method_name
stringlengths 1
78
| method_body
stringlengths 3
9.66k
| full_code
stringlengths 31
10.7k
| docstring
stringlengths 4
4.74k
⌀ |
---|---|---|---|
__ne__ | """Create a Numeric inequality filter expression.
Args:
other (Union[int, float]): The value to filter on.
Example:
>>> from langchain_community.vectorstores.redis import RedisNum
>>> filter = RedisNum("zipcode") != 90210
"""
self._set_value(other, self.SUPPORTED_VAL_TYPES, RedisFilterOperator.NE)
return RedisFilterExpression(str(self)) | @check_operator_misuse
def __ne__(self, other: Union[int, float]) ->'RedisFilterExpression':
"""Create a Numeric inequality filter expression.
Args:
other (Union[int, float]): The value to filter on.
Example:
>>> from langchain_community.vectorstores.redis import RedisNum
>>> filter = RedisNum("zipcode") != 90210
"""
self._set_value(other, self.SUPPORTED_VAL_TYPES, RedisFilterOperator.NE)
return RedisFilterExpression(str(self)) | Create a Numeric inequality filter expression.
Args:
other (Union[int, float]): The value to filter on.
Example:
>>> from langchain_community.vectorstores.redis import RedisNum
>>> filter = RedisNum("zipcode") != 90210 |
get_additional_metadata | additional_metadata = {'type': self.Type}
return additional_metadata | def get_additional_metadata(self) ->dict:
additional_metadata = {'type': self.Type}
return additional_metadata | null |
_import_steam_webapi_tool | from langchain_community.tools.steam.tool import SteamWebAPIQueryRun
return SteamWebAPIQueryRun | def _import_steam_webapi_tool() ->Any:
from langchain_community.tools.steam.tool import SteamWebAPIQueryRun
return SteamWebAPIQueryRun | null |
evaluate | """Evaluate question answering examples and predictions."""
inputs = [{'query': example[question_key], 'context': example[context_key],
'result': predictions[i][prediction_key]} for i, example in enumerate(
examples)]
return self.apply(inputs, callbacks=callbacks) | def evaluate(self, examples: List[dict], predictions: List[dict],
question_key: str='query', context_key: str='context', prediction_key:
str='result', *, callbacks: Callbacks=None) ->List[dict]:
"""Evaluate question answering examples and predictions."""
inputs = [{'query': example[question_key], 'context': example[
context_key], 'result': predictions[i][prediction_key]} for i,
example in enumerate(examples)]
return self.apply(inputs, callbacks=callbacks) | Evaluate question answering examples and predictions. |
_import_powerbi_tool_ListPowerBITool | from langchain_community.tools.powerbi.tool import ListPowerBITool
return ListPowerBITool | def _import_powerbi_tool_ListPowerBITool() ->Any:
from langchain_community.tools.powerbi.tool import ListPowerBITool
return ListPowerBITool | null |
__and__ | return RedisFilterExpression(operator=RedisFilterOperator.AND, left=self,
right=other) | def __and__(self, other: 'RedisFilterExpression') ->'RedisFilterExpression':
return RedisFilterExpression(operator=RedisFilterOperator.AND, left=
self, right=other) | null |
_get_key | if key is not None:
return source[key]
elif len(source) == 1:
return next(iter(source.values()))
else:
raise ValueError(
f"""Could not map run {which} with multiple keys: {source}
Please manually specify a {which}_key"""
) | def _get_key(self, source: Dict, key: Optional[str], which: str) ->str:
if key is not None:
return source[key]
elif len(source) == 1:
return next(iter(source.values()))
else:
raise ValueError(
f"""Could not map run {which} with multiple keys: {source}
Please manually specify a {which}_key"""
) | null |
on_chain_start | pass | def on_chain_start(self, serialized: Dict[str, Any], inputs: Dict[str, Any],
**kwargs: Any) ->None:
pass | null |
_on_retriever_error | """Process the Retriever Run upon error.""" | def _on_retriever_error(self, run: Run) ->None:
"""Process the Retriever Run upon error.""" | Process the Retriever Run upon error. |
test_hologres_with_metadatas | """Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(texts=texts, table_name='test_table',
embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas,
connection_string=CONNECTION_STRING, pre_delete_table=True)
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo', metadata={'page': '0'})] | def test_hologres_with_metadatas() ->None:
"""Test end to end construction and search."""
texts = ['foo', 'bar', 'baz']
metadatas = [{'page': str(i)} for i in range(len(texts))]
docsearch = Hologres.from_texts(texts=texts, table_name='test_table',
embedding=FakeEmbeddingsWithAdaDimension(), metadatas=metadatas,
connection_string=CONNECTION_STRING, pre_delete_table=True)
output = docsearch.similarity_search('foo', k=1)
assert output == [Document(page_content='foo', metadata={'page': '0'})] | Test end to end construction and search. |
get_document_attributes_dict | """Document attributes dict."""
return {attr.Key: attr.Value.value for attr in self.DocumentAttributes or []} | def get_document_attributes_dict(self) ->Dict[str, DocumentAttributeValueType]:
"""Document attributes dict."""
return {attr.Key: attr.Value.value for attr in self.DocumentAttributes or
[]} | Document attributes dict. |
_run | """Use the LLM to check the query."""
return self.llm_chain.predict(query=query, dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None) | def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun]
=None) ->str:
"""Use the LLM to check the query."""
return self.llm_chain.predict(query=query, dialect=self.db.dialect,
callbacks=run_manager.get_child() if run_manager else None) | Use the LLM to check the query. |
_get_inputs | """Construct inputs from kwargs and docs.
Format and then join all the documents together into one input with name
`self.document_variable_name`. Also pluck any additional variables
from **kwargs.
Args:
docs: List of documents to format and then join into single input
**kwargs: additional inputs to chain, will pluck any other required
arguments from here.
Returns:
dictionary of inputs to LLMChain
"""
doc_strings = [format_document(doc, self.document_prompt) for doc in docs]
inputs = {k: v for k, v in kwargs.items() if k in self.llm_chain.prompt.
input_variables}
inputs[self.document_variable_name] = self.document_separator.join(doc_strings)
return inputs | def _get_inputs(self, docs: List[Document], **kwargs: Any) ->dict:
"""Construct inputs from kwargs and docs.
Format and then join all the documents together into one input with name
`self.document_variable_name`. Also pluck any additional variables
from **kwargs.
Args:
docs: List of documents to format and then join into single input
**kwargs: additional inputs to chain, will pluck any other required
arguments from here.
Returns:
dictionary of inputs to LLMChain
"""
doc_strings = [format_document(doc, self.document_prompt) for doc in docs]
inputs = {k: v for k, v in kwargs.items() if k in self.llm_chain.prompt
.input_variables}
inputs[self.document_variable_name] = self.document_separator.join(
doc_strings)
return inputs | Construct inputs from kwargs and docs.
Format and then join all the documents together into one input with name
`self.document_variable_name`. Also pluck any additional variables
from **kwargs.
Args:
docs: List of documents to format and then join into single input
**kwargs: additional inputs to chain, will pluck any other required
arguments from here.
Returns:
dictionary of inputs to LLMChain |
config_specs | return get_unique_config_specs(super().config_specs + list(self.
history_factory_config)) | @property
def config_specs(self) ->List[ConfigurableFieldSpec]:
return get_unique_config_specs(super().config_specs + list(self.
history_factory_config)) | null |
format_request_payload | input_str = json.dumps({'inputs': [prompt], 'parameters': model_kwargs,
'options': {'use_cache': False, 'wait_for_model': True}})
return input_str.encode('utf-8') | def format_request_payload(self, prompt: str, model_kwargs: Dict) ->bytes:
input_str = json.dumps({'inputs': [prompt], 'parameters': model_kwargs,
'options': {'use_cache': False, 'wait_for_model': True}})
return input_str.encode('utf-8') | null |
post | if self.external_or_foundation:
resp = self.client.predict(endpoint=self.endpoint_name, inputs=request)
if transform_output_fn:
return transform_output_fn(resp)
if self.task == 'llm/v1/chat':
return _transform_chat(resp)
elif self.task == 'llm/v1/completions':
return _transform_completions(resp)
return resp
else:
wrapped_request = {'dataframe_records': [request]}
response = self.client.predict(endpoint=self.endpoint_name, inputs=
wrapped_request)
preds = response['predictions']
pred = preds[0] if isinstance(preds, list) else preds
if self.task == 'llama2/chat':
return _transform_llama2_chat(pred)
return transform_output_fn(pred) if transform_output_fn else pred | def post(self, request: Any, transform_output_fn: Optional[Callable[...,
str]]=None) ->Any:
if self.external_or_foundation:
resp = self.client.predict(endpoint=self.endpoint_name, inputs=request)
if transform_output_fn:
return transform_output_fn(resp)
if self.task == 'llm/v1/chat':
return _transform_chat(resp)
elif self.task == 'llm/v1/completions':
return _transform_completions(resp)
return resp
else:
wrapped_request = {'dataframe_records': [request]}
response = self.client.predict(endpoint=self.endpoint_name, inputs=
wrapped_request)
preds = response['predictions']
pred = preds[0] if isinstance(preds, list) else preds
if self.task == 'llama2/chat':
return _transform_llama2_chat(pred)
return transform_output_fn(pred) if transform_output_fn else pred | null |
test_with_listeners | prompt = SystemMessagePromptTemplate.from_template('You are a nice assistant.'
) + '{question}'
chat = FakeListChatModel(responses=['foo'])
chain: Runnable = prompt | chat
mock_start = mocker.Mock()
mock_end = mocker.Mock()
chain.with_listeners(on_start=mock_start, on_end=mock_end).invoke({
'question': 'Who are you?'})
assert mock_start.call_count == 1
assert mock_start.call_args[0][0].name == 'RunnableSequence'
assert mock_end.call_count == 1
mock_start.reset_mock()
mock_end.reset_mock()
with trace_as_chain_group('hello') as manager:
chain.with_listeners(on_start=mock_start, on_end=mock_end).invoke({
'question': 'Who are you?'}, {'callbacks': manager})
assert mock_start.call_count == 1
assert mock_start.call_args[0][0].name == 'RunnableSequence'
assert mock_end.call_count == 1 | def test_with_listeners(mocker: MockerFixture) ->None:
prompt = SystemMessagePromptTemplate.from_template(
'You are a nice assistant.') + '{question}'
chat = FakeListChatModel(responses=['foo'])
chain: Runnable = prompt | chat
mock_start = mocker.Mock()
mock_end = mocker.Mock()
chain.with_listeners(on_start=mock_start, on_end=mock_end).invoke({
'question': 'Who are you?'})
assert mock_start.call_count == 1
assert mock_start.call_args[0][0].name == 'RunnableSequence'
assert mock_end.call_count == 1
mock_start.reset_mock()
mock_end.reset_mock()
with trace_as_chain_group('hello') as manager:
chain.with_listeners(on_start=mock_start, on_end=mock_end).invoke({
'question': 'Who are you?'}, {'callbacks': manager})
assert mock_start.call_count == 1
assert mock_start.call_args[0][0].name == 'RunnableSequence'
assert mock_end.call_count == 1 | null |
_get_python_function_arguments | """Get JsonSchema describing a Python functions arguments.
Assumes all function arguments are of primitive types (int, float, str, bool) or
are subclasses of pydantic.BaseModel.
