datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.59M
likes
int64
0
6.32k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
40
βŒ€
createdAt
unknown
card
stringlengths
19
1.01M
data-is-better-together/MPEP_GREEK
data-is-better-together
"2024-06-26T06:29:52Z"
2
1
[ "language:el", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:argilla", "region:us", "rlfh", "argilla", "human-feedback" ]
null
"2024-06-21T08:22:29Z"
--- size_categories: n<1K tags: - rlfh - argilla - human-feedback language: - el --- # Dataset Card for MPEP_GREEK This dataset has been created with [Argilla](https://docs.argilla.io). As shown in the sections below, this dataset can be loaded into Argilla as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets). ## Dataset Description - **Homepage:** https://argilla.io - **Repository:** https://github.com/argilla-io/argilla - **Paper:** - **Leaderboard:** - **Point of Contact:** ### Dataset Summary This dataset contains: * A dataset configuration file conforming to the Argilla dataset format named `argilla.yaml`. This configuration file will be used to configure the dataset when using the `FeedbackDataset.from_huggingface` method in Argilla. * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `FeedbackDataset.from_huggingface` and can be loaded independently using the `datasets` library via `load_dataset`. * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla. ### Load with Argilla To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.FeedbackDataset.from_huggingface("DIBT/MPEP_GREEK") ``` ### Load with `datasets` To load this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset("DIBT/MPEP_GREEK") ``` ### Supported Tasks and Leaderboards This dataset can contain [multiple fields, questions and responses](https://docs.argilla.io/en/latest/conceptual_guides/data_model.html#feedback-dataset) so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the [Dataset Structure section](#dataset-structure). There are no leaderboards associated with this dataset. ### Languages [More Information Needed] ## Dataset Structure ### Data in Argilla The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**. The **fields** are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions. | Field Name | Title | Type | Required | Markdown | | ---------- | ----- | ---- | -------- | -------- | | source | Source | text | True | True | The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking. | Question Name | Title | Type | Required | Description | Values/Labels | | ------------- | ----- | ---- | -------- | ----------- | ------------- | | target | Target | text | True | Translate the text. | N/A | The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata". The **metadata** is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`. | Metadata Name | Title | Type | Values | Visible for Annotators | | ------------- | ----- | ---- | ------ | ---------------------- | The **guidelines**, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the [annotation guidelines](#annotation-guidelines) section. ### Data Instances An example of a dataset instance in Argilla looks as follows: ```json { "external_id": "888", "fields": { "source": "Given the text: An experienced and enthusiastic innovator...you want on your team.\nMargaret Hines is the founder and Principal Consultant of Inspire Marketing, LLC, investing in local businesses, serving the community with business brokerage and marketing consulting. She has an undergraduate degree from Washington University in St. Louis, MO, and an MBA from the University of Wisconsin-Milwaukee.\nMargaret offers consulting in marketing, business sales and turnarounds and franchising. She is also an investor in local businesses.\nPrior to founding Inspire Marketing in 2003, Margaret gained her business acumen, sales and marketing expertise while working at respected Fortune 1000 companies.\nSummarize the background and expertise of Margaret Hines, the founder of Inspire Marketing." }, "metadata": { "evolved_from": null, "kind": "synthetic", "source": "ultrachat" }, "responses": [ { "status": "submitted", "user_id": "f4d8878d-e378-4087-a99b-c31dad5f0609", "values": { "target": { "value": "\u0392\u03ac\u03c3\u03b5\u03b9 \u03c4\u03bf\u03c5 \u03ba\u03b5\u03b9\u03bc\u03ad\u03bd\u03bf\u03c5: \u039c\u03af\u03b1 \u03ad\u03bc\u03c0\u03b5\u03b9\u03c1\u03b7 \u03ba\u03b1\u03b9 \u03b5\u03bd\u03b8\u03bf\u03c5\u03c3\u03b9\u03ce\u03b4\u03b7\u03c2 \u03ba\u03b1\u03b9\u03bd\u03bf\u03c4\u03cc\u03bc\u03bf\u03c2... \u03c0\u03bf\u03c5 \u03b8\u03ad\u03bb\u03b5\u03c4\u03b5 \u03c3\u03c4\u03b7\u03bd \u03bf\u03bc\u03ac\u03b4\u03b1 \u03c3\u03b1\u03c2.\n\u0397 Margaret Hines \u03b5\u03af\u03bd\u03b1\u03b9 \u03b7 \u03b9\u03b4\u03c1\u03cd\u03c4\u03c1\u03b9\u03b1 \u03ba\u03b1\u03b9 \u03b7 \u03ba\u03cd\u03c1\u03b9\u03b1 \u03c3\u03cd\u03bc\u03b2\u03bf\u03c5\u03bb\u03bf\u03c2 \u03c4\u03b7\u03c2 Inspire Marketing, LLC, \u03ad\u03c7\u03bf\u03bd\u03c4\u03b1\u03c2 \u03b5\u03c0\u03b5\u03bd\u03b4\u03cd\u03c3\u03b5\u03b9 \u03c3\u03b5 \u03c4\u03bf\u03c0\u03b9\u03ba\u03ad\u03c2 \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03ae\u03c3\u03b5\u03b9\u03c2, \u03b5\u03be\u03c5\u03c0\u03b7\u03c1\u03b5\u03c4\u03ce\u03bd\u03c4\u03b1\u03c2 \u03c4\u03b7\u03bd \u03ba\u03bf\u03b9\u03bd\u03cc\u03c4\u03b7\u03c4\u03b1 \u03bc\u03ad\u03c3\u03c9 \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ae\u03c2 \u03bc\u03b5\u03c3\u03b9\u03c4\u03b5\u03af\u03b1\u03c2 \u03ba\u03b1\u03b9 \u03c3\u03c5\u03bc\u03b2\u03bf\u03c5\u03bb\u03ce\u03bd \u03bc\u03ac\u03c1\u03ba\u03b5\u03c4\u03b9\u03bd\u03b3\u03ba. \u0388\u03c7\u03b5\u03b9 \u03c0\u03c4\u03c5\u03c7\u03af\u03bf \u03b1\u03c0\u03cc \u03c4\u03bf \u03a0\u03b1\u03bd\u03b5\u03c0\u03b9\u03c3\u03c4\u03ae\u03bc\u03b9\u03bf \u03c4\u03b7\u03c2 \u039f\u03c5\u03ac\u03c3\u03b9\u03b3\u03ba\u03c4\u03bf\u03bd \u03c3\u03c4\u03bf St. Louis, MO, \u03ba\u03b1\u03b9 MBA \u03b1\u03c0\u03cc \u03c4\u03bf \u03a0\u03b1\u03bd\u03b5\u03c0\u03b9\u03c3\u03c4\u03ae\u03bc\u03b9\u03bf \u03c4\u03bf\u03c5 Wisconsin-Milwaukee.\n\u0397 Margaret \u03c0\u03c1\u03bf\u03c3\u03c6\u03ad\u03c1\u03b5\u03b9 \u03c3\u03c5\u03bc\u03b2\u03bf\u03c5\u03bb\u03ad\u03c2 \u03c3\u03b5 \u03b8\u03ad\u03bc\u03b1\u03c4\u03b1 \u03bc\u03ac\u03c1\u03ba\u03b5\u03c4\u03b9\u03bd\u03b3\u03ba, \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ce\u03bd \u03c0\u03c9\u03bb\u03ae\u03c3\u03b5\u03c9\u03bd \u03ba\u03b1\u03b9 \u03b1\u03bd\u03b1\u03ba\u03b1\u03c4\u03b1\u03c3\u03ba\u03b5\u03c5\u03ce\u03bd \u03ba\u03b1\u03b9 franchising. \u0395\u03af\u03bd\u03b1\u03b9 \u03b5\u03c0\u03af\u03c3\u03b7\u03c2 \u03b5\u03c0\u03b5\u03bd\u03b4\u03cd\u03c4\u03c1\u03b9\u03b1 \u03c3\u03b5 \u03c4\u03bf\u03c0\u03b9\u03ba\u03ad\u03c2 \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03ae\u03c3\u03b5\u03b9\u03c2.\n\u03a0\u03c1\u03b9\u03bd \u03b1\u03c0\u03cc \u03c4\u03b7\u03bd \u03af\u03b4\u03c1\u03c5\u03c3\u03b7 \u03c4\u03b7\u03c2 Inspire Marketing \u03c4\u03bf 2003, \u03b7 Margaret \u03b1\u03c0\u03ad\u03ba\u03c4\u03b7\u03c3\u03b5 \u03c4\u03b7\u03bd \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ae \u03c4\u03b7\u03c2 \u03bf\u03be\u03c5\u03b4\u03ad\u03c1\u03ba\u03b5\u03b9\u03b1, \u03ba\u03b1\u03b9 \u03c4\u03b7\u03bd \u03c4\u03b5\u03c7\u03bd\u03bf\u03b3\u03bd\u03c9\u03c3\u03af\u03b1 \u03c4\u03b7\u03c2 \u03c3\u03c4\u03b9\u03c2 \u03c0\u03c9\u03bb\u03ae\u03c3\u03b5\u03b9\u03c2 \u03ba\u03b1\u03b9 \u03c4\u03bf \u03bc\u03ac\u03c1\u03ba\u03b5\u03c4\u03b9\u03bd\u03b3\u03ba \u03cc\u03c3\u03bf \u03b5\u03c1\u03b3\u03b1\u03b6\u03cc\u03c4\u03b1\u03bd \u03c3\u03b5 \u03b1\u03bd\u03b1\u03b3\u03bd\u03c9\u03c1\u03b9\u03c3\u03bc\u03ad\u03bd\u03b5\u03c2 \u03b5\u03c4\u03b1\u03b9\u03c1\u03b5\u03af\u03b5\u03c2 \u03c4\u03bf\u03c5 Fortune 1000.\n\u03a3\u03c5\u03bd\u03cc\u03c8\u03b9\u03c3\u03b5 \u03c4\u03bf \u03b9\u03c3\u03c4\u03bf\u03c1\u03b9\u03ba\u03cc \u03ba\u03b1\u03b9 \u03c4\u03b7\u03bd \u03c4\u03b5\u03c7\u03bd\u03bf\u03b3\u03bd\u03c9\u03c3\u03af\u03b1 \u03c4\u03b7\u03c2 Margaret Hines, \u03c4\u03b7\u03c2 \u03b9\u03b4\u03c1\u03cd\u03c4\u03c1\u03b9\u03b1\u03c2 \u03c4\u03bf\u03c5 Inspire Marketing." } } } ], "suggestions": [], "vectors": {} } ``` While the same record in HuggingFace `datasets` looks as follows: ```json { "external_id": "888", "metadata": "{\"source\": \"ultrachat\", \"kind\": \"synthetic\", \"evolved_from\": null}", "source": "Given the text: An experienced and enthusiastic innovator...you want on your team.\nMargaret Hines is the founder and Principal Consultant of Inspire Marketing, LLC, investing in local businesses, serving the community with business brokerage and marketing consulting. She has an undergraduate degree from Washington University in St. Louis, MO, and an MBA from the University of Wisconsin-Milwaukee.\nMargaret offers consulting in marketing, business sales and turnarounds and franchising. She is also an investor in local businesses.\nPrior to founding Inspire Marketing in 2003, Margaret gained her business acumen, sales and marketing expertise while working at respected Fortune 1000 companies.\nSummarize the background and expertise of Margaret Hines, the founder of Inspire Marketing.", "target": [ { "status": "submitted", "user_id": "f4d8878d-e378-4087-a99b-c31dad5f0609", "value": "\u0392\u03ac\u03c3\u03b5\u03b9 \u03c4\u03bf\u03c5 \u03ba\u03b5\u03b9\u03bc\u03ad\u03bd\u03bf\u03c5: \u039c\u03af\u03b1 \u03ad\u03bc\u03c0\u03b5\u03b9\u03c1\u03b7 \u03ba\u03b1\u03b9 \u03b5\u03bd\u03b8\u03bf\u03c5\u03c3\u03b9\u03ce\u03b4\u03b7\u03c2 \u03ba\u03b1\u03b9\u03bd\u03bf\u03c4\u03cc\u03bc\u03bf\u03c2... \u03c0\u03bf\u03c5 \u03b8\u03ad\u03bb\u03b5\u03c4\u03b5 \u03c3\u03c4\u03b7\u03bd \u03bf\u03bc\u03ac\u03b4\u03b1 \u03c3\u03b1\u03c2.