function
stringlengths
18
3.86k
intent_category
stringlengths
5
24
def tree_sort(arr): # Build BST if len(arr) == 0: return arr root = Node(arr[0]) for i in range(1, len(arr)): root.insert(arr[i]) # Traverse BST in order. res = [] inorder(root, res) return res
sorts
def wiggle_sort(nums: list) -> list: for i, _ in enumerate(nums): if (i % 2 == 1) == (nums[i - 1] > nums[i]): nums[i - 1], nums[i] = nums[i], nums[i - 1] return nums
sorts
def bubble_sort(list_data: list, length: int = 0) -> list: length = length or len(list_data) swapped = False for i in range(length - 1): if list_data[i] > list_data[i + 1]: list_data[i], list_data[i + 1] = list_data[i + 1], list_data[i] swapped = True return list_data if not swapped else bubble_sort(list_data, length - 1)
sorts
def slowsort(sequence: list, start: int | None = None, end: int | None = None) -> None: if start is None: start = 0 if end is None: end = len(sequence) - 1 if start >= end: return mid = (start + end) // 2 slowsort(sequence, start, mid) slowsort(sequence, mid + 1, end) if sequence[end] < sequence[mid]: sequence[end], sequence[mid] = sequence[mid], sequence[end] slowsort(sequence, start, end - 1)
sorts
def __init__(self, filename): self.filename = filename self.block_filenames = []
sorts
def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) with open(filename, "w") as file: file.write(data) self.block_filenames.append(filename)
sorts
def get_block_filenames(self): return self.block_filenames
sorts
def split(self, block_size, sort_key=None): i = 0 with open(self.filename) as file: while True: lines = file.readlines(block_size) if lines == []: break if sort_key is None: lines.sort() else: lines.sort(key=sort_key) self.write_block("".join(lines), i) i += 1
sorts
def cleanup(self): map(os.remove, self.block_filenames)
sorts
def select(self, choices): min_index = -1 min_str = None for i in range(len(choices)): if min_str is None or choices[i] < min_str: min_index = i return min_index
sorts
def __init__(self, files): self.files = files self.empty = set() self.num_buffers = len(files) self.buffers = {i: None for i in range(self.num_buffers)}
sorts
def get_dict(self): return { i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty }
sorts
def refresh(self): for i in range(self.num_buffers): if self.buffers[i] is None and i not in self.empty: self.buffers[i] = self.files[i].readline() if self.buffers[i] == "": self.empty.add(i) self.files[i].close() if len(self.empty) == self.num_buffers: return False return True
sorts
def unshift(self, index): value = self.buffers[index] self.buffers[index] = None return value
sorts
def __init__(self, merge_strategy): self.merge_strategy = merge_strategy
sorts
def merge(self, filenames, outfilename, buffer_size): buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) with open(outfilename, "w", buffer_size) as outfile: while buffers.refresh(): min_index = self.merge_strategy.select(buffers.get_dict()) outfile.write(buffers.unshift(min_index))
sorts
def get_file_handles(self, filenames, buffer_size): files = {} for i in range(len(filenames)): files[i] = open(filenames[i], "r", buffer_size) return files
sorts
def __init__(self, block_size): self.block_size = block_size
sorts
def sort(self, filename, sort_key=None): num_blocks = self.get_number_blocks(filename, self.block_size) splitter = FileSplitter(filename) splitter.split(self.block_size, sort_key) merger = FileMerger(NWayMerge()) buffer_size = self.block_size / (num_blocks + 1) merger.merge(splitter.get_block_filenames(), filename + ".out", buffer_size) splitter.cleanup()
sorts
def get_number_blocks(self, filename, block_size): return (os.stat(filename).st_size / block_size) + 1
sorts
def parse_memory(string): if string[-1].lower() == "k": return int(string[:-1]) * 1024 elif string[-1].lower() == "m": return int(string[:-1]) * 1024 * 1024 elif string[-1].lower() == "g": return int(string[:-1]) * 1024 * 1024 * 1024 else: return int(string)
sorts