"""
properties = {}
annotations = inspect.getfullargspec(function).annotations
for arg, arg_type in annotations.items():
if arg == 'return':
continue
if isinstance(arg_type, type) and issubclass(arg_type, BaseModel):
properties[arg] = arg_type.schema()
elif arg_type.__name__ in PYTHON_TO_JSON_TYPES:
properties[arg] = {'type': PYTHON_TO_JSON_TYPES[arg_type.__name__]}
if arg in arg_descriptions:
if arg not in properties:
properties[arg] = {}
properties[arg]['description'] = arg_descriptions[arg]
return properties | def _get_python_function_arguments(function: Callable, arg_descriptions: dict
) ->dict:
"""Get JsonSchema describing a Python functions arguments.
Assumes all function arguments are of primitive types (int, float, str, bool) or
are subclasses of pydantic.BaseModel.
"""
properties = {}
annotations = inspect.getfullargspec(function).annotations
for arg, arg_type in annotations.items():
if arg == 'return':
continue
if isinstance(arg_type, type) and issubclass(arg_type, BaseModel):
properties[arg] = arg_type.schema()
elif arg_type.__name__ in PYTHON_TO_JSON_TYPES:
properties[arg] = {'type': PYTHON_TO_JSON_TYPES[arg_type.__name__]}
if arg in arg_descriptions:
if arg not in properties:
properties[arg] = {}
properties[arg]['description'] = arg_descriptions[arg]
return properties | Get JsonSchema describing a Python functions arguments.
Assumes all function arguments are of primitive types (int, float, str, bool) or
are subclasses of pydantic.BaseModel. |
_run | pass | @abstractmethod
def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun]
=None) ->str:
pass | null |
test_parse_with_language_without_a_new_line | llm_output = """I can use the `foo` tool to achieve the goal.
Action:
```json{"action": "foo", "action_input": "bar"}```
"""
output, log = get_action_and_input(llm_output)
assert output == llm_output
assert log == llm_output | def test_parse_with_language_without_a_new_line() ->None:
llm_output = """I can use the `foo` tool to achieve the goal.
Action:
```json{"action": "foo", "action_input": "bar"}```
"""
output, log = get_action_and_input(llm_output)
assert output == llm_output
assert log == llm_output | null |
on_llm_error | """Run when LLM errors.""" | def on_llm_error(self, error: BaseException, **kwargs: Any) ->None:
"""Run when LLM errors.""" | Run when LLM errors. |
batch | if isinstance(config, list):
configs = cast(List[RunnableConfig], [self._merge_configs(conf) for
conf in config])
else:
configs = [self._merge_configs(config) for _ in range(len(inputs))]
return self.bound.batch(inputs, configs, return_exceptions=
return_exceptions, **{**self.kwargs, **kwargs}) | def batch(self, inputs: List[Input], config: Optional[Union[RunnableConfig,
List[RunnableConfig]]]=None, *, return_exceptions: bool=False, **kwargs:
Optional[Any]) ->List[Output]:
if isinstance(config, list):
configs = cast(List[RunnableConfig], [self._merge_configs(conf) for
conf in config])
else:
configs = [self._merge_configs(config) for _ in range(len(inputs))]
return self.bound.batch(inputs, configs, return_exceptions=
return_exceptions, **{**self.kwargs, **kwargs}) | null |
parse | includes_answer = FINAL_ANSWER_ACTION in text
regex = (
'Action\\s*\\d*\\s*:[\\s]*(.*?)[\\s]*Action\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)'
)
action_match = re.search(regex, text, re.DOTALL)
if action_match and includes_answer:
if text.find(FINAL_ANSWER_ACTION) < text.find(action_match.group(0)):
start_index = text.find(FINAL_ANSWER_ACTION) + len(FINAL_ANSWER_ACTION)
end_index = text.find('\n\n', start_index)
return AgentFinish({'output': text[start_index:end_index].strip()},
text[:end_index])
else:
raise OutputParserException(
f'{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}')
if action_match:
action = action_match.group(1).strip()
action_input = action_match.group(2)
tool_input = action_input.strip(' ')
if tool_input.startswith('SELECT ') is False:
tool_input = tool_input.strip('"')
return AgentAction(action, tool_input, text)
elif includes_answer:
return AgentFinish({'output': text.split(FINAL_ANSWER_ACTION)[-1].strip
()}, text)
if not re.search('Action\\s*\\d*\\s*:[\\s]*(.*?)', text, re.DOTALL):
raise OutputParserException(f'Could not parse LLM output: `{text}`',
observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE, llm_output=
text, send_to_llm=True)
elif not re.search('[\\s]*Action\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)',
text, re.DOTALL):
raise OutputParserException(f'Could not parse LLM output: `{text}`',
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
llm_output=text, send_to_llm=True)
else:
raise OutputParserException(f'Could not parse LLM output: `{text}`') | def parse(self, text: str) ->Union[AgentAction, AgentFinish]:
includes_answer = FINAL_ANSWER_ACTION in text
regex = (
'Action\\s*\\d*\\s*:[\\s]*(.*?)[\\s]*Action\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)'
)
action_match = re.search(regex, text, re.DOTALL)
if action_match and includes_answer:
if text.find(FINAL_ANSWER_ACTION) < text.find(action_match.group(0)):
start_index = text.find(FINAL_ANSWER_ACTION) + len(
FINAL_ANSWER_ACTION)
end_index = text.find('\n\n', start_index)
return AgentFinish({'output': text[start_index:end_index].strip
()}, text[:end_index])
else:
raise OutputParserException(
f'{FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE}: {text}')
if action_match:
action = action_match.group(1).strip()
action_input = action_match.group(2)
tool_input = action_input.strip(' ')
if tool_input.startswith('SELECT ') is False:
tool_input = tool_input.strip('"')
return AgentAction(action, tool_input, text)
elif includes_answer:
return AgentFinish({'output': text.split(FINAL_ANSWER_ACTION)[-1].
strip()}, text)
if not re.search('Action\\s*\\d*\\s*:[\\s]*(.*?)', text, re.DOTALL):
raise OutputParserException(f'Could not parse LLM output: `{text}`',
observation=MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE,
llm_output=text, send_to_llm=True)
elif not re.search('[\\s]*Action\\s*\\d*\\s*Input\\s*\\d*\\s*:[\\s]*(.*)',
text, re.DOTALL):
raise OutputParserException(f'Could not parse LLM output: `{text}`',
observation=MISSING_ACTION_INPUT_AFTER_ACTION_ERROR_MESSAGE,
llm_output=text, send_to_llm=True)
else:
raise OutputParserException(f'Could not parse LLM output: `{text}`') | null |
input_keys | """
Get the input keys.
Returns:
List[str]: The input keys.
"""
return ['reference', 'prediction'] | @property
def input_keys(self) ->List[str]:
"""
Get the input keys.
Returns:
List[str]: The input keys.
"""
return ['reference', 'prediction'] | Get the input keys.
Returns:
List[str]: The input keys. |
__init__ | super().__init__(Error=Error, **kwargs) | def __init__(self, Error: BaseException, **kwargs: Any) ->None:
super().__init__(Error=Error, **kwargs) | null |
test_openai_streaming_callback | """Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(max_tokens=10, streaming=True, temperature=0, callback_manager
=callback_manager, verbose=True)
llm('Write me a sentence with 100 words.')
assert callback_handler.llm_streams == 10 | def test_openai_streaming_callback() ->None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = OpenAI(max_tokens=10, streaming=True, temperature=0,
callback_manager=callback_manager, verbose=True)
llm('Write me a sentence with 100 words.')
assert callback_handler.llm_streams == 10 | Test that streaming correctly invokes on_llm_new_token callback. |
log | if self.vw_logger.logging_enabled():
vw_ex = self.feature_embedder.format(event)
self.vw_logger.log(vw_ex) | def log(self, event: TEvent) ->None:
if self.vw_logger.logging_enabled():
vw_ex = self.feature_embedder.format(event)
self.vw_logger.log(vw_ex) | null |
__eq__ | """Create a RedisText equality (exact match) filter expression.
Args:
other (str): The text value to filter on.
Example:
>>> from langchain_community.vectorstores.redis import RedisText
>>> filter = RedisText("job") == "engineer"
"""
self._set_value(other, self.SUPPORTED_VAL_TYPES, RedisFilterOperator.EQ)
return RedisFilterExpression(str(self)) | @check_operator_misuse
def __eq__(self, other: str) ->'RedisFilterExpression':
"""Create a RedisText equality (exact match) filter expression.
Args:
other (str): The text value to filter on.
Example:
>>> from langchain_community.vectorstores.redis import RedisText
>>> filter = RedisText("job") == "engineer"
"""
self._set_value(other, self.SUPPORTED_VAL_TYPES, RedisFilterOperator.EQ)
return RedisFilterExpression(str(self)) | Create a RedisText equality (exact match) filter expression.
Args:
other (str): The text value to filter on.
Example:
>>> from langchain_community.vectorstores.redis import RedisText
>>> filter = RedisText("job") == "engineer" |
search_api | """Search the API for the query."""
return f'arg_0={arg_0}, arg_1={arg_1}, ping={ping}' | @tool(return_direct=True)
def search_api(arg_0: str, arg_1: float=4.3, ping: str='hi') ->str:
"""Search the API for the query."""
return f'arg_0={arg_0}, arg_1={arg_1}, ping={ping}' | Search the API for the query. |
from_embeddings | """Construct Hologres wrapper from raw documents and pre-
generated embeddings.
Return VectorStore initialized from documents and embeddings.
Hologres connection string is required
"Either pass it as a parameter
or set the HOLOGRES_CONNECTION_STRING environment variable.
Create the connection string by calling
HologresVector.connection_string_from_db_params
Example:
.. code-block:: python
from langchain_community.vectorstores import Hologres
from langchain_community.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = Hologres.from_embeddings(text_embedding_pairs, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(texts, embeddings, embedding, metadatas=metadatas, ids=
ids, ndims=ndims, table_name=table_name, pre_delete_table=
pre_delete_table, **kwargs) | @classmethod
def from_embeddings(cls, text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings, metadatas: Optional[List[dict]]=None, ndims: int
=ADA_TOKEN_COUNT, table_name: str=_LANGCHAIN_DEFAULT_TABLE_NAME, ids:
Optional[List[str]]=None, pre_delete_table: bool=False, **kwargs: Any
) ->Hologres:
"""Construct Hologres wrapper from raw documents and pre-
generated embeddings.
Return VectorStore initialized from documents and embeddings.
Hologres connection string is required
"Either pass it as a parameter
or set the HOLOGRES_CONNECTION_STRING environment variable.
Create the connection string by calling
HologresVector.connection_string_from_db_params
Example:
.. code-block:: python
from langchain_community.vectorstores import Hologres
from langchain_community.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = Hologres.from_embeddings(text_embedding_pairs, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(texts, embeddings, embedding, metadatas=metadatas,
ids=ids, ndims=ndims, table_name=table_name, pre_delete_table=
pre_delete_table, **kwargs) | Construct Hologres wrapper from raw documents and pre-
generated embeddings.
Return VectorStore initialized from documents and embeddings.
Hologres connection string is required
"Either pass it as a parameter
or set the HOLOGRES_CONNECTION_STRING environment variable.
Create the connection string by calling
HologresVector.connection_string_from_db_params
Example:
.. code-block:: python
from langchain_community.vectorstores import Hologres
from langchain_community.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = Hologres.from_embeddings(text_embedding_pairs, embeddings) |
test_run_info | """Test that run_info is returned properly when specified"""
chain = FakeChain()
output = chain({'foo': 'bar'}, include_run_info=True)
assert 'foo' in output
assert 'bar' in output
assert RUN_KEY in output | def test_run_info() ->None:
"""Test that run_info is returned properly when specified"""
chain = FakeChain()
output = chain({'foo': 'bar'}, include_run_info=True)
assert 'foo' in output
assert 'bar' in output
assert RUN_KEY in output | Test that run_info is returned properly when specified |
create_index | """Create an index from a list of contexts.