\n\u0397 Margaret Hines \u03b5\u03af\u03bd\u03b1\u03b9 \u03b7 \u03b9\u03b4\u03c1\u03cd\u03c4\u03c1\u03b9\u03b1 \u03ba\u03b1\u03b9 \u03b7 \u03ba\u03cd\u03c1\u03b9\u03b1 \u03c3\u03cd\u03bc\u03b2\u03bf\u03c5\u03bb\u03bf\u03c2 \u03c4\u03b7\u03c2 Inspire Marketing, LLC, \u03ad\u03c7\u03bf\u03bd\u03c4\u03b1\u03c2 \u03b5\u03c0\u03b5\u03bd\u03b4\u03cd\u03c3\u03b5\u03b9 \u03c3\u03b5 \u03c4\u03bf\u03c0\u03b9\u03ba\u03ad\u03c2 \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03ae\u03c3\u03b5\u03b9\u03c2, \u03b5\u03be\u03c5\u03c0\u03b7\u03c1\u03b5\u03c4\u03ce\u03bd\u03c4\u03b1\u03c2 \u03c4\u03b7\u03bd \u03ba\u03bf\u03b9\u03bd\u03cc\u03c4\u03b7\u03c4\u03b1 \u03bc\u03ad\u03c3\u03c9 \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ae\u03c2 \u03bc\u03b5\u03c3\u03b9\u03c4\u03b5\u03af\u03b1\u03c2 \u03ba\u03b1\u03b9 \u03c3\u03c5\u03bc\u03b2\u03bf\u03c5\u03bb\u03ce\u03bd \u03bc\u03ac\u03c1\u03ba\u03b5\u03c4\u03b9\u03bd\u03b3\u03ba. \u0388\u03c7\u03b5\u03b9 \u03c0\u03c4\u03c5\u03c7\u03af\u03bf \u03b1\u03c0\u03cc \u03c4\u03bf \u03a0\u03b1\u03bd\u03b5\u03c0\u03b9\u03c3\u03c4\u03ae\u03bc\u03b9\u03bf \u03c4\u03b7\u03c2 \u039f\u03c5\u03ac\u03c3\u03b9\u03b3\u03ba\u03c4\u03bf\u03bd \u03c3\u03c4\u03bf St. Louis, MO, \u03ba\u03b1\u03b9 MBA \u03b1\u03c0\u03cc \u03c4\u03bf \u03a0\u03b1\u03bd\u03b5\u03c0\u03b9\u03c3\u03c4\u03ae\u03bc\u03b9\u03bf \u03c4\u03bf\u03c5 Wisconsin-Milwaukee.\n\u0397 Margaret \u03c0\u03c1\u03bf\u03c3\u03c6\u03ad\u03c1\u03b5\u03b9 \u03c3\u03c5\u03bc\u03b2\u03bf\u03c5\u03bb\u03ad\u03c2 \u03c3\u03b5 \u03b8\u03ad\u03bc\u03b1\u03c4\u03b1 \u03bc\u03ac\u03c1\u03ba\u03b5\u03c4\u03b9\u03bd\u03b3\u03ba, \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ce\u03bd \u03c0\u03c9\u03bb\u03ae\u03c3\u03b5\u03c9\u03bd \u03ba\u03b1\u03b9 \u03b1\u03bd\u03b1\u03ba\u03b1\u03c4\u03b1\u03c3\u03ba\u03b5\u03c5\u03ce\u03bd \u03ba\u03b1\u03b9 franchising. \u0395\u03af\u03bd\u03b1\u03b9 \u03b5\u03c0\u03af\u03c3\u03b7\u03c2 \u03b5\u03c0\u03b5\u03bd\u03b4\u03cd\u03c4\u03c1\u03b9\u03b1 \u03c3\u03b5 \u03c4\u03bf\u03c0\u03b9\u03ba\u03ad\u03c2 \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03ae\u03c3\u03b5\u03b9\u03c2.\n\u03a0\u03c1\u03b9\u03bd \u03b1\u03c0\u03cc \u03c4\u03b7\u03bd \u03af\u03b4\u03c1\u03c5\u03c3\u03b7 \u03c4\u03b7\u03c2 Inspire Marketing \u03c4\u03bf 2003, \u03b7 Margaret \u03b1\u03c0\u03ad\u03ba\u03c4\u03b7\u03c3\u03b5 \u03c4\u03b7\u03bd \u03b5\u03c0\u03b9\u03c7\u03b5\u03b9\u03c1\u03b7\u03bc\u03b1\u03c4\u03b9\u03ba\u03ae \u03c4\u03b7\u03c2 \u03bf\u03be\u03c5\u03b4\u03ad\u03c1\u03ba\u03b5\u03b9\u03b1, \u03ba\u03b1\u03b9 \u03c4\u03b7\u03bd \u03c4\u03b5\u03c7\u03bd\u03bf\u03b3\u03bd\u03c9\u03c3\u03af\u03b1 \u03c4\u03b7\u03c2 \u03c3\u03c4\u03b9\u03c2 \u03c0\u03c9\u03bb\u03ae\u03c3\u03b5\u03b9\u03c2 \u03ba\u03b1\u03b9 \u03c4\u03bf \u03bc\u03ac\u03c1\u03ba\u03b5\u03c4\u03b9\u03bd\u03b3\u03ba \u03cc\u03c3\u03bf \u03b5\u03c1\u03b3\u03b1\u03b6\u03cc\u03c4\u03b1\u03bd \u03c3\u03b5 \u03b1\u03bd\u03b1\u03b3\u03bd\u03c9\u03c1\u03b9\u03c3\u03bc\u03ad\u03bd\u03b5\u03c2 \u03b5\u03c4\u03b1\u03b9\u03c1\u03b5\u03af\u03b5\u03c2 \u03c4\u03bf\u03c5 Fortune 1000.\n\u03a3\u03c5\u03bd\u03cc\u03c8\u03b9\u03c3\u03b5 \u03c4\u03bf \u03b9\u03c3\u03c4\u03bf\u03c1\u03b9\u03ba\u03cc \u03ba\u03b1\u03b9 \u03c4\u03b7\u03bd \u03c4\u03b5\u03c7\u03bd\u03bf\u03b3\u03bd\u03c9\u03c3\u03af\u03b1 \u03c4\u03b7\u03c2 Margaret Hines, \u03c4\u03b7\u03c2 \u03b9\u03b4\u03c1\u03cd\u03c4\u03c1\u03b9\u03b1\u03c2 \u03c4\u03bf\u03c5 Inspire Marketing." } ], "target-suggestion": null, "target-suggestion-metadata": { "agent": null, "score": null, "type": null } } ``` ### Data Fields Among the dataset fields, we differentiate between the following: * **Fields:** These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions. * **source** is of type `text`. * **Questions:** These are the questions that will be asked to the annotators. They can be of different types, such as `RatingQuestion`, `TextQuestion`, `LabelQuestion`, `MultiLabelQuestion`, and `RankingQuestion`. * **target** is of type `text`, and description "Translate the text.". * **Suggestions:** As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable. * (optional) **target-suggestion** is of type `text`. Additionally, we also have two more fields that are optional and are the following: * **metadata:** This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the `metadata_properties` defined in the dataset configuration file in `argilla.yaml`. * **external_id:** This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file. ### Data Splits The dataset contains a single split, which is `train`. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation guidelines This is a translation dataset that contains texts. Please translate the text in the text field. #### Annotation process The translators were native Greeks. Each prompt was initially translated via Google Translate, then refined by human annotators. Prompts containing information not relevant to the Greek context were not altered in any way before translation. Words with no direct equivalent in Greek were not translated. #### Who are the annotators? Initial annotation of the entire dataset was done by [Marios Mamalis](https://huggingface.co/Mario00000). ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
Nutanix/cpp_unittests_llama8b_vs_llama70b_judge_llama70
Nutanix
"2024-07-25T06:00:53Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-18T00:24:27Z"
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: Code dtype: string - name: Unit Test - Llama8b dtype: string - name: Unit Test - Llama70b dtype: string - name: Unit Test - (Ground Truth) dtype: string - name: Winning Model dtype: string - name: Judgement dtype: string splits: - name: train num_bytes: 104875856 num_examples: 2013 download_size: 26796977 dataset_size: 104875856 --- # Unit Test Evaluation Results This repository details the evaluation of unit tests generated by LLAMA3 models. It compares the unit tests produced by two models: LLAMA3-8B-Instruct and LLAMA3-70B-Instruct against the [groundtruth data](https://huggingface.co/datasets/Nutanix/cpp-unit-test-benchmarking-dataset). In this evaluation, the LLAMA3-70B-Instruct model served as the judge, assessing how well the unit tests from both models aligned with the ground truth. ## Models Used ### [LLAMA3-70B-Instruct](https://huggingface.co/hdadlani/Llama-3-128k-70B-Instruct-awq) - **HuggingFace Link**: [LLAMA3-70B-Instruct](https://huggingface.co/hdadlani/Llama-3-128k-70B-Instruct-awq) - **Precision**: AWQ Quantized, 4-Bit Precision - **Description**: A large-scale model used as the judge for evaluating unit tests. ### [LLAMA3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **HuggingFace Link**: [LLAMA3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) - **Precision**: BF16 Precision - **Description**: A smaller model whose unit tests were compared against those generated by LLAMA3-70B-Instruct. ## Dataset The evaluation utilized the [cpp-unit-test-benchmarking-dataset](https://huggingface.co/datasets/Nutanix/cpp-unit-test-benchmarking-dataset) as the ground truth. ### Dataset Structure The dataset was loaded using the following structure: ```python from datasets import Dataset, load_dataset # Load the dataset dataset = load_dataset("Nutanix/cpp_unittests_llama8b_vs_llama70b_judge_llama70") # View dataset structure DatasetDict({ train: Dataset({ features: [ 'Code', 'Unit Test - Llama8b', 'Unit Test - Llama70b', 'Unit Test - (Ground Truth)', 'Winning Model', 'Judgement' ], num_rows: 2013 }) }) ``` ## Features: - **Code**: The source code for which the unit tests are written. - **Unit Test - Llama8b**: Unit test generated by the LLAMA3-8B-Instruct model. - **Unit Test - Llama70b**: Unit test generated by the LLAMA3-70B-Instruct model. - **Unit Test - (Ground Truth)**: The benchmark or ground truth unit test. - **Winning Model**: The model whose unit test is closer to the ground truth. - **Judgement**: The evaluation results comparing the unit tests. The results are summarized in the table below: ## Unit Test Evaluation Results | Outcome | Count | |----------------------|-------| | LLAMA3-70B-Instruct | 1060 | | LLAMA3-8B-Instruct | 277 | | Error | 277 | | Tie | 399 | ### Explanation 1. LLAMA3-70B-Instruct Wins: LLAMA3-70B-Instruct model aligned more closely with the ground truth in 1060 cases. 2. LLAMA3-8B-Instruct Wins: LLAMA3-8B-Instruct model aligned more closely with the ground truth in 277 cases. 3. Error: 277 instances where errors occurred, often due to context length exceeding 32,000 characters. 4. Tie: 399 instances where results were tied between the models. ### Win Rates - LLAMA3-70B-Instruct Win Percentage: 52.66% - LLAMA3-8B-Instruct Win Percentage: 13.76% - Tie Percentage: 19.82% ### Framework to generate unit test <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/nFUDNtFeAukk_qLZL24F6.png" alt="image/png" width="600" height="400"/> ### Evaluation Approach The LLAMA3-70B-Instruct model, with its quantized 4-bit precision, was used as the judge to evaluate which unit test (from LLAMA3-8B-Instruct or LLAMA3-70B-Instruct) was closer to the ground truth provided by the benchmark dataset. This evaluation highlights the performance differences between the two models and indicates a higher alignment of LLAMA3-70B-Instruct with the benchmarked unit tests. Prompt used for evaluation: [Evaluation Prompt](https://huggingface.co/datasets/Nutanix/cpp_unittests_llama8b_vs_llama70b_judge_llama70/blob/main/config_evaluator.yaml)
israel/ProverbEval
israel
"2024-10-10T07:46:51Z"
2
0
[ "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-18T12:15:04Z"
