method_name
stringlengths
1
78
method_body
stringlengths
3
9.66k
full_code
stringlengths
31
10.7k
docstring
stringlengths
4
4.74k
_import_huggingface_text_gen_inference
from langchain_community.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference return HuggingFaceTextGenInference
def _import_huggingface_text_gen_inference() ->Any: from langchain_community.llms.huggingface_text_gen_inference import HuggingFaceTextGenInference return HuggingFaceTextGenInference
null
__init__
self.model_id = model_id or '.elser_model_1'
def __init__(self, model_id: Optional[str]=None): self.model_id = model_id or '.elser_model_1'
null
__init__
""" Initialize the AgentExecutorIterator with the given AgentExecutor, inputs, and optional callbacks. """ self._agent_executor = agent_executor self.inputs = inputs self.callbacks = callbacks self.tags = tags self.metadata = metadata self.run_name = run_name self.include_run_info = include_run_info self.yield_actions = yield_actions self.reset()
def __init__(self, agent_executor: AgentExecutor, inputs: Any, callbacks: Callbacks=None, *, tags: Optional[list[str]]=None, metadata: Optional[ Dict[str, Any]]=None, run_name: Optional[str]=None, include_run_info: bool=False, yield_actions: bool=False): """ Initialize the AgentExecutorIterator with the given AgentExecutor, inputs, and optional callbacks. """ self._agent_executor = agent_executor self.inputs = inputs self.callbacks = callbacks self.tags = tags self.metadata = metadata self.run_name = run_name self.include_run_info = include_run_info self.yield_actions = yield_actions self.reset()
Initialize the AgentExecutorIterator with the given AgentExecutor, inputs, and optional callbacks.
test_parse_list_value
_test_parse_value(x)
@pytest.mark.parametrize('x', ([], [1, 'b', 'true'])) def test_parse_list_value(x: list) ->None: _test_parse_value(x)
null
_convert_prompt_msg_params
model_req = {'model': {'name': self.model}} if self.model_version is not None: model_req['model']['version'] = self.model_version return {**model_req, 'messages': [{'role': 'user', 'content': prompt}], 'parameters': {**self._default_params, **kwargs}}
def _convert_prompt_msg_params(self, prompt: str, **kwargs: Any) ->dict: model_req = {'model': {'name': self.model}} if self.model_version is not None: model_req['model']['version'] = self.model_version return {**model_req, 'messages': [{'role': 'user', 'content': prompt}], 'parameters': {**self._default_params, **kwargs}}
null
add_message
"""Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL('INSERT INTO {} (session_id, message) VALUES (%s, %s);' ).format(sql.Identifier(self.table_name)) self.cursor.execute(query, (self.session_id, json.dumps(message_to_dict( message)))) self.connection.commit()
def add_message(self, message: BaseMessage) ->None: """Append the message to the record in PostgreSQL""" from psycopg import sql query = sql.SQL('INSERT INTO {} (session_id, message) VALUES (%s, %s);' ).format(sql.Identifier(self.table_name)) self.cursor.execute(query, (self.session_id, json.dumps(message_to_dict (message)))) self.connection.commit()
Append the message to the record in PostgreSQL
embed_query
return self._get_embedding()
def embed_query(self, text: str) ->List[float]: return self._get_embedding()
null
similarity_search_by_vector_with_relevance_scores
""" Return docs most similar to embedding vector and similarity score. """ results = self.__query_cluster(query_embeddings=query_embeddings, n_results =k, where=where) return _results_to_docs_and_scores(results)
def similarity_search_by_vector_with_relevance_scores(self, query_embeddings: List[float], k: int=DEFAULT_K, where: Optional[Dict[ str, str]]=None, **kwargs: Any) ->List[Tuple[Document, float]]: """ Return docs most similar to embedding vector and similarity score. """ results = self.__query_cluster(query_embeddings=query_embeddings, n_results=k, where=where) return _results_to_docs_and_scores(results)
Return docs most similar to embedding vector and similarity score.
test_prompt_from_file
"""Test prompt can be successfully constructed from a file.""" template_file = 'tests/unit_tests/data/prompt_file.txt' input_variables = ['question'] prompt = PromptTemplate.from_file(template_file, input_variables) assert prompt.template == """Question: {question} Answer:"""
def test_prompt_from_file() ->None: """Test prompt can be successfully constructed from a file.""" template_file = 'tests/unit_tests/data/prompt_file.txt' input_variables = ['question'] prompt = PromptTemplate.from_file(template_file, input_variables) assert prompt.template == 'Question: {question}\nAnswer:'
Test prompt can be successfully constructed from a file.
test_cassandra_cache_ttl
session, keyspace = cassandra_connection cache = CassandraCache(session=session, keyspace=keyspace, ttl_seconds=2) set_llm_cache(cache) llm = FakeLLM() params = llm.dict() params['stop'] = None llm_string = str(sorted([(k, v) for k, v in params.items()])) get_llm_cache().update('foo', llm_string, [Generation(text='fizz')]) expected_output = LLMResult(generations=[[Generation(text='fizz')]], llm_output={}) output = llm.generate(['foo']) assert output == expected_output time.sleep(2.5) output = llm.generate(['foo']) assert output != expected_output cache.clear()
def test_cassandra_cache_ttl(cassandra_connection: Tuple[Any, str]) ->None: session, keyspace = cassandra_connection cache = CassandraCache(session=session, keyspace=keyspace, ttl_seconds=2) set_llm_cache(cache) llm = FakeLLM() params = llm.dict() params['stop'] = None llm_string = str(sorted([(k, v) for k, v in params.items()])) get_llm_cache().update('foo', llm_string, [Generation(text='fizz')]) expected_output = LLMResult(generations=[[Generation(text='fizz')]], llm_output={}) output = llm.generate(['foo']) assert output == expected_output time.sleep(2.5) output = llm.generate(['foo']) assert output != expected_output cache.clear()
null
es_client
from elastic_transport import Transport from elasticsearch import Elasticsearch class CustomTransport(Transport): requests = [] def perform_request(self, *args, **kwargs): self.requests.append(kwargs) return super().perform_request(*args, **kwargs) es_url = os.environ.get('ES_URL', 'http://localhost:9200') cloud_id = os.environ.get('ES_CLOUD_ID') es_username = os.environ.get('ES_USERNAME', 'elastic') es_password = os.environ.get('ES_PASSWORD', 'changeme') if cloud_id: es = Elasticsearch(cloud_id=cloud_id, basic_auth=(es_username, es_password), transport_class=CustomTransport) return es else: es = Elasticsearch(hosts=es_url, transport_class=CustomTransport) return es
@pytest.fixture(scope='function') def es_client(self) ->Any: from elastic_transport import Transport from elasticsearch import Elasticsearch class CustomTransport(Transport): requests = [] def perform_request(self, *args, **kwargs): self.requests.append(kwargs) return super().perform_request(*args, **kwargs) es_url = os.environ.get('ES_URL', 'http://localhost:9200') cloud_id = os.environ.get('ES_CLOUD_ID') es_username = os.environ.get('ES_USERNAME', 'elastic') es_password = os.environ.get('ES_PASSWORD', 'changeme') if cloud_id: es = Elasticsearch(cloud_id=cloud_id, basic_auth=(es_username, es_password), transport_class=CustomTransport) return es else: es = Elasticsearch(hosts=es_url, transport_class=CustomTransport) return es
null
_import_together
from langchain_community.llms.together import Together return Together
def _import_together() ->Any: from langchain_community.llms.together import Together return Together
null
getter
return ContextGet(key=key)
@staticmethod def getter(key: Union[str, List[str]], /) ->ContextGet: return ContextGet(key=key)
null
_prepare_input_and_invoke
_model_kwargs = self.model_kwargs or {} provider = self._get_provider() params = {**_model_kwargs, **kwargs} input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params) body = json.dumps(input_body) accept = 'application/json' contentType = 'application/json' try: response = self.client.invoke_model(body=body, modelId=self.model_id, accept=accept, contentType=contentType) text = LLMInputOutputAdapter.prepare_output(provider, response) except Exception as e: raise ValueError(f'Error raised by bedrock service: {e}').with_traceback(e .__traceback__) if stop is not None: text = enforce_stop_tokens(text, stop) return text
def _prepare_input_and_invoke(self, prompt: str, stop: Optional[List[str]]= None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any ) ->str: _model_kwargs = self.model_kwargs or {} provider = self._get_provider() params = {**_model_kwargs, **kwargs} input_body = LLMInputOutputAdapter.prepare_input(provider, prompt, params) body = json.dumps(input_body) accept = 'application/json' contentType = 'application/json' try: response = self.client.invoke_model(body=body, modelId=self. model_id, accept=accept, contentType=contentType) text = LLMInputOutputAdapter.prepare_output(provider, response) except Exception as e: raise ValueError(f'Error raised by bedrock service: {e}' ).with_traceback(e.__traceback__) if stop is not None: text = enforce_stop_tokens(text, stop) return text
null
is_valid
return any(self.DIVISION_PATTERN.match(line) for line in self.source_lines)
def is_valid(self) ->bool: return any(self.DIVISION_PATTERN.match(line) for line in self.source_lines)
null
test_prompt_jinja2_extra_input_variables
"""Test error is raised when there are too many input variables.""" template = 'This is a {{ foo }} test.' input_variables = ['foo', 'bar'] with pytest.warns(UserWarning): PromptTemplate(input_variables=input_variables, template=template, template_format='jinja2', validate_template=True) assert PromptTemplate(input_variables=input_variables, template=template, template_format='jinja2').input_variables == ['foo']
@pytest.mark.requires('jinja2') def test_prompt_jinja2_extra_input_variables() ->None: """Test error is raised when there are too many input variables.""" template = 'This is a {{ foo }} test.' input_variables = ['foo', 'bar'] with pytest.warns(UserWarning): PromptTemplate(input_variables=input_variables, template=template, template_format='jinja2', validate_template=True) assert PromptTemplate(input_variables=input_variables, template= template, template_format='jinja2').input_variables == ['foo']
Test error is raised when there are too many input variables.
