fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
{A : AbGroup} (m n : nat) (f : forall i j, (i < m)%nat -> (j < n)%nat -> A) : ab_sum m (fun i Hi => ab_sum n (fun j Hj => f i j Hi Hj)) = ab_sum n (fun j Hj => ab_sum m (fun i Hi => f i j Hi Hj)). Proof. induction n as [|n IHn] in m, f |- *. 1: by nrapply ab_sum_zero. lhs nrapply ab_sum_plus; cbn; f_ap. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Spaces.Nat.Core Spaces.Int. Require Import AbelianGroup.
Algebra\AbGroups\FiniteSum.v
ab_sum_sum
400
{A : AbGroup} {n : nat} {f g : forall k, (k < n)%nat -> A} (p : forall k Hk, f k Hk = g k Hk) : ab_sum n f = ab_sum n g. Proof. induction n as [|n IHn]. 1: reflexivity. cbn; f_ap. by apply IHn. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Spaces.Nat.Core Spaces.Int. Require Import AbelianGroup.
Algebra\AbGroups\FiniteSum.v
path_ab_sum
401
(S : Type) (F_S : AbGroup) (i : S -> F_S) (A : AbGroup) (g : S -> A) : Type := {f : F_S $-> A & f o i == g}.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Equivalences. Require Import Types.Sigma Types.Forall Types.Paths. Require Import WildCat.Core WildCat.EquivGpd WildCat.Universe. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Abelianization. Require Import Algebra.Groups.FreeGroup. Require Import Spaces.List.Core.
Algebra\AbGroups\FreeAbelianGroup.v
FactorsThroughFreeAbGroup
402
(S : Type) : AbGroup := abel (FreeGroup S).
Definition
Require Import Basics.Overture Basics.Tactics Basics.Equivalences. Require Import Types.Sigma Types.Forall Types.Paths. Require Import WildCat.Core WildCat.EquivGpd WildCat.Universe. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Abelianization. Require Import Algebra.Groups.FreeGroup. Require Import Spaces.List.Core.
Algebra\AbGroups\FreeAbelianGroup.v
FreeAbGroup
403
{S : Type} : S -> FreeAbGroup S := abel_unit o freegroup_in.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Equivalences. Require Import Types.Sigma Types.Forall Types.Paths. Require Import WildCat.Core WildCat.EquivGpd WildCat.Universe. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Abelianization. Require Import Algebra.Groups.FreeGroup. Require Import Spaces.List.Core.
Algebra\AbGroups\FreeAbelianGroup.v
freeabgroup_in
404
{S : Type} {A : AbGroup} (f : S -> A) : FreeAbGroup S $-> A := grp_homo_abel_rec (FreeGroup_rec _ _ f).
Definition
Require Import Basics.Overture Basics.Tactics Basics.Equivalences. Require Import Types.Sigma Types.Forall Types.Paths. Require Import WildCat.Core WildCat.EquivGpd WildCat.Universe. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Abelianization. Require Import Algebra.Groups.FreeGroup. Require Import Spaces.List.Core.
Algebra\AbGroups\FreeAbelianGroup.v
FreeAbGroup_rec
405
{S : Type} {A : AbGroup} (f : S -> A) : FreeAbGroup_rec f o freeabgroup_in == f := fun _ => idpath.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Equivalences. Require Import Types.Sigma Types.Forall Types.Paths. Require Import WildCat.Core WildCat.EquivGpd WildCat.Universe. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Abelianization. Require Import Algebra.Groups.FreeGroup. Require Import Spaces.List.Core.
Algebra\AbGroups\FreeAbelianGroup.v
FreeAbGroup_rec_beta_in
406
{X : Type} {A : AbGroup} {f f' : FreeAbGroup X $-> A} (p : forall x, f (freeabgroup_in x) = f' (freeabgroup_in x)) : f $== f'. Proof. snrapply abel_ind_homotopy. snrapply FreeGroup_ind_homotopy. snrapply p. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Equivalences. Require Import Types.Sigma Types.Forall Types.Paths. Require Import WildCat.Core WildCat.EquivGpd WildCat.Universe. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Abelianization. Require Import Algebra.Groups.FreeGroup. Require Import Spaces.List.Core.
Algebra\AbGroups\FreeAbelianGroup.v
FreeAbGroup_ind_homotopy
407
{A B : AbGroup} : FreeAbGroup (A * B) -> Type. Proof. intros x. refine ((exists (a1 a2 : A) (b : B), _) + exists (a : A) (b1 b2 : B), _)%type. - refine (- _ + (_ + _) = x). 1-3: apply freeabgroup_in. + exact (a1 + a2, b). + exact (a1, b). + exact (a2, b). - refine (- _ + (_ + _) = x). 1-3: apply freeabgroup_in. + exact (a, b1 + b2). + exact (a, b1). + exact (a, b2). Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
family_biadditive_pairs
408
{A B : AbGroup} : Subgroup (FreeAbGroup (A * B)) := subgroup_generated family_biadditive_pairs.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
subgroup_biadditive_pairs
409
(A B : AbGroup) : AbGroup := QuotientAbGroup (FreeAbGroup (A * B)) subgroup_biadditive_pairs.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod
410
{A B : AbGroup} : A -> B -> ab_tensor_prod A B := fun a b => grp_quotient_map (freeabgroup_in (a, b)).
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor
411
{A B : AbGroup} (a : A) (b b' : B) : tensor a (b + b') = tensor a b + tensor a b'. Proof. apply qglue, tr. apply sgt_in. right. by exists a, b, b'. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_dist_l
412
{A B : AbGroup} (a a' : A) (b : B) : tensor (a + a') b = tensor a b + tensor a' b. Proof. apply qglue, tr. apply sgt_in. left. by exists a, a', b. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_dist_r
413
{A B : AbGroup} (a : A) : B $-> ab_tensor_prod A B. Proof. snrapply Build_GroupHomomorphism. - exact (fun b => tensor a b). - intros b b'. nrapply tensor_dist_l. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
grp_homo_tensor_l
414
{A B : AbGroup} (b : B) : A $-> ab_tensor_prod A B. Proof. snrapply Build_GroupHomomorphism. - exact (fun a => tensor a b). - intros a a'. nrapply tensor_dist_r. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
grp_homo_tensor_r
415
{A B : AbGroup} (a : A) (b : B) : tensor (-a) b = - tensor a b := grp_homo_inv (grp_homo_tensor_r b) a.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_neg_l
416
{A B : AbGroup} (a : A) (b : B) : tensor a (-b) = - tensor a b := grp_homo_inv (grp_homo_tensor_l a) b.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_neg_r
417
{A B : AbGroup} (b : B) : tensor (A:=A) 0 b = 0 := grp_homo_unit (grp_homo_tensor_r b).
