function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def is_square(self) -> bool: return self.order[0] == self.order[1]
matrix
def identity(self) -> Matrix: values = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(values)
matrix
def determinant(self) -> int: if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns) )
matrix
def is_invertable(self) -> bool: return bool(self.determinant())
matrix
def get_minor(self, row: int, column: int) -> int: values = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(values).determinant()
matrix
def get_cofactor(self, row: int, column: int) -> int: if (row + column) % 2 == 0: return self.get_minor(row, column) return -1 * self.get_minor(row, column)
matrix
def minors(self) -> Matrix: return Matrix( [ [self.get_minor(row, column) for column in range(self.num_columns)] for row in range(self.num_rows) ] )
matrix
def cofactors(self) -> Matrix: return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ] )
matrix
def adjugate(self) -> Matrix: values = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(values)
matrix
def inverse(self) -> Matrix: determinant = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse") return self.adjugate() * (1 / determinant)
matrix
def __repr__(self) -> str: return str(self.rows)
matrix
def __str__(self) -> str: if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(value) for value in row]) + ".]" for row in self.rows ] ) + "]" )
matrix
def add_row(self, row: list[int], position: int | None = None) -> None: type_error = TypeError("Row must be a list containing all ints and/or floats") if not isinstance(row, list): raise type_error for value in row: if not isinstance(value, (int, float)): raise type_error if len(row) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(row) else: self.rows = self.rows[0:position] + [row] + self.rows[position:]
matrix
def add_column(self, column: list[int], position: int | None = None) -> None: type_error = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(column, list): raise type_error for value in column: if not isinstance(value, (int, float)): raise type_error if len(column) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: self.rows = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: self.rows = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ]
matrix
def __eq__(self, other: object) -> bool: if not isinstance(other, Matrix): return NotImplemented return self.rows == other.rows
matrix
def __ne__(self, other: object) -> bool: return not self == other
matrix
def __neg__(self) -> Matrix: return self * -1
matrix
def __add__(self, other: Matrix) -> Matrix: if self.order != other.order: raise ValueError("Addition requires matrices of the same order") return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ] )
matrix
def __sub__(self, other: Matrix) -> Matrix: if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order") return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ] )
matrix
def __mul__(self, other: Matrix | int | float) -> Matrix: if isinstance(other, (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows] ) elif isinstance(other, Matrix): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(row, column) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" )
matrix
def __pow__(self, other: int) -> Matrix: if not isinstance(other, int): raise TypeError("A Matrix can only be raised to the power of an int") if not self.is_square: raise ValueError("Only square matrices can be raised to a power") if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) result = self for _ in range(other - 1): result *= self return result
matrix
def dot_product(cls, row: list[int], column: list[int]) -> int: return sum(row[i] * column[i] for i in range(len(row)))
matrix
def print_pascal_triangle(num_rows: int) -> None: triangle = generate_pascal_triangle(num_rows) for row_idx in range(num_rows): # Print left spaces for _ in range(num_rows - row_idx - 1): print(end=" ") # Print row values for col_idx in range(row_idx + 1): if col_idx != row_idx: print(triangle[row_idx][col_idx], end=" ") else: print(triangle[row_idx][col_idx], end="") print()
matrix
def generate_pascal_triangle(num_rows: int) -> list[list[int]]: if not isinstance(num_rows, int): raise TypeError("The input value of 'num_rows' should be 'int'") if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) triangle: list[list[int]] = [] for current_row_idx in range(num_rows): current_row = populate_current_row(triangle, current_row_idx) triangle.append(current_row) return triangle