--- configs: - config_name: amh data_files: - split: train path: amh/amh_all.csv - config_name: amh_fill_blank data_files: - split: train_1 path: amh/amh_fill_1.csv - split: train_2 path: amh/amh_fill_2.csv - split: train_3 path: amh/amh_fill_3.csv - split: valid path: amh/amh_fill_valid.csv - config_name: amh_choice_english data_files: - split: english_1 path: amh/amh_english_test_1.csv - split: english_2 path: amh/amh_english_test_2.csv - split: english_3 path: amh/amh_english_test_3.csv - split: english_4 path: amh/amh_english_test_4.csv - split: english_5 path: amh/amh_english_test_5.csv - config_name: translate_amh_choice_english data_files: - split: english_1 path: translate-test/amh/amh_english_test_1.csv - split: english_2 path: translate-test/amh/amh_english_test_2.csv - split: english_3 path: translate-test/amh/amh_english_test_3.csv - config_name: amh_choice_native data_files: - split: native_1 path: amh/amh_native_test_1.csv - split: native_2 path: amh/amh_native_test_2.csv - split: native_3 path: amh/amh_native_test_3.csv - split: native_4 path: amh/amh_native_test_4.csv - split: native_5 path: amh/amh_native_test_5.csv - config_name: translate_amh_choice_native data_files: - split: native_1 path: translate-test/amh/amh_native_test_1.csv - split: native_2 path: translate-test/amh/amh_native_test_2.csv - split: native_3 path: translate-test/amh/amh_native_test_3.csv - config_name: amh_generation data_files: - split: native path: amh/amh_meaining_generation_native.csv - split: english path: amh/amh_meaining_generation_english.csv - config_name: eng data_files: - split: train path: eng/eng_all.csv - config_name: eng_fill_blank data_files: - split: train_1 path: eng/eng_fill_1.csv - split: train_2 path: eng/eng_fill_2.csv - split: train_3 path: eng/eng_fill_3.csv - split: valid path: eng/eng_fill_valid.csv - config_name: eng_generation data_files: - split: native path: eng/eng_meaining_generation_native.csv - config_name: eng_choice_native data_files: - split: native_1 path: eng/eng_native_test_1.csv - split: native_2 path: eng/eng_native_test_2.csv - split: native_3 path: eng/eng_native_test_3.csv - config_name: eng_choice_native data_files: - split: native_1 path: eng/eng_native_test_1.csv - split: native_2 path: eng/eng_native_test_2.csv - split: native_3 path: eng/eng_native_test_3.csv - split: native_4 path: eng/eng_native_test_4.csv - split: native_5 path: eng/eng_native_test_5.csv - config_name: gez_fill_blank data_files: - split: train_1 path: geez/geez_fill_1.csv - split: train_2 path: geez/geez_fill_2.csv - split: train_3 path: geez/geez_fill_3.csv - split: valid path: geez/gez_fill_valid.csv - config_name: gez_choice_english data_files: - split: english_1 path: geez/geez_english_test_1.csv - split: english_2 path: geez/geez_english_test_2.csv - split: english_3 path: geez/geez_english_test_3.csv - split: english_4 path: geez/geez_english_test_4.csv - split: english_5 path: geez/geez_english_test_5.csv - config_name: gez_choice_native data_files: - split: native_1 path: geez/geez_native_test_1.csv - split: native_2 path: geez/geez_native_test_2.csv - split: native_3 path: geez/geez_native_test_3.csv - split: native_4 path: geez/geez_native_test_4.csv - split: native_5 path: geez/geez_native_test_5.csv - config_name: gez_generation data_files: - split: native path: geez/gez-native-description.csv - split: english path: geez/geez_meaining_generation_english.csv - config_name: orm data_files: - split: train path: orm/orm_all.csv - config_name: orm_choice_english data_files: - split: english_1 path: orm/orm_english_test_1.csv - split: english_2 path: orm/orm_english_test_2.csv - split: english_3 path: orm/orm_english_test_3.csv - split: english_4 path: orm/orm_english_test_4.csv - split: english_5 path: orm/orm_english_test_5.csv - config_name: translate_orm_choice_english data_files: - split: english_1 path: translate-test/orm/orm_english_test_1.csv - split: english_2 path: translate-test/orm/orm_english_test_2.csv - split: english_3 path: translate-test/orm/orm_english_test_3.csv - config_name: orm_choice_native data_files: - split: native_1 path: orm/orm_native_test_1.csv - split: native_2 path: orm/orm_native_test_2.csv - split: native_3 path: orm/orm_native_test_3.csv - split: native_4 path: orm/orm_native_test_4.csv - split: native_5 path: orm/orm_native_test_5.csv - config_name: translate_orm_choice_native data_files: - split: native_1 path: translate-test/orm/orm_native_test_1.csv - split: native_2 path: translate-test/orm/orm_native_test_2.csv - split: native_3 path: translate-test/orm/orm_native_test_3.csv - config_name: orm_generation data_files: - split: native path: orm/orm_meaining_generation_native.csv - split: english path: orm/orm_meaining_generation_english.csv - config_name: orm_fill_blank data_files: - split: train_1 path: orm/orm_fill_1.csv - split: train_2 path: orm/orm_fill_2.csv - split: train_3 path: orm/orm_fill_3.csv - split: valid path: orm/orm_fill_valid.csv - config_name: tir data_files: - split: train path: tir/tir_all.csv - config_name: tir_fill_blank data_files: - split: train_1 path: tir/tir_fill_1.csv - split: train_2 path: tir/tir_fill_2.csv - split: train_3 path: tir/tir_fill_3.csv - split: valid path: tir/tir_fill_valid.csv - config_name: tir_generation data_files: - split: native path: tir/tir_meaining_generation_native.csv - split: english path: tir/tir_meaining_generation_english.csv - config_name: tir_choice_english data_files: - split: english_1 path: tir/tir_english_test_1.csv - split: english_2 path: tir/tir_english_test_2.csv - split: english_3 path: tir/tir_english_test_3.csv - split: english_4 path: tir/tir_english_test_4.csv - split: english_5 path: tir/tir_english_test_5.csv - config_name: tir_choice_native data_files: - split: native_1 path: tir/tir_native_test_1.csv - split: native_2 path: tir/tir_native_test_2.csv - split: native_3 path: tir/tir_native_test_3.csv - split: native_4 path: tir/tir_native_test_4.csv - split: native_5 path: tir/tir_native_test_5.csv - config_name: translate_tir_choice_english data_files: - split: english_1 path: translate-test/tir/tir_english_test_1.csv - split: english_2 path: translate-test/tir/tir_english_test_2.csv - split: english_3 path: translate-test/tir/tir_english_test_3.csv - config_name: translate_tir_choice_native data_files: - split: native_1 path: translate-test/tir/tir_native_test_1.csv - split: native_2 path: translate-test/tir/tir_native_test_2.csv - split: native_3 path: translate-test/tir/tir_native_test_3.csv --- ``` . β”œβ”€β”€ amh β”‚ β”œβ”€β”€ amharic-fill_test.csv β”‚ β”œβ”€β”€ amh_english_test_1.csv β”‚ β”œβ”€β”€ amh_english_test_2.csv β”‚ β”œβ”€β”€ amh_english_test_3.csv β”‚ β”œβ”€β”€ amh_fill_1.csv β”‚ β”œβ”€β”€ amh_fill_2.csv β”‚ β”œβ”€β”€ amh_fill_3.csv β”‚ β”œβ”€β”€ amh_meaining_generation_english.csv β”‚ β”œβ”€β”€ amh_meaining_generation_native.csv β”‚ β”œβ”€β”€ amh_native_test_1.csv β”‚ β”œβ”€β”€ amh_native_test_2.csv β”‚ └── amh_native_test_3.csv β”œβ”€β”€ eng β”‚ β”œβ”€β”€ eng_fill_test.csv β”‚ β”œβ”€β”€ eng_meaining_generation_native.csv β”‚ β”œβ”€β”€ eng_native_test_1.csv β”‚ β”œβ”€β”€ eng_native_test_2.csv β”‚ └── eng_native_test_3.csv β”œβ”€β”€ geez β”‚ β”œβ”€β”€ geez_english_test_1.csv β”‚ β”œβ”€β”€ geez_english_test_2.csv β”‚ β”œβ”€β”€ geez_english_test_3.csv β”‚ β”œβ”€β”€ geez_fill_1.csv β”‚ β”œβ”€β”€ geez_fill_2.csv β”‚ β”œβ”€β”€ geez_fill_3.csv β”‚ └── geez_meaining_generation_english.csv β”œβ”€β”€ orm β”‚ β”œβ”€β”€ orm_english_test_1.csv β”‚ β”œβ”€β”€ orm_english_test_2.csv β”‚ β”œβ”€β”€ orm_english_test_3.csv β”‚ β”œβ”€β”€ orm_fill_1.csv β”‚ β”œβ”€β”€ orm_fill_2.csv β”‚ β”œβ”€β”€ orm_fill_3.csv β”‚ β”œβ”€β”€ orm_meaining_generation_english.csv β”‚ β”œβ”€β”€ orm_meaining_generation_native.csv β”‚ β”œβ”€β”€ orm_native_test_1.csv β”‚ β”œβ”€β”€ orm_native_test_2.csv β”‚ β”œβ”€β”€ orm_native_test_3.csv β”‚ └── oromo_fill_test.csv └── tir β”œβ”€β”€ tir_fill_1.csv β”œβ”€β”€ tir_fill_2.csv └── tir_fill_3.csv ```
afg1/pombe-canto-data
afg1
"2024-08-15T16:34:12Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-30T12:41:40Z"
--- dataset_info: features: - name: triage_status dtype: large_string - name: pmid dtype: large_string - name: abstract dtype: large_string - name: citation dtype: large_string - name: token_count dtype: int32 - name: label dtype: int8 splits: - name: train num_bytes: 13736788 num_examples: 10360 - name: test num_bytes: 3422716 num_examples: 2590 download_size: 9332324 dataset_size: 17159504 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Nutanix/cpp_unit_tests_unprocessed_Phi-3-mini-128k-instruct_vs_Phi-3-small-128k-instruct_judge_gpt
Nutanix
"2024-08-11T19:07:11Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-08-11T19:07:03Z"
--- dataset_info: features: - name: Code dtype: string - name: Unit Test_Phi-3-mini-128k-instruct_raw dtype: string - name: Unit Test_Phi-3-small-128k-instruct_raw dtype: string - name: Unit Test dtype: string - name: Winning Model dtype: string - name: Judgement dtype: string splits: - name: train num_bytes: 9240903 num_examples: 201 download_size: 2829507 dataset_size: 9240903 configs: - config_name: default data_files: - split: train path: data/train-* ---
BotnoiNLPteam/scdt_proofread_v1
BotnoiNLPteam
"2024-08-14T04:27:46Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-08-14T04:27:43Z"
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 10769351 num_examples: 18436 - name: test num_bytes: 1300663 num_examples: 2282 - name: val num_bytes: 1307448 num_examples: 2281 download_size: 3737248 dataset_size: 13377462 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: val path: data/val-* ---
Nutanix/CPP-UNITTEST-BENCH
Nutanix
"2024-08-28T05:42:31Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-08-28T04:36:56Z"
