fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
posttensor I.
Definition
Require Import Basics.Utf8. Require Import Category.Core Category.Morphisms. Require Import Functor.Core Require Import NaturalTransformation.Core. Require Import FunctorCategory.Core FunctorCategory.Morphisms. Require Import ProductLaws.
Categories\Monoidal\MonoidalCategory.v
I_posttensor
2,400
NaturalIsomorphism I_pretensor 1.
Definition
Require Import Basics.Utf8. Require Import Category.Core Category.Morphisms. Require Import Functor.Core Require Import NaturalTransformation.Core. Require Import FunctorCategory.Core FunctorCategory.Morphisms. Require Import ProductLaws.
Categories\Monoidal\MonoidalCategory.v
left_unitor
2,401
NaturalIsomorphism I_posttensor 1. Close Scope functor_scope. Variable alpha : associator. Variable lambda : left_unitor. Variable rho : . Notation alpha_nat_trans := ((@morphism_isomorphic (C * (C * C) -> C)%category right_assoc left_assoc) alpha). Notation lambda_nat_trans := ((@morphism_isomorphic _ _ _) lambda). Notation rho_nat_trans := ((@morphism_isomorphic _ _ _) rho). Section coherence_laws. Variable a b c d : C. Local P1 : (a ⊗ (b ⊗ (c ⊗ d))) --> (a ⊗ ((b ⊗ c) ⊗ d)). Proof. apply (morphism_of tensor); split; simpl. - exact (Core.identity a). - exact (alpha_nat_trans (b, (c, d))). Defined.
Definition
Require Import Basics.Utf8. Require Import Category.Core Category.Morphisms. Require Import Functor.Core Require Import NaturalTransformation.Core. Require Import FunctorCategory.Core FunctorCategory.Morphisms. Require Import ProductLaws.
Categories\Monoidal\MonoidalCategory.v
right_unitor
2,402
P3 o P2 o P1 = P5 o P4. Close Scope morphism_scope. Local Q1 : (a ⊗ (I ⊗ b)) --> a ⊗ b. Proof. apply (morphism_of tensor); split; simpl. - exact (Core.identity a). - exact (lambda_nat_trans _). Defined.
Definition
Require Import Basics.Utf8. Require Import Category.Core Category.Morphisms. Require Import Functor.Core Require Import NaturalTransformation.Core. Require Import FunctorCategory.Core FunctorCategory.Morphisms. Require Import ProductLaws.
Categories\Monoidal\MonoidalCategory.v
pentagon_eq
2,403
Q1 = Q2.
Definition
Require Import Basics.Utf8. Require Import Category.Core Category.Morphisms. Require Import Functor.Core Require Import NaturalTransformation.Core. Require Import FunctorCategory.Core FunctorCategory.Morphisms. Require Import ProductLaws.
Categories\Monoidal\MonoidalCategory.v
triangle_eq
2,404
Record
Require Import Category.Core Functor.Core.
Categories\NaturalTransformation\Core.v
NaturalTransformation
2,405
CO COM := ' CO COM (fun _ _ _ => symmetry _ _ (COM _ _ _)).
Definition
Require Import Category.Core Functor.Core.
Categories\NaturalTransformation\Core.v
Build_NaturalTransformation
2,406
C D (F G : Functor C D) (T : NaturalTransformation F G) s d d' (m : morphism C s d) (m' : morphism D _ d') : (m' o T d) o F _1 m = (m' o G _1 m) o T s := ((Category.
Definition
Require Import Category.Core Functor.Core.
Categories\NaturalTransformation\Core.v
commutes_pT_F
2,407
C D (F G : Functor C D) (T : NaturalTransformation F G) s d d' (m : morphism C s d) (m' : morphism D d' _) : T d o (F _1 m o m') = G _1 m o (T s o m') := ((Category.
Definition
Require Import Category.Core Functor.Core.
Categories\NaturalTransformation\Core.v
commutes_T_Fp
2,408
C D (F G : Functor C D) (T : NaturalTransformation F G) : NaturalTransformation G^op F^op := Build_NaturalTransformation' (G^op) (F^op) (components_of T) (fun s d => commutes_sym T d s) (fun s d => commutes T d s).
Definition
Import Category.Dual.CategoryDualNotations Functor.Dual.FunctorDualNotations. Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Dual.v
opposite
2,409
C D (F G : Functor C D) (T : NaturalTransformation F G) : (T^op)^op = T := idpath.
