|
## Overview |
|
|
|
This dataset has been introduced by "Inference is Everything: Recasting Semantic Resources into a Unified Evaluation Framework", Aaron Steven White, Pushpendre Rastogi, Kevin Duh, Benjamin Van Durme. IJCNLP, 2017. Original data available [here](https://github.com/decompositional-semantics-initiative/DNC/raw/master/inference_is_everything.zip). |
|
|
|
|
|
## Dataset curation |
|
The following processing is applied |
|
|
|
- `hypothesis_grammatical` and `judgement_valid` columns are filled with `""` when empty |
|
- all columns are stripped |
|
- the `entailed` column is renamed `label` |
|
- `label` column is encoded with the following mapping `{"not-entailed": 0, "entailed": 1}` |
|
- columns `rating` and `good_word` are dropped from `fnplus` dataset |
|
|
|
## Code to generate the dataset |
|
|
|
```python |
|
import pandas as pd |
|
from datasets import Features, Value, ClassLabel, Dataset, DatasetDict |
|
|
|
|
|
ds = {} |
|
for name in ("fnplus", "sprl", "dpr"): |
|
|
|
# read data |
|
with open(f"<path to files>/{name}_data.txt", "r") as f: |
|
data = f.read() |
|
data = data.split("\n\n") |
|
data = [lines.split("\n") for lines in data] |
|
data = [dict([col.split(":", maxsplit=1) for col in line if len(col) > 0]) for line in data] |
|
df = pd.DataFrame(data) |
|
|
|
# fill empty hypothesis_grammatical and judgement_valid |
|
df["hypothesis_grammatical"] = df["hypothesis_grammatical"].fillna("") |
|
df["judgement_valid"] = df["judgement_valid"].fillna("") |
|
|
|
# fix dtype |
|
df["index"] = df["index"].astype(int) |
|
|
|
# strip |
|
for col in df.select_dtypes(object).columns: |
|
df[col] = df[col].str.strip() |
|
|
|
# rename columns |
|
df = df.rename(columns={"entailed": "label"}) |
|
|
|
# encode labels |
|
df["label"] = df["label"].map({"not-entailed": 0, "entailed": 1}) |
|
|
|
# cast to dataset |
|
features = Features({ |
|
"provenance": Value(dtype="string", id=None), |
|
"index": Value(dtype="int64", id=None), |
|
"text": Value(dtype="string", id=None), |
|
"hypothesis": Value(dtype="string", id=None), |
|
"partof": Value(dtype="string", id=None), |
|
"hypothesis_grammatical": Value(dtype="string", id=None), |
|
"judgement_valid": Value(dtype="string", id=None), |
|
"label": ClassLabel(num_classes=2, names=["not-entailed", "entailed"]), |
|
}) |
|
|
|
# select common columns |
|
df = df.loc[:, list(features.keys())] |
|
ds[name] = Dataset.from_pandas(df, features=features) |
|
|
|
ds = DatasetDict(ds) |
|
ds.push_to_hub("recast_white", token="<token>") |
|
``` |