fact
stringlengths 0
6.66k
| type
stringclasses 10
values | imports
stringclasses 399
values | filename
stringclasses 465
values | symbolic_name
stringlengths 1
75
| index_level
int64 0
7.85k
|
---|---|---|---|---|---|
`{Univalence} {B A : AbGroup@{u}} {E F G : AbSES B A} (p : abses_path_data_iso E F) (q : abses_path_data_iso F G) : equiv_path_abses_iso p @ equiv_path_abses_iso q = equiv_path_abses_iso (abses_path_data_compose p q). Proof. generalize p, q. equiv_intro ((equiv_path_abses_iso (E:=E) (F:=F))^-1) x. equiv_intro ((equiv_path_abses_iso (E:=F) (F:=G))^-1) y. refine ((eisretr _ _ @@ eisretr _ _) @ _). rapply abses_path_compose_beta. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_path_data_compose_beta | 500 |
`{Univalence} {X : Type} {B A : AbGroup@{u}} (f g : X -> AbSES B A) : (f $=> g) <~> f == g. Proof. srapply equiv_functor_forall_id; intro x; cbn. srapply equiv_path_abses_iso. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | equiv_path_data_homotopy | 501 |
{B' A' B A : AbGroup@{u}} : AbSES B A -->* AbSES B' A' := Build_BasepointPreservingFunctor (const pt) (Id pt). | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | pmap_abses_const | 502 |
`{Univalence} {B' A' B A : AbGroup@{u}} : (AbSES B A -->* AbSES B' A') -> (AbSES B A ->* AbSES B' A') := fun f => Build_pMap _ _ f (equiv_path_abses_iso (bp_pointed f)). | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | to_pointed | 503 |
`{Univalence} {B' A' B A : AbGroup@{u}} : pconst ==* to_pointed (@pmap_abses_const B' A' B A). Proof. srapply Build_pHomotopy. 1: reflexivity. apply moveL_pV. refine (concat_1p _ @ _). apply equiv_path_abses_1. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | pmap_abses_const_to_pointed | 504 |
`{Univalence} {B0 B1 A0 A1 : AbGroup@{u}} (f : AbSES B0 A0 -> AbSES B1 A1) `{!Is0Functor f, !Is1Functor f} {E F : AbSES B0 A0} (p : E $== F) : ap f (equiv_path_abses_iso p) = equiv_path_abses_iso (fmap f p). Proof. revert p. apply (equiv_ind equiv_path_abses_iso^-1%equiv); intro p. induction p. refine (ap (ap f) (eisretr _ _) @ _). nrefine (_ @ ap equiv_path_abses_iso _). 2: { rapply path_hom. srefine (_ $@ fmap2 _ _). 2: exact (Id E). 2: intro x; reflexivity. exact (fmap_id f _)^$. } exact equiv_path_abses_1^. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_ap_fmap | 505 |
`{Univalence} {B0 B1 B2 A0 A1 A2 : AbGroup@{u}} (f : AbSES B0 A0 -->* AbSES B1 A1) (g : AbSES B1 A1 -->* AbSES B2 A2) `{!Is1Functor f, !Is1Functor g} : to_pointed g o* to_pointed f ==* to_pointed (g $o* f). Proof. srapply Build_pHomotopy. 1: reflexivity. lazy beta. nrapply moveL_pV. nrefine (concat_1p _ @ _). unfold pmap_compose, Build_pMap, pointed_fun, point_eq, dpoint_eq. refine (_ @ ap (fun x => x @ _) _^). 2: apply (abses_ap_fmap g). nrefine (_ @ (abses_path_data_compose_beta _ _)^). nrapply (ap equiv_path_abses_iso). rapply path_hom. reflexivity. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | to_pointed_compose | 506 |
`{Univalence} {B' A' B A : AbGroup@{u}} {f g : AbSES B A -->* AbSES B' A'} : f $=>* g <~> to_pointed f ==* to_pointed g. Proof. refine (issig_pforall _ _ oE _). apply (equiv_functor_sigma' (equiv_path_data_homotopy f g)); intro h. refine (equiv_concat_r _ _ oE _). 1: exact ((abses_path_data_compose_beta _ _)^ @ ap (fun x => _ @ x) (abses_path_data_V _)^). refine (equiv_ap' equiv_path_abses_iso _ _ oE _). refine (equiv_path_sigma_hprop _ _ oE _). apply equiv_path_groupisomorphism. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | equiv_ptransformation_phomotopy | 507 |
`{Funext} {B A : AbGroup@{u}} : {phi : GroupHomomorphism (point (AbSES B A)) (point (AbSES B A)) & (phi o inclusion _ == inclusion _) * (projection _ == projection _ o phi)} <~> (B $-> A). Proof. srapply equiv_adjointify. - intros [phi _]. exact (ab_biprod_pr1 $o phi $o ab_biprod_inr). - intro f. snrefine (_;_). + refine (ab_biprod_rec ab_biprod_inl _). refine (ab_biprod_corec f grp_homo_id). + split; intro x; cbn. * apply path_prod; cbn. -- exact (ap _ (grp_homo_unit f) @ right_identity _). -- exact (right_identity _). * exact (left_identity _)^. - intro f. rapply equiv_path_grouphomomorphism; intro b; cbn. exact (left_identity _). - intros [phi [p q]]. apply path_sigma_hprop; cbn. rapply equiv_path_grouphomomorphism; intros [a b]; cbn. apply path_prod; cbn. + rewrite (grp_prod_decompose a b). refine (_ @ (grp_homo_op (ab_biprod_pr1 $o phi) _ _)^). apply grp_cancelR; symmetry. exact (ap fst (p a)). + rewrite (grp_prod_decompose a b). refine (_ @ (grp_homo_op (ab_biprod_pr2 $o phi) _ _)^); cbn; symmetry. exact (ap011 _ (ap snd (p a)) (q (group_unit, b))^). Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_endomorphism_trivial | 508 |
`{Univalence} {A B : AbGroup} : (B $-> A) <~> loops (AbSES B A) := equiv_path_abses oE abses_endomorphism_trivial^-1. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | loops_abses | 509 |
{A B : AbGroup} (E : AbSES B A) : (B $-> A) -> abses_path_data E E. Proof. intro phi. srefine (_; (_, _)). - exact (ab_homo_add grp_homo_id (inclusion E $o phi $o projection E)). - intro a; cbn. refine (ap (fun x => _ + inclusion E (phi x)) _ @ _). 1: apply iscomplex_abses. refine (ap (fun x => _ + x) (grp_homo_unit (inclusion E $o phi)) @ _). apply grp_unit_r. - intro e; symmetry. refine (grp_homo_op (projection E) _ _ @ _); cbn. refine (ap (fun x => _ + x) _ @ _). 1: apply iscomplex_abses. apply grp_unit_r. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | hom_loops_data_abses | 510 |
{A X B Y : AbGroup@{u}} | Record | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | AbSESMorphism | 511 |
{A X B Y : AbGroup@{u}} {E : AbSES B A} {F : AbSES Y X} : { f : (A $-> X) * (middle E $-> middle F) * (B $-> Y) & ((inclusion _) $o (fst (fst f)) == (snd (fst f)) $o (inclusion _)) * ((projection F) $o (snd (fst f)) == (snd f) $o (projection _)) } <~> AbSESMorphism E F := ltac:(make_equiv). | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | issig_AbSESMorphism | 512 |