matrix
def populate_current_row(triangle: list[list[int]], current_row_idx: int) -> list[int]: current_row = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 current_row[0], current_row[-1] = 1, 1 for current_col_idx in range(1, current_row_idx): calculate_current_element( triangle, current_row, current_row_idx, current_col_idx ) return current_row
matrix
def calculate_current_element( triangle: list[list[int]], current_row: list[int], current_row_idx: int, current_col_idx: int, ) -> None: above_to_left_elt = triangle[current_row_idx - 1][current_col_idx - 1] above_to_right_elt = triangle[current_row_idx - 1][current_col_idx] current_row[current_col_idx] = above_to_left_elt + above_to_right_elt
matrix
def generate_pascal_triangle_optimized(num_rows: int) -> list[list[int]]: if not isinstance(num_rows, int): raise TypeError("The input value of 'num_rows' should be 'int'") if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) result: list[list[int]] = [[1]] for row_index in range(1, num_rows): temp_row = [0] + result[-1] + [0] row_length = row_index + 1 # Calculate the number of distinct elements in a row distinct_elements = sum(divmod(row_length, 2)) row_first_half = [ temp_row[i - 1] + temp_row[i] for i in range(1, distinct_elements + 1) ] row_second_half = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() row = row_first_half + row_second_half result.append(row) return result
matrix
def benchmark_a_function(func: Callable, value: int) -> None: call = f"{func.__name__}({value})" timing = timeit(f"__main__.{call}", setup="import __main__") # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"{call:38} -- {timing:.4f} seconds")
matrix
def search_in_a_sorted_matrix( mat: list[list[int]], m: int, n: int, key: int | float ) -> None: i, j = m - 1, 0 while i >= 0 and j < n: if key == mat[i][j]: print(f"Key {key} found at row- {i + 1} column- {j + 1}") return if key < mat[i][j]: i -= 1 else: j += 1 print(f"Key {key} not found")
matrix
def main() -> None: mat = [[2, 5, 7], [4, 8, 13], [9, 11, 15], [12, 17, 20]] x = int(input("Enter the element to be searched:")) print(mat) search_in_a_sorted_matrix(mat, len(mat), len(mat[0]), x)
matrix
def multiply(matrix_a: list[list[int]], matrix_b: list[list[int]]) -> list[list[int]]: matrix_c = [] n = len(matrix_a) for i in range(n): list_1 = [] for j in range(n): val = 0 for k in range(n): val = val + matrix_a[i][k] * matrix_b[k][j] list_1.append(val) matrix_c.append(list_1) return matrix_c
matrix
def identity(n: int) -> list[list[int]]: return [[int(row == column) for column in range(n)] for row in range(n)]
matrix
def nth_fibonacci_matrix(n: int) -> int: if n <= 1: return n res_matrix = identity(2) fibonacci_matrix = [[1, 1], [1, 0]] n = n - 1 while n > 0: if n % 2 == 1: res_matrix = multiply(res_matrix, fibonacci_matrix) fibonacci_matrix = multiply(fibonacci_matrix, fibonacci_matrix) n = int(n / 2) return res_matrix[0][0]
matrix
def nth_fibonacci_bruteforce(n: int) -> int: if n <= 1: return n fib0 = 0 fib1 = 1 for _ in range(2, n + 1): fib0, fib1 = fib1, fib0 + fib1 return fib1
matrix
def main() -> None: for ordinal in "0th 1st 2nd 3rd 10th 100th 1000th".split(): n = int("".join(c for c in ordinal if c in "0123456789")) # 1000th --> 1000 print( f"{ordinal} fibonacci number using matrix exponentiation is " f"{nth_fibonacci_matrix(n)} and using bruteforce is " f"{nth_fibonacci_bruteforce(n)}\n" ) # from timeit import timeit # print(timeit("nth_fibonacci_matrix(1000000)", # "from main import nth_fibonacci_matrix", number=5)) # print(timeit("nth_fibonacci_bruteforce(1000000)", # "from main import nth_fibonacci_bruteforce", number=5)) # 2.3342058970001744 # 57.256506615000035
matrix
def test_addition(mat1, mat2): if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): with pytest.raises(TypeError): logger.info(f"\n\t{test_addition.__name__} returned integer") matop.add(mat1, mat2) elif (np.array(mat1)).shape == (np.array(mat2)).shape: logger.info(f"\n\t{test_addition.__name__} with same matrix dims") act = (np.array(mat1) + np.array(mat2)).tolist() theo = matop.add(mat1, mat2) assert theo == act else: with pytest.raises(ValueError): logger.info(f"\n\t{test_addition.__name__} with different matrix dims") matop.add(mat1, mat2)
matrix
