function
stringlengths 18
3.86k
| intent_category
stringlengths 5
24
|
---|---|
def is_prime(number: int) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True | project_euler |
def solution(nth: int = 10001) -> int:
try:
nth = int(nth)
except (TypeError, ValueError):
raise TypeError("Parameter nth must be int or castable to int.") from None
if nth <= 0:
raise ValueError("Parameter nth must be greater than or equal to one.")
primes: list[int] = []
num = 2
while len(primes) < nth:
if is_prime(num):
primes.append(num)
num += 1
else:
num += 1
return primes[len(primes) - 1] | project_euler |
def is_prime(number: int) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True | project_euler |
def solution(nth: int = 10001) -> int:
count = 0
number = 1
while count != nth and number < 3:
number += 1
if is_prime(number):
count += 1
while count != nth:
number += 2
if is_prime(number):
count += 1
return number | project_euler |
def solution(pence: int = 200) -> int:
coins = [1, 2, 5, 10, 20, 50, 100, 200]
number_of_ways = [0] * (pence + 1)
number_of_ways[0] = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(coin, pence + 1, 1):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence] | project_euler |
def one_pence() -> int:
return 1 | project_euler |
def two_pence(x: int) -> int:
return 0 if x < 0 else two_pence(x - 2) + one_pence() | project_euler |
def five_pence(x: int) -> int:
return 0 if x < 0 else five_pence(x - 5) + two_pence(x) | project_euler |
def ten_pence(x: int) -> int:
return 0 if x < 0 else ten_pence(x - 10) + five_pence(x) | project_euler |
def twenty_pence(x: int) -> int:
return 0 if x < 0 else twenty_pence(x - 20) + ten_pence(x) | project_euler |
def fifty_pence(x: int) -> int:
return 0 if x < 0 else fifty_pence(x - 50) + twenty_pence(x) | project_euler |
def one_pound(x: int) -> int:
return 0 if x < 0 else one_pound(x - 100) + fifty_pence(x) | project_euler |
def two_pound(x: int) -> int:
return 0 if x < 0 else two_pound(x - 200) + one_pound(x) | project_euler |
def solution(n: int = 200) -> int:
return two_pound(n) | project_euler |
def get_pascal_triangle_unique_coefficients(depth: int) -> set[int]:
coefficients = {1}
previous_coefficients = [1]
for _ in range(2, depth + 1):
coefficients_begins_one = [*previous_coefficients, 0]
coefficients_ends_one = [0, *previous_coefficients]
previous_coefficients = []
for x, y in zip(coefficients_begins_one, coefficients_ends_one):
coefficients.add(x + y)
previous_coefficients.append(x + y)
return coefficients | project_euler |
def get_squarefrees(unique_coefficients: set[int]) -> set[int]:
non_squarefrees = set()
for number in unique_coefficients:
divisor = 2
copy_number = number
while divisor**2 <= copy_number:
multiplicity = 0
while copy_number % divisor == 0:
copy_number //= divisor
multiplicity += 1
if multiplicity >= 2:
non_squarefrees.add(number)
break
divisor += 1
return unique_coefficients.difference(non_squarefrees) | project_euler |
def solution(n: int = 51) -> int:
unique_coefficients = get_pascal_triangle_unique_coefficients(n)
squarefrees = get_squarefrees(unique_coefficients)
return sum(squarefrees) | project_euler |
def solution() -> int:
return [
a * b * (1000 - a - b)
for a in range(1, 999)
for b in range(a, 999)
if (a * a + b * b == (1000 - a - b) ** 2)
][0] | project_euler |
def solution(n: int = 1000) -> int:
product = -1
candidate = 0
for a in range(1, n // 3):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
b = (n * n - 2 * a * n) // (2 * n - 2 * a)
c = n - a - b
if c * c == (a * a + b * b):
candidate = a * b * c
if candidate >= product:
product = candidate
return product | project_euler |
def solution() -> int:
for a in range(300):
for b in range(a + 1, 400):
for c in range(b + 1, 500):
if (a + b + c) == 1000 and (a**2) + (b**2) == (c**2):
return a * b * c