Definition
Import Category.Dual.CategoryDualNotations Functor.Dual.FunctorDualNotations. Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Dual.v
opposite_involutive
2,410
s d (m : morphism C s d) : CO d o F _1 m = G _1 m o CO s. Proof. case HM. case HO. exact (left_identity _ _ _ _ @ (right_identity _ _ _ _)^). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Identity.v
generalized_identity_commutes
2,411
s d (m : morphism C s d) : G _1 m o CO s = CO d o F _1 m. Proof. case HM. case HO. exact (right_identity _ _ _ _ @ (left_identity _ _ _ _)^). Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Identity.v
generalized_identity_commutes_sym
2,412
NaturalTransformation F G := Build_NaturalTransformation' F G (fun c => CO c) generalized_identity_commutes generalized_identity_commutes_sym.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Identity.v
generalized_identity
2,413
generalized_identity' : NaturalTransformation F G. Proof. apply (generalized_identity F G (ap (@object_of C D) H)). case H. reflexivity. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Identity.v
generalized_identity'
2,414
(F : Functor C D) : NaturalTransformation F F := Eval simpl in @generalized_identity F F 1 1.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Identity.v
identity
2,415
C D (F G : Functor C D) (T' : F = G) x : (Category.Morphisms.idtoiso (_ -> _) T' : morphism _ _ _) x = Category.Morphisms.idtoiso _ (ap10 (ap object_of T') x). Proof. destruct T'. reflexivity. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
idtoiso_components_of
2,416
C D (F F' F'' : Functor C D) (T' : F' = F'') (T : F = F') : ((Category.Morphisms.idtoiso (_ -> _) T' : morphism _ _ _) o (Category.Morphisms.idtoiso (_ -> _) T : morphism _ _ _))%natural_transformation = (Category.Morphisms.idtoiso (_ -> _) (T @ T')%path : morphism _ _ _). Proof. path_natural_transformation; path_induction; simpl; auto with morphism. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
idtoiso_compose
2,417
C D E (F : Functor D E) (G G' : Functor C D) (T : G = G') : whisker_l F (Category.Morphisms.idtoiso (_ -> _) T : morphism _ _ _) = (Category.Morphisms.idtoiso (_ -> _) (ap _ T) : morphism _ _ _). Proof. path_natural_transformation; path_induction; simpl; auto with functor. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
idtoiso_whisker_l
2,418
C D E (F F' : Functor D E) (T : F = F') (G : Functor C D) : whisker_r (Category.Morphisms.idtoiso (_ -> _) T : morphism _ _ _) G = (Category.Morphisms.idtoiso (_ -> _) (ap (fun _ => _ o _)%functor T) : morphism _ _ _). Proof. path_natural_transformation; path_induction; simpl; auto with functor. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
idtoiso_whisker_r
2,419
`{IsIsomorphism C s d m} D (F G : Functor C D) (T : NaturalTransformation F G) : (G _1 m)^-1 o (T d o F _1 m) = T s. Proof. apply iso_moveR_Vp. apply commutes. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
path_components_of_isisomorphism
2,420
path_components_of_isisomorphism' `{IsIsomorphism C s d m} D (F G : Functor C D) (T : NaturalTransformation F G) : (G _1 m o T s) o (F _1 m)^-1 = T d. Proof. apply iso_moveR_pV. symmetry. apply commutes. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
path_components_of_isisomorphism'
2,421
`(m : @Isomorphic C s d) D (F G : Functor C D) (T : NaturalTransformation F G) : (G _1 m)^-1 o (T d o F _1 m) = T s := @path_components_of_isisomorphism _ _ _ m m D F G T.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
path_components_of_isomorphic
2,422
path_components_of_isomorphic' `(m : @Isomorphic C s d) D (F G : Functor C D) (T : NaturalTransformation F G) : (G _1 m o T s) o (F _1 m)^-1 = T d := @path_components_of_isisomorphism' _ _ _ m m D F G T.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import NaturalTransformation.Composition.Core. Require Import Functor.Composition.Core. Require Import Category.Morphisms. Require Import FunctorCategory.Core. Require Import NaturalTransformation.Paths. Require Import Basics.Tactics.
