fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
{n} {A} `{IsHSet A} : IsTrunc n.
Definition
Require Import
Basics\Trunc.v
istrunc_hset
1,800
A {B} (f : A -> B) `{IsTrunc n A} `{IsEquiv A B f} : IsTrunc n B. Proof. generalize dependent B; generalize dependent A. simple_induction n n IH; simpl; intros A ? B f ?. - exact (contr_equiv _ f). - apply istrunc_S. intros x y. refine (IH _ _ _ (ap (f^-1))^-1 _). Defined.
Definition
Require Import
Basics\Trunc.v
istrunc_isequiv_istrunc
1,801
A {B} (f : A <~> B) `{IsTrunc n A} : IsTrunc n B := istrunc_isequiv_istrunc A f.
Definition
Require Import
Basics\Trunc.v
istrunc_equiv_istrunc
1,802
(n : trunc_index) := { trunctype_type : Type ; trunctype_istrunc : IsTrunc n trunctype_type }.
Record
Require Import
Basics\Trunc.v
TruncType
1,803
(A : Type) `{H : IsHProp A} (x : A) : Contr A. Proof. apply (Build_Contr _ x). intro y. rapply center. Defined.
Lemma
Require Import
Basics\Trunc.v
contr_inhabited_hprop
1,804
`{H : IsHProp A} : forall x y : A, x = y. Proof. intros x y. rapply center. Defined.
Theorem
Require Import
Basics\Trunc.v
path_ishprop
1,805
(A : Type) : (forall (x y : A), x = y) -> IsHProp A. Proof. intros H; apply istrunc_S; intros x y. nrapply contr_paths_contr. exact (Build_Contr _ x (H x)). Defined.
Theorem
Require Import
Basics\Trunc.v
hprop_allpath
1,806
`{IsHProp A} `{IsHProp B} (f : A -> B) (g : B -> A) : IsEquiv f. Proof. apply (isequiv_adjointify f g); intros ?; apply path_ishprop. Defined.
Definition
Require Import
Basics\Trunc.v
isequiv_iff_hprop
1,807
`{IsHProp A} `{IsHProp B} : (A <-> B) -> (A <~> B). Proof. intro fg. apply (equiv_adjointify (fst fg) (snd fg)); intros ?; apply path_ishprop. Defined.
Definition
Require Import
Basics\Trunc.v
equiv_iff_hprop_uncurried
1,808
`{IsHProp A} `{IsHProp B} : (A -> B) -> (B -> A) -> (A <~> B) := fun f g => equiv_iff_hprop_uncurried (f, g).
Definition
Require Import
Basics\Trunc.v
equiv_iff_hprop
1,809
(A : Type) `{IsHProp A} : Contr A <-> A. Proof. split. - apply center. - rapply contr_inhabited_hprop. Defined.
Corollary
Require Import
Basics\Trunc.v
iff_contr_hprop
1,810
`{Funext} `{P : A -> Type} `{forall a, Contr (P a)} : Contr (forall a, P a). Proof. apply (Build_Contr _ (fun a => center (P a))). intro f. apply path_forall. intro a. apply contr. Defined.
Definition
Require Import
Basics\Trunc.v
contr_forall
1,811
(A : Type) `{Funext} `{IsHProp A} : Contr A <~> A. Proof. exact (equiv_iff_hprop_uncurried (iff_contr_hprop A)). Defined.
Corollary
Require Import
Basics\Trunc.v
equiv_contr_hprop
1,812
{n : trunc_index} {A : Type} (H : A -> IsTrunc n.
Definition
Require Import
Basics\Trunc.v
istrunc_inhabited_istrunc
1,813
Type0 := | Nil | D0 (_:) | D1 (_:) | D2 (_:) | D3 (_:) | D4 (_:) | D5 (_:) | D6 (_:) | D7 (_:) | D8 (_:) | D9 (_:).
Inductive
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
uint
1,814
d := match d with | Nil => O | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => S ( d) end.
Fixpoint
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
nb_digits
1,815
d := match d with | D0 d => d | _ => d end.