def main(): parser = argparse.ArgumentParser() parser.add_argument( "-m", "--mem", help="amount of memory to use for sorting", default="100M" ) parser.add_argument( "filename", metavar="<filename>", nargs=1, help="name of file to sort" ) args = parser.parse_args() sorter = ExternalSort(parse_memory(args.mem)) sorter.sort(args.filename[0])
sorts
def heapify(unsorted, index, heap_size): largest = index left_index = 2 * index + 1 right_index = 2 * index + 2 if left_index < heap_size and unsorted[left_index] > unsorted[largest]: largest = left_index if right_index < heap_size and unsorted[right_index] > unsorted[largest]: largest = right_index if largest != index: unsorted[largest], unsorted[index] = unsorted[index], unsorted[largest] heapify(unsorted, largest, heap_size)
sorts
def heap_sort(unsorted): n = len(unsorted) for i in range(n // 2 - 1, -1, -1): heapify(unsorted, i, n) for i in range(n - 1, 0, -1): unsorted[0], unsorted[i] = unsorted[i], unsorted[0] heapify(unsorted, 0, i) return unsorted
sorts
def exchange_sort(numbers: list[int]) -> list[int]: numbers_length = len(numbers) for i in range(numbers_length): for j in range(i + 1, numbers_length): if numbers[j] < numbers[i]: numbers[i], numbers[j] = numbers[j], numbers[i] return numbers
sorts
def strand_sort(arr: list, reverse: bool = False, solution: list | None = None) -> list: _operator = operator.lt if reverse else operator.gt solution = solution or [] if not arr: return solution sublist = [arr.pop(0)] for i, item in enumerate(arr): if _operator(item, sublist[-1]): sublist.append(item) arr.pop(i) # merging sublist into solution list if not solution: solution.extend(sublist) else: while sublist: item = sublist.pop(0) for i, xx in enumerate(solution): if not _operator(item, xx): solution.insert(i, item) break else: solution.append(item) strand_sort(arr, reverse, solution) return solution
sorts
def quick_sort(data: list) -> list: if len(data) <= 1: return data else: return [ *quick_sort([e for e in data[1:] if e <= data[0]]), data[0], *quick_sort([e for e in data[1:] if e > data[0]]), ]
sorts
def __lt__(self, other): return self[-1] < other[-1]
sorts
def __eq__(self, other): return self[-1] == other[-1]
sorts
def patience_sort(collection: list) -> list: stacks: list[Stack] = [] # sort into stacks for element in collection: new_stacks = Stack([element]) i = bisect_left(stacks, new_stacks) if i != len(stacks): stacks[i].append(element) else: stacks.append(new_stacks) # use a heap-based merge to merge stack efficiently collection[:] = merge(*(reversed(stack) for stack in stacks)) return collection
sorts
def partition(a, left_index, right_index): pivot = a[left_index] i = left_index + 1 for j in range(left_index + 1, right_index): if a[j] < pivot: a[j], a[i] = a[i], a[j] i += 1 a[left_index], a[i - 1] = a[i - 1], a[left_index] return i - 1
sorts
def quick_sort_random(a, left, right): if left < right: pivot = random.randint(left, right - 1) a[pivot], a[left] = ( a[left], a[pivot], ) # switches the pivot with the left most bound pivot_index = partition(a, left, right) quick_sort_random( a, left, pivot_index ) # recursive quicksort to the left of the pivot point quick_sort_random( a, pivot_index + 1, right ) # recursive quicksort to the right of the pivot point
sorts
def main(): user_input = input("Enter numbers separated by a comma:\n").strip() arr = [int(item) for item in user_input.split(",")] quick_sort_random(arr, 0, len(arr)) print(arr)
sorts
def bead_sort(sequence: list) -> list: if any(not isinstance(x, int) or x < 0 for x in sequence): raise TypeError("Sequence must be list of non-negative integers") for _ in range(len(sequence)): for i, (rod_upper, rod_lower) in enumerate(zip(sequence, sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence
sorts
def comb_sort(data: list) -> list: shrink_factor = 1.3 gap = len(data) completed = False while not completed: # Update the gap value for a next comb gap = int(gap / shrink_factor) if gap <= 1: completed = True index = 0 while index + gap < len(data): if data[index] > data[index + gap]: # Swap values data[index], data[index + gap] = data[index + gap], data[index] completed = False index += 1 return data
sorts