__init__
warnings.warn( 'langchain_community.document_loaders.parsers.pdf.DocumentIntelligenceParserand langchain_community.document_loaders.pdf.DocumentIntelligenceLoader are deprecated. Please upgrade to langchain_community.document_loaders.DocumentIntelligenceLoader for any file parsing purpose using Azure Document Intelligence service.' ) self.client = client self.model = model
def __init__(self, client: Any, model: str): warnings.warn( 'langchain_community.document_loaders.parsers.pdf.DocumentIntelligenceParserand langchain_community.document_loaders.pdf.DocumentIntelligenceLoader are deprecated. Please upgrade to langchain_community.document_loaders.DocumentIntelligenceLoader for any file parsing purpose using Azure Document Intelligence service.' ) self.client = client self.model = model
null
test_deprecated_property
"""Test deprecated staticmethod.""" with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter('always') obj = ClassWithDeprecatedMethods() assert obj.deprecated_property == 'This is a deprecated property.' assert len(warning_list) == 1 warning = warning_list[0].message assert str(warning ) == 'The function `deprecated_property` was deprecated in LangChain 2.0.0 and will be removed in 3.0.0' doc = ClassWithDeprecatedMethods.deprecated_property.__doc__ assert isinstance(doc, str) assert doc.startswith('[*Deprecated*] original doc')
def test_deprecated_property() ->None: """Test deprecated staticmethod.""" with warnings.catch_warnings(record=True) as warning_list: warnings.simplefilter('always') obj = ClassWithDeprecatedMethods() assert obj.deprecated_property == 'This is a deprecated property.' assert len(warning_list) == 1 warning = warning_list[0].message assert str(warning ) == 'The function `deprecated_property` was deprecated in LangChain 2.0.0 and will be removed in 3.0.0' doc = ClassWithDeprecatedMethods.deprecated_property.__doc__ assert isinstance(doc, str) assert doc.startswith('[*Deprecated*] original doc')
Test deprecated staticmethod.
delete_collection
"""Delete the collection.""" self._client.delete_collection(self._collection.name)
def delete_collection(self) ->None: """Delete the collection.""" self._client.delete_collection(self._collection.name)
Delete the collection.
save_history
input['context'] = [el.metadata['id'] for el in input['context']] has_history = bool(input.pop('chat_history')) if has_history: graph.query( """ MATCH (u:User {id: $user_id})-[:HAS_SESSION]->(s:Session{id: $session_id}), (s)-[l:LAST_MESSAGE]->(last_message) CREATE (last_message)-[:NEXT]->(q:Question {text:$question, rephrased:$rephrased_question, date:datetime()}), (q)-[:HAS_ANSWER]->(:Answer {text:$output}), (s)-[:LAST_MESSAGE]->(q) DELETE l WITH q UNWIND $context AS c MATCH (n) WHERE elementId(n) = c MERGE (q)-[:RETRIEVED]->(n) """ , params=input) else: graph.query( """MERGE (u:User {id: $user_id}) CREATE (u)-[:HAS_SESSION]->(s1:Session {id:$session_id}), (s1)-[:LAST_MESSAGE]->(q:Question {text:$question, rephrased:$rephrased_question, date:datetime()}), (q)-[:HAS_ANSWER]->(:Answer {text:$output}) WITH q UNWIND $context AS c MATCH (n) WHERE elementId(n) = c MERGE (q)-[:RETRIEVED]->(n) """ , params=input) return input['output']
def save_history(input: Dict[str, Any]) ->str: input['context'] = [el.metadata['id'] for el in input['context']] has_history = bool(input.pop('chat_history')) if has_history: graph.query( """ MATCH (u:User {id: $user_id})-[:HAS_SESSION]->(s:Session{id: $session_id}), (s)-[l:LAST_MESSAGE]->(last_message) CREATE (last_message)-[:NEXT]->(q:Question {text:$question, rephrased:$rephrased_question, date:datetime()}), (q)-[:HAS_ANSWER]->(:Answer {text:$output}), (s)-[:LAST_MESSAGE]->(q) DELETE l WITH q UNWIND $context AS c MATCH (n) WHERE elementId(n) = c MERGE (q)-[:RETRIEVED]->(n) """ , params=input) else: graph.query( """MERGE (u:User {id: $user_id}) CREATE (u)-[:HAS_SESSION]->(s1:Session {id:$session_id}), (s1)-[:LAST_MESSAGE]->(q:Question {text:$question, rephrased:$rephrased_question, date:datetime()}), (q)-[:HAS_ANSWER]->(:Answer {text:$output}) WITH q UNWIND $context AS c MATCH (n) WHERE elementId(n) = c MERGE (q)-[:RETRIEVED]->(n) """ , params=input) return input['output']
null
clear
return self.store.clear()
def clear(self) ->None: return self.store.clear()
null
update
"""Update the deanonymizer mapping with new values Duplicated values will not be added If there are multiple entities of the same type, the mapping will include a count to differentiate them. For example, if there are two names in the input text, the mapping will include NAME_1 and NAME_2. """ seen_values = set() for entity_type, values in new_mapping.items(): count = len(self.mapping[entity_type]) + 1 for key, value in values.items(): if value not in seen_values and value not in self.mapping[entity_type ].values(): new_key = format_duplicated_operator(key, count ) if key in self.mapping[entity_type] else key self.mapping[entity_type][new_key] = value seen_values.add(value) count += 1
def update(self, new_mapping: MappingDataType) ->None: """Update the deanonymizer mapping with new values Duplicated values will not be added If there are multiple entities of the same type, the mapping will include a count to differentiate them. For example, if there are two names in the input text, the mapping will include NAME_1 and NAME_2. """ seen_values = set() for entity_type, values in new_mapping.items(): count = len(self.mapping[entity_type]) + 1 for key, value in values.items(): if value not in seen_values and value not in self.mapping[ entity_type].values(): new_key = format_duplicated_operator(key, count ) if key in self.mapping[entity_type] else key self.mapping[entity_type][new_key] = value seen_values.add(value) count += 1
Update the deanonymizer mapping with new values Duplicated values will not be added If there are multiple entities of the same type, the mapping will include a count to differentiate them. For example, if there are two names in the input text, the mapping will include NAME_1 and NAME_2.
_lazy_load_arthur
"""Lazy load Arthur.""" try: import arthurai except ImportError as e: raise ImportError( 'To use the ArthurCallbackHandler you need the `arthurai` package. Please install it with `pip install arthurai`.' , e) return arthurai
def _lazy_load_arthur() ->arthurai: """Lazy load Arthur.""" try: import arthurai except ImportError as e: raise ImportError( 'To use the ArthurCallbackHandler you need the `arthurai` package. Please install it with `pip install arthurai`.' , e) return arthurai
Lazy load Arthur.
test_exact_matching_strategy
""" Test exact matching strategy for deanonymization. """ from langchain_experimental.data_anonymizer import deanonymizer_matching_strategies as dms deanonymizer_mapping = {'PERSON': {'Maria Lynch': 'Slim Shady'}, 'PHONE_NUMBER': {'7344131647': '313-666-7440'}, 'EMAIL_ADDRESS': { 'wdavis@example.net': 'real.slim.shady@gmail.com'}, 'CREDIT_CARD': { '213186379402654': '4916 0387 9536 0861'}} text = ( 'Are you Maria Lynch? I found your card with number 213186379402654. Is this your phone number: 7344131647? Is this your email address: wdavis@example.net' ) deanonymized_text = dms.exact_matching_strategy(text, deanonymizer_mapping) for original_value in ['Slim Shady', '313-666-7440', 'real.slim.shady@gmail.com', '4916 0387 9536 0861']: assert original_value in deanonymized_text
@pytest.mark.requires('presidio_analyzer', 'presidio_anonymizer', 'faker') def test_exact_matching_strategy() ->None: """ Test exact matching strategy for deanonymization. """ from langchain_experimental.data_anonymizer import deanonymizer_matching_strategies as dms deanonymizer_mapping = {'PERSON': {'Maria Lynch': 'Slim Shady'}, 'PHONE_NUMBER': {'7344131647': '313-666-7440'}, 'EMAIL_ADDRESS': { 'wdavis@example.net': 'real.slim.shady@gmail.com'}, 'CREDIT_CARD': {'213186379402654': '4916 0387 9536 0861'}} text = ( 'Are you Maria Lynch? I found your card with number 213186379402654. Is this your phone number: 7344131647? Is this your email address: wdavis@example.net' ) deanonymized_text = dms.exact_matching_strategy(text, deanonymizer_mapping) for original_value in ['Slim Shady', '313-666-7440', 'real.slim.shady@gmail.com', '4916 0387 9536 0861']: assert original_value in deanonymized_text
Test exact matching strategy for deanonymization.
