method_name
stringlengths 1
78
| method_body
stringlengths 3
9.66k
| full_code
stringlengths 31
10.7k
| docstring
stringlengths 4
4.74k
⌀ |
---|---|---|---|
evaluate | """Evaluate question answering examples and predictions."""
inputs = [{'query': example[question_key], 'answer': example[answer_key],
'result': predictions[i][prediction_key]} for i, example in enumerate(
examples)]
return self.apply(inputs, callbacks=callbacks) | def evaluate(self, examples: Sequence[dict], predictions: Sequence[dict],
question_key: str='query', answer_key: str='answer', prediction_key:
str='result', *, callbacks: Callbacks=None) ->List[dict]:
"""Evaluate question answering examples and predictions."""
inputs = [{'query': example[question_key], 'answer': example[answer_key
], 'result': predictions[i][prediction_key]} for i, example in
enumerate(examples)]
return self.apply(inputs, callbacks=callbacks) | Evaluate question answering examples and predictions. |
test_streamlit_callback_agent | import streamlit as st
from langchain.agents import AgentType, initialize_agent, load_tools
streamlit_callback = StreamlitCallbackHandler(st.container())
llm = OpenAI(temperature=0)
tools = load_tools(['serpapi', 'llm-math'], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.
ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run(
"Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?"
, callbacks=[streamlit_callback]) | @pytest.mark.requires('streamlit')
def test_streamlit_callback_agent() ->None:
import streamlit as st
from langchain.agents import AgentType, initialize_agent, load_tools
streamlit_callback = StreamlitCallbackHandler(st.container())
llm = OpenAI(temperature=0)
tools = load_tools(['serpapi', 'llm-math'], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.
ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run(
"Who is Olivia Wilde's boyfriend? What is his current age raised to the 0.23 power?"
, callbacks=[streamlit_callback]) | null |
yield_keys | """Get an iterator over keys that match the given prefix.
Args:
prefix (str, optional): The prefix to match. Defaults to None.
Returns:
Iterator[str]: An iterator over keys that match the given prefix.
"""
if prefix is None:
yield from self.store.keys()
else:
for key in self.store.keys():
if key.startswith(prefix):
yield key | def yield_keys(self, prefix: Optional[str]=None) ->Iterator[str]:
"""Get an iterator over keys that match the given prefix.
Args:
prefix (str, optional): The prefix to match. Defaults to None.
Returns:
Iterator[str]: An iterator over keys that match the given prefix.
"""
if prefix is None:
yield from self.store.keys()
else:
for key in self.store.keys():
if key.startswith(prefix):
yield key | Get an iterator over keys that match the given prefix.
Args:
prefix (str, optional): The prefix to match. Defaults to None.
Returns:
Iterator[str]: An iterator over keys that match the given prefix. |
test_stream | """Test that stream works."""
chat = ChatZhipuAI(streaming=True)
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
response = chat(messages=[HumanMessage(content='Hello.'), AIMessage(content
='Hello!'), HumanMessage(content='Who are you?')], stream=True,
callbacks=callback_manager)
assert callback_handler.llm_streams > 0
assert isinstance(response.content, str) | def test_stream() ->None:
"""Test that stream works."""
chat = ChatZhipuAI(streaming=True)
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
response = chat(messages=[HumanMessage(content='Hello.'), AIMessage(
content='Hello!'), HumanMessage(content='Who are you?')], stream=
True, callbacks=callback_manager)
assert callback_handler.llm_streams > 0
assert isinstance(response.content, str) | Test that stream works. |
sitemap_metadata_one | return {**meta, 'mykey': 'Super Important Metadata'} | def sitemap_metadata_one(meta: dict, _content: None) ->dict:
return {**meta, 'mykey': 'Super Important Metadata'} | null |
validate_environment | google_api_key = get_from_dict_or_env(values, 'google_api_key',
'GOOGLE_API_KEY')
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
if values.get('temperature') is not None and not 0 <= values['temperature'
] <= 1:
raise ValueError('temperature must be in the range [0.0, 1.0]')
if values.get('top_p') is not None and not 0 <= values['top_p'] <= 1:
raise ValueError('top_p must be in the range [0.0, 1.0]')
if values.get('top_k') is not None and values['top_k'] <= 0:
raise ValueError('top_k must be positive')
model = values['model']
values['client'] = genai.GenerativeModel(model_name=model)
return values | @root_validator()
def validate_environment(cls, values: Dict) ->Dict:
google_api_key = get_from_dict_or_env(values, 'google_api_key',
'GOOGLE_API_KEY')
if isinstance(google_api_key, SecretStr):
google_api_key = google_api_key.get_secret_value()
genai.configure(api_key=google_api_key)
if values.get('temperature') is not None and not 0 <= values['temperature'
] <= 1:
raise ValueError('temperature must be in the range [0.0, 1.0]')
if values.get('top_p') is not None and not 0 <= values['top_p'] <= 1:
raise ValueError('top_p must be in the range [0.0, 1.0]')
if values.get('top_k') is not None and values['top_k'] <= 0:
raise ValueError('top_k must be positive')
model = values['model']
values['client'] = genai.GenerativeModel(model_name=model)
return values | null |
test_run_error | responses.add(responses.POST, api_client.outline_instance_url + api_client.
outline_search_endpoint, json=OUTLINE_ERROR_RESPONSE, status=401)
try:
api_client.run('Testing')
except Exception as e:
assert 'Outline API returned an error:' in str(e) | @responses.activate
def test_run_error(api_client: OutlineAPIWrapper) ->None:
responses.add(responses.POST, api_client.outline_instance_url +
api_client.outline_search_endpoint, json=OUTLINE_ERROR_RESPONSE,
status=401)
try:
api_client.run('Testing')
except Exception as e:
assert 'Outline API returned an error:' in str(e) | null |
validate_environment | """Validates the environment."""
try:
from google.cloud import discoveryengine_v1beta
except ImportError as exc:
raise ImportError(
'google.cloud.discoveryengine is not installed.Please install it with pip install google-cloud-discoveryengine>=0.11.0'
) from exc
try:
from google.api_core.exceptions import InvalidArgument
except ImportError as exc:
raise ImportError(
'google.api_core.exceptions is not installed. Please install it with pip install google-api-core'
) from exc
values['project_id'] = get_from_dict_or_env(values, 'project_id', 'PROJECT_ID')
try:
search_engine_id = get_from_dict_or_env(values, 'search_engine_id',
'SEARCH_ENGINE_ID')
if search_engine_id:
import warnings
warnings.warn(
'The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.'