Categories\NaturalTransformation\Isomorphisms.v
path_components_of_isomorphic'
2,423
{ CO : forall x, morphism D (F x) (G x) | forall s d (m : morphism C s d), CO d o F _1 m = G _1 m o CO s } <~> NaturalTransformation F G. Proof. let build := constr:(@Build_NaturalTransformation _ _ F G) in let pr1 := constr:(@components_of _ _ F G) in let pr2 := constr:(@commutes _ _ F G) in apply (equiv_adjointify (fun u => build u.1 u.2) (fun v => (pr1 v; pr2 v))); hnf; [ intros []; intros; simpl; expand; f_ap; exact (center _) | intros; apply eta_sigma ]. Defined.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
equiv_sig_natural_transformation
2,424
components_of T = components_of U -> T = U. Proof. intros. destruct T, U; simpl in *. path_induction. f_ap; refine (center _). Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
path'_natural_transformation
2,425
components_of T == components_of U -> T = U. Proof. intros. apply path'_natural_transformation. apply path_forall; assumption. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
path_natural_transformation
2,426
path_inv o path_natural_transformation == idmap. Proof. repeat intro. refine (center _). Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
eisretr_path_natural_transformation
2,427
path_natural_transformation o path_inv == idmap. Proof. repeat intro. refine (center _). Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
eissect_path_natural_transformation
2,428
forall x, @eisretr_path_natural_transformation (path_inv x) = ap path_inv (eissect_path_natural_transformation x). Proof. repeat intro. refine (center _). Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
eisadj_path_natural_transformation
2,429
T = U <~> (components_of T == components_of U). Proof. econstructor. econstructor. exact eisadj_path_natural_transformation. Defined.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Equivalences HoTT.Types Trunc Basics.Tactics.
Categories\NaturalTransformation\Paths.v
equiv_path_natural_transformation
2,430
(F G : Functor C D) (T : NaturalTransformation F G) (F' : Functor C' D') : NaturalTransformation (pointwise F F') (pointwise G F'). Proof. refine (Build_NaturalTransformation (pointwise F F') (pointwise G F') (fun f : object (D -> C') => (F' o f) oL T)%natural_transformation _). abstract t. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Pointwise.Core.
Categories\NaturalTransformation\Pointwise.v
pointwise_l
2,431
(F : Functor C D) (F' G' : Functor C' D') (T' : NaturalTransformation F' G') : NaturalTransformation (pointwise F F') (pointwise F G'). Proof. refine (Build_NaturalTransformation (pointwise F F') (pointwise F G') (fun f : object (D -> C') => T' oR f oR F)%natural_transformation _). abstract t. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import FunctorCategory.Core NaturalTransformation.Paths Functor.Composition.Core NaturalTransformation.Composition.Core. Require Import Functor.Pointwise.Core.
Categories\NaturalTransformation\Pointwise.v
pointwise_r
2,432
NaturalTransformation (F * G) (F' * G') := Build_NaturalTransformation (F * G) (F' * G') (fun x : A => (T x, U x)) (fun _ _ _ => path_prod' (commutes T _ _ _) (commutes U _ _ _)).
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Prod.Core NaturalTransformation.Core. Require Import Types.Prod.
Categories\NaturalTransformation\Prod.v
prod
2,433
s d (m : morphism C s d) : NaturalTransformation (Functor.Prod.Core.induced_snd F s) (Functor.Prod.Core.induced_snd F d). Proof. let F0 := match goal with |- NaturalTransformation ?F0 ?G0 => constr:(F0) end in let G0 := match goal with |- NaturalTransformation ?F0 ?G0 => constr:(G0) end in refine (Build_NaturalTransformation F0 G0 (fun d => @morphism_of _ _ F (_, _) (_, _) (m, @identity D d)) _). abstract t. Defined.
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Prod.Core NaturalTransformation.Core. Require Import Types.Prod.
Categories\NaturalTransformation\Prod.v
induced_fst
2,434
s d (m : morphism D s d) : NaturalTransformation (Functor.Prod.Core.induced_fst F s) (Functor.Prod.Core.induced_fst F d). Proof. let F0 := match goal with |- NaturalTransformation ?F0 ?G0 => constr:(F0) end in let G0 := match goal with |- NaturalTransformation ?F0 ?G0 => constr:(G0) end in refine (Build_NaturalTransformation F0 G0 (fun c => @morphism_of _ _ F (_, _) (_, _) (@identity C c, m)) _). abstract t. Defined.
Definition
Require Import Category.Core Functor.Core Category.Prod Functor.Prod.Core NaturalTransformation.Core. Require Import Types.Prod.
Categories\NaturalTransformation\Prod.v
induced_snd
2,435
C C' D F G F' G' (T : @NaturalTransformation C D F G) (T' : @NaturalTransformation C' D F' G') : NaturalTransformation (F + F') (G + G'). Proof. refine (Build_NaturalTransformation (F + F') (G + G') (fun x => match x with | Basics.Overture.inl c => T c | Basics.Overture.inr c' => T' c' end) _). abstract ( repeat (intros [] || intro); simpl; auto with natural_transformation ). Defined.
Definition
Require Import Category.Sum Functor.Sum NaturalTransformation.Core.