add
""" Adds the specified template to the current LangServe app. e.g.: langchain app add extraction-openai-functions langchain app add git+ssh://git@github.com/efriis/simple-pirate.git """ parsed_deps = parse_dependencies(dependencies, repo, branch, api_path) project_root = get_package_root(project_dir) package_dir = project_root / 'packages' create_events([{'event': 'serve add', 'properties': dict(parsed_dep=d)} for d in parsed_deps]) grouped: Dict[Tuple[str, Optional[str]], List[DependencySource]] = {} for dep in parsed_deps: key_tup = dep['git'], dep['ref'] lst = grouped.get(key_tup, []) lst.append(dep) grouped[key_tup] = lst installed_destination_paths: List[Path] = [] installed_destination_names: List[str] = [] installed_exports: List[LangServeExport] = [] for (git, ref), group_deps in grouped.items(): if len(group_deps) == 1: typer.echo(f'Adding {git}@{ref}...') else: typer.echo(f'Adding {len(group_deps)} templates from {git}@{ref}') source_repo_path = update_repo(git, ref, REPO_DIR) for dep in group_deps: source_path = source_repo_path / dep['subdirectory'] if dep[ 'subdirectory'] else source_repo_path pyproject_path = source_path / 'pyproject.toml' if not pyproject_path.exists(): typer.echo(f'Could not find {pyproject_path}') continue langserve_export = get_langserve_export(pyproject_path) inner_api_path = dep['api_path'] or langserve_export['package_name'] destination_path = package_dir / inner_api_path if destination_path.exists(): typer.echo( f'Folder {str(inner_api_path)} already exists. Skipping...') continue copy_repo(source_path, destination_path) typer.echo(f" - Downloaded {dep['subdirectory']} to {inner_api_path}") installed_destination_paths.append(destination_path) installed_destination_names.append(inner_api_path) installed_exports.append(langserve_export) if len(installed_destination_paths) == 0: typer.echo('No packages installed. Exiting.') return try: add_dependencies_to_pyproject_toml(project_root / 'pyproject.toml', zip (installed_destination_names, installed_destination_paths)) except Exception: typer.echo('Failed to add dependencies to pyproject.toml, continuing...') try: cwd = Path.cwd() installed_destination_strs = [str(p.relative_to(cwd)) for p in installed_destination_paths] except ValueError: typer.echo('Failed to print install command, continuing...') else: if pip: cmd = ['pip', 'install', '-e'] + installed_destination_strs cmd_str = ' \\\n '.join(installed_destination_strs) typer.echo(f'Running: pip install -e \\\n {cmd_str}') subprocess.run(cmd, cwd=cwd) chain_names = [] for e in installed_exports: original_candidate = f"{e['package_name'].replace('-', '_')}_chain" candidate = original_candidate i = 2 while candidate in chain_names: candidate = original_candidate + '_' + str(i) i += 1 chain_names.append(candidate) api_paths = [str(Path('/') / path.relative_to(package_dir)) for path in installed_destination_paths] imports = [f"from {e['module']} import {e['attr']} as {name}" for e, name in zip(installed_exports, chain_names)] routes = [f'add_routes(app, {name}, path="{path}")' for name, path in zip( chain_names, api_paths)] t = 'this template' if len(chain_names ) == 1 else f'these {len(chain_names)} templates' lines = ['', f"""To use {t}, add the following to your app: ```""", '' ] + imports + [''] + routes + ['```'] typer.echo('\n'.join(lines))
@app_cli.command() def add(dependencies: Annotated[Optional[List[str]], typer.Argument(help= 'The dependency to add')]=None, *, api_path: Annotated[List[str], typer .Option(help='API paths to add')]=[], project_dir: Annotated[Optional[ Path], typer.Option(help='The project directory')]=None, repo: Annotated[List[str], typer.Option(help= 'Install templates from a specific github repo instead')]=[], branch: Annotated[List[str], typer.Option(help= 'Install templates from a specific branch')]=[], pip: Annotated[bool, typer.Option('--pip/--no-pip', help= 'Pip install the template(s) as editable dependencies', is_flag=True, prompt='Would you like to `pip install -e` the template(s)?')]): """ Adds the specified template to the current LangServe app. e.g.: langchain app add extraction-openai-functions langchain app add git+ssh://git@github.com/efriis/simple-pirate.git """ parsed_deps = parse_dependencies(dependencies, repo, branch, api_path) project_root = get_package_root(project_dir) package_dir = project_root / 'packages' create_events([{'event': 'serve add', 'properties': dict(parsed_dep=d)} for d in parsed_deps]) grouped: Dict[Tuple[str, Optional[str]], List[DependencySource]] = {} for dep in parsed_deps: key_tup = dep['git'], dep['ref'] lst = grouped.get(key_tup, []) lst.append(dep) grouped[key_tup] = lst installed_destination_paths: List[Path] = [] installed_destination_names: List[str] = [] installed_exports: List[LangServeExport] = [] for (git, ref), group_deps in grouped.items(): if len(group_deps) == 1: typer.echo(f'Adding {git}@{ref}...') else: typer.echo(f'Adding {len(group_deps)} templates from {git}@{ref}') source_repo_path = update_repo(git, ref, REPO_DIR) for dep in group_deps: source_path = source_repo_path / dep['subdirectory'] if dep[ 'subdirectory'] else source_repo_path pyproject_path = source_path / 'pyproject.toml' if not pyproject_path.exists(): typer.echo(f'Could not find {pyproject_path}') continue langserve_export = get_langserve_export(pyproject_path) inner_api_path = dep['api_path'] or langserve_export['package_name' ] destination_path = package_dir / inner_api_path if destination_path.exists(): typer.echo( f'Folder {str(inner_api_path)} already exists. Skipping...' ) continue copy_repo(source_path, destination_path) typer.echo( f" - Downloaded {dep['subdirectory']} to {inner_api_path}") installed_destination_paths.append(destination_path) installed_destination_names.append(inner_api_path) installed_exports.append(langserve_export) if len(installed_destination_paths) == 0: typer.echo('No packages installed. Exiting.') return try: add_dependencies_to_pyproject_toml(project_root / 'pyproject.toml', zip(installed_destination_names, installed_destination_paths)) except Exception: typer.echo( 'Failed to add dependencies to pyproject.toml, continuing...') try: cwd = Path.cwd() installed_destination_strs = [str(p.relative_to(cwd)) for p in installed_destination_paths] except ValueError: typer.echo('Failed to print install command, continuing...') else: if pip: cmd = ['pip', 'install', '-e'] + installed_destination_strs cmd_str = ' \\\n '.join(installed_destination_strs) typer.echo(f'Running: pip install -e \\\n {cmd_str}') subprocess.run(cmd, cwd=cwd) chain_names = [] for e in installed_exports: original_candidate = f"{e['package_name'].replace('-', '_')}_chain" candidate = original_candidate i = 2 while candidate in chain_names: candidate = original_candidate + '_' + str(i) i += 1 chain_names.append(candidate) api_paths = [str(Path('/') / path.relative_to(package_dir)) for path in installed_destination_paths] imports = [f"from {e['module']} import {e['attr']} as {name}" for e, name in zip(installed_exports, chain_names)] routes = [f'add_routes(app, {name}, path="{path}")' for name, path in zip(chain_names, api_paths)] t = 'this template' if len(chain_names ) == 1 else f'these {len(chain_names)} templates' lines = ['', f'To use {t}, add the following to your app:\n\n```', '' ] + imports + [''] + routes + ['```'] typer.echo('\n'.join(lines))
Adds the specified template to the current LangServe app. e.g.: langchain app add extraction-openai-functions langchain app add git+ssh://git@github.com/efriis/simple-pirate.git
_import_dingo
from langchain_community.vectorstores.dingo import Dingo return Dingo
def _import_dingo() ->Any: from langchain_community.vectorstores.dingo import Dingo return Dingo
null
_call_after_scoring_before_learning
if event.selected: event.selected.score = score return event
def _call_after_scoring_before_learning(self, event: PickBestEvent, score: Optional[float]) ->PickBestEvent: if event.selected: event.selected.score = score return event
null
get_kwargs
kwargs = super().get_kwargs() for key in ['reference_key', 'prediction_key', 'input_key']: kwargs.pop(key, None) return kwargs
def get_kwargs(self) ->Dict[str, Any]: kwargs = super().get_kwargs() for key in ['reference_key', 'prediction_key', 'input_key']: kwargs.pop(key, None) return kwargs
null
from_documents
""" Return VectorStore initialized from documents and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs['connection_string'] = connection_string return cls.from_texts(texts=texts, pre_delete_collection= pre_delete_collection, embedding=embedding, embedding_dimension= embedding_dimension, metadatas=metadatas, ids=ids, collection_name= collection_name, engine_args=engine_args, **kwargs)
@classmethod def from_documents(cls: Type[AnalyticDB], documents: List[Document], embedding: Embeddings, embedding_dimension: int= _LANGCHAIN_DEFAULT_EMBEDDING_DIM, collection_name: str= _LANGCHAIN_DEFAULT_COLLECTION_NAME, ids: Optional[List[str]]=None, pre_delete_collection: bool=False, engine_args: Optional[dict]=None, ** kwargs: Any) ->AnalyticDB: """ Return VectorStore initialized from documents and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. """ texts = [d.page_content for d in documents] metadatas = [d.metadata for d in documents] connection_string = cls.get_connection_string(kwargs) kwargs['connection_string'] = connection_string return cls.from_texts(texts=texts, pre_delete_collection= pre_delete_collection, embedding=embedding, embedding_dimension= embedding_dimension, metadatas=metadatas, ids=ids, collection_name= collection_name, engine_args=engine_args, **kwargs)
Return VectorStore initialized from documents and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable.
_call
"""First try to lookup in queries, else return 'foo' or 'bar'.""" response = self.responses[self.i] if self.i < len(self.responses) - 1: self.i += 1 else: self.i = 0 return response
def _call(self, messages: List[BaseMessage], stop: Optional[List[str]]=None, run_manager: Optional[CallbackManagerForLLMRun]=None, **kwargs: Any) ->str: """First try to lookup in queries, else return 'foo' or 'bar'.""" response = self.responses[self.i] if self.i < len(self.responses) - 1: self.i += 1 else: self.i = 0 return response
First try to lookup in queries, else return 'foo' or 'bar'.
convert_messages_for_finetuning
"""Convert messages to a list of lists of dictionaries for fine-tuning. Args: sessions: The chat sessions. Returns: The list of lists of dictionaries. """ return [[convert_message_to_dict(s) for s in session['messages']] for session in sessions if _has_assistant_message(session)]
def convert_messages_for_finetuning(sessions: Iterable[ChatSession]) ->List[ List[dict]]: """Convert messages to a list of lists of dictionaries for fine-tuning. Args: sessions: The chat sessions. Returns: The list of lists of dictionaries. """ return [[convert_message_to_dict(s) for s in session['messages']] for session in sessions if _has_assistant_message(session)]
Convert messages to a list of lists of dictionaries for fine-tuning. Args: sessions: The chat sessions. Returns: The list of lists of dictionaries.
_llm_type
return 'hunyuan-chat'
@property def _llm_type(self) ->str: return 'hunyuan-chat'
null
embeddings
return self._embeddings
@property def embeddings(self) ->Embeddings: return self._embeddings
null
_format_nested_properties
"""Format nested properties.""" formatted_props = [] for prop in properties: prop_name = prop.name prop_type = self.ts_type_from_python(prop.type) prop_required = '' if prop.required else '?' prop_desc = f'/* {prop.description} */' if prop.description else '' if prop.properties: nested_props = self._format_nested_properties(prop.properties, indent + 2) prop_type = f"{{\n{nested_props}\n{' ' * indent}}}" formatted_props.append( f"{prop_desc}\n{' ' * indent}{prop_name}{prop_required}: {prop_type},") return '\n'.join(formatted_props)
def _format_nested_properties(self, properties: List[APIRequestBodyProperty ], indent: int=2) ->str: """Format nested properties.""" formatted_props = [] for prop in properties: prop_name = prop.name prop_type = self.ts_type_from_python(prop.type) prop_required = '' if prop.required else '?' prop_desc = f'/* {prop.description} */' if prop.description else '' if prop.properties: nested_props = self._format_nested_properties(prop.properties, indent + 2) prop_type = f"{{\n{nested_props}\n{' ' * indent}}}" formatted_props.append( f"""{prop_desc} {' ' * indent}{prop_name}{prop_required}: {prop_type},""" ) return '\n'.join(formatted_props)
Format nested properties.