{A B : AbGroup@{u}} (E : AbSES B A) : AbSESMorphism E E. Proof. snrapply (Build_AbSESMorphism grp_homo_id grp_homo_id grp_homo_id). 1,2: reflexivity. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_morphism_id | 513 |
{A0 A1 A2 B0 B1 B2 : AbGroup@{u}} {E : AbSES B0 A0} {F : AbSES B1 A1} {G : AbSES B2 A2} (g : AbSESMorphism F G) (f : AbSESMorphism E F) : AbSESMorphism E G. Proof. rapply (Build_AbSESMorphism (component1 g $o component1 f) (component2 g $o component2 f) (component3 g $o component3 f)). - intro x; cbn. exact (left_square g _ @ ap _ (left_square f _)). - intro x; cbn. exact (right_square g _ @ ap _ (right_square f _)). Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | absesmorphism_compose | 514 |
{B A : AbGroup} (E : AbSES B A) {s : B $-> E} (h : projection _ $o s == idmap) : (middle E) $-> (@ab_kernel E B (projection _)). Proof. snrapply (grp_kernel_corec (G:=E) (A:=E)). - refine (ab_homo_add grp_homo_id (grp_homo_compose ab_homo_negation (s $o (projection _)))). - intro x; simpl. refine (grp_homo_op (projection _) x _ @ _). refine (ap (fun y => (projection _) x + y) _ @ right_inverse ((projection _) x)). refine (grp_homo_inv _ _ @ ap negate _ ). apply h. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | projection_split_to_kernel | 515 |
{B A : AbGroup} (E : AbSES B A) {s : B $-> E} (h : (projection _) $o s == idmap) : (projection_split_to_kernel E h) $o (inclusion _) == grp_cxfib cx_isexact. Proof. intro a. apply path_sigma_hprop; cbn. apply grp_cancelL1. refine (ap (fun x => - s x) _ @ _). 1: rapply cx_isexact. exact (ap _ (grp_homo_unit _) @ negate_mon_unit). Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | projection_split_to_kernel_beta | 516 |
{B A : AbGroup} (E : AbSES B A) {s : GroupHomomorphism B E} (h : (projection _) $o s == idmap) : GroupIsomorphism E (ab_biprod (@ab_kernel E B (projection _)) B). Proof. srapply Build_GroupIsomorphism. - refine (ab_biprod_corec _ (projection _)). exact (projection_split_to_kernel E h). - srapply isequiv_adjointify. + refine (ab_biprod_rec _ s). rapply subgroup_incl. + intros [a b]; simpl. apply path_prod'. * srapply path_sigma_hprop; cbn. refine ((associativity _ _ _)^ @ _). apply grp_cancelL1. refine (ap _ _ @ right_inverse _). apply (ap negate). apply (ap s). refine (grp_homo_op (projection _) a.1 (s b) @ _). exact (ap (fun y => y + _) a.2 @ left_identity _ @ h b). * refine (grp_homo_op (projection _) a.1 (s b) @ _). exact (ap (fun y => y + _) a.2 @ left_identity _ @ h b). + intro e; simpl. by apply grp_moveR_gM. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | projection_split_iso1 | 517 |
{B A : AbGroup@{u}} (E : AbSES B A) {s : GroupHomomorphism B E} (h : (projection _) $o s == idmap) : GroupIsomorphism E (ab_biprod A B). Proof. etransitivity (ab_biprod (ab_kernel _) B). - exact (projection_split_iso1 E h). - srapply (equiv_functor_ab_biprod (grp_iso_inverse _) grp_iso_id). rapply grp_iso_cxfib. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | projection_split_iso | 518 |
{B A : AbGroup} (E : AbSES B A) {s : B $-> E} (h : (projection _) $o s == idmap) : projection_split_iso E h o (inclusion _) == ab_biprod_inl. Proof. intro a. nrapply path_prod'. 2: rapply cx_isexact. lhs nrapply (ap _ (projection_split_to_kernel_beta E h a)). apply eissect. Defined. | Proposition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | projection_split_beta | 519 |
`{Univalence} {B A : AbGroup@{u}} (E : AbSES B A) : {s : B $-> E & (projection _) $o s == idmap} <-> (E = point (AbSES B A)). Proof. refine (iff_compose _ (iff_equiv equiv_path_abses_iso)); split. - intros [s h]. exists (projection_split_iso E h). split. + nrapply projection_split_beta. + reflexivity. - intros [phi [g h]]. exists (grp_homo_compose (grp_iso_inverse phi) ab_biprod_inr). intro x; cbn. exact (h _ @ ap snd (eisretr _ _)). Defined. | Proposition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | iff_abses_trivial_split | 520 |
`{Univalence} {A E : AbGroup@{u}} (i : A $-> E) `{IsEmbedding i} : AbSES (QuotientAbGroup E (grp_image_embedding i)) A. Proof. srapply (Build_AbSES E i). 1: exact grp_quotient_map. 1: exact _. srapply Build_IsExact. - srapply phomotopy_homotopy_hset. intro x. apply qglue; cbn. exists (-x). exact (grp_homo_inv _ _ @ (grp_unit_r _)^). - snrapply (conn_map_homotopic (Tr (-1)) (B:=grp_kernel (@grp_quotient_map E _))). + exact (grp_kernel_quotient_iso _ o ab_image_in_embedding i). + intro a. by rapply (isinj_embedding (subgroup_incl _)). + rapply conn_map_isequiv. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_from_inclusion | 521 |
`{Funext} {A E B : AbGroup} (i : A $-> E) (p : E $-> B) `{IsEmbedding i, IsExact (Tr (-1)) _ _ _ i p} : GroupIsomorphism A (ab_kernel p). Proof. snrapply Build_GroupIsomorphism. - apply (grp_kernel_corec i). rapply cx_isexact. - apply isequiv_surj_emb. 2: rapply (cancelL_mapinO _ (grp_kernel_corec _ _) _). intros [y q]. assert (a : Tr (-1) (hfiber i y)). 1: by rapply isexact_preimage. strip_truncations; destruct a as [a r]. rapply contr_inhabited_hprop. refine (tr (a; _)); cbn. apply path_sigma_hprop; cbn. exact r. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_kernel_iso | 522 |
`{Funext} {A E B : AbGroup} (i : A $-> E) (p : E $-> B) `{IsEmbedding i, IsExact (Tr (-1)) _ _ _ i p} : i o (abses_kernel_iso i p)^-1 == subgroup_incl _. Proof. rapply (equiv_ind (abses_kernel_iso i p)); intro a. exact (ap i (eissect (abses_kernel_iso i p) _)). Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_kernel_iso_inv_beta | 523 |
{E B : AbGroup@{u}} (p : E $-> B) `{IsSurjection p} : AbSES B (ab_kernel p). Proof. srapply (Build_AbSES E _ p). 1: exact (subgroup_incl _). 1: exact _. snrapply Build_IsExact. - apply phomotopy_homotopy_hset. intros [e q]; cbn. exact q. - rapply conn_map_isequiv. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_from_surjection | 524 |
