fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
`{Univalence} {B A : AbGroup@{u}} {E F G : AbSES B A} (p : abses_path_data_iso E F) (q : abses_path_data_iso F G) : equiv_path_abses_iso p @ equiv_path_abses_iso q = equiv_path_abses_iso (abses_path_data_compose p q). Proof. generalize p, q. equiv_intro ((equiv_path_abses_iso (E:=E) (F:=F))^-1) x. equiv_intro ((equiv_path_abses_iso (E:=F) (F:=G))^-1) y. refine ((eisretr _ _ @@ eisretr _ _) @ _). rapply abses_path_compose_beta. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_path_data_compose_beta
500
`{Univalence} {X : Type} {B A : AbGroup@{u}} (f g : X -> AbSES B A) : (f $=> g) <~> f == g. Proof. srapply equiv_functor_forall_id; intro x; cbn. srapply equiv_path_abses_iso. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_path_data_homotopy
501
{B' A' B A : AbGroup@{u}} : AbSES B A -->* AbSES B' A' := Build_BasepointPreservingFunctor (const pt) (Id pt).
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
pmap_abses_const
502
`{Univalence} {B' A' B A : AbGroup@{u}} : (AbSES B A -->* AbSES B' A') -> (AbSES B A ->* AbSES B' A') := fun f => Build_pMap _ _ f (equiv_path_abses_iso (bp_pointed f)).
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
to_pointed
503
`{Univalence} {B' A' B A : AbGroup@{u}} : pconst ==* to_pointed (@pmap_abses_const B' A' B A). Proof. srapply Build_pHomotopy. 1: reflexivity. apply moveL_pV. refine (concat_1p _ @ _). apply equiv_path_abses_1. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
pmap_abses_const_to_pointed
504
`{Univalence} {B0 B1 A0 A1 : AbGroup@{u}} (f : AbSES B0 A0 -> AbSES B1 A1) `{!Is0Functor f, !Is1Functor f} {E F : AbSES B0 A0} (p : E $== F) : ap f (equiv_path_abses_iso p) = equiv_path_abses_iso (fmap f p). Proof. revert p. apply (equiv_ind equiv_path_abses_iso^-1%equiv); intro p. induction p. refine (ap (ap f) (eisretr _ _) @ _). nrefine (_ @ ap equiv_path_abses_iso _). 2: { rapply path_hom. srefine (_ $@ fmap2 _ _). 2: exact (Id E). 2: intro x; reflexivity. exact (fmap_id f _)^$. } exact equiv_path_abses_1^. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_ap_fmap
505
`{Univalence} {B0 B1 B2 A0 A1 A2 : AbGroup@{u}} (f : AbSES B0 A0 -->* AbSES B1 A1) (g : AbSES B1 A1 -->* AbSES B2 A2) `{!Is1Functor f, !Is1Functor g} : to_pointed g o* to_pointed f ==* to_pointed (g $o* f). Proof. srapply Build_pHomotopy. 1: reflexivity. lazy beta. nrapply moveL_pV. nrefine (concat_1p _ @ _). unfold pmap_compose, Build_pMap, pointed_fun, point_eq, dpoint_eq. refine (_ @ ap (fun x => x @ _) _^). 2: apply (abses_ap_fmap g). nrefine (_ @ (abses_path_data_compose_beta _ _)^). nrapply (ap equiv_path_abses_iso). rapply path_hom. reflexivity. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
to_pointed_compose
506
`{Univalence} {B' A' B A : AbGroup@{u}} {f g : AbSES B A -->* AbSES B' A'} : f $=>* g <~> to_pointed f ==* to_pointed g. Proof. refine (issig_pforall _ _ oE _). apply (equiv_functor_sigma' (equiv_path_data_homotopy f g)); intro h. refine (equiv_concat_r _ _ oE _). 1: exact ((abses_path_data_compose_beta _ _)^ @ ap (fun x => _ @ x) (abses_path_data_V _)^). refine (equiv_ap' equiv_path_abses_iso _ _ oE _). refine (equiv_path_sigma_hprop _ _ oE _). apply equiv_path_groupisomorphism. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
equiv_ptransformation_phomotopy
507
`{Funext} {B A : AbGroup@{u}} : {phi : GroupHomomorphism (point (AbSES B A)) (point (AbSES B A)) & (phi o inclusion _ == inclusion _) * (projection _ == projection _ o phi)} <~> (B $-> A). Proof. srapply equiv_adjointify. - intros [phi _]. exact (ab_biprod_pr1 $o phi $o ab_biprod_inr). - intro f. snrefine (_;_). + refine (ab_biprod_rec ab_biprod_inl _). refine (ab_biprod_corec f grp_homo_id). + split; intro x; cbn. * apply path_prod; cbn. -- exact (ap _ (grp_homo_unit f) @ right_identity _). -- exact (right_identity _). * exact (left_identity _)^. - intro f. rapply equiv_path_grouphomomorphism; intro b; cbn. exact (left_identity _). - intros [phi [p q]]. apply path_sigma_hprop; cbn. rapply equiv_path_grouphomomorphism; intros [a b]; cbn. apply path_prod; cbn. + rewrite (grp_prod_decompose a b). refine (_ @ (grp_homo_op (ab_biprod_pr1 $o phi) _ _)^). apply grp_cancelR; symmetry. exact (ap fst (p a)). + rewrite (grp_prod_decompose a b). refine (_ @ (grp_homo_op (ab_biprod_pr2 $o phi) _ _)^); cbn; symmetry. exact (ap011 _ (ap snd (p a)) (q (group_unit, b))^). Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_endomorphism_trivial
508
`{Univalence} {A B : AbGroup} : (B $-> A) <~> loops (AbSES B A) := equiv_path_abses oE abses_endomorphism_trivial^-1.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
loops_abses
509
{A B : AbGroup} (E : AbSES B A) : (B $-> A) -> abses_path_data E E. Proof. intro phi. srefine (_; (_, _)). - exact (ab_homo_add grp_homo_id (inclusion E $o phi $o projection E)). - intro a; cbn. refine (ap (fun x => _ + inclusion E (phi x)) _ @ _). 1: apply iscomplex_abses. refine (ap (fun x => _ + x) (grp_homo_unit (inclusion E $o phi)) @ _). apply grp_unit_r. - intro e; symmetry. refine (grp_homo_op (projection E) _ _ @ _); cbn. refine (ap (fun x => _ + x) _ @ _). 1: apply iscomplex_abses. apply grp_unit_r. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
hom_loops_data_abses
510
{A X B Y : AbGroup@{u}}
Record
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
AbSESMorphism
511
{A X B Y : AbGroup@{u}} {E : AbSES B A} {F : AbSES Y X} : { f : (A $-> X) * (middle E $-> middle F) * (B $-> Y) & ((inclusion _) $o (fst (fst f)) == (snd (fst f)) $o (inclusion _)) * ((projection F) $o (snd (fst f)) == (snd f) $o (projection _)) } <~> AbSESMorphism E F := ltac:(make_equiv).