_type
"""Snake-case string identifier for an output parser type.""" return 'boolean_output_parser'
@property def _type(self) ->str: """Snake-case string identifier for an output parser type.""" return 'boolean_output_parser'
Snake-case string identifier for an output parser type.
_evaluate_strings
""" Evaluate the regex match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference regex pattern. Returns: dict: The evaluation results containing the score. """ match = re.match(reference, prediction, flags=self.flags) return {'score': int(bool(match))}
def _evaluate_strings(self, *, prediction: str, reference: str, **kwargs: Any ) ->dict: """ Evaluate the regex match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference regex pattern. Returns: dict: The evaluation results containing the score. """ match = re.match(reference, prediction, flags=self.flags) return {'score': int(bool(match))}
Evaluate the regex match between the prediction and the reference. Args: prediction (str): The prediction string. reference (Optional[str], optional): The reference regex pattern. Returns: dict: The evaluation results containing the score.
from_texts
"""Create a Redis vectorstore from a list of texts. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new Redis index if it doesn't already exist 3. Adds the documents to the newly created Redis index. This method will generate schema based on the metadata passed in if the `index_schema` is not defined. If the `index_schema` is defined, it will compare against the generated schema and warn if there are differences. If you are purposefully defining the schema for the metadata, then you can ignore that warning. To examine the schema options, initialize an instance of this class and print out the schema using the `Redis.schema`` property. This will include the content and content_vector classes which are always present in the langchain schema. Example: .. code-block:: python from langchain_community.vectorstores import Redis from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) Args: texts (List[str]): List of texts to add to the vectorstore. embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings) for embedding queries. metadatas (Optional[List[dict]], optional): Optional list of metadata dicts to add to the vectorstore. Defaults to None. index_name (Optional[str], optional): Optional name of the index to create or add to. Defaults to None. index_schema (Optional[Union[Dict[str, str], str, os.PathLike]], optional): Optional fields to index within the metadata. Overrides generated schema. Defaults to None. vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional vector schema to use. Defaults to None. **kwargs (Any): Additional keyword arguments to pass to the Redis client. Returns: Redis: Redis VectorStore instance. Raises: ValueError: If the number of metadatas does not match the number of texts. ImportError: If the redis python package is not installed. """ instance, _ = cls.from_texts_return_keys(texts, embedding, metadatas= metadatas, index_name=index_name, index_schema=index_schema, vector_schema=vector_schema, **kwargs) return instance
@classmethod def from_texts(cls: Type[Redis], texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]]=None, index_name: Optional[str]=None, index_schema: Optional[Union[Dict[str, str], str, os.PathLike]]=None, vector_schema: Optional[Dict[str, Union[str, int]]]=None, **kwargs: Any ) ->Redis: """Create a Redis vectorstore from a list of texts. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new Redis index if it doesn't already exist 3. Adds the documents to the newly created Redis index. This method will generate schema based on the metadata passed in if the `index_schema` is not defined. If the `index_schema` is defined, it will compare against the generated schema and warn if there are differences. If you are purposefully defining the schema for the metadata, then you can ignore that warning. To examine the schema options, initialize an instance of this class and print out the schema using the `Redis.schema`` property. This will include the content and content_vector classes which are always present in the langchain schema. Example: .. code-block:: python from langchain_community.vectorstores import Redis from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) Args: texts (List[str]): List of texts to add to the vectorstore. embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings) for embedding queries. metadatas (Optional[List[dict]], optional): Optional list of metadata dicts to add to the vectorstore. Defaults to None. index_name (Optional[str], optional): Optional name of the index to create or add to. Defaults to None. index_schema (Optional[Union[Dict[str, str], str, os.PathLike]], optional): Optional fields to index within the metadata. Overrides generated schema. Defaults to None. vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional vector schema to use. Defaults to None. **kwargs (Any): Additional keyword arguments to pass to the Redis client. Returns: Redis: Redis VectorStore instance. Raises: ValueError: If the number of metadatas does not match the number of texts. ImportError: If the redis python package is not installed. """ instance, _ = cls.from_texts_return_keys(texts, embedding, metadatas= metadatas, index_name=index_name, index_schema=index_schema, vector_schema=vector_schema, **kwargs) return instance
Create a Redis vectorstore from a list of texts. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new Redis index if it doesn't already exist 3. Adds the documents to the newly created Redis index. This method will generate schema based on the metadata passed in if the `index_schema` is not defined. If the `index_schema` is defined, it will compare against the generated schema and warn if there are differences. If you are purposefully defining the schema for the metadata, then you can ignore that warning. To examine the schema options, initialize an instance of this class and print out the schema using the `Redis.schema`` property. This will include the content and content_vector classes which are always present in the langchain schema. Example: .. code-block:: python from langchain_community.vectorstores import Redis from langchain_community.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) Args: texts (List[str]): List of texts to add to the vectorstore. embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings) for embedding queries. metadatas (Optional[List[dict]], optional): Optional list of metadata dicts to add to the vectorstore. Defaults to None. index_name (Optional[str], optional): Optional name of the index to create or add to. Defaults to None. index_schema (Optional[Union[Dict[str, str], str, os.PathLike]], optional): Optional fields to index within the metadata. Overrides generated schema. Defaults to None. vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional vector schema to use. Defaults to None. **kwargs (Any): Additional keyword arguments to pass to the Redis client. Returns: Redis: Redis VectorStore instance. Raises: ValueError: If the number of metadatas does not match the number of texts. ImportError: If the redis python package is not installed.
_prepare_vector_query
"""Prepare query for vector search. Args: k: Number of results to return. filter: Optional metadata filter. Returns: query: Query object. """ try: from redis.commands.search.query import Query except ImportError as e: raise ImportError( 'Could not import redis python package. Please install it with `pip install redis`.' ) from e return_fields = return_fields or [] query_prefix = '*' if filter: query_prefix = f'{str(filter)}' vector_key = self._schema.content_vector_key base_query = f'({query_prefix})=>[KNN {k} @{vector_key} $vector AS distance]' query = Query(base_query).return_fields(*return_fields).sort_by('distance' ).paging(0, k).dialect(2) return query
def _prepare_vector_query(self, k: int, filter: Optional[ RedisFilterExpression]=None, return_fields: Optional[List[str]]=None ) ->'Query': """Prepare query for vector search. Args: k: Number of results to return. filter: Optional metadata filter. Returns: query: Query object. """ try: from redis.commands.search.query import Query except ImportError as e: raise ImportError( 'Could not import redis python package. Please install it with `pip install redis`.' ) from e return_fields = return_fields or [] query_prefix = '*' if filter: query_prefix = f'{str(filter)}' vector_key = self._schema.content_vector_key base_query = ( f'({query_prefix})=>[KNN {k} @{vector_key} $vector AS distance]') query = Query(base_query).return_fields(*return_fields).sort_by('distance' ).paging(0, k).dialect(2) return query
Prepare query for vector search. Args: k: Number of results to return. filter: Optional metadata filter. Returns: query: Query object.
requires_input
return True
@property def requires_input(self) ->bool: return True
null
test_parse_examples_correct
from vertexai.language_models import InputOutputTextPair text_question = ( 'Hello, could you recommend a good movie for me to watch this evening, please?' ) question = HumanMessage(content=text_question) text_answer = ( 'Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring (2001): This is the first movie in the Lord of the Rings trilogy.' ) answer = AIMessage(content=text_answer) examples = _parse_examples([question, answer, question, answer]) assert len(examples) == 2 assert examples == [InputOutputTextPair(input_text=text_question, output_text=text_answer), InputOutputTextPair(input_text=text_question, output_text=text_answer)]
def test_parse_examples_correct() ->None: from vertexai.language_models import InputOutputTextPair text_question = ( 'Hello, could you recommend a good movie for me to watch this evening, please?' ) question = HumanMessage(content=text_question) text_answer = ( 'Sure, You might enjoy The Lord of the Rings: The Fellowship of the Ring (2001): This is the first movie in the Lord of the Rings trilogy.' ) answer = AIMessage(content=text_answer) examples = _parse_examples([question, answer, question, answer]) assert len(examples) == 2 assert examples == [InputOutputTextPair(input_text=text_question, output_text=text_answer), InputOutputTextPair(input_text= text_question, output_text=text_answer)]
null
test_astradb_vectorstore_from_x
"""from_texts and from_documents methods.""" emb = SomeEmbeddings(dimension=2) v_store = AstraDB.from_texts(texts=['Hi', 'Ho'], embedding=emb, collection_name='lc_test_ft', token=os.environ[ 'ASTRA_DB_APPLICATION_TOKEN'], api_endpoint=os.environ[ 'ASTRA_DB_API_ENDPOINT'], namespace=os.environ.get('ASTRA_DB_KEYSPACE')) try: assert v_store.similarity_search('Ho', k=1)[0].page_content == 'Ho' finally: v_store.delete_collection() v_store_2 = AstraDB.from_documents([Document(page_content='Hee'), Document( page_content='Hoi')], embedding=emb, collection_name='lc_test_fd', token=os.environ['ASTRA_DB_APPLICATION_TOKEN'], api_endpoint=os.environ ['ASTRA_DB_API_ENDPOINT'], namespace=os.environ.get('ASTRA_DB_KEYSPACE')) try: assert v_store_2.similarity_search('Hoi', k=1)[0].page_content == 'Hoi' finally: v_store_2.delete_collection()
def test_astradb_vectorstore_from_x(self) ->None: """from_texts and from_documents methods.""" emb = SomeEmbeddings(dimension=2) v_store = AstraDB.from_texts(texts=['Hi', 'Ho'], embedding=emb, collection_name='lc_test_ft', token=os.environ[ 'ASTRA_DB_APPLICATION_TOKEN'], api_endpoint=os.environ[ 'ASTRA_DB_API_ENDPOINT'], namespace=os.environ.get('ASTRA_DB_KEYSPACE') ) try: assert v_store.similarity_search('Ho', k=1)[0].page_content == 'Ho' finally: v_store.delete_collection() v_store_2 = AstraDB.from_documents([Document(page_content='Hee'), Document(page_content='Hoi')], embedding=emb, collection_name= 'lc_test_fd', token=os.environ['ASTRA_DB_APPLICATION_TOKEN'], api_endpoint=os.environ['ASTRA_DB_API_ENDPOINT'], namespace=os. environ.get('ASTRA_DB_KEYSPACE')) try: assert v_store_2.similarity_search('Hoi', k=1)[0].page_content == 'Hoi' finally: v_store_2.delete_collection()
from_texts and from_documents methods.
on_agent_action_common
self.agent_actions += 1 self.starts += 1
def on_agent_action_common(self) ->None: self.agent_actions += 1 self.starts += 1
null
get_vector_index_uri_from_group
"""Get the URI of the vector index.""" return group[VECTOR_INDEX_NAME].uri
def get_vector_index_uri_from_group(group: Any) ->str: """Get the URI of the vector index.""" return group[VECTOR_INDEX_NAME].uri
Get the URI of the vector index.
