datasetId
stringlengths 5
121
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
2.59M
| likes
int64 0
6.32k
| tags
sequencelengths 1
7.92k
| task_categories
sequencelengths 0
40
⌀ | createdAt
unknown | card
stringlengths 19
1.01M
|
---|---|---|---|---|---|---|---|---|
DopeorNope/only_gsm8k_v2 | DopeorNope | "2024-11-20T10:29:49Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T10:29:46Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 3993094
num_examples: 7473
- name: validation
num_bytes: 3993094
num_examples: 7473
download_size: 4616658
dataset_size: 7986188
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
paolordls/crosslg-contaminated-benchmark-en-sm-3-r1024 | paolordls | "2024-11-20T12:21:32Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T12:21:31Z" | ---
dataset_info:
features:
- name: fake_news
dtype: string
- name: scenario_id
dtype: int64
- name: real_news
dtype: string
- name: fake_keyword
dtype: string
- name: real_question
dtype: string
- name: fake_question
dtype: string
- name: real_answer
dtype: string
- name: fake_answer
dtype: string
splits:
- name: train
num_bytes: 132600
num_examples: 20
download_size: 122257
dataset_size: 132600
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
0xayman/Qwen2.5-0.5B-fc-v1-json-results | 0xayman | "2024-11-20T15:13:41Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T15:13:37Z" | ---
dataset_info:
features:
- name: query
dtype: string
- name: id
dtype: int64
- name: answers
dtype: string
- name: tools
dtype: string
- name: prompt
dtype: string
- name: input
dtype: string
- name: prediction
dtype: string
splits:
- name: train
num_bytes: 338643853
num_examples: 60000
download_size: 101264911
dataset_size: 338643853
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mrlyle/img-nov-20 | mrlyle | "2024-11-20T18:14:29Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T18:14:28Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': test
'1': train
splits:
- name: train
num_bytes: 20637.0
num_examples: 4
- name: test
num_bytes: 22886.0
num_examples: 3
download_size: 51062
dataset_size: 43523.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
clearclarencs/finetuning_demo | clearclarencs | "2024-11-20T20:42:07Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T20:42:04Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 491836
num_examples: 520
download_size: 148992
dataset_size: 491836
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Mitake/cluster1_cat1 | Mitake | "2024-11-20T21:40:24Z" | 2 | 0 | [
"license:mit",
"size_categories:10K<n<100K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T21:34:22Z" | ---
license: mit
---
|
Mitake/cluster1_cat3 | Mitake | "2024-11-20T21:41:08Z" | 2 | 0 | [
"license:mit",
"size_categories:10K<n<100K",
"format:csv",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T21:34:52Z" | ---
license: mit
---
|
allenai/tulu-3-sft-reused-on-policy-8b | allenai | "2024-11-21T16:53:06Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:32:01Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 108701467
num_examples: 19444
download_size: 59809485
dataset_size: 108701467
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama 3.1 Tulu 3 SFT reused (on-policy 8b)
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact.*
This preference dataset is part of our Tulu 3 preference mixture:
it contains prompts from our [SFT mixture](https://huggingface.co/datasets/allenai/tulu-3-sft-mixture) and it contains 19,444 generation pairs (some of which on-policy from: https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) obtained using the following models:
- [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) (Apache 2.0)
- [Mistral Nemo Instruct 2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) (Apache 2.0)
- [Tulu 2 7B](https://huggingface.co/allenai/tulu-2-7b) (Ai2 ImpACT Low Risk License)
- [Tulu 2 13B](https://huggingface.co/allenai/tulu-2-13b) (Ai2 ImpACT Low Risk License)
- [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) (Apache 2.0)
- [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) (Apache 2.0)
- [MPT 30B Chat](https://huggingface.co/mosaicml/mpt-30b-chat) (CC-BY-SA-4.0)
- [MPT 7B 8k Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat) (CC-BY-SA-4.0)
- [Google Gemma 2 27B it](https://huggingface.co/google/gemma-2-27b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [Google Gemma 2 9B it](https://huggingface.co/google/gemma-2-9b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [InternLM2.5 20B](https://huggingface.co/internlm/internlm2_5-20b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 7B](https://huggingface.co/internlm/internlm2_5-7b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 1.8B](https://huggingface.co/internlm/internlm2_5-1_8b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b-instruct) (Apache 2.0)
- [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.)
- [Qwen2.5 32B Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (Apache 2.0)
- [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0)
- [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0)
- [Llama 3.1 8B Instruct ](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (this dataset was partially "Built with Meta Llama 3" and is thus subject to the Llama 3 License)
- [GPT-4 Turbo](https://openai.com/index/new-models-and-developer-products-announced-at-devday/) and [GPT-4o](https://openai.com/index/hello-gpt-4o/) (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use))
- [Claude 3.5 Sonnet](https://www.anthropic.com/news/claude-3-5-sonnet) (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup))
## License
This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use.
|
allenai/tulu-3-wildchat-if-on-policy-8b | allenai | "2024-11-21T16:52:21Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:32:06Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 90414403
num_examples: 10792
download_size: 46225965
dataset_size: 90414403
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama 3.1 Tulu 3 Wildchat IF (on-policy 8b)
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact.*
This preference dataset is part of our Tulu 3 preference mixture:
it contains prompts from [WildChat](allenai/WildChat-1M), which include constraints, and it contains 10,792 generation pairs (some of which on-policy from allenai/Llama-3.1-Tulu-3-8B) obtained using the following models:
- [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) (Apache 2.0)
- [Mistral Nemo Instruct 2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) (Apache 2.0)
- [Tulu 2 7B](https://huggingface.co/allenai/tulu-2-7b) (Ai2 ImpACT Low Risk License)
- [Tulu 2 13B](https://huggingface.co/allenai/tulu-2-13b) (Ai2 ImpACT Low Risk License)
- [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) (Apache 2.0)
- [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) (Apache 2.0)
- [MPT 30B Chat](https://huggingface.co/mosaicml/mpt-30b-chat) (CC-BY-SA-4.0)
- [MPT 7B 8k Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat) (CC-BY-SA-4.0)
- [Google Gemma 2 27B it](https://huggingface.co/google/gemma-2-27b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [Google Gemma 2 9B it](https://huggingface.co/google/gemma-2-9b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [InternLM2.5 20B](https://huggingface.co/internlm/internlm2_5-20b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 7B](https://huggingface.co/internlm/internlm2_5-7b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 1.8B](https://huggingface.co/internlm/internlm2_5-1_8b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b-instruct) (Apache 2.0)
- [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.)
- [Qwen2.5 32B Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (Apache 2.0)
- [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0)
- [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0)
- [Llama 3.1 8B Instruct ](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (this dataset was partially "Built with Meta Llama 3" and is thus subject to the Llama 3 License)
- [GPT-4 Turbo](https://openai.com/index/new-models-and-developer-products-announced-at-devday/) and [GPT-4o](https://openai.com/index/hello-gpt-4o/) (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use))
- [Claude 3.5 Sonnet](https://www.anthropic.com/news/claude-3-5-sonnet) (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup))
## Completion Generation Approach:
Given a set of prompts, we generated the completions and preferences using a synthetic pipeline that combines both on-policy and off-policy data, and obtained the preference annotations on four different aspects using the Ultrafeedback template and an LLM judge. The code for the synthetic generation pipeline is found in the scripts/synth_pref directory of [open-instruct](https://github.com/allenai/open-instruct/)
## License
This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use.
|
allenai/tulu-3-sft-reused-on-policy-70b | allenai | "2024-11-21T16:47:54Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:47:51Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 108105727
num_examples: 19453
download_size: 59589549
dataset_size: 108105727
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama 3.1 Tulu 3 SFT reused (on-policy 70b)
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact.*
This preference dataset is part of our Tulu 3 preference mixture:
it contains prompts from [Tulu-3-SFT](https://huggingface.co/datasets/allenai/tulu-3-sft-mixture), which include constraints, and it contains 19,444 generation pairs (some of which on-policy from allenai/Llama-3.1-Tulu-3-70B) obtained using the following models:
- [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) (Apache 2.0)
- [Mistral Nemo Instruct 2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) (Apache 2.0)
- [Tulu 2 7B](https://huggingface.co/allenai/tulu-2-7b) (Ai2 ImpACT Low Risk License)
- [Tulu 2 13B](https://huggingface.co/allenai/tulu-2-13b) (Ai2 ImpACT Low Risk License)
- [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) (Apache 2.0)
- [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) (Apache 2.0)
- [MPT 30B Chat](https://huggingface.co/mosaicml/mpt-30b-chat) (CC-BY-SA-4.0)
- [MPT 7B 8k Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat) (CC-BY-SA-4.0)
- [Google Gemma 2 27B it](https://huggingface.co/google/gemma-2-27b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [Google Gemma 2 9B it](https://huggingface.co/google/gemma-2-9b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [InternLM2.5 20B](https://huggingface.co/internlm/internlm2_5-20b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 7B](https://huggingface.co/internlm/internlm2_5-7b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 1.8B](https://huggingface.co/internlm/internlm2_5-1_8b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b-instruct) (Apache 2.0)
- [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.)