--- dataset_info: features: - name: ID dtype: int64 - name: Language dtype: string - name: Repository Name dtype: string - name: File Name dtype: string - name: File Path in Repository dtype: string - name: File Path for Unit Test dtype: string - name: Code dtype: string - name: Unit Test - (Ground Truth) dtype: string splits: - name: train num_bytes: 52934692 num_examples: 2653 download_size: 13965160 dataset_size: 52934692 configs: - config_name: default data_files: - split: train path: data/train-* --- --- # Dataset Card for Open Source Code and Unit Tests ## Dataset Details ### Dataset Description This dataset contains c++ code snippets and their corresponding ground truth unit tests collected from various open-source GitHub repositories. The primary purpose of this dataset is to aid in the development and evaluation of automated testing tools, code quality analysis, and LLM models for test generation. - **Curated by:** Vaishnavi Bhargava - **Language(s):** C++ <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/hyIhFHmrjUzypFgNPU2UX.png" alt="image/png" width="800" height="600"/> ## Dataset Structure ```python from datasets import Dataset, load_dataset # Load the dataset dataset = load_dataset("Nutanix/cpp_unit_tests_benchmark_dataset") # View dataset structure DatasetDict({ train: Dataset({ features: ['ID', 'Language', 'Repository Name', 'File Name', 'File Path in Repository', 'File Path for Unit Test', 'Code', 'Unit Test - (Ground Truth)'], num_rows: 2653 }) }) ``` The dataset consists of the following columns: - `ID`: A unique identifier for each entry in the dataset. [Example: "0"] - `Language`: The programming language of the file. [Example: "cpp"] - `Repository Name`: The name of the GitHub repository, formatted as organisation/repository. [Example: "google/googletest"] - `File Name`: The base name of the file (without extension) where the code or test is located. [Example: "sample1"] - `File Path in Repository`: The relative path to the file within the GitHub repository. [Example: "googletest/samples/sample1.cc"] - `File Path for Unit Test`: The relative path to the unit test file, if applicable. [Example: "googletest/samples/sample1_unittest.cc"] - `Code`: The code content of the file, excluding any documentation or comments. - `Unit Test - (Ground Truth)`: The content of the unit test file that tests the code. ### Dataset Sources <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/jE8b8wf1uV_boMaHxsmnP.png" width="800" height="600" /> - **Repository:** The dataset is sourced from the following GitHub repositories: [Latest Commit before 2 July 24] - [Pytorch](https://github.com/pytorch/pytorch) - [Abseil Absl](https://github.com/abseil/abseil-cpp) - [Google Test](https://github.com/google/googletest) - [Libphonenumber](https://github.com/google/libphonenumber) - [Tensorstore](https://github.com/google/tensorstore) - [TensorFlow](https://github.com/tensorflow/tensorflow) - [Glog](https://github.com/google/glog/tree/master/src/glog) - [Cel-cpp](https://github.com/google/cel-cpp/tree/master) - [LevelDB](https://github.com/google/leveldb) - [Libaddressinput](https://github.com/google/libaddressinput/tree/master) - [Langsvr](https://github.com/google/langsvr/tree/main) - [tsl](https://github.com/google/tsl.git) - [cel-cpp](https://github.com/google/cel-cpp.git) - [quiche](https://github.com/google/quiche.git) ### Some analysis of the dataset: The box plot representation depicting number of Code and Unit Test lines across different repositories <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/E7aoKCvyRBjBR89sbetrR.png" width="800" height="600" /> <!-- The histogram visualizes the distribution of the number of lines in the "Code" and "Unit Test-(Ground Truth)" column of the dataset. <div style="display: flex;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/pm9VHIoIJgSBTWcmfXPOO.png" width="300" height="300" style="margin-right: 10px;" /> <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/Fo48OZiHeiVLQZ9yA5qch.png" width="300" height="300" /> </div> The histogram visualizes the distribution of the number of tokens in the "Code" and "Unit Test-(Ground Truth)" column of the dataset. <div style="display: flex;"> <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/UWb5i1bh5keq8hd7NdT6E.png" width="300" height="300" style="margin-right: 10px;" /> <img src="https://cdn-uploads.huggingface.co/production/uploads/6658bb3acf5fc31e3a0bd24a/bAgGzQGmrVrMxm-uHxffv.png" width="300" height="300" /> </div> --> ## Uses ### Direct Use This dataset is suitable for : - Developing and evaluating automated testing tools. - Analyzing code quality by comparing code with its corresponding unit tests. - Training and testing LLM models for automated unit test generation. ## Dataset Creation ### Curation Rationale The motivation for creating this dataset is to provide a comprehensive collection of code and unit tests from various reputable open-source projects. This can facilitate research and development in the areas of automated testing, code quality analysis, and LLM for software engineering. ### Source Data #### Data Collection and Processing The data was collected from public GitHub repositories. The selection criteria included repositories with well-documented code and corresponding unit tests. The data was filtered and normalized to ensure consistency. #### Who are the source data producers? The source data producers are the contributors to the respective open-source GitHub repositories. ## Bias, Risks, and Limitations The dataset may have biases based on the coding practices and testing methodologies of the included repositories. It may not cover all possible scenarios and edge cases in software testing. ## Citation [optional]
ZiyuG/SciVerse
ZiyuG
"2024-09-11T03:33:18Z"
2
0
[ "task_categories:multiple-choice", "task_categories:question-answering", "task_categories:visual-question-answering", "language:en", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "multiple-choice", "question-answering", "visual-question-answering" ]
"2024-09-09T04:58:13Z"
--- task_categories: - multiple-choice - question-answering - visual-question-answering language: - en size_categories: - 1K<n<10K configs: - config_name: test data_files: - split: test path: QA.parquet dataset_info: - config_name: test features: - name: id dtype: string - name: subject dtype: string - name: image dtype: string - name: vision_dominant dtype: string - name: vision_only dtype: string - name: knowledge_lite dtype: string - name: knowledge_rich dtype: string - name: knowledge_professional dtype: string - name: question_vd dtype: string - name: choiceA dtype: string - name: choiceB dtype: string - name: choiceC dtype: string - name: choiceD dtype: string - name: choiceE dtype: string - name: answer dtype: string - name: explanation dtype: string - name: question_zh dtype: string - name: explanation_zh dtype: string splits: - name: test num_examples: 1147 --- # Dataset Card for SciVerse - [Dataset Description](https://huggingface.co/datasets/ZiyuG/SciVerse/blob/main/README.md#dataset-description) - [Paper Information](https://huggingface.co/datasets/ZiyuG/SciVerse/blob/main/README.md#paper-information) - [Dataset Examples](https://huggingface.co/datasets/ZiyuG/SciVerse/blob/main/README.md#dataset-examples) - [Leaderboard](https://huggingface.co/datasets/ZiyuG/SciVerse/blob/main/README.md#leaderboard) - [Citation](https://huggingface.co/datasets/ZiyuG/SciVerse/blob/main/README.md#citation) ## Dataset Description SciVerse is a multi-modal scientific benchmark introduced to evaluate the professional scientific reasoning abilities of multi-modal large language models (MLLMs) across various disciplines. This benchmark contains **5,735** annotated multi-modal Q&A samples covering key science subjects including **physics**, **chemistry**, and **biology**. It contains six distinct subsets designed to test varying degrees of knowledge and visual-text interpretation, i.e., **Knowledge Lite, Knowledge Rich, Knowledge Professional, Vision Dominant, Text Only** and **Vision Only**. - **Knowledge Lite**: basic problems with minimal necessary contextual information. - **Knowledge Rich**: problems with scientific background information. - **Knowledge Professional**: problems with advanced, professional-level scientific information. - **Vision Dominant**: problems that prioritizes visual cues over textual content to evaluate visual comprehension. - **Text Only**: problems with only texual inforamtion. - **Vision Only**: problems with only vison information, where textual problems rendered within the images. SciVerse aims to evaluate MLLMs' scientific reasoning ability of pre-existing scientific knowledge, and their sensitivity to the content stipulated in the questions. This not only measures how effectively MLLMs can utilize their inherent scientific understanding, but also assesses their ability to integrate and reason with given scientific knowledge in real-world scenarios. Unlike existing benchmarks, which often overlook the depth and multi-modal nature of scientific understanding, SciVerse addresses the complex challenges encountered in actual scientific analysis, providing a nuanced analysis of MLLMs' strengths and limitations in both knowledge integration and practical application. ## Paper Information - Code: https://github.com/ZiyuGuo99/SciVerse - Project: https://sciverse-cuhk.github.io/ - Dataset Overview: https://sciverse-cuhk.github.io/#overview - Leaderboard: https://sciverse-cuhk.github.io/#leaderboard ## Dataset Examples ***Coming soon...*** ## Leaderboard ### Contributing to the Leaderboard 🚨 The [Leaderboard](https://sciverse-cuhk.github.io/#leaderboard) is continuously being updated. The evaluation instructions and tools will be released soon. For now, please send your results on the test set to this email: ziyuguo@link.cuhk.edu.hk ## Citation If you find **SciVerse** useful for your research and applications, please kindly cite using this BibTeX: ```latex @article{sciverse, title={SciVerse}, author={Guo, Ziyu and Zhang, Renrui and Chen, Hao and Gao, Jialin and Li, Hongsheng and Heng, Pheng-Ann}, url={https://sciverse-cuhk.github.io/}, journal={arXiv preprint}, year={2024} } ```
