|
--- |
|
dataset_info: |
|
features: |
|
- name: data |
|
sequence: |
|
sequence: float32 |
|
- name: label |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 531730928 |
|
num_examples: 4324 |
|
- name: val |
|
num_bytes: 5164824 |
|
num_examples: 42 |
|
- name: test |
|
num_bytes: 5164824 |
|
num_examples: 42 |
|
download_size: 207795149 |
|
dataset_size: 542060576 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: val |
|
path: data/val-* |
|
- split: test |
|
path: data/test-* |
|
license: odc-by |
|
--- |
|
|
|
The [EEG Motor Movement/Imagery (MMI) Dataset](https://physionet.org/content/eegmmidb/1.0.0/) preprocessed with [DN3](https://github.com/SPOClab-ca/dn3/) to be used for downstream fine-tuning with [BENDR](https://github.com/SPOClab-ca/BENDR). |
|
|
|
The labels correspond to Task 4 (imagine opening and closing both fists or both feet) from experimental runs 4, 10 and 14. |
|
|
|
|
|
## Creating dataloaders |
|
```python |
|
from datasets import load_dataset |
|
from torch.utils.data import DataLoader |
|
|
|
dataset = load_dataset("rasgaard/mmi-bendr-preprocessed") |
|
dataset.set_format("torch") |
|
|
|
train_loader = DataLoader(dataset["train"], batch_size=8) |
|
val_loader = DataLoader(dataset["val"], batch_size=8) |
|
test_loader = DataLoader(dataset["test"], batch_size=8) |
|
|
|
batch = next(iter(train_loader)) |
|
batch["data"].shape, batch["label"].shape |
|
>>> (torch.Size([8, 20, 1536]), torch.Size([8])) |
|
``` |