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
issig_AbSESMorphism
512
{A B : AbGroup@{u}} (E : AbSES B A) : AbSESMorphism E E. Proof. snrapply (Build_AbSESMorphism grp_homo_id grp_homo_id grp_homo_id). 1,2: reflexivity. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_morphism_id
513
{A0 A1 A2 B0 B1 B2 : AbGroup@{u}} {E : AbSES B0 A0} {F : AbSES B1 A1} {G : AbSES B2 A2} (g : AbSESMorphism F G) (f : AbSESMorphism E F) : AbSESMorphism E G. Proof. rapply (Build_AbSESMorphism (component1 g $o component1 f) (component2 g $o component2 f) (component3 g $o component3 f)). - intro x; cbn. exact (left_square g _ @ ap _ (left_square f _)). - intro x; cbn. exact (right_square g _ @ ap _ (right_square f _)). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
absesmorphism_compose
514
{B A : AbGroup} (E : AbSES B A) {s : B $-> E} (h : projection _ $o s == idmap) : (middle E) $-> (@ab_kernel E B (projection _)). Proof. snrapply (grp_kernel_corec (G:=E) (A:=E)). - refine (ab_homo_add grp_homo_id (grp_homo_compose ab_homo_negation (s $o (projection _)))). - intro x; simpl. refine (grp_homo_op (projection _) x _ @ _). refine (ap (fun y => (projection _) x + y) _ @ right_inverse ((projection _) x)). refine (grp_homo_inv _ _ @ ap negate _ ). apply h. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
projection_split_to_kernel
515
{B A : AbGroup} (E : AbSES B A) {s : B $-> E} (h : (projection _) $o s == idmap) : (projection_split_to_kernel E h) $o (inclusion _) == grp_cxfib cx_isexact. Proof. intro a. apply path_sigma_hprop; cbn. apply grp_cancelL1. refine (ap (fun x => - s x) _ @ _). 1: rapply cx_isexact. exact (ap _ (grp_homo_unit _) @ negate_mon_unit). Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
projection_split_to_kernel_beta
516
{B A : AbGroup} (E : AbSES B A) {s : GroupHomomorphism B E} (h : (projection _) $o s == idmap) : GroupIsomorphism E (ab_biprod (@ab_kernel E B (projection _)) B). Proof. srapply Build_GroupIsomorphism. - refine (ab_biprod_corec _ (projection _)). exact (projection_split_to_kernel E h). - srapply isequiv_adjointify. + refine (ab_biprod_rec _ s). rapply subgroup_incl. + intros [a b]; simpl. apply path_prod'. * srapply path_sigma_hprop; cbn. refine ((associativity _ _ _)^ @ _). apply grp_cancelL1. refine (ap _ _ @ right_inverse _). apply (ap negate). apply (ap s). refine (grp_homo_op (projection _) a.1 (s b) @ _). exact (ap (fun y => y + _) a.2 @ left_identity _ @ h b). * refine (grp_homo_op (projection _) a.1 (s b) @ _). exact (ap (fun y => y + _) a.2 @ left_identity _ @ h b). + intro e; simpl. by apply grp_moveR_gM. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
projection_split_iso1
517
{B A : AbGroup@{u}} (E : AbSES B A) {s : GroupHomomorphism B E} (h : (projection _) $o s == idmap) : GroupIsomorphism E (ab_biprod A B). Proof. etransitivity (ab_biprod (ab_kernel _) B). - exact (projection_split_iso1 E h). - srapply (equiv_functor_ab_biprod (grp_iso_inverse _) grp_iso_id). rapply grp_iso_cxfib. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
projection_split_iso
518
{B A : AbGroup} (E : AbSES B A) {s : B $-> E} (h : (projection _) $o s == idmap) : projection_split_iso E h o (inclusion _) == ab_biprod_inl. Proof. intro a. nrapply path_prod'. 2: rapply cx_isexact. lhs nrapply (ap _ (projection_split_to_kernel_beta E h a)). apply eissect. Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
projection_split_beta
519
`{Univalence} {B A : AbGroup@{u}} (E : AbSES B A) : {s : B $-> E & (projection _) $o s == idmap} <-> (E = point (AbSES B A)). Proof. refine (iff_compose _ (iff_equiv equiv_path_abses_iso)); split. - intros [s h]. exists (projection_split_iso E h). split. + nrapply projection_split_beta. + reflexivity. - intros [phi [g h]]. exists (grp_homo_compose (grp_iso_inverse phi) ab_biprod_inr). intro x; cbn. exact (h _ @ ap snd (eisretr _ _)). Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
iff_abses_trivial_split
520
`{Univalence} {A E : AbGroup@{u}} (i : A $-> E) `{IsEmbedding i} : AbSES (QuotientAbGroup E (grp_image_embedding i)) A. Proof. srapply (Build_AbSES E i). 1: exact grp_quotient_map. 1: exact _. srapply Build_IsExact. - srapply phomotopy_homotopy_hset. intro x. apply qglue; cbn. exists (-x). exact (grp_homo_inv _ _ @ (grp_unit_r _)^). - snrapply (conn_map_homotopic (Tr (-1)) (B:=grp_kernel (@grp_quotient_map E _))). + exact (grp_kernel_quotient_iso _ o ab_image_in_embedding i). + intro a. by rapply (isinj_embedding (subgroup_incl _)). + rapply conn_map_isequiv. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_from_inclusion
521
`{Funext} {A E B : AbGroup} (i : A $-> E) (p : E $-> B) `{IsEmbedding i, IsExact (Tr (-1)) _ _ _ i p} : GroupIsomorphism A (ab_kernel p). Proof. snrapply Build_GroupIsomorphism. - apply (grp_kernel_corec i). rapply cx_isexact. - apply isequiv_surj_emb. 2: rapply (cancelL_mapinO _ (grp_kernel_corec _ _) _). intros [y q]. assert (a : Tr (-1) (hfiber i y)). 1: by rapply isexact_preimage. strip_truncations; destruct a as [a r]. rapply contr_inhabited_hprop. refine (tr (a; _)); cbn. apply path_sigma_hprop; cbn. exact r. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_kernel_iso
522
`{Funext} {A E B : AbGroup} (i : A $-> E) (p : E $-> B) `{IsEmbedding i, IsExact (Tr (-1)) _ _ _ i p} : i o (abses_kernel_iso i p)^-1 == subgroup_incl _. Proof. rapply (equiv_ind (abses_kernel_iso i p)); intro a. exact (ap i (eissect (abses_kernel_iso i p) _)). Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_kernel_iso_inv_beta
523
{E B : AbGroup@{u}} (p : E $-> B) `{IsSurjection p} : AbSES B (ab_kernel p). Proof. srapply (Build_AbSES E _ p). 1: exact (subgroup_incl _). 1: exact _. snrapply Build_IsExact. - apply phomotopy_homotopy_hset. intros [e q]; cbn. exact q. - rapply conn_map_isequiv. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_from_surjection
524
`{Funext} {A E B : AbGroup@{u}} (f : A $-> E) (g : GroupHomomorphism E B) `{IsSurjection g, IsExact (Tr (-1)) _ _ _ f g} : GroupIsomorphism (ab_cokernel f) B. Proof. snrapply Build_GroupIsomorphism. - snrapply (quotient_abgroup_rec _ _ g). intros e; rapply Trunc_rec; intros [a p]. refine (ap _ p^ @ _). rapply cx_isexact. - apply isequiv_surj_emb. 1: rapply cancelR_conn_map. apply isembedding_isinj_hset. srapply Quotient_ind2_hprop; intros x y. intro p. apply qglue; cbn. refine (isexact_preimage (Tr (-1)) _ _ (-x + y) _). refine (grp_homo_op _ _ _ @ _). rewrite grp_homo_inv. apply grp_moveL_M1^-1. exact p^. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_cokernel_iso
525
`{Funext} {A E B : AbGroup} (f : A $-> E) (g : GroupHomomorphism E B) `{IsSurjection g, IsExact (Tr (-1)) _ _ _ f g} : (abses_cokernel_iso f g)^-1 o g == grp_quotient_map. Proof. intro x; by apply moveR_equiv_V. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse.
