repo_name
stringlengths
6
103
path
stringlengths
5
191
copies
stringlengths
1
4
size
stringlengths
4
6
content
stringlengths
986
970k
license
stringclasses
15 values
feranick/SpectralMachine
Other/DNNClassifier-tf/dnnclassifier-tf.py
1
3955
import os import six.moves.urllib.request as request import tensorflow as tf import numpy as np import tensorflow.contrib.learn as skflow from sklearn import preprocessing from tensorflow.contrib.learn.python.learn import monitors as monitor_lib # Check that we have correct TensorFlow version installed tf_version = tf.__version__ print("TensorFlow version: {}".format(tf_version)) assert "1.4" <= tf_version, "TensorFlow r1.4 or later is needed" PATH = "" FILE_TRAIN = "AAAtest.txt" #FILE_TRAIN = "Training_kerogen_633nm_HC_20170524a.txt" #FILE_TRAIN = PATH+"AAA_ram_ex-unor_train.txt" FILE_TEST = "AAAtest.txt" tf.logging.set_verbosity(tf.logging.INFO) def get_feature_names(learnFile): try: with open(learnFile, 'r') as f: M = np.loadtxt(f, unpack =False) feature_names = np.char.mod('%s',M[0,1:][0:]) return feature_names except: print('\033[1m' + ' Learning file not found \n' + '\033[0m') return feature_names = get_feature_names(FILE_TRAIN) print(feature_names.shape) arr = [[0]] for i in range(len(feature_names)): arr.append([0.]) print(arr) def my_input_fn(learnFile,file_path, perform_shuffle=False, repeat_count=1): def decode_csv(line): #parsed_line = tf.decode_csv(line, [[i] for i in range(len(feature_names)+1)],field_delim='\t') #parsed_line = tf.decode_csv(line, [[0], [0.] for i in range(len(feature_names)+1)],field_delim='\t') #parsed_line = tf.decode_csv(line, [[0], [0.], [0.], [0.], [0.], [0.]],field_delim='\t') parsed_line = tf.decode_csv(line, arr,field_delim='\t') label = parsed_line[0] tf.cast(label, tf.int32) # Last element is the label print("\n\nlabel\n",label,"\n\n\n") #del parsed_line[0] # Delete last element features = parsed_line[1:] # Everything but last elements are the features print("\n\nfeatures\n",len(features),"\n\n",features,"\n\n") d = dict(zip(feature_names, features)), label return d dataset = (tf.data.TextLineDataset(learnFile) # Read text file .skip(1) # Skip header row .map(decode_csv)) print(dataset) if perform_shuffle: # Randomizes input using a window of 256 elements (read into memory) dataset = dataset.shuffle(buffer_size=256) dataset = dataset.repeat(repeat_count) # Repeats dataset this # times dataset = dataset.batch(32) # Batch size to use iterator = dataset.make_one_shot_iterator() batch_features, batch_labels = iterator.get_next() print("\n\nbatch_features\n",len(batch_features),"\n\n",batch_features,"\n\n") return batch_features, batch_labels next_batch = my_input_fn(FILE_TRAIN, True) # Will return 32 random elements print("\n\n",next_batch) feature_columns = [tf.feature_column.numeric_column(k) for k in feature_names] classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, # The input features to our model hidden_units=[400, 200], # Two layers, each with 10 neurons n_classes=24, model_dir=PATH) classifier.train( input_fn=lambda: my_input_fn(FILE_TRAIN, True, 8)) # Evaluate our model using the examples contained in FILE_TEST # Return value will contain evaluation_metrics such as: loss & average_loss evaluate_result = classifier.evaluate( input_fn=lambda: my_input_fn(FILE_TEST, False, 4)) print("Evaluation results") for key in evaluate_result: print(" {}, was: {}".format(key, evaluate_result[key])) # Predict the type of some Iris flowers. # Let's predict the examples in FILE_TEST, repeat only once. predict_results = classifier.predict( input_fn=lambda: my_input_fn(FILE_TEST, False, 1)) print("Predictions on test file") for prediction in predict_results: # Will print the predicted class, i.e: 0, 1, or 2 if the prediction # is Iris Sentosa, Vericolor, Virginica, respectively. print(prediction["class_ids"][0])
gpl-3.0
UltronAI/Deep-Learning
Pattern-Recognition/hw2-Feature-Selection/skfeature/example/test_ll_l21.py
1
1781
import scipy.io from sklearn import svm from sklearn import cross_validation from sklearn.metrics import accuracy_score from skfeature.utility.sparse_learning import * from skfeature.function.sparse_learning_based import ll_l21 def main(): # load data mat = scipy.io.loadmat('../data/COIL20.mat') X = mat['X'] # data X = X.astype(float) y = mat['Y'] # label y = y[:, 0] Y = construct_label_matrix_pan(y) n_samples, n_features = X.shape # number of samples and number of features # split data into 10 folds ss = cross_validation.KFold(n_samples, n_folds=10, shuffle=True) # perform evaluation on classification task num_fea = 100 # number of selected features clf = svm.LinearSVC() # linear SVM correct = 0 for train, test in ss: # obtain the feature weight matrix Weight, obj, value_gamma = ll_l21.proximal_gradient_descent(X[train], Y[train], 0.1, verbose=False) # sort the feature scores in an ascending order according to the feature scores idx = feature_ranking(Weight) # obtain the dataset on the selected features selected_features = X[:, idx[0:num_fea]] # train a classification model with the selected features on the training dataset clf.fit(selected_features[train], y[train]) # predict the class labels of test data y_predict = clf.predict(selected_features[test]) # obtain the classification accuracy on the test data acc = accuracy_score(y[test], y_predict) correct = correct + acc # output the average classification accuracy over all 10 folds print 'Accuracy:', float(correct)/10 if __name__ == '__main__': main()
mit
tdhopper/scikit-learn
sklearn/linear_model/tests/test_logistic.py
59
35368
