idx in idxs_for_next_beam if idx not in to_ignore][:beam_size] # Remove merged idxs if len(idxs_for_next_beam) < beam_size: # In some cases, we won't have enough elements to fill in the beam (due to merging). Fill them with dummy elements beam_predicted_logprobs.append(float('-inf')) idxs_for_next_beam = idxs_for_next_beam + [-1] * (beam_size - len(idxs_for_next_beam)) predicted_tokens[j] = [beam_predicted_tokens[k] for k in idxs_for_next_beam] predicted_logprobs[j] = [beam_predicted_logprobs[k] for k in idxs_for_next_beam] actions_taken[j] = [beam_action_taken[k] for k in idxs_for_next_beam] remaining_copied_span[j] = [beam_remaining_copied_spans[k] for k in idxs_for_next_beam] is_done[j] = np.array([beam_is_done[k] for k in idxs_for_next_beam], dtype=np.bool) predicted_tokens_for_this_step.append([beam_predicted_tokens[k][-1] for k in idxs_for_next_beam]) for k, idx in enumerate(idxs_for_next_beam): next_decoder_state[j, k] = current_decoder_state[j, beam_state_idx[idx]].cpu().numpy() next_tokens = torch.tensor([[vocabulary.get_id_or_unk(t) for t in r] for r in predicted_tokens_for_this_step], device=self.device).unsqueeze(-1) current_decoder_state = torch.tensor(next_decoder_state, device=self.device, dtype=torch.float32).flatten(0, 1).reshape( (self.get_hyperparameter('num_layers'), -1, self.get_hyperparameter('hidden_size')) ) # num_layers x B * beam_size x H # Probe for visualizing decoding for i in range(batch_size): print('\nInput: ', ' '.join(memories_str_representations[i])) for j in range(2): print(f'>Pred{j+1}', ' '.join(predicted_tokens[i][j]), predicted_logprobs[i][j], actions_taken[i][j]) return [([s[:-1] for s in predicted_tokens[i]], predicted_logprobs[i]) for i in range(batch_size)]
import heapq from collections import defaultdict from typing import Dict, Any, Optional, List, Tuple, NamedTuple import numpy as np import torch from dpu_utils.mlutils import Vocabulary from torch import nn from mlcomponents.embeddings import TokenSequenceEmbedder from . import SeqDecoder from .luongattention import LuongAttention LARGE_NUMBER = 5000 class GruCopyingDecoder(SeqDecoder): def __init__(self, name: str, token_encoder: TokenSequenceEmbedder, standard_attention: Optional[LuongAttention]=None, pre_trained_gru: Optional[nn.GRU] = None, hyperparameters: Optional[Dict[str, Any]]=None, include_summarizing_network: bool = True ) -> None: super(GruCopyingDecoder, self).__init__(name, token_encoder, hyperparameters) self.__output_gru = None # type: Optional[nn.GRU] self.__standard_attention = standard_attention # type: Optional[LuongAttention] self.__dropout_layer = None # type: Optional[nn.Dropout] self.__cross_entropy_loss = torch.nn.CrossEntropyLoss(reduce=False) self.__include_summarizing_network = include_summarizing_network self.__summarization_layer = None self.reset_metrics() def _finalize_component_metadata_and_model(self) -> None: if self.__output_gru is None: self.__output_gru = nn.GRU( input_size=self.target_token_encoder.embedding_size + self.get_hyperparameter('additional_inputs_size'), hidden_size=self.get_hyperparameter('hidden_size'), num_layers=self.get_hyperparameter('num_layers'), batch_first=True ) else: assert self.__output_gru.hidden_size == self.get_hyperparameter('hidden_size') assert self.__output_gru.num_layers == 1 assert self.__output_gru.input_size == self.target_token_encoder.embedding_size + self.get_hyperparameter('additional_inputs_size') assert self.__output_gru.batch_first self.__dropout_layer = nn.Dropout(p=self.get_hyperparameter('dropout_rate')) if self.__include_summarizing_network: self.__summarization_layer = nn.Linear( self.get_hyperparameter('initial_state_size') + self.get_hyperparameter('additional_initial_state_inputs_size'), self.get_hyperparameter('hidden_size') * self.get_hyperparameter('num_layers'), bias=False ) else: assert self.get_hyperparameter('initial_state_size') + self.get_hyperparameter('additional_initial_state_inputs_size') ==\ self.get_hyperparameter('hidden_size') * self.get_hyperparameter('num_layers'), 'Initial states sizes do not match.' self.__hidden_to_output = nn.Parameter(torch.randn(self.get_hyperparameter('hidden_size'), self.target_token_encoder.embedding_size, dtype=torch.float, requires_grad=True)*.1) self.__hidden_to_query_vector = nn.Parameter(torch.randn(self.get_hyperparameter('memories_hidden_dimension'), self.get_hyperparameter('hidden_size'), dtype=torch.float, requires_grad=True)*.1) self.__vocabulary_bias = nn.Parameter(torch.zeros(len(self.target_token_encoder.vocabulary), dtype=torch.float, requires_grad=True)) @classmethod def default_hyperparameters(cls) -> Dict[str, Any]: return { 'dropout_rate': 0.2, 'hidden_size': 64, 'num_layers': 1, 'initial_state_size': 64, 'memories_hidden_dimension': 128, 'additional_initial_state_inputs_size': 0, 'additional_inputs_size': 0, 'max_memories_length': 25, 'num_layers': 1, 'data_as_demonstrator_rate': 0. } TensorizedData = NamedTuple('GruCopyingDecoderTensorizedData', [ ('output_sequence', Any), ('copy_locations', np.ndarray) ]) def load_data_from_sample(self, data_to_load: SeqDecoder.InputOutputSequence) -> Optional['GruCopyingDecoder.TensorizedData']: return self.TensorizedData( output_sequence=self.target_token_encoder.load_data_from_sample(self._add_start_end(data_to_load.output_sequence)), copy_locations=self.__get_copy_locations(data_to_load.input_sequence, self._add_start_end(data_to_load.output_sequence)) ) def __get_copy_locations(self, input_sequence, output_sequence): max_in_length = min(len(input_sequence), self.get_hyperparameter('max_memories_length')) max_out_length = min(len(output_sequence), self.target_token_encoder.get_hyperparameter('max_seq_length')) copy_locations = np.zeros((max_out_length, max_in_length), dtype=np.bool) input_sequence_elements = np.array([input_sequence[:max_in_length]], dtype=np.object) # 1 x I output_sequence_elements = np.array([output_sequence[:max_out_length]], dtype=np.object).T # O x 1 copy_locations[:len(output_sequence), :len(input_sequence)] = input_sequence_elements == output_sequence_elements # O x I return copy_locations def initialize_minibatch(self) -> Dict[str, Any]: return { 'output_sequences': self.target_token_encoder.initialize_minibatch(), 'copy_locations': [] } def extend_minibatch_by_sample(self, datapoint: 'GruCopyingDecoder.TensorizedData', accumulated_minibatch_data: Dict[str, Any]) -> bool: continue_extending = self.target_token_encoder.extend_minibatch_by_sample( datapoint=datapoint.output_sequence, accumulated_minibatch_data=accumulated_minibatch_data['output_sequences']) accumulated_minibatch_data['copy_locations'].append(datapoint.copy_locations) return continue_extending def finalize_minibatch(self, accumulated_minibatch_data: Dict[str, Any]) -> Dict[str, Any]: accumulated_copy_locations = accumulated_minibatch_data['copy_locations'] max_in_length = max(t.shape[1] for t in accumulated_copy_locations) max_out_length = max(t.shape[0] for t in accumulated_copy_locations) batch_size = len(accumulated_copy_locations) copy_locations = np.zeros((batch_size, max_out_length, max_in_length), dtype=np.bool) for i in range(batch_size): locations_for_i = accumulated_copy_locations[i] copy_locations[i, :locations_for_i.shape[0], :locations_for_i.shape[1]] = locations_for_i return { 'output_sequences': self.target_token_encoder.finalize_minibatch(accumulated_minibatch_data['output_sequences']), 'copy_locations': torch.tensor(copy_locations, dtype=torch.int64, device=self.device) } def __get_output_logits(self, decoded_token_embeddings, state, memories, memory_lengths, sample_rate: float=0, input_sequence_token_embeddings=None, additional_rnn_input=None): if additional_rnn_input is not None: tiled_additional_decoder_input = additional_rnn_input.unsqueeze(1).repeat(1, decoded_token_embeddings.size(1), 1) # B x max-out-len-1 x D tiled_additional_decoder_input = torch.repeat_interleave(tiled_additional_decoder_input, int(decoded_token_embeddings.size( 0) / additional_rnn_input.size(0)), dim=0) # B*beam width x max-out-len-1 x D decoded_token_embeddings = torch.cat([decoded_token_embeddings, tiled_additional_decoder_input], dim=-1) if not self.training or sample_rate == 0 or input_sequence_token_embeddings is None: return self.__get_output_logits_xent(decoded_token_embeddings, state, memories, memory_lengths) else: if input_sequence_token_embeddings is None: raise Exception('The input sequence token embeddings cannot be None when using data-as-demonstrator.') return self.__get_output_logits_dad(decoded_token_embeddings, state, memories, memory_lengths, sample_rate, input_sequence_token_embeddings, additional_rnn_input) def __get_output_logits_xent(self, decoded_token_embeddings, state, memories, memory_lengths): """ :param decoded_token_embeddings: B x max-out-len x D :param state: B x D :param memories: B x max-in-len x H :param memory_lengths: B :return: output_logits: B x max-out-len x V, copy_logits B x max-out-len x max-in-len, h_out: num-layers x B x H """ output_states, h_out = self.__output_gru.forward(decoded_token_embeddings, state) # B x max-out-len-1 x H output_states = output_states.contiguous() if self.__standard_attention is not None: output_states_flat = self.__standard_attention.forward( memories=memories, memories_length=memory_lengths, lookup_vectors=output_states) # (B * max-out-len - 1) x H output_states = output_states_flat.view(output_states.shape) output_logits = torch.einsum('blh,hd,vd->blv', output_states, self.__hidden_to_output, self.target_token_encoder.embedding_matrix) + self.__vocabulary_bias.view(1, 1, -1) copy_logits = torch.einsum('bmh,hd,bld->blm', memories, self.