Categories\NaturalTransformation\Sum.v
sum
2,436
s d (m : morphism C s d) : CO d o F _1 m = F'' _1 m o CO s := (associativity _ _ _ _ _ _ _ _) @ ap (fun x => _ o x) (commutes T _ _ m) @ (associativity_sym _ _ _ _ _ _ _ _) @ ap (fun x => x o _) (commutes T' _ _ m) @ (associativity _ _ _ _ _ _ _ _).
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
compose_commutes
2,437
s d (m : morphism C s d) : F'' _1 m o CO s = CO d o F _1 m := (associativity_sym _ _ _ _ _ _ _ _) @ ap (fun x => x o _) (commutes_sym T' _ _ m) @ (associativity _ _ _ _ _ _ _ _) @ ap (fun x => _ o x) (commutes_sym T _ _ m) @ (associativity_sym _ _ _ _ _ _ _ _).
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
compose_commutes_sym
2,438
NaturalTransformation F F'' := Build_NaturalTransformation' F F'' (fun c => CO c) compose_commutes compose_commutes_sym.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
compose
2,439
s d (m : morphism C s d) : F _1 (T d) o (F o G) _1 m = (F o G') _1 m o F _1 (T s) := ((composition_of F _ _ _ _ _)^) @ (ap (fun m => F _1 m) (commutes T _ _ _)) @ (composition_of F _ _ _ _ _).
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
whisker_l_commutes
2,440
s d (m : morphism C s d) : (F o G') _1 m o F _1 (T s) = F _1 (T d) o (F o G) _1 m := ((composition_of F _ _ _ _ _)^) @ (ap (fun m => F _1 m) (commutes_sym T _ _ _)) @ (composition_of F _ _ _ _ _).
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
whisker_l_commutes_sym
2,441
Build_NaturalTransformation' (F o G) (F o G') (fun c => CO c) whisker_l_commutes whisker_l_commutes_sym.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
whisker_l
2,442
s d (m : morphism C s d) : T (G d) o (F o G) _1 m = (F' o G) _1 m o T (G s) := commutes T _ _ _.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
whisker_r_commutes
2,443
s d (m : morphism C s d) : (F' o G) _1 m o T (G s) = T (G d) o (F o G) _1 m := commutes_sym T _ _ _.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
whisker_r_commutes_sym
2,444
Build_NaturalTransformation' (F o G) (F' o G) (fun c => CO c) whisker_r_commutes whisker_r_commutes_sym.
Definition
Require Import Category.Core Functor.Core Functor.Composition.Core NaturalTransformation.Core.
Categories\NaturalTransformation\Composition\Core.v
whisker_r
2,445
(F : (D -> E)%category) : ((C -> D) -> (C -> E))%category := Build_Functor (C -> D) (C -> E) (fun G => F o G)%functor (fun _ _ T => F oL T) (fun _ _ _ _ _ => composition_of_whisker_l _ _ _) (fun _ => whisker_l_right_identity _ _).
Definition
Require Import Category.Core Functor.Core. Require Import FunctorCategory.Core Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws.
Categories\NaturalTransformation\Composition\Functorial.v
whiskerL_functor
2,446
(G : (C -> D)%category) : ((D -> E) -> (C -> E))%category := Build_Functor (D -> E) (C -> E) (fun F => F o G)%functor (fun _ _ T => T oR G) (fun _ _ _ _ _ => composition_of_whisker_r _ _ _) (fun _ => whisker_r_left_identity _ _).
Definition
Require Import Category.Core Functor.Core. Require Import FunctorCategory.Core Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws.
Categories\NaturalTransformation\Composition\Functorial.v
whiskerR_functor
2,447
(F F' : Functor C D) (T : NaturalTransformation F F') : 1 o T = T. Proof. path_natural_transformation; auto with morphism. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
left_identity
2,448
(F F' : Functor C D) (T : NaturalTransformation F F') : T o 1 = T. Proof. path_natural_transformation; auto with morphism. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
right_identity
2,449
E (G : Functor D E) (F : Functor C D) : identity G oR F = 1. Proof. path_natural_transformation; auto with morphism. Qed.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
whisker_r_left_identity
2,450
E (G : Functor D E) (F : Functor C D) : G oL identity F = 1. Proof. path_natural_transformation; auto with functor. Qed.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
whisker_l_right_identity
2,451
(G' oL T) o (T' oR F) = (T' oR F') o (G oL T). Proof. path_natural_transformation; simpl. symmetry. apply NaturalTransformation.Core.commutes. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
exchange_whisker
2,452
E (I : Functor D E) : I oL (T o T') = (I oL T) o (I oL T'). Proof. path_natural_transformation; apply composition_of. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
composition_of_whisker_l
2,453
B (I : Functor B C) : (T o T') oR I = (T oR I) o (T' oR I). Proof. path_natural_transformation; apply idpath. Qed.