argilla-warehouse/apigen-smollm-trl-FC
argilla-warehouse
"2024-11-21T12:25:31Z"
2
0
[ "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "arxiv:2406.18518", "region:us", "synthetic", "function-calling", "code", "distilabel" ]
[ "text-generation" ]
"2024-10-17T08:23:19Z"
--- dataset_info: features: - name: answers dtype: string - name: query dtype: string - name: id dtype: int64 - name: tools dtype: string - name: func_name dtype: string - name: func_desc dtype: string - name: hash_id dtype: string - name: model_name dtype: string - name: origin dtype: string splits: - name: train num_bytes: 165059162 num_examples: 109402 download_size: 60235594 dataset_size: 165059162 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 task_categories: - text-generation language: - en tags: - synthetic - function-calling - code - distilabel size_categories: - 100K<n<1M --- # Dataset card for argilla-warehouse/apigen-smollm-trl-FC This dataset is a merge of [argilla/Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1) and [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k), and was prepared for training using the script `prepare_for_sft.py` that can be found in the repository files. ## References ``` @article{liu2024apigen, title={APIGen: Automated Pipeline for Generating Verifiable and Diverse Function-Calling Datasets}, author={Liu, Zuxin and Hoang, Thai and Zhang, Jianguo and Zhu, Ming and Lan, Tian and Kokane, Shirley and Tan, Juntao and Yao, Weiran and Liu, Zhiwei and Feng, Yihao and others}, journal={arXiv preprint arXiv:2406.18518}, year={2024} } ```
Madjakul/HALvest-Contrastive-Raw
Madjakul
"2024-10-19T08:57:57Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-19T08:50:46Z"
--- dataset_info: features: - name: halid dtype: string - name: lang dtype: string - name: domain sequence: string - name: timestamp dtype: string - name: year dtype: string - name: url dtype: string - name: text dtype: string - name: size dtype: int64 - name: authorids sequence: string - name: affiliations sequence: string splits: - name: train num_bytes: 22258039817.522587 num_examples: 361863 download_size: 9390538695 dataset_size: 22258039817.522587 configs: - config_name: default data_files: - split: train path: data/train-* ---
selmaXI/cnn_dailymail-llama2-1k
selmaXI
"2024-11-04T15:26:10Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-04T15:26:09Z"
--- dataset_info: features: - name: article dtype: string - name: highlights dtype: string - name: id dtype: string - name: text dtype: string splits: - name: train num_bytes: 8848392 num_examples: 1000 download_size: 5364766 dataset_size: 8848392 configs: - config_name: default data_files: - split: train path: data/train-* ---
5CD-AI/Viet-docvqa_test_subsampled-Gemini
5CD-AI
"2024-11-21T15:42:32Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-09T16:53:03Z"
--- dataset_info: features: - name: questionId dtype: string - name: query dtype: string - name: question_types dtype: string - name: image dtype: image - name: docId dtype: int64 - name: image_filename dtype: string - name: page dtype: string - name: answer dtype: string - name: data_split dtype: string - name: source dtype: string - name: vi_image dtype: image - name: original_text dtype: string - name: translated_text dtype: string splits: - name: test num_bytes: 262558877.0 num_examples: 500 download_size: 247108892 dataset_size: 262558877.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
data-is-better-together/image_preferences_results
data-is-better-together
"2024-11-10T21:42:07Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:argilla", "region:us", "rlfh", "argilla", "human-feedback" ]
null
"2024-11-10T21:42:05Z"
--- size_categories: n<1K tags: - rlfh - argilla - human-feedback --- # Dataset Card for image_preferences_results This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets). ## Using this dataset with Argilla To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.Dataset.from_hub("DIBT/image_preferences_results") ``` This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation. ## Using this dataset with `datasets` To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset("DIBT/image_preferences_results") ``` This will only load the records of the dataset, but not the Argilla settings. ## Dataset Structure This dataset repo contains: * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`. * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla. * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`. The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**. ### Fields The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset. | Field Name | Title | Type | Required | Markdown | | ---------- | ----- | ---- | -------- | -------- | | images | images | custom | True | | ### Questions The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking. | Question Name | Title | Type | Required | Description | Values/Labels | | ------------- | ----- | ---- | -------- | ----------- | ------------- | | preference | preference | label_selection | True | Which image do you prefer given the prompt? | ['image_1', 'image_2', 'both_good', 'both_bad'] | <!-- check length of metadata properties --> ### Data Instances An example of a dataset instance in Argilla looks as follows: ```json { "_server_id": "30403740-6a5e-48d7-839e-dcea7ad0dfda", "fields": { "images": { "image_1": "https://huggingface.co/datasets/DIBT/img_prefs_style/resolve/main/artifacts/image_generation_0/images/b172c7078a07c159f5f8da7bd1220ddd.jpeg", "image_2": "https://huggingface.co/datasets/DIBT/img_prefs_style/resolve/main/artifacts/image_generation_2/images/b172c7078a07c159f5f8da7bd1220ddd.jpeg", "prompt": "8-bit intellect, pixelated wisdom, retro digital brain, vintage game insight, soft neon glow, intricate pixel art, vibrant color palette, nostalgic ambiance" } }, "id": "f5224be1-2e1b-428e-94b1-9c0f397092fa", "metadata": { "category": "Animation", "evolution": "quality", "model_1": "schnell", "model_2": "dev", "sub_category": "Pixel Art" }, "responses": { "preference": [ { "user_id": "c53e62ab-d792-4854-98f6-593b2ffb55bc", "value": "image_2" }, { "user_id": "b1ab2cdd-29b8-4cf9-b6e0-7543589d21a3", "value": "image_2" }, { "user_id": "da3e5871-920c-44da-8c44-1e94260c581e", "value": "both_good" }, { "user_id": "b31dd1ed-78b6-4d50-8f11-7ce32ba17d64", "value": "image_2" }, { "user_id": "6b984f66-86b3-421e-a32c-cd3592ee27a1", "value": "both_bad" } ] }, "status": "completed", "suggestions": {}, "vectors": {} } ``` While the same record in HuggingFace `datasets` looks as follows: ```json { "_server_id": "30403740-6a5e-48d7-839e-dcea7ad0dfda", "category": "Animation", "evolution": "quality", "id": "f5224be1-2e1b-428e-94b1-9c0f397092fa", "images": { "image_1": "https://huggingface.co/datasets/DIBT/img_prefs_style/resolve/main/artifacts/image_generation_0/images/b172c7078a07c159f5f8da7bd1220ddd.jpeg", "image_2": "https://huggingface.co/datasets/DIBT/img_prefs_style/resolve/main/artifacts/image_generation_2/images/b172c7078a07c159f5f8da7bd1220ddd.jpeg", "prompt": "8-bit intellect, pixelated wisdom, retro digital brain, vintage game insight, soft neon glow, intricate pixel art, vibrant color palette, nostalgic ambiance" }, "model_1": "schnell", "model_2": "dev", "preference.responses": [ "image_2", "image_2", "both_good", "image_2", "both_bad" ], "preference.responses.status": [ "submitted", "submitted", "submitted", "submitted", "submitted" ], "preference.responses.users": [ "c53e62ab-d792-4854-98f6-593b2ffb55bc", "b1ab2cdd-29b8-4cf9-b6e0-7543589d21a3", "da3e5871-920c-44da-8c44-1e94260c581e", "b31dd1ed-78b6-4d50-8f11-7ce32ba17d64", "6b984f66-86b3-421e-a32c-cd3592ee27a1" ], "status": "completed", "sub_category": "Pixel Art" } ``` ### Data Splits The dataset contains a single split, which is `train`. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation guidelines [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
tattabio/OG_prot90
tattabio
"2024-11-18T23:05:04Z"
2
1
[ "license:cc-by-sa-4.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-11T19:50:40Z"
--- dataset_info: features: - name: id dtype: string - name: sequence dtype: string splits: - name: train num_bytes: 31071554280 num_examples: 85007726 download_size: 27610510142 dataset_size: 31071554280 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-sa-4.0 --- # OG_prot90: An Open Genomic Protein Dataset The `OG_prot90` dataset is a protein-only dataset, created by clustering the Open Genomic dataset ([`OG`](https://huggingface.co/datasets/tattabio/OG)) at 90% sequence identity. MMseqs2 linclust (Steinegger and SΓΆding 2018) was used to cluster all 400M protein sequences from the OG dataset, resulting in 85M protein sequences. Sequences were clustered at 90% sequence id and 90% sequence coverage. ## Use ```python import datasets ds = datasets.load_dataset('tattabio/OG_prot90') ``` To preview the dataset without downloading, load in streaming mode: ```python import datasets ds = datasets.load_dataset('tattabio/OG_prot90', streaming=True)['train'] print(next(iter(ds))) ``` ## Citation **BibTeX:** ``` @article{Cornman2024, title = {The OMG dataset: An Open MetaGenomic corpus for mixed-modality genomic language modeling}, url = {https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850}, DOI = {10.1101/2024.08.14.607850}, publisher = {Cold Spring Harbor Laboratory}, author = {Cornman, Andre and West-Roberts, Jacob and Camargo, Antonio Pedro and Roux, Simon and Beracochea, Martin and Mirdita, Milot and Ovchinnikov, Sergey and Hwang, Yunha}, year = {2024}, } ```