Algebra\AbSES\Core.v
abses_cokernel_iso_inv_beta
526
{A E B X F Y : AbGroup} (i : A $-> E) (p : E $-> B) `{ex0 : IsExact (Tr (-1)) _ _ _ i p} (j : X $-> F) (q : F $-> Y) `{ex1 : IsExact (Tr (-1)) _ _ _ j q} : IsExact (Tr (-1)) (functor_ab_biprod i j) (functor_ab_biprod p q). Proof. snrapply Build_IsExact. - snrapply phomotopy_homotopy_hset. 1: exact _. intro x; apply path_prod; cbn. + apply ex0. + apply ex1. - intros [[e f] u]; cbn. rapply contr_inhabited_hprop. pose (U := (equiv_path_prod _ _)^-1 u); cbn in U. pose proof (a := isexact_preimage _ i p e (fst U)). pose proof (x := isexact_preimage _ j q f (snd U)). strip_truncations; apply tr. exists (ab_biprod_inl a.1 + ab_biprod_inr x.1); cbn. pose (IS := sg_set (ab_biprod B Y)). apply path_sigma_hprop; cbn. apply path_prod; cbn. + rewrite right_identity. exact a.2. + rewrite left_identity. exact x.2. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
ab_biprod_exact
527
`{Funext} {B A B' A' : AbGroup} (E : AbSES B A) (F : AbSES B' A') : AbSES (ab_biprod B B') (ab_biprod A A') := Build_AbSES (ab_biprod E F) (functor_ab_biprod (inclusion E) (inclusion F)) (functor_ab_biprod (projection E) (projection F)) (functor_ab_biprod_embedding _ _) (functor_ab_biprod_surjection _ _) (ab_biprod_exact _ _ _ _).
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
abses_direct_sum
528
`{Funext} {A A' B B' C C' D D' : AbGroup} {E : AbSES B A} {E' : AbSES B' A'} {F : AbSES D C} {F' : AbSES D' C'} (f : AbSESMorphism E E') (g : AbSESMorphism F F') : AbSESMorphism (abses_direct_sum E F) (abses_direct_sum E' F'). Proof. snrapply Build_AbSESMorphism. + exact (functor_ab_biprod (component1 f) (component1 g)). + exact (functor_ab_biprod (component2 f) (component2 g)). + exact (functor_ab_biprod (component3 f) (component3 g)). + intro x. apply path_prod; apply left_square. + intro x. apply path_prod; apply right_square. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
functor_abses_directsum
529
`{Funext} {A B : AbGroup} (E : AbSES B A) : AbSESMorphism E (abses_direct_sum E E). Proof. snrapply Build_AbSESMorphism. 1,2,3: exact ab_diagonal. all: reflexivity. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
abses_diagonal
530
`{Funext} {A B : AbGroup} (E : AbSES B A) : AbSESMorphism (abses_direct_sum E E) E. Proof. snrapply Build_AbSESMorphism. 1,2,3: exact ab_codiagonal. all: intro x; cbn; apply grp_homo_op. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
abses_codiagonal
531
`{Funext} {A A' B B' : AbGroup} (E : AbSES B A) (F : AbSES B' A') : AbSESMorphism (abses_direct_sum E F) (abses_direct_sum F E). Proof. snrapply Build_AbSESMorphism. 1,2,3: exact direct_sum_swap. all: reflexivity. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
abses_swap_morphism
532
`{Funext} {A B : AbGroup} (E F G : AbSES B A) : AbSESMorphism (abses_direct_sum (abses_direct_sum E F) G) (abses_direct_sum (abses_direct_sum G F) E). Proof. snrapply Build_AbSESMorphism. 1,2,3: exact ab_biprod_twist. all: reflexivity. Defined.
Lemma
Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct.
Algebra\AbSES\DirectSum.v
abses_twist_directsum
533
(B A : AbGroup@{u}) := pTr 0 (AbSES B A).
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
Ext
534
`{Univalence} {B A : AbGroup} (E : AbSES B A) : merely {s : GroupHomomorphism B E & (projection _) $o s == idmap} <~> (tr E = point (Ext B A)). Proof. refine (equiv_path_Tr _ _ oE _). srapply equiv_iff_hprop; apply Trunc_functor; apply iff_abses_trivial_split. Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
iff_ab_ext_trivial_split
535
Ext' (B A : AbGroup@{u}) := Tr 0 (AbSES' B A).