It modifies the index argument in-place!
Args:
contexts: List of contexts to embed.
index: Index to use.
embeddings: Embeddings model to use.
sparse_encoder: Sparse encoder to use.
ids: List of ids to use for the documents.
metadatas: List of metadata to use for the documents.
"""
batch_size = 32
_iterator = range(0, len(contexts), batch_size)
try:
from tqdm.auto import tqdm
_iterator = tqdm(_iterator)
except ImportError:
pass
if ids is None:
ids = [hash_text(context) for context in contexts]
for i in _iterator:
i_end = min(i + batch_size, len(contexts))
context_batch = contexts[i:i_end]
batch_ids = ids[i:i_end]
metadata_batch = metadatas[i:i_end] if metadatas else [{} for _ in
context_batch]
meta = [{'context': context, **metadata} for context, metadata in zip(
context_batch, metadata_batch)]
dense_embeds = embeddings.embed_documents(context_batch)
sparse_embeds = sparse_encoder.encode_documents(context_batch)
for s in sparse_embeds:
s['values'] = [float(s1) for s1 in s['values']]
vectors = []
for doc_id, sparse, dense, metadata in zip(batch_ids, sparse_embeds,
dense_embeds, meta):
vectors.append({'id': doc_id, 'sparse_values': sparse, 'values':
dense, 'metadata': metadata})
index.upsert(vectors, namespace=namespace) | def create_index(contexts: List[str], index: Any, embeddings: Embeddings,
sparse_encoder: Any, ids: Optional[List[str]]=None, metadatas: Optional
[List[dict]]=None, namespace: Optional[str]=None) ->None:
"""Create an index from a list of contexts.
It modifies the index argument in-place!
Args:
contexts: List of contexts to embed.
index: Index to use.
embeddings: Embeddings model to use.
sparse_encoder: Sparse encoder to use.
ids: List of ids to use for the documents.
metadatas: List of metadata to use for the documents.
"""
batch_size = 32
_iterator = range(0, len(contexts), batch_size)
try:
from tqdm.auto import tqdm
_iterator = tqdm(_iterator)
except ImportError:
pass
if ids is None:
ids = [hash_text(context) for context in contexts]
for i in _iterator:
i_end = min(i + batch_size, len(contexts))
context_batch = contexts[i:i_end]
batch_ids = ids[i:i_end]
metadata_batch = metadatas[i:i_end] if metadatas else [{} for _ in
context_batch]
meta = [{'context': context, **metadata} for context, metadata in
zip(context_batch, metadata_batch)]
dense_embeds = embeddings.embed_documents(context_batch)
sparse_embeds = sparse_encoder.encode_documents(context_batch)
for s in sparse_embeds:
s['values'] = [float(s1) for s1 in s['values']]
vectors = []
for doc_id, sparse, dense, metadata in zip(batch_ids, sparse_embeds,
dense_embeds, meta):
vectors.append({'id': doc_id, 'sparse_values': sparse, 'values':
dense, 'metadata': metadata})
index.upsert(vectors, namespace=namespace) | Create an index from a list of contexts.
It modifies the index argument in-place!
Args:
contexts: List of contexts to embed.
index: Index to use.
embeddings: Embeddings model to use.
sparse_encoder: Sparse encoder to use.
ids: List of ids to use for the documents.
metadatas: List of metadata to use for the documents. |
test_load_tools_with_callbacks_is_called | """Test callbacks are called when provided to load_tools fn."""
callbacks = [FakeCallbackHandler()]
tools = load_tools(['requests_get'], callbacks=callbacks)
assert len(tools) == 1
with unittest.mock.patch('langchain.requests.TextRequestsWrapper.get',
return_value=Mock(text='Hello world!')):
result = tools[0].run('https://www.google.com')
assert result.text == 'Hello world!'
assert callbacks[0].tool_starts == 1
assert callbacks[0].tool_ends == 1 | def test_load_tools_with_callbacks_is_called() ->None:
"""Test callbacks are called when provided to load_tools fn."""
callbacks = [FakeCallbackHandler()]
tools = load_tools(['requests_get'], callbacks=callbacks)
assert len(tools) == 1
with unittest.mock.patch('langchain.requests.TextRequestsWrapper.get',
return_value=Mock(text='Hello world!')):
result = tools[0].run('https://www.google.com')
assert result.text == 'Hello world!'
assert callbacks[0].tool_starts == 1
assert callbacks[0].tool_ends == 1 | Test callbacks are called when provided to load_tools fn. |
from_params | client = OpenWeatherMapAPIWrapper(openweathermap_api_key=openweathermap_api_key
)
return cls(client, places) | @classmethod
def from_params(cls, places: Sequence[str], *, openweathermap_api_key:
Optional[str]=None) ->WeatherDataLoader:
client = OpenWeatherMapAPIWrapper(openweathermap_api_key=
openweathermap_api_key)
return cls(client, places) | null |
embed_documents | """Get embeddings for a list of texts.
Args:
texts: The list of texts to get embeddings for.
Returns:
List of embeddings, one for each text.
"""
batches = [texts[i:i + MAX_BATCH_SIZE] for i in range(0, len(texts),
MAX_BATCH_SIZE)]
embeddings = [self._generate_embeddings(batch) for batch in batches]
return [embedding for batch in embeddings for embedding in batch] | def embed_documents(self, texts: List[str]) ->List[List[float]]:
"""Get embeddings for a list of texts.
Args:
texts: The list of texts to get embeddings for.
Returns:
List of embeddings, one for each text.
"""
batches = [texts[i:i + MAX_BATCH_SIZE] for i in range(0, len(texts),
MAX_BATCH_SIZE)]
embeddings = [self._generate_embeddings(batch) for batch in batches]
return [embedding for batch in embeddings for embedding in batch] | Get embeddings for a list of texts.
Args:
texts: The list of texts to get embeddings for.
Returns:
List of embeddings, one for each text. |
preprocess | """Prepares a message or list of messages for the payload"""
messages = [self.prep_msg(m) for m in inputs]
if labels:
messages += [{'labels': labels, 'role': 'assistant'}]
return {'messages': messages} | def preprocess(self, inputs: Sequence[Dict], labels: Optional[dict]=None
) ->dict:
"""Prepares a message or list of messages for the payload"""
messages = [self.prep_msg(m) for m in inputs]
if labels:
messages += [{'labels': labels, 'role': 'assistant'}]
return {'messages': messages} | Prepares a message or list of messages for the payload |
_ListComp | self.write('[')
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write(']') | def _ListComp(self, t):
self.write('[')
self.dispatch(t.elt)
for gen in t.generators:
self.dispatch(gen)
self.write(']') | null |
create_prompt | """Create prompt for this agent.
Args:
system_message: Message to use as the system message that will be the
first in the prompt.
extra_prompt_messages: Prompt messages that will be placed between the
system message and the new human input.
Returns:
A prompt template to pass into this agent.
"""
_prompts = extra_prompt_messages or []
messages: List[Union[BaseMessagePromptTemplate, BaseMessage]]
if system_message:
messages = [system_message]
else:
messages = []
messages.extend([*_prompts, HumanMessagePromptTemplate.from_template(
'{input}'), MessagesPlaceholder(variable_name='agent_scratchpad')])
return ChatPromptTemplate(messages=messages) | @classmethod
def create_prompt(cls, system_message: Optional[SystemMessage]=
SystemMessage(content='You are a helpful AI assistant.'),
extra_prompt_messages: Optional[List[BaseMessagePromptTemplate]]=None
) ->BasePromptTemplate:
"""Create prompt for this agent.
Args:
system_message: Message to use as the system message that will be the
first in the prompt.
extra_prompt_messages: Prompt messages that will be placed between the
system message and the new human input.
Returns:
A prompt template to pass into this agent.
"""
_prompts = extra_prompt_messages or []
messages: List[Union[BaseMessagePromptTemplate, BaseMessage]]
if system_message:
messages = [system_message]
else:
messages = []
messages.extend([*_prompts, HumanMessagePromptTemplate.from_template(
'{input}'), MessagesPlaceholder(variable_name='agent_scratchpad')])
return ChatPromptTemplate(messages=messages) | Create prompt for this agent.
Args:
system_message: Message to use as the system message that will be the
first in the prompt.
extra_prompt_messages: Prompt messages that will be placed between the
system message and the new human input.
Returns:
A prompt template to pass into this agent. |
embed_documents | """Embed search docs.""" | @abstractmethod
def embed_documents(self, texts: List[str]) ->List[List[float]]:
"""Embed search docs.""" | Embed search docs. |
test_context_w_namespace_w_some_emb | str1 = 'test1'
str2 = 'test2'
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
expected = [{'test_namespace': str1, 'test_namespace2': encoded_str2}]
assert base.embed({'test_namespace': str1, 'test_namespace2': base.Embed(
str2)}, MockEncoder()) == expected
expected_embed_and_keep = [{'test_namespace': str1, 'test_namespace2': str2 +
' ' + encoded_str2}]
assert base.embed({'test_namespace': str1, 'test_namespace2': base.
EmbedAndKeep(str2)}, MockEncoder()) == expected_embed_and_keep | @pytest.mark.requires('vowpal_wabbit_next')
def test_context_w_namespace_w_some_emb() ->None:
str1 = 'test1'
str2 = 'test2'
encoded_str2 = base.stringify_embedding(list(encoded_keyword + str2))
expected = [{'test_namespace': str1, 'test_namespace2': encoded_str2}]
assert base.embed({'test_namespace': str1, 'test_namespace2': base.
Embed(str2)}, MockEncoder()) == expected
expected_embed_and_keep = [{'test_namespace': str1, 'test_namespace2':
str2 + ' ' + encoded_str2}]
assert base.embed({'test_namespace': str1, 'test_namespace2': base.
EmbedAndKeep(str2)}, MockEncoder()) == expected_embed_and_keep | null |
predict_new_summary | new_lines = get_buffer_string(messages, human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix)
chain = LLMChain(llm=self.llm, prompt=self.prompt)
return chain.predict(summary=existing_summary, new_lines=new_lines) | def predict_new_summary(self, messages: List[BaseMessage], existing_summary:
str) ->str:
new_lines = get_buffer_string(messages, human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix)
chain = LLMChain(llm=self.llm, prompt=self.prompt)
return chain.predict(summary=existing_summary, new_lines=new_lines) | null |
_import_cassandra | from langchain_community.vectorstores.cassandra import Cassandra
return Cassandra | def _import_cassandra() ->Any:
from langchain_community.vectorstores.cassandra import Cassandra
return Cassandra | null |
_get_number_of_pages | try:
import pypdf
from PIL import Image, ImageSequence
except ImportError:
raise ModuleNotFoundError(
'Could not import pypdf or Pilloe python package. Please install it with `pip install pypdf Pillow`.'
)
if blob.mimetype == 'application/pdf':
with blob.as_bytes_io() as input_pdf_file:
pdf_reader = pypdf.PdfReader(input_pdf_file)
return len(pdf_reader.pages)
elif blob.mimetype == 'image/tiff':
num_pages = 0
img = Image.open(blob.as_bytes())
for _, _ in enumerate(ImageSequence.Iterator(img)):
num_pages += 1
return num_pages
elif blob.mimetype in ['image/png', 'image/jpeg']:
return 1
else:
raise ValueError(f'unsupported mime type: {blob.mimetype}') | @staticmethod
def _get_number_of_pages(blob: Blob) ->int:
try:
import pypdf
from PIL import Image, ImageSequence
except ImportError:
raise ModuleNotFoundError(
'Could not import pypdf or Pilloe python package. Please install it with `pip install pypdf Pillow`.'