Lemma
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
composition_of_whisker_r
2,454
NaturalTransformation F0 F1 := Eval simpl in generalized_identity F0 F1 idpath idpath.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
associator_1
2,455
NaturalTransformation F1 F0 := Eval simpl in generalized_identity F1 F0 idpath idpath.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
associator_2
2,456
C D F G H I (V : @NaturalTransformation C D F G) (U : @NaturalTransformation C D G H) (T : @NaturalTransformation C D H I) : (T o U) o V = T o (U o V). Proof. path_natural_transformation. apply . Qed.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
associativity
2,457
NaturalTransformation (1 o F) F := Eval simpl in generalized_identity (1 o F) F idpath idpath.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
left_identity_natural_transformation_1
2,458
NaturalTransformation F (1 o F) := Eval simpl in generalized_identity F (1 o F) idpath idpath.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
left_identity_natural_transformation_2
2,459
left_identity_natural_transformation_1 o left_identity_natural_transformation_2 = 1 /\ left_identity_natural_transformation_2 o left_identity_natural_transformation_1 = 1. Proof. nt_id_t. Qed.
Theorem
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
left_identity_isomorphism
2,460
NaturalTransformation (F o 1) F := Eval simpl in generalized_identity (F o 1) F idpath idpath.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
right_identity_natural_transformation_1
2,461
NaturalTransformation F (F o 1) := Eval simpl in generalized_identity F (F o 1) idpath idpath.
Definition
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
right_identity_natural_transformation_2
2,462
right_identity_natural_transformation_1 o right_identity_natural_transformation_2 = 1 /\ right_identity_natural_transformation_2 o right_identity_natural_transformation_1 = 1. Proof. nt_id_t. Qed.
Theorem
Require Import Category.Core Functor.Core Functor.Identity Functor.Composition.Core NaturalTransformation.Core NaturalTransformation.Identity NaturalTransformation.Composition.Core NaturalTransformation.Paths.
Categories\NaturalTransformation\Composition\Laws.v
right_identity_isomorphism
2,463
Functor (D^op * C) set_cat.
Definition
Require Import Category.Core Functor.Core Category.Prod Category.Dual SetCategory.Core.
Categories\Profunctor\Core.v
Profunctor
2,464
`{Funext} (C : PreCategory) : C -|-> C := hom_functor C.
Definition
Require Import Category.Core Profunctor.Core HomFunctor.
Categories\Profunctor\Identity.v
identity
2,465
C D (F : Functor C D) : C -|-> D := 1%profunctor o (1, F).
Definition
Require Import Category.Core Functor.Core Functor.Prod.Core Profunctor.Core Functor.Dual Profunctor.Identity Functor.Composition.Core Functor.Identity.
Categories\Profunctor\Representable.v
representable
2,466
C D (F : Functor C D) : D -|-> C := 1%profunctor o (F^op, 1).
Definition
Require Import Category.Core Functor.Core Functor.Prod.Core Profunctor.Core Functor.Dual Profunctor.Identity Functor.Composition.Core Functor.Identity.
Categories\Profunctor\Representable.v
corepresentable
2,467
Record
Require Import Category.Core Functor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core Functor.Identity. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import FunctorCategory.Core.