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
Ext'
536
`{Univalence} (B A : AbGroup@{u}) : Group. Proof. snrapply (Build_Group (Ext B A)). - intros E F. strip_truncations. exact (tr (abses_baer_sum E F)). - exact (point (Ext B A)). - unfold Negate. exact (Trunc_functor _ (abses_pullback (- grp_homo_id))). - repeat split. 1: apply istrunc_truncation. all: intro E. 1: intros F G. all: strip_truncations; unfold mon_unit, point; apply (ap tr). + symmetry; apply baer_sum_associative. + apply baer_sum_unit_l. + apply baer_sum_unit_r. + apply baer_sum_inverse_r. + apply baer_sum_inverse_l. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
grp_ext
537
ab_ext@{u v|u < v} `{Univalence} (B : AbGroup@{u}^op) (A : AbGroup@{u}) : AbGroup@{v}. Proof. snrapply (Build_AbGroup (grp_ext@{u v} B A)). intros E F. strip_truncations; cbn. apply ap. apply baer_sum_commutative. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
ab_ext@
538
`{Univalence} {B A G : AbGroup@{u}} (E : AbSES B A) : GroupHomomorphism (ab_hom A G) (ab_ext B G). Proof. snrapply Build_GroupHomomorphism. 1: exact (fun f => fmap01 (A:=AbGroup^op) Ext' _ f (tr E)). intros f g; cbn. nrapply (ap tr). exact (baer_sum_distributive_pushouts f g). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
abses_pushout_ext
539
`{Univalence} (P : AbGroup) `{IsAbProjective P} : forall A, forall E : AbSES P A, tr E = point (Ext P A). Proof. intros A E. apply iff_ab_ext_trivial_split. exact (fst (iff_isabprojective_surjections_split P) _ _ _ _). Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
abext_trivial_projective
540
`{Univalence} (P : AbGroup) (ext_triv : forall A, forall E : AbSES P A, tr E = point (Ext P A)) : IsAbProjective P. Proof. apply iff_isabprojective_surjections_split. intros E p issurj_p. apply (iff_ab_ext_trivial_split (abses_from_surjection p))^-1. apply ext_triv. Defined.
Proposition
Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core.
Algebra\AbSES\Ext.v
abext_projective_trivial
541
{A B B' : AbGroup} (f : B' $-> B) : AbSES B A -> AbSES B' A. Proof. intro E. snrapply (Build_AbSES (ab_pullback (projection E) f) (grp_pullback_corec _ _ (inclusion _) grp_homo_const _) (grp_pullback_pr2 (projection _) f)). - intro x. nrefine (_ @ (grp_homo_unit f)^). apply isexact_inclusion_projection. - exact (cancelL_isembedding (g:= grp_pullback_pr1 _ _)). - rapply conn_map_pullback'. - snrapply Build_IsExact. + snrapply phomotopy_homotopy_hset. * exact _. * reflexivity. + nrefine (cancelL_equiv_conn_map _ _ (hfiber_pullback_along_pointed f (projection _) (grp_homo_unit _))). nrefine (conn_map_homotopic _ _ _ _ (conn_map_isexact (IsExact:=isexact_inclusion_projection _))). intro a. by apply path_sigma_hprop. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback
542
{A B B' : AbGroup@{u}} (E : AbSES B A) (f : B' $-> B) : AbSESMorphism (abses_pullback f E) E. Proof. snrapply (Build_AbSESMorphism grp_homo_id _ f). - apply grp_pullback_pr1. - reflexivity. - apply pullback_commsq. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_morphism
543
{A B X Y : AbGroup@{u}} {E : AbSES B A} {F : AbSES Y X} (f : AbSESMorphism E F) : AbSESMorphism E (abses_pullback (component3 f) F). Proof. snrapply (Build_AbSESMorphism (component1 f) _ grp_homo_id). - apply (grp_pullback_corec (projection F) (component3 f) (component2 f) (projection E)). apply right_square. - intro x; cbn. apply equiv_path_pullback_hset; cbn; split. + apply left_square. + symmetry; apply iscomplex_abses. - reflexivity. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_morphism_corec
544
`{Funext} {A B X Y : AbGroup@{u}} {E : AbSES B A} {F : AbSES Y X} (f : AbSESMorphism E F) : f = absesmorphism_compose (abses_pullback_morphism F (component3 f)) (abses_pullback_morphism_corec f). Proof. apply (equiv_ap issig_AbSESMorphism^-1 _ _). srapply path_sigma_hprop. apply path_prod. 1: apply path_prod. all: by apply equiv_path_grouphomomorphism. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_morphism_corec_beta
545
abses_pullback_component1_id' {A B B' : AbGroup@{u}} {E : AbSES B A} {F : AbSES B' A} (f : AbSESMorphism E F) (h : component1 f == grp_homo_id) : E $== abses_pullback (component3 f) F. Proof. pose (g := abses_pullback_morphism_corec f). nrapply abses_path_data_to_iso. exists (component2 g); split. - exact (fun a => (left_square g a)^ @ ap _ (h a)). - reflexivity. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_component1_id'
546
`{Univalence} {A B B' : AbGroup} {E : AbSES B A} {F : AbSES B' A} (f : AbSESMorphism E F) (h : component1 f == grp_homo_id) : E = abses_pullback (component3 f) F := equiv_path_abses_iso (' f h).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_component1_id
547
`{Funext} {A B B' C D D' : AbGroup@{u}} {E : AbSES B A} {F : AbSES D C} (f : B' $-> B) (g : D' $-> D) : AbSESMorphism (abses_direct_sum (abses_pullback f E) (abses_pullback g F)) (abses_direct_sum E F) := functor_abses_directsum (abses_pullback_morphism E f) (abses_pullback_morphism F g).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_directsum_pullback_morphism
548
`{Univalence} {A B B' C D D' : AbGroup@{u}} {E : AbSES B A} {F : AbSES D C} (f : B' $-> B) (g : D' $-> D) : abses_pullback (functor_ab_biprod f g) (abses_direct_sum E F) = abses_direct_sum (abses_pullback f E) (abses_pullback g F) := (abses_pullback_component1_id (abses_directsum_pullback_morphism f g) (fun _ => idpath))^.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_directsum_distributive_pullbacks
549
{A B B' : AbGroup@{u}} (bt : B' $-> B) (E : AbSES B A) (F : AbSES B' A) (p : abses_pullback bt E = F) : exists phi : middle F $-> E, projection E o phi == bt o projection F. Proof. induction p. exists (grp_pullback_pr1 _ _); intro x. nrapply pullback_commsq. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_path_pullback_projection_commsq
550
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) {E F : AbSES B A} (p : E = F) : ap (abses_pullback f) p = equiv_path_abses_iso (fmap (abses_pullback f) (equiv_path_abses_iso^-1 p)). Proof. induction p. nrefine (_ @ ap equiv_path_abses_iso _). 2: refine ((fmap_id_strong _ _)^ @ ap _ equiv_path_absesV_1^). exact equiv_path_abses_1^. Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
ap_abses_pullback
551