iszhaoxin/MCEval8K
iszhaoxin
"2024-11-18T07:00:00Z"
2
0
[ "license:cc-by-4.0", "region:us" ]
null
"2024-11-18T07:00:00Z"
--- license: cc-by-4.0 ---
bizb0630/alpaca-cleaned_uz
bizb0630
"2024-11-18T18:51:56Z"
2
0
[ "task_categories:text-generation", "language:uz", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "instruction-finetuning" ]
[ "text-generation" ]
"2024-11-18T18:45:34Z"
--- license: cc-by-4.0 language: - uz tags: - instruction-finetuning pretty_name: Alpaca-Cleaned-Uz task_categories: - text-generation --- ### Dataset Summary This dataset is a translation of the [alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) dataset into Uzbek (Latin), using the GPT-4o mini API.
kaiwenw/nov18_oasst_pref_jdpo_llama8b_0.9_n_9_temp_0.9
kaiwenw
"2024-11-19T02:16:13Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T02:16:09Z"
--- dataset_info: features: - name: judge_prompt dtype: string - name: judge_responses sequence: string - name: prefs sequence: string - name: vote dtype: string - name: user_prompt dtype: string - name: chosen_response dtype: string - name: reject_response dtype: string splits: - name: train_chosen_first num_bytes: 90657202 num_examples: 7019 - name: train_reject_first num_bytes: 90468846 num_examples: 7019 - name: validation_chosen_first num_bytes: 4573021 num_examples: 355 - name: validation_reject_first num_bytes: 4548444 num_examples: 355 download_size: 71185658 dataset_size: 190247513 configs: - config_name: default data_files: - split: train_chosen_first path: data/train_chosen_first-* - split: train_reject_first path: data/train_reject_first-* - split: validation_chosen_first path: data/validation_chosen_first-* - split: validation_reject_first path: data/validation_reject_first-* ---
emilyphamm/quanloccumon
emilyphamm
"2024-11-19T03:21:51Z"
2
0
[ "license:mit", "region:us" ]
null
"2024-11-19T03:21:51Z"
--- license: mit ---
Yotofu/so100_shoes
Yotofu
"2024-11-19T04:36:12Z"
2
0
[ "task_categories:robotics", "region:us", "LeRobot", "so100_stereo", "tutorial" ]
[ "robotics" ]
"2024-11-19T04:35:53Z"
--- task_categories: - robotics tags: - LeRobot - so100_stereo - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
corniclr25/stack-mined-go-v1
corniclr25
"2024-11-19T07:18:23Z"
2
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T06:59:31Z"
--- dataset_info: features: - name: query dtype: string - name: document dtype: string - name: negatives sequence: string - name: metadata struct: - name: objective struct: - name: paired sequence: 'null' - name: self sequence: 'null' - name: triplet sequence: sequence: string splits: - name: train num_bytes: 67930273171 num_examples: 7000000 download_size: 24368886917 dataset_size: 67930273171 configs: - config_name: default data_files: - split: train path: data/train-* ---
aonmao/hcj_videos
aonmao
"2024-11-19T07:00:26Z"
2
0
[ "license:mit", "region:us" ]
null
"2024-11-19T07:00:26Z"
--- license: mit ---
corniclr25/stack-mined-java-v1
corniclr25
"2024-11-19T07:55:44Z"
2
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T07:18:29Z"
--- dataset_info: features: - name: query dtype: string - name: document dtype: string - name: negatives sequence: string - name: metadata struct: - name: objective struct: - name: paired sequence: 'null' - name: self sequence: 'null' - name: triplet sequence: sequence: string splits: - name: train num_bytes: 142451950689 num_examples: 16000000 download_size: 50443007078 dataset_size: 142451950689 configs: - config_name: default data_files: - split: train path: data/train-* ---
corniclr25/stack-mined-ruby-v1
corniclr25
"2024-11-19T09:00:33Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T08:57:24Z"
--- dataset_info: features: - name: query dtype: string - name: document dtype: string - name: negatives sequence: string - name: metadata struct: - name: objective struct: - name: paired sequence: 'null' - name: self sequence: 'null' - name: triplet sequence: sequence: string splits: - name: train num_bytes: 5576970404 num_examples: 890029 download_size: 2027859709 dataset_size: 5576970404 configs: - config_name: default data_files: - split: train path: data/train-* ---
corniclr25/stack-mined-php-v1
corniclr25
"2024-11-19T09:19:22Z"
2
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T09:00:35Z"
--- dataset_info: features: - name: query dtype: string - name: document dtype: string - name: negatives sequence: string - name: metadata struct: - name: objective struct: - name: paired sequence: 'null' - name: self sequence: 'null' - name: triplet sequence: sequence: string splits: - name: train num_bytes: 31467350418 num_examples: 3000000 download_size: 11980582978 dataset_size: 31467350418 configs: - config_name: default data_files: - split: train path: data/train-* ---
matthewdelorenzo/dpo_verilog_buggy
matthewdelorenzo
"2024-11-19T09:59:22Z"
2
0
[ "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T09:52:45Z"
--- license: mit ---
cymen-arfor/evals-btb-whisper-large-v2-ft-ca-25awr
cymen-arfor
"2024-11-19T10:32:38Z"
2
0
[ "language:cy", "license:cc0-1.0", "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "speech recognition" ]
null
"2024-11-19T10:32:18Z"
--- language: - cy license: cc0-1.0 tags: - speech recognition metrics: - wer - cer --- __Model__: cymen-arfor/whisper-large-v2-ft-ca-25awr __Test Set__: DewiBrynJones/banc-trawsgrifiadau-bangor-clean __Split__: test ------------------------------------------------------------------------------------------------------------------------------------ __WER: 52.721032__ __CER: 21.859754__
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_964e979c-7acc-4bd6-a1c0-3ec9a63dcfd4
argilla-internal-testing
"2024-11-19T10:56:12Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T10:56:12Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_51487f0c-5751-41d3-8bf8-46722af3818a
argilla-internal-testing
"2024-11-19T10:56:15Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T10:56:14Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b8fa2bca-5688-4a50-bd61-dc4fae6ee848
argilla-internal-testing
"2024-11-19T10:56:37Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T10:56:36Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_1a5b216b-24ae-49da-bc66-c35add8803fe
argilla-internal-testing
"2024-11-19T10:56:48Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T10:56:46Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_798766d7-b28c-4087-9686-cef17204655a
argilla-internal-testing
"2024-11-19T10:57:54Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T10:57:53Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
CGIAR/AgricultureVideosQnA2
CGIAR
"2024-11-19T11:36:15Z"
2
0
[ "task_categories:question-answering", "language:or", "language:hi", "license:apache-2.0", "size_categories:1K<n<10K", "region:us", "agriculture", "videoqna", "videos" ]
[ "question-answering" ]
"2024-11-19T11:35:25Z"
--- license: apache-2.0 task_categories: - question-answering language: - or - hi tags: - agriculture - videoqna - videos size_categories: - 1K<n<10K --- The dataset is in XLS format with multiple sheets named for different languages. The dataset is primarily used for training and ground truth of answers that can be generated for agriculture related queries from the videos. Each sheet has list of video urls (youtube links) and the question that can be asked, corresponding answers that can be generated from the videos, source of information in the answer and time stamps. The sources of information could be: Transcript: based on what one hears Object: Based on an object shown Scene description: based on what is described Text overlay: based on text over lay shown in video Corresponding time stamps are also provided. The videos are in the following languages: Hindi Oriya
gowtham28/math_qa_pairs8thclass1
gowtham28
"2024-11-19T11:48:59Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T11:48:58Z"
--- dataset_info: features: - name: conversations list: list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 43387 num_examples: 1 download_size: 22039 dataset_size: 43387 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_3ea49f74-55d7-487f-800e-bc166419c15e
argilla-internal-testing
"2024-11-19T11:58:04Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T11:58:03Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_27e84950-dff9-478a-b577-b2a84c96d4b7
argilla-internal-testing
"2024-11-19T11:58:05Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T11:58:04Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b1efc119-f3d6-45fe-ace0-14ad51d929ba
argilla-internal-testing
"2024-11-19T11:58:21Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T11:58:19Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_5efac0fb-a660-49d2-89a9-573165071686
argilla-internal-testing
"2024-11-19T11:58:23Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T11:58:22Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_c07d0b4f-39b0-4ff5-a784-78ad9f7636fa
argilla-internal-testing
"2024-11-19T12:18:08Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:18:07Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_42b70cd6-af21-4747-bd92-c4b4d9e34dd5
argilla-internal-testing
"2024-11-19T12:18:19Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:18:18Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_70cd6bd2-35b6-408b-bea4-b94d5195bd39
argilla-internal-testing