Categories\Pseudofunctor\Core.v
Pseudofunctor
2,468
A B (F1 F2 : Functor A B) (pf1 pf2 : F1 = F2) : P A -> P B -> pf1 = pf2 := fun PA PB => @path_ishprop _ (@HP A B PA PB F1 F2) _ _.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
path_functor_helper
2,469
{x0 x1 x2 x : PreCategory} {x7 x11 : Functor x0 x1} {x12 : x7 = x11} {x6 : Functor x0 x2} {x9 : Functor x2 x1} {x14 : x11 = (x9 o x6)%functor} {x4 : Functor x0 x} {x5 : Functor x x1} {x8 : x7 = (x5 o x4)%functor} {x10 : Functor x x2} {x13 : x6 = (x10 o x4)%functor} {x15 : x5 = (x9 o x10)%functor} (H0' : P x0) (H1' : P x1) (H2' : P x2) (H' : P x) : ((associator_1 x9 x10 x4) o ((idtoiso (x -> x1) x15 : morphism _ _ _) oR x4 o (idtoiso (x0 -> x1) x8 : morphism _ _ _)))%natural_transformation = (x9 oL (idtoiso (x0 -> x2) x13 : morphism _ _ _) o ((idtoiso (x0 -> x1) x14 : morphism _ _ _) o (idtoiso (x0 -> x1) x12 : morphism _ _ _)))%natural_transformation. Proof. clear F. symmetry; simpl; pseudofunctor_t. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
pseudofunctor_of_functor__composition_of
2,470
{x0 x : PreCategory} {x2 : Functor x x} {x3 : x2 = 1%functor} {x4 x5 : Functor x0 x} {x6 : x4 = x5} {x7 : x4 = (x2 o x5)%functor} (H0' : P x0) (H' : P x) : ((Category.Morphisms.idtoiso (x -> x) x3 : morphism _ _ _) oR x5 o (Category.Morphisms.idtoiso (x0 -> x) x7 : morphism _ _ _))%natural_transformation = ((NaturalTransformation.Composition.Laws.left_identity_natural_transformation_2 x5) o (Category.Morphisms.idtoiso (x0 -> x) x6 : morphism _ _ _))%natural_transformation. Proof. clear F. simpl; pseudofunctor_t. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
pseudofunctor_of_functor__left_identity_of
2,471
{x0 x : PreCategory} {x4 : Functor x0 x0} {x5 : x4 = 1%functor} {x2 x3 : Functor x0 x} {x6 : x2 = x3} {x7 : x2 = (x3 o x4)%functor} (H0' : P x0) (H' : P x) : (x3 oL (Category.Morphisms.idtoiso (x0 -> x0) x5 : morphism _ _ _) o (Category.Morphisms.idtoiso (x0 -> x) x7 : morphism _ _ _))%natural_transformation = ((NaturalTransformation.Composition.Laws.right_identity_natural_transformation_2 x3) o (Category.Morphisms.idtoiso (x0 -> x) x6 : morphism _ _ _))%natural_transformation. Proof. clear F. simpl; pseudofunctor_t. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
pseudofunctor_of_functor__right_identity_of
2,472
Pseudofunctor C := Build_Pseudofunctor C (fun x => pr1 (F x)) (fun s d m => F _1 m) (fun s d d' m0 m1 => Category.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
pseudofunctor_of_functor
2,473
`{Funext} {C} `{HP : forall C D, P C -> P D -> IsHSet (Functor C D)} := Functor C (@sub_pre_cat _ P HP).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
FunctorToCat
2,474
`(F : @FunctorToCat H C P HP) := @pseudofunctor_of_functor _ C P HP F.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Functor.Composition.Core NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import Functor.Identity. Require Import Pseudofunctor.Core. Require Import Cat.Core. Require Import FunctorCategory.Core. Require Import FunctorCategory.Morphisms NaturalTransformation.Isomorphisms. Require Import Category.Morphisms NaturalTransformation.Paths. Require Import Basics.PathGroupoids Basics.Trunc.
Categories\Pseudofunctor\FromFunctor.v
pseudofunctor_of_functor_to_cat
2,475
(w x y z : PreCategory) (f : Functor w x) (g : Functor x y) (h : Functor y z) : associator_1 h g f o (1 oR f o 1) = h oL 1 o (1 o @morphism_isomorphic _ _ _ (idtoiso (w -> z) (ap idmap (Functor.Composition.Laws.associativity f g h)))). Proof. t. Defined.
Lemma
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import Cat.Core. Require Import Pseudofunctor.Core. Import NaturalTransformation.Identity. Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Import Category.Morphisms. Import FunctorCategory.Core. Require Import PathGroupoids.
Categories\Pseudofunctor\Identity.v
identity_associativity
2,476
(x y : PreCategory) (f : Functor x y) : 1 oR f o 1 = (left_identity_natural_transformation_2 f) o @morphism_isomorphic _ _ _ (idtoiso (x -> y) (ap idmap (Functor.Composition.Laws.left_identity f))). Proof. t. Defined.
Lemma
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import Cat.Core. Require Import Pseudofunctor.Core. Import NaturalTransformation.Identity. Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Import Category.Morphisms. Import FunctorCategory.Core. Require Import PathGroupoids.
Categories\Pseudofunctor\Identity.v
identity_left_identity
2,477
(x y : PreCategory) (f : Functor x y) : f oL 1 o 1 = (right_identity_natural_transformation_2 f) o @morphism_isomorphic _ _ _ (idtoiso (x -> y) (ap idmap (Functor.Composition.Laws.right_identity f))). Proof. t. Defined.