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) {E F : AbSES B A} (p : abses_path_data_iso E F) : ap (abses_pullback f) (equiv_path_abses_iso p) = equiv_path_abses_iso (fmap (abses_pullback f) p). Proof. refine (ap_abses_pullback _ _ @ _). apply (ap (equiv_path_abses_iso o _)). apply eissect. Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
ap_abses_pullback_data
552
abses_pullback_point' {A B B' : AbGroup} (f : B' $-> B) : (abses_pullback f pt) $== (point (AbSES B' A)). Proof. snrefine (_; (_, _)). - snrapply Build_GroupIsomorphism. + srapply ab_biprod_corec. * refine (ab_biprod_pr1 $o _). apply grp_pullback_pr1. * apply projection. + srapply isequiv_adjointify. * snrapply grp_pullback_corec. -- exact (functor_ab_biprod grp_homo_id f). -- exact ab_biprod_pr2. -- reflexivity. * reflexivity. * intros [[a b] [b' c]]. srapply equiv_path_pullback_hset; split; cbn. 2: reflexivity. exact (path_prod' idpath c^). - reflexivity. - reflexivity. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_point'
553
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) : abses_pullback f pt = pt :> AbSES B' A := equiv_path_abses_iso (' f).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_point
554
abses_pullback' {A B B' : AbGroup} (f : B' $-> B) : AbSES B A -->* AbSES B' A := Build_BasepointPreservingFunctor (abses_pullback f) (abses_pullback_point' f).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback'
555
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) : AbSES B A ->* AbSES B' A := to_pointed (abses_pullback' f).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_pmap
556
`{Univalence} {A B : AbGroup} : abses_pullback (A:=A) (@grp_homo_id B) == idmap. Proof. intro E. apply equiv_path_abses_iso; srefine (_; (_, _)). 1: rapply (Build_GroupIsomorphism _ _ (grp_pullback_pr1 _ _)). 1: reflexivity. intros [a [p q]]; cbn. exact q^. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_id
557
`{Univalence} {A B : AbGroup} : abses_pullback_pmap (A:=A) (@grp_homo_id B) ==* pmap_idmap. Proof. srapply Build_pHomotopy. 1: apply abses_pullback_id. refine (_ @ (concat_p1 _)^). nrapply (ap equiv_path_abses_iso). apply path_sigma_hprop. apply equiv_path_groupisomorphism. intros [[a b] [b' p]]; cbn; cbn in p. by apply path_prod'. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_pmap_id
558
abses_pullback_compose' {A B0 B1 B2 : AbGroup@{u}} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback (A:=A) f o abses_pullback g $=> abses_pullback (g $o f). Proof. intro E; srefine (_; (_,_)). - apply equiv_grp_pullback_compose_r. - intro a. by srapply equiv_path_pullback_hset. - reflexivity. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_compose'
559
`{Univalence} {A B0 B1 B2 : AbGroup@{u}} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback (A:=A) f o abses_pullback g == abses_pullback (g $o f) := fun x => equiv_path_abses_iso (' f g x).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_compose
560
abses_pullback_pcompose' {B0 B1 B2 A : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback' f $o* abses_pullback' g $=>* abses_pullback' (A:=A) (g $o f). Proof. exists (abses_pullback_compose' f g). intros [[[a b2] [b1 c]] [b0 c']]; cbn in c, c'. srapply equiv_path_pullback_hset; split; cbn. 2: reflexivity. exact (path_prod' idpath (c @ ap g c')). Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_pcompose'
561
`{Univalence} {A B0 B1 B2 : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback_pmap (A:=A) f o* abses_pullback_pmap g ==* abses_pullback_pmap (g $o f). Proof. refine (to_pointed_compose _ _ @* _). apply equiv_ptransformation_phomotopy. apply '. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_pcompose
562
abses_pullback_const' {A B B' : AbGroup} : const pt $=> (@abses_pullback A B B' grp_homo_const). Proof. intro E. simpl. nrapply abses_path_data_to_iso. srefine (_;(_,_)); cbn. - srapply grp_pullback_corec. + exact (inclusion _ $o ab_biprod_pr1). + exact ab_biprod_pr2. + intro x; cbn. apply iscomplex_abses. - intro a; cbn. by srapply equiv_path_pullback_hset; split. - reflexivity. Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_const'
563
`{Univalence} {A B B' : AbGroup} : const pt == @abses_pullback A B B' grp_homo_const := fun x => (equiv_path_abses_iso (' x)).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_const
564
abses_pullback_pconst' {A B B' : AbGroup} : @pmap_abses_const B' A B A $=>* abses_pullback' grp_homo_const. Proof. srefine (_; _). 1: rapply abses_pullback_const'. lazy beta. intro x; reflexivity. Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_pconst'
565
`{Univalence} {A B B' : AbGroup} : pconst ==* @abses_pullback_pmap _ A B B' grp_homo_const. Proof. refine (pmap_abses_const_to_pointed @* _). rapply equiv_ptransformation_phomotopy. exact '. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_pconst
566
{B A : AbGroup} (E : AbSES B A) : AbSESMorphism (pt : AbSES E A) E. Proof. srapply (Build_AbSESMorphism grp_homo_id _ (projection E)). - cbn. exact (ab_biprod_rec (inclusion E) grp_homo_id). - intro x; cbn. exact (right_identity _)^. - intros [a e]; cbn. refine (grp_homo_op _ _ _ @ _). refine (ap (fun x => sg_op x _) _ @ _). 1: apply isexact_inclusion_projection. apply left_identity. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_projection_morphism
567
`{Univalence} {B A : AbGroup} (E : AbSES B A) : pt = abses_pullback (projection E) E := abses_pullback_component1_id (abses_pullback_projection_morphism E) (fun _ => idpath).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_projection
568
abses_pullback_homotopic' {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback (A:=A) f $=> abses_pullback f'. Proof. intro E. srefine (_; (_, _)). - srapply equiv_functor_grp_pullback. 1-3: exact grp_iso_id. 1: reflexivity. apply h. - intro a; cbn. by srapply equiv_path_pullback_hset; split. - reflexivity. Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_homotopic'
569
`{Univalence} {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback (A:=A) f == abses_pullback f'. Proof. intro E. apply equiv_path_abses_iso. exact (' _ _ h _). Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_homotopic
570
abses_pullback_phomotopic' {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback' (A:=A) f $=>* abses_pullback' f'. Proof. exists (abses_pullback_homotopic' f f' h); cbn. intros [[a b'] [b c]]; cbn in c. srapply equiv_path_pullback_hset; split; cbn. 2: reflexivity. exact (path_prod' idpath (c @ h b)). Defined.