- [Qwen2.5 32B Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (Apache 2.0)
- [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0)
- [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0)
- [Llama 3.1 8B Instruct ](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (this dataset was partially "Built with Meta Llama 3" and is thus subject to the Llama 3 License)
- [GPT-4 Turbo](https://openai.com/index/new-models-and-developer-products-announced-at-devday/) and [GPT-4o](https://openai.com/index/hello-gpt-4o/) (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use))
- [Claude 3.5 Sonnet](https://www.anthropic.com/news/claude-3-5-sonnet) (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup))
## Completion Generation Approach:
Given a set of prompts, we generated the completions and preferences using a synthetic pipeline that combines both on-policy and off-policy data, and obtained the preference annotations on four different aspects using the Ultrafeedback template and an LLM judge. The code for the synthetic generation pipeline is found in the scripts/synth_pref directory of [open-instruct](https://github.com/allenai/open-instruct/)
## License
This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use.
|
allenai/tulu-3-wildchat-if-on-policy-70b | allenai | "2024-11-21T16:47:07Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:47:58Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 90351793
num_examples: 10793
download_size: 46153976
dataset_size: 90351793
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama 3.1 Tulu 3 Wildchat IF (on-policy 70b)
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact.*
This preference dataset is part of our Tulu 3 preference mixture:
it contains prompts from [WildChat](allenai/WildChat-1M), which include constraints, and it contains 10,792 generation pairs (some of which on-policy from allenai/Llama-3.1-Tulu-3-70B) obtained using the following models:
- [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) (Apache 2.0)
- [Mistral Nemo Instruct 2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) (Apache 2.0)
- [Tulu 2 7B](https://huggingface.co/allenai/tulu-2-7b) (Ai2 ImpACT Low Risk License)
- [Tulu 2 13B](https://huggingface.co/allenai/tulu-2-13b) (Ai2 ImpACT Low Risk License)
- [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) (Apache 2.0)
- [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) (Apache 2.0)
- [MPT 30B Chat](https://huggingface.co/mosaicml/mpt-30b-chat) (CC-BY-SA-4.0)
- [MPT 7B 8k Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat) (CC-BY-SA-4.0)
- [Google Gemma 2 27B it](https://huggingface.co/google/gemma-2-27b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [Google Gemma 2 9B it](https://huggingface.co/google/gemma-2-9b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [InternLM2.5 20B](https://huggingface.co/internlm/internlm2_5-20b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 7B](https://huggingface.co/internlm/internlm2_5-7b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 1.8B](https://huggingface.co/internlm/internlm2_5-1_8b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b-instruct) (Apache 2.0)
- [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.)
- [Qwen2.5 32B Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (Apache 2.0)
- [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0)
- [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0)
- [Llama 3.1 8B Instruct ](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (this dataset was partially "Built with Meta Llama 3" and is thus subject to the Llama 3 License)
- [GPT-4 Turbo](https://openai.com/index/new-models-and-developer-products-announced-at-devday/) and [GPT-4o](https://openai.com/index/hello-gpt-4o/) (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use))
- [Claude 3.5 Sonnet](https://www.anthropic.com/news/claude-3-5-sonnet) (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup))
## Completion Generation Approach:
Given a set of prompts, we generated the completions and preferences using a synthetic pipeline that combines both on-policy and off-policy data, and obtained the preference annotations on four different aspects using the Ultrafeedback template and an LLM judge. The code for the synthetic generation pipeline is found in the scripts/synth_pref directory of [open-instruct](https://github.com/allenai/open-instruct/)
## License
This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use.
|
allenai/tulu-3-wildchat-unused | allenai | "2024-11-21T16:43:34Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:48:51Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 682190855
num_examples: 82783
download_size: 386432288
dataset_size: 682190855
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama 3.1 Tulu 3 Wildchat unused
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact.*
This preference dataset is part of our Tulu 3 preference mixture:
it contains prompts from [WildChat](allenai/WildChat-1M) and it contains 82,783 generation pairs obtained using the following models:
- [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) (Apache 2.0)
- [Mistral Nemo Instruct 2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) (Apache 2.0)
- [Tulu 2 7B](https://huggingface.co/allenai/tulu-2-7b) (Ai2 ImpACT Low Risk License)
- [Tulu 2 13B](https://huggingface.co/allenai/tulu-2-13b) (Ai2 ImpACT Low Risk License)
- [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) (Apache 2.0)
- [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) (Apache 2.0)
- [MPT 30B Chat](https://huggingface.co/mosaicml/mpt-30b-chat) (CC-BY-SA-4.0)
- [MPT 7B 8k Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat) (CC-BY-SA-4.0)
- [Google Gemma 2 27B it](https://huggingface.co/google/gemma-2-27b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [Google Gemma 2 9B it](https://huggingface.co/google/gemma-2-9b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [InternLM2.5 20B](https://huggingface.co/internlm/internlm2_5-20b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 7B](https://huggingface.co/internlm/internlm2_5-7b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 1.8B](https://huggingface.co/internlm/internlm2_5-1_8b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b-instruct) (Apache 2.0)
- [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.)
- [Qwen2.5 32B Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (Apache 2.0)
- [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0)
- [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0)
- [Llama 3.1 8B Instruct ](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (this dataset was partially "Built with Meta Llama 3" and is thus subject to the Llama 3 License)
- [GPT-4 Turbo](https://openai.com/index/new-models-and-developer-products-announced-at-devday/) and [GPT-4o](https://openai.com/index/hello-gpt-4o/) (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use))
- [Claude 3.5 Sonnet](https://www.anthropic.com/news/claude-3-5-sonnet) (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup))
## Completion Generation Approach:
Given a set of prompts, we generated the completions and preferences using a synthetic pipeline that combines both on-policy and off-policy data, and obtained the preference annotations on four different aspects using the Ultrafeedback template and an LLM judge. The code for the synthetic generation pipeline is found in the scripts/synth_pref directory of [open-instruct](https://github.com/allenai/open-instruct/)
## License
This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use.
|
allenai/tulu-3-wildchat-reused-on-policy-70b | allenai | "2024-11-21T16:43:05Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:49:10Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 141772436
num_examples: 17242
download_size: 84326528
dataset_size: 141772436
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# Llama 3.1 Tulu 3 Wildchat reused (on-policy 70B)
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data. Some portions of the dataset are non-commercial. We present the mixture as a research artifact.*
This preference dataset is part of our Tulu 3 preference mixture:
it contains prompts from [WildChat](allenai/WildChat-1M) and it contains 17,207 generation pairs (some of which on-policy completions from https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) obtained using the following models:
- [Mistral 7B Instruct v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) (Apache 2.0)
- [Mistral Nemo Instruct 2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) (Apache 2.0)
- [Tulu 2 7B](https://huggingface.co/allenai/tulu-2-7b) (Ai2 ImpACT Low Risk License)
- [Tulu 2 13B](https://huggingface.co/allenai/tulu-2-13b) (Ai2 ImpACT Low Risk License)
- [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) (Apache 2.0)
- [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) (Apache 2.0)
- [MPT 30B Chat](https://huggingface.co/mosaicml/mpt-30b-chat) (CC-BY-SA-4.0)
- [MPT 7B 8k Chat](https://huggingface.co/mosaicml/mpt-7b-8k-chat) (CC-BY-SA-4.0)
- [Google Gemma 2 27B it](https://huggingface.co/google/gemma-2-27b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [Google Gemma 2 9B it](https://huggingface.co/google/gemma-2-9b-it) (Gemma is provided under and subject to the Gemma Terms of Use found at [ai.google.dev/gemma/terms](https://ai.google.dev/gemma/terms))
- [InternLM2.5 20B](https://huggingface.co/internlm/internlm2_5-20b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 7B](https://huggingface.co/internlm/internlm2_5-7b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [InternLM2.5 1.8B](https://huggingface.co/internlm/internlm2_5-1_8b-chat) (InternLM weights are fully open for academic research and also allow free commercial usage. A commercial license can be obtained as instructed in the model card.)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b-instruct) (Apache 2.0)
- [Qwen2.5 72B Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) (Qwen is licensed under the Qwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.)
- [Qwen2.5 32B Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) (Apache 2.0)
- [Qwen2.5 14B Instruct](https://huggingface.co/Qwen/Qwen2.5-14B-Instruct) (Apache 2.0)
- [Qwen2.5 7B Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) (Apache 2.0)
- [Llama 3.1 8B Instruct ](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3.1 70B Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct) (this dataset was partially "Built with Llama" and is thus subject to the Llama 3.1 License)
- [Llama 3 8B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (this dataset was partially "Built with Meta Llama 3" and is thus subject to the Llama 3 License)
- [GPT-4 Turbo](https://openai.com/index/new-models-and-developer-products-announced-at-devday/) and [GPT-4o](https://openai.com/index/hello-gpt-4o/) (Outputs produced by GPT-4 are subject to OpenAI's [terms of use](https://openai.com/policies/row-terms-of-use))
- [Claude 3.5 Sonnet](https://www.anthropic.com/news/claude-3-5-sonnet) (Outputs produced by Claude are subject to Anthropic [terms of service](https://www.anthropic.com/legal/commercial-terms) and [usage policy](https://www.anthropic.com/legal/aup))
## Completion Generation Approach:
Given a set of prompts, we generated the completions and preferences using a synthetic pipeline that combines both on-policy and off-policy data, and obtained the preference annotations on four different aspects using the Ultrafeedback template and an LLM judge. The code for the synthetic generation pipeline is found in the scripts/synth_pref directory of [open-instruct](https://github.com/allenai/open-instruct/)
## License
This dataset is licensed under ODC-BY. It is intended for research and educational use in accordance with Ai2's [Responsible Use Guidelines](https://allenai.org/responsible-use). This dataset includes output data generated from third party models that are subject to separate terms governing their use.
