function
stringlengths
11
56k
repo_name
stringlengths
5
60
features
sequence
def get_create_serializer(self): return serializers.Resource(MaxCount=1, MinCount=1)
yaybu/touchdown
[ 11, 4, 11, 17, 1410353271 ]
def get_destroy_serializer(self): return serializers.Dict( InstanceIds=serializers.ListOfOne(serializers.Property("InstanceId")) )
yaybu/touchdown
[ 11, 4, 11, 17, 1410353271 ]
def get_network_id(self, runner): # FIXME: We can save on some steps if we only do this once obj = runner.get_plan(self.adapts).describe_object() return obj.get("VpcId", None)
yaybu/touchdown
[ 11, 4, 11, 17, 1410353271 ]
def _is_printer_printing(printer: OctoprintPrinterInfo) -> bool: return ( printer and printer.state and printer.state.flags and printer.state.flags.printing )
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def __init__( self, coordinator: OctoprintDataUpdateCoordinator, sensor_type: str, device_id: str,
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def device_info(self): """Device info.""" return self.coordinator.device_info
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def __init__( self, coordinator: OctoprintDataUpdateCoordinator, device_id: str
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def native_value(self): """Return sensor state.""" printer: OctoprintPrinterInfo = self.coordinator.data["printer"] if not printer: return None return printer.state.text
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def available(self) -> bool: """Return if entity is available.""" return self.coordinator.last_update_success and self.coordinator.data["printer"]
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def __init__( self, coordinator: OctoprintDataUpdateCoordinator, device_id: str
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def native_value(self): """Return sensor state.""" job: OctoprintJobInfo = self.coordinator.data["job"] if not job: return None if not (state := job.progress.completion): return 0 return round(state, 2)
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def __init__( self, coordinator: OctoprintDataUpdateCoordinator, device_id: str
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def native_value(self) -> datetime | None: """Return sensor state.""" job: OctoprintJobInfo = self.coordinator.data["job"] if ( not job or not job.progress.print_time_left or not _is_printer_printing(self.coordinator.data["printer"]) ): return None read_time = self.coordinator.data["last_read_time"] return read_time + timedelta(seconds=job.progress.print_time_left)
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def __init__( self, coordinator: OctoprintDataUpdateCoordinator, device_id: str
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def native_value(self) -> datetime | None: """Return sensor state.""" job: OctoprintJobInfo = self.coordinator.data["job"] if ( not job or not job.progress.print_time or not _is_printer_printing(self.coordinator.data["printer"]) ): return None read_time = self.coordinator.data["last_read_time"] return read_time - timedelta(seconds=job.progress.print_time)
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def __init__( self, coordinator: OctoprintDataUpdateCoordinator, tool: str, temp_type: str, device_id: str,
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def native_value(self): """Return sensor state.""" printer: OctoprintPrinterInfo = self.coordinator.data["printer"] if not printer: return None for temp in printer.temperatures: if temp.name == self._api_tool: val = ( temp.actual_temp if self._temp_type == "actual" else temp.target_temp ) if val is None: return None return round(val, 2) return None
home-assistant/home-assistant
[ 58698, 22318, 58698, 2794, 1379402988 ]
def test_error_on_wrong_value_for_consumed_capacity(): resource = boto3.resource("dynamodb", region_name="ap-northeast-3") client = boto3.client("dynamodb", region_name="ap-northeast-3") client.create_table( TableName="jobs", KeySchema=[{"AttributeName": "job_id", "KeyType": "HASH"}], AttributeDefinitions=[{"AttributeName": "job_id", "AttributeType": "S"}], ProvisionedThroughput={"ReadCapacityUnits": 5, "WriteCapacityUnits": 5}, ) table = resource.Table("jobs") item = {"job_id": "asdasdasd", "expires_at": "1"} # PUT_ITEM with pytest.raises(ClientError) as ex: table.put_item(Item=item, ReturnConsumedCapacity="Garbage") err = ex.value.response["Error"] err["Code"].should.equal("ValidationException") err["Message"].should.equal( "1 validation error detected: Value 'Garbage' at 'returnConsumedCapacity' failed to satisfy constraint: Member must satisfy enum value set: [INDEXES, TOTAL, NONE]" )
spulec/moto
[ 6700, 1808, 6700, 82, 1361221859 ]
def test_consumed_capacity_get_unknown_item(): conn = boto3.client("dynamodb", region_name="us-east-1") conn.create_table( TableName="test_table", KeySchema=[{"AttributeName": "u", "KeyType": "HASH"}], AttributeDefinitions=[{"AttributeName": "u", "AttributeType": "S"}], BillingMode="PAY_PER_REQUEST", ) response = conn.get_item( TableName="test_table", Key={"u": {"S": "does_not_exist"}}, ReturnConsumedCapacity="TOTAL", ) # Should still return ConsumedCapacity, even if it does not return an item response.should.have.key("ConsumedCapacity") response["ConsumedCapacity"].should.equal( {"TableName": "test_table", "CapacityUnits": 0.5} )
spulec/moto
[ 6700, 1808, 6700, 82, 1361221859 ]
def test_only_return_consumed_capacity_when_required( capacity, should_have_capacity, should_have_table
spulec/moto
[ 6700, 1808, 6700, 82, 1361221859 ]
def validate_response( response, should_have_capacity, should_have_table, is_index=False, value=1.0
spulec/moto
[ 6700, 1808, 6700, 82, 1361221859 ]
def index(self, request): queryset = Condition.objects.select_related('source', 'target_option') serializer = ConditionIndexSerializer(queryset, many=True) return Response(serializer.data)
rdmorganiser/rdmo
[ 80, 41, 80, 122, 1438336991 ]
def export(self, request): serializer = ConditionExportSerializer(self.get_queryset(), many=True) xml = ConditionRenderer().render(serializer.data) return XMLResponse(xml, name='conditions')
rdmorganiser/rdmo
[ 80, 41, 80, 122, 1438336991 ]