_ExtSlice
if len(t.dims) == 1: elt = t.dims[0] self.dispatch(elt) self.write(',') else: interleave(lambda : self.write(', '), self.dispatch, t.dims)
def _ExtSlice(self, t): if len(t.dims) == 1: elt = t.dims[0] self.dispatch(elt) self.write(',') else: interleave(lambda : self.write(', '), self.dispatch, t.dims)
null
_llm_type
return 'azure-openai-chat'
@property def _llm_type(self) ->str: return 'azure-openai-chat'
null
_identifying_params
"""Identifying parameters""" return {'account_id': self.account_id, 'api_token': self.api_token, 'model': self.model, 'base_url': self.base_url}
@property def _identifying_params(self) ->Dict[str, Any]: """Identifying parameters""" return {'account_id': self.account_id, 'api_token': self.api_token, 'model': self.model, 'base_url': self.base_url}
Identifying parameters
_identifying_params
"""Get the identifying parameters.""" return {'model': self.model, 'model_kwargs': self.model_kwargs}
@property def _identifying_params(self) ->Dict[str, Any]: """Get the identifying parameters.""" return {'model': self.model, 'model_kwargs': self.model_kwargs}
Get the identifying parameters.
__init__
self.client = client self.config = config self.moderation_callback = moderation_callback self.unique_id = unique_id self.chat_message_index = 0 self.run_manager = run_manager self.chain_id = str(uuid.uuid4())
def __init__(self, client: Any, config: Optional[Any]=None, moderation_callback: Optional[Any]=None, unique_id: Optional[str]=None, run_manager: Optional[CallbackManagerForChainRun]=None): self.client = client self.config = config self.moderation_callback = moderation_callback self.unique_id = unique_id self.chat_message_index = 0 self.run_manager = run_manager self.chain_id = str(uuid.uuid4())
null
get_lambda_source
"""Get the source code of a lambda function. Args: func: a callable that can be a lambda function Returns: str: the source code of the lambda function """ try: name = func.__name__ if func.__name__ != '<lambda>' else None except AttributeError: name = None try: code = inspect.getsource(func) tree = ast.parse(textwrap.dedent(code)) visitor = GetLambdaSource() visitor.visit(tree) return visitor.source if visitor.count == 1 else name except (SyntaxError, TypeError, OSError): return name
def get_lambda_source(func: Callable) ->Optional[str]: """Get the source code of a lambda function. Args: func: a callable that can be a lambda function Returns: str: the source code of the lambda function """ try: name = func.__name__ if func.__name__ != '<lambda>' else None except AttributeError: name = None try: code = inspect.getsource(func) tree = ast.parse(textwrap.dedent(code)) visitor = GetLambdaSource() visitor.visit(tree) return visitor.source if visitor.count == 1 else name except (SyntaxError, TypeError, OSError): return name
Get the source code of a lambda function. Args: func: a callable that can be a lambda function Returns: str: the source code of the lambda function
test_old_api_works
llm = _FakeTrajectoryChatModel(queries={'a': """Trajectory good Score: 5""", 'b': """Trajectory not good Score: 1"""}, sequential_responses=True) chain = TrajectoryEvalChain.from_llm(llm=llm) res = chain({'question': 'What is your favorite food?', 'agent_trajectory': intermediate_steps, 'answer': 'I like pie.'}) assert res['score'] == 1.0 res = chain({'question': 'What is your favorite food?', 'agent_trajectory': intermediate_steps, 'answer': 'I like pie.', 'reference': 'Paris'}) assert res['score'] == 0.0
def test_old_api_works(intermediate_steps: List[Tuple[AgentAction, str]] ) ->None: llm = _FakeTrajectoryChatModel(queries={'a': 'Trajectory good\nScore: 5', 'b': """Trajectory not good Score: 1"""}, sequential_responses=True) chain = TrajectoryEvalChain.from_llm(llm=llm) res = chain({'question': 'What is your favorite food?', 'agent_trajectory': intermediate_steps, 'answer': 'I like pie.'}) assert res['score'] == 1.0 res = chain({'question': 'What is your favorite food?', 'agent_trajectory': intermediate_steps, 'answer': 'I like pie.', 'reference': 'Paris'}) assert res['score'] == 0.0
null
test_div_role_main
loader = ReadTheDocsLoader(PARENT_DIR / 'div_role_main') documents = loader.load() assert len(documents[0].page_content) != 0
@pytest.mark.requires('bs4') def test_div_role_main() ->None: loader = ReadTheDocsLoader(PARENT_DIR / 'div_role_main') documents = loader.load() assert len(documents[0].page_content) != 0
null
similarity_search_with_relevance_scores
score_threshold = kwargs.pop('score_threshold', None) result = self.vector_search_with_score(query, k=k, **kwargs) return result if score_threshold is None else [r for r in result if r[1] >= score_threshold]
def similarity_search_with_relevance_scores(self, query: str, k: int=4, ** kwargs: Any) ->List[Tuple[Document, float]]: score_threshold = kwargs.pop('score_threshold', None) result = self.vector_search_with_score(query, k=k, **kwargs) return result if score_threshold is None else [r for r in result if r[1 ] >= score_threshold]
null
test_visit_comparison
comparator, value, expected = triplet comp = Comparison(comparator=comparator, attribute='foo', value=value) actual = DEFAULT_TRANSLATOR.visit_comparison(comp) assert expected == actual
@pytest.mark.parametrize('triplet', [(Comparator.LT, 2, 'metadata.foo < 2'), (Comparator.LTE, 2, 'metadata.foo <= 2'), (Comparator.GT, 2, 'metadata.foo > 2'), (Comparator.GTE, 2, 'metadata.foo >= 2'), ( Comparator.CONTAIN, 2, 'has(metadata.foo,2)'), (Comparator.LIKE, 'bar', "metadata.foo ILIKE '%bar%'")]) def test_visit_comparison(triplet: Tuple[Comparator, Any, str]) ->None: comparator, value, expected = triplet comp = Comparison(comparator=comparator, attribute='foo', value=value) actual = DEFAULT_TRANSLATOR.visit_comparison(comp) assert expected == actual
null
embed_query
""" Generates an embedding for a single piece of text. Args: text (str): The text to generate an embedding for. Returns: The embedding for the text. """ return self.nlp(text).vector.tolist()
def embed_query(self, text: str) ->List[float]: """ Generates an embedding for a single piece of text. Args: text (str): The text to generate an embedding for. Returns: The embedding for the text. """ return self.nlp(text).vector.tolist()
Generates an embedding for a single piece of text. Args: text (str): The text to generate an embedding for. Returns: The embedding for the text.
test_awadb
"""Test end to end construction and search.""" texts = ['foo', 'bar', 'baz'] docsearch = AwaDB.from_texts(table_name='test_awadb', texts=texts, embedding=FakeEmbeddings()) output = docsearch.similarity_search('foo', k=1) assert output == [Document(page_content='foo')]
def test_awadb() ->None: """Test end to end construction and search.""" texts = ['foo', 'bar', 'baz'] docsearch = AwaDB.from_texts(table_name='test_awadb', texts=texts, embedding=FakeEmbeddings()) output = docsearch.similarity_search('foo', k=1) assert output == [Document(page_content='foo')]
Test end to end construction and search.
test_prompt_missing_input_variables
"""Test error is raised when input variables are not provided.""" template = 'This is a {foo} test.' input_variables: list = [] with pytest.raises(ValueError): PromptTemplate(input_variables=input_variables, template=template, validate_template=True) assert PromptTemplate(input_variables=input_variables, template=template ).input_variables == ['foo']
def test_prompt_missing_input_variables() ->None: """Test error is raised when input variables are not provided.""" template = 'This is a {foo} test.' input_variables: list = [] with pytest.raises(ValueError): PromptTemplate(input_variables=input_variables, template=template, validate_template=True) assert PromptTemplate(input_variables=input_variables, template=template ).input_variables == ['foo']
Test error is raised when input variables are not provided.
_import_gmail_GmailGetThread
from langchain_community.tools.gmail import GmailGetThread return GmailGetThread
def _import_gmail_GmailGetThread() ->Any: from langchain_community.tools.gmail import GmailGetThread return GmailGetThread
null
_ImportFrom
self.fill('from ') self.write('.' * t.level) if t.module: self.write(t.module) self.write(' import ') interleave(lambda : self.write(', '), self.dispatch, t.names)
def _ImportFrom(self, t): self.fill('from ') self.write('.' * t.level) if t.module: self.write(t.module) self.write(' import ') interleave(lambda : self.write(', '), self.dispatch, t.names)
null
embed_documents
"""Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ engine = cast(str, self.deployment) return self._get_len_safe_embeddings(texts, engine=engine)
def embed_documents(self, texts: List[str], chunk_size: Optional[int]=0 ) ->List[List[float]]: """Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text. """ engine = cast(str, self.deployment) return self._get_len_safe_embeddings(texts, engine=engine)
Call out to OpenAI's embedding endpoint for embedding search docs. Args: texts: The list of texts to embed. chunk_size: The chunk size of embeddings. If None, will use the chunk size specified by the class. Returns: List of embeddings, one for each text.