Lemma
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_phomotopic'
571
`{Univalence} {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback_pmap (A:=A) f ==* abses_pullback_pmap f' := equiv_ptransformation_phomotopy (' f f' h).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
abses_pullback_phomotopic
572
iscomplex_abses_pullback' {A B0 B1 B2 : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) (h : g $o f == grp_homo_const) : abses_pullback' f $o* abses_pullback' g $=>* @pmap_abses_const _ _ _ A. Proof. refine (abses_pullback_pcompose' _ _ $@* _). refine (abses_pullback_phomotopic' _ _ h $@* _). exact abses_pullback_pconst'^*$. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
iscomplex_abses_pullback'
573
`{Univalence} {A B0 B1 B2 : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) (h : g $o f == grp_homo_const) : IsComplex (abses_pullback_pmap (A:=A) g) (abses_pullback_pmap f). Proof. refine (_ @* _). 2: symmetry; exact pmap_abses_const_to_pointed. refine (to_pointed_compose _ _ @* _). apply equiv_ptransformation_phomotopy. by rapply '. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
iscomplex_abses_pullback
574
`{Univalence} {A B C : AbGroup} (E : AbSES C B) : IsComplex (abses_pullback_pmap (A:=A) (projection E)) (abses_pullback_pmap (inclusion E)). Proof. rapply iscomplex_abses_pullback. rapply iscomplex_abses. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
iscomplex_pullback_abses
575
`{Univalence} {X : Type} {A B : AbGroup} (f : X -> AbSES B A) (E : AbSES B A) : graph_hfiber f E <~> hfiber f E := equiv_functor_sigma_id (fun _ => equiv_path_abses_iso).
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
equiv_hfiber_abses
576
{A B B' : AbGroup} {f : B' $-> B} {X : AbSES B' A} (E F : graph_hfiber (abses_pullback f) X) := {p : E.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
hfiber_abses_path
577
`{Univalence} {A B B' : AbGroup} {f : B' $-> B} {Y : AbSES B' A} {X0 : graph_hfiber (abses_pullback f) Y} {X1 : AbSES B A} (p : X0.1 = X1) : transport (fun x : AbSES B A => abses_pullback f x $== Y) p X0.2 = fmap (abses_pullback f) (equiv_path_abses_iso^-1 p^) $@ X0.2. Proof. induction p. refine (transport_1 _ _ @ _). nrefine (_ @ (ap (fun x => x $@ _)) _). 2: { refine (_ @ ap _ equiv_path_absesV_1^). exact (fmap_id_strong _ _)^. } exact (cat_idr_strong _)^. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
transport_path_data_hfiber_abses_pullback_l
578
`{Univalence} {A B B' : AbGroup} {f : B' $-> B} (Y : AbSES B' A) (U V : graph_hfiber (abses_pullback f) Y) : hfiber_abses_path U V <~> U = V. Proof. refine (equiv_path_sigma _ _ _ oE _). srapply (equiv_functor_sigma' equiv_path_abses_iso); intro p; lazy beta. refine (equiv_concat_l _ _ oE _). { refine (transport_path_data_hfiber_abses_pullback_l _ @ _). refine (ap (fun x => (fmap (abses_pullback f) x) $@ _) _ @ _). { refine (ap _ (abses_path_data_V p) @ _). apply eissect. } refine (ap (fun x => x $@ _) _). rapply gpd_strong_1functor_V. } refine (equiv_path_sigma_hprop _ _ oE _). apply equiv_path_groupisomorphism. Defined.
Definition
Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pullback.v
equiv_hfiber_abses_pullback
579
{A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : B $-> F := grp_pullback_pr1 _ _ $o p^$.1 $o ab_biprod_inr. Local Instance abses_pullback_inclusion_lemma {A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : IsEmbedding (grp_pullback_pr1 _ _ $o p^$.1). Proof. nrapply (istruncmap_compose (-1) p^$.1 (grp_pullback_pr1 (projection F) i)). all: rapply istruncmap_mapinO_tr. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
abses_pullback_inclusion_transpose_map
580
abses_pullback_inclusion_transpose_endpoint' {A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : AbGroup := ab_cokernel_embedding (abses_pullback_inclusion_transpose_map i F p).
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
abses_pullback_inclusion_transpose_endpoint'
581
{A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : projection F $o (abses_pullback_inclusion_transpose_map i F p) == i. Proof. intro b. change b with (ab_biprod_pr2 (A:=A) (mon_unit, b)). refine (pullback_commsq _ _ _ @ ap i _). exact (snd p^$.2 _)^. Defined.