def pigeon_sort(array: list[int]) -> list[int]: if len(array) == 0: return array _min, _max = min(array), max(array) # Compute the variables holes_range = _max - _min + 1 holes, holes_repeat = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: index = i - _min holes[index] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. index = 0 for i in range(holes_range): while holes_repeat[i] > 0: array[index] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array
sorts
def comp_and_swap(array: list[int], index1: int, index2: int, direction: int) -> None: if (direction == 1 and array[index1] > array[index2]) or ( direction == 0 and array[index1] < array[index2] ): array[index1], array[index2] = array[index2], array[index1]
sorts
def bitonic_merge(array: list[int], low: int, length: int, direction: int) -> None: if length > 1: middle = int(length / 2) for i in range(low, low + middle): comp_and_swap(array, i, i + middle, direction) bitonic_merge(array, low, middle, direction) bitonic_merge(array, low + middle, middle, direction)
sorts
def bitonic_sort(array: list[int], low: int, length: int, direction: int) -> None: if length > 1: middle = int(length / 2) bitonic_sort(array, low, middle, 1) bitonic_sort(array, low + middle, middle, 0) bitonic_merge(array, low, length, direction)
sorts
def alphanum_key(key): return [int(s) if s.isdigit() else s.lower() for s in re.split("([0-9]+)", key)]
sorts
def double_sort(lst): no_of_elements = len(lst) for _ in range( 0, int(((no_of_elements - 1) / 2) + 1) ): # we don't need to traverse to end of list as for j in range(0, no_of_elements - 1): if ( lst[j + 1] < lst[j] ): # applying bubble sort algorithm from left to right (or forwards) temp = lst[j + 1] lst[j + 1] = lst[j] lst[j] = temp if ( lst[no_of_elements - 1 - j] < lst[no_of_elements - 2 - j] ): # applying bubble sort algorithm from right to left (or backwards) temp = lst[no_of_elements - 1 - j] lst[no_of_elements - 1 - j] = lst[no_of_elements - 2 - j] lst[no_of_elements - 2 - j] = temp return lst
sorts
def __init__(self, order: int) -> None: self.order = order # a_{0} ... a_{k} self.a_coeffs = [1.0] + [0.0] * order # b_{0} ... b_{k} self.b_coeffs = [1.0] + [0.0] * order # x[n-1] ... x[n-k] self.input_history = [0.0] * self.order # y[n-1] ... y[n-k] self.output_history = [0.0] * self.order
audio_filters
def set_coefficients(self, a_coeffs: list[float], b_coeffs: list[float]) -> None: if len(a_coeffs) < self.order: a_coeffs = [1.0, *a_coeffs] if len(a_coeffs) != self.order + 1: raise ValueError( f"Expected a_coeffs to have {self.order + 1} elements for {self.order}" f"-order filter, got {len(a_coeffs)}" ) if len(b_coeffs) != self.order + 1: raise ValueError( f"Expected b_coeffs to have {self.order + 1} elements for {self.order}" f"-order filter, got {len(a_coeffs)}" ) self.a_coeffs = a_coeffs self.b_coeffs = b_coeffs
audio_filters
def process(self, sample: float) -> float: return 0.0
audio_filters
def get_bounds( fft_results: np.ndarray, samplerate: int ) -> tuple[int | float, int | float]: lowest = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])]) highest = max([20, np.max(fft_results[1 : samplerate // 2 - 1])]) return lowest, highest
audio_filters
def show_frequency_response(filter_type: FilterType, samplerate: int) -> None: size = 512 inputs = [1] + [0] * (size - 1) outputs = [filter_type.process(item) for item in inputs] filler = [0] * (samplerate - size) # zero-padding outputs += filler fft_out = np.abs(np.fft.fft(outputs)) fft_db = 20 * np.log10(fft_out) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") # Display within reasonable bounds bounds = get_bounds(fft_db, samplerate) plt.ylim(max([-80, bounds[0]]), min([80, bounds[1]])) plt.ylabel("Gain (dB)") plt.plot(fft_db) plt.show()
audio_filters
def make_lowpass( frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
audio_filters
def make_highpass( frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
audio_filters
def make_bandpass( frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
audio_filters
def make_allpass( frequency: int, samplerate: int, q_factor: float = 1 / sqrt(2) # noqa: B008