_get_parameters
""" Performs sanity check, preparing parameters in format needed by llama_cpp. Args: stop (Optional[List[str]]): List of stop sequences for llama_cpp. Returns: Dictionary containing the combined parameters. """ if self.stop and stop is not None: raise ValueError('`stop` found in both the input and default params.') params = self._default_params params.pop('stop_sequences') params['stop'] = self.stop or stop or [] return params
def _get_parameters(self, stop: Optional[List[str]]=None) ->Dict[str, Any]: """ Performs sanity check, preparing parameters in format needed by llama_cpp. Args: stop (Optional[List[str]]): List of stop sequences for llama_cpp. Returns: Dictionary containing the combined parameters. """ if self.stop and stop is not None: raise ValueError('`stop` found in both the input and default params.') params = self._default_params params.pop('stop_sequences') params['stop'] = self.stop or stop or [] return params
Performs sanity check, preparing parameters in format needed by llama_cpp. Args: stop (Optional[List[str]]): List of stop sequences for llama_cpp. Returns: Dictionary containing the combined parameters.
test_quip_loader_initialization
QuipLoader(self.API_URL, access_token=self.ACCESS_TOKEN, request_timeout=60) mock_quip.assert_called_once_with(access_token=self.ACCESS_TOKEN, base_url= self.API_URL, request_timeout=60)
def test_quip_loader_initialization(self, mock_quip: MagicMock) ->None: QuipLoader(self.API_URL, access_token=self.ACCESS_TOKEN, request_timeout=60 ) mock_quip.assert_called_once_with(access_token=self.ACCESS_TOKEN, base_url=self.API_URL, request_timeout=60)
null
test_chat_fireworks_model
"""Test ChatFireworks wrapper handles model_name.""" chat = ChatFireworks(model='foo') assert chat.model == 'foo'
@pytest.mark.scheduled def test_chat_fireworks_model() ->None: """Test ChatFireworks wrapper handles model_name.""" chat = ChatFireworks(model='foo') assert chat.model == 'foo'
Test ChatFireworks wrapper handles model_name.
from_bytes_store
"""On-ramp that adds the necessary serialization and encoding to the store. Args: underlying_embeddings: The embedder to use for embedding. document_embedding_cache: The cache to use for storing document embeddings. *, namespace: The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used. """ namespace = namespace key_encoder = _create_key_encoder(namespace) encoder_backed_store = EncoderBackedStore[str, List[float]]( document_embedding_cache, key_encoder, _value_serializer, _value_deserializer) return cls(underlying_embeddings, encoder_backed_store)
@classmethod def from_bytes_store(cls, underlying_embeddings: Embeddings, document_embedding_cache: ByteStore, *, namespace: str='' ) ->CacheBackedEmbeddings: """On-ramp that adds the necessary serialization and encoding to the store. Args: underlying_embeddings: The embedder to use for embedding. document_embedding_cache: The cache to use for storing document embeddings. *, namespace: The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used. """ namespace = namespace key_encoder = _create_key_encoder(namespace) encoder_backed_store = EncoderBackedStore[str, List[float]]( document_embedding_cache, key_encoder, _value_serializer, _value_deserializer) return cls(underlying_embeddings, encoder_backed_store)
On-ramp that adds the necessary serialization and encoding to the store. Args: underlying_embeddings: The embedder to use for embedding. document_embedding_cache: The cache to use for storing document embeddings. *, namespace: The namespace to use for document cache. This namespace is used to avoid collisions with other caches. For example, set it to the name of the embedding model used.
patch
"""PATCH the URL and return the text.""" return requests.patch(url, json=data, headers=self.headers, auth=self.auth, **kwargs)
def patch(self, url: str, data: Dict[str, Any], **kwargs: Any ) ->requests.Response: """PATCH the URL and return the text.""" return requests.patch(url, json=data, headers=self.headers, auth=self. auth, **kwargs)
PATCH the URL and return the text.
test_llamacpp_embedding_documents
"""Test llamacpp embeddings.""" documents = ['foo bar'] model_path = get_model() embedding = LlamaCppEmbeddings(model_path=model_path) output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 512
def test_llamacpp_embedding_documents() ->None: """Test llamacpp embeddings.""" documents = ['foo bar'] model_path = get_model() embedding = LlamaCppEmbeddings(model_path=model_path) output = embedding.embed_documents(documents) assert len(output) == 1 assert len(output[0]) == 512
Test llamacpp embeddings.
_validate_uri
if self.target_uri == 'databricks': return allowed = ['http', 'https', 'databricks'] if urlparse(self.target_uri).scheme not in allowed: raise ValueError( f'Invalid target URI: {self.target_uri}. The scheme must be one of {allowed}.' )
def _validate_uri(self) ->None: if self.target_uri == 'databricks': return allowed = ['http', 'https', 'databricks'] if urlparse(self.target_uri).scheme not in allowed: raise ValueError( f'Invalid target URI: {self.target_uri}. The scheme must be one of {allowed}.' )
null
__init__
"""Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import('source_typeform', pip_name= 'airbyte-source-typeform').SourceTypeform super().__init__(config=config, source_class=source_class, stream_name= stream_name, record_handler=record_handler, state=state)
def __init__(self, config: Mapping[str, Any], stream_name: str, record_handler: Optional[RecordHandler]=None, state: Optional[Any]=None ) ->None: """Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None. """ source_class = guard_import('source_typeform', pip_name= 'airbyte-source-typeform').SourceTypeform super().__init__(config=config, source_class=source_class, stream_name= stream_name, record_handler=record_handler, state=state)
Initializes the loader. Args: config: The config to pass to the source connector. stream_name: The name of the stream to load. record_handler: A function that takes in a record and an optional id and returns a Document. If None, the record will be used as the document. Defaults to None. state: The state to pass to the source connector. Defaults to None.
raise_deprecation
"""Raise deprecation warning if callback_manager is used.""" if values.get('callback_manager') is not None: warnings.warn( 'callback_manager is deprecated. Please use callbacks instead.', DeprecationWarning) values['callbacks'] = values.pop('callback_manager', None) return values
@root_validator() def raise_deprecation(cls, values: Dict) ->Dict: """Raise deprecation warning if callback_manager is used.""" if values.get('callback_manager') is not None: warnings.warn( 'callback_manager is deprecated. Please use callbacks instead.', DeprecationWarning) values['callbacks'] = values.pop('callback_manager', None) return values
Raise deprecation warning if callback_manager is used.
test_similarity_search
"""Test similarity search.""" output = deeplake_datastore.similarity_search('foo', k=1, distance_metric= distance_metric) assert output == [Document(page_content='foo', metadata={'page': '0'})] tql_query = ( f"SELECT * WHERE id=='{deeplake_datastore.vectorstore.dataset.id[0].numpy()[0]}'" ) output = deeplake_datastore.similarity_search(query='foo', tql_query= tql_query, k=1, distance_metric=distance_metric) assert len(output) == 1 deeplake_datastore.delete_dataset()
def test_similarity_search(deeplake_datastore: DeepLake, distance_metric: str ) ->None: """Test similarity search.""" output = deeplake_datastore.similarity_search('foo', k=1, distance_metric=distance_metric) assert output == [Document(page_content='foo', metadata={'page': '0'})] tql_query = ( f"SELECT * WHERE id=='{deeplake_datastore.vectorstore.dataset.id[0].numpy()[0]}'" ) output = deeplake_datastore.similarity_search(query='foo', tql_query= tql_query, k=1, distance_metric=distance_metric) assert len(output) == 1 deeplake_datastore.delete_dataset()
Test similarity search.
from_existing_index
"""Connect to an existing Tair index.""" url = get_from_dict_or_env(kwargs, 'tair_url', 'TAIR_URL') search_params = {} if 'search_params' in kwargs: search_params = kwargs.pop('search_params') return cls(embedding, url, index_name, content_key=content_key, metadata_key=metadata_key, search_params=search_params, **kwargs)
@classmethod def from_existing_index(cls, embedding: Embeddings, index_name: str= 'langchain', content_key: str='content', metadata_key: str='metadata', **kwargs: Any) ->Tair: """Connect to an existing Tair index.""" url = get_from_dict_or_env(kwargs, 'tair_url', 'TAIR_URL') search_params = {} if 'search_params' in kwargs: search_params = kwargs.pop('search_params') return cls(embedding, url, index_name, content_key=content_key, metadata_key=metadata_key, search_params=search_params, **kwargs)
Connect to an existing Tair index.
test_all_steps
joke = 'Why did the chicken cross the Mobius strip?' response = 'Resolution response' ideation_llm = FakeListLLM(responses=['Ideation response' for _ in range(20)]) critique_llm = FakeListLLM(responses=['Critique response' for _ in range(20)]) resolver_llm = FakeListLLM(responses=[response for _ in range(20)]) prompt = PromptTemplate(input_variables=['joke'], template= 'Explain this joke to me: {joke}?') chain = SmartLLMChain(ideation_llm=ideation_llm, critique_llm=critique_llm, resolver_llm=resolver_llm, prompt=prompt) result = chain(joke) assert result['joke'] == joke assert result['resolution'] == response
def test_all_steps() ->None: joke = 'Why did the chicken cross the Mobius strip?' response = 'Resolution response' ideation_llm = FakeListLLM(responses=['Ideation response' for _ in range(20)]) critique_llm = FakeListLLM(responses=['Critique response' for _ in range(20)]) resolver_llm = FakeListLLM(responses=[response for _ in range(20)]) prompt = PromptTemplate(input_variables=['joke'], template= 'Explain this joke to me: {joke}?') chain = SmartLLMChain(ideation_llm=ideation_llm, critique_llm= critique_llm, resolver_llm=resolver_llm, prompt=prompt) result = chain(joke) assert result['joke'] == joke assert result['resolution'] == response
null
debug_output
""" Print a debug message if DEBUG is True. Args: s: The message to print """ if DEBUG: print(s)
def debug_output(s: Any) ->None: """ Print a debug message if DEBUG is True. Args: s: The message to print """ if DEBUG: print(s)
Print a debug message if DEBUG is True. Args: s: The message to print
invoke
config = ensure_config(config) callback_manager = get_callback_manager_for_config(config) run_manager = callback_manager.on_chain_start(dumpd(self), input, name= config.get('run_name')) first_error = None for runnable in self.runnables: try: output = runnable.invoke(input, patch_config(config, callbacks= run_manager.get_child()), **kwargs) except self.exceptions_to_handle as e: if first_error is None: first_error = e except BaseException as e: run_manager.on_chain_error(e) raise e else: run_manager.on_chain_end(output) return output if first_error is None: raise ValueError('No error stored at end of fallbacks.') run_manager.on_chain_error(first_error) raise first_error
def invoke(self, input: Input, config: Optional[RunnableConfig]=None, ** kwargs: Any) ->Output: config = ensure_config(config) callback_manager = get_callback_manager_for_config(config) run_manager = callback_manager.on_chain_start(dumpd(self), input, name= config.get('run_name')) first_error = None for runnable in self.runnables: try: output = runnable.invoke(input, patch_config(config, callbacks= run_manager.get_child()), **kwargs) except self.exceptions_to_handle as e: if first_error is None: first_error = e except BaseException as e: run_manager.on_chain_error(e) raise e else: run_manager.on_chain_end(output) return output if first_error is None: raise ValueError('No error stored at end of fallbacks.') run_manager.on_chain_error(first_error) raise first_error
null
test_repl_print_python_backticks
program = "`print('`python` is a great language.')`" tool = PythonAstREPLTool() assert tool.run(program) == '`python` is a great language.\n'
@pytest.mark.skipif(sys.version_info < (3, 9), reason= 'Requires python version >= 3.9 to run.') def test_repl_print_python_backticks() ->None: program = "`print('`python` is a great language.')`" tool = PythonAstREPLTool() assert tool.run(program) == '`python` is a great language.\n'
null
lazy_parse
"""Lazy parsing interface.""" yield Document(page_content='foo')
def lazy_parse(self, blob: Blob) ->Iterator[Document]: """Lazy parsing interface.""" yield Document(page_content='foo')
Lazy parsing interface.