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_zero_l
418
{A B : AbGroup} (a : A) : tensor (B:=B) a 0 = 0 := grp_homo_unit (grp_homo_tensor_l a).
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_zero_r
419
`{Funext} {A B : AbGroup} : A $-> ab_hom B (ab_tensor_prod A B). Proof. snrapply Build_GroupHomomorphism. - intros a. snrapply Build_GroupHomomorphism. + exact (tensor a). + nrapply tensor_dist_l. - intros a a'. apply equiv_path_grouphomomorphism. intros b. nrapply tensor_dist_r. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
grp_homo_tensor
420
{A B C : AbGroup} (f : A -> B -> C) (l : forall a b b', f a (b + b') = f a b + f a b') (r : forall a a' b, f (a + a') b = f a b + f a' b) (x : FreeAbGroup (A * B)) (insg : subgroup_biadditive_pairs x) : grp_homo_abel_rec (FreeGroup_rec (A * B) C (uncurry f)) x = mon_unit. Proof. set (abel_rec := grp_homo_abel_rec (FreeGroup_rec (A * B) C (uncurry f))). strip_truncations. induction insg as [ x biad | | g h insg_g IHg insg_h IHh ]. - destruct biad as [ [ a [ a' [ b p ] ] ] | [ a [ b [ b' p ] ] ] ]. all: destruct p; simpl. all: apply grp_moveL_M1^-1%equiv; symmetry. 1: apply r. apply l. - nrapply grp_homo_unit. - rewrite grp_homo_op, grp_homo_inv. apply grp_moveL_1M^-1. exact (IHg @ IHh^). Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_rec_helper
421
{A B C : AbGroup} (f : A -> B -> C) (l : forall a b b', f a (b + b') = f a b + f a b') (r : forall a a' b, f (a + a') b = f a b + f a' b) : ab_tensor_prod A B $-> C. Proof. unfold ab_tensor_prod. snrapply grp_quotient_rec. - snrapply FreeAbGroup_rec. exact (uncurry f). - unfold normalsubgroup_subgroup. apply ab_tensor_prod_rec_helper; assumption. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_rec
422
ab_tensor_prod_rec' {A B C : AbGroup} (f : A -> (B $-> C)) (l : forall a a' b, f (a + a') b = f a b + f a' b) : ab_tensor_prod A B $-> C. Proof. refine (ab_tensor_prod_rec f _ l). intro a; apply grp_homo_op. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_rec'
423
{A B : AbGroup} (P : ab_tensor_prod A B -> Type) {H : forall x, IsHProp (P x)} (Hin : forall a b, P (tensor a b)) (Hop : forall x y, P x -> P y -> P (x + y)) : forall x, P x. Proof. unfold ab_tensor_prod. srapply grp_quotient_ind_hprop. srapply Abel_ind_hprop; cbn beta. set (tensor_in := grp_quotient_map $o abel_unit : FreeGroup (A * B) $-> ab_tensor_prod A B). change (forall x, P (tensor_in x)). srapply FreeGroup_ind_hprop'; intros w; cbn beta. induction w. - exact (transport P (tensor_zero_l 0) (Hin 0 0)). - change (P (tensor_in (freegroup_eta [a]%list + freegroup_eta w))). rewrite grp_homo_op. destruct a as [[a b]|[a b]]. + change (P (tensor_in (freegroup_in (a, b)) + tensor_in (freegroup_eta w))). apply Hop; trivial. apply Hin. + change (P (tensor_in (- freegroup_in (a, b)) + tensor_in (freegroup_eta w))). rewrite grp_homo_inv. apply Hop; trivial. rewrite <- tensor_neg_l. apply Hin. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_hprop
424
{A B G : AbGroup} {f f' : ab_tensor_prod A B $-> G} (H : forall a b, f (tensor a b) = f' (tensor a b)) : f $== f'. Proof. nrapply ab_tensor_prod_ind_hprop. - exact _. - exact H. - intros x y; apply grp_homo_op_agree. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_homotopy
425
{A B G : AbGroup} {f f' f'' : ab_tensor_prod A B $-> G} (H : forall a b, f (tensor a b) = f' (tensor a b) + f'' (tensor a b)) : forall x, f x = f' x + f'' x := ab_tensor_prod_ind_homotopy (f':=ab_homo_add f' f'') H.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_homotopy_plus
426
{A B C : AbGroup} (P : ab_tensor_prod A (ab_tensor_prod B C) -> Type) (H : forall x, IsHProp (P x)) (Hin : forall a b c, P (tensor a (tensor b c))) (Hop : forall x y, P x -> P y -> P (x + y)) : forall x, P x. Proof. rapply (ab_tensor_prod_ind_hprop P). - intros a. rapply (ab_tensor_prod_ind_hprop (fun x => P (tensor _ x))). + nrapply Hin. + intros x y Hx Hy. rewrite tensor_dist_l. by apply Hop. - exact Hop. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_hprop_triple
427
{A B C G : AbGroup} {f f' : ab_tensor_prod A (ab_tensor_prod B C) $-> G} (H : forall a b c, f (tensor a (tensor b c)) = f' (tensor a (tensor b c))) : f $== f'. Proof. nrapply ab_tensor_prod_ind_hprop_triple. - exact _. - exact H. - intros x y; apply grp_homo_op_agree. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_homotopy_triple
428
{A B C D : AbGroup} (P : ab_tensor_prod A (ab_tensor_prod B (ab_tensor_prod C D)) -> Type) (H : forall x, IsHProp (P x)) (Hin : forall a b c d, P (tensor a (tensor b (tensor c d)))) (Hop : forall x y, P x -> P y -> P (x + y)) : forall x, P x. Proof. rapply (ab_tensor_prod_ind_hprop P). - intros a. nrapply (ab_tensor_prod_ind_hprop_triple (fun x => P (tensor _ x))). + intro x; apply H. + nrapply Hin. + intros x y Hx Hy. rewrite tensor_dist_l. by apply Hop. - exact Hop. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_hprop_quad
429
{A B C D G : AbGroup} {f f' : ab_tensor_prod A (ab_tensor_prod B (ab_tensor_prod C D)) $-> G} (H : forall a b c d, f (tensor a (tensor b (tensor c d))) = f' (tensor a (tensor b (tensor c d)))) : f $== f'. Proof. nrapply (ab_tensor_prod_ind_hprop_quad (fun _ => _)). - exact _. - exact H. - intros x y; apply grp_homo_op_agree. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_ind_homotopy_quad
430
{A B C : Type} `{SgOp A, SgOp B, SgOp C} (f : A -> B -> C) : _ <~> IsBiadditive f := ltac:(issig). Global Instance istrunc_isbiadditive `{Funext} {A B C : Type} `{SgOp A, SgOp B, SgOp C} (f : A -> B -> C) n `{IsTrunc n.+1 C} : IsTrunc n (IsBiadditive f). Proof. nrapply istrunc_equiv_istrunc. 1: rapply . unfold IsSemiGroupPreserving. exact _. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
issig_IsBiadditive
431
(A B C : Type) `{SgOp A, SgOp B, SgOp C} := { biadditive_fun :> A -> B -> C; biadditive_isbiadditive :: IsBiadditive biadditive_fun; }.