def detail_export(self, request, pk=None): serializer = ConditionExportSerializer(self.get_object()) xml = ConditionRenderer().render([serializer.data]) return XMLResponse(xml, name=self.get_object().key)
rdmorganiser/rdmo
[ 80, 41, 80, 122, 1438336991 ]
def roll_die(size): first_die = choice(range(1, size + 1)) second_die = choice(range(1, size + 1)) return (first_die + second_die, (first_die == second_die))
dhermes/project-euler
[ 11, 3, 11, 1, 1299471955 ]
def next_specific(square, next_type): if next_type not in ["R", "U"]: raise Exception("next_specific only intended for R and U") # R1=5, R2=15, R3=25, R4=35 index = SQUARES.index(square) if next_type == "R": if 0 <= index < 5 or 35 < index: return "R1" elif 5 < index < 15: return "R2" elif 15 < index < 25: return "R3" elif 25 < index < 35: return "R4" else: raise Exception("Case should not occur") # U1=12, U2=28 elif next_type == "U": if 0 <= index < 12 or index > 28: return "U1" elif 12 < index < 28: return "U2" else: return Exception("Case should not occur") else: raise Exception("Case should not occur")
dhermes/project-euler
[ 11, 3, 11, 1, 1299471955 ]
def main(verbose=False): GAME_PLAY = 10 ** 6 dice_size = 4 visited = {"GO": 1} current = "GO" chance_card = 0 chest_card = 0 doubles = 0 for place in xrange(GAME_PLAY): total, double = roll_die(dice_size) if double: doubles += 1 else: doubles = 0 if doubles == 3: doubles = 0 current = "JAIL" else: index = SQUARES.index(current) landing_square = SQUARES[(index + total) % len(SQUARES)] (current, chance_card, chest_card) = next_square(landing_square, chance_card, chest_card) # if current is not in visited, sets to 1 # (default 0 returned by get) visited[current] = visited.get(current, 0) + 1 top_visited = sorted(visited.items(), key=lambda pair: pair[1], reverse=True) top_visited = [SQUARES.index(square[0]) for square in top_visited[:3]] return ''.join(str(index).zfill(2) for index in top_visited)
dhermes/project-euler
[ 11, 3, 11, 1, 1299471955 ]
def matplotlib_pyplot(): import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("agg") import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top return plt
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def convert_predictions_to_image_summaries(hook_args): """Optionally converts images from hooks_args to image summaries. Args: hook_args: DecodeHookArgs namedtuple Returns: summaries: list of tf.Summary values if hook_args.decode_hpara """ decode_hparams = hook_args.decode_hparams if not decode_hparams.display_decoded_images: return [] predictions = hook_args.predictions[0] # Display ten random inputs and outputs so that tensorboard does not hang. all_summaries = [] rand_predictions = np.random.choice(predictions, size=10) for ind, prediction in enumerate(rand_predictions): output_summary = image_to_tf_summary_value( prediction["outputs"], tag="%d_output" % ind) input_summary = image_to_tf_summary_value( prediction["inputs"], tag="%d_input" % ind) all_summaries.append(input_summary) all_summaries.append(output_summary) return all_summaries
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def make_multiscale(image, resolutions, resize_method=tf.image.ResizeMethod.BICUBIC, num_channels=3): """Returns list of scaled images, one for each resolution. Args: image: Tensor of shape [height, height, num_channels]. resolutions: List of heights that image's height is resized to. resize_method: tf.image.ResizeMethod. num_channels: Number of channels in image. Returns: List of Tensors, one for each resolution with shape given by [resolutions[i], resolutions[i], num_channels]. """ scaled_images = [] for height in resolutions: scaled_image = tf.image.resize_images( image, size=[height, height], # assuming that height = width method=resize_method) scaled_image = tf.to_int64(scaled_image) scaled_image.set_shape([height, height, num_channels]) scaled_images.append(scaled_image) return scaled_images
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def num_channels(self): """Number of color channels.""" return 3
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def vocab_size(self): """Number of pixel values.""" return 256
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def preprocess_example(self, example, mode, hparams): if not self._was_reversed: example["inputs"] = tf.image.per_image_standardization(example["inputs"]) return example
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def decode_hooks(self): return [convert_predictions_to_image_summaries]
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def is_small(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def num_classes(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def train_shards(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def dev_shards(self): return 1
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def class_labels(self): return ["ID_%d" % i for i in range(self.num_classes)]
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def generator(self, data_dir, tmp_dir, is_training): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def hparams(self, defaults, unused_model_hparams): p = defaults p.modality = {"inputs": modalities.ModalityType.IMAGE, "targets": modalities.ModalityType.CLASS_LABEL} p.vocab_size = {"inputs": 256, "targets": self.num_classes} p.batch_size_multiplier = 4 if self.is_small else 256 p.loss_multiplier = 3.0 if self.is_small else 1.0 if self._was_reversed: p.loss_multiplier = 1.0 p.input_space_id = problem.SpaceID.IMAGE p.target_space_id = problem.SpaceID.IMAGE_LABEL
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def encode_images_as_png(images): """Yield images encoded as pngs.""" if tf.executing_eagerly(): for image in images: yield tf.image.encode_png(image).numpy() else: (height, width, channels) = images[0].shape with tf.Graph().as_default(): image_t = tf.placeholder(dtype=tf.uint8, shape=(height, width, channels)) encoded_image_t = tf.image.encode_png(image_t) with tf.Session() as sess: for image in images: enc_string = sess.run(encoded_image_t, feed_dict={image_t: image}) yield enc_string
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def is_character_level(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def vocab_problem(self): raise NotImplementedError() # Not needed if self.is_character_level.