`{Funext} {A E B : AbGroup@{u}} (f : A $-> E) (g : GroupHomomorphism E B) `{IsSurjection g, IsExact (Tr (-1)) _ _ _ f g} : GroupIsomorphism (ab_cokernel f) B. Proof. snrapply Build_GroupIsomorphism. - snrapply (quotient_abgroup_rec _ _ g). intros e; rapply Trunc_rec; intros [a p]. refine (ap _ p^ @ _). rapply cx_isexact. - apply isequiv_surj_emb. 1: rapply cancelR_conn_map. apply isembedding_isinj_hset. srapply Quotient_ind2_hprop; intros x y. intro p. apply qglue; cbn. refine (isexact_preimage (Tr (-1)) _ _ (-x + y) _). refine (grp_homo_op _ _ _ @ _). rewrite grp_homo_inv. apply grp_moveL_M1^-1. exact p^. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_cokernel_iso | 525 |
`{Funext} {A E B : AbGroup} (f : A $-> E) (g : GroupHomomorphism E B) `{IsSurjection g, IsExact (Tr (-1)) _ _ _ f g} : (abses_cokernel_iso f g)^-1 o g == grp_quotient_map. Proof. intro x; by apply moveR_equiv_V. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import HSet WildCat. Require Import Groups.QuotientGroup Groups.ShortExactSequence. Require Import AbelianGroup AbGroups.Biproduct AbHom. Require Import Homotopy.ExactSequence Pointed. Require Import Modalities.ReflectiveSubuniverse. | Algebra\AbSES\Core.v | abses_cokernel_iso_inv_beta | 526 |
{A E B X F Y : AbGroup} (i : A $-> E) (p : E $-> B) `{ex0 : IsExact (Tr (-1)) _ _ _ i p} (j : X $-> F) (q : F $-> Y) `{ex1 : IsExact (Tr (-1)) _ _ _ j q} : IsExact (Tr (-1)) (functor_ab_biprod i j) (functor_ab_biprod p q). Proof. snrapply Build_IsExact. - snrapply phomotopy_homotopy_hset. 1: exact _. intro x; apply path_prod; cbn. + apply ex0. + apply ex1. - intros [[e f] u]; cbn. rapply contr_inhabited_hprop. pose (U := (equiv_path_prod _ _)^-1 u); cbn in U. pose proof (a := isexact_preimage _ i p e (fst U)). pose proof (x := isexact_preimage _ j q f (snd U)). strip_truncations; apply tr. exists (ab_biprod_inl a.1 + ab_biprod_inr x.1); cbn. pose (IS := sg_set (ab_biprod B Y)). apply path_sigma_hprop; cbn. apply path_prod; cbn. + rewrite right_identity. exact a.2. + rewrite left_identity. exact x.2. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | ab_biprod_exact | 527 |
`{Funext} {B A B' A' : AbGroup} (E : AbSES B A) (F : AbSES B' A') : AbSES (ab_biprod B B') (ab_biprod A A') := Build_AbSES (ab_biprod E F) (functor_ab_biprod (inclusion E) (inclusion F)) (functor_ab_biprod (projection E) (projection F)) (functor_ab_biprod_embedding _ _) (functor_ab_biprod_surjection _ _) (ab_biprod_exact _ _ _ _). | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | abses_direct_sum | 528 |
`{Funext} {A A' B B' C C' D D' : AbGroup} {E : AbSES B A} {E' : AbSES B' A'} {F : AbSES D C} {F' : AbSES D' C'} (f : AbSESMorphism E E') (g : AbSESMorphism F F') : AbSESMorphism (abses_direct_sum E F) (abses_direct_sum E' F'). Proof. snrapply Build_AbSESMorphism. + exact (functor_ab_biprod (component1 f) (component1 g)). + exact (functor_ab_biprod (component2 f) (component2 g)). + exact (functor_ab_biprod (component3 f) (component3 g)). + intro x. apply path_prod; apply left_square. + intro x. apply path_prod; apply right_square. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | functor_abses_directsum | 529 |
`{Funext} {A B : AbGroup} (E : AbSES B A) : AbSESMorphism E (abses_direct_sum E E). Proof. snrapply Build_AbSESMorphism. 1,2,3: exact ab_diagonal. all: reflexivity. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | abses_diagonal | 530 |
`{Funext} {A B : AbGroup} (E : AbSES B A) : AbSESMorphism (abses_direct_sum E E) E. Proof. snrapply Build_AbSESMorphism. 1,2,3: exact ab_codiagonal. all: intro x; cbn; apply grp_homo_op. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | abses_codiagonal | 531 |
`{Funext} {A A' B B' : AbGroup} (E : AbSES B A) (F : AbSES B' A') : AbSESMorphism (abses_direct_sum E F) (abses_direct_sum F E). Proof. snrapply Build_AbSESMorphism. 1,2,3: exact direct_sum_swap. all: reflexivity. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | abses_swap_morphism | 532 |
`{Funext} {A B : AbGroup} (E F G : AbSES B A) : AbSESMorphism (abses_direct_sum (abses_direct_sum E F) G) (abses_direct_sum (abses_direct_sum G F) E). Proof. snrapply Build_AbSESMorphism. 1,2,3: exact ab_biprod_twist. all: reflexivity. Defined. | Lemma | Require Import Basics Types Truncations.Core. Require Import Pointed.Core. Require Import WildCat.Core Homotopy.ExactSequence. Require Import AbGroups.AbelianGroup AbSES.Core AbGroups.Biproduct. | Algebra\AbSES\DirectSum.v | abses_twist_directsum | 533 |
(B A : AbGroup@{u}) := pTr 0 (AbSES B A). | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | Ext | 534 |
`{Univalence} {B A : AbGroup} (E : AbSES B A) : merely {s : GroupHomomorphism B E & (projection _) $o s == idmap} <~> (tr E = point (Ext B A)). Proof. refine (equiv_path_Tr _ _ oE _). srapply equiv_iff_hprop; apply Trunc_functor; apply iff_abses_trivial_split. Defined. | Proposition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | iff_ab_ext_trivial_split | 535 |
Ext' (B A : AbGroup@{u}) := Tr 0 (AbSES' B A). | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | Ext' | 536 |
`{Univalence} (B A : AbGroup@{u}) : Group. Proof. snrapply (Build_Group (Ext B A)). - intros E F. strip_truncations. exact (tr (abses_baer_sum E F)). - exact (point (Ext B A)). - unfold Negate. exact (Trunc_functor _ (abses_pullback (- grp_homo_id))). - repeat split. 1: apply istrunc_truncation. all: intro E. 1: intros F G. all: strip_truncations; unfold mon_unit, point; apply (ap tr). + symmetry; apply baer_sum_associative. + apply baer_sum_unit_l. + apply baer_sum_unit_r. + apply baer_sum_inverse_r. + apply baer_sum_inverse_l. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | grp_ext | 537 |
ab_ext@{u v|u < v} `{Univalence} (B : AbGroup@{u}^op) (A : AbGroup@{u}) : AbGroup@{v}. Proof. snrapply (Build_AbGroup (grp_ext@{u v} B A)). intros E F. strip_truncations; cbn. apply ap. apply baer_sum_commutative. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | ab_ext@ | 538 |