Fixpoint
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
nzhead
1,816
d := match nzhead d with | Nil => zero | d => d end.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
unorm
1,817
d := match d with | Pos d => Pos (unorm d) | Neg d => match nzhead d with | Nil => Pos zero | d => Neg d end end.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
norm
1,818
(d:int) := match d with | Pos d => Neg d | Neg d => Pos d end.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
opp
1,819
(d d' : uint) := match d with | Nil => d' | D0 d => d (D0 d') | D1 d => d (D1 d') | D2 d => d (D2 d') | D3 d => d (D3 d') | D4 d => d (D4 d') | D5 d => d (D5 d') | D6 d => d (D6 d') | D7 d => d (D7 d') | D8 d => d (D8 d') | D9 d => d (D9 d') end.
Fixpoint
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
revapp
1,820
d := revapp d Nil.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
rev
1,821
d d' := revapp (rev d) d'.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
app
1,822
d1 d2 := match d1 with Pos d1 => Pos (app d1 d2) | Neg d1 => Neg (app d1 d2) end.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
app_int
1,823
d := let fix aux d_rev := match d_rev with | D0 d_rev => let (r, n) := aux d_rev in pair r (S n) | _ => pair d_rev O end in let (r, n) := aux (rev d) in pair (rev r) n.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
nztail
1,824
d := match d with | Pos d => let (r, n) := nztail d in pair (Pos r) n | Neg d => let (r, n) := nztail d in pair (Neg r) n end.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
nztail_int
1,825
d := match d with | Nil => D1 Nil | D0 d => D1 d | D1 d => D2 d | D2 d => D3 d | D3 d => D4 d | D4 d => D5 d | D5 d => D6 d | D6 d => D7 d | D7 d => D8 d | D8 d => D9 d | D9 d => D0 ( d) end.
Fixpoint
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
succ
1,826
d := match d with | Nil => Nil | D0 d => D0 ( d) | D1 d => D2 ( d) | D2 d => D4 ( d) | D3 d => D6 ( d) | D4 d => D8 ( d) | D5 d => D0 (succ_double d) | D6 d => D2 (succ_double d) | D7 d => D4 (succ_double d) | D8 d => D6 (succ_double d) | D9 d => D8 (succ_double d) end with succ_double d := match d with | Nil => D1 Nil | D0 d => D1 ( d) | D1 d => D3 ( d) | D2 d => D5 ( d) | D3 d => D7 ( d) | D4 d => D9 ( d) | D5 d => D1 (succ_double d) | D6 d => D3 (succ_double d) | D7 d => D5 (succ_double d) | D8 d => D7 (succ_double d) | D9 d => D9 (succ_double d) end.
Fixpoint
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
double
1,827
(i:uint) := i.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
uint_of_uint
1,828
(i:int) := i.
Definition
Require Import Basics.Overture.
Basics\Numerals\Decimal.v
int_of_int
1,829
Type0 := | Nil | D0 (_:) | D1 (_:) | D2 (_:) | D3 (_:) | D4 (_:) | D5 (_:) | D6 (_:) | D7 (_:) | D8 (_:) | D9 (_:) | Da (_:) | Db (_:) | Dc (_:) | Dd (_:) | De (_:) | Df (_:).
Inductive
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
uint
1,830
d := match d with | Nil => O | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d | Da d | Db d | Dc d | Dd d | De d | Df d => S ( d) end.
Fixpoint
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
nb_digits
1,831
d := match d with | D0 d => d | _ => d end.
Fixpoint
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
nzhead
1,832
d := match nzhead d with | Nil => zero | d => d end.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
unorm
1,833
d := match d with | Pos d => Pos (unorm d) | Neg d => match nzhead d with | Nil => Pos zero | d => Neg d end end.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
norm
1,834
(d:int) := match d with | Pos d => Neg d | Neg d => Pos d end.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
opp
1,835
(d d' : uint) := match d with | Nil => d' | D0 d => d (D0 d') | D1 d => d (D1 d') | D2 d => d (D2 d') | D3 d => d (D3 d') | D4 d => d (D4 d') | D5 d => d (D5 d') | D6 d => d (D6 d') | D7 d => d (D7 d') | D8 d => d (D8 d') | D9 d => d (D9 d') | Da d => d (Da d') | Db d => d (Db d') | Dc d => d (Dc d') | Dd d => d (Dd d') | De d => d (De d') | Df d => d (Df d') end.