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def target_space_id(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def train_shards(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def dev_shards(self): raise NotImplementedError()
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def example_reading_spec(self): label_key = "image/class/label" data_fields, data_items_to_decoders = ( super(Image2TextProblem, self).example_reading_spec()) data_fields[label_key] = tf.VarLenFeature(tf.int64) data_items_to_decoders["targets"] = contrib.slim().tfexample_decoder.Tensor( label_key) return data_fields, data_items_to_decoders
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def hparams(self, defaults, unused_model_hparams): p = defaults p.modality = {"inputs": modalities.ModalityType.IMAGE, "targets": modalities.ModalityType.SYMBOL} p.vocab_size = {"inputs": 256, "targets": self._encoders["targets"].vocab_size} p.batch_size_multiplier = 256 p.loss_multiplier = 1.0 p.input_space_id = problem.SpaceID.IMAGE p.target_space_id = self.target_space_id
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def image_augmentation(images, do_colors=False, crop_size=None): """Image augmentation: cropping, flipping, and color transforms.""" if crop_size is None: crop_size = [299, 299] images = tf.random_crop(images, crop_size + [3]) images = tf.image.random_flip_left_right(images) if do_colors: # More augmentation, but might be slow. images = tf.image.random_brightness(images, max_delta=32. / 255.) images = tf.image.random_saturation(images, lower=0.5, upper=1.5) images = tf.image.random_hue(images, max_delta=0.2) images = tf.image.random_contrast(images, lower=0.5, upper=1.5) return images
tensorflow/tensor2tensor
[ 13097, 3192, 13097, 587, 1497545859 ]
def generate_dataset(I,J,K,lambdaU,lambdaV,tau): # Generate U, V U = numpy.zeros((I,K)) for i,k in itertools.product(xrange(0,I),xrange(0,K)): U[i,k] = exponential_draw(lambdaU[i,k]) V = numpy.zeros((J,K)) for j,k in itertools.product(xrange(0,J),xrange(0,K)): V[j,k] = exponential_draw(lambdaV[j,k])
ThomasBrouwer/BNMTF
[ 18, 6, 18, 1, 1438595414 ]
def add_noise(true_R,tau): if numpy.isinf(tau): return numpy.copy(true_R)
ThomasBrouwer/BNMTF
[ 18, 6, 18, 1, 1438595414 ]
def try_generate_M(I,J,fraction_unknown,attempts): for attempt in range(1,attempts+1): try: M = generate_M(I,J,fraction_unknown) sums_columns = M.sum(axis=0) sums_rows = M.sum(axis=1) for i,c in enumerate(sums_rows): assert c != 0, "Fully unobserved row in M, row %s. Fraction %s." % (i,fraction_unknown) for j,c in enumerate(sums_columns): assert c != 0, "Fully unobserved column in M, column %s. Fraction %s." % (j,fraction_unknown) print "Took %s attempts to generate M." % attempt return M except AssertionError: pass raise Exception("Tried to generate M %s times, with I=%s, J=%s, fraction=%s, but failed." % (attempts,I,J,fraction_unknown))
ThomasBrouwer/BNMTF
[ 18, 6, 18, 1, 1438595414 ]
def create_channel( cls, host: str = "analyticsdata.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def __init__( self, *, host: str = "analyticsdata.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, channel: aio.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id=None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def grpc_channel(self) -> aio.Channel: """Create the channel designed to connect to this service. This property caches on the instance; repeated calls return the same channel. """ # Return the channel from cache. return self._grpc_channel
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def run_report( self,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def run_pivot_report( self,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def batch_run_reports( self,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def batch_run_pivot_reports( self,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def get_metadata( self,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def run_realtime_report( self,
googleapis/python-analytics-data
[ 114, 29, 114, 9, 1600119359 ]
def __init__(self, subtype, msg=None): if msg is None: msg = "An error occured for subtype {}".format(subtype) super(PhylotyperError, self).__init__(msg) self.subtype = subtype
superphy/backend
[ 4, 2, 4, 35, 1484074797 ]
def __init__(self, subtype, msg=None): super(PhylotyperError, self).__init__( subtype, msg="Unrecognized subtype {}".format(subtype))
superphy/backend
[ 4, 2, 4, 35, 1484074797 ]
def setUp(self): self._mock_multiplexer = mock.create_autospec( plugin_event_multiplexer.EventMultiplexer ) self._mock_tb_context = base_plugin.TBContext( multiplexer=self._mock_multiplexer )
tensorflow/tensorboard
[ 6136, 1581, 6136, 616, 1494878887 ]
def test_csv(self): body, mime_type = self._run_handler( EXPERIMENT, SESSION_GROUPS, download_data.OutputFormat.CSV ) self.assertEqual("text/csv", mime_type) self.assertEqual(EXPECTED_CSV, body)
tensorflow/tensorboard
[ 6136, 1581, 6136, 616, 1494878887 ]