Lemma
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
abses_pullback_inclusion_transpose_beta
582
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : AbSES C A. Proof. snrapply Build_AbSES. - exact (abses_pullback_inclusion_transpose_endpoint' (inclusion E) F p). - exact (grp_quotient_map $o inclusion F). - srapply (ab_cokernel_embedding_rec _ (projection E $o projection F)). intro b. refine (ap (projection E) (abses_pullback_inclusion_transpose_beta (inclusion E) F p b) @ _). apply iscomplex_abses. - apply isembedding_grouphomomorphism. intros a q0. pose proof (in_coset := related_quotient_paths _ _ _ q0). destruct in_coset as [b q1]; rewrite grp_unit_r in q1. assert (q2 : ab_biprod_inr b = ab_biprod_inl (-a)). 1: { apply (isinj_embedding (grp_pullback_pr1 _ _ $o p^$.1)). - apply abses_pullback_inclusion_lemma. exact _. - nrefine (q1 @ _); symmetry. refine (ap (grp_pullback_pr1 _ _) (fst p^$.2 (-a)) @ _). exact (grp_homo_inv _ _). } pose proof (q3 := ap negate (fst ((equiv_path_prod _ _)^-1 q2))); cbn in q3. exact ((negate_involutive _)^ @ q3^ @ negate_mon_unit). - apply (cancelR_conn_map (Tr (-1)) grp_quotient_map). 1: exact _. simpl. exact _. - snrapply Build_IsExact. + srapply phomotopy_homotopy_hset. intro a; simpl. refine (ap (projection E) _ @ _). 1: apply iscomplex_abses. apply grp_homo_unit. + intros [y q]. apply (@contr_inhabited_hprop _ _). assert (f : merely (hfiber grp_quotient_map y)). 1: apply center, issurj_class_of. revert_opaque f; apply Trunc_rec; intros [f q0]. assert (b : merely (hfiber (inclusion E) (projection F f))). 1: { rapply isexact_preimage. exact (ap _ q0 @ q). } revert_opaque b; apply Trunc_rec; intros [b q1]. assert (a : merely (hfiber (inclusion F) (sg_op f (-(grp_pullback_pr1 _ _ (p^$.1 (ab_biprod_inr b))))))). 1: { rapply isexact_preimage. refine (grp_homo_op _ _ _ @ _). refine (ap (fun x => _ + x) (grp_homo_inv _ _) @ _). refine (ap (fun x => _ - x) (abses_pullback_inclusion_transpose_beta (inclusion E) F p b @ q1) @ _). apply right_inverse. } revert_opaque a; apply Trunc_rec; intros [a q2]. refine (tr (a; _)). let T := type of y in apply (@path_sigma_hprop T). 1: intros ?; apply istrunc_paths; apply group_isgroup. refine (ap grp_quotient_map q2 @ _ @ q0). refine (grp_homo_op _ _ _ @ _). apply grp_moveR_Mg. refine (_ @ (left_inverse _)^). apply qglue. exists b. refine (_ @ (grp_unit_r _)^). exact (negate_involutive _)^. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
abses_pullback_trivial_preimage
583
abses_pullback_inclusion0_map' `{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : AbSESMorphism F (abses_pullback_trivial_preimage E F p). Proof. srapply Build_AbSESMorphism. - exact grp_homo_id. - exact grp_quotient_map. - exact (projection E). - reflexivity. - reflexivity. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
abses_pullback_inclusion0_map'
584
cxfib' {A B C : AbGroup} (E : AbSES C B) : AbSES C A -> graph_hfiber (abses_pullback (A:=A) (inclusion E)) pt. Proof. intro Y. exists (abses_pullback (projection E) Y). refine (abses_pullback_compose' _ _ Y $@ _). refine (abses_pullback_homotopic' _ grp_homo_const _ Y $@ _). 1: rapply iscomplex_abses. symmetry; apply abses_pullback_const'. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
cxfib'
585
hfiber_cxfib' {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) := {Y : AbSES C A & hfiber_abses_path (cxfib' E Y) (F; p)}. Local pr2_cxfib' `{Univalence} {A B C : AbGroup} {E : AbSES C B} (U : AbSES C A) : equiv_ptransformation_phomotopy (iscomplex_abses_pullback' _ _ (iscomplex_abses E)) U = equiv_path_abses_iso (cxfib' E U).2. Proof. change (equiv_ptransformation_phomotopy (iscomplex_abses_pullback' _ _ (iscomplex_abses E)) U) with (equiv_path_abses_iso ((iscomplex_abses_pullback' _ _ (iscomplex_abses E)).1 U)). apply (ap equiv_path_abses_iso). rapply path_hom. refine (_ $@R abses_pullback_compose' (inclusion E) (projection E) U); unfold trans_comp. refine (_ $@R abses_pullback_homotopic' (projection E $o inclusion E) grp_homo_const (iscomplex_abses E) U). reflexivity. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
hfiber_cxfib'
586
equiv_hfiber_cxfib' `{Univalence} {A B C : AbGroup} {E : AbSES C B} (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : hfiber_cxfib' E F p <~> hfiber (cxfib (iscomplex_pullback_abses E)) (equiv_hfiber_abses _ pt (F;p)). Proof. srapply equiv_functor_sigma_id; intro U; lazy beta. refine (_ oE equiv_hfiber_abses_pullback _ _ _). refine (_ oE equiv_ap' (equiv_hfiber_abses _ pt) _ _). apply equiv_concat_l. apply eq_cxfib_cxfib'. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
equiv_hfiber_cxfib'
587
path_hfiber_cxfib' {A B C : AbGroup} {E : AbSES C B} {F : AbSES (middle E) A} {p : abses_pullback (inclusion E) F $== pt} (X Y : hfiber_cxfib' (B:=B) E F p) : Type. Proof. refine (sig (fun q0 : X.1 $== Y.1 => _)). exact ((fmap (abses_pullback (projection E)) q0)^$ $@ X.2.1 $== Y.2.1). Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
path_hfiber_cxfib'
588
`{Univalence} {A B C : AbGroup} {E : AbSES C B} (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (U V : hfiber_cxfib' E F p) (q : U.1 = V.1) : (transport (fun Y : AbSES C A => hfiber_abses_path (cxfib' E Y) (F; p)) q U.2).1 = fmap (abses_pullback (projection E)) (equiv_path_abses_iso^-1 q^) $@ U.2.1. Proof. induction q. refine (ap pr1 (transport_1 _ _) @ _). refine (_ @ ap (fun x => fmap (abses_pullback (projection E)) x $@ _) equiv_path_absesV_1^). refine (_ @ ap (fun x => x $@ _) (fmap_id_strong _ _)^). exact (cat_idr_strong _)^. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
transport_hfiber_abses_path_cxfib'_l
589
equiv_path_hfiber_cxfib' `{Univalence} {A B C : AbGroup} {E : AbSES C B} (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (U V : hfiber_cxfib' E F p) : path_hfiber_cxfib' U V <~> U = V. Proof. refine (equiv_path_sigma _ _ _ oE _). srapply (equiv_functor_sigma' equiv_path_abses_iso); intro q; lazy beta. refine (equiv_path_sigma_hprop _ _ oE _). refine (equiv_concat_l _ _ oE _). 1: apply transport_hfiber_abses_path_cxfib'_l. refine (equiv_path_sigma_hprop _ _ oE equiv_concat_l _ _ oE _). 1: { refine (ap (fun x => (fmap (abses_pullback _) x $@ _).1) _). nrefine (ap _ (abses_path_data_V q) @ _). apply eissect. } refine (equiv_concat_l _ _ oE _). 1: { refine (ap (fun x => (x $@ _).1) _). rapply gpd_strong_1functor_V. } apply equiv_path_groupisomorphism. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
equiv_path_hfiber_cxfib'
590
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : hfiber_cxfib' E F p. Proof. exists (abses_pullback_trivial_preimage E F p). srefine (_^$; _). 1: by rapply (abses_pullback_component1_id' (abses_pullback_inclusion0_map' E F p)). lazy beta; unfold pr2. refine (cat_assoc _ _ _ $@ _). refine (cat_assoc _ _ _ $@ _). apply gpd_moveR_Vh. apply gpd_moveL_hM. apply equiv_ab_biprod_ind_homotopy. split; apply equiv_path_pullback_rec_hset; split; cbn. - intro a. exact (ap (class_of _ o pullback_pr1) (fst p^$.2 a)). - intro a. exact ((snd p^$.2 _)^). - intro b; apply qglue. exists (-b). apply grp_moveL_Vg. refine ((grp_homo_op (grp_pullback_pr1 _ _ $o p^$.1 $o ab_biprod_inr) _ _)^ @ _). exact (ap _ (right_inverse _) @ grp_homo_unit _ @ (grp_homo_unit _)^). - intro b. exact (snd p^$.2 _)^. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
hfiber_cxfib'_inhabited
591
abses_pullback_splits_induced_map' {A B C : AbGroup} (E : AbSES C B) (Y : AbSES C A) : ab_biprod A B $-> abses_pullback (projection E) Y. Proof. srapply (ab_biprod_rec (inclusion _)). srapply grp_pullback_corec. - exact grp_homo_const. - exact (inclusion E). - intro x. refine (grp_homo_unit _ @ _). symmetry; apply iscomplex_abses. Defined.