`{Univalence} {B A G : AbGroup@{u}} (E : AbSES B A) : GroupHomomorphism (ab_hom A G) (ab_ext B G). Proof. snrapply Build_GroupHomomorphism. 1: exact (fun f => fmap01 (A:=AbGroup^op) Ext' _ f (tr E)). intros f g; cbn. nrapply (ap tr). exact (baer_sum_distributive_pushouts f g). Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | abses_pushout_ext | 539 |
`{Univalence} (P : AbGroup) `{IsAbProjective P} : forall A, forall E : AbSES P A, tr E = point (Ext P A). Proof. intros A E. apply iff_ab_ext_trivial_split. exact (fst (iff_isabprojective_surjections_split P) _ _ _ _). Defined. | Proposition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | abext_trivial_projective | 540 |
`{Univalence} (P : AbGroup) (ext_triv : forall A, forall E : AbSES P A, tr E = point (Ext P A)) : IsAbProjective P. Proof. apply iff_isabprojective_surjections_split. intros E p issurj_p. apply (iff_ab_ext_trivial_split (abses_from_surjection p))^-1. apply ext_triv. Defined. | Proposition | Require Import Basics Types Truncations.Core. Require Import Pointed WildCat. Require Import Truncations.SeparatedTrunc. Require Import AbelianGroup AbHom AbProjective. Require Import AbSES.Pullback AbSES.Pushout AbSES.BaerSum AbSES.Core. | Algebra\AbSES\Ext.v | abext_projective_trivial | 541 |
{A B B' : AbGroup} (f : B' $-> B) : AbSES B A -> AbSES B' A. Proof. intro E. snrapply (Build_AbSES (ab_pullback (projection E) f) (grp_pullback_corec _ _ (inclusion _) grp_homo_const _) (grp_pullback_pr2 (projection _) f)). - intro x. nrefine (_ @ (grp_homo_unit f)^). apply isexact_inclusion_projection. - exact (cancelL_isembedding (g:= grp_pullback_pr1 _ _)). - rapply conn_map_pullback'. - snrapply Build_IsExact. + snrapply phomotopy_homotopy_hset. * exact _. * reflexivity. + nrefine (cancelL_equiv_conn_map _ _ (hfiber_pullback_along_pointed f (projection _) (grp_homo_unit _))). nrefine (conn_map_homotopic _ _ _ _ (conn_map_isexact (IsExact:=isexact_inclusion_projection _))). intro a. by apply path_sigma_hprop. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback | 542 |
{A B B' : AbGroup@{u}} (E : AbSES B A) (f : B' $-> B) : AbSESMorphism (abses_pullback f E) E. Proof. snrapply (Build_AbSESMorphism grp_homo_id _ f). - apply grp_pullback_pr1. - reflexivity. - apply pullback_commsq. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_morphism | 543 |
{A B X Y : AbGroup@{u}} {E : AbSES B A} {F : AbSES Y X} (f : AbSESMorphism E F) : AbSESMorphism E (abses_pullback (component3 f) F). Proof. snrapply (Build_AbSESMorphism (component1 f) _ grp_homo_id). - apply (grp_pullback_corec (projection F) (component3 f) (component2 f) (projection E)). apply right_square. - intro x; cbn. apply equiv_path_pullback_hset; cbn; split. + apply left_square. + symmetry; apply iscomplex_abses. - reflexivity. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_morphism_corec | 544 |
`{Funext} {A B X Y : AbGroup@{u}} {E : AbSES B A} {F : AbSES Y X} (f : AbSESMorphism E F) : f = absesmorphism_compose (abses_pullback_morphism F (component3 f)) (abses_pullback_morphism_corec f). Proof. apply (equiv_ap issig_AbSESMorphism^-1 _ _). srapply path_sigma_hprop. apply path_prod. 1: apply path_prod. all: by apply equiv_path_grouphomomorphism. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_morphism_corec_beta | 545 |
abses_pullback_component1_id' {A B B' : AbGroup@{u}} {E : AbSES B A} {F : AbSES B' A} (f : AbSESMorphism E F) (h : component1 f == grp_homo_id) : E $== abses_pullback (component3 f) F. Proof. pose (g := abses_pullback_morphism_corec f). nrapply abses_path_data_to_iso. exists (component2 g); split. - exact (fun a => (left_square g a)^ @ ap _ (h a)). - reflexivity. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_component1_id' | 546 |
`{Univalence} {A B B' : AbGroup} {E : AbSES B A} {F : AbSES B' A} (f : AbSESMorphism E F) (h : component1 f == grp_homo_id) : E = abses_pullback (component3 f) F := equiv_path_abses_iso (' f h). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_component1_id | 547 |
`{Funext} {A B B' C D D' : AbGroup@{u}} {E : AbSES B A} {F : AbSES D C} (f : B' $-> B) (g : D' $-> D) : AbSESMorphism (abses_direct_sum (abses_pullback f E) (abses_pullback g F)) (abses_direct_sum E F) := functor_abses_directsum (abses_pullback_morphism E f) (abses_pullback_morphism F g). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_directsum_pullback_morphism | 548 |
`{Univalence} {A B B' C D D' : AbGroup@{u}} {E : AbSES B A} {F : AbSES D C} (f : B' $-> B) (g : D' $-> D) : abses_pullback (functor_ab_biprod f g) (abses_direct_sum E F) = abses_direct_sum (abses_pullback f E) (abses_pullback g F) := (abses_pullback_component1_id (abses_directsum_pullback_morphism f g) (fun _ => idpath))^. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_directsum_distributive_pullbacks | 549 |
{A B B' : AbGroup@{u}} (bt : B' $-> B) (E : AbSES B A) (F : AbSES B' A) (p : abses_pullback bt E = F) : exists phi : middle F $-> E, projection E o phi == bt o projection F. Proof. induction p. exists (grp_pullback_pr1 _ _); intro x. nrapply pullback_commsq. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_path_pullback_projection_commsq | 550 |
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) {E F : AbSES B A} (p : E = F) : ap (abses_pullback f) p = equiv_path_abses_iso (fmap (abses_pullback f) (equiv_path_abses_iso^-1 p)). Proof. induction p. nrefine (_ @ ap equiv_path_abses_iso _). 2: refine ((fmap_id_strong _ _)^ @ ap _ equiv_path_absesV_1^). exact equiv_path_abses_1^. Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | ap_abses_pullback | 551 |
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) {E F : AbSES B A} (p : abses_path_data_iso E F) : ap (abses_pullback f) (equiv_path_abses_iso p) = equiv_path_abses_iso (fmap (abses_pullback f) p). Proof. refine (ap_abses_pullback _ _ @ _). apply (ap (equiv_path_abses_iso o _)). apply eissect. Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | ap_abses_pullback_data | 552 |