return -1 | project_euler |
def solution_fast() -> int:
for a in range(300):
for b in range(400):
c = 1000 - a - b
if a < b < c and (a**2) + (b**2) == (c**2):
return a * b * c
return -1 | project_euler |
def benchmark() -> None:
import timeit
print(
timeit.timeit("solution()", setup="from __main__ import solution", number=1000)
)
print(
timeit.timeit(
"solution_fast()", setup="from __main__ import solution_fast", number=1000
)
) | project_euler |
def is_palindrome(n: int | str) -> bool:
n = str(n)
return n == n[::-1] | project_euler |
def solution(n: int = 1000000):
total = 0
for i in range(1, n):
if is_palindrome(i) and is_palindrome(bin(i).split("b")[1]):
total += i
return total | project_euler |
def solution(max_base: int = 5) -> int:
freqs = defaultdict(list)
num = 0
while True:
digits = get_digits(num)
freqs[digits].append(num)
if len(freqs[digits]) == max_base:
base = freqs[digits][0] ** 3
return base
num += 1 | project_euler |
def get_digits(num: int) -> str:
return "".join(sorted(str(num**3))) | project_euler |
def is_right(x1: int, y1: int, x2: int, y2: int) -> bool:
if x1 == y1 == 0 or x2 == y2 == 0:
return False
a_square = x1 * x1 + y1 * y1
b_square = x2 * x2 + y2 * y2
c_square = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2)
return (
a_square + b_square == c_square
or a_square + c_square == b_square
or b_square + c_square == a_square
) | project_euler |
def solution(limit: int = 50) -> int:
return sum(
1
for pt1, pt2 in combinations(product(range(limit + 1), repeat=2), 2)
if is_right(*pt1, *pt2)
) | project_euler |
def sum_digits(num: int) -> int:
digit_sum = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum | project_euler |
def solution(max_n: int = 100) -> int:
pre_numerator = 1
cur_numerator = 2
for i in range(2, max_n + 1):
temp = pre_numerator
e_cont = 2 * i // 3 if i % 3 == 0 else 1
pre_numerator = cur_numerator
cur_numerator = e_cont * pre_numerator + temp
return sum_digits(cur_numerator) | project_euler |
def combinations(n, r):
return factorial(n) / (factorial(r) * factorial(n - r)) | project_euler |
def solution():
total = 0
for i in range(1, 101):
for j in range(1, i + 1):
if combinations(i, j) > 1e6:
total += 1
return total | project_euler |
def generate_random_hand():
play, oppo = randrange(len(SORTED_HANDS)), randrange(len(SORTED_HANDS))
expected = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)]
hand, other = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected | project_euler |
def generate_random_hands(number_of_hands: int = 100):
return (generate_random_hand() for _ in range(number_of_hands)) | project_euler |
def test_hand_is_flush(hand, expected):
assert PokerHand(hand)._is_flush() == expected | project_euler |
def test_hand_is_straight(hand, expected):
assert PokerHand(hand)._is_straight() == expected | project_euler |
def test_hand_is_five_high_straight(hand, expected, card_values):
player = PokerHand(hand)
assert player._is_five_high_straight() == expected
assert player._card_values == card_values | project_euler |
def test_hand_is_same_kind(hand, expected):
assert PokerHand(hand)._is_same_kind() == expected | project_euler |
def test_hand_values(hand, expected):
assert PokerHand(hand)._hand_type == expected | project_euler |
def test_compare_simple(hand, other, expected):
assert PokerHand(hand).compare_with(PokerHand(other)) == expected | project_euler |
def test_compare_random(hand, other, expected):
assert PokerHand(hand).compare_with(PokerHand(other)) == expected | project_euler |
def test_hand_sorted():
poker_hands = [PokerHand(hand) for hand in SORTED_HANDS]
list_copy = poker_hands.copy()
shuffle(list_copy)
user_sorted = chain(sorted(list_copy))
for index, hand in enumerate(user_sorted):
assert hand == poker_hands[index] | project_euler |
def test_custom_sort_five_high_straight():