Fixpoint
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
revapp
1,836
d := revapp d Nil.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
rev
1,837
d d' := revapp (rev d) d'.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
app
1,838
d1 d2 := match d1 with Pos d1 => Pos (app d1 d2) | Neg d1 => Neg (app d1 d2) end.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
app_int
1,839
d := let fix aux d_rev := match d_rev with | D0 d_rev => let (r, n) := aux d_rev in pair r (S n) | _ => pair d_rev O end in let (r, n) := aux (rev d) in pair (rev r) n.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
nztail
1,840
d := match d with | Pos d => let (r, n) := nztail d in pair (Pos r) n | Neg d => let (r, n) := nztail d in pair (Neg r) n end.
Definition
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
nztail_int
1,841
d := match d with | Nil => D1 Nil | D0 d => D1 d | D1 d => D2 d | D2 d => D3 d | D3 d => D4 d | D4 d => D5 d | D5 d => D6 d | D6 d => D7 d | D7 d => D8 d | D8 d => D9 d | D9 d => Da d | Da d => Db d | Db d => Dc d | Dc d => Dd d | Dd d => De d | De d => Df d | Df d => D0 ( d) end.
Fixpoint
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
succ
1,842
d := match d with | Nil => Nil | D0 d => D0 ( d) | D1 d => D2 ( d) | D2 d => D4 ( d) | D3 d => D6 ( d) | D4 d => D8 ( d) | D5 d => Da ( d) | D6 d => Dc ( d) | D7 d => De ( d) | D8 d => D0 (succ_double d) | D9 d => D2 (succ_double d) | Da d => D4 (succ_double d) | Db d => D6 (succ_double d) | Dc d => D8 (succ_double d) | Dd d => Da (succ_double d) | De d => Dc (succ_double d) | Df d => De (succ_double d) end with succ_double d := match d with | Nil => D1 Nil | D0 d => D1 ( d) | D1 d => D3 ( d) | D2 d => D5 ( d) | D3 d => D7 ( d) | D4 d => D9 ( d) | D5 d => Db ( d) | D6 d => Dd ( d) | D7 d => Df ( d) | D8 d => D1 (succ_double d) | D9 d => D3 (succ_double d) | Da d => D5 (succ_double d) | Db d => D7 (succ_double d) | Dc d => D9 (succ_double d) | Dd d => Db (succ_double d) | De d => Dd (succ_double d) | Df d => Df (succ_double d) end.
Fixpoint
Require Import Basics.Overture Basics.Numerals.Decimal.
Basics\Numerals\Hexadecimal.v
double
1,843
PreCategory := @sub_pre_cat _ P HF.
Definition
Require Import Functor.Core Category.Strict. Require Import Cat.Core. Require Import GroupoidCategory.Core. Require Import Functor.Paths.
Categories\CategoryOfGroupoids.v
groupoid_cat
1,844
PreCategory := @Build_PreCategory nat leq leq_refl (fun x y z p q => leq_trans q p) (fun _ _ _ _ _ _ _ => path_ishprop _ _) (fun _ _ _ => path_ishprop _ _) (fun _ _ _ => path_ishprop _ _) _.
Definition
Require Import Category.Subcategory.Full. Require Import Category.Sigma.Univalent. Require Import Category.Morphisms Category.Univalent Category.Strict. Require Import HoTT.Basics HoTT.Types HoTT.Spaces.Nat.Core.
Categories\ChainCategory.v
omega
1,845
(n : nat) : PreCategory := { m : omega | m <= n }%category.
Definition
Require Import Category.Subcategory.Full. Require Import Category.Sigma.Univalent. Require Import Category.Morphisms Category.Univalent Category.Strict. Require Import HoTT.Basics HoTT.Types HoTT.Spaces.Nat.Core.
Categories\ChainCategory.v
chain
1,846
IsStrictCategory omega. Proof. exact _. Defined.
Definition
Require Import Category.Subcategory.Full. Require Import Category.Sigma.Univalent. Require Import Category.Morphisms Category.Univalent Category.Strict. Require Import HoTT.Basics HoTT.Types HoTT.Spaces.Nat.Core.