def test_subtraction(mat1, mat2): if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): with pytest.raises(TypeError): logger.info(f"\n\t{test_subtraction.__name__} returned integer") matop.subtract(mat1, mat2) elif (np.array(mat1)).shape == (np.array(mat2)).shape: logger.info(f"\n\t{test_subtraction.__name__} with same matrix dims") act = (np.array(mat1) - np.array(mat2)).tolist() theo = matop.subtract(mat1, mat2) assert theo == act else: with pytest.raises(ValueError): logger.info(f"\n\t{test_subtraction.__name__} with different matrix dims") assert matop.subtract(mat1, mat2)
matrix
def test_multiplication(mat1, mat2): if (np.array(mat1)).shape < (2, 2) or (np.array(mat2)).shape < (2, 2): logger.info(f"\n\t{test_multiplication.__name__} returned integer") with pytest.raises(TypeError): matop.add(mat1, mat2) elif (np.array(mat1)).shape == (np.array(mat2)).shape: logger.info(f"\n\t{test_multiplication.__name__} meets dim requirements") act = (np.matmul(mat1, mat2)).tolist() theo = matop.multiply(mat1, mat2) assert theo == act else: with pytest.raises(ValueError): logger.info( f"\n\t{test_multiplication.__name__} does not meet dim requirements" ) assert matop.subtract(mat1, mat2)
matrix
def test_scalar_multiply(): act = (3.5 * np.array(mat_a)).tolist() theo = matop.scalar_multiply(mat_a, 3.5) assert theo == act
matrix
def test_identity(): act = (np.identity(5)).tolist() theo = matop.identity(5) assert theo == act
matrix
def shell_sort(collection): # Marcin Ciura's gap sequence gaps = [701, 301, 132, 57, 23, 10, 4, 1] for gap in gaps: for i in range(gap, len(collection)): insert_value = collection[i] j = i while j >= gap and collection[j - gap] > insert_value: collection[j] = collection[j - gap] j -= gap if j != i: collection[j] = insert_value return collection
sorts
def quick_sort_3partition(sorting: list, left: int, right: int) -> None: if right <= left: return a = i = left b = right pivot = sorting[left] while i <= b: if sorting[i] < pivot: sorting[a], sorting[i] = sorting[i], sorting[a] a += 1 i += 1 elif sorting[i] > pivot: sorting[b], sorting[i] = sorting[i], sorting[b] b -= 1 else: i += 1 quick_sort_3partition(sorting, left, a - 1) quick_sort_3partition(sorting, b + 1, right)
sorts
def quick_sort_lomuto_partition(sorting: list, left: int, right: int) -> None: if left < right: pivot_index = lomuto_partition(sorting, left, right) quick_sort_lomuto_partition(sorting, left, pivot_index - 1) quick_sort_lomuto_partition(sorting, pivot_index + 1, right)
sorts
def lomuto_partition(sorting: list, left: int, right: int) -> int: pivot = sorting[right] store_index = left for i in range(left, right): if sorting[i] < pivot: sorting[store_index], sorting[i] = sorting[i], sorting[store_index] store_index += 1 sorting[right], sorting[store_index] = sorting[store_index], sorting[right] return store_index
sorts
def three_way_radix_quicksort(sorting: list) -> list: if len(sorting) <= 1: return sorting return ( three_way_radix_quicksort([i for i in sorting if i < sorting[0]]) + [i for i in sorting if i == sorting[0]] + three_way_radix_quicksort([i for i in sorting if i > sorting[0]]) )
sorts
def bucket_sort(my_list: list) -> list: if len(my_list) == 0: return [] min_value, max_value = min(my_list), max(my_list) bucket_count = int(max_value - min_value) + 1 buckets: list[list] = [[] for _ in range(bucket_count)] for i in my_list: buckets[int(i - min_value)].append(i) return [v for bucket in buckets for v in sorted(bucket)]
sorts
def oe_process(position, value, l_send, r_send, lr_cv, rr_cv, result_pipe): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0, 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(value) process_lock.release() # receive your right neighbor's value process_lock.acquire() temp = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left value = min(value, temp) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(value) process_lock.release() # receive your left neighbor's value process_lock.acquire() temp = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right value = max(value, temp) # after all swaps are performed, send the values back to main result_pipe[1].send(value)
sorts
def odd_even_transposition(arr): process_array_ = [] result_pipe = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop temp_rs = Pipe() temp_rr = Pipe() process_array_.append( Process( target=oe_process, args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]), ) ) temp_lr = temp_rs temp_ls = temp_rr for i in range(1, len(arr) - 1): temp_rs = Pipe() temp_rr = Pipe() process_array_.append( Process( target=oe_process, args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]), ) ) temp_lr = temp_rs temp_ls = temp_rr process_array_.append( Process( target=oe_process, args=( len(arr) - 1, arr[len(arr) - 1], temp_ls, None, temp_lr, None, result_pipe[len(arr) - 1], ), ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0, len(result_pipe)): arr[p] = result_pipe[p][0].recv() process_array_[p].join() return arr