Record
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
Biadditive
432
{A B C : Type} `{SgOp A, SgOp B, SgOp C} : _ <~> Biadditive A B C := ltac:(issig).
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
issig_Biadditive
433
{A B C : AbGroup} : (ab_tensor_prod A B $-> C) -> Biadditive A B C. Proof. intros f. exists (fun x y => f (tensor x y)). snrapply Build_IsBiadditive. - intros b a a'; simpl. lhs nrapply (ap f). 1: nrapply tensor_dist_r. nrapply grp_homo_op. - intros a a' b; simpl. lhs nrapply (ap f). 1: nrapply tensor_dist_l. nrapply grp_homo_op. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
biadditive_ab_tensor_prod
434
`{Funext} (A B C : AbGroup) : Biadditive A B C <~> (ab_tensor_prod A B $-> C). Proof. snrapply equiv_adjointify. - intros [f [l r]]. exact (ab_tensor_prod_rec f r (fun a a' b => l b a a')). - snrapply biadditive_ab_tensor_prod. - intros f. snrapply equiv_path_grouphomomorphism. snrapply ab_tensor_prod_ind_homotopy. intros a b; simpl. reflexivity. - intros [f [l r]]. snrapply (equiv_ap_inv' issig_Biadditive). rapply path_sigma_hprop; simpl. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
equiv_ab_tensor_prod_rec
435
{A B A' B' : AbGroup} (f : A $-> A') (g : B $-> B') : ab_tensor_prod A B $-> ab_tensor_prod A' B'. Proof. snrapply ab_tensor_prod_rec'. - intro a. exact (grp_homo_tensor_l (f a) $o g). - intros a a' b; hnf. rewrite grp_homo_op. nrapply tensor_dist_r. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
functor_ab_tensor_prod
436
{A B A' B' : AbGroup} {f f' : A $-> A'} (p : f $== f') {g g' : B $-> B'} (q : g $== g') : functor_ab_tensor_prod f g $== functor_ab_tensor_prod f' g'. Proof. snrapply ab_tensor_prod_ind_homotopy. intros a b; simpl. exact (ap011 tensor (p _) (q _)). Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
functor2_ab_tensor_prod
437
(A B : AbGroup) : functor_ab_tensor_prod (Id A) (Id B) $== Id (ab_tensor_prod A B). Proof. snrapply ab_tensor_prod_ind_homotopy. intros a b; simpl. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
functor_ab_tensor_prod_id
438
{A B C A' B' C' : AbGroup} (f : A $-> B) (g : B $-> C) (f' : A' $-> B') (g' : B' $-> C') : functor_ab_tensor_prod (g $o f) (g' $o f') $== functor_ab_tensor_prod g g' $o functor_ab_tensor_prod f f'. Proof. snrapply ab_tensor_prod_ind_homotopy. intros a b; simpl. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
functor_ab_tensor_prod_compose
439
{A B} : ab_tensor_prod A B $-> ab_tensor_prod B A. Proof. snrapply ab_tensor_prod_rec. - exact (flip tensor). - intros a b b'. apply tensor_dist_r. - intros a a' b. apply tensor_dist_l. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_swap
440
{A B} : ab_tensor_swap $o @ab_tensor_swap A B $== Id _. Proof. snrapply ab_tensor_prod_ind_homotopy. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_swap_swap
441
{A B A' B'} (f : A $-> A') (g : B $-> B') : ab_tensor_swap $o functor_ab_tensor_prod f g $== functor_ab_tensor_prod g f $o ab_tensor_swap. Proof. snrapply ab_tensor_prod_ind_homotopy. simpl. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_swap_natural
442
{A B C} : ab_tensor_prod A (ab_tensor_prod B C) $-> ab_tensor_prod B (ab_tensor_prod A C). Proof. snrapply ab_tensor_prod_rec'. - exact ab_tensor_prod_twist_map. - exact ab_tensor_prod_twist_map_additive_l. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_twist
443
{A B C} : ab_tensor_prod_twist $o @ab_tensor_prod_twist A B C $== Id _. Proof. snrapply ab_tensor_prod_ind_homotopy_triple. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_twist_twist
444
{A B C A' B' C'} (f : A $-> A') (g : B $-> B') (h : C $-> C') : ab_tensor_prod_twist $o fmap11 ab_tensor_prod f (fmap11 ab_tensor_prod g h) $== fmap11 ab_tensor_prod g (fmap11 ab_tensor_prod f h) $o ab_tensor_prod_twist. Proof. snrapply ab_tensor_prod_ind_homotopy_triple. intros a b c. change (tensor (g b) (tensor (f a) (h c)) = tensor (g b) (tensor (f a) (h c))). reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_twist_natural
445
{A B : AbGroup} (z : Int) (a : A) (b : B) : tensor (ab_mul z a) b = ab_mul z (tensor a b) := ab_mul_natural (grp_homo_tensor_r b) z a.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_ab_mul_l
446
{A B : AbGroup} (z : Int) (a : A) (b : B) : tensor a (ab_mul z b) = ab_mul z (tensor a b) := ab_mul_natural (grp_homo_tensor_l a) z b.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_ab_mul_r
447
{A B : AbGroup} (z : Int) (a : A) (b : B) : tensor (ab_mul z a) b = tensor a (ab_mul z b). Proof. rhs nrapply tensor_ab_mul_r. nrapply tensor_ab_mul_l. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