def test_json(self): body, mime_type = self._run_handler( EXPERIMENT, SESSION_GROUPS, download_data.OutputFormat.JSON ) self.assertEqual("application/json", mime_type) expected_result = { "header": [ "initial_temp", "final_temp", "string_hparam", "bool_hparam", "optional_string_hparam", "current_temp", "delta_temp", "optional_metric", ], "rows": [ [270.0, 150.0, "a string", True, "", 10.0, 15.0, 33.0], [280.0, 100.0, "AAAAA", False, "", 51.0, 44.5, None], [ 300.0, 1.2e-05, "a string_3", True, "BB", 101.0, -15100000.0, None, ], ], } self.assertEqual(expected_result, body)
tensorflow/tensorboard
[ 6136, 1581, 6136, 616, 1494878887 ]
def friendly_time(msecs): secs, msecs = divmod(msecs, 1000) mins, secs = divmod(secs, 60) hours, mins = divmod(mins, 60) if hours: return '%dh%dm%ds' % (hours, mins, secs) elif mins: return '%dm%ds' % (mins, secs) elif secs: return '%ds%dms' % (secs, msecs) else: return '%.2fms' % msecs
piglei/uwsgi-sloth
[ 207, 17, 207, 1, 1402890563 ]
def forwards(self, orm):
mollyproject/mollyproject
[ 75, 20, 75, 4, 1288876632 ]
def backwards(self, orm):
mollyproject/mollyproject
[ 75, 20, 75, 4, 1288876632 ]
def dem_threshold(domain, b): '''Just use a height threshold on the DEM!''' heightLevel = float(domain.algorithm_params['dem_threshold']) dem = domain.get_dem().image return dem.lt(heightLevel).select(['elevation'], ['b1'])
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def evi(domain, b): '''Simple EVI based classifier''' #no_clouds = b['b3'].lte(2100).select(['sur_refl_b03'], ['b1']) criteria1 = b['EVI'].lte(0.3).And(b['LSWI'].subtract(b['EVI']).gte(0.05)).select(['sur_refl_b02'], ['b1']) criteria2 = b['EVI'].lte(0.05).And(b['LSWI'].lte(0.0)).select(['sur_refl_b02'], ['b1']) #return no_clouds.And(criteria1.Or(criteria2)) return criteria1.Or(criteria2)
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def get_diff(b): '''Just the internals of the difference method''' return b['b2'].subtract(b['b1']).select(['sur_refl_b02'], ['b1'])
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def modis_diff(domain, b, threshold=None): '''Compute (b2-b1) < threshold, a simple water detection index.
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def get_dartmouth(b): A = 500 B = 2500 return b['b2'].add(A).divide(b['b1'].add(B)).select(['sur_refl_b02'], ['b1'])
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def dartmouth(domain, b, threshold=None): '''A flood detection method from the Dartmouth Flood Observatory.
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def get_mod_ndwi(b): return b['b6'].subtract(b['b4']).divide(b['b4'].add(b['b6'])).select(['sur_refl_b06'], ['b1'])
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def mod_ndwi(domain, b, threshold=None): if threshold == None: threshold = float(domain.algorithm_params['mod_ndwi_threshold']) return get_mod_ndwi(b).lte(threshold)
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def get_fai(b): '''Just the internals of the FAI method''' return b['b2'].subtract(b['b1'].add(b['b5'].subtract(b['b1']).multiply((859.0 - 645) / (1240 - 645)))).select(['sur_refl_b02'], ['b1'])
nasa/CrisisMappingToolkit
[ 183, 75, 183, 5, 1417805519 ]
def get_spec(field, limit=10, query='', query_dsl=''): """Returns aggregation specs for a term of filtered events. The aggregation spec will summarize values of an attribute whose events fall under a filter. Args: field (str): this denotes the event attribute that is used for aggregation. limit (int): How many buckets to return, defaults to 10. query (str): the query field to run on all documents prior to aggregating the results. query_dsl (str): the query DSL field to run on all documents prior to aggregating the results (optional). Either a query string or a query DSL has to be present. Raises: ValueError: if neither query_string or query_dsl is provided. Returns: a dict value that can be used as an aggregation spec. """ if query: query_filter = { 'bool': { 'must': [ { 'query_string': { 'query': query } } ] } } elif query_dsl: query_filter = query_dsl else: raise ValueError('Neither query nor query DSL provided.') return { 'query': query_filter, 'aggs': { 'aggregation': { 'terms': { 'field': field, 'size': limit } } } }
google/timesketch
[ 2113, 486, 2113, 278, 1403200185 ]
def chart_title(self): """Returns a title for the chart.""" if self.field: return 'Top filtered results for "{0:s}"'.format(self.field) return 'Top results for an unknown field after filtering'
google/timesketch
[ 2113, 486, 2113, 278, 1403200185 ]