sorts
def main(): arr = list(range(10, 0, -1)) print("Initial List") print(*arr) arr = odd_even_transposition(arr) print("Sorted List\n") print(*arr)
sorts
def quick_sort(collection: list) -> list: if len(collection) < 2: return collection pivot_index = randrange(len(collection)) # Use random element as pivot pivot = collection[pivot_index] greater: list[int] = [] # All elements greater than pivot lesser: list[int] = [] # All elements less than or equal to pivot for element in collection[:pivot_index]: (greater if element > pivot else lesser).append(element) for element in collection[pivot_index + 1 :]: (greater if element > pivot else lesser).append(element) return [*quick_sort(lesser), pivot, *quick_sort(greater)]
sorts
def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0) yield from left yield from right
sorts
def merge_sort(collection): start, end = [], [] while len(collection) > 1: min_one, max_one = min(collection), max(collection) start.append(min_one) end.append(max_one) collection.remove(min_one) collection.remove(max_one) end.reverse() return start + collection + end
sorts
def insertion_sort(array: list, start: int = 0, end: int = 0) -> list: end = end or len(array) for i in range(start, end): temp_index = i temp_index_value = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: array[temp_index] = array[temp_index - 1] temp_index -= 1 array[temp_index] = temp_index_value return array
sorts
def heapify(array: list, index: int, heap_size: int) -> None: # Max Heap largest = index left_index = 2 * index + 1 # Left Node right_index = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: largest = left_index if right_index < heap_size and array[largest] < array[right_index]: largest = right_index if largest != index: array[index], array[largest] = array[largest], array[index] heapify(array, largest, heap_size)
sorts
def heap_sort(array: list) -> list: n = len(array) for i in range(n // 2, -1, -1): heapify(array, i, n) for i in range(n - 1, 0, -1): array[i], array[0] = array[0], array[i] heapify(array, 0, i) return array
sorts
def median_of_3( array: list, first_index: int, middle_index: int, last_index: int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index]
sorts
def partition(array: list, low: int, high: int, pivot: int) -> int: i = low j = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i array[i], array[j] = array[j], array[i] i += 1
sorts
def sort(array: list) -> list: if len(array) == 0: return array max_depth = 2 * math.ceil(math.log2(len(array))) size_threshold = 16 return intro_sort(array, 0, len(array), size_threshold, max_depth)
sorts
def intro_sort( array: list, start: int, end: int, size_threshold: int, max_depth: int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(array) max_depth -= 1 pivot = median_of_3(array, start, start + ((end - start) // 2) + 1, end - 1) p = partition(array, start, end, pivot) intro_sort(array, p, end, size_threshold, max_depth) end = p return insertion_sort(array, start, end)
sorts
def cycle_sort(array: list) -> list: array_len = len(array) for cycle_start in range(0, array_len - 1): item = array[cycle_start] pos = cycle_start for i in range(cycle_start + 1, array_len): if array[i] < item: pos += 1 if pos == cycle_start: continue while item == array[pos]: pos += 1 array[pos], item = item, array[pos] while pos != cycle_start: pos = cycle_start for i in range(cycle_start + 1, array_len): if array[i] < item: pos += 1 while item == array[pos]: pos += 1 array[pos], item = item, array[pos] return array
sorts
def pigeonhole_sort(a): # size of range of values in the list (ie, number of pigeonholes we need) min_val = min(a) # min() finds the minimum value max_val = max(a) # max() finds the maximum value size = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size holes = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(x, int), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. i = 0 for count in range(size): while holes[count] > 0: holes[count] -= 1 a[i] = count + min_val i += 1
sorts
def main(): a = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a) print("Sorted order is:", " ".join(a))