tensor_ab_mul
448
{A} : ab_tensor_prod A abgroup_Z $<~> A. Proof. symmetry. snrapply Build_GroupIsomorphism. - nrapply grp_homo_tensor_r. exact 1%int. - snrapply isequiv_adjointify. + snrapply ab_tensor_prod_rec'. * exact grp_pow_homo. * intros a a' z; cbn beta. nrapply (grp_homo_op (ab_mul z)). + hnf. change (forall x : ?A, (grp_homo_map ?f) ((grp_homo_map ?g) x) = x) with (f $o g $== Id _). snrapply ab_tensor_prod_ind_homotopy. intros a z. change (tensor (B:=abgroup_Z) (grp_pow a z) 1%int = tensor a z). lhs nrapply tensor_ab_mul. nrapply ap. lhs nrapply abgroup_Z_ab_mul. apply int_mul_1_r. + exact grp_unit_r. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_Z_r
449
A {B C} (f g : B $-> C) : ab_coeq (fmap01 ab_tensor_prod A f) (fmap01 ab_tensor_prod A g) $<~> ab_tensor_prod A (ab_coeq f g). Proof. snrapply cate_adjointify. - snrapply ab_coeq_rec. + rapply (fmap01 ab_tensor_prod A). nrapply ab_coeq_in. + refine (_^$ $@ fmap02 ab_tensor_prod _ _ $@ _). 1,3: rapply fmap01_comp. nrapply ab_coeq_glue. - snrapply ab_tensor_prod_rec'. + intros a. snrapply functor_ab_coeq. 1,2: snrapply (grp_homo_tensor_l a). 1,2: hnf; reflexivity. + intros a a'; cbn beta. srapply ab_coeq_ind_hprop. intros x. exact (ap (ab_coeq_in (f:=fmap01 ab_tensor_prod A f) (g:=fmap01 ab_tensor_prod A g)) (tensor_dist_r a a' x)). - snrapply ab_tensor_prod_ind_homotopy. intros a. srapply ab_coeq_ind_hprop. intros c. reflexivity. - snrapply ab_coeq_ind_homotopy. snrapply ab_tensor_prod_ind_homotopy. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
grp_iso_ab_tensor_prod_coeq_l
450
A {B C} (f g : B $-> C) : grp_iso_ab_tensor_prod_coeq_l A f g $o ab_coeq_in $== fmap01 ab_tensor_prod A ab_coeq_in. Proof. snrapply ab_tensor_prod_ind_homotopy. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_coeq_l_triangle
451
{A B} (f g : A $-> B) C : ab_coeq (fmap10 ab_tensor_prod f C) (fmap10 ab_tensor_prod g C) $<~> ab_tensor_prod (ab_coeq f g) C. Proof. refine (braide _ _ $oE _). nrefine (grp_iso_ab_tensor_prod_coeq_l _ f g $oE _). snrapply grp_iso_ab_coeq. 1,2: rapply braide. 1,2: symmetry; nrapply ab_tensor_swap_natural. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
grp_iso_ab_tensor_prod_coeq_r
452
{A B} (f g : A $-> B) C : grp_iso_ab_tensor_prod_coeq_r f g C $o ab_coeq_in $== fmap10 ab_tensor_prod ab_coeq_in C. Proof. snrapply ab_tensor_prod_ind_homotopy. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_coeq_r_triangle
453
X Y : FreeAbGroup (X * Y) $<~> ab_tensor_prod (FreeAbGroup X) (FreeAbGroup Y). Proof. srefine (let f:=_ in let g:=_ in cate_adjointify f g _ _). - snrapply FreeAbGroup_rec. intros [x y]. exact (tensor (freeabgroup_in x) (freeabgroup_in y)). - snrapply ab_tensor_prod_rec. + intros x. snrapply FreeAbGroup_rec. intros y; revert x. unfold FreeAbGroup. snrapply FreeAbGroup_rec. intros x. apply abel_unit. apply freegroup_in. exact (x, y). + intros x y y'. snrapply grp_homo_op. + intros x x'. rapply Abel_ind_hprop. snrapply (FreeGroup_ind_homotopy _ (f' := ab_homo_add _ _)). intros y. lhs nrapply FreeGroup_rec_beta. lhs nrapply grp_homo_op. snrapply (ap011 (+) _^ _^). 1,2: nrapply FreeGroup_rec_beta. - snrapply ab_tensor_prod_ind_homotopy. intros x. change (f $o g $o grp_homo_tensor_l x $== grp_homo_tensor_l x). rapply Abel_ind_hprop. change (@abel_in ?G) with (grp_homo_map (@abel_unit G)). repeat change (cat_comp (A:=AbGroup) ?f ?g) with (cat_comp (A:=Group) f g). change (forall y, grp_homo_map ?f (abel_unit y) = grp_homo_map ?g (abel_unit y)) with (cat_comp (A:=Group) f abel_unit $== cat_comp (A:=Group) g abel_unit). rapply FreeGroup_ind_homotopy. intros y; revert x. change (f $o g $o grp_homo_tensor_r (freeabgroup_in y) $== grp_homo_tensor_r (freeabgroup_in y)). rapply Abel_ind_hprop. change (@abel_in ?G) with (grp_homo_map (@abel_unit G)). repeat change (cat_comp (A:=AbGroup) ?f ?g) with (cat_comp (A:=Group) f g). change (forall y, grp_homo_map ?f (abel_unit y) = grp_homo_map ?g (abel_unit y)) with (cat_comp (A:=Group) f abel_unit $== cat_comp (A:=Group) g abel_unit). rapply FreeGroup_ind_homotopy. intros x. reflexivity. - rapply Abel_ind_hprop. change (GpdHom (A:=Hom(A:=Group) (FreeGroup (X * Y)) _) (cat_comp (A:=Group) (g $o f) (@abel_unit (FreeGroup (X * Y)))) (@abel_unit (FreeGroup (X * Y)))). snrapply FreeGroup_ind_homotopy. reflexivity. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
equiv_ab_tensor_prod_freeabgroup
454