def run( self, field, query_string='', query_dsl='', supported_charts='table', start_time='', end_time='', limit=10): """Run the aggregation. Args: field (str): this denotes the event attribute that is used for aggregation. query_string (str): the query field to run on all documents prior to aggregating the results. query_dsl (str): the query DSL field to run on all documents prior to aggregating the results. Either a query string or a query DSL has to be present. supported_charts: Chart type to render. Defaults to table. start_time: Optional ISO formatted date string that limits the time range for the aggregation. end_time: Optional ISO formatted date string that limits the time range for the aggregation. limit (int): How many buckets to return, defaults to 10. Returns: Instance of interface.AggregationResult with aggregation result. Raises: ValueError: if neither query_string or query_dsl is provided. """ if not (query_string or query_dsl): raise ValueError('Both query_string and query_dsl are missing') self.field = field formatted_field_name = self.format_field_by_type(field) aggregation_spec = get_spec( field=formatted_field_name, limit=limit, query=query_string, query_dsl=query_dsl) aggregation_spec = self._add_query_to_aggregation_spec( aggregation_spec, start_time=start_time, end_time=end_time) # Encoding information for Vega-Lite. encoding = { 'x': { 'field': field, 'type': 'nominal', 'sort': { 'op': 'sum', 'field': 'count', 'order': 'descending' } }, 'y': {'field': 'count', 'type': 'quantitative'}, 'tooltip': [ {'field': field, 'type': 'nominal'}, {'field': 'count', 'type': 'quantitative'}], } response = self.opensearch_aggregation(aggregation_spec) aggregations = response.get('aggregations', {}) aggregation = aggregations.get('aggregation', {}) buckets = aggregation.get('buckets', []) values = [] for bucket in buckets: d = { field: bucket.get('key', 'N/A'), 'count': bucket.get('doc_count', 0) } values.append(d) if query_string: extra_query_url = 'AND {0:s}'.format(query_string) else: extra_query_url = '' return interface.AggregationResult( encoding=encoding, values=values, chart_type=supported_charts, sketch_url=self._sketch_url, field=field, extra_query_url=extra_query_url)
google/timesketch
[ 2113, 486, 2113, 278, 1403200185 ]
def create_colors_list(): colors_list = [] for color in plt.cm.tab10(np.linspace(0, 1, 10))[:-1]: colors_list.append(tuple(color)) colors_list.append("black") for color in plt.cm.Set2(np.linspace(0, 1, 8)): colors_list.append(tuple(color)) for color in plt.cm.Set3(np.linspace(0, 1, 12)): colors_list.append(tuple(color)) return colors_list
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def plot_precision_vs_bin_size(pd_bins, output_dir): pd_plot = pd_bins[pd_bins[utils_labels.TOOL] != utils_labels.GS] for tool_label, pd_tool in pd_plot.groupby(utils_labels.TOOL): fig, axs = plt.subplots(figsize=(5, 4.5)) axs.scatter(np.log(pd_tool['total_length']), pd_tool['precision_bp'], marker='o') axs.set_xlim([None, np.log(pd_tool['total_length'].max())]) axs.set_ylim([0.0, 1.0]) axs.set_title(tool_label, fontsize=12) plt.ylabel('Purity per bin (%)', fontsize=12) plt.xlabel('Bin size [log(# bp)]', fontsize=12) fig.savefig(os.path.join(output_dir, 'genome', tool_label, 'purity_vs_bin_size.png'), dpi=200, format='png', bbox_inches='tight') plt.close(fig)
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def get_pd_genomes_recall(sample_id_to_queries_list): pd_genomes_recall = pd.DataFrame() for sample_id in sample_id_to_queries_list: for query in sample_id_to_queries_list[sample_id]: if not isinstance(query, binning_classes.GenomeQuery): continue recall_df = query.recall_df_cami1[['genome_id', 'recall_bp']].copy() recall_df[utils_labels.TOOL] = query.label recall_df['sample_id'] = sample_id recall_df = recall_df.reset_index().set_index(['sample_id', utils_labels.TOOL]) pd_genomes_recall = pd.concat([pd_genomes_recall, recall_df]) return pd_genomes_recall
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def plot_heatmap(df_confusion, sample_id, output_dir, label, separate_bar=False, log_scale=False): if log_scale: df_confusion = df_confusion.apply(np.log10, inplace=True).replace(-np.inf, 0) fig, axs = plt.subplots(figsize=(10, 8)) fontsize = 20 # replace columns and rows labels by numbers d = {value: key for (key, value) in enumerate(df_confusion.columns.tolist(), 1)} df_confusion = df_confusion.rename(index=str, columns=d) df_confusion.index = range(1, len(df_confusion) + 1) xticklabels = int(round(df_confusion.shape[1] / 10, -1)) yticklabels = int(round(df_confusion.shape[0] / 10, -1)) sns_plot = sns.heatmap(df_confusion, ax=axs, annot=False, cmap="YlGnBu_r", xticklabels=xticklabels, yticklabels=yticklabels, cbar=False, rasterized=True) # sns_plot = sns.heatmap(df_confusion, ax=axs, annot=False, cmap="YlGnBu_r", xticklabels=False, yticklabels=False, cbar=True, rasterized=True) sns_plot.set_xlabel("Genomes", fontsize=fontsize) sns_plot.set_ylabel("Predicted bins", fontsize=fontsize) plt.yticks(fontsize=12, rotation=0) plt.xticks(fontsize=12) mappable = sns_plot.get_children()[0] cbar_ax = fig.add_axes([.915, .11, .017, .77]) cbar = plt.colorbar(mappable, ax=axs, cax=cbar_ax, orientation='vertical') if log_scale: cbar.set_label(fontsize=fontsize, label='log$_{10}$(# bp)') else: fmt = lambda x, pos: '{:.0f}'.format(x / 1000000) cbar = plt.colorbar(mappable, ax=axs, cax=cbar_ax, orientation='vertical', format=ticker.FuncFormatter(fmt)) cbar.set_label(fontsize=fontsize, label='Millions of base pairs') cbar.ax.tick_params(labelsize=fontsize) cbar.outline.set_edgecolor(None) axs.set_title(label, fontsize=fontsize, pad=10) axs.set_ylim([len(df_confusion), 