)
if blob.mimetype == 'application/pdf':
with blob.as_bytes_io() as input_pdf_file:
pdf_reader = pypdf.PdfReader(input_pdf_file)
return len(pdf_reader.pages)
elif blob.mimetype == 'image/tiff':
num_pages = 0
img = Image.open(blob.as_bytes())
for _, _ in enumerate(ImageSequence.Iterator(img)):
num_pages += 1
return num_pages
elif blob.mimetype in ['image/png', 'image/jpeg']:
return 1
else:
raise ValueError(f'unsupported mime type: {blob.mimetype}') | null |
_stream | """Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like object containing a string token.
Example:
.. code-block:: python
from langchain_community.llms import DeepSparse
llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
streaming=True
)
for chunk in llm.stream("Tell me a joke",
stop=["'","
"]):
print(chunk, end='', flush=True)
"""
inference = self.pipeline(sequences=prompt, streaming=True, **self.
generation_config)
for token in inference:
chunk = GenerationChunk(text=token.generations[0].text)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text) | def _stream(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->Iterator[
GenerationChunk]:
"""Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like object containing a string token.
Example:
.. code-block:: python
from langchain_community.llms import DeepSparse
llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
streaming=True
)
for chunk in llm.stream("Tell me a joke",
stop=["'","
"]):
print(chunk, end='', flush=True)
"""
inference = self.pipeline(sequences=prompt, streaming=True, **self.
generation_config)
for token in inference:
chunk = GenerationChunk(text=token.generations[0].text)
yield chunk
if run_manager:
run_manager.on_llm_new_token(token=chunk.text) | Yields results objects as they are generated in real time.
It also calls the callback manager's on_llm_new_token event with
similar parameters to the OpenAI LLM class method of the same name.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
A generator representing the stream of tokens being generated.
Yields:
A dictionary like object containing a string token.
Example:
.. code-block:: python
from langchain_community.llms import DeepSparse
llm = DeepSparse(
model="zoo:nlg/text_generation/codegen_mono-350m/pytorch/huggingface/bigpython_bigquery_thepile/base_quant-none",
streaming=True
)
for chunk in llm.stream("Tell me a joke",
stop=["'","
"]):
print(chunk, end='', flush=True)
|
test_load_returns_no_result | """Test that returns no docs"""
loader = ArxivLoader(query='1605.08386WWW', load_max_docs=2)
docs = loader.load()
assert len(docs) == 0 | def test_load_returns_no_result() ->None:
"""Test that returns no docs"""
loader = ArxivLoader(query='1605.08386WWW', load_max_docs=2)
docs = loader.load()
assert len(docs) == 0 | Test that returns no docs |
parse_result | """Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, which
is assumed to be the highest-likelihood Generation.
Args:
result: A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns:
Structured output.
"""
return self.parse(result[0].text) | def parse_result(self, result: List[Generation], *, partial: bool=False) ->T:
"""Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, which
is assumed to be the highest-likelihood Generation.
Args:
result: A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns:
Structured output.
"""
return self.parse(result[0].text) | Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, which
is assumed to be the highest-likelihood Generation.
Args:
result: A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns:
Structured output. |
test_loads_llmchain_with_non_serializable_arg | llm = OpenAI(model='davinci', temperature=0.5, openai_api_key='hello',
http_client=NotSerializable)
prompt = PromptTemplate.from_template('hello {name}!')
chain = LLMChain(llm=llm, prompt=prompt)
chain_string = dumps(chain, pretty=True)
with pytest.raises(NotImplementedError):
loads(chain_string, secrets_map={'OPENAI_API_KEY': 'hello'}) | @pytest.mark.requires('openai')
def test_loads_llmchain_with_non_serializable_arg() ->None:
llm = OpenAI(model='davinci', temperature=0.5, openai_api_key='hello',
http_client=NotSerializable)
prompt = PromptTemplate.from_template('hello {name}!')
chain = LLMChain(llm=llm, prompt=prompt)
chain_string = dumps(chain, pretty=True)
with pytest.raises(NotImplementedError):
loads(chain_string, secrets_map={'OPENAI_API_KEY': 'hello'}) | null |
assert_docs | for doc in docs:
assert doc.metadata
assert set(doc.metadata) == {'Copyright Information', 'uid', 'Title',
'Published'} | def assert_docs(docs: List[Document]) ->None:
for doc in docs:
assert doc.metadata
assert set(doc.metadata) == {'Copyright Information', 'uid',
'Title', 'Published'} | null |
_refresh_access_token_with_lock | with self._lock:
logger.debug('Refreshing access token')
base_url: str = f'{self.ernie_api_base}/oauth/2.0/token'
resp = requests.post(base_url, headers={'Content-Type':
'application/json', 'Accept': 'application/json'}, params={
'grant_type': 'client_credentials', 'client_id': self.
ernie_client_id, 'client_secret': self.ernie_client_secret})
self.access_token = str(resp.json().get('access_token')) | def _refresh_access_token_with_lock(self) ->None:
with self._lock:
logger.debug('Refreshing access token')
base_url: str = f'{self.ernie_api_base}/oauth/2.0/token'
resp = requests.post(base_url, headers={'Content-Type':
'application/json', 'Accept': 'application/json'}, params={
'grant_type': 'client_credentials', 'client_id': self.
ernie_client_id, 'client_secret': self.ernie_client_secret})
self.access_token = str(resp.json().get('access_token')) | null |
test_connect_neo4j_env | """Test that Neo4j database environment variables."""
graph = Neo4jGraph()
output = graph.query("""
RETURN "test" AS output
""")
expected_output = [{'output': 'test'}]
assert output == expected_output | def test_connect_neo4j_env() ->None:
"""Test that Neo4j database environment variables."""
graph = Neo4jGraph()
output = graph.query("""
RETURN "test" AS output
""")
expected_output = [{'output': 'test'}]
assert output == expected_output | Test that Neo4j database environment variables. |
create_index | """Creates an index using the index name specified at
instance construction
Setting the numLists parameter correctly is important for achieving
good accuracy and performance.
Since the vector store uses IVF as the indexing strategy,
you should create the index only after you
have loaded a large enough sample documents to ensure that the
centroids for the respective buckets are
faily distributed.
We recommend that numLists is set to documentCount/1000 for up
to 1 million documents
and to sqrt(documentCount) for more than 1 million documents.
As the number of items in your database grows, you should
tune numLists to be larger
in order to achieve good latency performance for vector search.
If you're experimenting with a new scenario or creating a
small demo, you can start with numLists
set to 1 to perform a brute-force search across all vectors.
This should provide you with the most
accurate results from the vector search, however be aware that
the search speed and latency will be slow.
After your initial setup, you should go ahead and tune
the numLists parameter using the above guidance.
Args:
num_lists: This integer is the number of clusters that the
inverted file (IVF) index uses to group the vector data.
We recommend that numLists is set to documentCount/1000
for up to 1 million documents and to sqrt(documentCount)
for more than 1 million documents.
Using a numLists value of 1 is akin to performing
brute-force search, which has limited performance
dimensions: Number of dimensions for vector similarity.
The maximum number of supported dimensions is 2000
similarity: Similarity metric to use with the IVF index.
Possible options are:
- CosmosDBSimilarityType.COS (cosine distance),
- CosmosDBSimilarityType.L2 (Euclidean distance), and
- CosmosDBSimilarityType.IP (inner product).
Returns:
An object describing the created index
"""
create_index_commands = {'createIndexes': self._collection.name, 'indexes':
[{'name': self._index_name, 'key': {self._embedding_key: 'cosmosSearch'
}, 'cosmosSearchOptions': {'kind': 'vector-ivf', 'numLists': num_lists,
'similarity': similarity, 'dimensions': dimensions}}]}
current_database = self._collection.database
create_index_responses: dict[str, Any] = current_database.command(
create_index_commands)
return create_index_responses | def create_index(self, num_lists: int=100, dimensions: int=1536, similarity:
CosmosDBSimilarityType=CosmosDBSimilarityType.COS) ->dict[str, Any]:
"""Creates an index using the index name specified at
instance construction
Setting the numLists parameter correctly is important for achieving
good accuracy and performance.
Since the vector store uses IVF as the indexing strategy,
you should create the index only after you
have loaded a large enough sample documents to ensure that the
centroids for the respective buckets are
faily distributed.
We recommend that numLists is set to documentCount/1000 for up
to 1 million documents
and to sqrt(documentCount) for more than 1 million documents.
As the number of items in your database grows, you should
tune numLists to be larger
in order to achieve good latency performance for vector search.
If you're experimenting with a new scenario or creating a
small demo, you can start with numLists
set to 1 to perform a brute-force search across all vectors.
This should provide you with the most
accurate results from the vector search, however be aware that
the search speed and latency will be slow.
After your initial setup, you should go ahead and tune
the numLists parameter using the above guidance.
Args:
num_lists: This integer is the number of clusters that the
inverted file (IVF) index uses to group the vector data.
We recommend that numLists is set to documentCount/1000
for up to 1 million documents and to sqrt(documentCount)
for more than 1 million documents.
Using a numLists value of 1 is akin to performing
brute-force search, which has limited performance
dimensions: Number of dimensions for vector similarity.
The maximum number of supported dimensions is 2000
similarity: Similarity metric to use with the IVF index.
Possible options are:
- CosmosDBSimilarityType.COS (cosine distance),
- CosmosDBSimilarityType.L2 (Euclidean distance), and
- CosmosDBSimilarityType.IP (inner product).
Returns:
An object describing the created index
"""
create_index_commands = {'createIndexes': self._collection.name,
'indexes': [{'name': self._index_name, 'key': {self._embedding_key:
'cosmosSearch'}, 'cosmosSearchOptions': {'kind': 'vector-ivf',
'numLists': num_lists, 'similarity': similarity, 'dimensions':
dimensions}}]}
current_database = self._collection.database
create_index_responses: dict[str, Any] = current_database.command(
create_index_commands)
return create_index_responses | Creates an index using the index name specified at
instance construction
Setting the numLists parameter correctly is important for achieving
good accuracy and performance.
Since the vector store uses IVF as the indexing strategy,
you should create the index only after you
have loaded a large enough sample documents to ensure that the
centroids for the respective buckets are
faily distributed.
We recommend that numLists is set to documentCount/1000 for up
to 1 million documents
and to sqrt(documentCount) for more than 1 million documents.
As the number of items in your database grows, you should
tune numLists to be larger
in order to achieve good latency performance for vector search.
If you're experimenting with a new scenario or creating a
small demo, you can start with numLists
set to 1 to perform a brute-force search across all vectors.
This should provide you with the most
accurate results from the vector search, however be aware that
the search speed and latency will be slow.
After your initial setup, you should go ahead and tune
the numLists parameter using the above guidance.
Args:
num_lists: This integer is the number of clusters that the
inverted file (IVF) index uses to group the vector data.
We recommend that numLists is set to documentCount/1000
for up to 1 million documents and to sqrt(documentCount)
for more than 1 million documents.
Using a numLists value of 1 is akin to performing
brute-force search, which has limited performance
dimensions: Number of dimensions for vector similarity.
The maximum number of supported dimensions is 2000
similarity: Similarity metric to use with the IVF index.
Possible options are:
- CosmosDBSimilarityType.COS (cosine distance),
- CosmosDBSimilarityType.L2 (Euclidean distance), and
- CosmosDBSimilarityType.IP (inner product).