sorts
def rec_insertion_sort(collection: list, n: int): # Checks if the entire collection has been sorted if len(collection) <= 1 or n <= 1: return insert_next(collection, n - 1) rec_insertion_sort(collection, n - 1)
sorts
def insert_next(collection: list, index: int): # Checks order between adjacent elements if index >= len(collection) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order collection[index - 1], collection[index] = ( collection[index], collection[index - 1], ) insert_next(collection, index + 1)
sorts
def odd_even_transposition(arr: list) -> list: arr_size = len(arr) for _ in range(arr_size): for i in range(_ % 2, arr_size - 1, 2): if arr[i + 1] < arr[i]: arr[i], arr[i + 1] = arr[i + 1], arr[i] return arr
sorts
def dutch_national_flag_sort(sequence: list) -> list: if not sequence: return [] if len(sequence) == 1: return list(sequence) low = 0 high = len(sequence) - 1 mid = 0 while mid <= high: if sequence[mid] == colors[0]: sequence[low], sequence[mid] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: sequence[mid], sequence[high] = sequence[high], sequence[mid] high -= 1 else: raise ValueError( f"The elements inside the sequence must contains only {colors} values" ) return sequence
sorts
def pancake_sort(arr): cur = len(arr) while cur > 1: # Find the maximum number in arr mi = arr.index(max(arr[0:cur])) # Reverse from 0 to mi arr = arr[mi::-1] + arr[mi + 1 : len(arr)] # Reverse whole list arr = arr[cur - 1 :: -1] + arr[cur : len(arr)] cur -= 1 return arr
sorts
def shell_sort(collection: list) -> list: # Choose an initial gap value gap = len(collection) # Set the gap value to be decreased by a factor of 1.3 # after each iteration shrink = 1.3 # Continue sorting until the gap is 1 while gap > 1: # Decrease the gap value gap = int(gap / shrink) # Sort the elements using insertion sort for i in range(gap, len(collection)): temp = collection[i] j = i while j >= gap and collection[j - gap] > temp: collection[j] = collection[j - gap] j -= gap collection[j] = temp return collection
sorts
def merge(input_list: list, low: int, mid: int, high: int) -> list: result = [] left, right = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0)) input_list[low : high + 1] = result + left + right return input_list
sorts
def iter_merge_sort(input_list: list) -> list: if len(input_list) <= 1: return input_list input_list = list(input_list) # iteration for two-way merging p = 2 while p <= len(input_list): # getting low, high and middle value for merge-sort of single list for i in range(0, len(input_list), p): low = i high = i + p - 1 mid = (low + high + 1) // 2 input_list = merge(input_list, low, mid, high) # final merge of last two parts if p * 2 >= len(input_list): mid = i input_list = merge(input_list, 0, mid, len(input_list) - 1) break p *= 2 return input_list
sorts
def insertion_sort(collection: list) -> list: for insert_index, insert_value in enumerate(collection[1:]): temp_index = insert_index while insert_index >= 0 and insert_value < collection[insert_index]: collection[insert_index + 1] = collection[insert_index] insert_index -= 1 if insert_index != temp_index: collection[insert_index + 1] = insert_value return collection
sorts
def gnome_sort(lst: list) -> list: if len(lst) <= 1: return lst i = 1 while i < len(lst): if lst[i - 1] <= lst[i]: i += 1 else: lst[i - 1], lst[i] = lst[i], lst[i - 1] i -= 1 if i == 0: i = 1 return lst
sorts
def bubble_sort(collection): length = len(collection) for i in range(length - 1): swapped = False for j in range(length - 1 - i): if collection[j] > collection[j + 1]: swapped = True collection[j], collection[j + 1] = collection[j + 1], collection[j] if not swapped: break # Stop iteration if the collection is sorted. return collection
sorts
def stooge_sort(arr): stooge(arr, 0, len(arr) - 1) return arr
sorts
def stooge(arr, i, h): if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: arr[i], arr[h] = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: t = (int)((h - i + 1) / 3) # Recursively sort first 2/3 elements stooge(arr, i, (h - t)) # Recursively sort last 2/3 elements stooge(arr, i + t, (h)) # Recursively sort first 2/3 elements stooge(arr, i, (h - t))
sorts
def _in_place_quick_sort(a, start, end): count = 0 if start < end: pivot = randint(start, end) temp = a[end] a[end] = a[pivot] a[pivot] = temp p, count = _in_place_partition(a, start, end) count += _in_place_quick_sort(a, start, p - 1) count += _in_place_quick_sort(a, p + 1, end) return count