0]) # plt.yticks(fontsize=14, rotation=0) # plt.xticks(fontsize=14) output_dir = os.path.join(output_dir, 'genome', label) fig.savefig(os.path.join(output_dir, 'heatmap_' + sample_id + '.pdf'), dpi=100, format='pdf', bbox_inches='tight') fig.savefig(os.path.join(output_dir, 'heatmap_' + sample_id + '.png'), dpi=200, format='png', bbox_inches='tight') plt.close(fig) if not separate_bar: return # create separate figure for bar fig = plt.figure(figsize=(6, 6)) mappable = sns_plot.get_children()[0] fmt = lambda x, pos: '{:.0f}'.format(x / 1000000) cbar = plt.colorbar(mappable, orientation='vertical', label='[millions of base pairs]', format=ticker.FuncFormatter(fmt)) text = cbar.ax.yaxis.label font = matplotlib.font_manager.FontProperties(size=16) text.set_font_properties(font) cbar.outline.set_visible(False) cbar.ax.tick_params(labelsize=14) # store separate bar figure plt.gca().set_visible(False) fig.savefig(os.path.join(output_dir, 'heatmap_bar.pdf'), dpi=100, format='pdf', bbox_inches='tight') plt.close(fig)
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def plot_summary(color_indices, df_results, labels, output_dir, rank, plot_type, file_name, xlabel, ylabel): available_tools = df_results[utils_labels.TOOL].unique() tools = [tool for tool in labels if tool in available_tools] colors_list = create_colors_list() if color_indices: colors_list = [colors_list[i] for i in color_indices] df_mean = df_results.groupby(utils_labels.TOOL).mean().reindex(tools) binning_type = df_results[utils_labels.BINNING_TYPE].iloc[0] if len(df_mean) > len(colors_list): raise RuntimeError("Plot only supports 29 colors") fig, axs = plt.subplots(figsize=(5, 4.5)) # force axes to be from 0 to 100% axs.set_xlim([0.0, 1.0]) axs.set_ylim([0.0, 1.0]) if plot_type == 'e': for i, (tool, df_row) in enumerate(df_mean.iterrows()): axs.errorbar(df_row[utils_labels.AVG_PRECISION_BP], df_row[utils_labels.AVG_RECALL_BP], xerr=df_row['avg_precision_bp_var'], yerr=df_row['avg_recall_bp_var'], fmt='o', ecolor=colors_list[i], mec=colors_list[i], mfc=colors_list[i], capsize=3, markersize=8) if plot_type == 'f': for i, (tool, df_row) in enumerate(df_mean.iterrows()): axs.errorbar(df_row[utils_labels.AVG_PRECISION_SEQ], df_row[utils_labels.AVG_RECALL_SEQ], xerr=df_row[utils_labels.AVG_PRECISION_SEQ_SEM], yerr=df_row[utils_labels.AVG_RECALL_SEQ_SEM], fmt='o', ecolor=colors_list[i], mec=colors_list[i], mfc=colors_list[i], capsize=3, markersize=8) if plot_type == 'w': for i, (tool, df_row) in enumerate(df_mean.iterrows()): axs.plot(df_row[utils_labels.PRECISION_PER_BP], df_row[utils_labels.RECALL_PER_BP], marker='o', color=colors_list[i], markersize=10) if plot_type == 'x': for i, (tool, df_row) in enumerate(df_mean.iterrows()): axs.plot(df_row[utils_labels.PRECISION_PER_SEQ], df_row[utils_labels.RECALL_PER_SEQ], marker='o', color=colors_list[i], markersize=10) elif plot_type == 'p': for i, (tool, df_row) in enumerate(df_mean.iterrows()): axs.plot(df_row[utils_labels.ARI_BY_BP], df_row[utils_labels.PERCENTAGE_ASSIGNED_BPS], marker='o', color=colors_list[i], markersize=10) # turn on grid # axs.minorticks_on() axs.grid(which='major', linestyle=':', linewidth='0.5') # axs.grid(which='minor', linestyle=':', linewidth='0.5') # transform plot_labels to percentages if plot_type != 'p': vals = axs.get_xticks() axs.set_xticklabels(['{:3.0f}'.format(x * 100) for x in vals], fontsize=11) else: axs.tick_params(axis='x', labelsize=12) vals = axs.get_yticks() axs.set_yticklabels(['{:3.0f}'.format(x * 100) for x in vals], fontsize=11) if rank: file_name = rank + '_' + file_name plt.title(rank) ylabel = ylabel.replace('genome', 'taxon') plt.xlabel(xlabel, fontsize=13) plt.ylabel(ylabel, fontsize=13) plt.tight_layout() fig.savefig(os.path.join(output_dir, binning_type, file_name + '.eps'), dpi=100, format='eps', bbox_inches='tight') colors_iter = iter(colors_list) circles = [] for x in range(len(df_mean)): circles.append(Line2D([], [], markeredgewidth=0.0, linestyle="None", marker="o", markersize=11, markerfacecolor=next(colors_iter))) lgd = plt.legend(circles, tools, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0., handlelength=0, frameon=False, fontsize=12) fig.savefig(os.path.join(output_dir, binning_type, file_name + '.pdf'), dpi=100, format='pdf', bbox_extra_artists=(lgd,), bbox_inches='tight') fig.savefig(os.path.join(output_dir, binning_type, file_name + '.png'), dpi=200, format='png', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close(fig)
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def plot_precision_recall(colors, summary_per_query, labels, output_dir, rank=None): plot_summary(colors, summary_per_query, labels, output_dir, rank, 'w', 'purity_recall_bp', 'Purity for sample (%)', 'Completeness for sample (%)') plot_summary(colors, summary_per_query, labels, output_dir, rank, 'x', 'purity_completeness_seq', 'Purity for sample (%)', 'Completeness for sample (%)')