Categories\ChainCategory.v
isstrict_omega
1,847
{n} : IsStrictCategory [n]. Proof. exact _. Defined.
Definition
Require Import Category.Subcategory.Full. Require Import Category.Sigma.Univalent. Require Import Category.Morphisms Category.Univalent Category.Strict. Require Import HoTT.Basics HoTT.Types HoTT.Spaces.Nat.Core.
Categories\ChainCategory.v
isstrict_chain
1,848
{n} : IsCategory [n]. Proof. exact _. Defined.
Definition
Require Import Category.Subcategory.Full. Require Import Category.Sigma.Univalent. Require Import Category.Morphisms Category.Univalent Category.Strict. Require Import HoTT.Basics HoTT.Types HoTT.Spaces.Nat.Core.
Categories\ChainCategory.v
iscategory_chain
1,849
PreCategory := category_of_sections (Grothendieck.
Definition
Require Import Category.Core Functor.Core. Require Import Cat.Core. Require Import CategoryOfSections.Core.
Categories\DependentProduct.v
dependent_product
1,850
X `{IsHSet X} := groupoid_category X.
Definition
Require Import HoTT.Basics GroupoidCategory.Core.
Categories\DiscreteCategory.v
discrete_category
1,851
Functor cat cat := Build_Functor cat cat (fun C => (C.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import Cat.Core Functor.Paths. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Types.Forall.
Categories\DualFunctor.v
opposite_functor
1,852
opposite_functor o opposite_functor = 1. Proof. path_functor. refine (path_forall _ _ opposite_functor_involutive_helper; _). repeat (apply path_forall; intro). rewrite !transport_forall_constant. transport_path_forall_hammer. unfold opposite_functor_involutive_helper. rewrite !transport_pr1_path_sigma_uncurried. simpl in *. repeat progress change (fun x => ?f x) with f in *. match goal with | [ |- context[transport (fun x' => ?f x'.1 ?y) (@path_sigma_uncurried ?A ?P ?u ?v ?pq)] ] => rewrite (@transport_pr1_path_sigma_uncurried A P u v pq (fun x => f x y)) end. simpl in *. hnf in *. subst_body. destruct_head @sig. destruct_head @Functor. destruct_head @PreCategory. reflexivity. Qed.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Functor.Composition.Core Functor.Identity. Require Import Cat.Core Functor.Paths. Require Import Basics.Trunc Types.Sigma HoTT.Tactics Types.Forall.
Categories\DualFunctor.v
opposite_functor_involutive
1,853
s d d' (m : morphism d d') (m' : morphism s d) : morphism s d'. Proof. revert m'; apply Trunc_rec; intro m'. revert m; apply Trunc_rec; intro m. apply tr. exact (m' @ m). Defined.
Definition
Require Import Category.Core. Require Import HoTT.Truncations.Core. Require Import HoTT.Basics.
Categories\FundamentalPreGroupoidCategory.v
compose
1,854
x : morphism x x := tr (reflexivity _).
Definition
Require Import Category.Core. Require Import HoTT.Truncations.Core. Require Import HoTT.Basics.
Categories\FundamentalPreGroupoidCategory.v
identity
1,855
(X : Type) : PreCategory. Proof. refine (@Build_PreCategory X _ (@FundamentalPreGroupoidCategoryInternals.identity X) (@FundamentalPreGroupoidCategoryInternals.compose X) _ _ _ _); simpl; intros; abstract ( repeat match goal with | [ m : Trunc _ _ |- _ ] => revert m; apply Trunc_ind; [ intro; match goal with | [ |- IsHSet (?a = ?b :> ?T) ] => generalize a b; intros; let H := fresh in assert (H : forall x y : T, IsHProp (x = y)) end; typeclasses eauto | intro ] end; simpl; apply ap; first [ apply concat_p_pp | apply concat_1p | apply concat_p1 ] ). Defined.
Definition
Require Import Category.Core. Require Import HoTT.Truncations.Core. Require Import HoTT.Basics.
Categories\FundamentalPreGroupoidCategory.v
fundamental_pregroupoid_category
1,856
Functor (C^op * C) set_cat.