__hidden_to_query_vector, output_states) copy_logits.masked_fill_(mask=torch.arange(memories.shape[1], device=self.device).view(1, 1, -1) >= memory_lengths.view(-1, 1, 1), value=float('-inf')) return output_logits, copy_logits, h_out def __get_output_logits_dad(self, decoded_token_embeddings, state, memories, memory_lengths, sample_rate: float, input_sequence_token_embeddings, rnn_additional_input): """ :param decoded_token_embeddings: B x max-out-len x D :param state: num_layers x B x D :param memories: B x max-in-len x H :param memory_lengths: B :return: output_logits: B x max-out-len x V, copy_logits B x max-out-len x max-in-len, h_out: num-layers x B x H """ output_logits = [] copy_logits = [] current_state = state # num_layers x B x D for i in range(decoded_token_embeddings.shape[1]): # Sample inputs use_base = np.random.random() > sample_rate if use_base or i == 0: inputs = decoded_token_embeddings[:, i] else: # Sample from previous decision last_prediction_logits = torch.cat([output_logits[-1], copy_logits[-1]], dim=-1) # B x V + max-len sampled_ids = torch.multinomial(nn.functional.softmax(last_prediction_logits, dim=-1), num_samples=1).squeeze(1) # B # To avoid constructing a large batched lookup table, do this separately. vocab_embeddings = self.target_token_encoder.embedding_matrix[ torch.min(sampled_ids, torch.ones_like(sampled_ids) * self.target_token_encoder.embedding_matrix.shape[0]-1)] copy_embeddings = input_sequence_token_embeddings[ torch.arange(sampled_ids.shape[0], device=self.device), torch.nn.functional.relu(sampled_ids-self.target_token_encoder.embedding_matrix.shape[0]) # Clamp to 0 ] inputs = torch.where((sampled_ids<self.target_token_encoder.embedding_matrix.shape[0]).view(-1, 1), vocab_embeddings, copy_embeddings) # B x D if rnn_additional_input is not None: inputs = torch.cat([inputs, rnn_additional_input], dim=-1) # Now run one step of GRU inputs = inputs.unsqueeze(1) # B x 1 x D output_states, h_out = self.__output_gru.forward(inputs, current_state) output_states = output_states.contiguous() if self.__standard_attention is not None: output_states_flat = self.__standard_attention.forward( memories=memories, memories_length=memory_lengths, lookup_vectors=output_states) # (B * 1) x H output_states = output_states_flat.view(output_states.shape) output_states = output_states.squeeze(1) # B x H next_output_logits = torch.einsum('bh,hd,vd->bv', output_states, self.__hidden_to_output, self.target_token_encoder.embedding_matrix) + self.__vocabulary_bias.view(1, -1) next_copy_logits = torch.einsum('bmh,hd,bd->bm', memories, self.__hidden_to_query_vector, output_states) next_copy_logits.masked_fill_(torch.arange(next_copy_logits.shape[1], device=self.device).view(1, -1) >= memory_lengths.view(-1, 1), float('-inf')) # Append logits output_logits.append(next_output_logits) copy_logits.append(next_copy_logits) current_state = h_out return torch.stack(output_logits, dim=1), torch.stack(copy_logits, dim=1), current_state def forward(self, *, memories, memories_lengths, initial_state, copy_locations, output_sequences: Dict[str, Any], input_sequence_token_embeddings=None, additional_decoder_input=None): likelihood = self.compute_likelihood(memories=memories, memories_lengths=memories_lengths, initial_state=initial_state, copy_locations=copy_locations, output_sequences=output_sequences, input_sequence_token_embeddings=input_sequence_token_embeddings, additional_decoder_input=additional_decoder_input, normalize=True) loss = -(likelihood).mean() with torch.no_grad(): self._num_minibatches += 1 self._loss_sum += float(loss) return loss def compute_likelihood(self, *, memories, memories_lengths, initial_state, copy_locations, output_sequences: Dict[str, Any], input_sequence_token_embeddings=None, normalize: bool=False, additional_decoder_input=None, return_debug_info: bool = False): # copy_locations: B x max-out-len x max-inp-len if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) initial_state = torch.reshape(initial_state, (initial_state.shape[0], self.get_hyperparameter('num_layers'), self.get_hyperparameter('hidden_size'))).transpose(0, 1).contiguous() # num_layers x B x H copy_locations = copy_locations[:, 1:, :memories.shape[1]] # The input might be truncated if all sequences are smaller. target_token_embeddings, sequence_lengths = self.target_token_encoder.forward(as_packed_sequence=False, **output_sequences) # B x max_len x D and B target_token_embeddings = target_token_embeddings[:, :-1] output_logits, copy_logits, _ = self.__get_output_logits(target_token_embeddings, initial_state, memories, memories_lengths, sample_rate=self.get_hyperparameter('data_as_demonstrator_rate') if self.training else 0, input_sequence_token_embeddings=input_sequence_token_embeddings, additional_rnn_input=additional_decoder_input ) # Merge the output and copy logits logits = torch.cat([output_logits, copy_logits], dim=-1) # B x max-out-len x V + max-in-len log_probs = nn.functional.log_softmax(logits, dim=-1) can_copy = copy_locations.max(dim=-1)[0].gt(0) # B x max-out-len target_generated_tokens = output_sequences['token_ids'][:, 1:].flatten(0, 1) target_is_unk = target_generated_tokens.eq(self.target_token_encoder.vocabulary.get_id_or_unk(Vocabulary.get_unk())) generation_logprobs = log_probs.flatten(0, 1)[torch.arange(target_generated_tokens.shape[0]), target_generated_tokens] generation_logprobs = generation_logprobs + (target_is_unk & can_copy.flatten(0, 1)).float() * -LARGE_NUMBER # B x max-out-len copy_logprobs = log_probs[:, :, -copy_logits.shape[-1]:] # B x max-out-len x max-in-len copy_logprobs = copy_logprobs + copy_locations.ne(1).float() * -LARGE_NUMBER copy_logprobs = copy_logprobs.logsumexp(dim=-1) # B x max-out-len mask = torch.arange(target_token_embeddings.shape[1], device=self.device).unsqueeze(0) < sequence_lengths.unsqueeze(-1)-1 # B x max-out-len - 1 full_logprob = torch.logsumexp(torch.stack([generation_logprobs, copy_logprobs.flatten(0, 1)], dim=-1), dim=-1) # B x max-out-len full_logprob = full_logprob.view(copy_logprobs.shape) * mask.float() if normalize: return full_logprob.sum(dim=-1) / (sequence_lengths-1).float() else: return full_logprob.sum(dim=-1) def greedy_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int=40, additional_decoder_input=None) -> List[Tuple[List[List[str]], List[float]]]: vocabulary = self.target_token_encoder.vocabulary if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) initial_state = torch.reshape(initial_state, (self.get_hyperparameter('num_layers'), -1, self.get_hyperparameter('hidden_size'))) # num_layers x B x H current_decoder_state = initial_state # num_layers x B x H next_token_sequences = torch.tensor( [[vocabulary.get_id_or_unk(self.START)]] * memories.shape[0], device=self.device) # B x 1 predicted_tokens = [] # List[List[str]] predicted_logprobs = [] # List[float] for i in range(max_length): # Embed next_token_sequences target_token_embeddings, _ = self.target_token_encoder.forward( as_packed_sequence=False, token_ids=next_token_sequences, lengths=None) # B x 1 x D output_logits, copy_logits, current_decoder_state = self.__get_output_logits( target_token_embeddings, current_decoder_state, memories, memory_lengths, additional_rnn_input=additional_decoder_input) logits = torch.cat([output_logits, copy_logits], dim=-1) # B x 1 x V + max-in-len log_probs = nn.functional.log_softmax(logits, dim=-1) copy_logprobs = log_probs[:, :, -copy_logits.shape[-1]:] log_probs = log_probs.cpu().numpy() copy_logprobs = copy_logprobs.cpu().numpy() output_logprobs = [] # type: List[Dict[str, float]] for j in range(logits.shape[0]): sample_logprobs = defaultdict(lambda :float('-inf')) for k in range(len(vocabulary)): sample_logprobs[vocabulary.get_name_for_id(k)] = log_probs[j, 0, k] output_logprobs.append(sample_logprobs) for j in range(logits.shape[0]): for k in range(memory_lengths[j]): target_word = memories_str_representations[j][k] output_logprobs[j][target_word] = np.logaddexp(output_logprobs[j][target_word], copy_logprobs[j, 0, k]) predicted_tokens_for_this_step = [] predicted_logprobs_for_this_step = [] for j in range(logits.shape[0]): best_word, best_logprob = None, float('-inf') for word, logprob in output_logprobs[j].items(): if best_logprob < logprob: best_logprob = logprob best_word = word assert best_word is not None predicted_tokens_for_this_step.append(best_word) predicted_logprobs_for_this_step.append(best_logprob) predicted_logprobs.append(predicted_logprobs_for_this_step) predicted_tokens.append(predicted_tokens_for_this_step) next_token_sequences = torch.tensor([[vocabulary.get_id_or_unk(t)] for t in predicted_tokens_for_this_step], device=self.device) return self.convert_ids_to_str(initial_state.shape[0], max_length, predicted_logprobs, predicted_tokens) def convert_ids_to_str(self, batch_size: int, max_length: int, predicted_logprobs, predicted_tokens): predictions = [] # type: List[Tuple[List[List[str]], List[float]]] for i in range(batch_size): tokens = [predicted_tokens[j][i] for j in range(max_length)] try: end_idx = tokens.index(self.END) except ValueError: end_idx = max_length tokens = tokens[:end_idx] logprob = sum(float(predicted_logprobs[j][i]) for j in range(min(end_idx, max_length))) predictions.append(([tokens], [logprob])) return predictions def beam_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int=150, max_beam_size: int=20, additional_decoder_input=None) -> List[Tuple[List[List[str]], List[float]]]: vocabulary = self.target_token_encoder.vocabulary if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) initial_state = torch.reshape(initial_state, (self.get_hyperparameter('num_layers'), -1, self.get_hyperparameter('hidden_size'))) # num_layers x B x H batch_size = memory_lengths.shape[0] current_decoder_state = initial_state # B*beam_size=1 x H frontier_tokens = torch.tensor( [[vocabulary.get_id_or_unk(self.START)]] * batch_size, device=self.device).unsqueeze(-1) # B x beam_size=1 x 1 sequence_logprobs = torch.zeros(frontier_tokens.shape[:2], dtype=torch.float, device=self.device) is_done = np.zeros(frontier_tokens.shape[:2], dtype=np.bool) predicted_tokens_beam = [[list() for _ in range(max_beam_size)] for _ in range(batch_size)] # type: List[List[List[str]]] for i in range(max_length): if np.all(is_done): break beam_size = frontier_tokens.shape[1] # Embed frontier_tokens target_token_embeddings, _ = self.target_token_encoder.forward( as_packed_sequence=False, token_ids=frontier_tokens.flatten(0, 1), lengths=None) # B*beam_size x 1 x D output_logits, copy_logits, current_decoder_state = self.