|
Doub7e/SDv2_512-Count-seedmining-rectified | Doub7e | "2024-11-20T22:53:18Z" | 2 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T22:52:20Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 1056605943.0
num_examples: 2400
download_size: 1056599258
dataset_size: 1056605943.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
nona-ghazizadeh/CoT | nona-ghazizadeh | "2024-11-21T01:48:54Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T00:48:22Z" | ---
pretty_name: j
---
CoT dataset |
KKACHI-HUB/TEST | KKACHI-HUB | "2024-11-21T01:33:15Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T01:32:58Z" | ---
dataset_info:
features:
- name: original
dtype: string
- name: refined
dtype: string
- name: evaluation
dtype: string
splits:
- name: train
num_bytes: 332143078
num_examples: 36576
download_size: 162240496
dataset_size: 332143078
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
hyen99-03/argue_finetuningset | hyen99-03 | "2024-11-21T02:11:14Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T02:11:03Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: input
dtype: string
splits:
- name: train
num_bytes: 1050213
num_examples: 620
download_size: 191761
dataset_size: 1050213
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
rPucs/Us | rPucs | "2024-11-21T20:03:03Z" | 2 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"modality:text",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2024-11-21T02:14:25Z" | ---
license: mit
---
|
Yuanxin-Liu/Iter3_generation | Yuanxin-Liu | "2024-11-21T02:14:54Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T02:14:51Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: question
dtype: string
- name: responses
sequence: string
- name: answer
dtype: string
- name: pick
dtype: bool
- name: rewards
sequence: int64
splits:
- name: train
num_bytes: 154594176.28231227
num_examples: 13809
download_size: 42573142
dataset_size: 154594176.28231227
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
sirjoy/so100_test | sirjoy | "2024-11-22T01:15:06Z" | 2 | 0 | [
"task_categories:robotics",
"region:us",
"LeRobot",
"so100",
"tutorial"
] | [
"robotics"
] | "2024-11-21T02:18:08Z" | ---
task_categories:
- robotics
tags:
- LeRobot
- so100
- tutorial
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
r1v3r/snarkOS | r1v3r | "2024-11-21T02:26:07Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T02:26:03Z" | ---
dataset_info:
features:
- name: repo
dtype: string
- name: pull_number
dtype: int64
- name: instance_id
dtype: string
- name: issue_numbers
sequence: string
- name: base_commit
dtype: string
- name: patch
dtype: string
- name: test_patch
dtype: string
- name: problem_statement
dtype: string
- name: hints_text
dtype: string
- name: created_at
dtype: string
- name: version
dtype: string
splits:
- name: train
num_bytes: 344157
num_examples: 9
download_size: 131492
dataset_size: 344157
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
r1v3r/bottlerocket | r1v3r | "2024-11-21T02:26:46Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T02:26:42Z" | ---
dataset_info:
features:
- name: repo
dtype: string
- name: pull_number
dtype: int64
- name: instance_id
dtype: string
- name: issue_numbers
sequence: string
- name: base_commit
dtype: string
- name: patch
dtype: string
- name: test_patch
dtype: string
- name: problem_statement
dtype: string
- name: hints_text
dtype: string
- name: created_at
dtype: string
splits:
- name: train
num_bytes: 132729
num_examples: 4
download_size: 56995
dataset_size: 132729
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Nabin1995/yol-en-words-sentences | Nabin1995 | "2024-11-21T02:57:18Z" | 2 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T02:57:14Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 661643
num_examples: 7901
download_size: 199565
dataset_size: 661643
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rm_bon64_01 | 1231czx | "2024-11-21T03:18:53Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:18:52Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1289534
num_examples: 805
download_size: 770382
dataset_size: 1289534
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rrm_bon64_01 | 1231czx | "2024-11-21T03:18:55Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:18:54Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1474951
num_examples: 805
download_size: 874853
dataset_size: 1474951
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rm_bon64_02 | 1231czx | "2024-11-21T03:18:57Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:18:56Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1288750
num_examples: 805
download_size: 768186
dataset_size: 1288750
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rrm_bon64_02 | 1231czx | "2024-11-21T03:18:59Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:18:58Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1480763
num_examples: 805
download_size: 887060
dataset_size: 1480763
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rm_bon64_05 | 1231czx | "2024-11-21T03:19:01Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:19:00Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1279264
num_examples: 805
download_size: 764873
dataset_size: 1279264
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rrm_bon64_05 | 1231czx | "2024-11-21T03:19:03Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:19:02Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1486565
num_examples: 805
download_size: 887873
dataset_size: 1486565
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rm_bon8_005 | 1231czx | "2024-11-21T03:19:07Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:19:06Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1349555
num_examples: 805
download_size: 807037
dataset_size: 1349555
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rrm_bon8_01 | 1231czx | "2024-11-21T03:19:09Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:19:08Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1475080
num_examples: 805
download_size: 872281
dataset_size: 1475080
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
1231czx/test_ver2_rebuttal_af_rm_bon8_01 | 1231czx | "2024-11-21T03:19:10Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:19:09Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
- name: generator
dtype: string
splits:
- name: train
num_bytes: 1355607
num_examples: 805
download_size: 811942
dataset_size: 1355607
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
juliadollis/mistral_toxic_hatespeech | juliadollis | "2024-11-21T12:02:38Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:37:43Z" | ---
dataset_info:
features:
- name: nome_arquivo
dtype: string
- name: file_id
dtype: string
- name: user_id
dtype: int64
- name: subforum_id
dtype: int64
- name: num_contexts
dtype: int64
- name: label
dtype: string
- name: text
dtype: string
- name: is_toxic
dtype: int64
- name: predicted_is_toxic
dtype: int64
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 739
num_examples: 3
download_size: 6922
dataset_size: 739
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
self-generate/ds_chat_original_cn_rl_oj_debug_iter0-pos-binarized-reflection-scored | self-generate | "2024-11-21T03:57:46Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T03:57:45Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: test
dtype: string
- name: reflection_generate_0
dtype: string
- name: reflection_generate_0_score
dtype: int64
- name: reflection_traceback_0
dtype: string
- name: reflection_generate_1
dtype: string
- name: reflection_generate_1_score
dtype: int64
- name: reflection_traceback_1
dtype: string
- name: reflection_generate_2
dtype: string
- name: reflection_generate_2_score
dtype: int64
- name: reflection_traceback_2
dtype: string
- name: reflection_generate_3
dtype: string
- name: reflection_generate_3_score
dtype: int64
- name: reflection_traceback_3
dtype: string
- name: average_reflection_score
dtype: float64
- name: chosen_average_reflection_score
dtype: float64
splits:
- name: train
num_bytes: 27466
num_examples: 3
download_size: 78925
dataset_size: 27466
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_original_cn_rl_oj_debug_iter0-pos-binarized-reflection-scored"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DeL-TaiseiOzaki/magpie-gemma-2-9b-it | DeL-TaiseiOzaki | "2024-11-21T04:01:22Z" | 2 | 0 | [
"license:gemma",
"size_categories:10K<n<100K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T04:00:38Z" | ---
license: gemma
---
|
self-generate/ds_coder_original_cn_rl_oj_debug_iter0-pos-binarized-reflection-scored | self-generate | "2024-11-21T04:12:39Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T04:12:38Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: rejected_traceback
dtype: string
- name: test
dtype: string
- name: reflection_generate_0
dtype: string
- name: reflection_generate_0_score
dtype: int64
- name: reflection_traceback_0
dtype: string
- name: reflection_generate_1
dtype: string
- name: reflection_generate_1_score
dtype: int64
- name: reflection_traceback_1
dtype: string
- name: reflection_generate_2
dtype: string
- name: reflection_generate_2_score
dtype: int64
- name: reflection_traceback_2
dtype: string
- name: reflection_generate_3
dtype: string
- name: reflection_generate_3_score
dtype: int64
- name: reflection_traceback_3
dtype: string
- name: average_reflection_score
dtype: float64
- name: chosen_average_reflection_score
dtype: float64
splits:
- name: train
num_bytes: 149315
num_examples: 10
download_size: 127276
dataset_size: 149315
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_coder_original_cn_rl_oj_debug_iter0-pos-binarized-reflection-scored"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
omnineura/supriya102 | omnineura | "2024-11-21T04:40:25Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T04:40:04Z" | ---
dataset_info:
features:
- name: context
dtype: string
- name: question
dtype: string
- name: answers
dtype: string
splits:
- name: train
num_bytes: 76279
num_examples: 102
download_size: 22504
dataset_size: 76279
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
swaghjal/Codebridge_2 | swaghjal | "2024-11-21T04:43:46Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T04:43:21Z" | ---
dataset_info:
features:
- name: python
dtype: string
- name: r
dtype: string
- name: usecase
dtype: string
- name: status
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: icl
num_bytes: 76469
num_examples: 40
- name: test
num_bytes: 1124501
num_examples: 650
download_size: 377123
dataset_size: 1200970
configs:
- config_name: default
data_files:
- split: icl
path: data/icl-*
- split: test
path: data/test-*
---