Definition
Require Import Category.Core Functor.Core SetCategory.Core Category.Dual. Import Category.Prod.CategoryProdNotations Functor.Prod.Core.FunctorProdCoreNotations. Require Import Basics.Trunc.
Categories\HomFunctor.v
hom_functor
1,857
(A : object C^op) := Eval simpl in Functor.
Definition
Require Import Category.Core Functor.Core SetCategory.Core Category.Dual. Import Category.Prod.CategoryProdNotations Functor.Prod.Core.FunctorProdCoreNotations. Require Import Basics.Trunc.
Categories\HomFunctor.v
covariant_hom_functor
1,858
(A : C) := Eval simpl in Functor.
Definition
Require Import Category.Core Functor.Core SetCategory.Core Category.Dual. Import Category.Prod.CategoryProdNotations Functor.Prod.Core.FunctorProdCoreNotations. Require Import Basics.Trunc.
Categories\HomFunctor.v
contravariant_hom_functor
1,859
s d d' (m : morphism d d') (m' : morphism s d) : morphism s d'. Proof. revert m'; apply Trunc_rec; intro m'. revert m; apply Trunc_rec; intro m. apply tr. exact (m o m')%core. Defined.
Definition
Require Import Category.Core. Require Import HoTT.Basics HoTT.Truncations.Core.
Categories\HomotopyPreCategory.v
compose
1,860
x : morphism x x := tr idmap.
Definition
Require Import Category.Core. Require Import HoTT.Basics HoTT.Truncations.Core.
Categories\HomotopyPreCategory.v
identity
1,861
PreCategory. Proof. refine (@Build_PreCategory Type _ (@HomotopyPreCategoryInternals.identity) (@HomotopyPreCategoryInternals.compose) _ _ _ _); simpl; intros; repeat match goal with | [ m : Trunc _ _ |- _ ] => revert m; apply Trunc_ind; [ intro; match goal with | [ |- IsHSet (?a = ?b :> ?T) ] => generalize a b; intros; let H := fresh in assert (H : forall x y : T, IsHProp (x = y)) end; typeclasses eauto | intro ] end; simpl; apply ap; exact idpath. Defined.
Definition
Require Import Category.Core. Require Import HoTT.Basics HoTT.Truncations.Core.
Categories\HomotopyPreCategory.v
homotopy_precategory
1,862
PreCategory := @Build_PreCategory' X (fun _ _ => Unit) (fun _ => tt) (fun _ _ _ _ _ => tt) (fun _ _ _ _ _ _ _ => idpath) (fun _ _ _ _ _ _ _ => idpath) (fun _ _ f => match f with tt => idpath end) (fun _ _ f => match f with tt => idpath end) (fun _ => idpath) _.
Definition
Require Import Functor.Core Category.Strict Category.Univalent Category.Morphisms. Require Import Types.Unit Trunc HoTT.Tactics Equivalences.
Categories\IndiscreteCategory.v
indiscrete_category
1,863
`{H : IsHSet X} : IsStrictCategory (indiscrete_category X) := H. Global Instance iscategory_indiscrete_category `{H : IsHProp X} : IsCategory (indiscrete_category X). Proof. intros. eapply (isequiv_adjointify (idtoiso (indiscrete_category X) (x := s) (y := d)) (fun _ => center _)); abstract ( repeat intro; destruct_head_hnf @Isomorphic; destruct_head_hnf @IsIsomorphism; destruct_head_hnf @Unit; path_induction_hammer ). Defined.
Definition
Require Import Functor.Core Category.Strict Category.Univalent Category.Morphisms. Require Import Types.Unit Trunc HoTT.Tactics Equivalences.
Categories\IndiscreteCategory.v
isstrict_indiscrete_category
1,864
Functor C (indiscrete_category X) := Build_Functor C (indiscrete_category X) objOf (fun _ _ _ => tt) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import Functor.Core Category.Strict Category.Univalent Category.Morphisms. Require Import Types.Unit Trunc HoTT.Tactics Equivalences.
Categories\IndiscreteCategory.v
to
1,865
(n : nat) : Type0 := match n with | 0 => Empty | 1 => Unit | S n' => n' + Unit end. Coercion : nat >-> Sortclass. Global Instance trunc_cardinality_representative (n : nat) : IsHSet ( n). Proof. induction n; [ typeclasses eauto |]. induction n; [ typeclasses eauto |]. apply istrunc_S. intros [x|x] [y|y]; typeclasses eauto. Qed.