import numpy as np import scipy.sparse as sp from scipy import linalg, optimize, sparse import scipy from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_warns from sklearn.utils.testing import raises from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import assert_raise_message from sklearn.utils import ConvergenceWarning from sklearn.linear_model.logistic import ( LogisticRegression, logistic_regression_path, LogisticRegressionCV, _logistic_loss_and_grad, _logistic_grad_hess, _multinomial_grad_hess, _logistic_loss, ) from sklearn.cross_validation import StratifiedKFold from sklearn.datasets import load_iris, make_classification from sklearn.metrics import log_loss X = [[-1, 0], [0, 1], [1, 1]] X_sp = sp.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() sp_version = tuple([int(s) for s in scipy.__version__.split('.')]) def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert_equal(predicted.shape, (n_samples,)) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert_equal(probabilities.shape, (n_samples, n_classes)) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" assert_raise_message(ValueError, msg, LogisticRegression(C=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LogisticRegression(C="test").fit, X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" assert_raise_message(ValueError, msg, LR(tol=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(tol="test").fit, X, Y1) msg = "Maximum number of iteration must be positive" assert_raise_message(ValueError, msg, LR(max_iter=-1).fit, X, Y1) assert_raise_message(ValueError, msg, LR(max_iter="test").fit, X, Y1) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [LogisticRegression(C=len(iris.data)), LogisticRegression(C=len(iris.data), solver='lbfgs', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='newton-cg', multi_class='multinomial'), LogisticRegression(C=len(iris.data), solver='sag', tol=1e-2, multi_class='ovr', random_state=42)]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert_greater(np.mean(pred == target), .95) probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert_greater(np.mean(pred == target), .95) def test_multinomial_validation(): for solver in ['lbfgs', 'newton-cg']: lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial') assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1]) def test_check_solver_option(): X, y = iris.data, iris.target for LR in [LogisticRegression, LogisticRegressionCV]: msg = ("Logistic Regression supports only liblinear, newton-cg, lbfgs" " and sag solvers, got wrong_name") lr = LR(solver="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) msg = "multi_class should be either multinomial or ovr, got wrong_name" lr = LR(solver='newton-cg', multi_class="wrong_name") assert_raise_message(ValueError, msg, lr.fit, X, y) # all solver except 'newton-cg' and 'lfbgs' for solver in ['liblinear', 'sag']: msg = ("Solver %s does not support a multinomial backend." % solver) lr = LR(solver=solver, multi_class='multinomial') assert_raise_message(ValueError, msg, lr.fit, X, y) # all solvers except 'liblinear' for solver in ['newton-cg', 'lbfgs', 'sag']: msg = ("Solver %s supports only l2 penalties, got l1 penalty." % solver) lr = LR(solver=solver, penalty='l1') assert_raise_message(ValueError, msg, lr.fit, X, y) msg = ("Solver %s supports only dual=False, got dual=True" % solver) lr = LR(solver=solver, dual=True) assert_raise_message(ValueError, msg, lr.fit, X, y) def test_multinomial_binary(): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] for solver in ['lbfgs', 'newton-cg']: clf = LogisticRegression(solver=solver, multi_class='multinomial') clf.fit(iris.data, target) assert_equal(clf.coef_.shape, (1, iris.data.shape[1])) assert_equal(clf.intercept_.shape, (1,)) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression(solver=solver, multi_class='multinomial', fit_intercept=False) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert_greater(np.mean(pred == target), .9) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert_true(sp.issparse(clf.coef_)) pred_s_d = clf.decision_function(iris.data) sp_data = sp.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] assert_raises(ValueError, clf.fit, X, y_wrong) # Wrong dimensions for test data assert_raises(ValueError, clf.fit(X_, y_).predict, rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) @raises(ValueError) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan LogisticRegression(random_state=0).fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'): coefs, Cs, _ = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-5, solver=solver, random_state=0) for i, C in enumerate(Cs): lr = LogisticRegression(C=C, fit_intercept=False, tol=1e-5, random_state=0) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal(lr_coef, coefs[i], decimal=4, err_msg="with solver = %s" % solver) # test for fit_intercept=True for solver in ('lbfgs', 'newton-cg', 'liblinear', 'sag'): Cs = [1e3] coefs, Cs, _ = f(logistic_regression_path)( X, y, Cs=Cs, fit_intercept=True, tol=1e-6, solver=solver, intercept_scaling=10000., random_state=0) lr = LogisticRegression(C=Cs[0], fit_intercept=True, tol=1e-4, intercept_scaling=10000., random_state=0) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal(lr_coef, coefs[0], decimal=4, err_msg="with solver = %s" % solver) def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20) lr1 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr1.fit(X, y) lr2 = LogisticRegression(random_state=0, dual=True, max_iter=1, tol=1e-15) lr2.fit(X, y) lr3 = LogisticRegression(random_state=8, dual=True, max_iter=1, tol=1e-15) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" assert_raise_message(AssertionError, msg, assert_array_almost_equal, lr1.coef_, lr3.coef_) def test_logistic_loss_and_grad(): X_ref, y = make_classification(n_samples=20) n_features = X_ref.shape[1] X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = np.zeros(n_features) # First check that our derivation of the grad is correct loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad, approx_grad, decimal=2) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad( w, X, y, alpha=1. ) assert_array_almost_equal(loss, loss_interp) approx_grad = optimize.approx_fprime( w, lambda w: _logistic_loss_and_grad(w, X, y, alpha=1.)