sorts
def _in_place_partition(a, start, end): count = 0 pivot = randint(start, end) temp = a[end] a[end] = a[pivot] a[pivot] = temp new_pivot_index = start - 1 for index in range(start, end): count += 1 if a[index] < a[end]: # check if current val is less than pivot value new_pivot_index = new_pivot_index + 1 temp = a[new_pivot_index] a[new_pivot_index] = a[index] a[index] = temp temp = a[new_pivot_index + 1] a[new_pivot_index + 1] = a[end] a[end] = temp return new_pivot_index + 1, count
sorts
def binary_search(lst, item, start, end): if start == end: return start if lst[start] > item else start + 1 if start > end: return start mid = (start + end) // 2 if lst[mid] < item: return binary_search(lst, item, mid + 1, end) elif lst[mid] > item: return binary_search(lst, item, start, mid - 1) else: return mid
sorts
def insertion_sort(lst): length = len(lst) for index in range(1, length): value = lst[index] pos = binary_search(lst, value, 0, index - 1) lst = lst[:pos] + [value] + lst[pos:index] + lst[index + 1 :] return lst
sorts
def merge(left, right): if not left: return right if not right: return left if left[0] < right[0]: return [left[0], *merge(left[1:], right)] return [right[0], *merge(left, right[1:])]
sorts
def tim_sort(lst): length = len(lst) runs, sorted_runs = [], [] new_run = [lst[0]] sorted_array = [] i = 1 while i < length: if lst[i] < lst[i - 1]: runs.append(new_run) new_run = [lst[i]] else: new_run.append(lst[i]) i += 1 runs.append(new_run) for run in runs: sorted_runs.append(insertion_sort(run)) for run in sorted_runs: sorted_array = merge(sorted_array, run) return sorted_array
sorts
def main(): lst = [5, 9, 10, 3, -4, 5, 178, 92, 46, -18, 0, 7] sorted_lst = tim_sort(lst) print(sorted_lst)
sorts
def msd_radix_sort(list_of_ints: list[int]) -> list[int]: if not list_of_ints: return [] if min(list_of_ints) < 0: raise ValueError("All numbers must be positive") most_bits = max(len(bin(x)[2:]) for x in list_of_ints) return _msd_radix_sort(list_of_ints, most_bits)
sorts
def _msd_radix_sort(list_of_ints: list[int], bit_position: int) -> list[int]: if bit_position == 0 or len(list_of_ints) in [0, 1]: return list_of_ints zeros = [] ones = [] # Split numbers based on bit at bit_position from the right for number in list_of_ints: if (number >> (bit_position - 1)) & 1: # number has a one at bit bit_position ones.append(number) else: # number has a zero at bit bit_position zeros.append(number) # recursively split both lists further zeros = _msd_radix_sort(zeros, bit_position - 1) ones = _msd_radix_sort(ones, bit_position - 1) # recombine lists res = zeros res.extend(ones) return res
sorts
def msd_radix_sort_inplace(list_of_ints: list[int]): length = len(list_of_ints) if not list_of_ints or length == 1: return if min(list_of_ints) < 0: raise ValueError("All numbers must be positive") most_bits = max(len(bin(x)[2:]) for x in list_of_ints) _msd_radix_sort_inplace(list_of_ints, most_bits, 0, length)
sorts
def _msd_radix_sort_inplace( list_of_ints: list[int], bit_position: int, begin_index: int, end_index: int ): if bit_position == 0 or end_index - begin_index <= 1: return bit_position -= 1 i = begin_index j = end_index - 1 while i <= j: changed = False if not (list_of_ints[i] >> bit_position) & 1: # found zero at the beginning i += 1 changed = True if (list_of_ints[j] >> bit_position) & 1: # found one at the end j -= 1 changed = True if changed: continue list_of_ints[i], list_of_ints[j] = list_of_ints[j], list_of_ints[i] j -= 1 if j != i: i += 1 _msd_radix_sort_inplace(list_of_ints, bit_position, begin_index, i) _msd_radix_sort_inplace(list_of_ints, bit_position, i, end_index)
sorts
def selection_sort(collection): length = len(collection) for i in range(length - 1): least = i for k in range(i + 1, length): if collection[k] < collection[least]: least = k if least != i: collection[least], collection[i] = (collection[i], collection[least]) return collection
sorts
def circle_sort_util(collection: list, low: int, high: int) -> bool: swapped = False if low == high: return swapped left = low right = high while left < right: if collection[left] > collection[right]: collection[left], collection[right] = ( collection[right], collection[left], ) swapped = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: collection[left], collection[right + 1] = ( collection[right + 1], collection[left], ) swapped = True mid = low + int((high - low) / 2) left_swap = circle_sort_util(collection, low, mid) right_swap = circle_sort_util(collection, mid + 1, high) return swapped or left_swap or right_swap