abses_pullback_point' {A B B' : AbGroup} (f : B' $-> B) : (abses_pullback f pt) $== (point (AbSES B' A)). Proof. snrefine (_; (_, _)). - snrapply Build_GroupIsomorphism. + srapply ab_biprod_corec. * refine (ab_biprod_pr1 $o _). apply grp_pullback_pr1. * apply projection. + srapply isequiv_adjointify. * snrapply grp_pullback_corec. -- exact (functor_ab_biprod grp_homo_id f). -- exact ab_biprod_pr2. -- reflexivity. * reflexivity. * intros [[a b] [b' c]]. srapply equiv_path_pullback_hset; split; cbn. 2: reflexivity. exact (path_prod' idpath c^). - reflexivity. - reflexivity. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_point' | 553 |
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) : abses_pullback f pt = pt :> AbSES B' A := equiv_path_abses_iso (' f). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_point | 554 |
abses_pullback' {A B B' : AbGroup} (f : B' $-> B) : AbSES B A -->* AbSES B' A := Build_BasepointPreservingFunctor (abses_pullback f) (abses_pullback_point' f). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback' | 555 |
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) : AbSES B A ->* AbSES B' A := to_pointed (abses_pullback' f). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_pmap | 556 |
`{Univalence} {A B : AbGroup} : abses_pullback (A:=A) (@grp_homo_id B) == idmap. Proof. intro E. apply equiv_path_abses_iso; srefine (_; (_, _)). 1: rapply (Build_GroupIsomorphism _ _ (grp_pullback_pr1 _ _)). 1: reflexivity. intros [a [p q]]; cbn. exact q^. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_id | 557 |
`{Univalence} {A B : AbGroup} : abses_pullback_pmap (A:=A) (@grp_homo_id B) ==* pmap_idmap. Proof. srapply Build_pHomotopy. 1: apply abses_pullback_id. refine (_ @ (concat_p1 _)^). nrapply (ap equiv_path_abses_iso). apply path_sigma_hprop. apply equiv_path_groupisomorphism. intros [[a b] [b' p]]; cbn; cbn in p. by apply path_prod'. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_pmap_id | 558 |
abses_pullback_compose' {A B0 B1 B2 : AbGroup@{u}} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback (A:=A) f o abses_pullback g $=> abses_pullback (g $o f). Proof. intro E; srefine (_; (_,_)). - apply equiv_grp_pullback_compose_r. - intro a. by srapply equiv_path_pullback_hset. - reflexivity. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_compose' | 559 |
`{Univalence} {A B0 B1 B2 : AbGroup@{u}} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback (A:=A) f o abses_pullback g == abses_pullback (g $o f) := fun x => equiv_path_abses_iso (' f g x). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_compose | 560 |
abses_pullback_pcompose' {B0 B1 B2 A : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback' f $o* abses_pullback' g $=>* abses_pullback' (A:=A) (g $o f). Proof. exists (abses_pullback_compose' f g). intros [[[a b2] [b1 c]] [b0 c']]; cbn in c, c'. srapply equiv_path_pullback_hset; split; cbn. 2: reflexivity. exact (path_prod' idpath (c @ ap g c')). Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_pcompose' | 561 |
`{Univalence} {A B0 B1 B2 : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) : abses_pullback_pmap (A:=A) f o* abses_pullback_pmap g ==* abses_pullback_pmap (g $o f). Proof. refine (to_pointed_compose _ _ @* _). apply equiv_ptransformation_phomotopy. apply '. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_pcompose | 562 |
abses_pullback_const' {A B B' : AbGroup} : const pt $=> (@abses_pullback A B B' grp_homo_const). Proof. intro E. simpl. nrapply abses_path_data_to_iso. srefine (_;(_,_)); cbn. - srapply grp_pullback_corec. + exact (inclusion _ $o ab_biprod_pr1). + exact ab_biprod_pr2. + intro x; cbn. apply iscomplex_abses. - intro a; cbn. by srapply equiv_path_pullback_hset; split. - reflexivity. Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_const' | 563 |
`{Univalence} {A B B' : AbGroup} : const pt == @abses_pullback A B B' grp_homo_const := fun x => (equiv_path_abses_iso (' x)). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_const | 564 |
abses_pullback_pconst' {A B B' : AbGroup} : @pmap_abses_const B' A B A $=>* abses_pullback' grp_homo_const. Proof. srefine (_; _). 1: rapply abses_pullback_const'. lazy beta. intro x; reflexivity. Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_pconst' | 565 |
`{Univalence} {A B B' : AbGroup} : pconst ==* @abses_pullback_pmap _ A B B' grp_homo_const. Proof. refine (pmap_abses_const_to_pointed @* _). rapply equiv_ptransformation_phomotopy. exact '. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_pconst | 566 |
{B A : AbGroup} (E : AbSES B A) : AbSESMorphism (pt : AbSES E A) E. Proof. srapply (Build_AbSESMorphism grp_homo_id _ (projection E)). - cbn. exact (ab_biprod_rec (inclusion E) grp_homo_id). - intro x; cbn. exact (right_identity _)^. - intros [a e]; cbn. refine (grp_homo_op _ _ _ @ _). refine (ap (fun x => sg_op x _) _ @ _). 1: apply isexact_inclusion_projection. apply left_identity. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_projection_morphism | 567 |
`{Univalence} {B A : AbGroup} (E : AbSES B A) : pt = abses_pullback (projection E) E := abses_pullback_component1_id (abses_pullback_projection_morphism E) (fun _ => idpath). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_projection | 568 |
abses_pullback_homotopic' {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback (A:=A) f $=> abses_pullback f'. Proof. intro E. srefine (_; (_, _)). - srapply equiv_functor_grp_pullback. 1-3: exact grp_iso_id. 1: reflexivity. apply h. - intro a; cbn. by srapply equiv_path_pullback_hset; split. - reflexivity. Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_homotopic' | 569 |
`{Univalence} {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback (A:=A) f == abses_pullback f'. Proof. intro E. apply equiv_path_abses_iso. exact (' _ _ h _). Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_homotopic | 570 |