__get_output_logits( target_token_embeddings, current_decoder_state, memories.unsqueeze(1).expand(-1, beam_size, -1, -1).flatten(0,1), memory_lengths.unsqueeze(1).expand(-1, beam_size).flatten(0,1), additional_rnn_input=additional_decoder_input) current_decoder_state = current_decoder_state.transpose(0, 1).contiguous() # B*beam_size x num_layers x H logits = torch.cat([output_logits, copy_logits], dim=-1) # B*beam_size x 1 x V + max-in-len log_probs = nn.functional.log_softmax(logits, dim=-1) copy_logprobs = log_probs[:, :, -copy_logits.shape[-1]:] log_probs = log_probs.cpu().numpy() copy_logprobs = copy_logprobs.cpu().numpy() next_sequence_logprobs = torch.zeros((batch_size, max_beam_size), dtype=torch.float, device=self.device) next_is_done = np.zeros((batch_size, max_beam_size), dtype=np.bool) next_frontier_tokens = torch.zeros((batch_size, max_beam_size), dtype=torch.int64, device=self.device) next_decoder_state = torch.zeros((batch_size * max_beam_size, self.get_hyperparameter('num_layers'), current_decoder_state.shape[-1]), dtype=torch.float, device=self.device) for batch_idx in range(batch_size): per_beam_logprobs = [] for beam_idx in range(beam_size): idx = batch_idx * frontier_tokens.shape[1] + beam_idx sample_logprobs = defaultdict(lambda: float('-inf')) for k in np.argsort(-log_probs[idx, 0, :len(vocabulary)])[:200]: # To speed things up use only top words sample_logprobs[vocabulary.id_to_token[k]] = log_probs[idx, 0, k] for k in range(memory_lengths[batch_idx]): target_word = memories_str_representations[batch_idx][k] if target_word in sample_logprobs: sample_logprobs[target_word] = np.logaddexp(sample_logprobs[target_word], copy_logprobs[idx, 0, k]) else: sample_logprobs[target_word] = copy_logprobs[idx, 0, k] per_beam_logprobs.append(sample_logprobs) # Pick next beam def all_elements(): for beam_idx in range(beam_size): if is_done[batch_idx][beam_idx]: yield beam_idx, None, True, sequence_logprobs[batch_idx, beam_idx] else: for word, word_logprob in per_beam_logprobs[beam_idx].items(): yield beam_idx, word, word == self.END, word_logprob + sequence_logprobs[batch_idx, beam_idx] top_elements = heapq.nlargest(n=max_beam_size, iterable=all_elements(), key=lambda x:x[-1]) old_beam = predicted_tokens_beam[batch_idx] new_beam = [list() for _ in range(max_beam_size)] for i, (beam_idx, word, beam_is_done, seq_logprob) in enumerate(top_elements): next_frontier_tokens[batch_idx, i] = vocabulary.get_id_or_unk(word) next_is_done[batch_idx, i] = beam_is_done next_sequence_logprobs[batch_idx, i] = float(seq_logprob) if beam_is_done: new_beam[i] = old_beam[beam_idx] else: new_beam[i] = old_beam[beam_idx] + [ word ] next_decoder_state[batch_idx * max_beam_size + i, :] = current_decoder_state[batch_idx * beam_size + beam_idx] predicted_tokens_beam[batch_idx] = new_beam # After we are done for all batches is_done = next_is_done sequence_logprobs = next_sequence_logprobs.cpu().numpy() frontier_tokens = next_frontier_tokens.unsqueeze(-1) current_decoder_state = next_decoder_state.transpose(0, 1).contiguous() return [(predicted_tokens_beam[i], sequence_logprobs[i]) for i in range(batch_size)]
from typing import Dict, Any, Optional, List, Tuple import torch from torch import nn from mlcomponents.embeddings import SequenceEmbedder from . import SeqDecoder from .luongattention import LuongAttention class GruDecoder(SeqDecoder): def __init__(self, name: str, token_encoder: SequenceEmbedder, standard_attention: Optional[LuongAttention]=None, hyperparameters: Optional[Dict[str, Any]]=None, pre_trained_gru: Optional[nn.GRU] = None, include_summarizing_network: bool = True ) -> None: super(GruDecoder, self).__init__(name, token_encoder, hyperparameters) self.__output_gru = pre_trained_gru # type: Optional[nn.GRU] self.__standard_attention = standard_attention # type: Optional[LuongAttention] self.__dropout_layer = None # type: Optional[nn.Dropout] self.__cross_entropy_loss = torch.nn.CrossEntropyLoss(reduce=False) self.__include_summarizing_network = include_summarizing_network self.__summarization_layer = None self.reset_metrics() @property def gru(self) -> nn.GRU: return self.__output_gru def _finalize_component_metadata_and_model(self) -> None: if self.__output_gru is None: self.__output_gru = nn.GRU( input_size=self.target_token_encoder.embedding_size + self.get_hyperparameter('additional_inputs_size'), hidden_size=self.get_hyperparameter('hidden_size'), batch_first=True ) else: # Make sure that GRU is compatible assert self.__output_gru.hidden_size == self.get_hyperparameter('hidden_size') assert self.__output_gru.num_layers == self.get_hyperparameter('num_layers') assert self.__output_gru.input_size == self.target_token_encoder.embedding_size + self.get_hyperparameter('additional_inputs_size') assert self.__output_gru.batch_first self.__dropout_layer = nn.Dropout(p=self.get_hyperparameter('dropout_rate')) if self.__include_summarizing_network: self.__summarization_layer = nn.Linear( self.get_hyperparameter('initial_state_size') + self.get_hyperparameter('additional_initial_state_inputs_size'), self.get_hyperparameter('hidden_size') ) else: assert self.get_hyperparameter('initial_state_size') + self.get_hyperparameter('additional_initial_state_inputs_size') ==\ self.get_hyperparameter('hidden_size'), 'Initial states sizes do not match.' self.__hidden_to_output = nn.Parameter(torch.randn(self.get_hyperparameter('hidden_size'), self.target_token_encoder.embedding_size, dtype=torch.float, requires_grad=True)) @classmethod def default_hyperparameters(cls) -> Dict[str, Any]: return { 'dropout_rate': 0.2, 'hidden_size': 64, 'initial_state_size': 64, 'additional_initial_state_inputs_size': 0, 'additional_inputs_size': 0 } def load_data_from_sample(self, data_to_load: SeqDecoder.InputOutputSequence) -> Optional[Any]: return self.target_token_encoder.load_data_from_sample(self._add_start_end(data_to_load.output_sequence)) def initialize_minibatch(self) -> Dict[str, Any]: return self.target_token_encoder.initialize_minibatch() def extend_minibatch_by_sample(self, datapoint: Any, accumulated_minibatch_data: Dict[str, Any]) -> bool: return self.target_token_encoder.extend_minibatch_by_sample( datapoint=datapoint, accumulated_minibatch_data=accumulated_minibatch_data) def finalize_minibatch(self, accumulated_minibatch_data: Dict[str, Any]) -> Dict[str, Any]: return {'output_sequences': self.target_token_encoder.finalize_minibatch(accumulated_minibatch_data)} def __get_output_logits(self, target_token_embeddings, state, memories, memory_lengths): """ :param target_token_embeddings: B x max-out-len x D :param state: B x D :param memories: B x max-in-len x H :param memory_lengths: B :return: output_logits: B x max-out-len x V, h_out: num-layers x B x H """ output_states, h_out = self.__output_gru.forward(target_token_embeddings, state.unsqueeze(0)) # B x max-out-len-1 x H if self.__standard_attention is not None: output_states_flat = self.__standard_attention.forward( memories=memories, memories_length=memory_lengths, lookup_vectors=output_states.contiguous()) # (B * max-out-len - 1) x H output_states = output_states_flat.view(output_states.shape) output_logits = torch.einsum('blh,hd,vd->blv', output_states, self.__hidden_to_output, self.target_token_encoder.embedding_matrix) return output_logits, h_out def forward(self, *, memories=None, memories_lengths=None, initial_state=None, output_sequences: Dict[str, Any]=None): target_token_embeddings, sequence_lengths = self.target_token_encoder.forward(as_packed_sequence=False, **output_sequences) # B x max_len x D and B if initial_state is None: initial_state = torch.zeros((sequence_lengths.shape[0], self.get_hyperparameter('hidden_size')), device=self.device) if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) target_token_embeddings = target_token_embeddings[:, :-1] output_logits, _ = self.__get_output_logits(target_token_embeddings, initial_state, memories, memories_lengths) loss = self.__cross_entropy_loss(input=output_logits.flatten(0,1), target=output_sequences['token_ids'][:, 1:].flatten(0, 1)) mask = torch.arange(target_token_embeddings.shape[1], device=self.device).unsqueeze(0) <= sequence_lengths.unsqueeze(-1) # B x max_len - 1 loss = loss.view(output_logits.shape[0], output_logits.shape[1]) * mask.float() loss = (loss.sum(dim=-1) / mask.sum(dim=-1).float()).mean() with torch.no_grad(): self._num_minibatches += 1 self._loss_sum += float(loss) return loss def compute_likelihood(self, *, memories, memories_lengths, initial_state, additional_decoder_input, **kwargs): raise NotImplemented() def greedy_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int=10) -> List[Tuple[List[List[str]], List[float]]]: vocabulary = self.target_token_encoder.vocabulary if self.__include_summarizing_network: initial_state = self.__summarization_layer(initial_state) current_decoder_state = initial_state # B x H next_token_sequences = torch.tensor( [[vocabulary.get_id_or_unk(self.START)]] * initial_state.shape[0], device=self.device) # B x 1 predicted_tokens = [] # List[torch.Tensor] predicted_logprobs = [] # List[float] for i in range(max_length): # Embed next_token_sequences target_token_embeddings, _ = self.target_token_encoder.forward( as_packed_sequence=False, token_ids=next_token_sequences, lengths=None) # B x 1 x D output_logits, current_decoder_state = self.__get_output_logits(target_token_embeddings, current_decoder_state, memories, memory_lengths) current_decoder_state = current_decoder_state.squeeze(0) output = nn.functional.log_softmax(output_logits, dim=-1) greedy_word_logprobs, next_tokens = output.max(dim=-1) predicted_logprobs.append(greedy_word_logprobs.squeeze(1)) predicted_tokens.append(next_tokens.squeeze(1)) next_token_sequences = next_tokens # Now convert sequences back to str predictions = [] # type: List[Tuple[List[str], float]] for i in range(initial_state.shape[0]): tokens = [vocabulary.get_name_for_id(int(predicted_tokens[j][i])) for j in range(max_length)] try: end_idx = tokens.index(self.END) except ValueError: end_idx = max_length tokens = tokens[:end_idx] logprob = sum(float(predicted_logprobs[j][i].cpu()) for j in range(min(end_idx, max_length))) predictions.append(([tokens], [logprob])) return predictions def beam_decode(self, memories, memory_lengths, initial_state, memories_str_representations: List[List[str]], max_length: int = 40, max_beam_size: int = 5) -> List[Tuple[List[List[str]], List[float]]]: raise NotImplementedError