# Test that five high straights are compared correctly.
pokerhands = [PokerHand("2D AC 3H 4H 5S"), PokerHand("2S 3H 4H 5S 6C")]
pokerhands.sort(reverse=True)
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" | project_euler |
def test_multiple_calls_five_high_straight():
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
pokerhand = PokerHand("2C 4S AS 3D 5C")
expected = True
expected_card_values = [5, 4, 3, 2, 14]
for _ in range(10):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values | project_euler |
def __init__(self, hand: str) -> None:
if not isinstance(hand, str):
raise TypeError(f"Hand should be of type 'str': {hand!r}")
# split removes duplicate whitespaces so no need of strip
if len(hand.split(" ")) != 5:
raise ValueError(f"Hand should contain only 5 cards: {hand!r}")
self._hand = hand
self._first_pair = 0
self._second_pair = 0
self._card_values, self._card_suit = self._internal_state()
self._hand_type = self._get_hand_type()
self._high_card = self._card_values[0] | project_euler |
def str_eval(s: str) -> int:
product = 1
for digit in s:
product *= int(digit)
return product | project_euler |
def solution(n: str = N) -> int:
largest_product = -sys.maxsize - 1
substr = n[:13]
cur_index = 13
while cur_index < len(n) - 13:
if int(n[cur_index]) >= int(substr[0]):
substr = substr[1:] + n[cur_index]
cur_index += 1
else:
largest_product = max(largest_product, str_eval(substr))
substr = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product | project_euler |
def solution(n: str = N) -> int:
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda x, y: str(int(x) * int(y)), n[i : i + 13]))
for i in range(len(n) - 12)
) | project_euler |
def solution(n: str = N) -> int:
largest_product = -sys.maxsize - 1
for i in range(len(n) - 12):
product = 1
for j in range(13):
product *= int(n[i + j])
if product > largest_product:
largest_product = product
return largest_product | project_euler |
def is_prime(number: int) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True | project_euler |
def list_truncated_nums(n: int) -> list[int]:
str_num = str(n)
list_nums = [n]
for i in range(1, len(str_num)):
list_nums.append(int(str_num[i:]))
list_nums.append(int(str_num[:-i]))
return list_nums | project_euler |
def validate(n: int) -> bool:
if len(str(n)) > 3:
if not is_prime(int(str(n)[-3:])) or not is_prime(int(str(n)[:3])):
return False
return True | project_euler |
def compute_truncated_primes(count: int = 11) -> list[int]:
list_truncated_primes: list[int] = []
num = 13
while len(list_truncated_primes) != count:
if validate(num):
list_nums = list_truncated_nums(num)
if all(is_prime(i) for i in list_nums):
list_truncated_primes.append(num)
num += 2
return list_truncated_primes | project_euler |
def solution() -> int:
return sum(compute_truncated_primes(11)) | project_euler |
def total_frequency_distribution(sides_number: int, dice_number: int) -> list[int]:
max_face_number = sides_number
max_total = max_face_number * dice_number
totals_frequencies = [0] * (max_total + 1)
min_face_number = 1
faces_numbers = range(min_face_number, max_face_number + 1)
for dice_numbers in product(faces_numbers, repeat=dice_number):
total = sum(dice_numbers)
totals_frequencies[total] += 1
return totals_frequencies | project_euler |
def solution() -> float:
peter_totals_frequencies = total_frequency_distribution(
sides_number=4, dice_number=9
)
colin_totals_frequencies = total_frequency_distribution(
sides_number=6, dice_number=6
)
peter_wins_count = 0
min_peter_total = 9
max_peter_total = 4 * 9
min_colin_total = 6
for peter_total in range(min_peter_total, max_peter_total + 1):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total]
)
total_games_number = (4**9) * (6**6)
peter_win_probability = peter_wins_count / total_games_number
rounded_peter_win_probability = round(peter_win_probability, ndigits=7)
return rounded_peter_win_probability | project_euler |
def digits_fifth_powers_sum(number: int) -> int:
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(number)) | project_euler |
def solution() -> int:
return sum(
number
for number in range(1000, 1000000)
if number == digits_fifth_powers_sum(number)
) | project_euler |
def pythagorean_triple(max_perimeter: int) -> typing.Counter[int]:
triplets: typing.Counter[int] = Counter()
for base in range(1, max_perimeter + 1):
for perpendicular in range(base, max_perimeter + 1):
hypotenuse = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(hypotenuse):
perimeter = int(base + perpendicular + hypotenuse)
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets | project_euler |
def solution(n: int = 1000) -> int:
triplets = pythagorean_triple(n)
return triplets.most_common(1)[0][0] | project_euler |
def prime_sieve(n: int) -> list:
is_prime = [True] * n
is_prime[0] = False
is_prime[1] = False
is_prime[2] = True
for i in range(3, int(n**0.5 + 1), 2):
index = i * 2
while index < n:
is_prime[index] = False
index = index + i
primes = [2]
for i in range(3, n, 2):
if is_prime[i]:
primes.append(i)
return primes | project_euler |
def solution(limit: int = 999_966_663_333) -> int:
primes_upper_bound = math.floor(math.sqrt(limit)) + 100
primes = prime_sieve(primes_upper_bound)
matches_sum = 0
prime_index = 0
last_prime = primes[prime_index]
while (last_prime**2) <= limit:
next_prime = primes[prime_index + 1]
lower_bound = last_prime**2
upper_bound = next_prime**2
# Get numbers divisible by lps(current)
current = lower_bound + last_prime
while upper_bound > current <= limit:
matches_sum += current
current += last_prime
# Reset the upper_bound
while (upper_bound - next_prime) > limit:
upper_bound -= next_prime
# Add the numbers divisible by ups(current)
current = upper_bound - next_prime
while current > lower_bound:
matches_sum += current
current -= next_prime
# Remove the numbers divisible by both ups and lps
current = 0
while upper_bound > current <= limit:
if current <= lower_bound:
# Increment the current number
current += last_prime * next_prime
continue
if current > limit:
break
# Remove twice since it was added by both ups and lps
matches_sum -= current * 2
# Increment the current number
current += last_prime * next_prime
# Setup for next pair
last_prime = next_prime
prime_index += 1
return matches_sum | project_euler |
def solution(n: int = 100) -> int:
sum_of_squares = sum(i * i for i in range(1, n + 1))
square_of_sum = int(math.pow(sum(range(1, n + 1)), 2))
return square_of_sum - sum_of_squares | project_euler |
def solution(n: int = 100) -> int:
sum_cubes = (n * (n + 1) // 2) ** 2
sum_squares = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares | project_euler |
def solution(n: int = 100) -> int:
sum_of_squares = 0
sum_of_ints = 0
for i in range(1, n + 1):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares | project_euler |
def solution(n: int = 100) -> int:
sum_of_squares = n * (n + 1) * (2 * n + 1) / 6
square_of_sum = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares) | project_euler |
def solution(n: int = 1000) -> int:
result = 0
for i in range(n):
if i % 3 == 0 or i % 5 == 0:
result += i
return result | project_euler |
def solution(n: int = 1000) -> int:
total = 0
num = 0
while 1:
num += 3
if num >= n:
break
total += num
num += 2
if num >= n:
break
total += num
num += 1
if num >= n:
break
total += num
num += 3
if num >= n:
break
total += num
num += 1
if num >= n:
break
total += num
num += 2
if num >= n:
break
total += num
num += 3
if num >= n:
break
total += num
return total | project_euler |
def solution(n: int = 1000) -> int:
total = 0
terms = (n - 1) // 3
total += ((terms) * (6 + (terms - 1) * 3)) // 2 # total of an A.P.
terms = (n - 1) // 5
total += ((terms) * (10 + (terms - 1) * 5)) // 2
terms = (n - 1) // 15
total -= ((terms) * (30 + (terms - 1) * 15)) // 2
return total | project_euler |
def solution(n: int = 1000) -> int:
a = 3
result = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result | project_euler |
def solution(n: int = 1000) -> int:
return sum(e for e in range(3, n) if e % 3 == 0 or e % 5 == 0) | project_euler |
def solution(n: int = 1000) -> int:
return sum(i for i in range(n) if i % 3 == 0 or i % 5 == 0) | project_euler |
def solution(n: int = 1000) -> int:
xmulti = []
zmulti = []
z = 3
x = 5
temp = 1
while True:
result = z * temp
if result < n:
zmulti.append(result)
temp += 1
else:
temp = 1
break
while True:
result = x * temp
if result < n:
xmulti.append(result)
temp += 1
else:
break
collection = list(set(xmulti + zmulti))