Returns:
An object describing the created index |
test_structured_tool_from_function_docstring_complex_args | """Test that structured tools can be created from functions."""
def foo(bar: int, baz: List[str]) ->str:
"""Docstring
Args:
bar: int
baz: List[str]
"""
raise NotImplementedError()
structured_tool = StructuredTool.from_function(foo)
assert structured_tool.name == 'foo'
assert structured_tool.args == {'bar': {'title': 'Bar', 'type': 'integer'},
'baz': {'title': 'Baz', 'type': 'array', 'items': {'type': 'string'}}}
assert structured_tool.args_schema.schema() == {'properties': {'bar': {
'title': 'Bar', 'type': 'integer'}, 'baz': {'title': 'Baz', 'type':
'array', 'items': {'type': 'string'}}}, 'title': 'fooSchemaSchema',
'type': 'object', 'required': ['bar', 'baz']}
prefix = 'foo(bar: int, baz: List[str]) -> str - '
assert foo.__doc__ is not None
assert structured_tool.description == prefix + foo.__doc__.strip() | def test_structured_tool_from_function_docstring_complex_args() ->None:
"""Test that structured tools can be created from functions."""
def foo(bar: int, baz: List[str]) ->str:
"""Docstring
Args:
bar: int
baz: List[str]
"""
raise NotImplementedError()
structured_tool = StructuredTool.from_function(foo)
assert structured_tool.name == 'foo'
assert structured_tool.args == {'bar': {'title': 'Bar', 'type':
'integer'}, 'baz': {'title': 'Baz', 'type': 'array', 'items': {
'type': 'string'}}}
assert structured_tool.args_schema.schema() == {'properties': {'bar': {
'title': 'Bar', 'type': 'integer'}, 'baz': {'title': 'Baz', 'type':
'array', 'items': {'type': 'string'}}}, 'title': 'fooSchemaSchema',
'type': 'object', 'required': ['bar', 'baz']}
prefix = 'foo(bar: int, baz: List[str]) -> str - '
assert foo.__doc__ is not None
assert structured_tool.description == prefix + foo.__doc__.strip() | Test that structured tools can be created from functions. |
messages | """Retrieve the messages from Elasticsearch"""
try:
from elasticsearch import ApiError
result = self.client.search(index=self.index, query={'term': {
'session_id': self.session_id}}, sort='created_at:asc')
except ApiError as err:
logger.error(f'Could not retrieve messages from Elasticsearch: {err}')
raise err
if result and len(result['hits']['hits']) > 0:
items = [json.loads(document['_source']['history']) for document in
result['hits']['hits']]
else:
items = []
return messages_from_dict(items) | @property
def messages(self) ->List[BaseMessage]:
"""Retrieve the messages from Elasticsearch"""
try:
from elasticsearch import ApiError
result = self.client.search(index=self.index, query={'term': {
'session_id': self.session_id}}, sort='created_at:asc')
except ApiError as err:
logger.error(f'Could not retrieve messages from Elasticsearch: {err}')
raise err
if result and len(result['hits']['hits']) > 0:
items = [json.loads(document['_source']['history']) for document in
result['hits']['hits']]
else:
items = []
return messages_from_dict(items) | Retrieve the messages from Elasticsearch |
_outline_api_query | raw_result = requests.post(
f'{self.outline_instance_url}{self.outline_search_endpoint}', data={
'query': query, 'limit': self.top_k_results}, headers={'Authorization':
f'Bearer {self.outline_api_key}'})
if not raw_result.ok:
raise ValueError('Outline API returned an error: ', raw_result.text)
return raw_result.json()['data'] | def _outline_api_query(self, query: str) ->List:
raw_result = requests.post(
f'{self.outline_instance_url}{self.outline_search_endpoint}', data=
{'query': query, 'limit': self.top_k_results}, headers={
'Authorization': f'Bearer {self.outline_api_key}'})
if not raw_result.ok:
raise ValueError('Outline API returned an error: ', raw_result.text)
return raw_result.json()['data'] | null |
_convert_message_to_dict | if isinstance(message, ChatMessage):
message_dict = {'role': message.role, 'content': message.content}
elif isinstance(message, HumanMessage):
message_dict = {'role': 'user', 'content': message.content}
elif isinstance(message, AIMessage):
message_dict = {'role': 'assistant', 'content': message.content}
elif isinstance(message, SystemMessage):
message_dict = {'role': 'system', 'content': message.content}
elif isinstance(message, FunctionMessage):
raise ValueError(
'Function messages are not supported by the Javelin AI Gateway. Please create a feature request at https://docs.getjavelin.io'
)
else:
raise ValueError(f'Got unknown message type: {message}')
if 'function_call' in message.additional_kwargs:
ChatJavelinAIGateway._raise_functions_not_supported()
if message.additional_kwargs:
logger.warning(
'Additional message arguments are unsupported by Javelin AI Gateway and will be ignored: %s'
, message.additional_kwargs)
return message_dict | @staticmethod
def _convert_message_to_dict(message: BaseMessage) ->dict:
if isinstance(message, ChatMessage):
message_dict = {'role': message.role, 'content': message.content}
elif isinstance(message, HumanMessage):
message_dict = {'role': 'user', 'content': message.content}
elif isinstance(message, AIMessage):
message_dict = {'role': 'assistant', 'content': message.content}
elif isinstance(message, SystemMessage):
message_dict = {'role': 'system', 'content': message.content}
elif isinstance(message, FunctionMessage):
raise ValueError(
'Function messages are not supported by the Javelin AI Gateway. Please create a feature request at https://docs.getjavelin.io'
)
else:
raise ValueError(f'Got unknown message type: {message}')
if 'function_call' in message.additional_kwargs:
ChatJavelinAIGateway._raise_functions_not_supported()
if message.additional_kwargs:
logger.warning(
'Additional message arguments are unsupported by Javelin AI Gateway and will be ignored: %s'
, message.additional_kwargs)
return message_dict | null |
_format_document_analysis_result | formatted_result = []
if 'content' in document_analysis_result:
formatted_result.append(f"Content: {document_analysis_result['content']}"
.replace('\n', ' '))
if 'tables' in document_analysis_result:
for i, table in enumerate(document_analysis_result['tables']):
formatted_result.append(f'Table {i}: {table}'.replace('\n', ' '))
if 'key_value_pairs' in document_analysis_result:
for kv_pair in document_analysis_result['key_value_pairs']:
formatted_result.append(f'{kv_pair[0]}: {kv_pair[1]}'.replace('\n',
' '))
return '\n'.join(formatted_result) | def _format_document_analysis_result(self, document_analysis_result: Dict
) ->str:
formatted_result = []
if 'content' in document_analysis_result:
formatted_result.append(
f"Content: {document_analysis_result['content']}".replace('\n',
' '))
if 'tables' in document_analysis_result:
for i, table in enumerate(document_analysis_result['tables']):
formatted_result.append(f'Table {i}: {table}'.replace('\n', ' '))
if 'key_value_pairs' in document_analysis_result:
for kv_pair in document_analysis_result['key_value_pairs']:
formatted_result.append(f'{kv_pair[0]}: {kv_pair[1]}'.replace(
'\n', ' '))
return '\n'.join(formatted_result) | null |
_identifying_params | """Get the identifying parameters."""
return {'model': self.model, 'temperature': self.temperature, 'top_k': self
.top_k, 'n': self.n} | @property
def _identifying_params(self) ->Dict[str, Any]:
"""Get the identifying parameters."""
return {'model': self.model, 'temperature': self.temperature, 'top_k':
self.top_k, 'n': self.n} | Get the identifying parameters. |
test_initialization | """Test embedding model initialization."""
__ModuleName__Embeddings() | def test_initialization() ->None:
"""Test embedding model initialization."""
__ModuleName__Embeddings() | Test embedding model initialization. |
split_text | """Split incoming text and return chunks."""
splits = self._tokenizer(text, language=self._language)
return self._merge_splits(splits, self._separator) | def split_text(self, text: str) ->List[str]:
"""Split incoming text and return chunks."""
splits = self._tokenizer(text, language=self._language)
return self._merge_splits(splits, self._separator) | Split incoming text and return chunks. |
test_resolve_criteria_enum | val = resolve_pairwise_criteria(criterion)
assert isinstance(val, dict)
assert next(iter(val)) == criterion.value | @pytest.mark.parametrize('criterion', list(Criteria))
def test_resolve_criteria_enum(criterion: Criteria) ->None:
val = resolve_pairwise_criteria(criterion)
assert isinstance(val, dict)
assert next(iter(val)) == criterion.value | null |
test_clarifai_with_metadatas | """Test end to end construction and search with metadata."""
texts = ['oof', 'rab', 'zab']
metadatas = [{'page': str(i)} for i in range(len(texts))]
USER_ID = 'minhajul'
APP_ID = 'test-lang-2'
NUMBER_OF_DOCS = 1
docsearch = Clarifai.from_texts(user_id=USER_ID, app_id=APP_ID, texts=texts,
pat=None, number_of_docs=NUMBER_OF_DOCS, metadatas=metadatas)
time.sleep(2.5)
output = docsearch.similarity_search('oof', k=1)
assert output == [Document(page_content='oof', metadata={'page': '0'})] | def test_clarifai_with_metadatas() ->None:
"""Test end to end construction and search with metadata."""
texts = ['oof', 'rab', 'zab']
metadatas = [{'page': str(i)} for i in range(len(texts))]
USER_ID = 'minhajul'
APP_ID = 'test-lang-2'
NUMBER_OF_DOCS = 1
docsearch = Clarifai.from_texts(user_id=USER_ID, app_id=APP_ID, texts=
texts, pat=None, number_of_docs=NUMBER_OF_DOCS, metadatas=metadatas)
time.sleep(2.5)
output = docsearch.similarity_search('oof', k=1)
assert output == [Document(page_content='oof', metadata={'page': '0'})] | Test end to end construction and search with metadata. |
test_visit_operation | op = Operation(operator=Operator.AND, arguments=[Comparison(comparator=
Comparator.LT, attribute='foo', value=2), Comparison(comparator=
Comparator.EQ, attribute='bar', value='baz')])
expected = "metadata.foo < 2 AND metadata.bar = 'baz'"
actual = DEFAULT_TRANSLATOR.visit_operation(op)
assert expected == actual | def test_visit_operation() ->None:
op = Operation(operator=Operator.AND, arguments=[Comparison(comparator=
Comparator.LT, attribute='foo', value=2), Comparison(comparator=
Comparator.EQ, attribute='bar', value='baz')])
expected = "metadata.foo < 2 AND metadata.bar = 'baz'"
actual = DEFAULT_TRANSLATOR.visit_operation(op)
assert expected == actual | null |
texts | return ['foo', 'bar', 'baz'] | @pytest.fixture
def texts() ->List[str]:
return ['foo', 'bar', 'baz'] | null |
_type | return 'markdown-list' | @property
def _type(self) ->str:
return 'markdown-list' | null |
surface_langchain_deprecation_warnings | """Unmute LangChain deprecation warnings."""
warnings.filterwarnings('default', category=LangChainPendingDeprecationWarning)
warnings.filterwarnings('default', category=LangChainDeprecationWarning) | def surface_langchain_deprecation_warnings() ->None:
"""Unmute LangChain deprecation warnings."""
warnings.filterwarnings('default', category=
LangChainPendingDeprecationWarning)
warnings.filterwarnings('default', category=LangChainDeprecationWarning) | Unmute LangChain deprecation warnings. |
lazy_load | """
Lazily load text content from the provided URLs.