from collections import Counter from difflib import SequenceMatcher from typing import List, NamedTuple, Set, Tuple, Dict class EditEvaluator: """Evaluate a (code) editing model.""" def __init__(self): self.__num_samples = 0 # type: int self.__sum_exact_matches = 0 # type: int # Does the model edit the correct span of the original (the concrete edit doesn't matter) self.__sum_prediction_similarity_to_target = 0 # type: float self.__span_precision_sum = 0.0 # type: float self.__span_recall_sum = 0.0 # type: float self.__span_f1_sum = 0.0 # type: float # Jaccard self.__sum_jaccard_similarity_of_tokens = 0. # type: float self.__sum_jaccard_similarity_of_added_tokens = 0. # type: float self.__sum_jaccard_similarity_of_deleted_tokens = 0. # type: float EditInformation = NamedTuple('EditInformation', [ ('added_tokens', Counter), ('deleted_tokens', Counter), ('edits', List[Tuple[int, int, Tuple]]), ('sequence_matcher', SequenceMatcher) ]) def __get_edit_information(self, before, after) -> 'EditEvaluator.EditInformation': seq_matcher = SequenceMatcher(None, before, after) added_tokens, deleted_tokens = Counter(), Counter() edited_spans_on_before = [] # type: List[Tuple[int, int, Tuple]] for tag, i1, i2, j1, j2 in seq_matcher.get_opcodes(): if tag == 'equal': continue deleted_tokens.update(before[i1:i2]) added_tokens.update(after[j1:j2]) edited_spans_on_before.append((i1, i2, tuple(after[j1:j2]))) return self.EditInformation(added_tokens, deleted_tokens, edited_spans_on_before, seq_matcher) def add_sample(self, original: List[str], gold_edited: List[str], predicted_edited: List[str]) -> None: """ :param original: The original input that is being edited :param gold_edit: The gold edited version of `original` :param predicted_edits: The predicted edited version of the original """ self.__num_samples += 1 if gold_edited == predicted_edited: self.__sum_exact_matches += 1 gold_edit_info = self.__get_edit_information(original, gold_edited) predicted_edit_info = self.__get_edit_information(original, predicted_edited) num_added_by_both_tokens = sum((gold_edit_info.added_tokens & predicted_edit_info.added_tokens).values()) num_deleted_by_both_tokens = sum((gold_edit_info.deleted_tokens & predicted_edit_info.deleted_tokens).values()) num_added_by_either_tokens = sum((gold_edit_info.added_tokens | predicted_edit_info.added_tokens).values()) num_deleted_by_either_tokens = sum((gold_edit_info.deleted_tokens | predicted_edit_info.deleted_tokens).values()) sample_jaccard = (num_added_by_both_tokens + num_deleted_by_both_tokens) / (num_added_by_either_tokens + num_deleted_by_either_tokens) self.__sum_jaccard_similarity_of_tokens += sample_jaccard if num_added_by_either_tokens > 0: self.__sum_jaccard_similarity_of_added_tokens += num_added_by_both_tokens / num_added_by_either_tokens else: self.__sum_jaccard_similarity_of_added_tokens += 1 if num_deleted_by_either_tokens > 0: self.__sum_jaccard_similarity_of_deleted_tokens += num_deleted_by_both_tokens / num_deleted_by_either_tokens else: self.__sum_jaccard_similarity_of_deleted_tokens += 1 # This counts how more similar the predicted is to the golden edited compared to the original, implicitly normalizing # for the similarity of the original->gold_edited # < 1 means that the prediction is worse than doing no edits # > 1 means that the prediction is better than doing a random edit. original_to_gold_ratio = gold_edit_info.sequence_matcher.ratio() predicted_to_gold_ratio = SequenceMatcher(None, predicted_edited, gold_edited).ratio() if original_to_gold_ratio > 0: self.__sum_prediction_similarity_to_target += predicted_to_gold_ratio / original_to_gold_ratio elif predicted_to_gold_ratio > 0: # This should be very rare. The whole original->gold changed completely. self.__sum_prediction_similarity_to_target += 1 else: self.__sum_prediction_similarity_to_target += 0 # How accurate are the edit locations? # We count the precision/recall in term of tokens in the original that are edited. Insertions (which do not # edit a range) are are considered to have a span of 1 in the original input. def find_overlap_on_original(start_pos: int, end_pos: int, edits: List[Tuple[int, int, Tuple]]) -> Tuple[int, int]: assert start_pos <= end_pos correctly_changed = 0 if start_pos == end_pos: for s, e, _ in edits: if s <= start_pos <= e: # Insertions at the correct positions count as correct return 1, 1 return 0, 1 # An insertion in the wrong place. for s, e, _ in edits: if s <= start_pos <= e or s <= end_pos <= e or (start_pos <= s and e <= end_pos): if s == e: # An insertion in [s,e) which overlaps with [start_pos, end_pos) correctly_changed += 1 else: correctly_changed += min(e, end_pos) - max(s, start_pos) return correctly_changed, end_pos - start_pos def compute_coverage(edits: List[Tuple[int, int, Tuple]], target_edits: List[Tuple[int, int, Tuple]]): sum_correct_changed, sum_total_changed = 0, 0 for predicted_edit_start, predicted_edit_end, _ in edits: cor, total = find_overlap_on_original(predicted_edit_start, predicted_edit_end, target_edits) sum_correct_changed += cor sum_total_changed += total if sum_correct_changed > 0: return sum_correct_changed / sum_total_changed else: return 0 precision = compute_coverage(predicted_edit_info.edits, gold_edit_info.edits) recall = compute_coverage(gold_edit_info.edits, predicted_edit_info.edits) self.__span_precision_sum += precision self.__span_recall_sum += recall if precision + recall > 0: self.__span_f1_sum += 2 * (precision * recall) / (precision + recall) else: self.__span_f1_sum += 0 def evaluation_statistics(self) -> Dict[str, float]: return { 'Exact Match': self.__sum_exact_matches / self.__num_samples, 'Jaccard Similarity of Edits': self.__sum_jaccard_similarity_of_tokens / self.__num_samples, 'Jaccard Similarity of Edits - Addition:': self.__sum_jaccard_similarity_of_added_tokens / self.__num_samples, 'Jaccard Similarity of Edit - Deletion': self.__sum_jaccard_similarity_of_deleted_tokens / self.__num_samples, 'Normalized Prediction Similarity to Target': self.__sum_prediction_similarity_to_target / self.__num_samples, 'Span Precision': self.__span_precision_sum / self.__num_samples, 'Span Recall': self.__span_recall_sum / self.__num_samples, 'Span F1': self.__span_f1_sum / self.__num_samples, } if __name__ == '__main__': evaluator = EditEvaluator() evaluator.add_sample(['a', 'b', 'd', 'e'], ['a', 'x', 'd', 'x', 'e'], ['a', 'b', 'd', 'x', 'e']) print(evaluator.evaluation_statistics())
from typing import Iterable, Callable from dpu_utils.utils import RichPath from data import fcedataloader as fcedataloader, codadataloader as codedataloader, \ wikieditsloader as wikiatomiceditsloader, paraphraseloader from data.edits import Edit from data.jsonldata import parse_jsonl_edit_data, parse_monolingual_edit_data, parse_monolingual_synthetic_edit_data from data.datautils import LazyDataIterable from data.m2loader import parse_m2_folder def load_data_by_type(path: RichPath, data_type: str, cleanup: bool=False, as_list: bool=True) -> Iterable[Edit]: def pkg(x: Callable): if as_list: return list(x()) else: return LazyDataIterable(x) if data_type == 'fce': return pkg(lambda: fcedataloader.load_data_from(path)) elif data_type == 'code': return pkg(lambda: codedataloader.load_data_from(path)) elif data_type == 'codecontext': # Returns List[EditContext] (includes one extra field) return pkg(lambda: codedataloader.load_data_with_context_from(path)) elif data_type == 'fixer': return pkg(lambda: codedataloader.load_fixer_data(path)) elif data_type == 'wikiatomicedits': return pkg(lambda: wikiatomiceditsloader.load_data_from(path, 4000000, remove_identical=cleanup)) elif data_type == 'wikiedits': return pkg(lambda: wikiatomiceditsloader.load_data_from(path, has_phrase=False, remove_identical=cleanup)) elif data_type == 'paraphrase': return pkg(lambda: paraphraseloader.load_data_from(path, remove_identical=cleanup)) elif data_type == 'jsonl': return pkg(lambda: parse_jsonl_edit_data(path)) elif data_type == 'm2': return pkg(lambda: parse_m2_folder(path)) elif data_type == 'monolingual': return pkg(lambda : parse_monolingual_edit_data(path)) elif data_type == 'monolingual-synth-edits': return pkg(lambda : parse_monolingual_synthetic_edit_data(path)) else: raise ValueError('Unrecognized data type %s' % data_type)
from typing import Iterator from dpu_utils.utils import RichPath from data.edits import Edit, EditContext, CONTEXT_SEPERATOR def load_data_from(file: RichPath) -> Iterator[Edit]: data = file.read_by_file_suffix() for line in data: yield Edit( input_sequence=line['PrevCodeChunkTokens'], output_sequence=line['UpdatedCodeChunkTokens'], provenance=line['Id'], edit_type='' ) def load_fixer_data(file: RichPath) -> Iterator[Edit]: for line in file.read_by_file_suffix(): yield Edit( input_sequence= line['PrevCodeChunkTokens'], output_sequence= line['UpdatedCodeChunkTokens'], provenance=line['Id'], edit_type=line['Id'].split('_')[0] ) def load_data_with_context_from(file: RichPath) -> Iterator[EditContext]: data = file.read_by_file_suffix() for line in data: try: if 'PrecedingContextTokens' in line: preceding_context_tokens = line['PrecedingContextTokens'] succeeding_context_tokens = line['SucceedingContextTokens'] else: preceding_context_tokens = line['PrecedingContext'] succeeding_context_tokens = line['SucceedingContext'] yield EditContext( input_sequence=line['PrevCodeChunkTokens'], output_sequence=line['UpdatedCodeChunkTokens'], context_sequence=preceding_context_tokens + [CONTEXT_SEPERATOR] + succeeding_context_tokens, provenance=line['Id'], edit_type='' ) except: pass
import logging from typing import Iterator, List, Tuple, NamedTuple from dpu_utils.utils import RichPath from data.edits import Edit def load_data_from(file: RichPath) -> Iterator[Edit]: num_excluded_samples = 0 with open(file.to_local_path().path) as f: for i, row in enumerate(f): edit_start_idx, edit_end_idx, source_words, target_words, error_type, sentence = row.split('\t') edit_start_idx, edit_end_idx = int(edit_start_idx), int(edit_end_idx) sentence = sentence.lower().split() source_words = source_words.lower().split() target_words = target_words.lower().split() assert sentence[edit_start_idx:edit_end_idx] == source_words output_sequence = sentence[:edit_start_idx] + target_words + sentence[edit_end_idx:] if sentence == output_sequence: num_excluded_samples += 1 continue if len(sentence) < 2 or len(output_sequence) < 2: num_excluded_samples += 1 continue yield Edit( input_sequence=sentence, output_sequence=output_sequence, edit_type=error_type, provenance=f'row{i}' ) logging.warning('Removed %s samples because before/after sentence was identical or too small.', num_excluded_samples)