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def plot_taxonomic_results(df_summary_t, metrics_list, errors_list, file_name, output_dir): colors_list = ["#006cba", "#008000", "#ba9e00", "red"] for tool, pd_results in df_summary_t.groupby(utils_labels.TOOL): dict_metric_list = [] for metric in metrics_list: rank_to_metric = OrderedDict([(k, .0) for k in load_ncbi_taxinfo.RANKS]) dict_metric_list.append(rank_to_metric) dict_error_list = [] for error in errors_list: rank_to_metric_error = OrderedDict([(k, .0) for k in load_ncbi_taxinfo.RANKS]) dict_error_list.append(rank_to_metric_error) for index, row in pd_results.iterrows(): for rank_to_metric, metric in zip(dict_metric_list, metrics_list): rank_to_metric[row[utils_labels.RANK]] = .0 if np.isnan(row[metric]) else row[metric] for rank_to_metric_error, error in zip(dict_error_list, errors_list): rank_to_metric_error[row[utils_labels.RANK]] = .0 if np.isnan(row[error]) else row[error] fig, axs = plt.subplots(figsize=(6, 5)) # force axes to be from 0 to 100% axs.set_xlim([0, 7]) axs.set_ylim([0.0, 1.0]) x_values = range(len(load_ncbi_taxinfo.RANKS)) y_values_list = [] for rank_to_metric, color in zip(dict_metric_list, colors_list): y_values = list(rank_to_metric.values()) axs.plot(x_values, y_values, color=color) y_values_list.append(y_values) for rank_to_metric_error, y_values, color in zip(dict_error_list, y_values_list, colors_list): sem = list(rank_to_metric_error.values()) plt.fill_between(x_values, np.subtract(y_values, sem).tolist(), np.add(y_values, sem).tolist(), color=color, alpha=0.5) plt.xticks(x_values, load_ncbi_taxinfo.RANKS, rotation='vertical') vals = axs.get_yticks() axs.set_yticklabels(['{:3.0f}%'.format(x * 100) for x in vals]) lgd = plt.legend(metrics_list, loc=1, borderaxespad=0., handlelength=2, frameon=False) plt.tight_layout() fig.savefig(os.path.join(output_dir, 'taxonomic', tool, file_name + '.png'), dpi=100, format='png', bbox_extra_artists=(lgd,), bbox_inches='tight') fig.savefig(os.path.join(output_dir, 'taxonomic', tool, file_name + '.pdf'), dpi=100, format='pdf', bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close(fig)
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def create_completeness_minus_contamination_column(pd_tool_bins): pd_tool_bins['newcolumn'] = pd_tool_bins['recall_bp'] + pd_tool_bins['precision_bp'] - 1
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def get_number_of_hq_bins(tools, pd_bins): pd_counts = pd.DataFrame() pd_bins_copy = pd_bins[[utils_labels.TOOL, 'precision_bp', 'recall_bp']].copy().dropna(subset=['precision_bp']) for tool in tools: pd_tool_bins = pd_bins_copy[pd_bins_copy[utils_labels.TOOL] == tool] x50 = pd_tool_bins[(pd_tool_bins['recall_bp'] > .5) & (pd_tool_bins['precision_bp'] > .9)].shape[0] x70 = pd_tool_bins[(pd_tool_bins['recall_bp'] > .7) & (pd_tool_bins['precision_bp'] > .9)].shape[0] x90 = pd_tool_bins[(pd_tool_bins['recall_bp'] > .9) & (pd_tool_bins['precision_bp'] > .9)].shape[0] pd_tool_counts = pd.DataFrame([[x90, x70, x50]], columns=['>90%', '>70%', '>50%'], index=[tool]) pd_counts = pd_counts.append(pd_tool_counts) return pd_counts
CAMI-challenge/AMBER
[ 18, 7, 18, 3, 1502787274 ]
def print_banner(bootstrap, no_shell_file): """Print the Pigweed or project-specific banner""" enable_colors() print(Color.green('\n WELCOME TO...')) print(Color.magenta(_PIGWEED_BANNER)) if bootstrap: print( Color.green('\n BOOTSTRAP! Bootstrap may take a few minutes; ' 'please be patient')) print( Color.green( ' On Windows, this stage is extremely slow (~10 minutes).\n')) else: print( Color.green( '\n ACTIVATOR! This sets your console environment variables.\n' )) if no_shell_file: print(Color.bold_red('Error!\n')) print( Color.red(' Your Pigweed environment does not seem to be' ' configured.')) print(Color.red(' Run bootstrap.bat to perform initial setup.')) return 0
google/pigweed
[ 161, 44, 161, 1, 1615327645 ]
def main(): """Script entry point.""" if os.name != 'nt': return 1 return print_banner(**vars(parse()))
google/pigweed
[ 161, 44, 161, 1, 1615327645 ]
def main(unused_argv): tpu_cluster_resolver = contrib_cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) config = contrib_tpu.RunConfig( cluster=tpu_cluster_resolver, model_dir=FLAGS.model_dir, save_checkpoints_steps=FLAGS.iterations_per_loop, keep_checkpoint_max=None, tpu_config=contrib_tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_cores, per_host_input_for_training=contrib_tpu.InputPipelineConfig.PER_HOST_V2)) # pylint: disable=line-too-long # Input pipelines are slightly different (with regards to shuffling and # preprocessing) between training and evaluation. imagenet_train = imagenet_input.ImageNetInput( is_training=True, data_dir=FLAGS.data_dir, use_bfloat16=True, transpose_input=FLAGS.transpose_input) imagenet_eval = imagenet_input.ImageNetInput( is_training=False, data_dir=FLAGS.data_dir, use_bfloat16=True, transpose_input=FLAGS.transpose_input) if FLAGS.use_fast_lr: resnet_main.LR_SCHEDULE = [ # (multiplier, epoch to start) tuples (1.0, 4), (0.1, 21), (0.01, 35), (0.001, 43) ] imagenet_train_small = imagenet_input.ImageNetInput( is_training=True, image_size=128, data_dir=FLAGS.data_dir_small, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input, cache=True) imagenet_eval_small = imagenet_input.ImageNetInput( is_training=False, image_size=128, data_dir=FLAGS.data_dir_small, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input, cache=True) imagenet_train_large = imagenet_input.ImageNetInput( is_training=True, image_size=288, data_dir=FLAGS.data_dir, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input) imagenet_eval_large = imagenet_input.ImageNetInput( is_training=False, image_size=288, data_dir=FLAGS.data_dir, num_parallel_calls=FLAGS.num_parallel_calls, use_bfloat16=True, transpose_input=FLAGS.transpose_input) resnet_classifier = contrib_tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=resnet_main.resnet_model_fn, config=config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size) if FLAGS.mode == 'train': current_step = estimator._load_global_step_from_checkpoint_dir(FLAGS.model_dir) # pylint: disable=protected-access,line-too-long batches_per_epoch = NUM_TRAIN_IMAGES / FLAGS.train_batch_size tf.logging.info('Training for %d steps (%.2f epochs in total). Current' ' step %d.' % (FLAGS.train_steps, FLAGS.train_steps / batches_per_epoch, current_step)) start_timestamp = time.time() # This time will include compilation time # Write a dummy file at the start of training so that we can measure the # runtime at each checkpoint from the file write time. tf.gfile.MkDir(FLAGS.model_dir) if not tf.gfile.Exists(os.path.join(FLAGS.model_dir, 'START')): with tf.gfile.GFile(os.path.join(FLAGS.model_dir, 'START'), 'w') as f: f.write(str(start_timestamp)) if FLAGS.use_fast_lr: small_steps = int(18 * NUM_TRAIN_IMAGES / FLAGS.train_batch_size) normal_steps = int(41 * NUM_TRAIN_IMAGES / FLAGS.train_batch_size) large_steps = int(min(50 * NUM_TRAIN_IMAGES / FLAGS.train_batch_size, FLAGS.train_steps)) resnet_classifier.train( input_fn=imagenet_train_small.input_fn, max_steps=small_steps) resnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=normal_steps) resnet_classifier.train( input_fn=imagenet_train_large.input_fn, max_steps=large_steps) else: resnet_classifier.train( input_fn=imagenet_train.input_fn, max_steps=FLAGS.train_steps) else: assert FLAGS.mode == 'eval' start_timestamp = tf.gfile.Stat( os.path.join(FLAGS.model_dir, 'START')).mtime_nsec results = [] eval_steps = NUM_EVAL_IMAGES // FLAGS.eval_batch_size ckpt_steps = set() all_files = tf.gfile.ListDirectory(FLAGS.model_dir) for f in all_files: mat = re.match(CKPT_PATTERN, f) if mat is not None: ckpt_steps.add(int(mat.group('gs'))) ckpt_steps = sorted(list(ckpt_steps)) tf.logging.info('Steps to be evaluated: %s' % str(ckpt_steps)) for step in ckpt_steps: ckpt = os.path.join(FLAGS.model_dir, 'model.ckpt-%d' % step) batches_per_epoch = NUM_TRAIN_IMAGES // FLAGS.train_batch_size current_epoch = step // batches_per_epoch if FLAGS.use_fast_lr: if current_epoch < 18: eval_input_fn = imagenet_eval_small.input_fn if current_epoch >= 18 and current_epoch < 41: eval_input_fn = imagenet_eval.input_fn if current_epoch >= 41: # 41: eval_input_fn = imagenet_eval_large.input_fn else: eval_input_fn = imagenet_eval.input_fn end_timestamp = tf.gfile.Stat(ckpt + '.index').mtime_nsec elapsed_hours = (end_timestamp - start_timestamp) / (1e9 * 3600.0) tf.logging.info('Starting to evaluate.') eval_start = time.time() # This time will include compilation time eval_results = resnet_classifier.evaluate( input_fn=eval_input_fn, steps=eval_steps, checkpoint_path=ckpt) eval_time = int(time.time() - eval_start) tf.logging.info('Eval results: %s. Elapsed seconds: %d' % (eval_results, eval_time)) results.append([ current_epoch, elapsed_hours, '%.2f' % (eval_results['top_1_accuracy'] * 100), '%.2f' % (eval_results['top_5_accuracy'] * 100), ]) time.sleep(60) with tf.gfile.GFile(os.path.join(FLAGS.model_dir, 'results.tsv'), 'wb') as tsv_file: # pylint: disable=line-too-long writer = csv.writer(tsv_file, delimiter='\t') writer.writerow(['epoch', 'hours', 'top1Accuracy', 'top5Accuracy']) writer.writerows(results)
tensorflow/tpu
[ 5035, 1773, 5035, 290, 1499817279 ]
def test_engine_module_name(): engine = salt.engines.Engine({}, "foobar.start", {}, {}, {}, {}, name="foobar") assert engine.name == "foobar"
saltstack/salt
[ 13089, 5388, 13089, 3074, 1298233016 ]
def __init__(self, vocab, clusters): self.vocab = vocab self.clusters = clusters
danielfrg/word2vec
[ 2483, 628, 2483, 5, 1377467108 ]
def __getitem__(self, word): return self.get_cluster(word)
danielfrg/word2vec
[ 2483, 628, 2483, 5, 1377467108 ]
def get_words_on_cluster(self, cluster): return self.vocab[self.clusters == cluster]
danielfrg/word2vec
[ 2483, 628, 2483, 5, 1377467108 ]
def setUp(self): super(TestCatalog, self).setUp(capture_output=True)
prestodb/presto-admin
[ 170, 102, 170, 63, 1432266042 ]
def test_add_not_exist(self, isfile_mock): isfile_mock.return_value = False self.assertRaisesRegexp(ConfigurationError, 'Configuration for catalog dummy not found', catalog.add, 'dummy')
prestodb/presto-admin
[ 170, 102, 170, 63, 1432266042 ]