# Dataset Card for "Codebridge_2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
derricka59/Model-trainer-v1 | derricka59 | "2024-11-21T05:16:58Z" | 2 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-21T05:16:58Z" | ---
license: apache-2.0
---
|
omnineura/supriyaaug | omnineura | "2024-11-21T05:19:36Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T05:19:36Z" | ---
dataset_info:
features:
- name: sepalLength
dtype: float64
- name: sepalWidth
dtype: float64
- name: petalLength
dtype: float64
- name: petalWidth
dtype: float64
- name: species
dtype: string
splits:
- name: train
num_bytes: 6650
num_examples: 150
download_size: 3899
dataset_size: 6650
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DevCar/dataset_internado_rotatorio_v3 | DevCar | "2024-11-21T05:23:42Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T05:23:39Z" | ---
dataset_info:
features:
- name: area
dtype: string
- name: nombre_pdf
dtype: string
- name: contenido
dtype: string
splits:
- name: train
num_bytes: 24461099.503796507
num_examples: 14223
- name: test
num_bytes: 2719046.496203493
num_examples: 1581
download_size: 16914146
dataset_size: 27180146.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
derricka59/New_training-data-set | derricka59 | "2024-11-21T05:25:20Z" | 2 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-21T05:24:17Z" | ---
license: apache-2.0
---
git clone https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct |
SHASWATSINGH3101/key_info_bail_para_prompts_TEST_V1 | SHASWATSINGH3101 | "2024-11-21T05:40:59Z" | 2 | 0 | [
"license:cc-by-nc-nd-4.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] | null | "2024-11-21T05:40:27Z" | ---
license: cc-by-nc-nd-4.0
---
|
violetxi/NUMINA-V1-Clean-Blocks-3400_4600-577_600 | violetxi | "2024-11-22T00:47:07Z" | 2 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:20:38Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: is_correct
dtype: bool
- name: target_answer
dtype: string
- name: solution
dtype: string
- name: solution_steps
dtype: string
- name: attempts
dtype: string
- name: model_answer
dtype: string
splits:
- name: train
num_bytes: 1337149391
num_examples: 102544
download_size: 130178292
dataset_size: 1337149391
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Sujithanumala/oic_dataset | Sujithanumala | "2024-11-21T06:23:20Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:23:08Z" | ---
dataset_info:
features:
- name: input_ids
sequence: int32
- name: attention_mask
sequence: int8
splits:
- name: train
num_bytes: 87001272.0
num_examples: 33879
- name: test
num_bytes: 37287360.0
num_examples: 14520
download_size: 25057481
dataset_size: 124288632.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
oakwood/mori_supdiff | oakwood | "2024-11-21T06:25:00Z" | 2 | 0 | [
"task_categories:robotics",
"region:us",
"LeRobot",
"tutorial"
] | [
"robotics"
] | "2024-11-21T06:24:40Z" | ---
task_categories:
- robotics
tags:
- LeRobot
- tutorial
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
DonaldLee/bedkids-nft | DonaldLee | "2024-11-21T11:39:01Z" | 2 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-21T06:34:09Z" | ---
license: apache-2.0
---
|
joycewu/common_voice_16_1_zh_TW_pseudo_labelled_large_v2_concat | joycewu | "2024-11-21T08:22:09Z" | 2 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:39:13Z" | ---
dataset_info:
config_name: zh-TW
features:
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
- name: condition_on_prev
sequence: int64
- name: whisper_transcript
dtype: string
splits:
- name: train
num_bytes: 746186952.0
num_examples: 857
- name: validation
num_bytes: 538995300.0
num_examples: 617
- name: test
num_bytes: 594574487.0
num_examples: 684
download_size: 1682750460
dataset_size: 1879756739.0
configs:
- config_name: zh-TW
data_files:
- split: train
path: zh-TW/train-*
- split: validation
path: zh-TW/validation-*
- split: test
path: zh-TW/test-*
---
|
mjjang/custom_drug_dataset | mjjang | "2024-11-21T06:42:51Z" | 2 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:42:45Z" | ---
dataset_info:
features:
- name: patient_id
dtype: int64
- name: drugName
dtype: string
- name: condition
dtype: string
- name: review
dtype: string
- name: rating
dtype: float64
- name: date
dtype: string
- name: usefulCount
dtype: int64
- name: review_length
dtype: int64
splits:
- name: train
num_bytes: 65975578
num_examples: 110811
- name: validation
num_bytes: 16422578
num_examples: 27703
- name: test
num_bytes: 27430466
num_examples: 46108
download_size: 63886981
dataset_size: 109828622
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
lihaonan/multible | lihaonan | "2024-11-21T06:45:34Z" | 2 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-21T06:45:34Z" | ---
license: apache-2.0
---
|
ahmedheakl/ar_lvis_instruct | ahmedheakl | "2024-11-21T06:53:08Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:46:13Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: image_path
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
- name: image
dtype: image
splits:
- name: train
num_bytes: 8215424279
num_examples: 50000
download_size: 8142669176
dataset_size: 8215424279
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dayeonglim/custom_drug_dataset | dayeonglim | "2024-11-21T06:48:33Z" | 2 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:48:26Z" | ---
dataset_info:
features:
- name: patient_id
dtype: int64
- name: drugName
dtype: string
- name: condition
dtype: string
- name: review
dtype: string
- name: rating
dtype: float64
- name: date
dtype: string
- name: usefulCount
dtype: int64
- name: review_length
dtype: int64
splits:
- name: train
num_bytes: 65975578
num_examples: 110811
- name: validation
num_bytes: 16422578
num_examples: 27703
- name: test
num_bytes: 27430466
num_examples: 46108
download_size: 63886981
dataset_size: 109828622
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
GitBag/llama3-ultrafeedback-reasoning-ReRe-armo-tokenized | GitBag | "2024-11-21T08:04:32Z" | 2 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:49:30Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: augmented_prompt
dtype: string
- name: shared_thought
sequence: string
- name: chosen_ts
sequence: string
- name: chosen_ts_reward
dtype: float64
- name: reject_ts
sequence: string
- name: reject_ts_reward
dtype: float64
- name: augmented_prompt_llama
dtype: string
- name: augmented_prompt_llama_token
sequence: int64
- name: chosen_ts_llama
dtype: string
- name: chosen_ts_llama_token
sequence: int64
- name: reject_ts_llama
dtype: string
- name: reject_ts_llama_token
sequence: int64
splits:
- name: train
num_bytes: 10033865614.582733
num_examples: 228254
- name: test
num_bytes: 43959210.417266436
num_examples: 1000
download_size: 1378535869
dataset_size: 10077824825.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
junnystateofmind/conversational_ai | junnystateofmind | "2024-11-21T06:51:42Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T06:51:40Z" | ---
dataset_info:
features:
- name: trajectory
list:
- name: content
dtype: string
- name: role
dtype: string
- name: sampled_len_from_5
dtype: int64
- name: sampled_h_from_sampled_len
dtype: int64
- name: trajectory_sampled_h_from_sampled_len
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 305004
num_examples: 10
download_size: 56891
dataset_size: 305004
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
minimaster/fine_tuned | minimaster | "2024-11-21T07:13:10Z" | 2 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T07:13:07Z" | ---
dataset_info:
features:
- name: question
dtype: string
- name: answer
dtype: string
- name: url
dtype: string
- name: Transformed
dtype: string
splits:
- name: train
num_bytes: 7036678
num_examples: 10535
download_size: 2502832
dataset_size: 7036678
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
balamurali18/impaired-data | balamurali18 | "2024-11-21T07:18:06Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T07:15:34Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: text
dtype: string
- name: start_time
dtype: string
- name: end_time
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 12010236.0
num_examples: 5
download_size: 12009568
dataset_size: 12010236.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
hellomomiji/PairRM-dataset | hellomomiji | "2024-11-22T00:42:33Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T07:32:40Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: rejected
dtype: string
- name: chosen
dtype: string
splits:
- name: train
num_bytes: 75496
num_examples: 50
download_size: 46488
dataset_size: 75496
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
gusornu/github-issues | gusornu | "2024-11-21T07:33:20Z" | 2 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T07:33:15Z" | ---
dataset_info:
features:
- name: url
dtype: string
- name: repository_url
dtype: string
- name: labels_url
dtype: string
- name: comments_url
dtype: string
- name: events_url
dtype: string
- name: html_url
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: number
dtype: int64
- name: title
dtype: string
- name: user
struct:
- name: login
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: avatar_url
dtype: string
- name: gravatar_id
dtype: string
- name: url
dtype: string
- name: html_url
dtype: string
- name: followers_url
dtype: string
- name: following_url
dtype: string
- name: gists_url
dtype: string
- name: starred_url
dtype: string
- name: subscriptions_url
dtype: string
- name: organizations_url
dtype: string
- name: repos_url
dtype: string
- name: events_url
dtype: string
- name: received_events_url
dtype: string
- name: type
dtype: string
- name: user_view_type
dtype: string
- name: site_admin
dtype: bool
- name: labels
list:
- name: id
dtype: int64
- name: node_id
dtype: string
- name: url
dtype: string
- name: name
dtype: string
- name: color
dtype: string
- name: default
dtype: bool
- name: description
dtype: string
- name: state
dtype: string
- name: locked
dtype: bool
- name: assignee
struct:
- name: login
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: avatar_url
dtype: string
- name: gravatar_id
dtype: string
- name: url
dtype: string
- name: html_url
dtype: string
- name: followers_url
dtype: string
- name: following_url
dtype: string
- name: gists_url
dtype: string
- name: starred_url
dtype: string
- name: subscriptions_url
dtype: string
- name: organizations_url
dtype: string
- name: repos_url
dtype: string
- name: events_url
dtype: string
- name: received_events_url
dtype: string
- name: type
dtype: string
- name: user_view_type
dtype: string
- name: site_admin
dtype: bool
- name: assignees
list:
- name: login
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: avatar_url
dtype: string
- name: gravatar_id
dtype: string
- name: url
dtype: string
- name: html_url
dtype: string
- name: followers_url
dtype: string
- name: following_url
dtype: string
- name: gists_url