return sum(collection) | project_euler |
def is_palindrome(n: int) -> bool:
return str(n) == str(n)[::-1] | project_euler |
def sum_reverse(n: int) -> int:
return int(n) + int(str(n)[::-1]) | project_euler |
def solution(limit: int = 10000) -> int:
lychrel_nums = []
for num in range(1, limit):
iterations = 0
a = num
while iterations < 50:
num = sum_reverse(num)
iterations += 1
if is_palindrome(num):
break
else:
lychrel_nums.append(a)
return len(lychrel_nums) | project_euler |
def solution():
i = 1
while True:
if (
sorted(str(i))
== sorted(str(2 * i))
== sorted(str(3 * i))
== sorted(str(4 * i))
== sorted(str(5 * i))
== sorted(str(6 * i))
):
return i
i += 1 | project_euler |
def solution(data_file: str = "base_exp.txt") -> int:
largest: float = 0
result = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(__file__), data_file))):
a, x = list(map(int, line.split(",")))
if x * log10(a) > largest:
largest = x * log10(a)
result = i + 1
return result | project_euler |
def continuous_fraction_period(n: int) -> int:
numerator = 0.0
denominator = 1.0
root = int(sqrt(n))
integer_part = root
period = 0
while integer_part != 2 * root:
numerator = denominator * integer_part - numerator
denominator = (n - numerator**2) / denominator
integer_part = int((root + numerator) / denominator)
period += 1
return period | project_euler |
def solution(n: int = 10000) -> int:
count_odd_periods = 0
for i in range(2, n + 1):
sr = sqrt(i)
if sr - floor(sr) != 0 and continuous_fraction_period(i) % 2 == 1:
count_odd_periods += 1
return count_odd_periods | project_euler |
def solution(n: int = 10) -> str:
if not isinstance(n, int) or n < 0:
raise ValueError("Invalid input")
modulus = 10**n
number = 28433 * (pow(2, 7830457, modulus)) + 1
return str(number % modulus) | project_euler |
def solution(max_base: int = 10, max_power: int = 22) -> int:
bases = range(1, max_base)
powers = range(1, max_power)
return sum(
1 for power in powers for base in bases if len(str(base**power)) == power
) | project_euler |
def least_divisible_repunit(divisor: int) -> int:
if divisor % 5 == 0 or divisor % 2 == 0:
return 0
repunit = 1
repunit_index = 1
while repunit:
repunit = (10 * repunit + 1) % divisor
repunit_index += 1
return repunit_index | project_euler |
def solution(limit: int = 1000000) -> int:
divisor = limit - 1
if divisor % 2 == 0:
divisor += 1
while least_divisible_repunit(divisor) <= limit:
divisor += 2
return divisor | project_euler |
def solution(length: int = 50) -> int:
different_colour_ways_number = [[0] * 3 for _ in range(length + 1)]
for row_length in range(length + 1):
for tile_length in range(2, 5):
for tile_start in range(row_length - tile_length + 1):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length]) | project_euler |
def solution(n: int = 1000) -> int:
return sum(2 * a * ((a - 1) // 2) for a in range(3, n + 1)) | project_euler |
def solution(limit: int = 1000000) -> int:
answer = 0
for outer_width in range(3, (limit // 4) + 2):
if outer_width**2 > limit:
hole_width_lower_bound = max(ceil(sqrt(outer_width**2 - limit)), 1)
else:
hole_width_lower_bound = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer | project_euler |
def is_sq(number: int) -> bool:
sq: int = int(number**0.5)
return number == sq * sq | project_euler |
def add_three(
x_num: int, x_den: int, y_num: int, y_den: int, z_num: int, z_den: int
) -> tuple[int, int]:
top: int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
bottom: int = x_den * y_den * z_den
hcf: int = gcd(top, bottom)
top //= hcf
bottom //= hcf
return top, bottom | project_euler |
def solution(order: int = 35) -> int:
unique_s: set = set()
hcf: int
total: Fraction = Fraction(0)
fraction_sum: tuple[int, int]
for x_num in range(1, order + 1):
for x_den in range(x_num + 1, order + 1):
for y_num in range(1, order + 1):
for y_den in range(y_num + 1, order + 1):
# n=1
z_num = x_num * y_den + x_den * y_num
z_den = x_den * y_den
hcf = gcd(z_num, z_den)
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
fraction_sum = add_three(
x_num, x_den, y_num, y_den, z_num, z_den
)
unique_s.add(fraction_sum)
# n=2
z_num = (
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
)
z_den = x_den * x_den * y_den * y_den
if is_sq(z_num) and is_sq(z_den):
z_num = int(sqrt(z_num))