Fixpoint
Require Import Category.Core DiscreteCategory IndiscreteCategory. Require Import Types.Unit Trunc Types.Sum Types.Empty. Require Import Basics.Nat.
Categories\NatCategory.v
CardinalityRepresentative
1,866
(n : nat) := match n with | 0 => indiscrete_category 0 | 1 => indiscrete_category 1 | S (S n') => discrete_category (S (S n')) end.
Definition
Require Import Category.Core DiscreteCategory IndiscreteCategory. Require Import Types.Unit Trunc Types.Sum Types.Empty. Require Import Basics.Nat.
Categories\NatCategory.v
nat_category
1,867
(C D : PreCategory) : Functor (C * D) (D * C) := Build_Functor (C * D) (D * C) (fun cd => (snd_type cd, fst_type cd)%core) (fun _ _ m => (snd_type m, fst_type m)%core) (fun _ _ _ _ _ => idpath) (fun _ => idpath).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
functor
1,868
(C D : PreCategory) : functor C D o functor D C = 1 := idpath.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
law
1,869
Functor (A * (B * C)) ((A * B) * C) := (fst * (fst o snd)) * (snd o snd).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
functor
1,870
Functor ((A * B) * C) (A * (B * C)) := (fst o fst) * ((snd o fst) * snd).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
inverse
1,871
functor o inverse = 1 /\ inverse o functor = 1 := (idpath, idpath)%core.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
law
1,872
Functor (C * 0) 0 := Functors.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
functor
1,873
functor' : Functor (0 * C) 0 := Functors.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
functor'
1,874
Functor 0 (C * 0) := Functors.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
inverse
1,875
inverse' : Functor 0 (0 * C) := Functors.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
inverse'
1,876
functor o inverse = 1 /\ inverse o functor = 1 := center _.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
law
1,877
law' : functor' o inverse' = 1 /\ inverse' o functor' = 1 := center _.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
law'
1,878
Functor (C * 1) C := fst.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
functor
1,879
functor' : Functor (1 * C) C := snd.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
functor'
1,880
Functor C (C * 1) := 1 * Functors.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
inverse
1,881
inverse' : Functor C (1 * C) := Functors.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
inverse'
1,882
functor o inverse = 1 /\ inverse o functor = 1. Proof. unfold functor, inverse. t_prod. Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
law1
1,883
law1' : functor' o inverse' = 1 /\ inverse' o functor' = 1. Proof. unfold functor', inverse'. t_prod. Qed.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Category.Core Functor.Core InitialTerminalCategory.Core InitialTerminalCategory.Functors Category.Prod Functor.Prod Functor.Composition.Core Functor.Identity Functor.Composition.Laws.
Categories\ProductLaws.v
law1'
1,884
PreCategory := wide simplex_category (@IsMonomorphism _) _ _ _.
Definition
Require Import Types Basics.Trunc. Require Import Category.Core Functor.Core. Require Import Category.Morphisms. Require Import Category.Dual FunctorCategory.Core. Require Import SetCategory.Core. Require Import SimplicialSets. Require Import Category.Sigma.OnMorphisms Category.Subcategory.Wide.
Categories\SemiSimplicialSets.v
semisimplex_category
1,885
semisimplex_category -> simplex_category := pr1_mor.
Definition
Require Import Types Basics.Trunc. Require Import Category.Core Functor.Core. Require Import Category.Morphisms. Require Import Category.Dual FunctorCategory.Core. Require Import SetCategory.Core. Require Import SimplicialSets. Require Import Category.Sigma.OnMorphisms Category.Subcategory.Wide.
Categories\SemiSimplicialSets.v
semisimplicial_inclusion_functor
1,886
(C : PreCategory) : PreCategory := semisimplex_category^op -> C.
Definition
Require Import Types Basics.Trunc. Require Import Category.Core Functor.Core. Require Import Category.Morphisms. Require Import Category.Dual FunctorCategory.Core. Require Import SetCategory.Core. Require Import SimplicialSets. Require Import Category.Sigma.OnMorphisms Category.Subcategory.Wide.