dtype: string
- name: starred_url
dtype: string
- name: subscriptions_url
dtype: string
- name: organizations_url
dtype: string
- name: repos_url
dtype: string
- name: events_url
dtype: string
- name: received_events_url
dtype: string
- name: type
dtype: string
- name: user_view_type
dtype: string
- name: site_admin
dtype: bool
- name: milestone
struct:
- name: url
dtype: string
- name: html_url
dtype: string
- name: labels_url
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: number
dtype: int64
- name: title
dtype: string
- name: description
dtype: string
- name: creator
struct:
- name: login
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: avatar_url
dtype: string
- name: gravatar_id
dtype: string
- name: url
dtype: string
- name: html_url
dtype: string
- name: followers_url
dtype: string
- name: following_url
dtype: string
- name: gists_url
dtype: string
- name: starred_url
dtype: string
- name: subscriptions_url
dtype: string
- name: organizations_url
dtype: string
- name: repos_url
dtype: string
- name: events_url
dtype: string
- name: received_events_url
dtype: string
- name: type
dtype: string
- name: user_view_type
dtype: string
- name: site_admin
dtype: bool
- name: open_issues
dtype: int64
- name: closed_issues
dtype: int64
- name: state
dtype: string
- name: created_at
dtype: timestamp[s]
- name: updated_at
dtype: timestamp[s]
- name: due_on
dtype: 'null'
- name: closed_at
dtype: 'null'
- name: comments
sequence: string
- name: created_at
dtype: timestamp[s]
- name: updated_at
dtype: timestamp[s]
- name: closed_at
dtype: timestamp[s]
- name: author_association
dtype: string
- name: active_lock_reason
dtype: 'null'
- name: draft
dtype: bool
- name: pull_request
struct:
- name: url
dtype: string
- name: html_url
dtype: string
- name: diff_url
dtype: string
- name: patch_url
dtype: string
- name: merged_at
dtype: timestamp[s]
- name: body
dtype: string
- name: closed_by
struct:
- name: login
dtype: string
- name: id
dtype: int64
- name: node_id
dtype: string
- name: avatar_url
dtype: string
- name: gravatar_id
dtype: string
- name: url
dtype: string
- name: html_url
dtype: string
- name: followers_url
dtype: string
- name: following_url
dtype: string
- name: gists_url
dtype: string
- name: starred_url
dtype: string
- name: subscriptions_url
dtype: string
- name: organizations_url
dtype: string
- name: repos_url
dtype: string
- name: events_url
dtype: string
- name: received_events_url
dtype: string
- name: type
dtype: string
- name: user_view_type
dtype: string
- name: site_admin
dtype: bool
- name: reactions
struct:
- name: url
dtype: string
- name: total_count
dtype: int64
- name: '+1'
dtype: int64
- name: '-1'
dtype: int64
- name: laugh
dtype: int64
- name: hooray
dtype: int64
- name: confused
dtype: int64
- name: heart
dtype: int64
- name: rocket
dtype: int64
- name: eyes
dtype: int64
- name: timeline_url
dtype: string
- name: performed_via_github_app
dtype: 'null'
- name: state_reason
dtype: string
- name: is_pull_request
dtype: bool
splits:
- name: train
num_bytes: 8299878
num_examples: 1000
download_size: 2244132
dataset_size: 8299878
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
magneum/pixelhue-captioned-dataset | magneum | "2024-11-21T07:35:14Z" | 2 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-21T07:35:14Z" | ---
license: apache-2.0
---
|
dsfsi/zasca-sum | dsfsi | "2024-11-21T13:10:58Z" | 2 | 0 | [
"license:cc-by-sa-4.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"doi:10.57967/hf/3565",
"region:us"
] | null | "2024-11-21T07:41:08Z" | ---
license: cc-by-sa-4.0
dataset_info:
- config_name: with_summaries
features:
- name: id
dtype: string
- name: type
dtype: string
- name: year
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 57867100
num_examples: 1521
- name: validation
num_bytes: 10985252
num_examples: 299
- name: test
num_bytes: 11291457
num_examples: 298
download_size: 42168935
dataset_size: 80143809
- config_name: without_summaries
features:
- name: id
dtype: string
- name: type
dtype: string
- name: year
dtype: string
- name: input
dtype: string
splits:
- name: all_data
num_bytes: 55925930
num_examples: 2053
download_size: 29653319
dataset_size: 55925930
configs:
- config_name: with_summaries
data_files:
- split: train
path: with_summaries/train-*
- split: validation
path: with_summaries/validation-*
- split: test
path: with_summaries/test-*
- config_name: without_summaries
data_files:
- split: all_data
path: without_summaries/all_data-*
---
|
yoki123/small_MIA | yoki123 | "2024-11-21T07:58:25Z" | 2 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T07:49:54Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: split
dtype: string
- name: label
dtype: int64
splits:
- name: new_Math
num_bytes: 313124
num_examples: 100
- name: new_News
num_bytes: 302819
num_examples: 100
- name: new_Wiki
num_bytes: 80460
num_examples: 100
- name: new_ArXiv
num_bytes: 125433
num_examples: 100
- name: new_Twitter
num_bytes: 30628
num_examples: 100
- name: Pile_CC
num_bytes: 525742
num_examples: 100
- name: Pile_Wiki
num_bytes: 503993
num_examples: 100
- name: Pile_ArXiv
num_bytes: 4912893
num_examples: 100
- name: Pile_Math
num_bytes: 821900
num_examples: 100
- name: Pile_Github
num_bytes: 857031
num_examples: 100
- name: full
num_bytes: 8474023
num_examples: 1000
download_size: 8185046
dataset_size: 16948046
configs:
- config_name: default
data_files:
- split: new_Math
path: data/new_Math-*
- split: new_News
path: data/new_News-*
- split: new_Wiki
path: data/new_Wiki-*
- split: new_ArXiv
path: data/new_ArXiv-*
- split: new_Twitter
path: data/new_Twitter-*
- split: Pile_CC
path: data/Pile_CC-*
- split: Pile_Wiki
path: data/Pile_Wiki-*
- split: Pile_ArXiv
path: data/Pile_ArXiv-*
- split: Pile_Math
path: data/Pile_Math-*
- split: Pile_Github
path: data/Pile_Github-*
- split: full
path: data/full-*
---
|
Marcusxx/CngFSt10sec | Marcusxx | "2024-11-21T07:51:55Z" | 2 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T07:50:52Z" | ---
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcripts
dtype: string
splits:
- name: train
num_bytes: 598099904.5376791
num_examples: 1934
- name: test
num_bytes: 74221544.33416046
num_examples: 242
- name: valid
num_bytes: 74699082.33416046
num_examples: 242
download_size: 665620175
dataset_size: 747020531.206
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: valid
path: data/valid-*
---
|
limcheekin/llmtwin | limcheekin | "2024-11-21T08:28:36Z" | 2 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-21T08:28:31Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 134606
num_examples: 288
- name: test
num_bytes: 15279
num_examples: 32
download_size: 63359
dataset_size: 149885
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
amgadhasan/arabic_tweets_dialects | amgadhasan | "2024-05-24T21:06:15Z" | 1 | 0 | [
"task_categories:text-classification",
"language:ar",
"license:mit",
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"text-classification"
] | "2024-05-24T21:04:32Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: dialect
dtype: string
splits:
- name: train
num_bytes: 24122795
num_examples: 147725
download_size: 13293546
dataset_size: 24122795
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
task_categories:
- text-classification
language:
- ar
pretty_name: Arabic Dialectical Tweets
size_categories:
- 100K<n<1M
--- |
UBC-NLP/AfroLingu-MT | UBC-NLP | "2024-08-13T19:36:25Z" | 1 | 1 | [
"language:aar",
"language:ach",
"language:afr",
"language:aka",
"language:amh",
"language:bam",
"language:bas",
"language:bem",
"language:btg",
"language:eng",
"language:ewe",
"language:fon",
"language:fra",
"language:hau",
"language:ibo",
"language:kbp",
"language:lgg",
"language:lug",
"language:mlg",
"language:nyn",
"language:orm",
"language:som",
"language:sot",
"language:swa",
"language:tir",
"language:yor",
"language:teo",
"language:gez",
"language:wal",
"language:fan",
"language:kau",
"language:kin",
"language:kon",
"language:lin",
"language:nya",
"language:pcm",
"language:ssw",
"language:tsn",
"language:tso",
"language:twi",
"language:wol",
"language:xho",
"language:zul",
"language:nnb",
"language:swc",
"language:ara",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"African MT",
"Toucan",
"Machine translation",
"UBC",
"DLNLP"
] | null | "2024-08-12T22:53:16Z" | ---
language:
- aar
- ach
- afr
- aka
- amh
- bam
- bas
- bem
- btg
- eng
- ewe
- fon
- fra
- hau
- ibo
- kbp
- lgg
- lug
- mlg
- nyn
- orm
- som
- sot
- swa
- tir
- yor
- teo
- gez
- wal
- fan
- kau
- kin
- kon
- lin
- nya
- pcm
- ssw
- tsn
- tso
- twi
- wol
- xho
- zul
- nnb
- swc
- ara
pipeline_tag: text-generation
tags:
- African MT
- Toucan
- Machine translation
- UBC
- DLNLP
extra_gated_fields:
First Name: text
Last Name: text
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
I agree to use this model for non-commercial use ONLY: checkbox
I agree to cite the Toucan paper: checkbox
geo: ip_location
By clicking Submit below I accept the terms of the license: checkbox
extra_gated_button_content: Submit
---
<div style='text-align: justify;'>
This is the repository accompanying our ACL 2024 paper [Toucan: Many-to-Many Translation for 150 African Language Pairs](https://aclanthology.org/2024.findings-acl.781/).
We address a notable gap in Natural Language Processing (NLP) by introducing a collection of resources designed to improve Machine Translation (MT) for low-resource languages, with a specific focus on African languages. First, We introduce two language models (LMs), Cheetah-1.2B and Cheetah-3.7B, with 1.2 billion and 3.7 billion parameters respectively. Next, we finetune the aforementioned models to create Toucan, an Afrocentric machine translation model designed to support 156 African language pairs. To evaluate Toucan, we carefully develop an extensive machine translation benchmark, dubbed AfroLingu-MT, tailored for evaluating machine translation. Toucan significantly outperforms other models, showcasing its remarkable performance on MT for African languages. Finally, we train a new model, spBLEU_1K, to enhance translation evaluation metrics, covering 1K languages, including 614 African languages. This work aims to advance the field of NLP, fostering cross-cultural understanding and knowledge exchange, particularly in regions with limited language resources such as Africa.
</div>
## AfroLingu-MT Benchmark
Our collection comprises data from a total of 43 datasets, encompassing 84 unique language pairs derived from 46 different languages. We also develop a new manually translated dataset useful for evaluation in the government domain. In all, the data cover 43 African languages from five language families domiciled in 29 African countries. We also include Arabic, English, and French, since these are widely spoken in Africa.
