rasgaard's picture
Update README.md
3fb962b verified
metadata
dataset_info:
  features:
    - name: data
      sequence:
        sequence: float32
    - name: label
      dtype: int64
  splits:
    - name: train
      num_bytes: 531730928
      num_examples: 4324
    - name: val
      num_bytes: 5164824
      num_examples: 42
    - name: test
      num_bytes: 5164824
      num_examples: 42
  download_size: 207795149
  dataset_size: 542060576
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: val
        path: data/val-*
      - split: test
        path: data/test-*
license: odc-by

The EEG Motor Movement/Imagery (MMI) Dataset preprocessed with DN3 to be used for downstream fine-tuning with BENDR.

The labels correspond to Task 4 (imagine opening and closing both fists or both feet) from experimental runs 4, 10 and 14.

Creating dataloaders

from datasets import load_dataset
from torch.utils.data import DataLoader

dataset = load_dataset("rasgaard/mmi-bendr-preprocessed")
dataset.set_format("torch")

train_loader = DataLoader(dataset["train"], batch_size=8)
val_loader = DataLoader(dataset["val"], batch_size=8)
test_loader = DataLoader(dataset["test"], batch_size=8)

batch = next(iter(train_loader))
batch["data"].shape, batch["label"].shape
>>> (torch.Size([8, 20, 1536]), torch.Size([8]))