audio_filters
def make_peak( frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2), # noqa: B008
audio_filters
def make_lowshelf( frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2), # noqa: B008
audio_filters
def make_highshelf( frequency: int, samplerate: int, gain_db: float, q_factor: float = 1 / sqrt(2), # noqa: B008
audio_filters
def bb84(key_len: int = 8, seed: int | None = None) -> str: # Set up the random number generator. rng = np.random.default_rng(seed=seed) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. num_qubits = 6 * key_len # Measurement basis for Alice's qubits. alice_basis = rng.integers(2, size=num_qubits) # The set of states Alice will prepare. alice_state = rng.integers(2, size=num_qubits) # Measurement basis for Bob's qubits. bob_basis = rng.integers(2, size=num_qubits) # Quantum Circuit to simulate BB84 bb84_circ = qiskit.QuantumCircuit(num_qubits, name="BB84") # Alice prepares her qubits according to rules above. for index, _ in enumerate(alice_basis): if alice_state[index] == 1: bb84_circ.x(index) if alice_basis[index] == 1: bb84_circ.h(index) bb84_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(bob_basis): if bob_basis[index] == 1: bb84_circ.h(index) bb84_circ.barrier() bb84_circ.measure_all() # Simulate the quantum circuit. sim = qiskit.Aer.get_backend("aer_simulator") # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. job = qiskit.execute(bb84_circ, sim, shots=1, seed_simulator=seed) # Returns the result of measurement. result = job.result().get_counts(bb84_circ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. gen_key = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( alice_basis, bob_basis, result ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. key = gen_key[:key_len] if len(gen_key) >= key_len else gen_key.ljust(key_len, "0") return key
quantum
def store_two_classics(val1: int, val2: int) -> tuple[qiskit.QuantumCircuit, str, str]: x, y = bin(val1)[2:], bin(val2)[2:] # Remove leading '0b' # Ensure that both strings are of the same length if len(x) > len(y): y = y.zfill(len(x)) else: x = x.zfill(len(y)) # We need (3 * number of bits in the larger number)+1 qBits # The second parameter is the number of classical registers, to measure the result circuit = qiskit.QuantumCircuit((len(x) * 3) + 1, len(x) + 1) # We are essentially "not-ing" the bits that are 1 # Reversed because it's easier to perform ops on more significant bits for i in range(len(x)): if x[::-1][i] == "1": circuit.x(i) for j in range(len(y)): if y[::-1][j] == "1": circuit.x(len(x) + j) return circuit, x, y
quantum
def full_adder( circuit: qiskit.QuantumCircuit, input1_loc: int, input2_loc: int, carry_in: int, carry_out: int, ): circuit.ccx(input1_loc, input2_loc, carry_out) circuit.cx(input1_loc, input2_loc) circuit.ccx(input2_loc, carry_in, carry_out) circuit.cx(input2_loc, carry_in) circuit.cx(input1_loc, input2_loc)
quantum
def ripple_adder( val1: int, val2: int, backend: Backend = qiskit.Aer.get_backend("aer_simulator"), # noqa: B008
quantum
def quantum_entanglement(qubits: int = 2) -> qiskit.result.counts.Counts: classical_bits = qubits # Using Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register circuit = qiskit.QuantumCircuit(qubits, classical_bits) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1, qubits): # Adding CX (CNOT) gate circuit.cx(i - 1, i) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(qubits)), list(range(classical_bits))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator job = qiskit.execute(circuit, simulator, shots=1000) return job.result().get_counts(circuit)
quantum
def single_qubit_measure( qubits: int, classical_bits: int ) -> qiskit.result.counts.Counts: # Use Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") # Create a Quantum Circuit acting on the q register circuit = qiskit.QuantumCircuit(qubits, classical_bits) # Map the quantum measurement to the classical bits circuit.measure([0], [0]) # Execute the circuit on the simulator job = qiskit.execute(circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(circuit)
quantum