, DeprecationWarning)
values['data_store_id'] = search_engine_id
except:
pass
values['data_store_id'] = get_from_dict_or_env(values, 'data_store_id',
'DATA_STORE_ID')
return values | @root_validator(pre=True)
def validate_environment(cls, values: Dict) ->Dict:
"""Validates the environment."""
try:
from google.cloud import discoveryengine_v1beta
except ImportError as exc:
raise ImportError(
'google.cloud.discoveryengine is not installed.Please install it with pip install google-cloud-discoveryengine>=0.11.0'
) from exc
try:
from google.api_core.exceptions import InvalidArgument
except ImportError as exc:
raise ImportError(
'google.api_core.exceptions is not installed. Please install it with pip install google-api-core'
) from exc
values['project_id'] = get_from_dict_or_env(values, 'project_id',
'PROJECT_ID')
try:
search_engine_id = get_from_dict_or_env(values, 'search_engine_id',
'SEARCH_ENGINE_ID')
if search_engine_id:
import warnings
warnings.warn(
'The `search_engine_id` parameter is deprecated. Use `data_store_id` instead.'
, DeprecationWarning)
values['data_store_id'] = search_engine_id
except:
pass
values['data_store_id'] = get_from_dict_or_env(values, 'data_store_id',
'DATA_STORE_ID')
return values | Validates the environment. |
test_invoke_stream_passthrough_assign_trace | def idchain_sync(__input: dict) ->bool:
return False
chain = RunnablePassthrough.assign(urls=idchain_sync)
tracer = FakeTracer()
chain.invoke({'example': [1, 2, 3]}, dict(callbacks=[tracer]))
assert tracer.runs[0].name == 'RunnableAssign<urls>'
assert tracer.runs[0].child_runs[0].name == 'RunnableParallel<urls>'
tracer = FakeTracer()
for item in chain.stream({'example': [1, 2, 3]}, dict(callbacks=[tracer])):
pass
assert tracer.runs[0].name == 'RunnableAssign<urls>'
assert tracer.runs[0].child_runs[0].name == 'RunnableParallel<urls>' | def test_invoke_stream_passthrough_assign_trace() ->None:
def idchain_sync(__input: dict) ->bool:
return False
chain = RunnablePassthrough.assign(urls=idchain_sync)
tracer = FakeTracer()
chain.invoke({'example': [1, 2, 3]}, dict(callbacks=[tracer]))
assert tracer.runs[0].name == 'RunnableAssign<urls>'
assert tracer.runs[0].child_runs[0].name == 'RunnableParallel<urls>'
tracer = FakeTracer()
for item in chain.stream({'example': [1, 2, 3]}, dict(callbacks=[tracer])):
pass
assert tracer.runs[0].name == 'RunnableAssign<urls>'
assert tracer.runs[0].child_runs[0].name == 'RunnableParallel<urls>' | null |
raise_value_error | """Raise a value error."""
raise ValueError(f'x is {x}') | def raise_value_error(x: str) ->Any:
"""Raise a value error."""
raise ValueError(f'x is {x}') | Raise a value error. |
__init__ | if inspect.iscoroutinefunction(func):
afunc = func
func = None
super().__init__(func=func, afunc=afunc, input_type=input_type, **kwargs) | def __init__(self, func: Optional[Union[Union[Callable[[Other], None],
Callable[[Other, RunnableConfig], None]], Union[Callable[[Other],
Awaitable[None]], Callable[[Other, RunnableConfig], Awaitable[None]]]]]
=None, afunc: Optional[Union[Callable[[Other], Awaitable[None]],
Callable[[Other, RunnableConfig], Awaitable[None]]]]=None, *,
input_type: Optional[Type[Other]]=None, **kwargs: Any) ->None:
if inspect.iscoroutinefunction(func):
afunc = func
func = None
super().__init__(func=func, afunc=afunc, input_type=input_type, **kwargs) | null |
get_resized_images | """
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
b64_images.append(doc)
return {'images': b64_images} | def get_resized_images(docs):
"""
Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings.
"""
b64_images = []
for doc in docs:
if isinstance(doc, Document):
doc = doc.page_content
b64_images.append(doc)
return {'images': b64_images} | Resize images from base64-encoded strings.
:param docs: A list of base64-encoded image to be resized.
:return: Dict containing a list of resized base64-encoded strings. |
load | """Load documents."""
try:
import pandas as pd
except ImportError:
raise ImportError(
'pandas is needed for Notebook Loader, please install with `pip install pandas`'
)
p = Path(self.file_path)
with open(p, encoding='utf8') as f:
d = json.load(f)
data = pd.json_normalize(d['cells'])
filtered_data = data[['cell_type', 'source', 'outputs']]
if self.remove_newline:
filtered_data = filtered_data.applymap(remove_newlines)
text = filtered_data.apply(lambda x: concatenate_cells(x, self.
include_outputs, self.max_output_length, self.traceback), axis=1).str.cat(
sep=' ')
metadata = {'source': str(p)}
return [Document(page_content=text, metadata=metadata)] | def load(self) ->List[Document]:
"""Load documents."""