Definition
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
abses_pullback_splits_induced_map'
592
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) (X Y : graph_hfiber (abses_pullback (A:=A) f) pt) (Q : hfiber_abses_path X Y) : fmap (abses_pullback f) Q.1^$ $o Y.2^$ $== X.2^$. Proof. generalize Q. equiv_intro (equiv_hfiber_abses_pullback _ X Y)^-1%equiv p; induction p. refine ((_ $@R _) $@ _). { Unshelve. 2: exact (Id _). refine (fmap2 _ _ $@ fmap_id _ _). intro x; reflexivity. } exact (cat_idl _). Defined.
Lemma
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
fmap_hfiber_abses_lemma
593
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (Y : hfiber_cxfib' E F p) : hfiber_cxfib'_induced_map E F p Y == abses_pullback_splits_induced_map' E Y.1. Proof. intros [a b]; cbn. refine (ap pullback_pr1 (fmap_hfiber_abses_lemma _ _ (F;p) Y.2 _) @ _). srapply equiv_path_pullback_hset; split; cbn. - exact (grp_unit_r _)^. - exact (grp_unit_l _)^. Defined.
Lemma
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
induced_map_eq
594
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (Y : hfiber_cxfib' E F p) : abses_pullback_trivial_preimage E F p $== Y.1. Proof. destruct Y as [Y Q]. apply abses_path_data_to_iso; srefine (_; (_,_)). - snrapply (ab_cokernel_embedding_rec _ (grp_pullback_pr1 _ _$o (Q.1^$).1)). 1-3: exact _. intro f. nrefine (ap _ (induced_map_eq E F p (Y;Q) _) @ _); cbn. exact (grp_unit_r _ @ grp_homo_unit _). - intro a. refine (_ @ ap (grp_pullback_pr1 _ _) (fst (Q.1^$).2 a)). exact (grp_quotient_rec_beta' _ F _ _ (inclusion F a)). - nrapply (conn_map_elim _ grp_quotient_map). 1: apply issurj_class_of. 1: intros ?; apply istrunc_paths; apply group_isgroup. intro f. refine (ap (projection E) (snd (Q.1^$).2 f) @ _); unfold pr1. exact (pullback_commsq _ _ ((Q.1^$).1 f))^. Defined.
Lemma
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
hfiber_cxfib'_induced_path'0
595
hfiber_cxfib'_induced_path' `{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (Y : hfiber_cxfib' E F p) : path_hfiber_cxfib' (hfiber_cxfib'_inhabited E F p) Y. Proof. exists (0 E F p Y). rapply gpd_moveR_Vh. rapply gpd_moveL_hM. rapply gpd_moveR_Vh. intro x. srapply equiv_path_pullback_hset; split. 2: exact (snd Y.2.1^$.2 x)^. reflexivity. Defined.
Lemma
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
hfiber_cxfib'_induced_path'
596
contr_hfiber_cxfib' `{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : Contr (hfiber_cxfib' E F p). Proof. srapply Build_Contr. 1: apply hfiber_cxfib'_inhabited. intros [Y q]. apply equiv_path_hfiber_cxfib'. apply hfiber_cxfib'_induced_path'. Defined.
Lemma
Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core.
Algebra\AbSES\PullbackFiberSequence.v
contr_hfiber_cxfib'
597
`{Univalence} {A A' B : AbGroup} (f : A $-> A') : AbSES B A -> AbSES B A'. Proof. intro E. snrapply (Build_AbSES (ab_pushout f (inclusion E)) ab_pushout_inl (ab_pushout_rec grp_homo_const (projection E) _)). - symmetry; rapply iscomplex_abses. - rapply ab_pushout_embedding_inl. - nrapply (cancelR_issurjection ab_pushout_inr _). rapply (conn_map_homotopic _ (projection E)); symmetry. nrapply ab_pushout_rec_beta_right. - snrapply Build_IsExact. + srapply phomotopy_homotopy_hset. nrapply ab_pushout_rec_beta_left. + intros [bc' p]. rapply contr_inhabited_hprop. assert (bc : merely (hfiber grp_quotient_map bc')). 1: apply center, issurj_class_of. strip_truncations. destruct bc as [[b c] q]. assert (c_in_kernel : (projection E) c = mon_unit). 1: { refine (_ @ p); symmetry. rewrite <- q; simpl. apply left_identity. } pose proof (a := isexact_preimage _ _ _ c c_in_kernel). strip_truncations. destruct a as [a s]. apply tr. exists (b + - f (- a)); cbn. apply path_sigma_hprop; cbn. change (ab_pushout_inl (b + - f (- a)) = bc'). refine (_ @ q). symmetry. apply path_ab_pushout; cbn. refine (tr (-a; _)). apply path_prod; cbn. * apply grp_moveL_Mg. by rewrite negate_involutive. * exact ((preserves_negate a) @ ap _ s @ (right_identity _)^). Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import WildCat Pointed.Core Homotopy.ExactSequence HIT.epi. Require Import Modalities.ReflectiveSubuniverse. Require Import AbelianGroup AbPushout AbHom AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pushout.v
abses_pushout
598
`{Univalence} {A A' B : AbGroup} (E : AbSES B A) (f : A $-> A') : AbSESMorphism E (abses_pushout f E). Proof. snrapply (Build_AbSESMorphism f _ grp_homo_id). - exact ab_pushout_inr. - exact ab_pushout_commsq. - rapply ab_pushout_rec_beta_right. Defined.
Definition
Require Import Basics Types Truncations.Core. Require Import WildCat Pointed.Core Homotopy.ExactSequence HIT.epi. Require Import Modalities.ReflectiveSubuniverse. Require Import AbelianGroup AbPushout AbHom AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum.
Algebra\AbSES\Pushout.v
abses_pushout_morphism
599