def quantum_fourier_transform(number_of_qubits: int = 3) -> qiskit.result.counts.Counts: if isinstance(number_of_qubits, str): raise TypeError("number of qubits must be a integer.") if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0.") if math.floor(number_of_qubits) != number_of_qubits: raise ValueError("number of qubits must be exact integer.") if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10).") qr = QuantumRegister(number_of_qubits, "qr") cr = ClassicalRegister(number_of_qubits, "cr") quantum_circuit = QuantumCircuit(qr, cr) counter = number_of_qubits for i in range(counter): quantum_circuit.h(number_of_qubits - i - 1) counter -= 1 for j in range(counter): quantum_circuit.cp(np.pi / 2 ** (counter - j), j, counter) for k in range(number_of_qubits // 2): quantum_circuit.swap(k, number_of_qubits - k - 1) # measure all the qubits quantum_circuit.measure(qr, cr) # simulate with 10000 shots backend = Aer.get_backend("qasm_simulator") job = execute(quantum_circuit, backend, shots=10000) return job.result().get_counts(quantum_circuit)
quantum
def superdense_coding(bit_1: int = 1, bit_2: int = 1) -> qiskit.result.counts.Counts: if isinstance(bit_1, str) or isinstance(bit_2, str): raise TypeError("inputs must be integers.") if (bit_1 < 0) or (bit_2 < 0): raise ValueError("inputs must be positive.") if (math.floor(bit_1) != bit_1) or (math.floor(bit_2) != bit_2): raise ValueError("inputs must be exact integers.") if (bit_1 > 1) or (bit_2 > 1): raise ValueError("inputs must be less or equal to 1.") # build registers qr = QuantumRegister(2, "qr") cr = ClassicalRegister(2, "cr") quantum_circuit = QuantumCircuit(qr, cr) # entanglement the qubits quantum_circuit.h(1) quantum_circuit.cx(1, 0) # send the information c_information = str(bit_1) + str(bit_2) if c_information == "11": quantum_circuit.x(1) quantum_circuit.z(1) elif c_information == "10": quantum_circuit.z(1) elif c_information == "01": quantum_circuit.x(1) else: quantum_circuit.i(1) # unentangled the circuit quantum_circuit.cx(1, 0) quantum_circuit.h(1) # measure the circuit quantum_circuit.measure(qr, cr) backend = Aer.get_backend("aer_simulator") job = execute(quantum_circuit, backend, shots=1000) return job.result().get_counts(quantum_circuit)
quantum
def single_qubit_measure( qubits: int, classical_bits: int ) -> qiskit.result.counts.Counts: # Use Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") # Create a Quantum Circuit acting on the q register circuit = qiskit.QuantumCircuit(qubits, classical_bits) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0) circuit.x(1) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1]) # Execute the circuit on the qasm simulator job = qiskit.execute(circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(circuit)
quantum
def half_adder(bit0: int, bit1: int) -> qiskit.result.counts.Counts: # Use Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") qc_ha = qiskit.QuantumCircuit(4, 2) # encode inputs in qubits 0 and 1 if bit0 == 1: qc_ha.x(0) if bit1 == 1: qc_ha.x(1) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0, 2) qc_ha.cx(1, 2) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0, 1, 3) qc_ha.barrier() # extract outputs qc_ha.measure(2, 0) # extract XOR value qc_ha.measure(3, 1) # extract AND value # Execute the circuit on the qasm simulator job = qiskit.execute(qc_ha, simulator, shots=1000) # Return the histogram data of the results of the experiment return job.result().get_counts(qc_ha)
quantum