try:
import pandas as pd
except ImportError:
raise ImportError(
'pandas is needed for Notebook Loader, please install with `pip install pandas`'
)
p = Path(self.file_path)
with open(p, encoding='utf8') as f:
d = json.load(f)
data = pd.json_normalize(d['cells'])
filtered_data = data[['cell_type', 'source', 'outputs']]
if self.remove_newline:
filtered_data = filtered_data.applymap(remove_newlines)
text = filtered_data.apply(lambda x: concatenate_cells(x, self.
include_outputs, self.max_output_length, self.traceback), axis=1
).str.cat(sep=' ')
metadata = {'source': str(p)}
return [Document(page_content=text, metadata=metadata)] | Load documents. |
_add_child_run | """Add child run to a chain run or tool run."""
parent_run.child_runs.append(child_run) | @staticmethod
def _add_child_run(parent_run: Run, child_run: Run) ->None:
"""Add child run to a chain run or tool run."""
parent_run.child_runs.append(child_run) | Add child run to a chain run or tool run. |
_run | """Use the tool."""
return str(self.api_wrapper.run(query)) | def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun]
=None) ->str:
"""Use the tool."""
return str(self.api_wrapper.run(query)) | Use the tool. |
load | """Load file"""
data = self._get_figma_file()
text = stringify_dict(data)
metadata = {'source': self._construct_figma_api_url()}
return [Document(page_content=text, metadata=metadata)] | def load(self) ->List[Document]:
"""Load file"""
data = self._get_figma_file()
text = stringify_dict(data)
metadata = {'source': self._construct_figma_api_url()}
return [Document(page_content=text, metadata=metadata)] | Load file |
_llm_type | """Return type of chat model."""
return 'everlyai-chat' | @property
def _llm_type(self) ->str:
"""Return type of chat model."""
return 'everlyai-chat' | Return type of chat model. |
_transform_chat | return response['choices'][0]['message']['content'] | def _transform_chat(response: Dict[str, Any]) ->str:
return response['choices'][0]['message']['content'] | null |
embed_documents | embeddings: List[List[float]] = []
for text in texts:
embeddings.append([len(text), len(text) + 1])
return embeddings | def embed_documents(self, texts: List[str]) ->List[List[float]]:
embeddings: List[List[float]] = []
for text in texts:
embeddings.append([len(text), len(text) + 1])
return embeddings | null |
test_anthropic_model_param | llm = Anthropic(model='foo')
assert llm.model == 'foo' | @pytest.mark.requires('anthropic')
def test_anthropic_model_param() ->None:
llm = Anthropic(model='foo')
assert llm.model == 'foo' | null |
get_context_and_action_embeddings | context_emb = base.embed(event.based_on, self.model
) if event.based_on else None
to_select_from_var_name, to_select_from = next(iter(event.to_select_from.
items()), (None, None))
action_embs = (base.embed(to_select_from, self.model,
to_select_from_var_name) if event.to_select_from else None
) if to_select_from else None
if not context_emb or not action_embs:
raise ValueError(
'Context and to_select_from must be provided in the inputs dictionary')
return context_emb, action_embs | def get_context_and_action_embeddings(self, event: PickBestEvent) ->tuple:
context_emb = base.embed(event.based_on, self.model
) if event.based_on else None
to_select_from_var_name, to_select_from = next(iter(event.
to_select_from.items()), (None, None))
action_embs = (base.embed(to_select_from, self.model,
to_select_from_var_name) if event.to_select_from else None
) if to_select_from else None
if not context_emb or not action_embs:
raise ValueError(
'Context and to_select_from must be provided in the inputs dictionary'
)
return context_emb, action_embs | null |
_import_elevenlabs | try:
import elevenlabs
except ImportError as e:
raise ImportError(
'Cannot import elevenlabs, please install `pip install elevenlabs`.'
) from e
return elevenlabs | def _import_elevenlabs() ->Any:
try:
import elevenlabs
except ImportError as e:
raise ImportError(
'Cannot import elevenlabs, please install `pip install elevenlabs`.'
) from e
return elevenlabs | null |
_invocation_params | params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError('`stop` found in both the input and default params.')
elif self.stop is not None:
params['stop_sequences'] = self.stop
else:
params['stop_sequences'] = stop
return {**params, **kwargs} | def _invocation_params(self, stop: Optional[List[str]], **kwargs: Any) ->dict:
params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError('`stop` found in both the input and default params.')
elif self.stop is not None:
params['stop_sequences'] = self.stop
else:
params['stop_sequences'] = stop
return {**params, **kwargs} | null |
get_runtime_environment | """Get information about the LangChain runtime environment."""
from langchain_core import __version__
return {'library_version': __version__, 'library': 'langchain-core',
'platform': platform.platform(), 'runtime': 'python', 'runtime_version':
platform.python_version()} | @lru_cache(maxsize=1)
def get_runtime_environment() ->dict:
"""Get information about the LangChain runtime environment."""
from langchain_core import __version__
return {'library_version': __version__, 'library': 'langchain-core',
'platform': platform.platform(), 'runtime': 'python',
'runtime_version': platform.python_version()} | Get information about the LangChain runtime environment. |
test_sklearn | """Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
docsearch = SKLearnVectorStore.from_texts(texts, FakeEmbeddings())
output = docsearch.similarity_search('foo', k=1)
assert len(output) == 1
assert output[0].page_content == 'foo' | @pytest.mark.requires('numpy', 'sklearn')
def test_sklearn() ->None:
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
docsearch = SKLearnVectorStore.from_texts(texts, FakeEmbeddings())
output = docsearch.similarity_search('foo', k=1)
assert len(output) == 1
assert output[0].page_content == 'foo' | Test end to end construction and search. |
test_faiss_similarity_search_with_relevance_scores | """Test the similarity search with normalized similarities."""
texts = ['foo', 'bar', 'baz']
docsearch = FAISS.from_texts(texts, FakeEmbeddings(), relevance_score_fn=lambda
score: 1.0 - score / math.sqrt(2))
outputs = docsearch.similarity_search_with_relevance_scores('foo', k=1)
output, score = outputs[0]
assert output == Document(page_content='foo')
assert score == 1.0 | @pytest.mark.requires('faiss')
def test_faiss_similarity_search_with_relevance_scores() ->None:
"""Test the similarity search with normalized similarities."""