This method yields Documents one at a time as they're scraped,
instead of waiting to scrape all URLs before returning.
Yields:
Document: The scraped content encapsulated within a Document object.
"""
for url in self.urls:
html_content = asyncio.run(self.ascrape_playwright(url))
metadata = {'source': url}
yield Document(page_content=html_content, metadata=metadata) | def lazy_load(self) ->Iterator[Document]:
"""
Lazily load text content from the provided URLs.
This method yields Documents one at a time as they're scraped,
instead of waiting to scrape all URLs before returning.
Yields:
Document: The scraped content encapsulated within a Document object.
"""
for url in self.urls:
html_content = asyncio.run(self.ascrape_playwright(url))
metadata = {'source': url}
yield Document(page_content=html_content, metadata=metadata) | Lazily load text content from the provided URLs.
This method yields Documents one at a time as they're scraped,
instead of waiting to scrape all URLs before returning.
Yields:
Document: The scraped content encapsulated within a Document object. |
test_run_single_arg | """Test run method with single arg."""
chain = FakeChain()
output = chain.run('bar')
assert output == 'baz' | def test_run_single_arg() ->None:
"""Test run method with single arg."""
chain = FakeChain()
output = chain.run('bar')
assert output == 'baz' | Test run method with single arg. |
test_function | """Test correct functionality."""
chain = PythonREPL()
code = 'def add(a, b): return a + b'
output = chain.run(code)
assert output == ''
code = 'print(add(1, 2))'
output = chain.run(code)
assert output == '3\n' | def test_function() ->None:
"""Test correct functionality."""
chain = PythonREPL()
code = 'def add(a, b): return a + b'
output = chain.run(code)
assert output == ''
code = 'print(add(1, 2))'
output = chain.run(code)
assert output == '3\n' | Test correct functionality. |
_llm_type | """Return type of llm."""
return 'amazon_bedrock' | @property
def _llm_type(self) ->str:
"""Return type of llm."""
return 'amazon_bedrock' | Return type of llm. |
test_json_output_function_parser | """Test the JSON output function parser is configured with robust defaults."""
message = AIMessage(content='This is a test message', additional_kwargs={
'function_call': {'name': 'function_name', 'arguments':
"""{"arg1": "code
code"}"""}})
chat_generation = ChatGeneration(message=message)
parser = JsonOutputFunctionsParser(args_only=False)
result = parser.parse_result([chat_generation])
assert result == {'arguments': {'arg1': 'code\ncode'}, 'name': 'function_name'}
parser = JsonOutputFunctionsParser(args_only=True)
result = parser.parse_result([chat_generation])
assert result == {'arg1': 'code\ncode'}
assert message.additional_kwargs == {'function_call': {'name':
'function_name', 'arguments': """{"arg1": "code
code"}"""}} | def test_json_output_function_parser() ->None:
"""Test the JSON output function parser is configured with robust defaults."""
message = AIMessage(content='This is a test message', additional_kwargs
={'function_call': {'name': 'function_name', 'arguments':
"""{"arg1": "code
code"}"""}})
chat_generation = ChatGeneration(message=message)
parser = JsonOutputFunctionsParser(args_only=False)
result = parser.parse_result([chat_generation])
assert result == {'arguments': {'arg1': 'code\ncode'}, 'name':
'function_name'}
parser = JsonOutputFunctionsParser(args_only=True)
result = parser.parse_result([chat_generation])
assert result == {'arg1': 'code\ncode'}
assert message.additional_kwargs == {'function_call': {'name':
'function_name', 'arguments': """{"arg1": "code
code"}"""}} | Test the JSON output function parser is configured with robust defaults. |
lazy_load | """Load documents lazily."""
try:
from datasets import load_dataset
except ImportError:
raise ImportError(
'Could not import datasets python package. Please install it with `pip install datasets`.'
)
dataset = load_dataset(path=self.path, name=self.name, data_dir=self.
data_dir, data_files=self.data_files, cache_dir=self.cache_dir,
keep_in_memory=self.keep_in_memory, save_infos=self.save_infos,
use_auth_token=self.use_auth_token, num_proc=self.num_proc)
yield from (Document(page_content=self.parse_obj(row.pop(self.
page_content_column)), metadata=row) for key in dataset.keys() for row in
dataset[key]) | def lazy_load(self) ->Iterator[Document]:
"""Load documents lazily."""
try:
from datasets import load_dataset
except ImportError:
raise ImportError(
'Could not import datasets python package. Please install it with `pip install datasets`.'
)
dataset = load_dataset(path=self.path, name=self.name, data_dir=self.
data_dir, data_files=self.data_files, cache_dir=self.cache_dir,
keep_in_memory=self.keep_in_memory, save_infos=self.save_infos,
use_auth_token=self.use_auth_token, num_proc=self.num_proc)
yield from (Document(page_content=self.parse_obj(row.pop(self.
page_content_column)), metadata=row) for key in dataset.keys() for
row in dataset[key]) | Load documents lazily. |
load_json | try:
return json.loads(s)
except Exception:
return {} | def load_json(s):
try:
return json.loads(s)
except Exception:
return {} | null |
config_specs | return get_unique_config_specs(spec for step in [self.runnable, *self.
fallbacks] for spec in step.config_specs) | @property
def config_specs(self) ->List[ConfigurableFieldSpec]:
return get_unique_config_specs(spec for step in [self.runnable, *self.
fallbacks] for spec in step.config_specs) | null |
test_issues_load | title = 'DocumentLoader for GitHub'
loader = GitHubIssuesLoader(repo='langchain-ai/langchain', creator='UmerHA',
state='all')
docs = loader.load()
titles = [d.metadata['title'] for d in docs]
assert title in titles
assert all(doc.metadata['creator'] == 'UmerHA' for doc in docs) | def test_issues_load() ->None:
title = 'DocumentLoader for GitHub'
loader = GitHubIssuesLoader(repo='langchain-ai/langchain', creator=
'UmerHA', state='all')
docs = loader.load()
titles = [d.metadata['title'] for d in docs]
assert title in titles
assert all(doc.metadata['creator'] == 'UmerHA' for doc in docs) | null |
build_extra | """Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get('model_kwargs', {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f'Found {field_name} supplied twice.')
logger.warning(
f"""{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values['model_kwargs'] = extra
return values | @root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) ->Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.
values()}
extra = values.get('model_kwargs', {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f'Found {field_name} supplied twice.')
logger.warning(
f"""{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
values['model_kwargs'] = extra
return values | Build extra kwargs from additional params that were passed in. |
test_configurable_fields | fake_llm = FakeListLLM(responses=['a'])
assert fake_llm.invoke('...') == 'a'
fake_llm_configurable = fake_llm.configurable_fields(responses=
ConfigurableField(id='llm_responses', name='LLM Responses', description
='A list of fake responses for this LLM'))
assert fake_llm_configurable.invoke('...') == 'a'
assert fake_llm_configurable.config_schema().schema() == {'title':
'RunnableConfigurableFieldsConfig', 'type': 'object', 'properties': {
'configurable': {'$ref': '#/definitions/Configurable'}}, 'definitions':
{'Configurable': {'title': 'Configurable', 'type': 'object',
'properties': {'llm_responses': {'title': 'LLM Responses',
'description': 'A list of fake responses for this LLM', 'default': ['a'
], 'type': 'array', 'items': {'type': 'string'}}}}}}
fake_llm_configured = fake_llm_configurable.with_config(configurable={
'llm_responses': ['b']})
assert fake_llm_configured.invoke('...') == 'b'
prompt = PromptTemplate.from_template('Hello, {name}!')
assert prompt.invoke({'name': 'John'}) == StringPromptValue(text='Hello, John!'
)
prompt_configurable = prompt.configurable_fields(template=ConfigurableField
(id='prompt_template', name='Prompt Template', description=
'The prompt template for this chain'))
assert prompt_configurable.invoke({'name': 'John'}) == StringPromptValue(text
='Hello, John!')
assert prompt_configurable.config_schema().schema() == {'title':
'RunnableConfigurableFieldsConfig', 'type': 'object', 'properties': {
'configurable': {'$ref': '#/definitions/Configurable'}}, 'definitions':
{'Configurable': {'title': 'Configurable', 'type': 'object',
'properties': {'prompt_template': {'title': 'Prompt Template',
'description': 'The prompt template for this chain', 'default':
'Hello, {name}!', 'type': 'string'}}}}}
prompt_configured = prompt_configurable.with_config(configurable={
'prompt_template': 'Hello, {name}! {name}!'})
assert prompt_configured.invoke({'name': 'John'}) == StringPromptValue(text
='Hello, John! John!')
assert prompt_configurable.with_config(configurable={'prompt_template':
'Hello {name} in {lang}'}).input_schema.schema() == {'title':
'PromptInput', 'type': 'object', 'properties': {'lang': {'title':
'Lang', 'type': 'string'}, 'name': {'title': 'Name', 'type': 'string'}}}
chain_configurable = (prompt_configurable | fake_llm_configurable |
StrOutputParser())
assert chain_configurable.invoke({'name': 'John'}) == 'a'
assert chain_configurable.config_schema().schema() == {'title':
'RunnableSequenceConfig', 'type': 'object', 'properties': {
'configurable': {'$ref': '#/definitions/Configurable'}}, 'definitions':
{'Configurable': {'title': 'Configurable', 'type': 'object',
'properties': {'llm_responses': {'title': 'LLM Responses',
'description': 'A list of fake responses for this LLM', 'default': ['a'
], 'type': 'array', 'items': {'type': 'string'}}, 'prompt_template': {
'title': 'Prompt Template', 'description':
'The prompt template for this chain', 'default': 'Hello, {name}!',
'type': 'string'}}}}}
assert chain_configurable.with_config(configurable={'prompt_template':
'A very good morning to you, {name} {lang}!', 'llm_responses': ['c']}
).invoke({'name': 'John', 'lang': 'en'}) == 'c'
assert chain_configurable.with_config(configurable={'prompt_template':
'A very good morning to you, {name} {lang}!', 'llm_responses': ['c']}
).input_schema.schema() == {'title': 'PromptInput', 'type': 'object',
'properties': {'lang': {'title': 'Lang', 'type': 'string'}, 'name': {
'title': 'Name', 'type': 'string'}}}
chain_with_map_configurable: Runnable = prompt_configurable | {'llm1':
fake_llm_configurable | StrOutputParser(), 'llm2':
fake_llm_configurable | StrOutputParser(), 'llm3': fake_llm.