{A B C : AbGroup} : ab_tensor_prod A (ab_biprod B C) $<~> ab_biprod (ab_tensor_prod A B) (ab_tensor_prod A C). Proof. srapply (let f := _ in let g := _ in cate_adjointify f g _ _). - snrapply ab_tensor_prod_rec. + intros a bc. exact (tensor a (fst bc), tensor a (snd bc)). + intros a bc bc'; cbn beta. snrapply path_prod'; snrapply tensor_dist_l. + intros a a' bc; cbn beta. snrapply path_prod; snrapply tensor_dist_r. - snrapply ab_biprod_rec. + exact (fmap01 ab_tensor_prod A ab_biprod_inl). + exact (fmap01 ab_tensor_prod A ab_biprod_inr). - snrapply ab_biprod_ind_homotopy. + refine (cat_assoc _ _ _ $@ (_ $@L _) $@ _). 1: snrapply ab_biprod_rec_beta_inl. snrapply ab_tensor_prod_ind_homotopy. intros a b. snrapply path_prod; simpl. * reflexivity. * snrapply tensor_zero_r. + refine (cat_assoc _ _ _ $@ (_ $@L _) $@ _). 1: snrapply ab_biprod_rec_beta_inr. snrapply ab_tensor_prod_ind_homotopy. intros a b. snrapply path_prod; simpl. * snrapply tensor_zero_r. * reflexivity. - snrapply ab_tensor_prod_ind_homotopy. intros a [b c]. lhs_V nrapply tensor_dist_l; simpl. snrapply ap. symmetry; apply grp_prod_decompose. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_dist_l
455
{A B C : AbGroup} : ab_tensor_prod (ab_biprod A B) C $<~> ab_biprod (ab_tensor_prod A C) (ab_tensor_prod B C). Proof. refine (emap11 ab_biprod (braide _ _) (braide _ _) $oE _ $oE braide _ _). snrapply ab_tensor_prod_dist_l. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import Types.Forall Types.Sigma Types.Prod. Require Import WildCat.Core WildCat.Equiv WildCat.Monoidal WildCat.Bifunctor. Require Import WildCat.NatTrans WildCat.MonoidalTwistConstruction. Require Import Algebra.Groups.Group Algebra.Groups.QuotientGroup. Require Import Algebra.AbGroups.AbelianGroup Algebra.AbGroups.Biproduct. Require Import Algebra.AbGroups.AbHom Algebra.AbGroups.FreeAbelianGroup. Require Import Algebra.AbGroups.Abelianization Algebra Algebra.Groups.FreeGroup. Require Import Colimits.Quotient. Require Import Spaces.List.Core Spaces.Int. Require Import AbGroups.Z. Require Import Truncations.
Algebra\AbGroups\TensorProduct.v
ab_tensor_prod_dist_r
456
abgroup_Z@{} : AbGroup@{Set}. Proof. snrapply Build_AbGroup'. - exact Int. - exact 0. - exact int_neg. - exact int_add. - exact _. - exact int_add_comm. - exact int_add_assoc. - exact int_add_0_l. - exact int_add_neg_l. Defined.
Definition
Require Import Basics. Require Import Spaces.Pos.Core Spaces.Int. Require Import Algebra.AbGroups.AbelianGroup.
Algebra\AbGroups\Z.v
abgroup_Z@
457
{G : Group} (g : G) : GroupHomomorphism abgroup_Z G. Proof. snrapply Build_GroupHomomorphism. 1: exact (grp_pow g). intros m n; apply grp_pow_add. Defined.
Definition
Require Import Basics. Require Import Spaces.Pos.Core Spaces.Int. Require Import Algebra.AbGroups.AbelianGroup.
Algebra\AbGroups\Z.v
grp_pow_homo
458
(z z' : Int) : ab_mul (A:=abgroup_Z) z z' = z * z'. Proof. induction z. - reflexivity. - cbn. lhs nrapply (grp_pow_succ (G:=abgroup_Z)). rhs nrapply int_mul_succ_l. f_ap. - cbn. lhs nrapply (grp_pow_pred (G:=abgroup_Z)). rhs nrapply int_mul_pred_l. f_ap. Defined.
Definition
Require Import Basics. Require Import Spaces.Pos.Core Spaces.Int. Require Import Algebra.AbGroups.AbelianGroup.
Algebra\AbGroups\Z.v
abgroup_Z_ab_mul
459
`{Univalence} {B A : AbGroup@{u}} (E F : AbSES B A) : AbSES B A := abses_pullback ab_diagonal (abses_pushout ab_codiagonal (abses_direct_sum E F)).
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_baer_sum
460
abses_pushout_is_pullback' `{Univalence} {A A' B B' : AbGroup@{u}} {E : AbSES B A} {E' : AbSES B' A'} (f : AbSESMorphism E E') : abses_pushout (component1 f) E $== abses_pullback (component3 f) E'. Proof. exact (abses_pullback_component1_id' (abses_pushout_morphism_rec f) (fun _ => idpath)). Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_pushout_is_pullback'
461
`{Univalence} {A A' B B' : AbGroup} {E : AbSES B A} {E' : AbSES B' A'} (f : AbSESMorphism E E') : abses_pushout (component1 f) E = abses_pullback (component3 f) E' := equiv_path_abses_iso (' f).
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_pushout_is_pullback
462
abses_pushout_pullback_reorder' `{Univalence} {A A' B B' : AbGroup} (E : AbSES B A) (f : A $-> A') (g : B' $-> B) : abses_pushout f (abses_pullback g E) $== abses_pullback g (abses_pushout f E). Proof. pose (F := absesmorphism_compose (abses_pushout_morphism E f) (abses_pullback_morphism E g)). refine (abses_pushout_is_pullback' (Build_AbSESMorphism f (component2 F) g _ _)); apply F. Defined.
