language: en
license: mit
tags:
- chemistry
- toxicology
pretty_name: AttentiveSkin
dataset_summary: >-
Compiled GHS dataset comprising 731 Corrosion, 1283 Irritation, and 1205
Negative samples from 6 governmental databases and 2 external datasets.
Results of the two binary tasks (Corr vs Neg, Irrit vs Neg) will be generated
separately.
citation: |-
@article{,
author = {Zejun Huang and Shang Lou and Haoqiang Wang and Weihua Li and Guixia Liu, and Yun Tang},
doi = {10.1021/acs.chemrestox.3c00332},
journal = {Journal of Chemical Information and Modeling},
number = {2},
title = {AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods},
volume = {37},
year = {2024},
url = {https://pubs.acs.org/doi/10.1021/acs.chemrestox.3c00332},
publisher = {ACS publications}
}
size_categories:
- 1K<n<10K
config_names:
- Corr_Neg
- Irrit_Neg
configs:
- config_name: Corr_Neg
data_files:
- split: test
path: Corr_Neg/test.csv
- split: train
path: Corr_Neg/train.csv
- config_name: Irrit_Neg
data_files:
- split: test
path: Irrit_Neg/test.csv
- split: train
path: Irrit_Neg/train.csv
dataset_info:
- config_name: Corr_Neg
features:
- name: Name
dtype: string
- name: Synonym
dtype: string
- name: CAS RN
dtype: string
- name: 'Y'
dtype:
class_label:
names:
'0': NC
'1': Cat 1
- name: Detailed Page
dtype: string
- name: Evidence
dtype: string
- name: OECD TG 404
dtype: string
- name: Data Source
dtype: string
- name: Frequency
dtype: int64
- name: SMILES
dtype: string
- name: SMILES URL
dtype: string
- name: SMILES Source
dtype: string
- name: Canonical SMILES
dtype: string
- name: Split
dtype: string
splits:
- name: train
num_bytes: 196688
num_examples: 1755
- name: test
num_bytes: 20400
num_examples: 181
- config_name: Irrit_Neg
features:
- name: Name
dtype: string
- name: Synonym
dtype: string
- name: CAS RN
dtype: string
- name: 'Y'
dtype:
class_label:
names:
'0': NC
'1': Cat 2
- name: Detailed Page
dtype: string
- name: Evidence
dtype: string
- name: OECD TG 404
dtype: string
- name: Data Source
dtype: string
- name: Frequency
dtype: int64
- name: SMILES
dtype: string
- name: SMILES URL
dtype: string
- name: SMILES Source
dtype: string
- name: Canonical SMILES
dtype: string
- name: Split
dtype: string
splits:
- name: train
num_bytes: 249776
num_examples: 2229
- name: test
num_bytes: 29136
num_examples: 259
task_categories:
- tabular-classification
Attentive Skin
To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods Download: https://github.com/BeeBeeWong/AttentiveSkin/releases/tag/v1.0
Quickstart Usage
Load a dataset in python
Each subset can be loaded into python using the Huggingface datasets library.
First, from the command line install the datasets
library
$ pip install datasets
then, from within python load the datasets library
>>> import datasets
and load one of the AttentiveSkin
datasets, e.g.,
>>> Corr_Neg = datasets.load_dataset("maomlab/AttentiveSkin", name = 'Corr_Neg')
Downloading readme: 100%|ββββββββββ| 64.0k/64.0k [00:00<00:00, 11.7kkB/s]
Downloading data: 100%|ββββββββββ| 1.02M/1.02M [00:00<00:00, 4.88MkB/s]
Generating test split: 100%|ββββββββββ| 181/181 [00:00<00:00, 3189.72examples/s]
Generating train split: 100%|ββββββββββ| 1755/1755 [00:00<00:00, 19806.87examples/s]
and inspecting the loaded dataset
>>> Corr_Neg
DatasetDict({
test: Dataset({
features: ['Name', 'Synonym', 'CAS RN', 'Y', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
num_rows: 181
})
train: Dataset({
features: ['Name', 'Synonym', 'CAS RN', 'Y', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
num_rows: 1755
})
})
Use a dataset to train a model
One way to use the dataset is through the MolFlux package developed by Exscientia.
First, from the command line, install MolFlux
library with catboost
and rdkit
support
pip install 'molflux[catboost,rdkit]'
then load, featurize, split, fit, and evaluate the catboost model
import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite
split_dataset = load_dataset('maomlab/AttentiveSkin', name = 'Corr_Neg')
split_featurised_dataset = featurise_dataset(
split_dataset,
column = "SMILES",
representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
model = load_model_from_dict({
"name": "cat_boost_classifier",
"config": {
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
"y_features": ['Y']}})
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])
classification_suite = load_suite("classification")
scores = classification_suite.compute(
references=split_featurised_dataset["test"]['Y'],
predictions=preds["cat_boost_classifier::Y"])
Data splits
Here we have used the Realistic Split method described in (Martin et al., 2018)
AttentiveSkin
To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods Download: https://github.com/BeeBeeWong/AttentiveSkin/releases/tag/v1.0
Tutorial
Basic:
AttentiveSkin is a software used for predicting GHS-defined (the Globally Harmonized System of Classification and Labeling of Chemicals) Skin Corrosion/Irritation labels of chemicals. Download and unzip the "AttentiveSkin_v1.0.zip" at the URL above. Place the file "AttentiveSkin.exe" and dir "dependency" in the same directory. Launch the "AttentiveSkin.exe" and wait until the GUI being initialized.
Input:
The input SMILES can be listed to the first column in .txt or .tsv files. User can follow the manner of example in "./example/input.txt". Click the button "Input" to open the text file containing input SMILES.
Output:
The interpretable prediction containing attetion weights will be placed in .html files, while basic info will be written to .xlsx files. Results of the two binary tasks (Corr vs Neg, Irrit vs Neg) are generated separately. Click the button "Output" to select the directory to store the prediction results.
Citation
Cite this: Chem. Res. Toxicol. 2024, 37, 2, 361β373 Publication Date:January 31, 2024 https://doi.org/10.1021/acs.chemrestox.3c00332 Copyright Β© 2024 American Chemical Society
Contact
Developer: Zejun Huang, incorrectwong11@gmail.com Corresponding author (Prof.): Yun Tang, ytang234@ecust.edu.cn