configurable_fields(responses=ConfigurableField('other_responses')) |
StrOutputParser()}
assert chain_with_map_configurable.invoke({'name': 'John'}) == {'llm1': 'a',
'llm2': 'a', 'llm3': 'a'}
assert chain_with_map_configurable.config_schema().schema() == {'title':
'RunnableSequenceConfig', 'type': 'object', 'properties': {
'configurable': {'$ref': '#/definitions/Configurable'}}, 'definitions':
{'Configurable': {'title': 'Configurable', 'type': 'object',
'properties': {'llm_responses': {'title': 'LLM Responses',
'description': 'A list of fake responses for this LLM', 'default': ['a'
], 'type': 'array', 'items': {'type': 'string'}}, 'other_responses': {
'title': 'Other Responses', 'default': ['a'], 'type': 'array', 'items':
{'type': 'string'}}, 'prompt_template': {'title': 'Prompt Template',
'description': 'The prompt template for this chain', 'default':
'Hello, {name}!', 'type': 'string'}}}}}
assert chain_with_map_configurable.with_config(configurable={
'prompt_template': 'A very good morning to you, {name}!',
'llm_responses': ['c'], 'other_responses': ['d']}).invoke({'name': 'John'}
) == {'llm1': 'c', 'llm2': 'c', 'llm3': 'd'} | def test_configurable_fields() ->None:
fake_llm = FakeListLLM(responses=['a'])
assert fake_llm.invoke('...') == 'a'
fake_llm_configurable = fake_llm.configurable_fields(responses=
ConfigurableField(id='llm_responses', name='LLM Responses',
description='A list of fake responses for this LLM'))
assert fake_llm_configurable.invoke('...') == 'a'
assert fake_llm_configurable.config_schema().schema() == {'title':
'RunnableConfigurableFieldsConfig', 'type': 'object', 'properties':
{'configurable': {'$ref': '#/definitions/Configurable'}},
'definitions': {'Configurable': {'title': 'Configurable', 'type':
'object', 'properties': {'llm_responses': {'title': 'LLM Responses',
'description': 'A list of fake responses for this LLM', 'default':
['a'], 'type': 'array', 'items': {'type': 'string'}}}}}}
fake_llm_configured = fake_llm_configurable.with_config(configurable={
'llm_responses': ['b']})
assert fake_llm_configured.invoke('...') == 'b'
prompt = PromptTemplate.from_template('Hello, {name}!')
assert prompt.invoke({'name': 'John'}) == StringPromptValue(text=
'Hello, John!')
prompt_configurable = prompt.configurable_fields(template=
ConfigurableField(id='prompt_template', name='Prompt Template',
description='The prompt template for this chain'))
assert prompt_configurable.invoke({'name': 'John'}) == StringPromptValue(
text='Hello, John!')
assert prompt_configurable.config_schema().schema() == {'title':
'RunnableConfigurableFieldsConfig', 'type': 'object', 'properties':
{'configurable': {'$ref': '#/definitions/Configurable'}},
'definitions': {'Configurable': {'title': 'Configurable', 'type':
'object', 'properties': {'prompt_template': {'title':
'Prompt Template', 'description':
'The prompt template for this chain', 'default': 'Hello, {name}!',
'type': 'string'}}}}}
prompt_configured = prompt_configurable.with_config(configurable={
'prompt_template': 'Hello, {name}! {name}!'})
assert prompt_configured.invoke({'name': 'John'}) == StringPromptValue(text
='Hello, John! John!')
assert prompt_configurable.with_config(configurable={'prompt_template':
'Hello {name} in {lang}'}).input_schema.schema() == {'title':
'PromptInput', 'type': 'object', 'properties': {'lang': {'title':
'Lang', 'type': 'string'}, 'name': {'title': 'Name', 'type': 'string'}}
}
chain_configurable = (prompt_configurable | fake_llm_configurable |
StrOutputParser())
assert chain_configurable.invoke({'name': 'John'}) == 'a'
assert chain_configurable.config_schema().schema() == {'title':
'RunnableSequenceConfig', 'type': 'object', 'properties': {
'configurable': {'$ref': '#/definitions/Configurable'}},
'definitions': {'Configurable': {'title': 'Configurable', 'type':
'object', 'properties': {'llm_responses': {'title': 'LLM Responses',
'description': 'A list of fake responses for this LLM', 'default':
['a'], 'type': 'array', 'items': {'type': 'string'}},
'prompt_template': {'title': 'Prompt Template', 'description':
'The prompt template for this chain', 'default': 'Hello, {name}!',
'type': 'string'}}}}}
assert chain_configurable.with_config(configurable={'prompt_template':
'A very good morning to you, {name} {lang}!', 'llm_responses': ['c']}
).invoke({'name': 'John', 'lang': 'en'}) == 'c'
assert chain_configurable.with_config(configurable={'prompt_template':
'A very good morning to you, {name} {lang}!', 'llm_responses': ['c']}
).input_schema.schema() == {'title': 'PromptInput', 'type':
'object', 'properties': {'lang': {'title': 'Lang', 'type': 'string'
}, 'name': {'title': 'Name', 'type': 'string'}}}
chain_with_map_configurable: Runnable = prompt_configurable | {'llm1':
fake_llm_configurable | StrOutputParser(), 'llm2':
fake_llm_configurable | StrOutputParser(), 'llm3': fake_llm.
configurable_fields(responses=ConfigurableField('other_responses')) |
StrOutputParser()}
assert chain_with_map_configurable.invoke({'name': 'John'}) == {'llm1':
'a', 'llm2': 'a', 'llm3': 'a'}
assert chain_with_map_configurable.config_schema().schema() == {'title':
'RunnableSequenceConfig', 'type': 'object', 'properties': {
'configurable': {'$ref': '#/definitions/Configurable'}},
'definitions': {'Configurable': {'title': 'Configurable', 'type':
'object', 'properties': {'llm_responses': {'title': 'LLM Responses',
'description': 'A list of fake responses for this LLM', 'default':
['a'], 'type': 'array', 'items': {'type': 'string'}},
'other_responses': {'title': 'Other Responses', 'default': ['a'],
'type': 'array', 'items': {'type': 'string'}}, 'prompt_template': {
'title': 'Prompt Template', 'description':
'The prompt template for this chain', 'default': 'Hello, {name}!',
'type': 'string'}}}}}
assert chain_with_map_configurable.with_config(configurable={
'prompt_template': 'A very good morning to you, {name}!',
'llm_responses': ['c'], 'other_responses': ['d']}).invoke({'name':
'John'}) == {'llm1': 'c', 'llm2': 'c', 'llm3': 'd'} | null |
_default_params | """Get the default parameters for calling ForefrontAI API."""
return {'temperature': self.temperature, 'length': self.length, 'top_p':
self.top_p, 'top_k': self.top_k, 'repetition_penalty': self.
repetition_penalty} | @property
def _default_params(self) ->Mapping[str, Any]:
"""Get the default parameters for calling ForefrontAI API."""
return {'temperature': self.temperature, 'length': self.length, 'top_p':
self.top_p, 'top_k': self.top_k, 'repetition_penalty': self.
repetition_penalty} | Get the default parameters for calling ForefrontAI API. |
_call | """RWKV generation
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text = self.rwkv_generate(prompt)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | def _call(self, prompt: str, stop: Optional[List[str]]=None, run_manager:
Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str:
"""RWKV generation
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55)
"""
text = self.rwkv_generate(prompt)
if stop is not None:
text = enforce_stop_tokens(text, stop)
return text | RWKV generation
Args:
prompt: The prompt to pass into the model.
stop: A list of strings to stop generation when encountered.
Returns:
The string generated by the model.
Example:
.. code-block:: python
prompt = "Once upon a time, "
response = model(prompt, n_predict=55) |
similarity_search_with_relevance_scores | """Run similarity search synchronously and return relevance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance scores
"""
async def _similarity_search_with_relevance_scores() ->List[Tuple[Document,
float]]:
await self.initialize()
return await self.asimilarity_search_with_relevance_scores(query, k, **
kwargs)
return asyncio.run(_similarity_search_with_relevance_scores()) | def similarity_search_with_relevance_scores(self, query: str, k: int=4, **
kwargs: Any) ->List[Tuple[Document, float]]:
"""Run similarity search synchronously and return relevance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance scores
"""
async def _similarity_search_with_relevance_scores() ->List[Tuple[
Document, float]]:
await self.initialize()
return await self.asimilarity_search_with_relevance_scores(query, k,
**kwargs)
return asyncio.run(_similarity_search_with_relevance_scores()) | Run similarity search synchronously and return relevance scores
Args:
query (str): Query
k (int): Number of results to return. Defaults to 4.
Returns:
List of Documents most similar along with relevance scores |
test_old_sqlite_llm_caching | llm_cache = get_llm_cache()
if isinstance(llm_cache, SQLAlchemyCache):
prompt = 'How are you?'
response = 'Test response'
cached_response = 'Cached test response'
llm = FakeListLLM(responses=[response])
items = [llm_cache.cache_schema(prompt=prompt, llm=create_llm_string(
llm), response=cached_response, idx=0)]
with Session(llm_cache.engine) as session, session.begin():
for item in items:
session.merge(item)
assert llm(prompt) == cached_response | def test_old_sqlite_llm_caching() ->None:
llm_cache = get_llm_cache()
if isinstance(llm_cache, SQLAlchemyCache):
prompt = 'How are you?'
response = 'Test response'
cached_response = 'Cached test response'
llm = FakeListLLM(responses=[response])
items = [llm_cache.cache_schema(prompt=prompt, llm=
create_llm_string(llm), response=cached_response, idx=0)]
with Session(llm_cache.engine) as session, session.begin():
for item in items:
session.merge(item)
assert llm(prompt) == cached_response | null |
search | """Search with the retriever."""
return retriever.get_relevant_documents(query) | @tool
def search(query):
"""Search with the retriever."""
return retriever.get_relevant_documents(query) | Search with the retriever. |
on_tool_end | self._require_current_thought().on_tool_end(output, color,
observation_prefix, llm_prefix, **kwargs)
self._complete_current_thought() | def on_tool_end(self, output: str, color: Optional[str]=None,
observation_prefix: Optional[str]=None, llm_prefix: Optional[str]=None,
**kwargs: Any) ->None:
self._require_current_thought().on_tool_end(output, color,
observation_prefix, llm_prefix, **kwargs)
self._complete_current_thought() | null |
__init__ | self.password = password
self.extract_images = extract_images | def __init__(self, password: Optional[Union[str, bytes]]=None,
extract_images: bool=False):
self.password = password
self.extract_images = extract_images | null |
as_field | from redis.commands.search.field import NumericField
return NumericField(self.name, sortable=self.sortable, no_index=self.no_index) | def as_field(self) ->NumericField:
from redis.commands.search.field import NumericField
return NumericField(self.name, sortable=self.sortable, no_index=self.
no_index) | null |
qdrant_locations | if qdrant_is_not_running():
logger.warning('Running Qdrant async tests in memory mode only.')
return [':memory:']
return ['http://localhost:6333', ':memory:'] | def qdrant_locations() ->List[str]:
if qdrant_is_not_running():
logger.warning('Running Qdrant async tests in memory mode only.')
return [':memory:']
return ['http://localhost:6333', ':memory:'] | null |
_load_entry | import fitz
parent_dir = Path(self.file_path).parent
file_names = self.file_regex.findall(entry.get('file', ''))
if not file_names:
return None
texts: List[str] = []
for file_name in file_names:
try:
with fitz.open(parent_dir / file_name) as f:
texts.extend(page.get_text() for page in f)
except FileNotFoundError as e:
logger.debug(e)
content = '\n'.join(texts) or entry.get('abstract', '')
if self.max_content_chars:
content = content[:self.max_content_chars]
metadata = self.parser.get_metadata(entry, load_extra=self.load_extra_metadata)
return Document(page_content=content, metadata=metadata) | def _load_entry(self, entry: Mapping[str, Any]) ->Optional[Document]:
import fitz
parent_dir = Path(self.file_path).parent
file_names = self.file_regex.findall(entry.get('file', ''))
if not file_names:
return None
texts: List[str] = []
for file_name in file_names:
try:
with fitz.open(parent_dir / file_name) as f:
texts.extend(page.get_text() for page in f)
except FileNotFoundError as e:
logger.debug(e)
content = '\n'.join(texts) or entry.get('abstract', '')
if self.max_content_chars:
content = content[:self.max_content_chars]
metadata = self.parser.get_metadata(entry, load_extra=self.
load_extra_metadata)
return Document(page_content=content, metadata=metadata) | null |
delete_by_document_id | """
Remove a single document from the store, given its document_id (str).
Return True if a document has indeed been deleted, False if ID not found.