texts = ['foo', 'bar', 'baz']
docsearch = FAISS.from_texts(texts, FakeEmbeddings(),
relevance_score_fn=lambda score: 1.0 - score / math.sqrt(2))
outputs = docsearch.similarity_search_with_relevance_scores('foo', k=1)
output, score = outputs[0]
assert output == Document(page_content='foo')
assert score == 1.0 | Test the similarity search with normalized similarities. |
_load_sheet_from_id | """Load a sheet and all tabs from an ID."""
from googleapiclient.discovery import build
creds = self._load_credentials()
sheets_service = build('sheets', 'v4', credentials=creds)
spreadsheet = sheets_service.spreadsheets().get(spreadsheetId=id).execute()
sheets = spreadsheet.get('sheets', [])
documents = []
for sheet in sheets:
sheet_name = sheet['properties']['title']
result = sheets_service.spreadsheets().values().get(spreadsheetId=id,
range=sheet_name).execute()
values = result.get('values', [])
if not values:
continue
header = values[0]
for i, row in enumerate(values[1:], start=1):
metadata = {'source':
f"https://docs.google.com/spreadsheets/d/{id}/edit?gid={sheet['properties']['sheetId']}"
, 'title':
f"{spreadsheet['properties']['title']} - {sheet_name}", 'row': i}
content = []
for j, v in enumerate(row):
title = header[j].strip() if len(header) > j else ''
content.append(f'{title}: {v.strip()}')
page_content = '\n'.join(content)
documents.append(Document(page_content=page_content, metadata=metadata)
)
return documents | def _load_sheet_from_id(self, id: str) ->List[Document]:
"""Load a sheet and all tabs from an ID."""
from googleapiclient.discovery import build
creds = self._load_credentials()
sheets_service = build('sheets', 'v4', credentials=creds)
spreadsheet = sheets_service.spreadsheets().get(spreadsheetId=id).execute()
sheets = spreadsheet.get('sheets', [])
documents = []
for sheet in sheets:
sheet_name = sheet['properties']['title']
result = sheets_service.spreadsheets().values().get(spreadsheetId=
id, range=sheet_name).execute()
values = result.get('values', [])
if not values:
continue
header = values[0]
for i, row in enumerate(values[1:], start=1):
metadata = {'source':
f"https://docs.google.com/spreadsheets/d/{id}/edit?gid={sheet['properties']['sheetId']}"
, 'title':
f"{spreadsheet['properties']['title']} - {sheet_name}",
'row': i}
content = []
for j, v in enumerate(row):
title = header[j].strip() if len(header) > j else ''
content.append(f'{title}: {v.strip()}')
page_content = '\n'.join(content)
documents.append(Document(page_content=page_content, metadata=
metadata))
return documents | Load a sheet and all tabs from an ID. |
_call | _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
input_text = f"""{inputs[self.input_key]}
SQLQuery:"""
_run_manager.on_text(input_text, verbose=self.verbose)
table_names_to_use = inputs.get('table_names_to_use')
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {'input': input_text, 'top_k': str(self.top_k), 'dialect':
self.database.dialect, 'table_info': table_info, 'stop': ['\nSQLResult:']}
intermediate_steps: List = []
try:
intermediate_steps.append(llm_inputs)
llm_out = self.llm_chain.predict(callbacks=_run_manager.get_child(), **
llm_inputs)
sql_cmd = self.sql_cmd_parser.parse(llm_out)
if self.return_sql:
return {self.output_key: sql_cmd}
if not self.use_query_checker:
_run_manager.on_text(llm_out, color='green', verbose=self.verbose)
intermediate_steps.append(llm_out)
intermediate_steps.append({'sql_cmd': llm_out})
result = get_result_from_sqldb(self.database, sql_cmd)
intermediate_steps.append(str(result))
else:
query_checker_prompt = self.query_checker_prompt or PromptTemplate(
template=QUERY_CHECKER, input_variables=['query', 'dialect'])
query_checker_chain = LLMChain(llm=self.llm_chain.llm, prompt=
query_checker_prompt, output_parser=self.llm_chain.output_parser)
query_checker_inputs = {'query': llm_out, 'dialect': self.database.
dialect}
checked_llm_out = query_checker_chain.predict(callbacks=
_run_manager.get_child(), **query_checker_inputs)
checked_sql_command = self.sql_cmd_parser.parse(checked_llm_out)
intermediate_steps.append(checked_llm_out)
_run_manager.on_text(checked_llm_out, color='green', verbose=self.
verbose)
intermediate_steps.append({'sql_cmd': checked_llm_out})
result = get_result_from_sqldb(self.database, checked_sql_command)
intermediate_steps.append(str(result))
llm_out = checked_llm_out
sql_cmd = checked_sql_command
_run_manager.on_text('\nSQLResult: ', verbose=self.verbose)
_run_manager.on_text(str(result), color='yellow', verbose=self.verbose)
final_result: Union[str, Sequence[Dict[str, Any]]]
if self.return_direct:
final_result = result
else:
_run_manager.on_text('\nAnswer:', verbose=self.verbose)
input_text += f'{llm_out}\nSQLResult: {result}\nAnswer:'
llm_inputs['input'] = input_text
intermediate_steps.append(llm_inputs)
final_result = self.llm_chain.predict(callbacks=_run_manager.
