Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 1 was different:
episode_index: int64
tasks: list<item: string>
length: int64
vs
codebase_version: string
dataset_name: string
robot_type: string
total_episodes: int64
total_frames: int64
total_tasks: int64
total_videos: int64
total_chunks: int64
chunks_size: int64
fps: double
splits: struct<train: string>
data_path: string
video_path: string
features: struct<action: struct<dtype: string, shape: list<item: int64>, names: list<item: string>>, observation.state: struct<dtype: string, shape: list<item: int64>, names: list<item: string>>, observation.images.webcam: struct<dtype: string, shape: list<item: int64>, names: list<item: string>, info: struct<video.fps: double, video.height: int64, video.width: int64, video.channels: int64, video.codec: string, video.pix_fmt: string, video.is_depth_map: bool, has_audio: bool>>, timestamp: struct<dtype: string, shape: list<item: int64>, names: null>, frame_index: struct<dtype: string, shape: list<item: int64>, names: null>, episode_index: struct<dtype: string, shape: list<item: int64>, names: null>, index: struct<dtype: string, shape: list<item: int64>, names: null>, task_index: struct<dtype: string, shape: list<item: int64>, names: null>, reward: struct<dtype: string, shape: list<item: int64>, names: null>, next.reward: struct<dtype: string, shape: list<item: int64>, names: null>, done: struct<dtype: string, shape: list<item: int64>, names: null>, next.done: struct<dtype: string, shape: list<item: int64>, names: null>>
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
return next(iter(self.iter(batch_size=n)))
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
for key, example in iterator:
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
for key, pa_table in self._iter_arrow():
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 527, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 1 was different:
episode_index: int64
tasks: list<item: string>
length: int64
vs
codebase_version: string
dataset_name: string
robot_type: string
total_episodes: int64
total_frames: int64
total_tasks: int64
total_videos: int64
total_chunks: int64
chunks_size: int64
fps: double
splits: struct<train: string>
data_path: string
video_path: string
features: struct<action: struct<dtype: string, shape: list<item: int64>, names: list<item: string>>, observation.state: struct<dtype: string, shape: list<item: int64>, names: list<item: string>>, observation.images.webcam: struct<dtype: string, shape: list<item: int64>, names: list<item: string>, info: struct<video.fps: double, video.height: int64, video.width: int64, video.channels: int64, video.codec: string, video.pix_fmt: string, video.is_depth_map: bool, has_audio: bool>>, timestamp: struct<dtype: string, shape: list<item: int64>, names: null>, frame_index: struct<dtype: string, shape: list<item: int64>, names: null>, episode_index: struct<dtype: string, shape: list<item: int64>, names: null>, index: struct<dtype: string, shape: list<item: int64>, names: null>, task_index: struct<dtype: string, shape: list<item: int64>, names: null>, reward: struct<dtype: string, shape: list<item: int64>, names: null>, next.reward: struct<dtype: string, shape: list<item: int64>, names: null>, done: struct<dtype: string, shape: list<item: int64>, names: null>, next.done: struct<dtype: string, shape: list<item: int64>, names: null>>Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Buster Dual-Arm Robot Dataset
This dataset contains demonstration data from a Buster dual-arm robot system recorded in Isaac Sim.
Dataset Details
- Robot Type: Buster Dual-Arm (2x UR arms + 2x Robotiq 3F grippers)
- Total Episodes: 1
- Total Frames: 352
- FPS: 8.62
- Video Resolution: 1280x720x3 (RGB)
- State Dimensions: 34 joints
- Action Dimensions: 34 joints
Robot Configuration
Arms
- Arm 1: UR arm (6 DOF)
- Arm 2: UR arm (6 DOF)
Grippers
- Gripper 1: Robotiq 3F gripper (11 joints)
- Gripper 2: Robotiq 3F gripper (11 joints)
Sensors
- Base Camera: RGB camera providing visual observations
- Joint States: Position feedback from all joints
- Joint Commands: Action commands sent to robot
Data Format
This dataset follows the LeRobot v2.1 format:
- State: Joint positions (34D vector)
- Action: Joint commands (34D vector)
- Video: RGB observations from base camera
- Metadata: Task descriptions, episode info, statistics
Usage
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# Load the dataset
dataset = LeRobotDataset("noskiper-chwy/buster-dual-arm-demo")
# Access data
first_frame = dataset[0]
state = first_frame["observation.state"]
action = first_frame["action"]
Recording Environment
- Simulator: Isaac Sim
- Topics Recorded:
/joint_states- Robot state/isaac_joint_commands- Robot commands/base_camera_sensor/image_raw- Visual observations
Limitations
- Single episode demonstration
- No task descriptions (using "Unknown Task")
- Modality configuration treats all joints as single arm (should be split for dual-arm)
Citation
If you use this dataset, please cite:
@dataset{buster_dual_arm_demo,
title={Buster Dual-Arm Robot Demonstration Dataset},
author={noskiper},
year={2025},
url={https://huggingface.co/datasets/noskiper-chwy/buster-dual-arm-demo}
}
- Downloads last month
- 18