Lemma
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import Cat.Core. Require Import Pseudofunctor.Core. Import NaturalTransformation.Identity. Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Import Category.Morphisms. Import FunctorCategory.Core. Require Import PathGroupoids.
Categories\Pseudofunctor\Identity.v
identity_right_identity
2,478
Pseudofunctor cat := Build_Pseudofunctor cat (fun C => C.
Definition
Require Import FunctorCategory.Morphisms. Require Import Category.Core Functor.Core. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import Cat.Core. Require Import Pseudofunctor.Core. Import NaturalTransformation.Identity. Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Import Category.Morphisms. Import FunctorCategory.Core. Require Import PathGroupoids.
Categories\Pseudofunctor\Identity.v
identity
2,479
w x y z (f : morphism C w x) (g : morphism C x y) (h : morphism C y z) (p p0 p1 p2 : PreCategory) (f0 : morphism C w z -> Functor p2 p1) (f1 : Functor p0 p1) (f2 : Functor p2 p) (f3 : Functor p p0) (f4 : Functor p2 p0) `(@IsIsomorphism (_ -> _) f4 (f3 o f2)%functor n) `(@IsIsomorphism (_ -> _) (f0 (h o (g o f))%morphism) (f1 o f4)%functor n0) : @paths (NaturalTransformation _ _) (@morphism_isomorphic _ _ _ (Category.Morphisms.idtoiso (p2 -> p1) (ap f0 (Category.Core.associativity C w x y z f g h)))) (n0^-1 o ((f1 oL n^-1) o ((f1 oL n) o (n0 o (@morphism_isomorphic _ _ _ (Category.Morphisms.idtoiso (p2 -> p1) (ap f0 (Category.Core.associativity C w x y z f g h))))))))%natural_transformation. Proof. simpl in *. let C := match goal with |- @paths (@NaturalTransformation ?C ?D ?F ?G) _ _ => constr:((C -> D)%category) end in apply (@iso_moveL_Vp C); apply (@iso_moveL_Mp C _ _ _ _ _ _ (iso_whisker_l _ _ _ _ _ _ _)). path_natural_transformation. reflexivity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_for_rewrite_helper
2,480
p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper' : @IsIsomorphism (_ -> _) _ _ (n2 ^-1 o (f2 oL n1 ^-1 o (associator_1 f2 f1 f3 o (n0 oR f3 o n))))%natural_transformation. Proof. eapply isisomorphism_compose; [ eapply isisomorphism_inverse | eapply isisomorphism_compose; [ eapply iso_whisker_l; eapply isisomorphism_inverse | eapply isisomorphism_compose; [ typeclasses eauto | eapply isisomorphism_compose; [ eapply iso_whisker_r; typeclasses eauto | typeclasses eauto ] ] ] ]. Defined.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper'
2,481
Eval hnf in '.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper
2,482
X (H' : X = @Build_Isomorphic (_ -> _) _ _ _ p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper) : @morphism_inverse _ _ _ _ X = inv := ap (fun i => @morphism_inverse _ _ _ _ (@isisomorphism_isomorphic _ _ _ i)) H'.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper__to_inverse
2,483
w x y z (f : morphism C w x) (g : morphism C x y) (h : morphism C y z) : (Category.Morphisms.idtoiso (_ -> _) (ap (@p_morphism_of _ _ F w z) (Category.Core.associativity C w x y z f g h))) = @Build_Isomorphic (_ -> _) _ _ ((((p_composition_of F w y z h (g o f))^-1) o ((p_morphism_of F h oL (p_composition_of F w x y g f)^-1) o ((associator_1 (p_morphism_of F h) (p_morphism_of F g) (p_morphism_of F f)) o ((p_composition_of F x y z h g oR p_morphism_of F f) o p_composition_of F w x z (h o g) f)))))%natural_transformation p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper. Proof. apply path_isomorphic; simpl. simpl rewrite (@p_composition_of_coherent _ C F w x y z f g h). exact p_composition_of_coherent_for_rewrite_helper. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_iso_for_rewrite
2,484
x y (f : morphism C x y) : (Category.Morphisms.idtoiso (_ -> _) (ap (@p_morphism_of _ _ F x y) (Category.Core.left_identity C x y f))) = @Build_Isomorphic (_ -> _) _ _ ((left_identity_natural_transformation_1 (p_morphism_of F f)) o ((p_identity_of F y oR p_morphism_of F f) o p_composition_of F x y y 1 f))%natural_transformation _. Proof. apply path_isomorphic; simpl. simpl rewrite (@p_left_identity_of_coherent _ C F x y f). path_natural_transformation. symmetry. etransitivity; apply Category.Core.left_identity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_left_identity_of_coherent_iso_for_rewrite
2,485
x y (f : morphism C x y) : (Category.Morphisms.idtoiso (_ -> _) (ap (@p_morphism_of _ _ F x y) (Category.Core.right_identity C x y f))) = @Build_Isomorphic (_ -> _) _ _ ((right_identity_natural_transformation_1 (p_morphism_of F f)) o ((p_morphism_of F f oL p_identity_of F x) o p_composition_of F x x y f 1))%natural_transformation _. Proof. apply path_isomorphic; simpl. simpl rewrite (@p_right_identity_of_coherent _ C F x y f). path_natural_transformation. symmetry. etransitivity; apply Category.Core.left_identity. Qed.