#!/usr/bin/env python """ Usage: monolingualprocess.py bert-tokenize [options] INPUT_DATA OUTPUT_DATA_PATH monolingualprocess.py bert-tokenize multiple [options] INPUT_DATA_LIST OUTPUT_DATA_PATH Options: --azure-info=<path> Azure authentication information file (JSON). Used to load data from Azure storage. --vocab-size=<num> The vocabulary size. [default: 25000] --pct-bpe=<pct> Percent of the vocabulary size to be BPE. [default: 0.1] --bert-model=<model> Pretrained BERT model to use from pytorch-transformers. [default: bert-base-cased] -h --help Show this screen. --debug Enable debug routines. [default: False] """ import logging from itertools import chain from tqdm import tqdm from docopt import docopt from dpu_utils.utils import run_and_debug, RichPath def load_data(path: str): with open(path) as f: for line in f: yield line.strip() def run(arguments): if arguments['multiple']: all_data = [] for input_file in arguments['INPUT_DATA_LIST'].split(','): all_data.append(load_data(input_file)) data = chain(*all_data) else: in_data_path = arguments['INPUT_DATA'] data = load_data(in_data_path) out_data_path = RichPath.create(arguments['OUTPUT_DATA_PATH']) from pytorch_transformers import BertTokenizer tokenizer = BertTokenizer.from_pretrained(arguments['--bert-model']) logging.info('Converting data...') def bpe_convertor(): for line in tqdm(data): tokens = tokenizer.tokenize(line) if len(tokens) < 4: continue yield tokens out_data_path.save_as_compressed_file(bpe_convertor()) if __name__ == '__main__': args = docopt(__doc__) logging.basicConfig(level=logging.INFO, format='%(asctime)-15s %(name)-5s %(levelname)-8s %(message)s') run_and_debug(lambda: run(args), args.get('--debug', False))
import gzip import logging from typing import Optional, Iterator, List from dpu_utils.utils import RichPath from data.edits import Edit def clean_up_sentence(tokens: List[str]) -> List[str]: # Remove empty spaces return [t.strip() for t in tokens if len(t.strip()) > 0] def load_data_from(file: RichPath, max_size_to_load: Optional[int]=None, has_phrase: bool=True, remove_identical: bool=True) -> Iterator[Edit]: num_removed = 0 with gzip.open(file.to_local_path().path, 'rt') as f: for i, row in enumerate(f): if max_size_to_load is not None and i >= max_size_to_load: break if has_phrase: original_sentence, phrase, target_sentence = row.split('\t') else: original_sentence, target_sentence = row.split('\t')[:2] input_sentence = original_sentence.strip().lower().split() output_sentence =target_sentence.strip().lower().split() input_sentence = clean_up_sentence(input_sentence) output_sentence = clean_up_sentence(output_sentence) if remove_identical and input_sentence == output_sentence: num_removed += 1 continue yield Edit( input_sequence=input_sentence, output_sequence=output_sentence, edit_type='', provenance=str(i) ) if num_removed > 0: logging.info('Removed %s samples because they differed only in whitespace.', num_removed)
import json import os from typing import List, Callable, TypeVar, Generic, Optional import numpy as np from annoy import AnnoyIndex from sklearn.manifold import TSNE from data.representationviz import RepresentationsVisualizer T = TypeVar('T') class NLRepresentationsVisualizer(RepresentationsVisualizer): def __init__(self, labeler: Callable[[T], str]=None, colorer: Callable[[T], str]=None, distance_metric: str='euclidean'): super(NLRepresentationsVisualizer, self).__init__(labeler, colorer, distance_metric) def nearest_neighbors_to_html(self, datapoints: List[T], representations: np.ndarray, datapoint_to_html: Callable[[T], str], outfile: str, num_neighbors: int=2, num_items: Optional[int]=None, num_items_to_show: int=10000): import pystache assert len(datapoints) == representations.shape[0], 'Number of datapoints and representations do not match.' nns_viz_data = [] for i, nns, distances in self.compute_nearest_neighbors(datapoints, representations, num_neighbors, num_items): nns_viz_data.append({ 'num': i, 'diff': datapoint_to_html(datapoints[i]), 'nns': [dict(diff=datapoint_to_html(datapoints[nn]),dist=dist, nl=' '.join(datapoints[nn].nl_sequence), link=datapoints[nn].provenance) for nn, dist in zip(nns, distances)], 'nl': ' '.join(datapoints[i].nl_sequence), 'link': datapoints[i].provenance }) if i > num_items_to_show: break with open(os.path.join(os.path.dirname(__file__), 'nldiffviz.mustache')) as f: diff_template = pystache.parse(f.read()) renderer = pystache.Renderer() html = renderer.render(diff_template, dict(samples=nns_viz_data)) print('Writing output at %s' % outfile) with open(outfile, 'w', encoding='utf-8') as f: f.write(html)
import random from typing import Iterator, TypeVar, Iterable, Callable class LazyDataIterable(Iterable): def __init__(self, base_iterable_func: Callable[[], Iterator]): self.__base_iterable_func = base_iterable_func def __iter__(self): return self.__base_iterable_func()
""" Code from https://github.com/kilink/ghdiff """ import difflib import six import html def escape(text): return html.escape(text) def diff(a, b, n=4): if isinstance(a, six.string_types): a = a.splitlines() if isinstance(b, six.string_types): b = b.splitlines() return colorize(list(difflib.unified_diff(a, b, n=n))) def colorize(diff): return "\n".join(_colorize(diff)) def _colorize(diff): if isinstance(diff, six.string_types): lines = diff.splitlines() else: lines = diff lines.reverse() while lines and not lines[-1].startswith("@@"): lines.pop() if len(lines) > 0: lines.pop() # Remove top of hunk. Lines not meaningful for us. yield '<div class="diff">' while lines: line = lines.pop() klass = "" if line.startswith("@@"): klass = "control" elif line.startswith("-"): klass = "delete" if lines: _next = [] while lines and len(_next) < 2: _next.append(lines.pop()) if _next[0].startswith("+") and ( len(_next) == 1 or _next[1][0] not in ("+", "-")): aline, bline = _line_diff(line[1:], _next.pop(0)[1:]) yield '<div class="delete">-%s</div>' % (aline,) yield '<div class="insert">+%s</div>' % (bline,) if _next: lines.append(_next.pop()) continue lines.extend(reversed(_next)) elif line.startswith("+"): klass = "insert" yield '<div class="%s">%s</div>' % (klass, escape(line),) yield "</div>" def _line_diff(a, b): aline = [] bline = [] for tag, i1, i2, j1, j2 in difflib.SequenceMatcher(a=a, b=b).get_opcodes(): if tag == 'equal': aline.append(escape(a[i1:i2])) bline.append(escape(b[j1:j2])) continue aline.append('<span class="highlight">%s</span>' % (escape(a[i1:i2]),)) bline.append('<span class="highlight">%s</span>' % (escape(b[j1:j2]),)) return "".join(aline), "".join(bline)
from typing import Iterator, Dict, Union, List from collections import Counter import numpy as np from dpu_utils.utils import RichPath from data.edits import Edit, NLEdit def parse_jsonl_edit_data(path: RichPath) -> Iterator[Edit]: for line in path.read_as_jsonl(): yield Edit( input_sequence=line['input_sequence'], output_sequence=line['output_sequence'], provenance=line.get('provenance', ''), edit_type=line.get('edit_type', '') ) def parse_monolingual_edit_data(path: RichPath) -> Iterator[Edit]: for i, line in enumerate(path.read_as_jsonl()): yield Edit( input_sequence=None, output_sequence=line, provenance=f'L{i}', edit_type='' ) def make_random_edit(text: List[str], cache: List[str]) -> List[str]: rnd_num = np.random.rand() if rnd_num < 0.2: # no edit (20%) return text elif rnd_num < 0.4: # Delete random element (20%) num_deletions = np.random.random_integers(1, 2) deleted_text = list(text) for _ in range(num_deletions): rnd_pos = np.random.randint(len(deleted_text)) deletion_size = np.random.randint(1, 4-num_deletions) deleted_text = deleted_text[:rnd_pos] + deleted_text[rnd_pos+deletion_size:] return deleted_text elif rnd_num < 0.6: # Swap two consecutive words (20%) swapped_text = list(text) rnd_pos = np.random.randint(len(swapped_text)-1) swapped_text[rnd_pos], swapped_text[rnd_pos+1] = swapped_text[rnd_pos], swapped_text[rnd_pos+1] return swapped_text elif rnd_num < 0.8: # Swap with a word in the cache (20%) swapped_text = list(text) rnd_pos = np.random.randint(len(swapped_text)) num_swaps = np.random.randint(1, 3) for _ in range(num_swaps): rnd_pos = np.random.randint(len(swapped_text)) swapped_text[rnd_pos] = cache[np.random.randint(len(cache))] return swapped_text else: # Add random word (20%) rnd_pos = np.random.randint(0, len(text)) return text[:rnd_pos] + [cache[np.random.randint(len(cache))]] + text[rnd_pos:] def parse_monolingual_synthetic_edit_data(path: RichPath) -> Iterator[Edit]: word_cache = [] for i, line in enumerate(path.read_as_jsonl()): if len(line) < 3: continue word_cache.extend(line) yield Edit( input_sequence=make_random_edit(line, word_cache), output_sequence=line, provenance=f'L{i}', edit_type='' ) if np.random.rand() < .01: # Clean pseudo-cache np.random.shuffle(word_cache) word_cache = word_cache[:2000] def save_jsonl_edit_data(data: Iterator[Union[Edit, Dict]], path: RichPath) -> None: def to_dict(): for edit in data: if isinstance(edit, Edit): yield edit._asdict() elif isinstance(edit, dict): yield edit else: raise ValueError('Unrecognized input data') path.save_as_compressed_file(to_dict())
import difflib from enum import Enum from typing import NamedTuple, TypeVar, Optional, List, Dict import enum Edit = NamedTuple('Edit', [ ('input_sequence', List[str]), ('output_sequence', List[str]), ('provenance', str), ('edit_type', List[str]) ]) NLEdit = NamedTuple('NLEdit', [ ('input_sequence', List[str]), ('output_sequence', List[str]), ('nl_sequence', List[str]), ('provenance', str), ('edit_type', List[str]) ]) EditContext = NamedTuple('EditContext', [ ('input_sequence', List[str]), ('output_sequence', List[str]), ('context_sequence', List[str]), ('provenance', str), ('edit_type', List[str]) ]) # TODO: Make sure this doesn't get cut by BPE CONTEXT_SEPERATOR = '%CONTEXT_SEP%' @enum.unique class ChangeType(Enum): EQUAL = 0 INSERT = 1 REPLACE = 2 DELETE = 3 T = TypeVar('T') AlignedDiffRepresentation = NamedTuple('AlignedDiffRepresentation', [ ('change_type', List[ChangeType]), ('before_tokens', List[Optional[T]]), ('after_tokens', List[Optional[T]]) ]) def sequence_diff(before: List[T], after: List[T]) -> AlignedDiffRepresentation: """ Return a linearized sequence diff as explained in Yin et al. 2019 """ matcher = difflib.SequenceMatcher() before_tokens = [] # type: List[Optional[T]] after_tokens = [] # type: List[Optional[T]] change_types = [] # type: List[ChangeType] matcher.set_seqs(before, after) for tag, i1, i2, j1, j2 in matcher.get_opcodes(): if tag == 'equal': change_types.extend([ChangeType.EQUAL] * (i2 - i1)) before_tokens.extend(before[i1:i2]) after_tokens.extend(after[j1:j2]) elif tag == 'delete': change_types.extend([ChangeType.DELETE] * (i2 - i1)) before_tokens.extend(before[i1:i2]) after_tokens.extend([None] * (i2 - i1)) elif tag == 'insert': change_types.extend([ChangeType.INSERT] * (j2 - j1)) before_tokens.extend([None] * (j2 - j1)) after_tokens.extend(after[j1:j2]) elif tag == 'replace': largest_span_size = max(i2-i1, j2-j1) change_types.extend([ChangeType.REPLACE] * largest_span_size) before_tokens.extend(before[i1:i2] + [None] * (largest_span_size - (i2-i1))) after_tokens.extend(after[j1:j2] + [None] * (largest_span_size - (j2 - j1))) else: raise Exception('Unrecognized opcode %s' % tag) assert len(change_types) == len(before_tokens) == len(after_tokens) return AlignedDiffRepresentation(change_types, before_tokens, after_tokens)