- More details about AfroLingu-MT benchmark, visit Toucan's GitHub [**Toucan paper GitHub**]("https://github.com/UBC-NLP/Toucan")
### Supoorted langauges
Below the supported langauges
```
lang_names={
"aar": "Afar",
"ach": "Acholi",
"afr": "Afrikaans",
"aka": "Akan",
"amh": "Amharic",
"bam": "Bambara",
"bas": "Basaa",
"bem": "Bemba",
"btg": "Bete Gagnoa",
"eng": "English",
"ewe": "Ewe",
"fon": "Fon",
"fra": "French",
"hau": "Hausa",
"ibo": "Igbo",
"kbp": "Kabiye",
"lgg": "Lugbara",
"lug": "Luganda",
"mlg": "Malagasy",
"nyn": "Nyakore",
"orm": "Oromo",
"som": "Somali",
"sot": "Sesotho",
"swa": "Swahili",
"tir": "Tigrinya",
"yor": "Yoruba",
"teo": "Ateso",
"gez": "Geez",
"wal": "Wolaytta",
"fan": "Fang",
"kau": "Kanuri",
"kin": "Kinyawanda",
"kon": "Kongo",
"lin": "Lingala",
"nya": "Chichewa",
"pcm": "Nigerian Pidgin",
"ssw": "Siswati",
"tsn": "Setswana",
"tso": "Tsonga",
"twi": "Twi",
"wol": "Wolof",
"xho": "Xhosa",
"zul": "Zulu",
"nnb": "Nande",
"swc": "Swahili Congo",
"ara": "Arabic"
}
```
### Loading the dataset
``` python
from datasets import load_dataset
afrolingu_mt = load_dataset("UBC-NLP/AfroLingu-MT")
print(afrolingu_mt)
```
Output:
```
DatasetDict({
train: Dataset({
features: ['langcode', 'instruction', 'input', 'output'],
num_rows: 586261
})
validation: Dataset({
features: ['langcode', 'instruction', 'input', 'output'],
num_rows: 7437
})
test: Dataset({
features: ['langcode', 'instruction', 'input', 'output'],
num_rows: 26875
})
})
```
## Citation
If you use the AfroLingu-MT benchmark for your scientific publication, or if you find the resources in this repository useful, please cite our papers as follows (to be updated):
**Toucan's Paper**
```
@inproceedings{adebara-etal-2024-cheetah,
title = "Cheetah: Natural Language Generation for 517 {A}frican Languages",
author = "Adebara, Ife and
Elmadany, AbdelRahim and
Abdul-Mageed, Muhammad",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand and virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.691",
pages = "12798--12823",
}
```
|
davit312/Armenian-speech-hy | davit312 | "2024-10-26T18:26:22Z" | 1 | 0 | [
"license:gpl-2.0",
"region:us"
] | null | "2024-09-13T19:20:24Z" | ---
license: gpl-2.0
---
greek-myths ::
total length 404.67 mins -> 6 hrs 44 mins |
LLM-EDA/BuggyVerilog | LLM-EDA | "2024-10-05T11:03:00Z" | 1 | 0 | [
"task_categories:text-generation",
"language:en",
"license:apache-2.0",
"region:us"
] | [
"text-generation"
] | "2024-10-05T10:57:59Z" | ---
license: apache-2.0
task_categories:
- text-generation
language:
- en
---
For usage, please take a look at https://github.com/CatIIIIIIII/VeriDebug. |
xingjunm/CC1M-Adv | xingjunm | "2024-10-16T03:08:25Z" | 1 | 0 | [
"license:mit",
"modality:image",
"region:us"
] | null | "2024-10-15T05:12:05Z" | ---
license: mit
---
|
nexaai2b/perry_lora_function_call_training_data | nexaai2b | "2024-10-18T19:06:55Z" | 1 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-10-18T18:21:30Z" | ---
dataset_info:
features:
- name: query
dtype: string
- name: function
dtype: string
splits:
- name: train
num_bytes: 253506.0
num_examples: 3008
download_size: 75680
dataset_size: 253506.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
llm-jp/llava-instruct-ja | llm-jp | "2024-11-19T10:35:55Z" | 1 | 0 | [
"task_categories:visual-question-answering",
"language:ja",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"visual-question-answering"
] | "2024-10-22T06:43:09Z" | ---
language:
- ja
task_categories:
- visual-question-answering
size_categories:
- 100K<n<1M
---
## Dataset Card for llava_instruct_ja
### Dataset details
This is the Japanese version of [LLaVA-Instruct](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K), which contains 156K samples.
We used `gpt-4o-mini-2024-07-18` to generate data through via Azure OpenAI API.
### License
Creative Commons Attribution 4.0 License; and it should abide by [the OpenAI terms of use](https://openai.com/policies/terms-of-use) |
allenai/tulu-3-sft-personas-instruction-following | allenai | "2024-11-21T15:57:21Z" | 1 | 0 | [
"task_categories:text-generation",
"language:en",
"license:odc-by",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2311.07911",
"arxiv:2406.20094",
"region:us"
] | [
"text-generation"
] | "2024-10-30T20:27:20Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: prompt
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: constraints
sequence: string
splits:
- name: train
num_bytes: 70397173
num_examples: 29980
download_size: 39171921
dataset_size: 70397173
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- text-generation
language:
- en
license: odc-by
size_categories:
- 10K<n<100K
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
### Dataset Descriptions
This dataset contains **29980** examples and is synthetically created to enhance model's capabilities to follow instructions precisely and to satisfy user constraints. The constraints are borrowed from the taxonomy in [IFEval dataset](https://arxiv.org/abs/2311.07911).
To generate diverse instructions, we expand the methodology in [Ge et al., 2024](https://arxiv.org/pdf/2406.20094) by using personas. More details and exact prompts used to construct the dataset can be found in our [paper]().
- **Curated by:** Allen Institute for AI
- **Paper:** [TBD]()
- **Repository:** [TBD]()
- **Language(s) (NLP):** English
- **License:** ODC-BY
- **Point of Contact:** [Faeze Brahman](mailto:faezeb@allenai.org)
### Loading
```python
from datasets import load_dataset
dataset = load_dataset("allenai/tulu-3-sft-personas-instruction-following")["train"]
```
### Dataset Structure
Each example in the dataset contains the standard instruction-tuning data points as follow:
- id (str): a unique identifier
- prompt (str): the verifiable instruction which involves satisfying 1 to 3 constraints
- messages (list): message format used for supervised fine-tuning (this contains user prompt and assistant response)
- constraints (list of str): a list of verifiable constraints that need to be satisfied by the assistant response |
llm-jp/llava-instruct-v1_5-en-subset-358k | llm-jp | "2024-11-19T11:02:16Z" | 1 | 0 | [
"task_categories:visual-question-answering",
"language:en",
"size_categories:100K<n<1M",
"region:us"
] | [
"visual-question-answering"
] | "2024-11-06T04:44:38Z" | ---
language:
- en
task_categories:
- visual-question-answering
size_categories:
- 100K<n<1M
---
## Dataset Card for llava-instruct-v1_5-en-subset-358k
### Dataset details
This dataset is a subset of the [LLaVA-1.5 Instruction Data](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json), which was used to train [llm-jp-3-vila-14b](https://huggingface.co/llm-jp/llm-jp-3-vila-14b).
This dataset includes the following datasets.
| Dataset | Images |
|:---|---:|
|LLaVA | 158K |
|[VQAv2](https://visualqa.org/) | 53K |
|[GQA](https://cs.stanford.edu/people/dorarad/gqa/index.html) | 46K |
|[OCRVQA](https://ocr-vqa.github.io/) | 80K |
|[TextVQA](https://textvqa.org/dataset/) | 22K |
### License
Creative Commons Attribution 4.0 License; and it should abide by [the OpenAI terms of use](https://openai.com/policies/terms-of-use) |
Anvilogic/CE-Typosquat-Training-Dataset | Anvilogic | "2024-11-08T18:06:56Z" | 1 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-07T10:43:16Z" | ---
dataset_info:
features:
- name: potential_typosquat
dtype: string
- name: legitimate
dtype: string
- name: label
dtype: bool
splits:
- name: train
num_bytes: 1408438
num_examples: 38000
- name: test
num_bytes: 75004
num_examples: 2000
download_size: 639859
dataset_size: 1483442
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
# Typosquat Dataset
## Dataset Summary
This dataset is intended for typosquatting detection within a domain corpus. It contains 40,000 labeled pairs, categorized as either typosquatted or non-typosquatted.
The data is divided into training and test splits, each maintaining a balanced distribution of positive and negative examples.
## Supported Tasks and Leaderboards
**CE training**: The primary task is binary classification, specifically detecting typosquatting domains. The dataset can be used to train a cross-encoder or other model types for binary classification.
## Languages
The dataset is multilingual, reflecting the diversity of domain names.
## Dataset Structure
### Data Instances
Each data instance in the dataset consists of two domains and a label indicating if the second domain is a typosquatted version of the first. An example from the training set:
```json
{
"domain": "example.com",
"sim_domain": "exarnple.com",
"label": 1
}
```
**domain**: A string representing the legitimate domain.
**sim_domain**: A string representing a potentially typosquatted domain.
**label**: An integer (0 or 1) where 1 indicates a typosquatted domain and 0 indicates no typosquatting.
### Data Splits
The dataset is divided as follows:
| Split | Number of Instances |Positive|Negative|
|----------|---------------------|--------|--------|
| Train | 38000 | 50% | 50% |
| Test | 2000 | 50% | 50% |
## Dataset Creation
### Data Generation
The domain pairs were generated using [ail-typo-squatting](https://github.com/typosquatter/ail-typo-squatting)
Data processing includes balancing positive and negative samples to ensure even representation.
### Dataset usage
This dataset was developed to facilitate large-scale typosquatting detection for cybersecurity applications.
It supports training and evaluating binary classifiers designed to identify domains that may have been intentionally misspelled for malicious purposes.
|
Anvilogic/T5-Typosquat-Training-Dataset | Anvilogic | "2024-11-11T10:07:24Z" | 1 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-08T15:05:47Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: response
dtype: string
- name: label
dtype:
class_label:
names:
'0': 'false'
'1': 'true'
splits:
- name: train
num_bytes: 3860467.2
num_examples: 40000
- name: test
num_bytes: 965116.8
num_examples: 10000
download_size: 1390903
dataset_size: 4825584.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
# Typosquat Dataset
## Dataset Summary
This dataset is intended for typosquatting detection within a domain corpus. It contains 50,000 labeled pairs, categorized as either typosquatted or non-typosquatted.
The data is divided into training and test splits, each maintaining a balanced distribution of positive and negative examples.
## Supported Tasks and Leaderboards
**T5 training**: The primary task is binary classification, specifically detecting typosquatting domains. To do so we define a new task in the T5 format and we prompt the model with both domains.
The dataset can be used to train a cross-encoder or other model types for binary classification.
## Languages
The dataset is multilingual, reflecting the diversity of domain names.