ignore_agent
"""Whether to ignore agent callbacks.""" return self.ignore_agent_
@property def ignore_agent(self) ->bool: """Whether to ignore agent callbacks.""" return self.ignore_agent_
Whether to ignore agent callbacks.
_get_message_source
""" Get the message source as a string. Args: channel_name (str): The name of the channel the message belongs to. user (str): The user ID who sent the message. timestamp (str): The timestamp of the message. Returns: str: The message source. """ if self.workspace_url: channel_id = self.channel_id_map.get(channel_name, '') return (f'{self.workspace_url}/archives/{channel_id}' + f"/p{timestamp.replace('.', '')}") else: return f'{channel_name} - {user} - {timestamp}'
def _get_message_source(self, channel_name: str, user: str, timestamp: str ) ->str: """ Get the message source as a string. Args: channel_name (str): The name of the channel the message belongs to. user (str): The user ID who sent the message. timestamp (str): The timestamp of the message. Returns: str: The message source. """ if self.workspace_url: channel_id = self.channel_id_map.get(channel_name, '') return (f'{self.workspace_url}/archives/{channel_id}' + f"/p{timestamp.replace('.', '')}") else: return f'{channel_name} - {user} - {timestamp}'
Get the message source as a string. Args: channel_name (str): The name of the channel the message belongs to. user (str): The user ID who sent the message. timestamp (str): The timestamp of the message. Returns: str: The message source.
_get_edge_properties
edge_properties_query = """ MATCH ()-[e:`{e_label}`]->() RETURN properties(e) AS props LIMIT 100 """ edge_properties = [] for label in e_labels: q = edge_properties_query.format(e_label=label) data = {'label': label, 'properties': self.query(q)['results']} s = set({}) for p in data['properties']: for k, v in p['props'].items(): s.add((k, types[type(v).__name__])) ep = {'type': label, 'properties': [{'property': k, 'type': v} for k, v in s]} edge_properties.append(ep) return edge_properties
def _get_edge_properties(self, e_labels: List[str], types: Dict[str, Any] ) ->List: edge_properties_query = """ MATCH ()-[e:`{e_label}`]->() RETURN properties(e) AS props LIMIT 100 """ edge_properties = [] for label in e_labels: q = edge_properties_query.format(e_label=label) data = {'label': label, 'properties': self.query(q)['results']} s = set({}) for p in data['properties']: for k, v in p['props'].items(): s.add((k, types[type(v).__name__])) ep = {'type': label, 'properties': [{'property': k, 'type': v} for k, v in s]} edge_properties.append(ep) return edge_properties
null
_import_jira_tool
from langchain_community.tools.jira.tool import JiraAction return JiraAction
def _import_jira_tool() ->Any: from langchain_community.tools.jira.tool import JiraAction return JiraAction
null
test_selector_threshold_more_than_one
"""Tests NGramOverlapExampleSelector threshold greater than 1.0.""" selector.threshold = 1.0 + 1e-09 sentence = 'Spot can run.' output = selector.select_examples({'input': sentence}) assert output == []
def test_selector_threshold_more_than_one(selector: NGramOverlapExampleSelector ) ->None: """Tests NGramOverlapExampleSelector threshold greater than 1.0.""" selector.threshold = 1.0 + 1e-09 sentence = 'Spot can run.' output = selector.select_examples({'input': sentence}) assert output == []
Tests NGramOverlapExampleSelector threshold greater than 1.0.
_get_python_function_name
"""Get the name of a Python function.""" return function.__name__
def _get_python_function_name(function: Callable) ->str: """Get the name of a Python function.""" return function.__name__
Get the name of a Python function.
get_lc_namespace
"""Get the namespace of the langchain object.""" return ['langchain', 'schema', 'messages']
@classmethod def get_lc_namespace(cls) ->List[str]: """Get the namespace of the langchain object.""" return ['langchain', 'schema', 'messages']
Get the namespace of the langchain object.
output_keys
"""Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, 'intermediate_steps']
@property def output_keys(self) ->List[str]: """Return the singular output key. :meta private: """ if not self.return_intermediate_steps: return [self.output_key] else: return [self.output_key, 'intermediate_steps']
Return the singular output key. :meta private:
is_lc_serializable
return True
@classmethod def is_lc_serializable(cls) ->bool: return True
null
test_tool_from_function_with_run_manager
"""Test run of tool when using run_manager.""" def foo(bar: str, callbacks: Optional[CallbackManagerForToolRun]=None) ->str: """Docstring Args: bar: str """ assert callbacks is not None return 'foo' + bar handler = FakeCallbackHandler() tool = Tool.from_function(foo, name='foo', description='Docstring') assert tool.run(tool_input={'bar': 'bar'}, run_manager=[handler]) == 'foobar' assert tool.run('baz', run_manager=[handler]) == 'foobaz'
def test_tool_from_function_with_run_manager() ->None: """Test run of tool when using run_manager.""" def foo(bar: str, callbacks: Optional[CallbackManagerForToolRun]=None ) ->str: """Docstring Args: bar: str """ assert callbacks is not None return 'foo' + bar handler = FakeCallbackHandler() tool = Tool.from_function(foo, name='foo', description='Docstring') assert tool.run(tool_input={'bar': 'bar'}, run_manager=[handler] ) == 'foobar' assert tool.run('baz', run_manager=[handler]) == 'foobaz'
Test run of tool when using run_manager.
update_documents
"""Update a document in the collection. Args: ids (List[str]): List of ids of the document to update. documents (List[Document]): List of documents to update. """ text = [document.page_content for document in documents] metadata = [document.metadata for document in documents] if self._embedding_function is None: raise ValueError( 'For update, you must specify an embedding function on creation.') embeddings = self._embedding_function.embed_documents(text) if hasattr(self._collection._client, 'max_batch_size'): from chromadb.utils.batch_utils import create_batches for batch in create_batches(api=self._collection._client, ids=ids, metadatas=metadata, documents=text, embeddings=embeddings): self._collection.update(ids=batch[0], embeddings=batch[1], documents=batch[3], metadatas=batch[2]) else: self._collection.update(ids=ids, embeddings=embeddings, documents=text, metadatas=metadata)
def update_documents(self, ids: List[str], documents: List[Document]) ->None: """Update a document in the collection. Args: ids (List[str]): List of ids of the document to update. documents (List[Document]): List of documents to update. """ text = [document.page_content for document in documents] metadata = [document.metadata for document in documents] if self._embedding_function is None: raise ValueError( 'For update, you must specify an embedding function on creation.') embeddings = self._embedding_function.embed_documents(text) if hasattr(self._collection._client, 'max_batch_size'): from chromadb.utils.batch_utils import create_batches for batch in create_batches(api=self._collection._client, ids=ids, metadatas=metadata, documents=text, embeddings=embeddings): self._collection.update(ids=batch[0], embeddings=batch[1], documents=batch[3], metadatas=batch[2]) else: self._collection.update(ids=ids, embeddings=embeddings, documents= text, metadatas=metadata)
Update a document in the collection. Args: ids (List[str]): List of ids of the document to update. documents (List[Document]): List of documents to update.
InputType
return Union[str, AnyMessage]
@property def InputType(self) ->Any: return Union[str, AnyMessage]
null
_get_metadata
return {'source': f's3://{self.bucket}/{self.key}'}
def _get_metadata(self) ->dict: return {'source': f's3://{self.bucket}/{self.key}'}
null
from_url
"""Get an OpenAPI spec from a URL.""" response = requests.get(url) return cls.from_text(response.text)
@classmethod def from_url(cls, url: str) ->OpenAPISpec: """Get an OpenAPI spec from a URL.""" response = requests.get(url) return cls.from_text(response.text)
Get an OpenAPI spec from a URL.
get_default_document_variable_name
"""Get default document variable name, if not provided. If only one variable is present in the llm_chain.prompt, we can infer that the formatted documents should be passed in with this variable name. """ llm_chain_variables = values['llm_chain'].prompt.input_variables if 'document_variable_name' not in values: if len(llm_chain_variables) == 1: values['document_variable_name'] = llm_chain_variables[0] else: raise ValueError( 'document_variable_name must be provided if there are multiple llm_chain_variables' ) elif values['document_variable_name'] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was not found in llm_chain input_variables: {llm_chain_variables}" ) return values
@root_validator(pre=True) def get_default_document_variable_name(cls, values: Dict) ->Dict: """Get default document variable name, if not provided. If only one variable is present in the llm_chain.prompt, we can infer that the formatted documents should be passed in with this variable name. """ llm_chain_variables = values['llm_chain'].prompt.input_variables if 'document_variable_name' not in values: if len(llm_chain_variables) == 1: values['document_variable_name'] = llm_chain_variables[0] else: raise ValueError( 'document_variable_name must be provided if there are multiple llm_chain_variables' ) elif values['document_variable_name'] not in llm_chain_variables: raise ValueError( f"document_variable_name {values['document_variable_name']} was not found in llm_chain input_variables: {llm_chain_variables}" ) return values
Get default document variable name, if not provided. If only one variable is present in the llm_chain.prompt, we can infer that the formatted documents should be passed in with this variable name.