import logging from typing import Optional, Iterator, List from dpu_utils.utils import RichPath from data.edits import Edit def clean_up_sentence(tokens: List[str]) -> List[str]: # Remove empty spaces return [t.strip() for t in tokens if len(t.strip()) > 0] def load_data_from(file: RichPath, max_size_to_load: Optional[int]=None, remove_identical: bool=True) -> Iterator[Edit]: num_removed = 0 with open(file.to_local_path().path, 'r') as f: for i, row in enumerate(f): if i == 0: continue # ignore header if max_size_to_load is not None and i >= max_size_to_load: break is_para, orig_id, target_id, original_sentence, target_sentence = row.split('\t') input_sentence = original_sentence.strip().lower().split() output_sentence = target_sentence.strip().lower().split() input_sentence = clean_up_sentence(input_sentence) output_sentence = clean_up_sentence(output_sentence) if remove_identical and input_sentence == output_sentence: num_removed += 1 continue yield Edit( input_sequence=input_sentence, output_sequence=output_sentence, edit_type=f'{is_para}', provenance=f'{i}:{orig_id}->{target_id}' ) if num_removed > 0: logging.info('Removed %s samples because they differed only in whitespace.', num_removed)
#!/usr/bin/env python """ Usage: convertcnndmgraphs.py INPUTS_JSONL SUMMARIES_JSONL OUTPUT_DATA_PATH Options: --azure-info=<path> Azure authentication information file (JSON). Used to load data from Azure storage. -h --help Show this screen. --debug Enable debug routines. [default: False] """ from typing import Iterator, Dict, Union from docopt import docopt from dpu_utils.utils import run_and_debug, RichPath from data.edits import Edit, NLEdit def parse_jsonl_edit_data(inputs_path: RichPath, target_path: RichPath) -> Iterator[Edit]: for i, (input_graph, target_sequence) in enumerate(zip(inputs_path.read_as_jsonl(), target_path.read_as_jsonl())): input_sequence = [input_graph['node_labels'][idx] for idx in input_graph['backbone_sequence']] yield Edit( input_sequence=input_sequence, output_sequence=target_sequence, provenance='L'+str(i), edit_type='' ) def run(arguments): azure_info_path = arguments.get('--azure-info', None) inputs_path = RichPath.create(arguments['INPUTS_JSONL'], azure_info_path) summaries_path = RichPath.create(arguments['SUMMARIES_JSONL'], azure_info_path) out_data_path = RichPath.create(arguments['OUTPUT_DATA_PATH'], azure_info_path) data = parse_jsonl_edit_data(inputs_path, summaries_path) def to_dict(): for edit in data: yield edit._asdict() out_data_path.save_as_compressed_file(to_dict()) if __name__ == '__main__': args = docopt(__doc__) run_and_debug(lambda: run(args), args.get('--debug', False))
from typing import List import numpy as np def get_copyable_spans(input: List[str], output: List[str]) -> np.ndarray: """ Return a 3D tensor copy_mask[k, i, j] that for a given location k shows the all the possible spans that can be copied. All valid start locations can be obtained at point k by diag(copy_masks[k]) All the possible end positions at position k, given a starting span i are given by copy_mask[k, i] """ copy_masks = np.zeros((len(output), len(input), len(input)), dtype=np.bool) # out-len x start_pos x end_pos for k in range(len(output)-1, -1, -1): for i in range(len(input)): if input[i] == output[k]: if k + 1 < len(output) and i + 1 < len(input): # Everything valid end point at k+1 is also valid here copy_masks[k, i] = copy_masks[k+1, i+1] copy_masks[k, i, i] = True return copy_masks
#!/usr/bin/env python """ Usage: paralleltoedit.py BEFORE AFTER OUTPUT_DATA_PATH Options: --azure-info=<path> Azure authentication information file (JSON). Used to load data from Azure storage. -h --help Show this screen. --debug Enable debug routines. [default: False] """ from typing import Iterator, Dict, Union from docopt import docopt from dpu_utils.utils import run_and_debug, RichPath from data.edits import Edit, NLEdit def parse_jsonl_edit_data(inputs_path: RichPath, target_path: RichPath) -> Iterator[Edit]: for i, (input_sequence, target_sequence) in enumerate(zip(inputs_path.read_as_text().splitlines(), target_path.read_as_text().splitlines())): yield Edit( input_sequence=input_sequence.strip().split(), output_sequence=target_sequence.strip().split(), provenance='L'+str(i), edit_type='' ) def run(arguments): azure_info_path = arguments.get('--azure-info', None) inputs_path = RichPath.create(arguments['BEFORE'], azure_info_path) summaries_path = RichPath.create(arguments['AFTER'], azure_info_path) out_data_path = RichPath.create(arguments['OUTPUT_DATA_PATH'], azure_info_path) data = parse_jsonl_edit_data(inputs_path, summaries_path) def to_dict(): for edit in data: yield edit._asdict() out_data_path.save_as_compressed_file(to_dict()) if __name__ == '__main__': args = docopt(__doc__) run_and_debug(lambda: run(args), args.get('--debug', False))
import json import os from typing import List, Callable, TypeVar, Generic, Optional import numpy as np from annoy import AnnoyIndex from sklearn.manifold import TSNE T = TypeVar('T') class RepresentationsVisualizer(Generic[T]): def __init__(self, labeler: Callable[[T], str], colorer: Callable[[T], str]=None, distance_metric: str='euclidean'): self.__labeler = labeler self.__colorer = colorer self.__distance_metric = distance_metric def print_nearest_neighbors(self, datapoints: List[T], representations: np.ndarray, num_neighbors: int=2, num_items: Optional[int]=None, datapoint_to_string: Optional[Callable[[T], str]]=None): assert len(datapoints) == representations.shape[0], 'Number of datapoints and representations do not match.' for i, nns, distances in self.compute_nearest_neighbors(datapoints, representations, num_neighbors, num_items): print('-------------------------------------------------------') print(f'Target: {datapoints[i] if datapoint_to_string is None else datapoint_to_string(datapoints[i])}') for j, (nn, dist) in enumerate(zip(nns, distances)): print(f'Neighbor {j+1} (distance={dist:.2f}) {datapoints[nn] if datapoint_to_string is None else datapoint_to_string(datapoints[nn])}') def nearest_neighbors_to_html(self, datapoints: List[T], representations: np.ndarray, datapoint_to_html: Callable[[T], str], outfile: str, num_neighbors: int=2, num_items: Optional[int]=None, num_items_to_show: int=10000): import pystache assert len(datapoints) == representations.shape[0], 'Number of datapoints and representations do not match.' nns_viz_data = [] for i, nns, distances in self.compute_nearest_neighbors(datapoints, representations, num_neighbors, num_items): nns_viz_data.append({ 'num': i, 'diff': datapoint_to_html(datapoints[i]), 'nns': [dict(diff=datapoint_to_html(datapoints[nn]),dist='%.3f' % dist) for nn, dist in zip(nns, distances)] }) if i > num_items_to_show: break with open(os.path.join(os.path.dirname(__file__), 'diffviz.mustache')) as f: diff_template = pystache.parse(f.read()) renderer = pystache.Renderer() html = renderer.render(diff_template, dict(samples=nns_viz_data)) print('Writing output at %s' % outfile) with open(outfile, 'w', encoding='utf-8') as f: f.write(html) @staticmethod def square_to_condensed(i, j, n): assert i != j, "no diagonal elements in condensed matrix" if i < j: i, j = j, i return int(n * j - j * (j + 1) / 2 + i - 1 - j) def compute_nearest_neighbors(self, datapoints, representations, num_neighbors: int, num_items: Optional[int]=None, distance_threshold: float=.6): index = AnnoyIndex(representations.shape[1], metric='angular') for i in range(len(datapoints)): index.add_item(i, representations[i]) index.build(50) # TODO: Fine tune this hyper print('Nearest neighbor index built.') num_items_shown = 0 for i, data in enumerate(datapoints): if num_items is not None and i > num_items: break nns, distances = index.get_nns_by_item(i, num_neighbors+1, include_distances=True) if nns[0] == i: distance_of_first = distances[1] else: distance_of_first = distances[0] if distance_of_first > distance_threshold: continue num_items_shown += 1 if nns[0] == i: yield i, nns[1:], distances[1:] else: yield i, nns, distances def save_tsne_as_json(self, datapoints, representations, save_file: str): emb_2d = TSNE(n_components=2, verbose=1, metric=self.__distance_metric).fit_transform(representations) out_dict = [] for i in range(len(datapoints)): out_dict.append( { 'xy': [float(emb_2d[i][0]), float(emb_2d[i][1])], 'before': datapoints[i]['input_sequence'], 'after': datapoints[i]['output_sequence'], 'label': self.__labeler(datapoints[i]), 'color': self.__colorer(datapoints[i]) if self.__colorer is not None else '' } ) with open(save_file, 'w') as f: json.dump(out_dict, f) def plot_tsne(self, datapoints, representations, save_file: Optional[str]=None): emb_2d = TSNE(n_components=2, verbose=1, metric=self.__distance_metric).fit_transform(representations) import matplotlib.pyplot as plt plt.figure(figsize=(20,20)) plt.scatter(emb_2d[:, 0], emb_2d[:, 1]) for i in range(len(datapoints)): plt.annotate(s=self.__labeler(datapoints[i]), xy=(emb_2d[i, 0], emb_2d[i, 1])) if save_file is None: plt.show() else: plt.savefig(save_file)
from typing import Iterator, List, Tuple from dpu_utils.utils import RichPath from data.edits import Edit def apply_edits(original_sentence: List[str], edits: List[Tuple[int, int, List[str]]]) -> List[str]: edited_sentence = [] last_edit_idx = 0 for from_idx, to_idx, edit in edits: edited_sentence += original_sentence[last_edit_idx:from_idx] + edit last_edit_idx = to_idx edited_sentence += original_sentence[last_edit_idx:] return edited_sentence def parse_m2_file(m2_file: RichPath) -> Iterator[Edit]: original_sentence = None edits = [] provenance = None annotator_id = None for i, line in enumerate(m2_file.read_as_text().splitlines()): line = line.strip() if len(line) == 0: continue if line.startswith('S'): if original_sentence is not None and len(edits) > 0: edited_sentence = apply_edits(original_sentence, edits) yield Edit(input_sequence=original_sentence, output_sequence=edited_sentence, provenance=provenance, edit_type='') original_sentence = line.split(' ')[1:] # Remove " S" edits = [] provenance = m2_file.path + 'L' + str(i) annotator_id = None elif line.startswith('A '): range, edit_type, replacement, _, _, next_annotator_id = line[2:].split('|||') if edit_type == 'noop': yield Edit(input_sequence=original_sentence, output_sequence=original_sentence, provenance=provenance, edit_type='') continue if annotator_id != next_annotator_id and annotator_id is not None: edited_sentence = apply_edits(original_sentence, edits) yield Edit(input_sequence=original_sentence, output_sequence=edited_sentence, provenance=provenance, edit_type='') edits = [] annotator_id = next_annotator_id start_idx, end_idx = range.split() start_idx, end_idx = int(start_idx), int(end_idx) replacement = replacement.split() if start_idx == end_idx and len(replacement) == 0: continue edits.append((start_idx, end_idx, replacement)) # Last edit. if original_sentence is not None: edited_sentence = apply_edits(original_sentence, edits) yield Edit(input_sequence=original_sentence, output_sequence=edited_sentence, provenance=provenance, edit_type='') def parse_m2_folder(folder: RichPath) -> Iterator[Edit]: for m2_file in folder.iterate_filtered_files_in_dir('*.m2'): yield from parse_m2_file(m2_file)