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_pushout_pullback_reorder'
463
`{Univalence} {A A' B B' : AbGroup} (E : AbSES B A) (f : A $-> A') (g : B' $-> B) : abses_pushout f (abses_pullback g E) = abses_pullback g (abses_pushout f E). Proof. apply equiv_path_abses_iso. apply '. Defined.
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_pushout_pullback_reorder
464
`{Univalence} {A A' B B' : AbGroup} (E : AbSES B A) (f : A $-> A') (g : B' $-> B) : abses_pushout f (abses_pullback g E) = abses_pullback g (abses_pushout f E). Proof. pose (F := absesmorphism_compose (abses_pushout_morphism E f) (abses_pullback_morphism E g)). refine (abses_pushout_is_pullback (Build_AbSESMorphism f (component2 F) g _ _)); apply F. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_reorder_pullback_pushout
465
`{Univalence} {A B B' : AbGroup} {E : AbSES B A} (f g : ab_hom B' B) : abses_pullback (f + g) E = abses_baer_sum (abses_pullback f E) (abses_pullback g E). Proof. unfold abses_baer_sum. refine ((abses_pullback_compose (B1:=ab_biprod B B) _ _ E)^ @ _). refine (ap (abses_pullback _) (abses_pushout_is_pullback (abses_codiagonal E))^ @ _). unfold abses_codiagonal, component1. refine (_^ @ _ @ _). 1,3: apply abses_reorder_pullback_pushout. refine (ap (abses_pushout _) _). refine (ap (fun h => abses_pullback h _) (ab_biprod_corec_diagonal _ _) @ _). refine ((abses_pullback_compose _ _ (abses_direct_sum E E))^ @ _). exact (ap (abses_pullback _) (abses_directsum_distributive_pullbacks f g)). Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_distributive_pullbacks
466
`{Univalence} {A B : AbGroup} (E F : AbSES B A) : abses_baer_sum E F = abses_baer_sum F E. Proof. unfold abses_baer_sum. refine (_ @ abses_pullback_compose ab_diagonal direct_sum_swap _). refine (ap (abses_pullback ab_diagonal) _). refine (ap (fun f => abses_pushout f _) ab_codiagonal_swap^ @ _). refine ((abses_pushout_compose _ _ _) @ _). refine (ap _ (abses_pushout_is_pullback (abses_swap_morphism E F)) @ _). unfold abses_swap_morphism, component3. apply abses_pushout_pullback_reorder. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_commutative
467
`{Univalence} {A B : AbGroup} (E : AbSES B A) : abses_baer_sum E (point (AbSES B A)) = E. Proof. refine (ap (abses_baer_sum E) _ @ _). - exact (abses_pullback_const E). - refine (ap (fun F => abses_baer_sum F (abses_pullback grp_homo_const E)) (abses_pullback_id E)^ @ _). refine ((baer_sum_distributive_pullbacks grp_homo_id grp_homo_const)^ @ _). refine (ap (fun f => abses_pullback f E) (grp_unit_r (G := ab_hom _ _) _) @ _). apply abses_pullback_id. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_unit_r
468
`{Univalence} {A B : AbGroup} (E : AbSES B A) : abses_baer_sum (point (AbSES B A)) E = E := baer_sum_commutative _ _ @ baer_sum_unit_r _.
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_unit_l
469
`{Univalence} {A B : AbGroup} (E : AbSES B A) : abses_baer_sum E (abses_pullback (- grp_homo_id) E) = point (AbSES B A). Proof. refine (ap (fun F => abses_baer_sum F (abses_pullback _ E)) (abses_pullback_id E)^ @ _). refine ((baer_sum_distributive_pullbacks grp_homo_id (-grp_homo_id))^ @ _). refine (ap (fun f => abses_pullback f _) (grp_inv_r (G := ab_hom _ _) _) @ _). symmetry; apply abses_pullback_const. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_inverse_l
470
`{Univalence} {A B : AbGroup} (E : AbSES B A) : abses_baer_sum (abses_pullback (-grp_homo_id) E) E = point (AbSES B A) := baer_sum_commutative _ _ @ baer_sum_inverse_l _.
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_inverse_r
471
`{Univalence} {A A' B : AbGroup} {E : AbSES B A'} (f g : ab_hom A' A) : abses_pushout (f + g) E = abses_baer_sum (abses_pushout f E) (abses_pushout g E). Proof. unfold abses_baer_sum. refine (abses_pushout_compose (A1 := ab_biprod A A) _ _ E @ _). refine (_ @ abses_pushout_pullback_reorder _ _ _). refine (ap (abses_pushout ab_codiagonal) _). refine (ap (fun f => abses_pushout f E) (ab_biprod_corec_diagonal f g) @ _). refine (abses_pushout_compose _ _ E @ _). refine (ap (abses_pushout _) (abses_pushout_is_pullback (abses_diagonal E)) @ _). refine (abses_pushout_pullback_reorder _ _ _ @ _). exact (ap (abses_pullback _) (abses_directsum_distributive_pushouts f g)). Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_distributive_pushouts
472
`{Univalence} {A B : AbGroup@{u}} (E F G : AbSES B A) : AbSES B A := abses_pullback ab_triagonal (abses_pushout ab_cotriagonal (abses_direct_sum (abses_direct_sum E F) G)).