z_den = int(sqrt(z_den))
hcf = gcd(z_num, z_den)
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
fraction_sum = add_three(
x_num, x_den, y_num, y_den, z_num, z_den
)
unique_s.add(fraction_sum)
# n=-1
z_num = x_num * y_num
z_den = x_den * y_num + x_num * y_den
hcf = gcd(z_num, z_den)
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
fraction_sum = add_three(
x_num, x_den, y_num, y_den, z_num, z_den
)
unique_s.add(fraction_sum)
# n=2
z_num = x_num * x_num * y_num * y_num
z_den = (
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
)
if is_sq(z_num) and is_sq(z_den):
z_num = int(sqrt(z_num))
z_den = int(sqrt(z_den))
hcf = gcd(z_num, z_den)
z_num //= hcf
z_den //= hcf
if 0 < z_num < z_den <= order:
fraction_sum = add_three(
x_num, x_den, y_num, y_den, z_num, z_den
)
unique_s.add(fraction_sum)
for num, den in unique_s:
total += Fraction(num, den)
return total.denominator + total.numerator | project_euler |
def solution(t_limit: int = 1000000, n_limit: int = 10) -> int:
count: defaultdict = defaultdict(int)
for outer_width in range(3, (t_limit // 4) + 2):
if outer_width * outer_width > t_limit:
hole_width_lower_bound = max(
ceil(sqrt(outer_width * outer_width - t_limit)), 1
)
else:
hole_width_lower_bound = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(hole_width_lower_bound, outer_width - 1, 2):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10) | project_euler |
def reversible_numbers(
remaining_length: int, remainder: int, digits: list[int], length: int
) -> int:
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
result = 0
for digit in range(10):
digits[length // 2] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, digits, length
)
return result
result = 0
for digit1 in range(10):
digits[(length + remaining_length) // 2 - 1] = digit1
if (remainder + digit1) % 2 == 0:
other_parity_digits = ODD_DIGITS
else:
other_parity_digits = EVEN_DIGITS
for digit2 in other_parity_digits:
digits[(length - remaining_length) // 2] = digit2
result += reversible_numbers(
remaining_length - 2,
(remainder + digit1 + digit2) // 10,
digits,
length,
)
return result | project_euler |
def solution(max_power: int = 9) -> int:
result = 0
for length in range(1, max_power + 1):
result += reversible_numbers(length, 0, [0] * length, length)
return result | project_euler |
def digit_sum(n: int) -> int:
return sum(int(digit) for digit in str(n)) | project_euler |
def solution(n: int = 30) -> int:
digit_to_powers = []
for digit in range(2, 100):
for power in range(2, 100):
number = int(math.pow(digit, power))
if digit == digit_sum(number):
digit_to_powers.append(number)
digit_to_powers.sort()
return digit_to_powers[n - 1] | project_euler |
def solution(num_turns: int = 15) -> int:
total_prob: float = 0.0
prob: float
num_blue: int
num_red: int
ind: int
col: int
series: tuple[int, ...]
for series in product(range(2), repeat=num_turns):
num_blue = series.count(1)
num_red = num_turns - num_blue
if num_red >= num_blue:
continue
prob = 1.0
for ind, col in enumerate(series, 2):
if col == 0:
prob *= (ind - 1) / ind
else:
prob *= 1 / ind
total_prob += prob
return int(1 / total_prob) | project_euler |
def solution(length: int = 50) -> int:
ways_number = [1] * (length + 1)
for row_length in range(length + 1):
for tile_length in range(2, 5):
for tile_start in range(row_length - tile_length + 1):
ways_number[row_length] += ways_number[
row_length - tile_start - tile_length
]
return ways_number[length] | project_euler |
def circle_bottom_arc_integral(point: float) -> float:
return (
(1 - 2 * point) * sqrt(point - point**2) + 2 * point + asin(sqrt(1 - point))
) / 4 | project_euler |
def concave_triangle_area(circles_number: int) -> float:
intersection_y = (circles_number + 1 - sqrt(2 * circles_number)) / (
2 * (circles_number**2 + 1)
)
intersection_x = circles_number * intersection_y
triangle_area = intersection_x * intersection_y / 2
concave_region_area = circle_bottom_arc_integral(
1 / 2
) - circle_bottom_arc_integral(intersection_x)
return triangle_area + concave_region_area | project_euler |
def solution(fraction: float = 1 / 1000) -> int:
l_section_area = (1 - pi / 4) / 4
for n in count(1):
if concave_triangle_area(n) / l_section_area < fraction:
return n
return -1 | project_euler |