## Dataset Structure
### Data Instances
Each data instance in the dataset consists of two domains and a label indicating if the second domain is a typosquatted version of the first. An example from the training set:
```json
{'text': 'Is the first domain a typosquat of the second: lonlonsoft.com stiltsoft.net',
'response': 'false',
'label': 0}
```
**text**: A prompt string comprised of the task definition as well as the pair of candidate domain and legitimate domain.
**response**: A string representing the expected answer from the model.
**label**: An integer (0 or 1) where 1 indicates a typosquatted domain and 0 indicates no typosquatting.
### Data Splits
The dataset is divided as follows:
| Split | Number of Instances |Positive|Negative|
|----------|---------------------|--------|--------|
| Train | 40000 | 50% | 50% |
| Test | 10000 | 50% | 50% |
## Dataset Creation
### Data Generation
The domain pairs were generated using [ail-typo-squatting](https://github.com/typosquatter/ail-typo-squatting)
Data processing includes balancing positive and negative samples to ensure even representation.
### Dataset usage
This dataset was developed to facilitate large-scale typosquatting detection for cybersecurity applications.
It supports training and evaluating binary classifiers designed to identify domains that may have been intentionally misspelled for malicious purposes.
|
Anvilogic/Embedder-Typosquat-Training-Dataset | Anvilogic | "2024-11-08T18:07:00Z" | 1 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-08T17:46:34Z" | ---
dataset_info:
features:
- name: anchor
dtype: string
- name: positive
dtype: string
splits:
- name: train
num_bytes: 1499094
num_examples: 43447
- name: test
num_bytes: 377209
num_examples: 10881
download_size: 584371
dataset_size: 1876303
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
# Typosquat Embedding Dataset
## Dataset Summary
This dataset is designed for training embedding models to recognize typosquatting within a domain corpus. It consists of pairs of legitimate and typosquatted domains for use in similarity learning, enabling models to identify subtle domain alterations.
The dataset is formatted for embedding-based training, specifically useful for contrastive learning techniques or other tasks where domain similarity is a key factor.
## Supported Tasks and Leaderboards
**Embedding Training**: The primary task supported by this dataset is contrastive learning to create embeddings for typosquatting detection. The dataset can be used to train a similarity model, such as a dual-encoder, where each instance is a pair of legitimate and potentially typosquatted domains.
## Languages
This dataset includes a multilingual set of domains, reflecting the diversity of internet domains globally.
## Dataset Structure
### Data Instances
Each instance in the dataset consists of two domains:
- **anchor**: The legitimate domain.
- **positive**: A version of the domain with minor alterations that may represent typosquatting.
An example from the dataset is as follows:
```json
{
"anchor": "e-volution.ai",
"positive": "e-volutiọn.ai"
}
```
The anchor and positive columns are both strings representing domains.
The "positive" domain is a variation created by intentional typosquatting techniques (e.g., homoglyphs or character substitution).
### Data Splits
The dataset is structured to be used for embedding model training and evaluation:
- Split: Train
Number of Instances: 43,447
- Split: Test
Number of Instances: 10,881
## Dataset Creation
### Data Generation
The domain pairs were generated using [ail-typo-squatting](https://github.com/typosquatter/ail-typo-squatting)
Data processing includes balancing positive and negative samples to ensure even representation.
### Dataset Usage
This dataset is suitable for cybersecurity applications focusing on typosquatting detection. It can be used to train and evaluate embedding-based models designed to identify domains that may have been manipulated for malicious purposes, supporting efforts in online safety and domain monitoring.
|
e1010101/tongue-images-nosplit | e1010101 | "2024-11-13T08:18:10Z" | 1 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-13T08:16:56Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: pixel_values
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 1934094019.002
num_examples: 1066
download_size: 465770207
dataset_size: 1934094019.002
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
e1010101/tongue-images-nosplit-segmented | e1010101 | "2024-11-13T08:36:25Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-13T08:35:16Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: pixel_values
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 1764742614.0
num_examples: 894
download_size: 350336236
dataset_size: 1764742614.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
e1010101/tongue-images-nosplit-cropped | e1010101 | "2024-11-14T04:13:37Z" | 1 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-14T04:12:55Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: pixel_values
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 1875419490.17
num_examples: 1054
download_size: 230186487
dataset_size: 1875419490.17
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
adityasinghce92/finance-qa-10k-dataset | adityasinghce92 | "2024-11-19T10:27:34Z" | 1 | 0 | [
"language:en",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-17T14:07:13Z" | ---
language:
- en
dataset_info:
features:
- name: text
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 3279666
num_examples: 6997
download_size: 1302876
dataset_size: 3279666
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
FrancophonIA/train-o-matic | FrancophonIA | "2024-11-21T13:42:41Z" | 1 | 0 | [
"language:de",
"language:en",
"language:es",
"language:fr",
"language:it",
"language:zh",
"region:us"
] | null | "2024-11-17T15:10:19Z" | ---
language:
- de
- en
- es
- fr
- it
- zh
multilingulality:
- multilingual
viewer: false
---
> [!NOTE]
> Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/5110/
## Description
We present Train-O-Matic, a language-independent method for generating millions of sense-annotated training instances for virtually all meanings of words ina language’s vocabulary.
For more info see http://trainomatic.org/trainomatic
## Citation
```
Pasini, (2021). Train-O-Matic Large. Version 1. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/5110
``` |
FrancophonIA/E3C-Corpus-2.0.0 | FrancophonIA | "2024-11-21T13:41:11Z" | 1 | 0 | [
"language:de",
"language:it",
"language:es",
"language:eu",
"language:fr",
"region:us"
] | null | "2024-11-17T15:10:26Z" | ---
language:
- de
- it
- es
- eu
- fr
multilingulality:
- multilingual
viewer: false
---
> [!NOTE]
> Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/7618/
## Description
E3C is a freely available multilingual corpus (English, French, Italian, Spanish, and Basque) of semantically annotated clinical narratives to allow for the linguistic analysis, benchmarking, and training of information extraction systems.
It consists of two types of annotations: (i) clinical entities (e.g., pathologies), (ii) temporal information and factuality (e.g., events).
Researchers can use the benchmark training and test splits of our corpus to develop and test their own models.
## Citation
```
Minard, Anne-Lyse; Zanoli, Roberto; Altuna, Begoña; Speranza, Manuela; Magnini, Bernardo; Lavelli, Alberto (2021, August 09). European Clinical Case Corpus. Version 2.0.0. Bruno Kessler Foundation. [Dataset (Text corpus)]. https://doi.org/10.57771/dey2-g751
``` |
allenai/RLVR-GSM-MATH-IF-Mixed-Constraints | allenai | "2024-11-21T15:50:02Z" | 1 | 0 | [
"license:odc-by",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-18T19:03:54Z" | ---
dataset_info:
features:
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: ground_truth
dtype: string
- name: dataset
dtype: string
- name: constraint_type
dtype: string
- name: constraint
dtype: string
splits:
- name: train
num_bytes: 58788096
num_examples: 29946
download_size: 16533143
dataset_size: 58788096
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: odc-by
---
<img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu-3/Tulu3-logo.png" alt="Tulu3 banner" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# GSM/MATH/IF Data - RLVR Formatted
*Note that this collection is licensed under ODC-BY-1.0 license; different licenses apply to subsets of the data.*
This dataset contains data formatted for use with [open-instruct](https://github.com/allenai/open-instruct) - specifically reinforcement learning with verifiable rewards.
It was used to train the final Tulu 3 models with RL, and contains the following subsets:
- **GSM8k** (7,473 samples): The [GSM8k train set](https://huggingface.co/datasets/openai/gsm8k) formatted for use with RLVR and open-instruct. MIT License.
- **MATH** (7,500 samples): The [MATH train set](https://github.com/hendrycks/math) formatted for use with RLVR and open-instruct. MIT License.
- **IF Prompts** (14,973 samples): Prompts with verifiable constraints generated by sampling from the [Tulu 2 SFT mixture](https://huggingface.co/datasets/allenai/tulu-v2-sft-mixture) and randomly adding constraints from [IFEval](https://github.com/Rohan2002/IFEval). ODC-BY license.
Part of the Tulu 3 release, for which you can see models [here](https://huggingface.co/collections/allenai/tulu-3-models-673b8e0dc3512e30e7dc54f5) and datasets [here](https://huggingface.co/collections/allenai/tulu-3-datasets-673b8df14442393f7213f372).
## Dataset Structure
Each example in the dataset contains the standard instruction-tuning data points as follow:
- messages (list): inputs used to prompt the model (after chat template formatting).
- ground_truth (str): the answer for the given sample.
- dataset (str): For GSM8k and MATH, the answer to the question. For IF prompts, the arguments to be passed to the verifying function, as a json blob.
- constraint_type (str): the constraint present in the prompt.
- constraint (str): the constraint described in plain english. |
CodeDPO/codedpo_20241119 | CodeDPO | "2024-11-19T05:48:58Z" | 1 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-19T05:47:19Z" | ---
dataset_info:
features:
- name: question
dtype: binary
- name: tests
dtype: binary
- name: inferences
dtype: binary
splits:
- name: train
num_bytes: 10376274064
num_examples: 110966
download_size: 2322814305
dataset_size: 10376274064
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
PROCIT-SANDBOX/training_dataset_ner_0.1 | PROCIT-SANDBOX | "2024-11-19T12:59:54Z" | 1 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-19T12:59:50Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: tokens
sequence: string
- name: pos_tags
sequence:
class_label:
names:
'0': '"'
'1': ''''''
'2': '#'
'3': $
'4': (
'5': )
'6': ','
'7': .