from typing import List import numpy as np from data.edits import Edit all_chars = [chr(65+i) for i in range(26)] + [chr(97+i) for i in range(26)] def create_random_sequences(min_size: int, max_size: int, num_sequences_per_size: int): for seq_size in range(min_size, max_size): all_input_seqs = set() while len(all_input_seqs) < num_sequences_per_size: sample = np.random.choice(all_chars, size=seq_size, replace=False) all_input_seqs.add(tuple(sample)) yield from all_input_seqs ##### Operations def add_char(input_sequence: List[str]) -> List[str]: pos = np.random.randint(len(input_sequence)+1) char = np.random.choice(all_chars) return input_sequence[:pos] + [char] + input_sequence[pos:] def remove_char(input_sequence: List[str]) -> List[str]: pos = np.random.randint(len(input_sequence)) return input_sequence[:pos] + input_sequence[pos+1:] def swap_char(input_sequence: List[str]) -> List[str]: pos = np.random.randint(len(input_sequence)) char = np.random.choice(all_chars) return input_sequence[:pos] + [char] + input_sequence[pos+1:] edit_choices = [add_char, remove_char, swap_char] def apply_random(input_sequence: List[str]) -> Edit: edit_op = np.random.choice(edit_choices) return Edit(input_sequence=input_sequence, output_sequence=edit_op(input_sequence), edit_type=edit_op.__name__, provenance='') def get_dataset(): input_sequences = (list(s) for s in create_random_sequences(3, 10, 5000)) all_edits = [apply_random(s) for s in input_sequences] return all_edits
from flask import Flask, render_template, request, make_response, g from redis import Redis import os import socket import random import json option_a = os.getenv('OPTION_A', "<option2>") option_b = os.getenv('OPTION_B', "<option1>") hostname = socket.gethostname() app = Flask(__name__) def get_redis(): if not hasattr(g, 'redis'): g.redis = Redis(host="redis", db=0, socket_timeout=5) return g.redis @app.route("/", methods=['POST','GET']) def hello(): voter_id = request.cookies.get('voter_id') if not voter_id: voter_id = hex(random.getrandbits(64))[2:-1] vote = None if request.method == 'POST': redis = get_redis() vote = request.form['vote'] data = json.dumps({'voter_id': voter_id, 'vote': vote}) redis.rpush('votes', data) resp = make_response(render_template( 'index.html', option_a=option_a, option_b=option_b, hostname=hostname, vote=vote, )) resp.set_cookie('voter_id', voter_id) return resp if __name__ == "__main__": app.run(host='0.0.0.0', port=80, debug=True, threaded=True)
plt.imshow(recognisedimage['original'], interpolation='nearest', cmap=plt.cm.Greys_r) plt.show() recognisedimage = min(trainimages[:x], key=lambda e: sum((e['singular']-testimage['singular'])**2)) from scipy import misc trainimages = [] for i in range(x): A = misc.imread(str(i) + '.png', flatten=True) B, c, D = np.linalg.svd(A, full_matrices=False) trainimages.append({'original': A, 'singular': c[:x]}) import numpy as np import matplotlib.pyplot as plt testimage = trainimages[x] import os os.chdir('data/images_part1')
import scipy import numpy as np import matplotlib.pyplot as plt from sklearn.externals._pilutil import imread import os os.chdir('data/images_part1') trainimage = [] for i in range(11): A = imread(str(i) + '.png', flatten = True) B, c, D = np.linalg.svd(A) trainimage.append({'original': A, 'singular': c[:10]}) testimage = trainimage[10] recognisedimage = min(trainimage[:10], key=lambda e: sum((e['singular']-testimage['singular'])**2)) plt.imshow(recognisedimage['original'], interpolation='nearest', cmap=plt.cm.Greys_r) plt.show()
from sklearn import tree from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns from sklearn.metrics import accuracy_score import os os.chdir("data") seed = 1234 #get data forestation= pd.read_csv('forestation.csv') forestation y= forestation[['Fire']] # predicting Risk categoricals = pd.get_dummies(forestation[['Fuel', 'Slopes', 'Access','SB','Drought']])#get dummies for categoricals X = pd.concat([categoricals], axis = 1) clf = RandomForestClassifier(random_state=seed, max_depth = 5) # maximum depth of 3, use seed for repeatability clf = clf.fit(X, y.values.ravel())# fit a model y_pred = clf.predict(X) accuracy = accuracy_score(y, y_pred, normalize=True) Fuel = 0 Slopes = 0 Access = 0 SB = 0 Drought = 1 print ('Accuracy: ', accuracy) print(clf.predict([[Fuel,Slopes,Access,SB,Drought]])) ##note - the print function below allows you to see the features as set out in the algorithm ##with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(X)
from pylab import * x = [1,2,3,4,5,6,7,8,9,10,11] y = [11,12,25,21,31,40,48,55,54,60,61] scatter (x,y) (m,c)=polyfit(x,y,1) print ("Slope(m),", m) print ("y-intercept (c),", c) yp=polyval([m,c],x) x2 = 12 y2 = m*x2 + c print ("Predicted value of y in month 12,", y2) plot(x2, y2, 'ro') plot(x,yp) grid (True) xlabel('x') ylabel('y') show()
from sklearn import tree from sklearn.tree import export_graphviz import matplotlib.pyplot as plt import matplotlib.image as mpimg import pandas as pd import graphviz import os os.chdir("data") seed = 1234 power_investment = pd.read_csv('powergen.csv') y= power_investment[['Profitable']] X = pd.get_dummies(power_investment[['Sector', 'Hemisphere', 'Value']]) clf = tree.DecisionTreeClassifier(max_depth=4, random_state=seed) clf = clf.fit(X, y) # Disable graphviz for non Windows environments export_graphviz(clf, out_file='tree.dot', feature_names=X.columns, class_names=['Yes', 'No'], filled=True) # Convert to png and show image #from subprocess import call #call(['dot', '-Tpng', 'tree.dot', '-o', 'tree.png', '-Gdpi=600']) #Show plot image = mpimg.imread('tree.png') plt.imshow(image) plt.show()
from sklearn import tree from sklearn.ensemble import RandomForestClassifier import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns from sklearn.metrics import accuracy_score import os os.chdir("data") seed = 1234 forestation= pd.read_csv('forestation_1.csv') forestation y= forestation[['Fire']] # predicting fire categoricals = pd.get_dummies(forestation[['Fuel', 'Slopes', 'Access','SB','Drought']]) X = pd.concat([categoricals], axis = 1) clf = RandomForestClassifier(random_state=seed) clf = clf.fit(X, y.values.ravel()) y_pred = clf.predict(X) def plot_feature_importance(importance,names,model_type): feature_importance = np.array(importance) feature_names = np.array(names) data={'feature_names':feature_names,'feature_importance':feature_importance} fi_df = pd.DataFrame(data) fi_df.sort_values(by=['feature_importance'], ascending=False,inplace=True) plt.figure(figsize=(10,8)) sns.barplot(x=fi_df['feature_importance'], y=fi_df['feature_names']) plt.title(model_type + 'FEATURE IMPORTANCE') plt.xlabel('FEATURE IMPORTANCE') plt.ylabel('FEATURE NAMES') plot_feature_importance(clf.feature_importances_,X.columns,'RANDOM FOREST ') plt.show()
import numpy as np import matplotlib.pyplot as plt from sklearn.externals._pilutil import imread import os os.chdir('data/images_part2') trainimage = [] for i in range(22): A = imread(str(i) + '.tif', flatten = True) B, c, D = np.linalg.svd(A) trainimage.append({'original': A, 'singular': c[:21]}) testimage = trainimage[21] recognisedimage = min(trainimage[:21], key=lambda e: sum((e['singular']-testimage['singular'])**2)) plt.imshow(recognisedimage['original'], interpolation='nearest', cmap=plt.cm.Greys_r) plt.show()
#!/usr/bin/python import tensorflow as tf hello = tf.constant('Hello, TensorFlow!') sess = tf.Session() print(sess.run(hello))
import csv import sys from math import sin, cos, sqrt, atan2, radians import datetime import time from azure.storage.blob import AppendBlobService # Configure account name with the Azure Storage Account Name and the account Key from Storage Explorer append_blob_service = AppendBlobService( account_name='storage_account_name', account_key='storage_account_key') # Reads the start and stop index passed in through SLURM start = int(sys.argv[1]) stop = int(sys.argv[2]) #Creates the blob for this batch. append_blob_service.create_blob('distances', str(start) + "-" + str(stop) + '.csv') #Logs the start time append_blob_service.append_blob_from_text('distances', 'log.txt', "Starting " + str(start) + "-" + str(stop) + ":" + datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') + "\n") LatLongDict = {} # radius of earth in miles R = 3959.0 # Reads the airport data in to a list for easy access. with open('airports-world.csv') as csvfile: reader = csv.DictReader(csvfile) for row in reader: LatLongDict[row['LocationID']] = [row['Latitude'], row['Longitude']] #Creates the column names for the distance table fieldnames = "id" for code1 in LatLongDict: fieldnames+= "," + code1 fieldnames += "\n" append_blob_service.append_blob_from_text('distances', str(start) + "-" + str(stop) + '.csv', fieldnames) rowIdx = 0 count = 0 batchCount = 0; rows = "" #This function appends to rows to the Append Blob in Azures Storage. def appendBlob(rowStr): while True: try: append_blob_service.append_blob_from_text('distances', str(start) + "-" + str(stop) + '.csv', rowStr) break except: print("error posting rows-- trying again") for code1 in LatLongDict: if(rowIdx >= start and rowIdx <= stop): lat1 = radians(float(LatLongDict[code1][0])) lon1 = radians(float(LatLongDict[code1][1])) rows += code1 #outputs progress. if count % 10 == 0: print(str(start) + "-" + str(stop) + ": Processing " + str(count) + " of " + str(stop - start) + " airports.") count += 1 # Selects the destination airport, then calculates the distance between it # and the origin using the distance over sphere based on the latitude and longitude. for code2 in LatLongDict: #calculates the distances between two airports over the surface of the earth. lat2 = radians(float(LatLongDict[code2][0])) lon2 = radians(float(LatLongDict[code2][1])) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance = R * c rows += "," + str(round(distance, 2)) rows+="\n" #Appends 100 rows at a time to the storage blob. if count % 100 == 0: appendBlob(rows) rows="" rowIdx += 1 #Appends any final rows if not already appended. if count % 100 != 0: appendBlob(rows) #Logs the finish time append_blob_service.append_blob_from_text('distances', 'log.txt', "Finishing " + str(start) + "-" + str(stop) + ":" + datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') + "\n")