get_child(), **llm_inputs).strip()
intermediate_steps.append(final_result)
_run_manager.on_text(final_result, color='green', verbose=self.verbose)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
except Exception as exc:
exc.intermediate_steps = intermediate_steps
raise exc | def _call(self, inputs: Dict[str, Any], run_manager: Optional[
CallbackManagerForChainRun]=None) ->Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
input_text = f'{inputs[self.input_key]}\nSQLQuery:'
_run_manager.on_text(input_text, verbose=self.verbose)
table_names_to_use = inputs.get('table_names_to_use')
table_info = self.database.get_table_info(table_names=table_names_to_use)
llm_inputs = {'input': input_text, 'top_k': str(self.top_k), 'dialect':
self.database.dialect, 'table_info': table_info, 'stop': [
'\nSQLResult:']}
intermediate_steps: List = []
try:
intermediate_steps.append(llm_inputs)
llm_out = self.llm_chain.predict(callbacks=_run_manager.get_child(),
**llm_inputs)
sql_cmd = self.sql_cmd_parser.parse(llm_out)
if self.return_sql:
return {self.output_key: sql_cmd}
if not self.use_query_checker:
_run_manager.on_text(llm_out, color='green', verbose=self.verbose)
intermediate_steps.append(llm_out)
intermediate_steps.append({'sql_cmd': llm_out})
result = get_result_from_sqldb(self.database, sql_cmd)
intermediate_steps.append(str(result))
else:
query_checker_prompt = self.query_checker_prompt or PromptTemplate(
template=QUERY_CHECKER, input_variables=['query', 'dialect'])
query_checker_chain = LLMChain(llm=self.llm_chain.llm, prompt=
query_checker_prompt, output_parser=self.llm_chain.
output_parser)
query_checker_inputs = {'query': llm_out, 'dialect': self.
database.dialect}
checked_llm_out = query_checker_chain.predict(callbacks=
_run_manager.get_child(), **query_checker_inputs)
checked_sql_command = self.sql_cmd_parser.parse(checked_llm_out)
intermediate_steps.append(checked_llm_out)
_run_manager.on_text(checked_llm_out, color='green', verbose=
self.verbose)
intermediate_steps.append({'sql_cmd': checked_llm_out})
result = get_result_from_sqldb(self.database, checked_sql_command)
intermediate_steps.append(str(result))
llm_out = checked_llm_out
sql_cmd = checked_sql_command
_run_manager.on_text('\nSQLResult: ', verbose=self.verbose)
_run_manager.on_text(str(result), color='yellow', verbose=self.verbose)
final_result: Union[str, Sequence[Dict[str, Any]]]
if self.return_direct:
final_result = result
else:
_run_manager.on_text('\nAnswer:', verbose=self.verbose)
input_text += f'{llm_out}\nSQLResult: {result}\nAnswer:'
llm_inputs['input'] = input_text
intermediate_steps.append(llm_inputs)
final_result = self.llm_chain.predict(callbacks=_run_manager.
get_child(), **llm_inputs).strip()
intermediate_steps.append(final_result)
_run_manager.on_text(final_result, color='green', verbose=self.
verbose)
chain_result: Dict[str, Any] = {self.output_key: final_result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result
except Exception as exc:
exc.intermediate_steps = intermediate_steps
raise exc | null |
_import_dashvector | from langchain_community.vectorstores.dashvector import DashVector
return DashVector | def _import_dashvector() ->Any:
from langchain_community.vectorstores.dashvector import DashVector
return DashVector | null |
_document_details_for_docset_id | """Gets all document details for the given docset ID"""
url = f'{self.api}/docsets/{docset_id}/documents'
all_documents = []
while url:
response = requests.get(url, headers={'Authorization':
f'Bearer {self.access_token}'})
if response.ok:
data = response.json()
all_documents.extend(data['documents'])
url = data.get('next', None)
else:
raise Exception(
f'Failed to download {url} (status: {response.status_code})')
return all_documents | def _document_details_for_docset_id(self, docset_id: str) ->List[Dict]:
"""Gets all document details for the given docset ID"""
url = f'{self.api}/docsets/{docset_id}/documents'
all_documents = []
while url:
response = requests.get(url, headers={'Authorization':
f'Bearer {self.access_token}'})
if response.ok:
data = response.json()
all_documents.extend(data['documents'])
url = data.get('next', None)
else:
raise Exception(
f'Failed to download {url} (status: {response.status_code})')
return all_documents | Gets all document details for the given docset ID |
test_with_metadatas_with_scores | """Test end to end construction and scored search."""
texts = ['hello bagel', 'hello langchain']
metadatas = [{'page': str(i)} for i in range(len(texts))]
txt_search = Bagel.from_texts(cluster_name='testing', texts=texts,
metadatas=metadatas)
output = txt_search.similarity_search_with_score('hello bagel', k=1)
assert output == [(Document(page_content='hello bagel', metadata={'page':
'0'}), 0.0)]
txt_search.delete_cluster() | def test_with_metadatas_with_scores() ->None:
"""Test end to end construction and scored search."""
texts = ['hello bagel', 'hello langchain']
metadatas = [{'page': str(i)} for i in range(len(texts))]
txt_search = Bagel.from_texts(cluster_name='testing', texts=texts,
metadatas=metadatas)
output = txt_search.similarity_search_with_score('hello bagel', k=1)
assert output == [(Document(page_content='hello bagel', metadata={
'page': '0'}), 0.0)]
txt_search.delete_cluster() | Test end to end construction and scored search. |
validate_environment | """Validate that python package exists in environment."""
try:
from vllm import LLM as VLLModel
except ImportError:
raise ImportError(
'Could not import vllm python package. Please install it with `pip install vllm`.'
)
values['client'] = VLLModel(model=values['model'], tensor_parallel_size=
values['tensor_parallel_size'], trust_remote_code=values[
'trust_remote_code'], dtype=values['dtype'], download_dir=values[
'download_dir'], **values['vllm_kwargs'])
return values | @root_validator()
def validate_environment(cls, values: Dict) ->Dict:
"""Validate that python package exists in environment."""
try:
from vllm import LLM as VLLModel
except ImportError:
raise ImportError(
'Could not import vllm python package. Please install it with `pip install vllm`.'