_partial
return _make_with_name(func.__name__)(func)
def _partial(func: Callable[[str], str]) ->BaseTool: return _make_with_name(func.__name__)(func)
null
is_valid
import esprima try: esprima.parseScript(self.code) return True except esprima.Error: return False
def is_valid(self) ->bool: import esprima try: esprima.parseScript(self.code) return True except esprima.Error: return False
null
fetch_data
"""Fetch data from a URL.""" headers = {'Authorization': access_token} response = requests.get(url, headers=headers, params=query) response.raise_for_status() return response.json()
def fetch_data(url: str, access_token: str, query: Optional[dict]=None) ->dict: """Fetch data from a URL.""" headers = {'Authorization': access_token} response = requests.get(url, headers=headers, params=query) response.raise_for_status() return response.json()
Fetch data from a URL.
run
"""Executes an action that is identified by action_id, must be exposed (enabled) by the current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return JSON is guaranteed to be less than ~500 words (350 tokens) making it safe to inject into the prompt of another LLM call. """ session = self._get_session() request = self._create_action_request(action_id, instructions, params) response = session.send(session.prepare_request(request)) response.raise_for_status() return response.json()['result']
def run(self, action_id: str, instructions: str, params: Optional[Dict]=None ) ->Dict: """Executes an action that is identified by action_id, must be exposed (enabled) by the current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return JSON is guaranteed to be less than ~500 words (350 tokens) making it safe to inject into the prompt of another LLM call. """ session = self._get_session() request = self._create_action_request(action_id, instructions, params) response = session.send(session.prepare_request(request)) response.raise_for_status() return response.json()['result']
Executes an action that is identified by action_id, must be exposed (enabled) by the current user (associated with the set api_key). Change your exposed actions here: https://nla.zapier.com/demo/start/ The return JSON is guaranteed to be less than ~500 words (350 tokens) making it safe to inject into the prompt of another LLM call.
clear
"""Removes all messages from the chat history""" self._create_empty_doc() if self.sync: self._wait_until(lambda : not self.messages, RocksetChatMessageHistory. ADD_TIMEOUT_MS)
def clear(self) ->None: """Removes all messages from the chat history""" self._create_empty_doc() if self.sync: self._wait_until(lambda : not self.messages, RocksetChatMessageHistory.ADD_TIMEOUT_MS)
Removes all messages from the chat history
as_dict
schemas: Dict[str, List[Any]] = {'text': [], 'tag': [], 'numeric': []} for attr, attr_value in self.__dict__.items(): if isinstance(attr_value, list) and len(attr_value) > 0: field_values: List[Dict[str, Any]] = [] for val in attr_value: value: Dict[str, Any] = {} for field, field_value in val.__dict__.items(): if isinstance(field_value, Enum): value[field] = field_value.value elif field_value is not None: value[field] = field_value field_values.append(value) schemas[attr] = field_values schema: Dict[str, List[Any]] = {} for k, v in schemas.items(): if len(v) > 0: schema[k] = v return schema
def as_dict(self) ->Dict[str, List[Any]]: schemas: Dict[str, List[Any]] = {'text': [], 'tag': [], 'numeric': []} for attr, attr_value in self.__dict__.items(): if isinstance(attr_value, list) and len(attr_value) > 0: field_values: List[Dict[str, Any]] = [] for val in attr_value: value: Dict[str, Any] = {} for field, field_value in val.__dict__.items(): if isinstance(field_value, Enum): value[field] = field_value.value elif field_value is not None: value[field] = field_value field_values.append(value) schemas[attr] = field_values schema: Dict[str, List[Any]] = {} for k, v in schemas.items(): if len(v) > 0: schema[k] = v return schema
null
test_indent_lines_after_first
"""Test indent_lines_after_first function""" indented_text = indent_lines_after_first(text, prefix) assert indented_text == expected_output
@pytest.mark.parametrize('text,prefix,expected_output', [( """line 1 line 2 line 3""", '1', """line 1 line 2 line 3"""), ( 'line 1\nline 2\nline 3', 'ax', """line 1 line 2 line 3""")]) def test_indent_lines_after_first(text: str, prefix: str, expected_output: str ) ->None: """Test indent_lines_after_first function""" indented_text = indent_lines_after_first(text, prefix) assert indented_text == expected_output
Test indent_lines_after_first function
from_params
"""Convenience constructor that builds the odsp.ODPS MaxCompute client from given parameters. Args: endpoint: MaxCompute endpoint. project: A project is a basic organizational unit of MaxCompute, which is similar to a database. access_id: MaxCompute access ID. Should be passed in directly or set as the environment variable `MAX_COMPUTE_ACCESS_ID`. secret_access_key: MaxCompute secret access key. Should be passed in directly or set as the environment variable `MAX_COMPUTE_SECRET_ACCESS_KEY`. """ try: from odps import ODPS except ImportError as ex: raise ImportError( 'Could not import pyodps python package. Please install it with `pip install pyodps` or refer to https://pyodps.readthedocs.io/.' ) from ex access_id = access_id or get_from_env('access_id', 'MAX_COMPUTE_ACCESS_ID') secret_access_key = secret_access_key or get_from_env('secret_access_key', 'MAX_COMPUTE_SECRET_ACCESS_KEY') client = ODPS(access_id=access_id, secret_access_key=secret_access_key, project=project, endpoint=endpoint) if not client.exist_project(project): raise ValueError(f'The project "{project}" does not exist.') return cls(client)
@classmethod def from_params(cls, endpoint: str, project: str, *, access_id: Optional[ str]=None, secret_access_key: Optional[str]=None) ->MaxComputeAPIWrapper: """Convenience constructor that builds the odsp.ODPS MaxCompute client from given parameters. Args: endpoint: MaxCompute endpoint. project: A project is a basic organizational unit of MaxCompute, which is similar to a database. access_id: MaxCompute access ID. Should be passed in directly or set as the environment variable `MAX_COMPUTE_ACCESS_ID`. secret_access_key: MaxCompute secret access key. Should be passed in directly or set as the environment variable `MAX_COMPUTE_SECRET_ACCESS_KEY`. """ try: from odps import ODPS except ImportError as ex: raise ImportError( 'Could not import pyodps python package. Please install it with `pip install pyodps` or refer to https://pyodps.readthedocs.io/.' ) from ex access_id = access_id or get_from_env('access_id', 'MAX_COMPUTE_ACCESS_ID') secret_access_key = secret_access_key or get_from_env('secret_access_key', 'MAX_COMPUTE_SECRET_ACCESS_KEY') client = ODPS(access_id=access_id, secret_access_key=secret_access_key, project=project, endpoint=endpoint) if not client.exist_project(project): raise ValueError(f'The project "{project}" does not exist.') return cls(client)
Convenience constructor that builds the odsp.ODPS MaxCompute client from given parameters. Args: endpoint: MaxCompute endpoint. project: A project is a basic organizational unit of MaxCompute, which is similar to a database. access_id: MaxCompute access ID. Should be passed in directly or set as the environment variable `MAX_COMPUTE_ACCESS_ID`. secret_access_key: MaxCompute secret access key. Should be passed in directly or set as the environment variable `MAX_COMPUTE_SECRET_ACCESS_KEY`.
_get_multi_prompt
num_dfs = len(dfs) if suffix is not None: suffix_to_use = suffix include_dfs_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_MULTI_DF include_dfs_head = True else: suffix_to_use = SUFFIX_NO_DF include_dfs_head = False if input_variables is None: input_variables = ['input', 'agent_scratchpad', 'num_dfs'] if include_dfs_head: input_variables += ['dfs_head'] if prefix is None: prefix = MULTI_DF_PREFIX df_locals = {} for i, dataframe in enumerate(dfs): df_locals[f'df{i + 1}'] = dataframe tools = [PythonAstREPLTool(locals=df_locals)] + list(extra_tools) prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix= suffix_to_use, input_variables=input_variables) partial_prompt = prompt.partial() if 'dfs_head' in input_variables: dfs_head = '\n\n'.join([d.head(number_of_head_rows).to_markdown() for d in dfs]) partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head= dfs_head) if 'num_dfs' in input_variables: partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs)) return partial_prompt, tools
def _get_multi_prompt(dfs: List[Any], prefix: Optional[str]=None, suffix: Optional[str]=None, input_variables: Optional[List[str]]=None, include_df_in_prompt: Optional[bool]=True, number_of_head_rows: int=5, extra_tools: Sequence[BaseTool]=()) ->Tuple[BasePromptTemplate, List[ BaseTool]]: num_dfs = len(dfs) if suffix is not None: suffix_to_use = suffix include_dfs_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_MULTI_DF include_dfs_head = True else: suffix_to_use = SUFFIX_NO_DF include_dfs_head = False if input_variables is None: input_variables = ['input', 'agent_scratchpad', 'num_dfs'] if include_dfs_head: input_variables += ['dfs_head'] if prefix is None: prefix = MULTI_DF_PREFIX df_locals = {} for i, dataframe in enumerate(dfs): df_locals[f'df{i + 1}'] = dataframe tools = [PythonAstREPLTool(locals=df_locals)] + list(extra_tools) prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix= suffix_to_use, input_variables=input_variables) partial_prompt = prompt.partial() if 'dfs_head' in input_variables: dfs_head = '\n\n'.join([d.head(number_of_head_rows).to_markdown() for d in dfs]) partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head) if 'num_dfs' in input_variables: partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs)) return partial_prompt, tools
null
run
""" Run commands in either an existing persistent subprocess or on in a new subprocess environment. Args: commands(List[str]): a list of commands to execute in the session """ if isinstance(commands, str): commands = [commands] commands = ';'.join(commands) if self.process is not None: return self._run_persistent(commands) else: return self._run(commands)
def run(self, commands: Union[str, List[str]]) ->str: """ Run commands in either an existing persistent subprocess or on in a new subprocess environment. Args: commands(List[str]): a list of commands to execute in the session """ if isinstance(commands, str): commands = [commands] commands = ';'.join(commands) if self.process is not None: return self._run_persistent(commands) else: return self._run(commands)
Run commands in either an existing persistent subprocess or on in a new subprocess environment. Args: commands(List[str]): a list of commands to execute in the session