"2024-11-19T12:18:33Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:18:33Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_e02aa976-e1e3-400c-8d69-d9d481328c98
argilla-internal-testing
"2024-11-19T12:18:56Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:18:55Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_dcafd96c-5608-4314-ad7e-d7290d47f7a9
argilla-internal-testing
"2024-11-19T12:47:10Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:47:10Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_f8763579-32dc-4d6d-b39d-8841dc999678
argilla-internal-testing
"2024-11-19T12:47:13Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:47:12Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b8692b64-f8cf-4ee1-a0bf-021748469668
argilla-internal-testing
"2024-11-19T12:47:20Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:47:19Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_0bb11bf2-5689-456e-83a2-f9ce282dd46d
argilla-internal-testing
"2024-11-19T12:47:30Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:47:28Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
liyucheng/annotation
liyucheng
"2024-11-19T12:51:31Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:51:26Z"
--- dataset_info: features: - name: entry_id dtype: string - name: published dtype: string - name: title dtype: string - name: authors sequence: string - name: primary_category dtype: string - name: categories sequence: string - name: text dtype: string - name: instruction_type dtype: string - name: section dtype: string splits: - name: train num_bytes: 134401099 num_examples: 3084 download_size: 53208021 dataset_size: 134401099 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_0159f511-b815-456f-aa4a-3d68742ef322
argilla-internal-testing
"2024-11-19T12:57:28Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:57:27Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_3b010dac-2ebd-4cb6-a4c7-0eb31cadf39c
argilla-internal-testing
"2024-11-19T12:57:37Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:57:36Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_8a69bc58-ed75-4f0e-ae07-ce474106a6e5
argilla-internal-testing
"2024-11-19T12:57:43Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:57:42Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_1338483e-61c7-4a06-8df2-8c21becc9944
argilla-internal-testing
"2024-11-19T12:57:51Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:57:50Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_997d3bfe-d3eb-4005-ad5b-00a79f0f89e1
argilla-internal-testing
"2024-11-19T12:57:57Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T12:57:56Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_5ecedb73-3c75-4788-afa8-2f78b5cf9189
argilla-internal-testing
"2024-11-19T13:33:30Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:29Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_ff4ff1fd-78f6-4516-9c81-efb9f84e5f3e
argilla-internal-testing
"2024-11-19T13:33:38Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:38Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_e5f613f2-d469-4b5c-8c17-2a10a64f17af
argilla-internal-testing
"2024-11-19T13:33:41Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:40Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_783950c7-fec9-4516-9874-68e5c5a46c09
argilla-internal-testing
"2024-11-19T13:33:42Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:42Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b5dc1623-9301-461a-b19d-1cc4ccfeb26f
argilla-internal-testing
"2024-11-19T13:33:47Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:46Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_838e8dd4-886e-4b23-8bb7-3fe54ab39854
argilla-internal-testing
"2024-11-19T13:33:46Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:46Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_ce8310bc-8477-4d21-a7f4-950d50909c80
argilla-internal-testing
"2024-11-19T13:33:48Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:48Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_fc7da037-3876-4784-9f18-f03187e0569f
argilla-internal-testing
"2024-11-19T13:33:50Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:33:49Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_654d21f1-543c-499f-80a5-361bbd4a6e85
argilla-internal-testing
"2024-11-19T13:34:08Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:34:07Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_cf38bfa3-3135-4a77-b1e8-77c0a2456a58
argilla-internal-testing
"2024-11-19T13:34:10Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:34:09Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_55934b45-b3a6-4524-bcfd-ff7fc2af1c2c
argilla-internal-testing
"2024-11-19T13:49:54Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:49:53Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_d90528e4-dcf3-4671-b983-7a2f1f254652
argilla-internal-testing
"2024-11-19T13:50:01Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:50:00Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_1943d7a5-3db0-4782-af81-91e8a47a6285
argilla-internal-testing
"2024-11-19T13:50:17Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:50:15Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_c622e757-8090-482a-862c-8a5f067da2c6
argilla-internal-testing
"2024-11-19T13:50:16Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:50:15Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_0d8d96d1-a920-4a67-8714-c3b01e3c6833
argilla-internal-testing
"2024-11-19T13:50:34Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T13:50:32Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_f1984007-58f6-4742-af65-ee04b38336de
argilla-internal-testing
"2024-11-19T14:23:33Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T14:23:31Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_9ad7ed6e-23a6-4db1-90dd-8a272002471d
argilla-internal-testing
"2024-11-19T14:23:34Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T14:23:33Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_f00bea88-b7df-4a4e-afb8-cddac9996326
argilla-internal-testing
"2024-11-19T14:23:36Z"
2
0
[ "region:us" ]
null
"2024-11-19T14:23:35Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_dfc39812-9224-4ad9-b014-20a216ef62a4
argilla-internal-testing
"2024-11-19T14:23:44Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T14:23:43Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
VargheseP/palgo_ellipse_new_test
VargheseP
"2024-11-19T14:43:04Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T14:41:59Z"
--- dataset_info: features: - name: image dtype: image - name: caption_basic dtype: string - name: caption_artsy dtype: string - name: caption_wt_parts dtype: string - name: conditioning_image dtype: image - name: mask_image dtype: image splits: - name: test num_bytes: 193616843.125 num_examples: 4655 download_size: 117620079 dataset_size: 193616843.125 configs: - config_name: default data_files: - split: test path: data/test-* ---
VargheseP/palgo_ellipse_new_validation
VargheseP
"2024-11-19T14:43:43Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T14:43:08Z"
--- dataset_info: features: - name: image dtype: image - name: caption_basic dtype: string - name: caption_artsy dtype: string - name: caption_wt_parts dtype: string - name: conditioning_image dtype: image - name: mask_image dtype: image splits: - name: validation num_bytes: 125880976.15 num_examples: 3025 download_size: 78553180 dataset_size: 125880976.15 configs: - config_name: default data_files: - split: validation path: data/validation-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_8ae4d5df-2c89-44f0-96f5-19e833ebbb48
argilla-internal-testing
"2024-11-19T16:04:05Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:03:48Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_2a23a0de-e95c-4f2d-af09-a631ec1bf2f7
argilla-internal-testing
"2024-11-19T16:04:17Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:04:13Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_4e82c9d5-3a71-4675-89dc-2d62527bc666
argilla-internal-testing
"2024-11-19T16:04:48Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:04:47Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_6e0860cd-b565-4736-8d49-63483b8184b9
argilla-internal-testing
"2024-11-19T16:05:02Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:05:00Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_c437a5a5-86cc-47ef-8903-58bc65f488b3
argilla-internal-testing
"2024-11-19T16:05:01Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:05:00Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_d56f0769-a2bc-4a89-b16a-d96db7f5f2dc
argilla-internal-testing
"2024-11-19T16:38:59Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:38:59Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_e156eb23-9eb5-41cb-a911-35a2fe965b84
argilla-internal-testing
"2024-11-19T16:39:03Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:39:02Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_f870bc22-b5f0-4e66-99a5-69bf8d1af066
argilla-internal-testing
"2024-11-19T16:39:04Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:39:02Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_c5e53f92-f34a-4538-bc10-e3c4da555333
argilla-internal-testing
"2024-11-19T16:39:07Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:39:06Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_88fd0de0-b7d0-4004-9c77-49a2ebf44139
argilla-internal-testing
"2024-11-19T16:39:13Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T16:39:12Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
enjalot/ls-fineweb-edu-100k
enjalot
"2024-11-19T16:41:02Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "latent-scope" ]
null
"2024-11-19T16:40:14Z"