)
values['client'] = VLLModel(model=values['model'], tensor_parallel_size
=values['tensor_parallel_size'], trust_remote_code=values[
'trust_remote_code'], dtype=values['dtype'], download_dir=values[
'download_dir'], **values['vllm_kwargs'])
return values | Validate that python package exists in environment. |
max_marginal_relevance_search | embeddings = self._embedding.embed_query(query)
docs = self.max_marginal_relevance_search_by_vector(embeddings, k=k,
fetch_k=fetch_k, lambda_mult=lambda_mult)
return docs | def max_marginal_relevance_search(self, query: str, k: int=4, fetch_k: int=
20, lambda_mult: float=0.5, **kwargs: Any) ->List[Document]:
embeddings = self._embedding.embed_query(query)
docs = self.max_marginal_relevance_search_by_vector(embeddings, k=k,
fetch_k=fetch_k, lambda_mult=lambda_mult)
return docs | null |
test_loadnotebookwithimage_notehasplaintextonlywithresourcesremoved | documents = EverNoteLoader(self.example_notebook_path(
'sample_notebook_with_media.enex'), False).load()
note = documents[0]
assert note.page_content == """When you pick this mug up with your thumb on top and middle finger through the
loop, your ring finger slides into the mug under the loop where it is too hot
to touch and burns you.
If you try and pick it up with your thumb and index finger you can’t hold the
mug.""" | def test_loadnotebookwithimage_notehasplaintextonlywithresourcesremoved(self
) ->None:
documents = EverNoteLoader(self.example_notebook_path(
'sample_notebook_with_media.enex'), False).load()
note = documents[0]
assert note.page_content == """When you pick this mug up with your thumb on top and middle finger through the
loop, your ring finger slides into the mug under the loop where it is too hot
to touch and burns you.
If you try and pick it up with your thumb and index finger you can’t hold the
mug.""" | null |
test_redis_from_documents | """Test from_documents constructor."""
docs = [Document(page_content=t, metadata={'a': 'b'}) for t in texts]
docsearch = Redis.from_documents(docs, FakeEmbeddings(), redis_url=
TEST_REDIS_URL)
output = docsearch.similarity_search('foo', k=1, return_metadata=True)
assert 'a' in output[0].metadata.keys()
assert 'b' in output[0].metadata.values()
assert drop(docsearch.index_name) | def test_redis_from_documents(texts: List[str]) ->None:
"""Test from_documents constructor."""
docs = [Document(page_content=t, metadata={'a': 'b'}) for t in texts]
docsearch = Redis.from_documents(docs, FakeEmbeddings(), redis_url=
TEST_REDIS_URL)
output = docsearch.similarity_search('foo', k=1, return_metadata=True)
assert 'a' in output[0].metadata.keys()
assert 'b' in output[0].metadata.values()
assert drop(docsearch.index_name) | Test from_documents constructor. |
test_delete_fail_no_ids | index = mock_index(DIRECT_ACCESS_INDEX)
vectorsearch = default_databricks_vector_search(index)
with pytest.raises(ValueError) as ex:
vectorsearch.delete()
assert 'ids must be provided.' in str(ex.value) | @pytest.mark.requires('databricks', 'databricks.vector_search')
def test_delete_fail_no_ids() ->None:
index = mock_index(DIRECT_ACCESS_INDEX)
vectorsearch = default_databricks_vector_search(index)
with pytest.raises(ValueError) as ex:
vectorsearch.delete()
assert 'ids must be provided.' in str(ex.value) | null |
_call | _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
response = self.chain.run(**inputs, callbacks=_run_manager.get_child(
'original'))
initial_response = response
input_prompt = self.chain.prompt.format(**inputs)
_run_manager.on_text(text='Initial response: ' + response + '\n\n', verbose
=self.verbose, color='yellow')
fallacy_critiques_and_revisions = []
for logical_fallacy in self.logical_fallacies:
fallacy_raw_critique = self.fallacy_critique_chain.run(input_prompt=
input_prompt, output_from_model=response, fallacy_critique_request=
logical_fallacy.fallacy_critique_request, callbacks=_run_manager.
get_child('fallacy_critique'))
fallacy_critique = self._parse_critique(output_string=fallacy_raw_critique
).strip()
if 'no fallacy critique needed' in fallacy_critique.lower():
fallacy_critiques_and_revisions.append((fallacy_critique, ''))
continue
fallacy_revision = self.fallacy_revision_chain.run(input_prompt=
input_prompt, output_from_model=response, fallacy_critique_request=
logical_fallacy.fallacy_critique_request, fallacy_critique=
fallacy_critique, revision_request=logical_fallacy.
fallacy_revision_request, callbacks=_run_manager.get_child(
'fallacy_revision')).strip()
response = fallacy_revision
fallacy_critiques_and_revisions.append((fallacy_critique, fallacy_revision)
)
_run_manager.on_text(text=f'Applying {logical_fallacy.name}...' +
'\n\n', verbose=self.verbose, color='green')
_run_manager.on_text(text='Logical Fallacy: ' + fallacy_critique +
'\n\n', verbose=self.verbose, color='blue')
_run_manager.on_text(text='Updated response: ' + fallacy_revision +
'\n\n', verbose=self.verbose, color='yellow')
final_output: Dict[str, Any] = {'output': response}
if self.return_intermediate_steps:
final_output['initial_output'] = initial_response
final_output['fallacy_critiques_and_revisions'
] = fallacy_critiques_and_revisions
return final_output | def _call(self, inputs: Dict[str, Any], run_manager: Optional[
CallbackManagerForChainRun]=None) ->Dict[str, Any]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
response = self.chain.run(**inputs, callbacks=_run_manager.get_child(
'original'))
initial_response = response
input_prompt = self.chain.prompt.format(**inputs)
_run_manager.on_text(text='Initial response: ' + response + '\n\n',
verbose=self.verbose, color='yellow')
fallacy_critiques_and_revisions = []
for logical_fallacy in self.logical_fallacies:
fallacy_raw_critique = self.fallacy_critique_chain.run(input_prompt
=input_prompt, output_from_model=response,
fallacy_critique_request=logical_fallacy.