abses_pullback_phomotopic' {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback' (A:=A) f $=>* abses_pullback' f'. Proof. exists (abses_pullback_homotopic' f f' h); cbn. intros [[a b'] [b c]]; cbn in c. srapply equiv_path_pullback_hset; split; cbn. 2: reflexivity. exact (path_prod' idpath (c @ h b)). Defined. | Lemma | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_phomotopic' | 571 |
`{Univalence} {A B B' : AbGroup} (f f' : B $-> B') (h : f == f') : abses_pullback_pmap (A:=A) f ==* abses_pullback_pmap f' := equiv_ptransformation_phomotopy (' f f' h). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | abses_pullback_phomotopic | 572 |
iscomplex_abses_pullback' {A B0 B1 B2 : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) (h : g $o f == grp_homo_const) : abses_pullback' f $o* abses_pullback' g $=>* @pmap_abses_const _ _ _ A. Proof. refine (abses_pullback_pcompose' _ _ $@* _). refine (abses_pullback_phomotopic' _ _ h $@* _). exact abses_pullback_pconst'^*$. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | iscomplex_abses_pullback' | 573 |
`{Univalence} {A B0 B1 B2 : AbGroup} (f : B0 $-> B1) (g : B1 $-> B2) (h : g $o f == grp_homo_const) : IsComplex (abses_pullback_pmap (A:=A) g) (abses_pullback_pmap f). Proof. refine (_ @* _). 2: symmetry; exact pmap_abses_const_to_pointed. refine (to_pointed_compose _ _ @* _). apply equiv_ptransformation_phomotopy. by rapply '. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | iscomplex_abses_pullback | 574 |
`{Univalence} {A B C : AbGroup} (E : AbSES C B) : IsComplex (abses_pullback_pmap (A:=A) (projection E)) (abses_pullback_pmap (inclusion E)). Proof. rapply iscomplex_abses_pullback. rapply iscomplex_abses. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | iscomplex_pullback_abses | 575 |
`{Univalence} {X : Type} {A B : AbGroup} (f : X -> AbSES B A) (E : AbSES B A) : graph_hfiber f E <~> hfiber f E := equiv_functor_sigma_id (fun _ => equiv_path_abses_iso). | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | equiv_hfiber_abses | 576 |
{A B B' : AbGroup} {f : B' $-> B} {X : AbSES B' A} (E F : graph_hfiber (abses_pullback f) X) := {p : E. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | hfiber_abses_path | 577 |
`{Univalence} {A B B' : AbGroup} {f : B' $-> B} {Y : AbSES B' A} {X0 : graph_hfiber (abses_pullback f) Y} {X1 : AbSES B A} (p : X0.1 = X1) : transport (fun x : AbSES B A => abses_pullback f x $== Y) p X0.2 = fmap (abses_pullback f) (equiv_path_abses_iso^-1 p^) $@ X0.2. Proof. induction p. refine (transport_1 _ _ @ _). nrefine (_ @ (ap (fun x => x $@ _)) _). 2: { refine (_ @ ap _ equiv_path_absesV_1^). exact (fmap_id_strong _ _)^. } exact (cat_idr_strong _)^. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | transport_path_data_hfiber_abses_pullback_l | 578 |
`{Univalence} {A B B' : AbGroup} {f : B' $-> B} (Y : AbSES B' A) (U V : graph_hfiber (abses_pullback f) Y) : hfiber_abses_path U V <~> U = V. Proof. refine (equiv_path_sigma _ _ _ oE _). srapply (equiv_functor_sigma' equiv_path_abses_iso); intro p; lazy beta. refine (equiv_concat_l _ _ oE _). { refine (transport_path_data_hfiber_abses_pullback_l _ @ _). refine (ap (fun x => (fmap (abses_pullback f) x) $@ _) _ @ _). { refine (ap _ (abses_path_data_V p) @ _). apply eissect. } refine (ap (fun x => x $@ _) _). rapply gpd_strong_1functor_V. } refine (equiv_path_sigma_hprop _ _ oE _). apply equiv_path_groupisomorphism. Defined. | Definition | Require Import Basics Types. Require Import HSet Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Modalities.ReflectiveSubuniverse. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pullback.v | equiv_hfiber_abses_pullback | 579 |
{A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : B $-> F := grp_pullback_pr1 _ _ $o p^$.1 $o ab_biprod_inr. Local Instance abses_pullback_inclusion_lemma {A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : IsEmbedding (grp_pullback_pr1 _ _ $o p^$.1). Proof. nrapply (istruncmap_compose (-1) p^$.1 (grp_pullback_pr1 (projection F) i)). all: rapply istruncmap_mapinO_tr. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | abses_pullback_inclusion_transpose_map | 580 |
abses_pullback_inclusion_transpose_endpoint' {A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : AbGroup := ab_cokernel_embedding (abses_pullback_inclusion_transpose_map i F p). | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | abses_pullback_inclusion_transpose_endpoint' | 581 |
{A B E : AbGroup} (i : B $-> E) `{IsEmbedding i} (F : AbSES E A) (p : abses_pullback i F $== pt) : projection F $o (abses_pullback_inclusion_transpose_map i F p) == i. Proof. intro b. change b with (ab_biprod_pr2 (A:=A) (mon_unit, b)). refine (pullback_commsq _ _ _ @ ap i _). exact (snd p^$.2 _)^. Defined. | Lemma | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | abses_pullback_inclusion_transpose_beta | 582 |
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : AbSES C A. Proof. snrapply Build_AbSES. - exact (abses_pullback_inclusion_transpose_endpoint' (inclusion E) F p). - exact (grp_quotient_map $o inclusion F). - srapply (ab_cokernel_embedding_rec _ (projection E $o projection F)). intro b. refine (ap (projection E) (abses_pullback_inclusion_transpose_beta (inclusion E) F p b) @ _). apply iscomplex_abses. - apply isembedding_grouphomomorphism. intros a q0. pose proof (in_coset := related_quotient_paths _ _ _ q0). destruct in_coset as [b q1]; rewrite grp_unit_r in q1. assert (q2 : ab_biprod_inr b = ab_biprod_inl (-a)). 1: { apply (isinj_embedding (grp_pullback_pr1 _ _ $o p^$.1)). - apply abses_pullback_inclusion_lemma. exact _. - nrefine (q1 @ _); symmetry. refine (ap (grp_pullback_pr1 _ _) (fst p^$.2 (-a)) @ _). exact (grp_homo_inv _ _). } pose proof (q3 := ap negate (fst ((equiv_path_prod _ _)^-1 q2))); cbn in q3. exact ((negate_involutive _)^ @ q3^ @ negate_mon_unit). - apply (cancelR_conn_map (Tr (-1)) grp_quotient_map). 