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
abses_trinary_baer_sum
473
`{Univalence} {A B : AbGroup@{u}} (E F G : AbSES B A) : abses_baer_sum (abses_baer_sum E F) G = abses_trinary_baer_sum E F G. Proof. unfold abses_baer_sum, abses_trinary_baer_sum, ab_triagonal, ab_cotriagonal. refine (ap (abses_pullback _ o abses_pushout _) _^ @ _). - refine (_ @ ap (abses_direct_sum _) (abses_pullback_id G)). refine (_ @ abses_directsum_distributive_pullbacks _ _). refine (ap (abses_pullback _) _). refine (_ @ ap (abses_direct_sum _) (abses_pushout_id G)). apply abses_directsum_distributive_pushouts. - refine (ap (abses_pullback _) (abses_pushout_pullback_reorder _ _ _) @ _). refine (abses_pullback_compose _ _ _ @ _). refine (ap (abses_pullback _) _^). apply abses_pushout_compose. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_is_trinary
474
`{Univalence} {A B : AbGroup@{u}} (E F G : AbSES B A) : abses_trinary_baer_sum E F G = abses_trinary_baer_sum G F E. Proof. unfold abses_trinary_baer_sum. refine (_ @ abses_pullback_compose ab_triagonal ab_biprod_twist _). refine (ap (abses_pullback _) _). refine (ap (fun f => abses_pushout f _) ab_cotriagonal_twist^ @ _). refine (abses_pushout_compose _ _ _ @ _). refine (ap _ (abses_pushout_is_pullback (abses_twist_directsum E F G)) @ _). unfold abses_twist_directsum, component3. exact (abses_pushout_pullback_reorder _ _ _). Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
twist_trinary_baer_sum
475
`{Univalence} {A B : AbGroup@{u}} (E F G : AbSES B A) : abses_baer_sum (abses_baer_sum E F) G = abses_baer_sum (abses_baer_sum G F) E. Proof. refine ((baer_sum_is_trinary E F G) @ _ @ (baer_sum_is_trinary G F E)^). apply twist_trinary_baer_sum. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_twist
476
`{Univalence} {A B : AbGroup@{u}} (E F G : AbSES B A) : abses_baer_sum (abses_baer_sum E F) G = abses_baer_sum E (abses_baer_sum F G). Proof. refine ((baer_sum_twist _ _ _)^ @ _). refine (baer_sum_commutative _ _ @ _). apply ap. apply baer_sum_commutative. Defined.
Lemma
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_associative
477
`{Univalence} {A A' B : AbGroup} (f : A $-> A') (E F : AbSES B A) : abses_pushout f (abses_baer_sum E F) = abses_baer_sum (abses_pushout f E) (abses_pushout f F). Proof. unfold abses_baer_sum. refine (abses_pushout_pullback_reorder _ _ _ @ ap _ _). refine ((abses_pushout_compose _ _ _)^ @ _). refine (abses_pushout_homotopic _ _ _ _ @ _). 1: apply ab_codiagonal_natural. refine (abses_pushout_compose _ _ _ @ ap _ _). apply abses_directsum_distributive_pushouts. Defined.
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_pushout
478
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) (E F : AbSES B A) : abses_pullback f (abses_baer_sum E F) = abses_baer_sum (abses_pullback f E) (abses_pullback f F). Proof. unfold abses_baer_sum. refine (abses_pullback_compose _ _ _ @ _). refine ((abses_pushout_pullback_reorder _ _ _)^ @ ap _ _ @ abses_pushout_pullback_reorder _ _ _). refine (abses_pullback_homotopic _ (functor_ab_biprod f f $o ab_diagonal) _ _ @ _). 1: reflexivity. refine ((abses_pullback_compose _ _ _)^ @ ap _ _). apply abses_directsum_distributive_pullbacks. Defined.
Definition
Require Import Basics Types. Require Import WildCat Pointed.Core. Require Import AbGroups.AbelianGroup AbGroups.Biproduct AbGroups.AbHom. Require Import AbSES.Core AbSES.Pullback AbSES.Pushout AbSES.DirectSum. Require Import Homotopy.HSpace.Core.
Algebra\AbSES\BaerSum.v
baer_sum_pullback
479
AbSES' {B A : AbGroup@{u}} := Build_AbSES { middle : AbGroup@{u}; inclusion : A $-> middle; projection : middle $-> B; isembedding_inclusion : IsEmbedding inclusion; issurjection_projection : IsSurjection projection; isexact_inclusion_projection : IsExact (Tr (-1)) inclusion projection; }.
Record
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
AbSES'
480
{B A : AbGroup} : {X : {E : AbGroup & (A $-> E) * (E $-> B)} & (IsEmbedding (fst X.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
issig_abses
481
{A B : AbGroup} (E : AbSES' B A) : IsComplex (inclusion E) (projection E) := cx_isexact. Global Instance ispointed_abses {B A : AbGroup@{u}} : IsPointed (AbSES' B A). Proof. rapply (Build_AbSES (ab_biprod A B) ab_biprod_inl ab_biprod_pr2). snrapply Build_IsExact. - srapply phomotopy_homotopy_hset; reflexivity. - intros [[a b] p]; cbn; cbn in p. rapply contr_inhabited_hprop. apply tr. exists a. rapply path_sigma_hprop; cbn. exact (path_prod' idpath p^). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
iscomplex_abses
482
(B A : AbGroup@{u}) : pType := [' B A, _].
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
AbSES
483
{B A : AbGroup@{u}} (E F : AbSES B A) := {phi : GroupIsomorphism E F & (phi $o inclusion _ == inclusion _) * (projection _ == projection _ $o phi)}. Local Lemma shuffle_abses_path_data_iso `{Funext} {B A : AbGroup@{u}} (E F : AbSES B A) : ( E F) <~> {phi : GroupIsomorphism E F & (phi $o inclusion _ == inclusion _) * (projection _ $o grp_iso_inverse phi == projection _)}. Proof. srapply equiv_functor_sigma_id; intro phi. srapply equiv_functor_prod'. 1: exact equiv_idmap. srapply (equiv_functor_forall' phi^-1); intro e; cbn. apply equiv_concat_r. exact (ap _ (eisretr _ _)). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_iso
484
`{Univalence} {B A : AbGroup@{u}} {E F : AbSES' B A} : abses_path_data_iso E F <~> E = F. Proof. refine (_ oE shuffle_abses_path_data_iso E F). refine (equiv_ap_inv issig_abses _ _ oE _). refine (equiv_path_sigma_hprop _ _ oE _). refine (equiv_path_sigma _ _ _ oE _). srapply equiv_functor_sigma'. 1: exact equiv_path_abgroup. intro q; lazy beta. snrefine (equiv_concat_l _ _ oE _). 1: exact (q $o inclusion _, projection _ $o grp_iso_inverse q). 2: { refine (equiv_path_prod _ _ oE _). exact (equiv_functor_prod' equiv_path_grouphomomorphism equiv_path_grouphomomorphism). } refine (transport_prod _ _ @ _). apply path_prod'. - apply transport_iso_abgrouphomomorphism_from_const. - apply transport_iso_abgrouphomomorphism_to_const. Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_path_abses_iso
485
`{Univalence} {B A : AbGroup@{u}} {E F : AbSES B A} (phi : GroupIsomorphism E F) (p : phi $o inclusion _ == inclusion _) (q : projection _ == projection _ $o phi) : E = F := equiv_path_abses_iso (phi; (p,q)).