fallacy_critique_request, callbacks=_run_manager.get_child(
'fallacy_critique'))
fallacy_critique = self._parse_critique(output_string=
fallacy_raw_critique).strip()
if 'no fallacy critique needed' in fallacy_critique.lower():
fallacy_critiques_and_revisions.append((fallacy_critique, ''))
continue
fallacy_revision = self.fallacy_revision_chain.run(input_prompt=
input_prompt, output_from_model=response,
fallacy_critique_request=logical_fallacy.
fallacy_critique_request, fallacy_critique=fallacy_critique,
revision_request=logical_fallacy.fallacy_revision_request,
callbacks=_run_manager.get_child('fallacy_revision')).strip()
response = fallacy_revision
fallacy_critiques_and_revisions.append((fallacy_critique,
fallacy_revision))
_run_manager.on_text(text=f'Applying {logical_fallacy.name}...' +
'\n\n', verbose=self.verbose, color='green')
_run_manager.on_text(text='Logical Fallacy: ' + fallacy_critique +
'\n\n', verbose=self.verbose, color='blue')
_run_manager.on_text(text='Updated response: ' + fallacy_revision +
'\n\n', verbose=self.verbose, color='yellow')
final_output: Dict[str, Any] = {'output': response}
if self.return_intermediate_steps:
final_output['initial_output'] = initial_response
final_output['fallacy_critiques_and_revisions'
] = fallacy_critiques_and_revisions
return final_output | null |
_fetch_valid_connection_docs | if self.ignore_load_errors:
try:
return self.session.get(url, **self.requests_kwargs)
except Exception as e:
warnings.warn(str(e))
return None
return self.session.get(url, **self.requests_kwargs) | def _fetch_valid_connection_docs(self, url: str) ->Any:
if self.ignore_load_errors:
try:
return self.session.get(url, **self.requests_kwargs)
except Exception as e:
warnings.warn(str(e))
return None
return self.session.get(url, **self.requests_kwargs) | null |
test_timescalevector_with_filter_no_match | """Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': str(i)} for i in range(len(texts))]
docsearch = TimescaleVector.from_texts(texts=texts, collection_name=
'test_collection_filter', embedding=FakeEmbeddingsWithAdaDimension(),
metadatas=metadatas, service_url=SERVICE_URL, pre_delete_collection=True)
output = docsearch.similarity_search_with_score('foo', k=1, filter={'page':
'5'})
assert output == [] | def test_timescalevector_with_filter_no_match() ->None:
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': str(i)} for i in range(len(texts))]
docsearch = TimescaleVector.from_texts(texts=texts, collection_name=
'test_collection_filter', embedding=FakeEmbeddingsWithAdaDimension(
), metadatas=metadatas, service_url=SERVICE_URL,
pre_delete_collection=True)
output = docsearch.similarity_search_with_score('foo', k=1, filter={
'page': '5'})
assert output == [] | Test end to end construction and search. |
_run | """Use the tool.
Add run_manager: Optional[CallbackManagerForToolRun] = None
to child implementations to enable tracing,
""" | @abstractmethod
def _run(self, *args: Any, **kwargs: Any) ->Any:
"""Use the tool.
Add run_manager: Optional[CallbackManagerForToolRun] = None
to child implementations to enable tracing,
""" | Use the tool.
Add run_manager: Optional[CallbackManagerForToolRun] = None
to child implementations to enable tracing, |
_run | """Get the schema for a specific table."""
return ', '.join(self.db.get_usable_table_names()) | def _run(self, tool_input: str='', run_manager: Optional[
CallbackManagerForToolRun]=None) ->str:
"""Get the schema for a specific table."""
return ', '.join(self.db.get_usable_table_names()) | Get the schema for a specific table. |
_model_is_anthropic | return self._get_provider() == 'anthropic' | @property
def _model_is_anthropic(self) ->bool:
return self._get_provider() == 'anthropic' | null |
load_prompt | """Unified method for loading a prompt from LangChainHub or local fs."""
if (hub_result := try_load_from_hub(path, _load_prompt_from_file, 'prompts',
{'py', 'json', 'yaml'})):
return hub_result
else:
return _load_prompt_from_file(path) | def load_prompt(path: Union[str, Path]) ->BasePromptTemplate:
"""Unified method for loading a prompt from LangChainHub or local fs."""
if (hub_result := try_load_from_hub(path, _load_prompt_from_file,
'prompts', {'py', 'json', 'yaml'})):
return hub_result
else:
return _load_prompt_from_file(path) | Unified method for loading a prompt from LangChainHub or local fs. |
check_dependency | for dep_id in task.dep:
if dep_id == -1:
continue
dep_task = self.id_task_map[dep_id]
if dep_task.failed() or dep_task.pending():
return False
return True | def check_dependency(self, task: Task) ->bool:
for dep_id in task.dep:
if dep_id == -1:
continue
dep_task = self.id_task_map[dep_id]
if dep_task.failed() or dep_task.pending():
return False
return True | null |
new | """
Create a new LangServe application.
"""
has_packages = package is not None and len(package) > 0
if noninteractive:
if name is None:
raise typer.BadParameter(
'name is required when --non-interactive is set')
name_str = name
pip_bool = bool(pip)
else:
name_str = name if name else typer.prompt(
'What folder would you like to create?')
if not has_packages:
package = []
package_prompt = (
'What package would you like to add? (leave blank to skip)')
while True:
package_str = typer.prompt(package_prompt, default='',
show_default=False)
if not package_str:
break
package.append(package_str)
package_prompt = (
f'{len(package)} added. Any more packages (leave blank to end)?'
)
has_packages = len(package) > 0
pip_bool = False
if pip is None and has_packages:
pip_bool = typer.confirm(
'Would you like to install these templates into your environment with pip?'