1: exact _. simpl. exact _. - snrapply Build_IsExact. + srapply phomotopy_homotopy_hset. intro a; simpl. refine (ap (projection E) _ @ _). 1: apply iscomplex_abses. apply grp_homo_unit. + intros [y q]. apply (@contr_inhabited_hprop _ _). assert (f : merely (hfiber grp_quotient_map y)). 1: apply center, issurj_class_of. revert_opaque f; apply Trunc_rec; intros [f q0]. assert (b : merely (hfiber (inclusion E) (projection F f))). 1: { rapply isexact_preimage. exact (ap _ q0 @ q). } revert_opaque b; apply Trunc_rec; intros [b q1]. assert (a : merely (hfiber (inclusion F) (sg_op f (-(grp_pullback_pr1 _ _ (p^$.1 (ab_biprod_inr b))))))). 1: { rapply isexact_preimage. refine (grp_homo_op _ _ _ @ _). refine (ap (fun x => _ + x) (grp_homo_inv _ _) @ _). refine (ap (fun x => _ - x) (abses_pullback_inclusion_transpose_beta (inclusion E) F p b @ q1) @ _). apply right_inverse. } revert_opaque a; apply Trunc_rec; intros [a q2]. refine (tr (a; _)). let T := type of y in apply (@path_sigma_hprop T). 1: intros ?; apply istrunc_paths; apply group_isgroup. refine (ap grp_quotient_map q2 @ _ @ q0). refine (grp_homo_op _ _ _ @ _). apply grp_moveR_Mg. refine (_ @ (left_inverse _)^). apply qglue. exists b. refine (_ @ (grp_unit_r _)^). exact (negate_involutive _)^. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | abses_pullback_trivial_preimage | 583 |
abses_pullback_inclusion0_map' `{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : AbSESMorphism F (abses_pullback_trivial_preimage E F p). Proof. srapply Build_AbSESMorphism. - exact grp_homo_id. - exact grp_quotient_map. - exact (projection E). - reflexivity. - reflexivity. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | abses_pullback_inclusion0_map' | 584 |
cxfib' {A B C : AbGroup} (E : AbSES C B) : AbSES C A -> graph_hfiber (abses_pullback (A:=A) (inclusion E)) pt. Proof. intro Y. exists (abses_pullback (projection E) Y). refine (abses_pullback_compose' _ _ Y $@ _). refine (abses_pullback_homotopic' _ grp_homo_const _ Y $@ _). 1: rapply iscomplex_abses. symmetry; apply abses_pullback_const'. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | cxfib' | 585 |
hfiber_cxfib' {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) := {Y : AbSES C A & hfiber_abses_path (cxfib' E Y) (F; p)}. Local pr2_cxfib' `{Univalence} {A B C : AbGroup} {E : AbSES C B} (U : AbSES C A) : equiv_ptransformation_phomotopy (iscomplex_abses_pullback' _ _ (iscomplex_abses E)) U = equiv_path_abses_iso (cxfib' E U).2. Proof. change (equiv_ptransformation_phomotopy (iscomplex_abses_pullback' _ _ (iscomplex_abses E)) U) with (equiv_path_abses_iso ((iscomplex_abses_pullback' _ _ (iscomplex_abses E)).1 U)). apply (ap equiv_path_abses_iso). rapply path_hom. refine (_ $@R abses_pullback_compose' (inclusion E) (projection E) U); unfold trans_comp. refine (_ $@R abses_pullback_homotopic' (projection E $o inclusion E) grp_homo_const (iscomplex_abses E) U). reflexivity. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | hfiber_cxfib' | 586 |
equiv_hfiber_cxfib' `{Univalence} {A B C : AbGroup} {E : AbSES C B} (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : hfiber_cxfib' E F p <~> hfiber (cxfib (iscomplex_pullback_abses E)) (equiv_hfiber_abses _ pt (F;p)). Proof. srapply equiv_functor_sigma_id; intro U; lazy beta. refine (_ oE equiv_hfiber_abses_pullback _ _ _). refine (_ oE equiv_ap' (equiv_hfiber_abses _ pt) _ _). apply equiv_concat_l. apply eq_cxfib_cxfib'. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | equiv_hfiber_cxfib' | 587 |
path_hfiber_cxfib' {A B C : AbGroup} {E : AbSES C B} {F : AbSES (middle E) A} {p : abses_pullback (inclusion E) F $== pt} (X Y : hfiber_cxfib' (B:=B) E F p) : Type. Proof. refine (sig (fun q0 : X.1 $== Y.1 => _)). exact ((fmap (abses_pullback (projection E)) q0)^$ $@ X.2.1 $== Y.2.1). Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | path_hfiber_cxfib' | 588 |
`{Univalence} {A B C : AbGroup} {E : AbSES C B} (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (U V : hfiber_cxfib' E F p) (q : U.1 = V.1) : (transport (fun Y : AbSES C A => hfiber_abses_path (cxfib' E Y) (F; p)) q U.2).1 = fmap (abses_pullback (projection E)) (equiv_path_abses_iso^-1 q^) $@ U.2.1. Proof. induction q. refine (ap pr1 (transport_1 _ _) @ _). refine (_ @ ap (fun x => fmap (abses_pullback (projection E)) x $@ _) equiv_path_absesV_1^). refine (_ @ ap (fun x => x $@ _) (fmap_id_strong _ _)^). exact (cat_idr_strong _)^. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | transport_hfiber_abses_path_cxfib'_l | 589 |
equiv_path_hfiber_cxfib' `{Univalence} {A B C : AbGroup} {E : AbSES C B} (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (U V : hfiber_cxfib' E F p) : path_hfiber_cxfib' U V <~> U = V. Proof. refine (equiv_path_sigma _ _ _ oE _). srapply (equiv_functor_sigma' equiv_path_abses_iso); intro q; lazy beta. refine (equiv_path_sigma_hprop _ _ oE _). refine (equiv_concat_l _ _ oE _). 1: apply transport_hfiber_abses_path_cxfib'_l. refine (equiv_path_sigma_hprop _ _ oE equiv_concat_l _ _ oE _). 1: { refine (ap (fun x => (fmap (abses_pullback _) x $@ _).1) _). nrefine (ap _ (abses_path_data_V q) @ _). apply eissect. } refine (equiv_concat_l _ _ oE _). 1: { refine (ap (fun x => (x $@ _).1) _). rapply gpd_strong_1functor_V. } apply equiv_path_groupisomorphism. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | equiv_path_hfiber_cxfib' | 590 |
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : hfiber_cxfib' E F p. Proof. exists (abses_pullback_trivial_preimage E F p). srefine (_^$; _). 1: by rapply (abses_pullback_component1_id' (abses_pullback_inclusion0_map' E F p)). lazy beta; unfold pr2. refine (cat_assoc _ _ _ $@ _). refine (cat_assoc _ _ _ $@ _). apply gpd_moveR_Vh. apply gpd_moveL_hM. apply equiv_ab_biprod_ind_homotopy. split; apply equiv_path_pullback_rec_hset; split; cbn. - intro a. exact (ap (class_of _ o pullback_pr1) (fst p^$.2 a)). - intro a. exact ((snd p^$.2 _)^). - intro b; apply qglue. exists (-b). apply grp_moveL_Vg. refine ((grp_homo_op (grp_pullback_pr1 _ _ $o p^$.1 $o ab_biprod_inr) _ _)^ @ _). exact (ap _ (right_inverse _) @ grp_homo_unit _ @ (grp_homo_unit _)^). - intro b. exact (snd p^$.2 _)^. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | hfiber_cxfib'_inhabited | 591 |