sorts
def is_sorted(collection): for i in range(len(collection) - 1): if collection[i] > collection[i + 1]: return False return True
sorts
def radix_sort(list_of_ints: list[int]) -> list[int]: placement = 1 max_digit = max(list_of_ints) while placement <= max_digit: # declare and initialize empty buckets buckets: list[list] = [[] for _ in range(RADIX)] # split list_of_ints between the buckets for i in list_of_ints: tmp = int((i / placement) % RADIX) buckets[tmp].append(i) # put each buckets' contents into list_of_ints a = 0 for b in range(RADIX): for i in buckets[b]: list_of_ints[a] = i a += 1 # move to next placement *= RADIX return list_of_ints
sorts
def binary_search_insertion(sorted_list, item): left = 0 right = len(sorted_list) - 1 while left <= right: middle = (left + right) // 2 if left == right: if sorted_list[middle] < item: left = middle + 1 break elif sorted_list[middle] < item: left = middle + 1 else: right = middle - 1 sorted_list.insert(left, item) return sorted_list
sorts
def merge(left, right): result = [] while left and right: if left[0][0] < right[0][0]: result.append(left.pop(0)) else: result.append(right.pop(0)) return result + left + right
sorts
def sortlist_2d(list_2d): length = len(list_2d) if length <= 1: return list_2d middle = length // 2 return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:]))
sorts
def merge_insertion_sort(collection: list[int]) -> list[int]: if len(collection) <= 1: return collection two_paired_list = [] has_last_odd_item = False for i in range(0, len(collection), 2): if i == len(collection) - 1: has_last_odd_item = True else: if collection[i] < collection[i + 1]: two_paired_list.append([collection[i], collection[i + 1]]) else: two_paired_list.append([collection[i + 1], collection[i]]) sorted_list_2d = sortlist_2d(two_paired_list) result = [i[0] for i in sorted_list_2d] result.append(sorted_list_2d[-1][1]) if has_last_odd_item: pivot = collection[-1] result = binary_search_insertion(result, pivot) is_last_odd_item_inserted_before_this_index = False for i in range(len(sorted_list_2d) - 1): if result[i] == collection[-1] and has_last_odd_item: is_last_odd_item_inserted_before_this_index = True pivot = sorted_list_2d[i][1] # If last_odd_item is inserted before the item's index, # you should forward index one more. if is_last_odd_item_inserted_before_this_index: result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot) else: result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot) return result
sorts
def odd_even_sort(input_list: list) -> list: is_sorted = False while is_sorted is False: # Until all the indices are traversed keep looping is_sorted = True for i in range(0, len(input_list) - 1, 2): # iterating over all even indices if input_list[i] > input_list[i + 1]: input_list[i], input_list[i + 1] = input_list[i + 1], input_list[i] # swapping if elements not in order is_sorted = False for i in range(1, len(input_list) - 1, 2): # iterating over all odd indices if input_list[i] > input_list[i + 1]: input_list[i], input_list[i + 1] = input_list[i + 1], input_list[i] # swapping if elements not in order is_sorted = False return input_list
sorts
def counting_sort(collection): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection coll_len = len(collection) coll_max = max(collection) coll_min = min(collection) # create the counting array counting_arr_length = coll_max + 1 - coll_min counting_arr = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1, counting_arr_length): counting_arr[i] = counting_arr[i] + counting_arr[i - 1] # create the output collection ordered = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0, coll_len)): ordered[counting_arr[collection[i] - coll_min] - 1] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered
sorts
def counting_sort_string(string): return "".join([chr(i) for i in counting_sort([ord(c) for c in string])])
sorts
def __init__(self, val): self.val = val self.left = None self.right = None
sorts
def insert(self, val): if self.val: if val < self.val: if self.left is None: self.left = Node(val) else: self.left.insert(val) elif val > self.val: if self.right is None: self.right = Node(val) else: self.right.insert(val) else: self.val = val
sorts
def inorder(root, res): # Recursive traversal if root: inorder(root.left, res) res.append(root.val) inorder(root.right, res)
sorts