, default=False)
project_template_dir = Path(__file__).parents[1] / 'project_template'
destination_dir = Path.cwd() / name_str if name_str != '.' else Path.cwd()
app_name = name_str if name_str != '.' else Path.cwd().name
shutil.copytree(project_template_dir, destination_dir, dirs_exist_ok=name ==
'.')
readme = destination_dir / 'README.md'
readme_contents = readme.read_text()
readme.write_text(readme_contents.replace('__app_name__', app_name))
pyproject = destination_dir / 'pyproject.toml'
pyproject_contents = pyproject.read_text()
pyproject.write_text(pyproject_contents.replace('__app_name__', app_name))
if has_packages:
add(package, project_dir=destination_dir, pip=pip_bool) | @app_cli.command()
def new(name: Annotated[Optional[str], typer.Argument(help=
'The name of the folder to create')]=None, *, package: Annotated[
Optional[List[str]], typer.Option(help=
'Packages to seed the project with')]=None, pip: Annotated[Optional[
bool], typer.Option('--pip/--no-pip', help=
'Pip install the template(s) as editable dependencies', is_flag=True)]=
None, noninteractive: Annotated[bool, typer.Option(
'--non-interactive/--interactive', help="Don't prompt for any input",
is_flag=True)]=False):
"""
Create a new LangServe application.
"""
has_packages = package is not None and len(package) > 0
if noninteractive:
if name is None:
raise typer.BadParameter(
'name is required when --non-interactive is set')
name_str = name
pip_bool = bool(pip)
else:
name_str = name if name else typer.prompt(
'What folder would you like to create?')
if not has_packages:
package = []
package_prompt = (
'What package would you like to add? (leave blank to skip)')
while True:
package_str = typer.prompt(package_prompt, default='',
show_default=False)
if not package_str:
break
package.append(package_str)
package_prompt = (
f'{len(package)} added. Any more packages (leave blank to end)?'
)
has_packages = len(package) > 0
pip_bool = False
if pip is None and has_packages:
pip_bool = typer.confirm(
'Would you like to install these templates into your environment with pip?'
, default=False)
project_template_dir = Path(__file__).parents[1] / 'project_template'
destination_dir = Path.cwd() / name_str if name_str != '.' else Path.cwd()
app_name = name_str if name_str != '.' else Path.cwd().name
shutil.copytree(project_template_dir, destination_dir, dirs_exist_ok=
name == '.')
readme = destination_dir / 'README.md'
readme_contents = readme.read_text()
readme.write_text(readme_contents.replace('__app_name__', app_name))
pyproject = destination_dir / 'pyproject.toml'
pyproject_contents = pyproject.read_text()
pyproject.write_text(pyproject_contents.replace('__app_name__', app_name))
if has_packages:
add(package, project_dir=destination_dir, pip=pip_bool) | Create a new LangServe application. |
_default_params | """Default parameters for the model."""
raise NotImplementedError | @property
def _default_params(self) ->Dict[str, Any]:
"""Default parameters for the model."""
raise NotImplementedError | Default parameters for the model. |
_generate | completion = ''
if self.streaming:
for chunk in self._stream(messages, stop, run_manager, **kwargs):
completion += chunk.text
else:
provider = self._get_provider()
prompt = ChatPromptAdapter.convert_messages_to_prompt(provider=provider,
messages=messages)
params: Dict[str, Any] = {**kwargs}
if stop:
params['stop_sequences'] = stop
completion = self._prepare_input_and_invoke(prompt=prompt, stop=stop,
run_manager=run_manager, **params)
message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)]) | def _generate(self, messages: List[BaseMessage], stop: Optional[List[str]]=
None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any
) ->ChatResult:
completion = ''
if self.streaming:
for chunk in self._stream(messages, stop, run_manager, **kwargs):
completion += chunk.text
else:
provider = self._get_provider()
prompt = ChatPromptAdapter.convert_messages_to_prompt(provider=
provider, messages=messages)
params: Dict[str, Any] = {**kwargs}
if stop:
params['stop_sequences'] = stop
completion = self._prepare_input_and_invoke(prompt=prompt, stop=
stop, run_manager=run_manager, **params)
message = AIMessage(content=completion)
return ChatResult(generations=[ChatGeneration(message=message)]) | null |
lc_serializable | return True | @property
def lc_serializable(self) ->bool:
return True | null |
__init__ | """Create a new MutableExpander.
Parameters
----------
parent_container
The `st.container` that the expander will be created inside.
The expander transparently deletes and recreates its underlying
`st.expander` instance when its label changes, and it uses
`parent_container` to ensure it recreates this underlying expander in the
same location onscreen.
label
The expander's initial label.
expanded
The expander's initial `expanded` value.
"""
self._label = label
self._expanded = expanded
self._parent_cursor = parent_container.empty()
self._container = self._parent_cursor.expander(label, expanded)
self._child_records: List[ChildRecord] = [] | def __init__(self, parent_container: DeltaGenerator, label: str, expanded: bool
):
"""Create a new MutableExpander.
Parameters
----------
parent_container
The `st.container` that the expander will be created inside.
The expander transparently deletes and recreates its underlying
`st.expander` instance when its label changes, and it uses
`parent_container` to ensure it recreates this underlying expander in the
same location onscreen.
label
The expander's initial label.
expanded
The expander's initial `expanded` value.
"""
self._label = label
self._expanded = expanded
self._parent_cursor = parent_container.empty()
self._container = self._parent_cursor.expander(label, expanded)
self._child_records: List[ChildRecord] = [] | Create a new MutableExpander.
Parameters
----------
parent_container
The `st.container` that the expander will be created inside.
The expander transparently deletes and recreates its underlying
`st.expander` instance when its label changes, and it uses
`parent_container` to ensure it recreates this underlying expander in the
same location onscreen.
label
The expander's initial label.
expanded
The expander's initial `expanded` value. |