abses_pullback_splits_induced_map' {A B C : AbGroup} (E : AbSES C B) (Y : AbSES C A) : ab_biprod A B $-> abses_pullback (projection E) Y. Proof. srapply (ab_biprod_rec (inclusion _)). srapply grp_pullback_corec. - exact grp_homo_const. - exact (inclusion E). - intro x. refine (grp_homo_unit _ @ _). symmetry; apply iscomplex_abses. Defined. | Definition | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | abses_pullback_splits_induced_map' | 592 |
`{Univalence} {A B B' : AbGroup} (f : B' $-> B) (X Y : graph_hfiber (abses_pullback (A:=A) f) pt) (Q : hfiber_abses_path X Y) : fmap (abses_pullback f) Q.1^$ $o Y.2^$ $== X.2^$. Proof. generalize Q. equiv_intro (equiv_hfiber_abses_pullback _ X Y)^-1%equiv p; induction p. refine ((_ $@R _) $@ _). { Unshelve. 2: exact (Id _). refine (fmap2 _ _ $@ fmap_id _ _). intro x; reflexivity. } exact (cat_idl _). Defined. | Lemma | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | fmap_hfiber_abses_lemma | 593 |
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (Y : hfiber_cxfib' E F p) : hfiber_cxfib'_induced_map E F p Y == abses_pullback_splits_induced_map' E Y.1. Proof. intros [a b]; cbn. refine (ap pullback_pr1 (fmap_hfiber_abses_lemma _ _ (F;p) Y.2 _) @ _). srapply equiv_path_pullback_hset; split; cbn. - exact (grp_unit_r _)^. - exact (grp_unit_l _)^. Defined. | Lemma | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | induced_map_eq | 594 |
`{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (Y : hfiber_cxfib' E F p) : abses_pullback_trivial_preimage E F p $== Y.1. Proof. destruct Y as [Y Q]. apply abses_path_data_to_iso; srefine (_; (_,_)). - snrapply (ab_cokernel_embedding_rec _ (grp_pullback_pr1 _ _$o (Q.1^$).1)). 1-3: exact _. intro f. nrefine (ap _ (induced_map_eq E F p (Y;Q) _) @ _); cbn. exact (grp_unit_r _ @ grp_homo_unit _). - intro a. refine (_ @ ap (grp_pullback_pr1 _ _) (fst (Q.1^$).2 a)). exact (grp_quotient_rec_beta' _ F _ _ (inclusion F a)). - nrapply (conn_map_elim _ grp_quotient_map). 1: apply issurj_class_of. 1: intros ?; apply istrunc_paths; apply group_isgroup. intro f. refine (ap (projection E) (snd (Q.1^$).2 f) @ _); unfold pr1. exact (pullback_commsq _ _ ((Q.1^$).1 f))^. Defined. | Lemma | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | hfiber_cxfib'_induced_path'0 | 595 |
hfiber_cxfib'_induced_path' `{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) (Y : hfiber_cxfib' E F p) : path_hfiber_cxfib' (hfiber_cxfib'_inhabited E F p) Y. Proof. exists (0 E F p Y). rapply gpd_moveR_Vh. rapply gpd_moveL_hM. rapply gpd_moveR_Vh. intro x. srapply equiv_path_pullback_hset; split. 2: exact (snd Y.2.1^$.2 x)^. reflexivity. Defined. | Lemma | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | hfiber_cxfib'_induced_path' | 596 |
contr_hfiber_cxfib' `{Univalence} {A B C : AbGroup} (E : AbSES C B) (F : AbSES (middle E) A) (p : abses_pullback (inclusion E) F $== pt) : Contr (hfiber_cxfib' E F p). Proof. srapply Build_Contr. 1: apply hfiber_cxfib'_inhabited. intros [Y q]. apply equiv_path_hfiber_cxfib'. apply hfiber_cxfib'_induced_path'. Defined. | Lemma | Require Import Basics Types HSet HFiber Limits.Pullback. Require Import WildCat Pointed.Core Homotopy.ExactSequence. Require Import Groups.QuotientGroup. Require Import AbGroups.AbelianGroup AbGroups.AbPullback AbGroups.Biproduct. Require Import AbSES.Core AbSES.Pullback. Require Import Modalities.Identity Modalities.Modality Truncations.Core. | Algebra\AbSES\PullbackFiberSequence.v | contr_hfiber_cxfib' | 597 |
`{Univalence} {A A' B : AbGroup} (f : A $-> A') : AbSES B A -> AbSES B A'. Proof. intro E. snrapply (Build_AbSES (ab_pushout f (inclusion E)) ab_pushout_inl (ab_pushout_rec grp_homo_const (projection E) _)). - symmetry; rapply iscomplex_abses. - rapply ab_pushout_embedding_inl. - nrapply (cancelR_issurjection ab_pushout_inr _). rapply (conn_map_homotopic _ (projection E)); symmetry. nrapply ab_pushout_rec_beta_right. - snrapply Build_IsExact. + srapply phomotopy_homotopy_hset. nrapply ab_pushout_rec_beta_left. + intros [bc' p]. rapply contr_inhabited_hprop. assert (bc : merely (hfiber grp_quotient_map bc')). 1: apply center, issurj_class_of. strip_truncations. destruct bc as [[b c] q]. assert (c_in_kernel : (projection E) c = mon_unit). 1: { refine (_ @ p); symmetry. rewrite <- q; simpl. apply left_identity. } pose proof (a := isexact_preimage _ _ _ c c_in_kernel). strip_truncations. destruct a as [a s]. apply tr. exists (b + - f (- a)); cbn. apply path_sigma_hprop; cbn. change (ab_pushout_inl (b + - f (- a)) = bc'). refine (_ @ q). symmetry. apply path_ab_pushout; cbn. refine (tr (-a; _)). apply path_prod; cbn. * apply grp_moveL_Mg. by rewrite negate_involutive. * exact ((preserves_negate a) @ ap _ s @ (right_identity _)^). Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import WildCat Pointed.Core Homotopy.ExactSequence HIT.epi. Require Import Modalities.ReflectiveSubuniverse. Require Import AbelianGroup AbPushout AbHom AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pushout.v | abses_pushout | 598 |
`{Univalence} {A A' B : AbGroup} (E : AbSES B A) (f : A $-> A') : AbSESMorphism E (abses_pushout f E). Proof. snrapply (Build_AbSESMorphism f _ grp_homo_id). - exact ab_pushout_inr. - exact ab_pushout_commsq. - rapply ab_pushout_rec_beta_right. Defined. | Definition | Require Import Basics Types Truncations.Core. Require Import WildCat Pointed.Core Homotopy.ExactSequence HIT.epi. Require Import Modalities.ReflectiveSubuniverse. Require Import AbelianGroup AbPushout AbHom AbGroups.Biproduct. Require Import AbSES.Core AbSES.DirectSum. | Algebra\AbSES\Pushout.v | abses_pushout_morphism | 599 |