# Usage: Call python3 controller.py X, where X is the number of SLURM # jobs you SLURM to spawn on the SLURM nodes import csv import sys import subprocess import datetime import time from azure.storage.blob import AppendBlobService # Configure account name with the Azure Storage Account Name and the account Key from Storage Explorer append_blob_service = AppendBlobService( account_name='storage_account_name', account_key='storage_account_key') # Creates an append blob for this app. append_blob_service.create_container('distances') append_blob_service.create_blob('distances', 'log.txt') append_blob_service.append_blob_from_text('distances', 'log.txt', "Starting: " + datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') + "\n") LatLongDict = {} # Reads the number of jobs from the command line. jobCount = int(sys.argv[1]) # Reads the airport data in to a list for easy access. with open('airports-world.csv') as csvfile: reader = csv.DictReader(csvfile) for row in reader: LatLongDict[row['LocationID']] = [row['Latitude'], row['Longitude']] # Configures the job size based on the job count passed in. jobSize = int(len(LatLongDict) / jobCount) + 1 #Creates the slurm worker processes. for i in range(0,len(LatLongDict),jobSize): start = i stop = i+jobSize-1; if (stop >= len(LatLongDict)): stop = len(LatLongDict) -1 #calls SLURM subprocess.Popen(["sbatch","worker.sh",str(start),str(stop)],close_fds=True) #alternately, run these locally #subprocess.Popen(["python","worker.py",str(start),str(stop)],close_fds=True)
import os, socket, sys, json from base64 import b64encode, b64decode from hashlib import sha256 from time import time from urllib.parse import quote_plus, urlencode from hmac import HMAC import paho.mqtt.client as mqtt conn_str = os.getenv("conn_str") osname = "" rid = 0 if sys.platform == "linux": osname = str(os.uname().release + " " + os.uname().version + " " + os.uname().machine) else: osname = str("Windows build " + str(sys.getwindowsversion().build) + " " + os.environ["PROCESSOR_IDENTIFIER"]) if conn_str == None: print("Please set the enviornment variable conn_str to the value of a device connection string") print(" example: export conn_str=\"HostName=ksaye.azure-devices.net;DeviceId=python;SharedAccessKey=4sDfmCBS1MnfVsQxUv/rEksRlzOctcOU=\"") print("exiting now") quit() conn_str = conn_str.replace("\"","") print("Connection String: " + conn_str) print() def generate_sas_token(uri, key, expiry=3600): ttl = time() + expiry sign_key = "%s\n%d" % ((quote_plus(uri)), int(ttl)) sign_key = sign_key.encode('utf-8') signature = b64encode(HMAC(b64decode(key), sign_key, sha256).digest()) return 'SharedAccessSignature ' + urlencode({'sr' : uri,'sig': signature, 'se' : str(int(ttl))}) def message_handler(client, userdata, msg): global rid msgpayload = msg.payload.decode("utf-8") if "$iothub/methods/POST/" in msg.topic: # responding to a direct method print("Received Direct Method: " + str(msg.topic).split("/")[3] + " with payload: " + str(msgpayload)) print() rid = int(msg.topic.split("=")[1]) # acknowledging the direct method payload = {"result": True, "data": "some data"} status = 200 client.publish("$iothub/methods/res/" + str(status) + "/?$rid=" + str(rid), str(payload)) elif "$iothub/twin/res/" in msg.topic: # received a twin print("Received twin status " + str(msg.topic).split("/")[3] + " with payload: "+str(msgpayload)) print() int(msg.topic.split("=")[1].split("&")[0]) elif "devices/" + deviceID + "/messages/devicebound/" in msg.topic: # we have a cloud to device message print("Received C2D with payload: "+str(msgpayload)) def on_connect(client, userdata, flags, rc): client.subscribe("devices/" + deviceID + "/messages/devicebound/#") # C2D client.subscribe("$iothub/methods/POST/#") # direct methods client.subscribe("$iothub/twin/res/#") # twins client.publish("$iothub/twin/GET/?$rid=" + str(rid), "") # must send a message to get the initial twin hostname = conn_str.split(";")[0].split("=")[1] deviceID = conn_str.split(";")[1].split("=")[1] deviceKey = conn_str.split(";")[2].replace("SharedAccessKey=", "") password = generate_sas_token(hostname + "/devices/" + deviceID, deviceKey) client = mqtt.Client(client_id=deviceID) client.on_message = message_handler client.on_connect = on_connect client.username_pw_set(hostname + "/" + deviceID + "/api-version=2016-11-14", password) client.tls_set_context(context=None) client.connect(hostname, 8883) while not client.is_connected(): client.loop() # waiting for connection # updating a twin property reported_properties = {"OS": osname, "CurrentUser": str(os.environ["LOGNAME"]), "IP": str(socket.gethostbyname(socket.gethostname()))} client.publish("$iothub/twin/PATCH/properties/reported/?$rid=" + str(rid), json.dumps(reported_properties)) print("sent twin: " + str(reported_properties)) # send a message with properties and encoding iotmessage = json.dumps({"Message": "Hello World"}) client.publish("devices/" + deviceID + "/messages/events/alert=False$.ct=application%2Fjson&$.ce=utf-8", iotmessage) print("Message " + str(iotmessage) + " and twin sent, waiting to reveive messages/command/twins, Control+C to exit") client.loop_forever()
import os, socket, sys, json from azure.iot.device import IoTHubDeviceClient, Message, MethodResponse conn_str = os.getenv("conn_str") osname = "" if sys.platform == "linux": osname = str(os.uname().release + " " + os.uname().version + " " + os.uname().machine) else: osname = str("Windows build " + str(sys.getwindowsversion().build) + " " + os.environ["PROCESSOR_IDENTIFIER"]) if conn_str == None: print("Please set the enviornment variable conn_str to the value of a device connection string") print(" example: export conn_str=\"HostName=ksaye.azure-devices.net;DeviceId=python;SharedAccessKey=4sDfmCBS1MnfVsQxUv/rEksRlzOctcOU=\"") print("exiting now") quit() conn_str = conn_str.replace("\"","") print("Connection String: " + conn_str) print() # reference: https://github.com/Azure/azure-iot-sdk-python/blob/main/samples/sync-samples/receive_direct_method.py def method_request_handler(method_request): # Determine how to respond to the method request based on the method name if method_request.name == "method1": payload = {"result": True, "data": "some data"} # set response payload status = 200 # set return status code print("executed method1") else: payload = {"result": False, "data": "unknown method"} # set response payload status = 400 # set return status code print("executed unknown method: " + method_request.name) # Send the response method_response = MethodResponse.create_from_method_request(method_request, status, payload) device_client.send_method_response(method_response) # reference: https://github.com/Azure/azure-iot-sdk-python/blob/main/samples/sync-samples/receive_message.py def message_handler(message): print("the data in the message received was ") print(message.data) print("custom properties are") print(message.custom_properties) # reference: https://github.com/Azure/azure-iot-sdk-python/blob/main/samples/sync-samples/receive_twin_desired_properties_patch.py def twin_patch_handler(patch): print("the data in the desired properties patch was: {}".format(patch)) device_client = IoTHubDeviceClient.create_from_connection_string(conn_str) device_client.connect() device_client.on_message_received = message_handler device_client.on_method_request_received = method_request_handler device_client.on_twin_desired_properties_patch_received = twin_patch_handler # get the initial twin, reference: https://github.com/Azure/azure-iot-sdk-python/blob/main/samples/sync-samples/get_twin.py twin = device_client.get_twin() print("Initial twin document received:") print(" {}".format(twin)) print() # setting a reported twin, reference: https://github.com/Azure/azure-iot-sdk-python/blob/main/samples/sync-samples/update_twin_reported_properties.py reported_properties = {"OS": osname, "CurrentUser": str(os.environ["LOGNAME"]), "IP": str(socket.gethostbyname(socket.gethostname()))} print("Sending reported twin properties:") print(" {}".format(reported_properties)) print() device_client.patch_twin_reported_properties(reported_properties) #finally sending a message with properties and encoding iotmessage = Message(json.dumps({"Message": "Hello World"})) iotmessage.custom_properties["alert"] = False iotmessage.content_encoding = "utf-8" iotmessage.content_type = "application/json" device_client.send_message(iotmessage) input("Message " + str(iotmessage) + " and twin sent, waiting to reveive messages/command/twins, Press any key to quit\n")
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import os import time import uuid from azure.iot.device import IoTHubDeviceClient, Message, X509 # The connection string for a device should never be stored in code. # For the sake of simplicity we are creating the X509 connection string # containing Hostname and Device Id in the following format: # "HostName=<iothub_host_name>;DeviceId=<device_id>;x509=true" hostname = os.getenv("HOSTNAME") # The device that has been created on the portal using X509 CA signing or Self signing capabilities device_id = os.getenv("DEVICE_ID") x509 = X509( cert_file=os.getenv("X509_CERT_FILE"), key_file=os.getenv("X509_KEY_FILE"), pass_phrase=os.getenv("X509_PASS_PHRASE"), ) # The client object is used to interact with your Azure IoT hub. device_client = IoTHubDeviceClient.create_from_x509_certificate( hostname=hostname, device_id=device_id, x509=x509 ) # Connect the client. device_client.connect() # send 5 messages with a 1 second pause between each message for i in range(1, 6): print("sending message #" + str(i)) msg = Message("test wind speed " + str(i)) msg.message_id = uuid.uuid4() msg.correlation_id = "correlation-1234" msg.custom_properties["tornado-warning"] = "yes" msg.content_encoding = "utf-8" msg.content_type = "application/json" device_client.send_message(msg) time.sleep(1) # send only string messages for i in range(6, 11): print("sending message #" + str(i)) device_client.send_message("test payload message " + str(i)) time.sleep(1) # finally, shut down the client device_client.shutdown()