Lemma
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_right_identity_of_coherent_iso_for_rewrite
2,486
w x y z f g h : p_composition_of_coherent_for_rewrite_type w x y z f g h := ap (@morphism_isomorphic _ _ _) (@p_composition_of_coherent_iso_for_rewrite w x y z f g h).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_for_rewrite
2,487
w x y z f g h : p_composition_of_coherent_inverse_for_rewrite_type w x y z f g h := p_composition_of_coherent_iso_for_rewrite__isisomorphism_helper__to_inverse (p_composition_of_coherent_iso_for_rewrite w x y z f g h).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_composition_of_coherent_inverse_for_rewrite
2,488
x y f : p_left_identity_of_coherent_for_rewrite_type x y f := ap (@morphism_isomorphic _ _ _) (@p_left_identity_of_coherent_iso_for_rewrite x y f).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_left_identity_of_coherent_for_rewrite
2,489
x y f : p_left_identity_of_coherent_inverse_for_rewrite_type x y f := ap (fun i => @morphism_inverse _ _ _ _ (@isisomorphism_isomorphic _ _ _ i)) (@p_left_identity_of_coherent_iso_for_rewrite x y f).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_left_identity_of_coherent_inverse_for_rewrite
2,490
x y f : p_right_identity_of_coherent_for_rewrite_type x y f := Eval simpl in ap (@morphism_isomorphic _ _ _) (@p_right_identity_of_coherent_iso_for_rewrite x y f).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_right_identity_of_coherent_for_rewrite
2,491
x y f : p_right_identity_of_coherent_inverse_for_rewrite_type x y f := ap (fun i => @morphism_inverse _ _ _ _ (@isisomorphism_isomorphic _ _ _ i)) (@p_right_identity_of_coherent_iso_for_rewrite x y f).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Isomorphisms. Require Import NaturalTransformation.Paths. Require Import FunctorCategory.Core. Require Import Pseudofunctor.Core. Require Import HoTT.Tactics.
Categories\Pseudofunctor\RewriteLaws.v
p_right_identity_of_coherent_inverse_for_rewrite
2,492
PreCategory := (forall x : X, F x -> G x)%category.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
A
2,493
PreCategory := (forall x y (m : morphism X x y), F x -> G y)%category.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
B
2,494
PreCategory := (forall x y z (m1 : morphism X y z) (m2 : morphism X x y), F x -> G z)%category.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
C
2,495
Eval simpl in object A.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
a_part
2,496
Functor A B. Proof. refine (Build_Functor A B (fun x__Fx_to_Gx => fun x y m => x__Fx_to_Gx y o p_morphism_of F m)%functor (fun x__s x__d x__m => fun x y m => x__m y oR p_morphism_of F m) _ _); simpl; repeat (intro || apply path_forall); [ apply composition_of_whisker_r | apply whisker_r_left_identity ]. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
A_to_B_1
2,497
Functor A B. Proof. refine (Build_Functor A B (fun x__Fx_to_Gx => fun x y m => p_morphism_of G m o x__Fx_to_Gx x)%functor (fun x__s x__d x__m => fun x y m => p_morphism_of G m oL x__m x) _ _); simpl; repeat (intro || apply path_forall); [ apply composition_of_whisker_l | apply whisker_l_right_identity ]. Defined.
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
A_to_B_2
2,498
(a : a_part) := Eval simpl in forall x y m, (A_to_B_1 a x y m <~=~> A_to_B_2 a x y m).
Definition
Require Import Category.Core Functor.Core NaturalTransformation.Core. Require Import Pseudofunctor.Core. Require Import Category.Morphisms FunctorCategory.Morphisms. Require Import Functor.Composition.Core. Require Import NaturalTransformation.Composition.Core NaturalTransformation.Composition.Laws. Require Import NaturalTransformation.Identity.
Categories\PseudonaturalTransformation\Core.v
b_part
2,499