def dj_oracle(case: str, num_qubits: int) -> qiskit.QuantumCircuit: # This circuit has num_qubits+1 qubits: the size of the input, # plus one output qubit oracle_qc = qiskit.QuantumCircuit(num_qubits + 1) # First, let's deal with the case in which oracle is balanced if case == "balanced": # First generate a random number that tells us which CNOTs to # wrap in X-gates: b = np.random.randint(1, 2**num_qubits) # Next, format 'b' as a binary string of length 'n', padded with zeros: b_str = format(b, f"0{num_qubits}b") # Next, we place the first X-gates. Each digit in our binary string # corresponds to a qubit, if the digit is 0, we do nothing, if it's 1 # we apply an X-gate to that qubit: for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Do the controlled-NOT gates for each qubit, using the output qubit # as the target: for index in range(num_qubits): oracle_qc.cx(index, num_qubits) # Next, place the final X-gates for index, bit in enumerate(b_str): if bit == "1": oracle_qc.x(index) # Case in which oracle is constant if case == "constant": # First decide what the fixed output of the oracle will be # (either always 0 or always 1) output = np.random.randint(2) if output == 1: oracle_qc.x(num_qubits) oracle_gate = oracle_qc.to_gate() oracle_gate.name = "Oracle" # To show when we display the circuit return oracle_gate
quantum
def dj_algorithm( oracle: qiskit.QuantumCircuit, num_qubits: int ) -> qiskit.QuantumCircuit: dj_circuit = qiskit.QuantumCircuit(num_qubits + 1, num_qubits) # Set up the output qubit: dj_circuit.x(num_qubits) dj_circuit.h(num_qubits) # And set up the input register: for qubit in range(num_qubits): dj_circuit.h(qubit) # Let's append the oracle gate to our circuit: dj_circuit.append(oracle, range(num_qubits + 1)) # Finally, perform the H-gates again and measure: for qubit in range(num_qubits): dj_circuit.h(qubit) for i in range(num_qubits): dj_circuit.measure(i, i) return dj_circuit
quantum
def deutsch_jozsa(case: str, num_qubits: int) -> qiskit.result.counts.Counts: # Use Aer's simulator simulator = qiskit.Aer.get_backend("aer_simulator") oracle_gate = dj_oracle(case, num_qubits) dj_circuit = dj_algorithm(oracle_gate, num_qubits) # Execute the circuit on the simulator job = qiskit.execute(dj_circuit, simulator, shots=1000) # Return the histogram data of the results of the experiment. return job.result().get_counts(dj_circuit)
quantum
def quantum_teleportation( theta: float = np.pi / 2, phi: float = np.pi / 2, lam: float = np.pi / 2 ) -> qiskit.result.counts.Counts: qr = QuantumRegister(3, "qr") # Define the number of quantum bits cr = ClassicalRegister(1, "cr") # Define the number of classical bits quantum_circuit = QuantumCircuit(qr, cr) # Define the quantum circuit. # Build the circuit quantum_circuit.u(theta, phi, lam, 0) # Quantum State to teleport quantum_circuit.h(1) # add hadamard gate quantum_circuit.cx( 1, 2 ) # add control gate with qubit 1 as control and 2 as target. quantum_circuit.cx(0, 1) quantum_circuit.h(0) quantum_circuit.cz(0, 2) # add control z gate. quantum_circuit.cx(1, 2) quantum_circuit.measure([2], [0]) # measure the qubit. # Simulate the circuit using qasm simulator backend = Aer.get_backend("aer_simulator") job = execute(quantum_circuit, backend, shots=1000) return job.result().get_counts(quantum_circuit)
quantum
def quantum_full_adder( input_1: int = 1, input_2: int = 1, carry_in: int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(input_1, str) or isinstance(input_2, str) or isinstance(carry_in, str) ): raise TypeError("inputs must be integers.") if (input_1 < 0) or (input_2 < 0) or (carry_in < 0): raise ValueError("inputs must be positive.") if ( (math.floor(input_1) != input_1) or (math.floor(input_2) != input_2) or (math.floor(carry_in) != carry_in) ): raise ValueError("inputs must be exact integers.") if (input_1 > 2) or (input_2 > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2.") # build registers qr = qiskit.QuantumRegister(4, "qr") cr = qiskit.ClassicalRegister(2, "cr") # list the entries entry = [input_1, input_2, carry_in] quantum_circuit = qiskit.QuantumCircuit(qr, cr) for i in range(0, 3): if entry[i] == 2: quantum_circuit.h(i) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(i) # for 1 entries elif entry[i] == 0: quantum_circuit.i(i) # for 0 entries # build the circuit quantum_circuit.ccx(0, 1, 3) # ccx = toffoli gate quantum_circuit.cx(0, 1) quantum_circuit.ccx(1, 2, 3) quantum_circuit.cx(1, 2) quantum_circuit.cx(0, 1) quantum_circuit.measure([2, 3], cr) # measure the last two qbits backend = qiskit.Aer.get_backend("aer_simulator") job = qiskit.execute(quantum_circuit, backend, shots=1000) return job.result().get_counts(quantum_circuit)
quantum