"""
deletion_response = self.collection.delete(document_id)
return ((deletion_response or {}).get('status') or {}).get('deletedCount', 0
) == 1 | def delete_by_document_id(self, document_id: str) ->bool:
"""
Remove a single document from the store, given its document_id (str).
Return True if a document has indeed been deleted, False if ID not found.
"""
deletion_response = self.collection.delete(document_id)
return ((deletion_response or {}).get('status') or {}).get('deletedCount',
0) == 1 | Remove a single document from the store, given its document_id (str).
Return True if a document has indeed been deleted, False if ID not found. |
get_lc_namespace | """Get the namespace of the langchain object."""
return ['langchain', 'schema', 'runnable'] | @classmethod
def get_lc_namespace(cls) ->List[str]:
"""Get the namespace of the langchain object."""
return ['langchain', 'schema', 'runnable'] | Get the namespace of the langchain object. |
from_texts | """Construct a `MongoDB Atlas Vector Search` vector store from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided MongoDB Atlas Vector Search index
(Lucene)
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from pymongo import MongoClient
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings import OpenAIEmbeddings
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch.from_texts(
texts,
embeddings,
metadatas=metadatas,
collection=collection
)
"""
if collection is None:
raise ValueError("Must provide 'collection' named parameter.")
vectorstore = cls(collection, embedding, **kwargs)
vectorstore.add_texts(texts, metadatas=metadatas)
return vectorstore | @classmethod
def from_texts(cls, texts: List[str], embedding: Embeddings, metadatas:
Optional[List[Dict]]=None, collection: Optional[Collection[
MongoDBDocumentType]]=None, **kwargs: Any) ->MongoDBAtlasVectorSearch:
"""Construct a `MongoDB Atlas Vector Search` vector store from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided MongoDB Atlas Vector Search index
(Lucene)
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from pymongo import MongoClient
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings import OpenAIEmbeddings
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch.from_texts(
texts,
embeddings,
metadatas=metadatas,
collection=collection
)
"""
if collection is None:
raise ValueError("Must provide 'collection' named parameter.")
vectorstore = cls(collection, embedding, **kwargs)
vectorstore.add_texts(texts, metadatas=metadatas)
return vectorstore | Construct a `MongoDB Atlas Vector Search` vector store from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided MongoDB Atlas Vector Search index
(Lucene)
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from pymongo import MongoClient
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
from langchain_community.embeddings import OpenAIEmbeddings
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch.from_texts(
texts,
embeddings,
metadatas=metadatas,
collection=collection
) |
buffer_as_str | """Exposes the buffer as a string in case return_messages is True."""
return get_buffer_string(self.chat_memory.messages, human_prefix=self.
human_prefix, ai_prefix=self.ai_prefix) | @property
def buffer_as_str(self) ->str:
"""Exposes the buffer as a string in case return_messages is True."""
return get_buffer_string(self.chat_memory.messages, human_prefix=self.
human_prefix, ai_prefix=self.ai_prefix) | Exposes the buffer as a string in case return_messages is True. |
_create_description_from_template | values['description'] = values['template'].format(name=values['name'])
return values | def _create_description_from_template(values: Dict[str, Any]) ->Dict[str, Any]:
values['description'] = values['template'].format(name=values['name'])
return values | null |
test_transcription_error | mocker.patch('assemblyai.Transcriber.transcribe', return_value=mocker.
MagicMock(error='Test error'))
loader = AssemblyAIAudioTranscriptLoader(file_path='./testfile.mp3',
api_key='api_key')
expected_error = 'Could not transcribe file: Test error'
with pytest.raises(ValueError, match=expected_error):
loader.load() | @pytest.mark.requires('assemblyai')
def test_transcription_error(mocker: MockerFixture) ->None:
mocker.patch('assemblyai.Transcriber.transcribe', return_value=mocker.
MagicMock(error='Test error'))
loader = AssemblyAIAudioTranscriptLoader(file_path='./testfile.mp3',
api_key='api_key')
expected_error = 'Could not transcribe file: Test error'
with pytest.raises(ValueError, match=expected_error):
loader.load() | null |
level | """Return the current level of the stack."""
return len(self.stack) | @property
def level(self) ->int:
"""Return the current level of the stack."""
return len(self.stack) | Return the current level of the stack. |
test_deduplication | """Check edge case when loader returns no new docs."""
docs = [Document(page_content='This is a test document.', metadata={
'source': '1'}), Document(page_content='This is a test document.',
metadata={'source': '1'})]
assert index(docs, record_manager, vector_store, cleanup='full') == {
'num_added': 1, 'num_deleted': 0, 'num_skipped': 0, 'num_updated': 0} | def test_deduplication(record_manager: SQLRecordManager, vector_store:
VectorStore) ->None:
"""Check edge case when loader returns no new docs."""
docs = [Document(page_content='This is a test document.', metadata={
'source': '1'}), Document(page_content='This is a test document.',
metadata={'source': '1'})]
assert index(docs, record_manager, vector_store, cleanup='full') == {
'num_added': 1, 'num_deleted': 0, 'num_skipped': 0, 'num_updated': 0} | Check edge case when loader returns no new docs. |
test_vertex_call_count_tokens | llm = VertexAI(model_name=model_name)
output = llm.get_num_tokens('How are you?')
assert output == 4 | @pytest.mark.parametrize('model_name', model_names_to_test)
def test_vertex_call_count_tokens(model_name: str) ->None:
llm = VertexAI(model_name=model_name)
output = llm.get_num_tokens('How are you?')
assert output == 4 | null |
split_text | """Split markdown file
Args:
text: Markdown file"""
lines = text.split('\n')
lines_with_metadata: List[LineType] = []
current_content: List[str] = []
current_metadata: Dict[str, str] = {}
header_stack: List[HeaderType] = []
initial_metadata: Dict[str, str] = {}
in_code_block = False
opening_fence = ''
for line in lines:
stripped_line = line.strip()
if not in_code_block:
if stripped_line.startswith('```') and stripped_line.count('```') == 1:
in_code_block = True
opening_fence = '```'
elif stripped_line.startswith('~~~'):
in_code_block = True
opening_fence = '~~~'
elif stripped_line.startswith(opening_fence):
in_code_block = False
opening_fence = ''
if in_code_block:
current_content.append(stripped_line)
continue
for sep, name in self.headers_to_split_on:
if stripped_line.startswith(sep) and (len(stripped_line) == len(sep
) or stripped_line[len(sep)] == ' '):
if name is not None:
current_header_level = sep.count('#')
while header_stack and header_stack[-1]['level'
] >= current_header_level:
popped_header = header_stack.pop()
if popped_header['name'] in initial_metadata:
initial_metadata.pop(popped_header['name'])
header: HeaderType = {'level': current_header_level, 'name':
name, 'data': stripped_line[len(sep):].strip()}
header_stack.append(header)
initial_metadata[name] = header['data']
if current_content:
lines_with_metadata.append({'content': '\n'.join(
current_content), 'metadata': current_metadata.copy()})
current_content.clear()
if not self.strip_headers:
current_content.append(stripped_line)
break
else:
if stripped_line:
current_content.append(stripped_line)
elif current_content:
lines_with_metadata.append({'content': '\n'.join(
current_content), 'metadata': current_metadata.copy()})
current_content.clear()
current_metadata = initial_metadata.copy()
if current_content:
lines_with_metadata.append({'content': '\n'.join(current_content),
'metadata': current_metadata})
if not self.return_each_line:
return self.aggregate_lines_to_chunks(lines_with_metadata)
else:
return [Document(page_content=chunk['content'], metadata=chunk[
'metadata']) for chunk in lines_with_metadata] | def split_text(self, text: str) ->List[Document]:
"""Split markdown file
Args:
text: Markdown file"""
lines = text.split('\n')
lines_with_metadata: List[LineType] = []
current_content: List[str] = []
current_metadata: Dict[str, str] = {}
header_stack: List[HeaderType] = []
initial_metadata: Dict[str, str] = {}
in_code_block = False
opening_fence = ''
for line in lines:
stripped_line = line.strip()
if not in_code_block:
if stripped_line.startswith('```') and stripped_line.count('```'
) == 1:
in_code_block = True
opening_fence = '```'
elif stripped_line.startswith('~~~'):
in_code_block = True
opening_fence = '~~~'
elif stripped_line.startswith(opening_fence):
in_code_block = False
opening_fence = ''
if in_code_block:
current_content.append(stripped_line)
continue
for sep, name in self.headers_to_split_on:
if stripped_line.startswith(sep) and (len(stripped_line) == len
(sep) or stripped_line[len(sep)] == ' '):
if name is not None:
current_header_level = sep.count('#')
while header_stack and header_stack[-1]['level'
] >= current_header_level:
popped_header = header_stack.pop()
if popped_header['name'] in initial_metadata:
initial_metadata.pop(popped_header['name'])
header: HeaderType = {'level': current_header_level,
'name': name, 'data': stripped_line[len(sep):].strip()}
header_stack.append(header)
initial_metadata[name] = header['data']
if current_content:
lines_with_metadata.append({'content': '\n'.join(
current_content), 'metadata': current_metadata.copy()})
current_content.clear()
if not self.strip_headers:
current_content.append(stripped_line)
break
else:
if stripped_line:
current_content.append(stripped_line)
elif current_content:
lines_with_metadata.append({'content': '\n'.join(
current_content), 'metadata': current_metadata.copy()})
current_content.clear()
current_metadata = initial_metadata.copy()
if current_content:
lines_with_metadata.append({'content': '\n'.join(current_content),
'metadata': current_metadata})
if not self.return_each_line:
return self.aggregate_lines_to_chunks(lines_with_metadata)
else:
return [Document(page_content=chunk['content'], metadata=chunk[
'metadata']) for chunk in lines_with_metadata] | Split markdown file
Args:
text: Markdown file |
test_endpoint | """Test user custom model deployments like some open source models."""
chat = QianfanChatEndpoint(endpoint='qianfan_bloomz_7b_compressed')
response = chat(messages=[HumanMessage(content='Hello')])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str) | def test_endpoint() ->None:
"""Test user custom model deployments like some open source models."""
chat = QianfanChatEndpoint(endpoint='qianfan_bloomz_7b_compressed')
response = chat(messages=[HumanMessage(content='Hello')])
assert isinstance(response, BaseMessage)
assert isinstance(response.content, str) | Test user custom model deployments like some open source models. |
test_pydantic_output_parser | """Test PydanticOutputParser."""
pydantic_parser: PydanticOutputParser[TestModel] = PydanticOutputParser(
pydantic_object=TestModel)
result = pydantic_parser.parse_folder(DEF_RESULT)
print('parse_result:', result)
assert DEF_EXPECTED_RESULT == result | def test_pydantic_output_parser() ->None:
"""Test PydanticOutputParser."""
pydantic_parser: PydanticOutputParser[TestModel] = PydanticOutputParser(
pydantic_object=TestModel)
result = pydantic_parser.parse_folder(DEF_RESULT)
print('parse_result:', result)
assert DEF_EXPECTED_RESULT == result | Test PydanticOutputParser. |
_import_searx_search_tool_SearxSearchRun | from langchain_community.tools.searx_search.tool import SearxSearchRun
return SearxSearchRun | def _import_searx_search_tool_SearxSearchRun() ->Any:
from langchain_community.tools.searx_search.tool import SearxSearchRun
return SearxSearchRun | null |
gen_vector | return [random() for _ in range(VECTOR_DIMS)] | def gen_vector() ->List[float]:
return [random() for _ in range(VECTOR_DIMS)] | null |