Categories\SemiSimplicialSets.v
semisimplicial_category
1,887
semisimplicial_category set_cat.
Definition
Require Import Types Basics.Trunc. Require Import Category.Core Functor.Core. Require Import Category.Morphisms. Require Import Category.Dual FunctorCategory.Core. Require Import SetCategory.Core. Require Import SimplicialSets. Require Import Category.Sigma.OnMorphisms Category.Subcategory.Wide.
Categories\SemiSimplicialSets.v
semisimplicial_set
1,888
semisimplicial_category prop_cat.
Definition
Require Import Types Basics.Trunc. Require Import Category.Core Functor.Core. Require Import Category.Morphisms. Require Import Category.Dual FunctorCategory.Core. Require Import SetCategory.Core. Require Import SimplicialSets. Require Import Category.Sigma.OnMorphisms Category.Subcategory.Wide.
Categories\SemiSimplicialSets.v
semisimplicial_prop
1,889
@Build_PreCategory nat Functor identity compose associativity left_identity right_identity _.
Definition
Require Import Basics Types Spaces.Nat.Core. Require Import Category.Core Functor.Core Functor.Paths. Require Import SetCategory.Core. Require Import ChainCategory FunctorCategory.Core. Require Import Category.Dual. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\SimplicialSets.v
simplex_category
1,890
(C : PreCategory) : PreCategory := simplex_category^op -> C.
Definition
Require Import Basics Types Spaces.Nat.Core. Require Import Category.Core Functor.Core Functor.Paths. Require Import SetCategory.Core. Require Import ChainCategory FunctorCategory.Core. Require Import Category.Dual. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\SimplicialSets.v
simplicial_category
1,891
simplicial_category set_cat.
Definition
Require Import Basics Types Spaces.Nat.Core. Require Import Category.Core Functor.Core Functor.Paths. Require Import SetCategory.Core. Require Import ChainCategory FunctorCategory.Core. Require Import Category.Dual. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\SimplicialSets.v
simplicial_set
1,892
simplicial_category prop_cat.
Definition
Require Import Basics Types Spaces.Nat.Core. Require Import Category.Core Functor.Core Functor.Paths. Require Import SetCategory.Core. Require Import ChainCategory FunctorCategory.Core. Require Import Category.Dual. Require Import Functor.Identity Functor.Composition.Core Functor.Composition.Laws.
Categories\SimplicialSets.v
simplicial_prop
1,893
(Ap : object (X / U)) := IsInitialObject (X / U) Ap.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism
1,894
(A : D) (p : morphism C X (U A)) (Ap := CommaCategory.Build_object !X U tt A p) (UniversalProperty : forall (A' : D) (p' : morphism C X (U A')), Contr { m : morphism D A A' | U _1 m o p = p' }) : IsInitialMorphism Ap. Proof. intro x. specialize (UniversalProperty (CommaCategory.b x) (CommaCategory.f x)). eapply istrunc_equiv_istrunc. - apply CommaCategory.issig_morphism. - apply contr_inhabited_hprop. + abstract univ_hprop_t UniversalProperty. + (exists tt). (exists (@center _ UniversalProperty).1). abstract (progress rewrite ?right_identity, ?left_identity; exact (@center _ UniversalProperty).2). Defined.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsInitialMorphism
1,895
(A : D) (p : morphism C X (U A)) (Ap := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsInitialMorphism_curried
1,896
(univ : { A : D | { p : morphism C X (U A) | let Ap := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsInitialMorphism_uncurried
1,897
forall (univ : { A : D | { p : morphism C X (U A) | let Ap := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
Build_IsInitialMorphism_uncurried
1,898
(M : IsInitialMorphism Ap) : D := CommaCategory.
Definition
Require Import Category.Core Functor.Core. Require Import Category.Dual Functor.Dual. Require Import Category.Objects. Require Import InitialTerminalCategory.Core InitialTerminalCategory.Functors. Import Comma.Core. Require Import Trunc Types.Sigma HoTT.Tactics. Require Import Basics.Tactics.
Categories\UniversalProperties.v
IsInitialMorphism_object
1,899