'8': ':'
'9': '``'
'10': CC
'11': CD
'12': DT
'13': EX
'14': FW
'15': IN
'16': JJ
'17': JJR
'18': JJS
'19': LS
'20': MD
'21': NN
'22': NNP
'23': NNPS
'24': NNS
'25': NN|SYM
'26': PDT
'27': POS
'28': PRP
'29': PRP$
'30': RB
'31': RBR
'32': RBS
'33': RP
'34': SYM
'35': TO
'36': UH
'37': VB
'38': VBD
'39': VBG
'40': VBN
'41': VBP
'42': VBZ
'43': WDT
'44': WP
'45': WP$
'46': WRB
- name: chunk_tags
sequence:
class_label:
names:
'0': O
'1': B-ADJP
'2': I-ADJP
'3': B-ADVP
'4': I-ADVP
'5': B-CONJP
'6': I-CONJP
'7': B-INTJ
'8': I-INTJ
'9': B-LST
'10': I-LST
'11': B-NP
'12': I-NP
'13': B-PP
'14': I-PP
'15': B-PRT
'16': I-PRT
'17': B-SBAR
'18': I-SBAR
'19': B-UCP
'20': I-UCP
'21': B-VP
'22': I-VP
- name: ner_tags
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-MISC
'8': I-MISC
splits:
- name: train
num_bytes: 28318448
num_examples: 157374
- name: validation
num_bytes: 4406785
num_examples: 21167
- name: test
num_bytes: 4256672
num_examples: 21373
download_size: 5810373
dataset_size: 36981905
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
FrancophonIA/IWSLT_2016 | FrancophonIA | "2024-11-21T13:43:59Z" | 1 | 0 | [
"task_categories:translation",
"language:en",
"language:de",
"language:fr",
"region:us"
] | [
"translation"
] | "2024-11-19T21:13:24Z" | ---
language:
- en
- de
- fr
multilingulality:
- multilingual
task_categories:
- translation
viewer: false
---
> [!NOTE]
> Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/709/
## Description
The human evaluation (HE) dataset created for English to German (EnDe) and English to French (EnFr) MT tasks was a subset of one of the official test sets of the IWSLT 2016 evaluation campaign. The resulting HE sets are composed of 600 segments for both EnDe and EnFr, each corresponding to around 10,000 words. Human evaluation was based on Post-Editing, i.e. the manual correction of the MT system output, which was carried out by professional translators. Nine and five primary runs submitted to the evaluation campaign were post-edited for the two tasks, respectively.
Data are publicly available through the WIT3 website wit3.fbk.eu. 600 segments for both EnDe and EnFr (10K tokens each). Respectively, 9 and 5 different automatic translations post-edited by professional translators (for Analysis of MT quality and Quality Estimation components).
## Citation
```
IWSLT 2016 Human Post-Editing data (2020). Version 1.0.0 (automatically assigned). [Dataset (Text and Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/709
``` |
tobyye/lllama3-tt | tobyye | "2024-11-20T03:56:40Z" | 1 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-20T03:56:40Z" | ---
license: apache-2.0
---
|
self-generate/ds_chat_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-full_response_traceback | self-generate | "2024-11-20T05:25:05Z" | 1 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T05:25:03Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: test
dtype: string
- name: tag
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: text_prompt
dtype: string
- name: text_chosen
dtype: string
- name: text_rejected
dtype: string
- name: generate_0
dtype: string
- name: generate_0_score
dtype: int64
- name: traceback_0
dtype: string
- name: generate_1
dtype: string
- name: generate_1_score
dtype: int64
- name: traceback_1
dtype: string
- name: generate_2
dtype: string
- name: generate_2_score
dtype: int64
- name: traceback_2
dtype: string
- name: generate_3
dtype: string
- name: generate_3_score
dtype: int64
- name: traceback_3
dtype: string
- name: generate_4
dtype: string
- name: generate_4_score
dtype: int64
- name: traceback_4
dtype: string
- name: generate_5
dtype: string
- name: generate_5_score
dtype: int64
- name: traceback_5
dtype: string
- name: generate_6
dtype: string
- name: generate_6_score
dtype: int64
- name: traceback_6
dtype: string
- name: generate_7
dtype: string
- name: generate_7_score
dtype: int64
- name: traceback_7
dtype: string
- name: probability
sequence:
sequence: float64
- name: rm_scores
sequence: int64
splits:
- name: train
num_bytes: 35805537
num_examples: 3305
download_size: 13697138
dataset_size: 35805537
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "ds_chat_pos_reflct_adamw_iter1_sppo_hard_new_cn_mining_oj_iter1-full_response_traceback"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
CodeDPO/qwen_coder_train_20241120 | CodeDPO | "2024-11-20T05:29:16Z" | 1 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T05:29:03Z" | ---
dataset_info:
features:
- name: program_1
dtype: string
- name: program_2
dtype: string
- name: winner
dtype: int64
- name: accuracy_1
dtype: float64
- name: accuracy_2
dtype: float64
- name: accuracy_difference
dtype: float64
- name: model_1
dtype: string
- name: model_2
dtype: string
- name: prompt
dtype: string
- name: tests
sequence: string
splits:
- name: train
num_bytes: 2476888565
num_examples: 490333
download_size: 124834643
dataset_size: 2476888565
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
RyanYr/reflect_om2_265k | RyanYr | "2024-11-20T05:46:51Z" | 1 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T05:46:46Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: generated_solution
dtype: string
- name: answer
dtype: string
- name: problem_source
dtype: string
splits:
- name: train
num_bytes: 319808930
num_examples: 264558
download_size: 152790290
dataset_size: 319808930
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
paulrichmond/hep_ph_gr_qc_gen0 | paulrichmond | "2024-11-20T14:57:40Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T08:07:10Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: submitter
dtype: string
- name: authors
dtype: string
- name: title
dtype: string
- name: comments
dtype: string
- name: journal-ref
dtype: string
- name: doi
dtype: string
- name: report-no
dtype: string
- name: categories
dtype: string
- name: license
dtype: string
- name: orig_abstract
dtype: string
- name: versions
list:
- name: created
dtype: string
- name: version
dtype: string
- name: update_date
dtype: string
- name: authors_parsed
sequence:
sequence: string
- name: abstract
dtype: string
- name: prompt
dtype: string
- name: y_true
dtype: string
- name: comp_s3-L-3.1-8B-base_v3
dtype: string
- name: preds_s3-L-3.1-8B-base_v3
dtype: string
- name: comp_s1-L-3.1-8B-base
dtype: string
- name: preds_s1-L-3.1-8B-base
dtype: string
- name: comp_Llama-3.1-8B
dtype: string
- name: preds_Llama-3.1-8B
dtype: string
- name: comp_s2-L-3.1-8B-base
dtype: string
- name: preds_s2-L-3.1-8B-base
dtype: string
splits:
- name: test
num_bytes: 563840
num_examples: 50
download_size: 343510
dataset_size: 563840
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
Generated with the following parameters
- max_new_tokens: 1024
- min_new_tokens: 1
- temperature: 0.8
- do_sample: true |
paulrichmond/astro_gen0 | paulrichmond | "2024-11-20T14:55:27Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T08:07:28Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: abstract
dtype: string
- name: prompt
dtype: string
- name: y_true
dtype: string
- name: comp_Llama-2-7b-hf
dtype: string
- name: preds_Llama-2-7b-hf
dtype: string
- name: comp_Llama-3.1-8B
dtype: string
- name: preds_Llama-3.1-8B
dtype: string
- name: comp_astrollama_4bit
dtype: string
- name: preds_astrollama_4bit
dtype: string
splits:
- name: test
num_bytes: 829787
num_examples: 50
download_size: 475338
dataset_size: 829787
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
Generated with the following parameters
- max_new_tokens: 1024
- min_new_tokens: 1
- temperature: 0.8
- do_sample: true |
paolordls/crosslg-contaminated-benchmark-en-sm-0 | paolordls | "2024-11-20T08:09:32Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T08:09:29Z" | ---
dataset_info:
features:
- name: fake_news
dtype: string
- name: scenario_id
dtype: int64
- name: real_news
dtype: string
- name: fake_keyword
dtype: string
- name: real_question
dtype: string
- name: fake_question
dtype: string
- name: real_answer
dtype: string
- name: fake_answer
dtype: string
splits:
- name: train
num_bytes: 132738
num_examples: 20
download_size: 121730
dataset_size: 132738
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
StormblessedKal/torgo_imperative_test | StormblessedKal | "2024-11-20T08:45:48Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T08:45:44Z" | ---
dataset_info:
features:
- name: Filename
dtype: string
- name: Transcription
dtype: string
- name: Pathname
dtype: string
- name: Audio
dtype:
audio:
sampling_rate: 16000
splits:
- name: train
num_bytes: 122777834.0
num_examples: 454
download_size: 122342933
dataset_size: 122777834.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
farabi-lab/kaznu-lib-ocr-for-lm | farabi-lab | "2024-11-20T10:38:25Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T09:40:03Z" | ---
dataset_info:
features:
- name: autor
dtype: string
- name: name
dtype: string
- name: annotation
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 753349732.6429342
num_examples: 880
- name: test
num_bytes: 40235724.357065804
num_examples: 47
download_size: 365064868
dataset_size: 793585457.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
ADT1999/my-dataset1 | ADT1999 | "2024-11-20T14:38:49Z" | 1 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T09:44:01Z" | ---
dataset_info:
features:
- name: img_id
dtype: string
- name: original_image
dtype: string
- name: target_image
dtype: string
- name: object_image
dtype: string
splits:
- name: train
num_bytes: 32138560
num_examples: 108094
download_size: 8869173
dataset_size: 32138560
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_14dc0aaf-e839-47cb-96ad-c2b6475a77d2 | argilla-internal-testing | "2024-11-20T09:59:20Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T09:59:20Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_f7a83e55-184b-486d-85de-3b53b850bcff | argilla-internal-testing | "2024-11-20T09:59:21Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T09:59:20Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_c2771d14-21b6-40b0-8b79-3cd7e0633366 | argilla-internal-testing | "2024-11-20T09:59:52Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T09:59:51Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_25284129-8241-4a65-aa2c-f3f228110bee | argilla-internal-testing | "2024-11-20T09:59:57Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T09:59:55Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_0f75dd4a-8057-4a8d-859e-65681521193e | argilla-internal-testing | "2024-11-20T10:00:52Z" | 1 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-20T10:00:52Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|