--- tags: - latent-scope --- # ls-fineweb-edu-100k This dataset contains the files necessary to view in [latentscope](https://github.com/enjalot/latent-scope). The files in the `latentscope` are used by the app to view. You can also preview the scope TODO Total size of dataset files: 1.3 GB TODO: download script inside latentscope
maranovak3/joe-small
maranovak3
"2024-11-19T17:40:19Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T17:40:18Z"
--- dataset_info: features: - name: text list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 48435 num_examples: 31 download_size: 28693 dataset_size: 48435 configs: - config_name: default data_files: - split: train path: data/train-* ---
2203A51529/Indian_language_community_chatbot.csv
2203A51529
"2024-11-19T18:03:58Z"
2
0
[ "task_categories:question-answering", "task_categories:text-classification", "task_categories:text-generation", "language:te", "language:hi", "language:ta", "language:ml", "size_categories:1K<n<10K", "region:us" ]
[ "question-answering", "text-classification", "text-generation" ]
"2024-11-19T18:00:08Z"
--- task_categories: - question-answering - text-classification - text-generation language: - te - hi - ta - ml pretty_name: sony size_categories: - 1K<n<10K ---
dooder35/whereisterminal
dooder35
"2024-11-19T18:10:19Z"
2
0
[ "license:other", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-19T18:06:58Z"
--- license: other license_name: question license_link: https://huggingface.co/new-dataset ---
mlfoundations-dev/airoboros_trivia_instructions
mlfoundations-dev
"2024-11-19T20:59:59Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T20:59:55Z"
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string splits: - name: train num_bytes: 2755950 num_examples: 20009 download_size: 1320909 dataset_size: 2755950 configs: - config_name: default data_files: - split: train path: data/train-* ---
vinesmsuic/SwissProtCLAP_random_10k_gpt4o
vinesmsuic
"2024-11-19T21:11:59Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T21:11:58Z"
--- dataset_info: features: - name: UniProt ID dtype: string - name: Protein Sequence dtype: string - name: gt_desc dtype: string - name: structure_info dtype: string - name: functional_info dtype: string splits: - name: train num_bytes: 17074568 num_examples: 10000 download_size: 10103847 dataset_size: 17074568 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/airoboros_joke_instructions
mlfoundations-dev
"2024-11-19T21:46:12Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-19T21:46:10Z"
--- dataset_info: features: - name: instruction dtype: string - name: response dtype: string splits: - name: train num_bytes: 6908746 num_examples: 64328 download_size: 1599912 dataset_size: 6908746 configs: - config_name: default data_files: - split: train path: data/train-* ---
self-generate/ds_coder_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized
self-generate
"2024-11-20T00:24:17Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T00:24:15Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 13578497 num_examples: 4029 download_size: 5584385 dataset_size: 13578497 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
self-generate/ds_coder_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-full_response_traceback
self-generate
"2024-11-20T00:24:19Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T00:24:17Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: generate_4 dtype: string - name: generate_4_score dtype: int64 - name: traceback_4 dtype: string - name: generate_5 dtype: string - name: generate_5_score dtype: int64 - name: traceback_5 dtype: string - name: generate_6 dtype: string - name: generate_6_score dtype: int64 - name: traceback_6 dtype: string - name: generate_7 dtype: string - name: generate_7_score dtype: int64 - name: traceback_7 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 59285191 num_examples: 4029 download_size: 22114021 dataset_size: 59285191 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-full_response_traceback" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
self-generate/ds_coder_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized_all_pairs
self-generate
"2024-11-20T00:24:20Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T00:24:19Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 43956401 num_examples: 13284 download_size: 10857438 dataset_size: 43956401 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
RyanYr/reflect_llama318Bit_math-test_t2
RyanYr
"2024-11-20T01:46:47Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T01:46:46Z"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: subject dtype: string - name: level dtype: int64 - name: unique_id dtype: string - name: response@0 sequence: string - name: response@1 sequence: string - name: response@2 sequence: string splits: - name: train num_bytes: 3404290 num_examples: 500 download_size: 1174961 dataset_size: 3404290 configs: - config_name: default data_files: - split: train path: data/train-* ---
8803-DML-Upscaling/wawa_manifold
8803-DML-Upscaling
"2024-11-20T02:10:19Z"
2
0
[ "license:mit", "region:us" ]
null
"2024-11-20T02:08:44Z"
--- license: mit ---
PROCIT-SANDBOX/training_dataset_ner_0.2
PROCIT-SANDBOX
"2024-11-20T04:00:01Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T03:59:57Z"
--- dataset_info: features: - name: id dtype: string - name: tokens sequence: string - name: pos_tags sequence: class_label: names: '0': '"' '1': '''''' '2': '#' '3': $ '4': ( '5': ) '6': ',' '7': . '8': ':' '9': '``' '10': CC '11': CD '12': DT '13': EX '14': FW '15': IN '16': JJ '17': JJR '18': JJS '19': LS '20': MD '21': NN '22': NNP '23': NNPS '24': NNS '25': NN|SYM '26': PDT '27': POS '28': PRP '29': PRP$ '30': RB '31': RBR '32': RBS '33': RP '34': SYM '35': TO '36': UH '37': VB '38': VBD '39': VBG '40': VBN '41': VBP '42': VBZ '43': WDT '44': WP '45': WP$ '46': WRB - name: chunk_tags sequence: class_label: names: '0': O '1': B-ADJP '2': I-ADJP '3': B-ADVP '4': I-ADVP '5': B-CONJP '6': I-CONJP '7': B-INTJ '8': I-INTJ '9': B-LST '10': I-LST '11': B-NP '12': I-NP '13': B-PP '14': I-PP '15': B-PRT '16': I-PRT '17': B-SBAR '18': I-SBAR '19': B-UCP '20': I-UCP '21': B-VP '22': I-VP - name: ner_tags sequence: class_label: names: '0': O '1': B-PER '2': I-PER '3': B-ORG '4': I-ORG '5': B-LOC '6': I-LOC '7': B-MISC '8': I-MISC splits: - name: train num_bytes: 28408069 num_examples: 158225 - name: validation num_bytes: 4417979 num_examples: 21273 - name: test num_bytes: 4267858 num_examples: 21480 download_size: 5832528 dataset_size: 37093906 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
HamdanXI/libriTTS_dev_wav2vec2_latent_layer0_1sec_PERFECT_chunk_5
HamdanXI
"2024-11-21T10:07:40Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T09:19:54Z"
--- dataset_info: features: - name: audio_clip sequence: float64 - name: layer0_prediction sequence: float64 - name: predicted_text dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 238160498 num_examples: 18 download_size: 185149686 dataset_size: 238160498 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "libriTTS_dev_wav2vec2_latent_layer0_1sec_PERFECT_chunk_5" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
oserikov/pmi
oserikov
"2024-11-20T09:21:21Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T09:21:18Z"
--- dataset_info: features: - name: all struct: - name: interlinear-text list: - name: item struct: - name: source dtype: string - name: paragraph list: - name: item struct: - name: speaker dtype: string - name: phrase list: - name: item struct: - name: ft dtype: string - name: id dtype: string - name: participant dtype: string - name: timestamp sequence: string - name: word list: list: - name: item struct: - name: grammar_tags sequence: string - name: translation sequence: string - name: txt dtype: string - name: morph list: - name: item struct: - name: gls dtype: string - name: id dtype: string - name: txt dtype: string - name: item dtype: 'null' splits: - name: train num_bytes: 29025 num_examples: 1 download_size: 23237 dataset_size: 29025 configs: - config_name: default data_files: - split: train path: data/train-* ---
jangkimo/searchdata_small
jangkimo
"2024-11-20T10:00:36Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T10:00:21Z"
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 89202417 num_examples: 52814 download_size: 45132961 dataset_size: 89202417 configs: - config_name: default data_files: - split: train path: data/train-* ---
RAG23/dataset_FAQ
RAG23
"2024-11-20T10:22:14Z"
2
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T10:21:28Z"
--- license: mit ---
knkrn5/wealthpsychology-raw-data
knkrn5
"2024-11-20T10:28:25Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T10:28:09Z"
--- dataset_info: features: - name: wp nav dtype: string - name: wp nav_link dtype: string splits: - name: wp_pages num_bytes: 413 num_examples: 7 - name: wp_home num_bytes: 1351 num_examples: 10 - name: blog_categories num_bytes: 96 num_examples: 12 - name: fin_calculators num_bytes: 48 num_examples: 6 - name: fin_quizzes num_bytes: 64 num_examples: 8 - name: contact_info num_bytes: 40 num_examples: 5 - name: about_us num_bytes: 24 num_examples: 3 - name: our_team num_bytes: 40 num_examples: 5 - name: our_plan num_bytes: 128 num_examples: 16 download_size: 11115 dataset_size: 2204 configs: - config_name: default data_files: - split: wp_pages path: data/wp_pages-* - split: wp_home path: data/wp_home-* - split: blog_categories path: data/blog_categories-* - split: fin_calculators path: data/fin_calculators-* - split: fin_quizzes path: data/fin_quizzes-* - split: contact_info path: data/contact_info-* - split: about_us path: data/about_us-* - split: our_team path: data/our_team-* - split: our_plan path: data/our_plan-* ---