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
path_abses_iso
486
{B A : AbGroup@{u}} {E F : AbSES B A} (phi : GroupHomomorphism E F) (p0 : phi $o inclusion E == inclusion F) (p1 : projection E == projection F $o phi) : IsEquiv phi. Proof. apply isequiv_surj_emb. - intro f. rapply contr_inhabited_hprop. assert (e0 : Tr (-1) (hfiber (projection E) (projection F f))). 1: apply center, issurjection_projection. strip_truncations. assert (a : Tr (-1) (hfiber (inclusion F) (f + (- phi e0.1)))). 1: { refine (isexact_preimage (Tr (-1)) (inclusion F) (projection F) _ _). refine (grp_homo_op _ _ _ @ _). refine (ap _ (grp_homo_inv _ _) @ _). apply (grp_moveL_1M)^-1. exact (e0.2^ @ p1 e0.1). } strip_truncations. refine (tr (inclusion E a.1 + e0.1; _)). refine (grp_homo_op _ _ _ @ _). refine (ap (fun x => x + phi e0.1) (p0 a.1 @ a.2) @ _). refine ((grp_assoc _ _ _)^ @ _). refine (ap _ (left_inverse (phi e0.1)) @ _). apply grp_unit_r. - apply isembedding_grouphomomorphism. intros e p. assert (a : Tr (-1) (hfiber (inclusion E) e)). 1: { refine (isexact_preimage _ (inclusion E) (projection E) _ _). exact (p1 e @ ap (projection F) p @ grp_homo_unit _). } strip_truncations. refine (a.2^ @ ap (inclusion E ) _ @ grp_homo_unit (inclusion E)). rapply (isinj_embedding (inclusion F) _ _). refine ((p0 a.1)^ @ (ap phi a.2) @ p @ (grp_homo_unit _)^). Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
short_five_lemma
487
{B A : AbGroup@{u}} (E F : AbSES B A) := {phi : GroupHomomorphism E F & (phi $o inclusion _ == inclusion _) * (projection _ == projection _ $o phi)}.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data
488
{B A : AbGroup@{u}} (E F: AbSES B A) : abses_path_data E F -> abses_path_data_iso E F. Proof. - intros [phi [p q]]. exact ({| grp_iso_homo := phi; isequiv_group_iso := short_five_lemma phi p q |}; (p, q)). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_to_iso
489
`{Funext} {B A : AbGroup@{u}} (E F: AbSES B A) : abses_path_data E F <~> abses_path_data_iso E F. Proof. srapply equiv_adjointify. - apply abses_path_data_to_iso. - srapply (functor_sigma (grp_iso_homo _ _)). exact (fun _ => idmap). - intros [phi [p q]]. apply path_sigma_hprop. by apply equiv_path_groupisomorphism. - reflexivity. Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_path_abses_data
490
`{Univalence} {B A : AbGroup@{u}} {E F : AbSES B A} : abses_path_data E F <~> E = F := equiv_path_abses_iso oE equiv_path_abses_data E F.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_path_abses
491
`{Univalence} {B A : AbGroup@{u}} {E F : AbSES B A} (phi : middle E $-> F) (p : phi $o inclusion _ == inclusion _) (q : projection _ == projection _ $o phi) : E = F := equiv_path_abses (phi; (p,q)).
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
path_abses
492
{B A : AbGroup@{u}} (E : AbSES B A) : E $-> E := (grp_iso_id; (fun _ => idpath, fun _ => idpath)).
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_1
493
{B A : AbGroup@{u}} {E F G : AbSES B A} (p : E $-> F) (q : F $-> G) : E $-> G := (q.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_compose
494
{B A : AbGroup@{u}} {E F : AbSES B A} : (E $-> F) -> (F $-> E). Proof. intros [phi [p q]]. srefine (_; (_,_)). - exact (grp_iso_inverse phi). - intro a. exact (ap _ (p a)^ @ eissect _ (inclusion E a)). - intro a; simpl. exact (ap (projection F) (eisretr _ _)^ @ (q _)^). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_inverse
495
`{Univalence} {B A : AbGroup@{u}} {E : AbSES B A} : equiv_path_abses_iso (abses_path_data_1 E) = idpath. Proof. apply (equiv_ap_inv' equiv_path_abses_iso). refine (eissect _ _ @ _). srapply path_sigma_hprop; simpl. srapply equiv_path_groupisomorphism. reflexivity. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_path_abses_1
496
`{Univalence} {B A : AbGroup@{u}} {E : AbSES B A} : (@equiv_path_abses_iso _ B A E E)^-1 idpath = Id E. Proof. apply moveR_equiv_M; symmetry. apply equiv_path_abses_1. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_path_absesV_1
497
`{Univalence} {B A : AbGroup@{u}} {E F : AbSES B A} (p : abses_path_data_iso E F) : (equiv_path_abses_iso p)^ = equiv_path_abses_iso (abses_path_data_inverse p). Proof. revert p. equiv_intro (equiv_path_abses_iso (E:=E) (F:=F))^-1 p; induction p. refine (ap _ (eisretr _ _) @ _); symmetry. nrefine (ap (equiv_path_abses_iso o abses_path_data_inverse) equiv_path_absesV_1 @ _). refine (ap equiv_path_abses_iso gpd_strong_rev_1 @ _). exact equiv_path_abses_1. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_V
498
`{Univalence} {B A : AbGroup@{u}} {E F G : AbSES B A} (p : E = F) (q : F = G) : p @ q = equiv_path_abses_iso (abses_path_data_compose (equiv_path_abses_iso^-1 p) (equiv_path_abses_iso^-1 q)). Proof. induction p, q. refine (equiv_path_abses_1^ @ _). apply (ap equiv_path_abses_iso). apply path_sigma_hprop. by apply equiv_path_groupisomorphism. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_compose_beta
499