[0], 1e-3 ) assert_array_almost_equal(grad_interp, approx_grad, decimal=2) def test_logistic_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features = 50, 5 X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() X_sp = X_ref.copy() X_sp[X_sp < .1] = 0 X_sp = sp.csr_matrix(X_sp) for X in (X_ref, X_sp): w = .1 * np.ones(n_features) # First check that _logistic_grad_hess is consistent # with _logistic_loss_and_grad loss, grad = _logistic_loss_and_grad(w, X, y, alpha=1.) grad_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(grad, grad_2) # Now check our hessian along the second direction of the grad vector = np.zeros_like(grad) vector[1] = 1 hess_col = hess(vector) # Computation of the Hessian is particularly fragile to numerical # errors when doing simple finite differences. Here we compute the # grad along a path in the direction of the vector and then use a # least-square regression to estimate the slope e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _logistic_loss_and_grad(w + t * vector, X, y, alpha=1.)[1] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(approx_hess_col, hess_col, decimal=3) # Second check that our intercept implementation is good w = np.zeros(n_features + 1) loss_interp, grad_interp = _logistic_loss_and_grad(w, X, y, alpha=1.) loss_interp_2 = _logistic_loss(w, X, y, alpha=1.) grad_interp_2, hess = _logistic_grad_hess(w, X, y, alpha=1.) assert_array_almost_equal(loss_interp, loss_interp_2) assert_array_almost_equal(grad_interp, grad_interp_2) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV(Cs=[1.], fit_intercept=False, solver='liblinear') lr_cv.fit(X_ref, y) lr = LogisticRegression(C=1., fit_intercept=False) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert_equal(len(lr_cv.classes_), 2) coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1, )) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sp.csr_matrix(X) clf = LogisticRegressionCV(fit_intercept=True) clf.fit(X, y) clfs = LogisticRegressionCV(fit_intercept=True) clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert_equal(clfs.C_, clf.C_) def test_intercept_logistic_helper(): n_samples, n_features = 10, 5 X, y = make_classification(n_samples=n_samples, n_features=n_features, random_state=0) # Fit intercept case. alpha = 1. w = np.ones(n_features + 1) grad_interp, hess_interp = _logistic_grad_hess(w, X, y, alpha) loss_interp = _logistic_loss(w, X, y, alpha) # Do not fit intercept. This can be considered equivalent to adding # a feature vector of ones, i.e column of one vectors. X_ = np.hstack((X, np.ones(10)[:, np.newaxis])) grad, hess = _logistic_grad_hess(w, X_, y, alpha) loss = _logistic_loss(w, X_, y, alpha) # In the fit_intercept=False case, the feature vector of ones is # penalized. This should be taken care of. assert_almost_equal(loss_interp + 0.5 * (w[-1] ** 2), loss) # Check gradient. assert_array_almost_equal(grad_interp[:n_features], grad[:n_features]) assert_almost_equal(grad_interp[-1] + alpha * w[-1], grad[-1]) rng = np.random.RandomState(0) grad = rng.rand(n_features + 1) hess_interp = hess_interp(grad) hess = hess(grad) assert_array_almost_equal(hess_interp[:n_features], hess[:n_features]) assert_almost_equal(hess_interp[-1] + alpha * grad[-1], hess[-1]) def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # Use pre-defined fold as folds generated for different y cv = StratifiedKFold(target, 3) clf = LogisticRegressionCV(cv=cv) clf.fit(train, target) clf1 = LogisticRegressionCV(cv=cv) target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) assert_array_almost_equal(clf.scores_[2], clf1.scores_[2]) assert_array_almost_equal(clf.intercept_[2:], clf1.intercept_) assert_array_almost_equal(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert_equal(clf.coef_.shape, (3, n_features)) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf.Cs_.shape, (10, )) scores = np.asarray(list(clf.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ['lbfgs', 'newton-cg']: clf_multi = LogisticRegressionCV( solver=solver, multi_class='multinomial', max_iter=15 ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert_greater(multi_score, ovr_score) # Test attributes of LogisticRegressionCV assert_equal(clf.coef_.shape, clf_multi.coef_.shape) assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert_array_almost_equal(coefs_paths.shape, (3, 3, 10, n_features + 1)) assert_equal(clf_multi.Cs_.shape, (10, )) scores = np.asarray(list(clf_multi.scores_.values())) assert_equal(scores.shape, (3, 3, 10)) def test_logistic_regression_solvers(): X, y = make_classification(n_features=10, n_informative=5, random_state=0) ncg = LogisticRegression(solver='newton-cg', fit_intercept=False) lbf = LogisticRegression(solver='lbfgs', fit_intercept=False) lib = LogisticRegression(fit_intercept=False) sag = LogisticRegression(solver='sag', fit_intercept=False, random_state=42) ncg.fit(X, y) lbf.fit(X, y) sag.fit(X, y) lib.fit(X, y) assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=3) assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=3) assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=3) assert_array_almost_equal(sag.coef_, lib.coef_, decimal=3) assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=3) assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=3) def test_logistic_regression_solvers_multiclass(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) tol = 1e-6 ncg = LogisticRegression(solver='newton-cg', fit_intercept=False, tol=tol) lbf = LogisticRegression(solver='lbfgs', fit_intercept=False, tol=tol) lib = LogisticRegression(fit_intercept=False, tol=tol) sag = LogisticRegression(solver='sag', fit_intercept=False, tol=tol, max_iter=1000, random_state=42) ncg.fit(X, y) lbf.fit(X, y) sag.fit(X, y) lib.fit(X, y) assert_array_almost_equal(ncg.coef_, lib.coef_, decimal=4) assert_array_almost_equal(lib.coef_, lbf.coef_, decimal=4) assert_array_almost_equal(ncg.coef_, lbf.coef_, decimal=4) assert_array_almost_equal(sag.coef_, lib.coef_, decimal=4) assert_array_almost_equal(sag.coef_, ncg.coef_, decimal=4) assert_array_almost_equal(sag.coef_, lbf.coef_, decimal=4) def test_logistic_regressioncv_class_weights(): X, y = make_classification(n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0) # Test the liblinear fails when class_weight of type dict is # provided, when it is multiclass. However it can handle # binary problems. clf_lib = LogisticRegressionCV(class_weight={0: 0.1, 1: 0.2}, solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y) y_ = y.copy() y_[y == 2] = 1 clf_lib.fit(X, y_) assert_array_equal(clf_lib.classes_, [0, 1]) # Test for class_weight=balanced X, y = make_classification(n_samples=20, n_features=20, n_informative=10, random_state=0) clf_lbf = LogisticRegressionCV(solver='lbfgs', fit_intercept=False, class_weight='balanced') clf_lbf.fit(X, y) clf_lib = LogisticRegressionCV(solver='liblinear', fit_intercept=False, class_weight='balanced') clf_lib.fit(X, y) clf_sag = LogisticRegressionCV(solver='sag', fit_intercept=False, class_weight='balanced', max_iter=2000) clf_sag.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_sag.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_lib.coef_, clf_sag.coef_, decimal=4) def test_logistic_regression_sample_weights(): X, y = make_classification(n_samples=20, n_features=5, n_informative=3, n_classes=2, random_state=0) for LR in [LogisticRegression, LogisticRegressionCV]: # Test that liblinear fails when sample weights are provided clf_lib = LR(solver='liblinear') assert_raises(ValueError, clf_lib.fit, X, y, sample_weight=np.ones(y.shape[0])) # Test that passing sample_weight as ones is the same as # not passing them at all (default None) clf_sw_none = LR(solver='lbfgs', fit_intercept=False) clf_sw_none.fit(X, y) clf_sw_ones = LR(solver='lbfgs', fit_intercept=False) clf_sw_ones.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(clf_sw_none.coef_, clf_sw_ones.coef_, decimal=4) # Test that sample weights work the same with the lbfgs, # newton-cg, and 'sag' solvers clf_sw_lbfgs = LR(solver='lbfgs', fit_intercept=False) clf_sw_lbfgs.fit(X, y, sample_weight=y + 1) clf_sw_n = LR(solver='newton-cg', fit_intercept=False) clf_sw_n.fit(X, y, sample_weight=y + 1) clf_sw_sag = LR(solver='sag', fit_intercept=False, max_iter=2000, tol=1e-7) clf_sw_sag.fit(X, y, sample_weight=y + 1) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_n.coef_, decimal=4) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_sag.coef_, decimal=4) # Test that passing class_weight as [1,2] is the same as # passing class weight = [1,1] but adjusting sample weights # to be 2 for all instances of class 2 clf_cw_12 = LR(solver='lbfgs', fit_intercept=False, class_weight={0: 1, 1: 2}) clf_cw_12.fit(X, y) sample_weight = np.ones(y.shape[0]) sample_weight[y == 1] = 2 clf_sw_12 = LR(solver='lbfgs', fit_intercept=False) clf_sw_12.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(clf_cw_12.coef_, clf_sw_12.coef_, decimal=4) def test_logistic_regression_convergence_warnings(): # Test that warnings are raised if model does not converge X, y = make_classification(n_samples=20, n_features=20) clf_lib = LogisticRegression(solver='liblinear', max_iter=2, verbose=1) assert_warns(ConvergenceWarning, clf_lib.fit, X, y) assert_equal(clf_lib.n_iter_, 2) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0) clf_int = LogisticRegression(solver='lbfgs', multi_class='multinomial') clf_int.fit(X, y) assert_array_equal(clf_int.coef_.shape, (n_classes, n_features)) clf_wint = LogisticRegression(solver='lbfgs', multi_class='multinomial', fit_intercept=False) clf_wint.fit(X, y) assert_array_equal(clf_wint.coef_.shape, (n_classes, n_features)) # Similar tests for newton-cg solver option clf_ncg_int = LogisticRegression(solver='newton-cg', multi_class='multinomial') clf_ncg_int.fit(X, y) assert_array_equal(clf_ncg_int.coef_.shape, (n_classes, n_features)) clf_ncg_wint = LogisticRegression(solver='newton-cg', fit_intercept=False, multi_class='multinomial') clf_ncg_wint.fit(X, y) assert_array_equal(clf_ncg_wint.coef_.shape, (n_classes, n_features)) # Compare solutions between lbfgs and newton-cg assert_almost_equal(clf_int.coef_, clf_ncg_int.coef_, decimal=3) assert_almost_equal(clf_wint.coef_, clf_ncg_wint.coef_, decimal=3) assert_almost_equal(clf_int.intercept_, clf_ncg_int.intercept_, decimal=3) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ['lbfgs', 'newton-cg']: clf_path = LogisticRegressionCV(solver=solver, multi_class='multinomial', Cs=[1.]) clf_path.fit(X, y) assert_array_almost_equal(clf_path.coef_, clf_int.coef_, decimal=3) assert_almost_equal(clf_path.intercept_, clf_int.intercept_, decimal=3) def test_multinomial_grad_hess(): rng = np.random.RandomState(0) n_samples, n_features, n_classes = 100, 5, 3 X = rng.randn(n_samples, n_features) w = rng.rand(n_classes, n_features) Y = np.zeros((n_samples, n_classes)) ind = np.argmax(np.dot(X, w.T), axis=1) Y[range(0, n_samples), ind] = 1 w = w.ravel() sample_weights = np.ones(X.shape[0]) grad, hessp = _multinomial_grad_hess(w, X, Y, alpha=1., sample_weight=sample_weights) # extract first column of hessian matrix vec = np.zeros(n_features * n_classes) vec[0] = 1 hess_col = hessp(vec) # Estimate hessian using least squares as done in # test_logistic_grad_hess e = 1e-3 d_x = np.linspace(-e, e, 30) d_grad = np.array([ _multinomial_grad_hess(w + t * vec, X, Y, alpha=1., sample_weight=sample_weights)[0] for t in d_x ]) d_grad -= d_grad.mean(axis=0) approx_hess_col = linalg.lstsq(d_x[:, np.newaxis], d_grad)[0].ravel() assert_array_almost_equal(hess_col, approx_hess_col) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5) clf = LogisticRegression(fit_intercept=False) clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5) clf = LogisticRegressionCV(solver='liblinear') clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % clf.intercept_scaling) assert_raise_message(ValueError, msg, clf.fit, X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert_equal(clf.intercept_, 0.) def test_logreg_cv_penalty(): # Test that the correct penalty is passed to the final fit. X, y = make_classification(n_samples=50, n_features=20, random_state=0) lr_cv = LogisticRegressionCV(penalty="l1", Cs=[1.0], solver='liblinear') lr_cv.fit(X, y) lr = LogisticRegression(penalty="l1", C=1.0, solver='liblinear') lr.fit(X, y) assert_equal(np.count_nonzero(lr_cv.coef_), np.count_nonzero(lr.coef_)) def test_logreg_predict_proba_multinomial(): X, y = make_classification(n_samples=10, n_features=20, random_state=0, n_classes=3, n_informative=10) # Predicted probabilites using the true-entropy loss should give a # smaller loss than those using the ovr method. clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs") clf_multi.fit(X, y) clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs") clf_ovr.fit(X, y) clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X)) assert_greater(clf_ovr_loss, clf_multi_loss) # Predicted probabilites using the soft-max function should give a # smaller loss than those using the logistic function. clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X)) assert_greater(clf_wrong_loss, clf_multi_loss) @ignore_warnings def test_max_iter(): # Test that the maximum number of iteration is reached X, y_bin = iris.data, iris.target.copy() y_bin[y_bin == 2] = 0 solvers = ['newton-cg', 'liblinear', 'sag'] # old scipy doesn't have maxiter if sp_version >= (0, 12): solvers.append('lbfgs') for max_iter in range(1, 5): for solver in solvers: lr = LogisticRegression(max_iter=max_iter, tol=1e-15, random_state=0, solver=solver) lr.fit(X, y_bin) assert_equal(lr.n_iter_[0], max_iter) def test_n_iter(): # Test that self.n_iter_ has the correct format. X, y = iris.data, iris.target y_bin = y.copy() y_bin[y_bin == 2] = 0 n_Cs = 4 n_cv_fold = 2 for solver in ['newton-cg', 'liblinear', 'sag', 'lbfgs']: # OvR case n_classes = 1 if solver == 'liblinear' else np.unique(y).shape[0] clf = LogisticRegression(tol=1e-2, multi_class='ovr', solver=solver, C=1., random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes,)) n_classes = np.unique(y).shape[0] clf = LogisticRegressionCV(tol=1e-2, multi_class='ovr', solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs)) clf.fit(X, y_bin) assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs)) # multinomial case n_classes = 1 if solver in ('liblinear', 'sag'): break clf = LogisticRegression(tol=1e-2, multi_class='multinomial', solver=solver, C=1., random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes,)) clf = LogisticRegressionCV(tol=1e-2, multi_class='multinomial', solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42, max_iter=100) clf.fit(X, y) assert_equal(clf.n_iter_.shape, (n_classes, n_cv_fold, n_Cs)) clf.fit(X, y_bin) assert_equal(clf.n_iter_.shape, (1, n_cv_fold, n_Cs)) @ignore_warnings def test_warm_start(): # A 1-iteration second fit on same data should give almost same result # with warm starting, and quite different result without warm starting. # Warm starting does not work with liblinear solver. X, y = iris.data, iris.target solvers = ['newton-cg', 'sag'] # old scipy doesn't have maxiter if sp_version >= (0, 12): solvers.append('lbfgs') for warm_start in [True, False]: for fit_intercept in [True, False]: for solver in solvers: for multi_class in ['ovr', 'multinomial']: if solver == 'sag' and multi_class == 'multinomial': break clf = LogisticRegression(tol=1e-4, multi_class=multi_class, warm_start=warm_start, solver=solver, random_state=42, max_iter=100, fit_intercept=fit_intercept) clf.fit(X, y) coef_1 = clf.coef_ clf.max_iter = 1 with ignore_warnings(): clf.fit(X, y) cum_diff = np.sum(np.abs(coef_1 - clf.coef_)) msg = ("Warm starting issue with %s solver in %s mode " "with fit_intercept=%s and warm_start=%s" % (solver, multi_class, str(fit_intercept), str(warm_start))) if warm_start: assert_greater(2.0, cum_diff, msg) else: assert_greater(cum_diff, 2.0, msg)
bsd-3-clause
mistercrunch/airflow
airflow/providers/google/cloud/operators/automl.py
1
51678
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # """This module contains Google AutoML operators.""" import ast from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union from google.api_core.retry import Retry from google.cloud.automl_v1beta1 import ( BatchPredictResult, ColumnSpec, Dataset, Model, PredictResponse, TableSpec, ) from airflow.models import BaseOperator from airflow.providers.google.cloud.hooks.automl import CloudAutoMLHook if TYPE_CHECKING: from airflow.utils.context import Context MetaData = Sequence[Tuple[str, str]] class AutoMLTrainModelOperator(BaseOperator): """ Creates Google Cloud AutoML model. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLTrainModelOperator` :param model: Model definition. :type model: dict :param project_id: ID of the Google Cloud project where model will be created if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "model", "location", "project_id", "impersonation_chain", ) def __init__( self, *, model: dict, location: str, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model = model self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Creating model.") operation = hook.create_model( model=self.model, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = Model.to_dict(operation.result()) model_id = hook.extract_object_id(result) self.log.info("Model created: %s", model_id) self.xcom_push(context, key="model_id", value=model_id) return result class AutoMLPredictOperator(BaseOperator): """ Runs prediction operation on Google Cloud AutoML. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLPredictOperator` :param model_id: Name of the model requested to serve the batch prediction. :type model_id: str :param payload: Name od the model used for the prediction. :type payload: dict :param project_id: ID of the Google Cloud project where model is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param operation_params: Additional domain-specific parameters for the predictions. :type operation_params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "model_id", "location", "project_id", "impersonation_chain", ) def __init__( self, *, model_id: str, location: str, payload: dict, operation_params: Optional[Dict[str, str]] = None, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model_id = model_id self.operation_params = operation_params # type: ignore self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.payload = payload self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) result = hook.predict( model_id=self.model_id, payload=self.payload, location=self.location, project_id=self.project_id, params=self.operation_params, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return PredictResponse.to_dict(result) class AutoMLBatchPredictOperator(BaseOperator): """ Perform a batch prediction on Google Cloud AutoML. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLBatchPredictOperator` :param project_id: ID of the Google Cloud project where model will be created if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param model_id: Name of the model_id requested to serve the batch prediction. :type model_id: str :param input_config: Required. The input configuration for batch prediction. If a dict is provided, it must be of the same form as the protobuf message `google.cloud.automl_v1beta1.types.BatchPredictInputConfig` :type input_config: Union[dict, ~google.cloud.automl_v1beta1.types.BatchPredictInputConfig] :param output_config: Required. The Configuration specifying where output predictions should be written. If a dict is provided, it must be of the same form as the protobuf message `google.cloud.automl_v1beta1.types.BatchPredictOutputConfig` :type output_config: Union[dict, ~google.cloud.automl_v1beta1.types.BatchPredictOutputConfig] :param prediction_params: Additional domain-specific parameters for the predictions, any string must be up to 25000 characters long. :type prediction_params: Optional[Dict[str, str]] :param project_id: ID of the Google Cloud project where model is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "model_id", "input_config", "output_config", "location", "project_id", "impersonation_chain", ) def __init__( self, *, model_id: str, input_config: dict, output_config: dict, location: str, project_id: Optional[str] = None, prediction_params: Optional[Dict[str, str]] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model_id = model_id self.location = location self.project_id = project_id self.prediction_params = prediction_params self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain self.input_config = input_config self.output_config = output_config def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Fetch batch prediction.") operation = hook.batch_predict( model_id=self.model_id, input_config=self.input_config, output_config=self.output_config, project_id=self.project_id, location=self.location, params=self.prediction_params, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = BatchPredictResult.to_dict(operation.result()) self.log.info("Batch prediction ready.") return result class AutoMLCreateDatasetOperator(BaseOperator): """ Creates a Google Cloud AutoML dataset. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLCreateDatasetOperator` :param dataset: The dataset to create. If a dict is provided, it must be of the same form as the protobuf message Dataset. :type dataset: Union[dict, Dataset] :param project_id: ID of the Google Cloud project where dataset is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param params: Additional domain-specific parameters for the predictions. :type params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "dataset", "location", "project_id", "impersonation_chain", ) def __init__( self, *, dataset: dict, location: str, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset = dataset self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Creating dataset") result = hook.create_dataset( dataset=self.dataset, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = Dataset.to_dict(result) dataset_id = hook.extract_object_id(result) self.log.info("Creating completed. Dataset id: %s", dataset_id) self.xcom_push(context, key="dataset_id", value=dataset_id) return result class AutoMLImportDataOperator(BaseOperator): """ Imports data to a Google Cloud AutoML dataset. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLImportDataOperator` :param dataset_id: ID of dataset to be updated. :type dataset_id: str :param input_config: The desired input location and its domain specific semantics, if any. If a dict is provided, it must be of the same form as the protobuf message InputConfig. :type input_config: dict :param project_id: ID of the Google Cloud project where dataset is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param params: Additional domain-specific parameters for the predictions. :type params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "dataset_id", "input_config", "location", "project_id", "impersonation_chain", ) def __init__( self, *, dataset_id: str, location: str, input_config: dict, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.input_config = input_config self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Importing dataset") operation = hook.import_data( dataset_id=self.dataset_id, input_config=self.input_config, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) operation.result() self.log.info("Import completed") class AutoMLTablesListColumnSpecsOperator(BaseOperator): """ Lists column specs in a table. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLTablesListColumnSpecsOperator` :param dataset_id: Name of the dataset. :type dataset_id: str :param table_spec_id: table_spec_id for path builder. :type table_spec_id: str :param field_mask: Mask specifying which fields to read. If a dict is provided, it must be of the same form as the protobuf message `google.cloud.automl_v1beta1.types.FieldMask` :type field_mask: Union[dict, google.cloud.automl_v1beta1.types.FieldMask] :param filter_: Filter expression, see go/filtering. :type filter_: str :param page_size: The maximum number of resources contained in the underlying API response. If page streaming is performed per resource, this parameter does not affect the return value. If page streaming is performed per page, this determines the maximum number of resources in a page. :type page_size: int :param project_id: ID of the Google Cloud project where dataset is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "dataset_id", "table_spec_id", "field_mask", "filter_", "location", "project_id", "impersonation_chain", ) def __init__( self, *, dataset_id: str, table_spec_id: str, location: str, field_mask: Optional[dict] = None, filter_: Optional[str] = None, page_size: Optional[int] = None, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.table_spec_id = table_spec_id self.field_mask = field_mask self.filter_ = filter_ self.page_size = page_size self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Requesting column specs.") page_iterator = hook.list_column_specs( dataset_id=self.dataset_id, table_spec_id=self.table_spec_id, field_mask=self.field_mask, filter_=self.filter_, page_size=self.page_size, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = [ColumnSpec.to_dict(spec) for spec in page_iterator] self.log.info("Columns specs obtained.") return result class AutoMLTablesUpdateDatasetOperator(BaseOperator): """ Updates a dataset. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLTablesUpdateDatasetOperator` :param dataset: The dataset which replaces the resource on the server. If a dict is provided, it must be of the same form as the protobuf message Dataset. :type dataset: Union[dict, Dataset] :param update_mask: The update mask applies to the resource. If a dict is provided, it must be of the same form as the protobuf message FieldMask. :type update_mask: Union[dict, FieldMask] :param location: The location of the project. :type location: str :param params: Additional domain-specific parameters for the predictions. :type params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "dataset", "update_mask", "location", "impersonation_chain", ) def __init__( self, *, dataset: dict, location: str, update_mask: Optional[dict] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset = dataset self.update_mask = update_mask self.location = location self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Updating AutoML dataset %s.", self.dataset["name"]) result = hook.update_dataset( dataset=self.dataset, update_mask=self.update_mask, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) self.log.info("Dataset updated.") return Dataset.to_dict(result) class AutoMLGetModelOperator(BaseOperator): """ Get Google Cloud AutoML model. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLGetModelOperator` :param model_id: Name of the model requested to serve the prediction. :type model_id: str :param project_id: ID of the Google Cloud project where model is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param params: Additional domain-specific parameters for the predictions. :type params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "model_id", "location", "project_id", "impersonation_chain", ) def __init__( self, *, model_id: str, location: str, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model_id = model_id self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) result = hook.get_model( model_id=self.model_id, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) return Model.to_dict(result) class AutoMLDeleteModelOperator(BaseOperator): """ Delete Google Cloud AutoML model. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLDeleteModelOperator` :param model_id: Name of the model requested to serve the prediction. :type model_id: str :param project_id: ID of the Google Cloud project where model is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param params: Additional domain-specific parameters for the predictions. :type params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "model_id", "location", "project_id", "impersonation_chain", ) def __init__( self, *, model_id: str, location: str, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model_id = model_id self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) operation = hook.delete_model( model_id=self.model_id, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) operation.result() class AutoMLDeployModelOperator(BaseOperator): """ Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parameters (as e.g. changing node_number) will reset the deployment state without pausing the model_id’s availability. Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLDeployModelOperator` :param model_id: Name of the model to be deployed. :type model_id: str :param image_detection_metadata: Model deployment metadata specific to Image Object Detection. If a dict is provided, it must be of the same form as the protobuf message ImageObjectDetectionModelDeploymentMetadata :type image_detection_metadata: dict :param project_id: ID of the Google Cloud project where model is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param params: Additional domain-specific parameters for the predictions. :type params: Optional[Dict[str, str]] :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "model_id", "location", "project_id", "impersonation_chain", ) def __init__( self, *, model_id: str, location: str, project_id: Optional[str] = None, image_detection_metadata: Optional[dict] = None, metadata: Sequence[Tuple[str, str]] = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.model_id = model_id self.image_detection_metadata = image_detection_metadata self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Deploying model_id %s", self.model_id) operation = hook.deploy_model( model_id=self.model_id, location=self.location, project_id=self.project_id, image_detection_metadata=self.image_detection_metadata, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) operation.result() self.log.info("Model deployed.") class AutoMLTablesListTableSpecsOperator(BaseOperator): """ Lists table specs in a dataset. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLTablesListTableSpecsOperator` :param dataset_id: Name of the dataset. :type dataset_id: str :param filter_: Filter expression, see go/filtering. :type filter_: str :param page_size: The maximum number of resources contained in the underlying API response. If page streaming is performed per resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page. :type page_size: int :param project_id: ID of the Google Cloud project if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "dataset_id", "filter_", "location", "project_id", "impersonation_chain", ) def __init__( self, *, dataset_id: str, location: str, page_size: Optional[int] = None, filter_: Optional[str] = None, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.filter_ = filter_ self.page_size = page_size self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Requesting table specs for %s.", self.dataset_id) page_iterator = hook.list_table_specs( dataset_id=self.dataset_id, filter_=self.filter_, page_size=self.page_size, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = [TableSpec.to_dict(spec) for spec in page_iterator] self.log.info(result) self.log.info("Table specs obtained.") return result class AutoMLListDatasetOperator(BaseOperator): """ Lists AutoML Datasets in project. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLListDatasetOperator` :param project_id: ID of the Google Cloud project where datasets are located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "location", "project_id", "impersonation_chain", ) def __init__( self, *, location: str, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) self.log.info("Requesting datasets") page_iterator = hook.list_datasets( location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) result = [Dataset.to_dict(dataset) for dataset in page_iterator] self.log.info("Datasets obtained.") self.xcom_push( context, key="dataset_id_list", value=[hook.extract_object_id(d) for d in result], ) return result class AutoMLDeleteDatasetOperator(BaseOperator): """ Deletes a dataset and all of its contents. .. seealso:: For more information on how to use this operator, take a look at the guide: :ref:`howto/operator:AutoMLDeleteDatasetOperator` :param dataset_id: Name of the dataset_id, list of dataset_id or string of dataset_id coma separated to be deleted. :type dataset_id: Union[str, List[str]] :param project_id: ID of the Google Cloud project where dataset is located if None then default project_id is used. :type project_id: str :param location: The location of the project. :type location: str :param retry: A retry object used to retry requests. If `None` is specified, requests will not be retried. :type retry: Optional[google.api_core.retry.Retry] :param timeout: The amount of time, in seconds, to wait for the request to complete. Note that if `retry` is specified, the timeout applies to each individual attempt. :type timeout: Optional[float] :param metadata: Additional metadata that is provided to the method. :type metadata: Optional[Sequence[Tuple[str, str]]] :param gcp_conn_id: The connection ID to use to connect to Google Cloud. :type gcp_conn_id: str :param impersonation_chain: Optional service account to impersonate using short-term credentials, or chained list of accounts required to get the access_token of the last account in the list, which will be impersonated in the request. If set as a string, the account must grant the originating account the Service Account Token Creator IAM role. If set as a sequence, the identities from the list must grant Service Account Token Creator IAM role to the directly preceding identity, with first account from the list granting this role to the originating account (templated). :type impersonation_chain: Union[str, Sequence[str]] """ template_fields: Sequence[str] = ( "dataset_id", "location", "project_id", "impersonation_chain", ) def __init__( self, *, dataset_id: Union[str, List[str]], location: str, project_id: Optional[str] = None, metadata: MetaData = (), timeout: Optional[float] = None, retry: Optional[Retry] = None, gcp_conn_id: str = "google_cloud_default", impersonation_chain: Optional[Union[str, Sequence[str]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.dataset_id = dataset_id self.location = location self.project_id = project_id self.metadata = metadata self.timeout = timeout self.retry = retry self.gcp_conn_id = gcp_conn_id self.impersonation_chain = impersonation_chain @staticmethod def _parse_dataset_id(dataset_id: Union[str, List[str]]) -> List[str]: if not isinstance(dataset_id, str): return dataset_id try: return ast.literal_eval(dataset_id) except (SyntaxError, ValueError): return dataset_id.split(",") def execute(self, context: 'Context'): hook = CloudAutoMLHook( gcp_conn_id=self.gcp_conn_id, impersonation_chain=self.impersonation_chain, ) dataset_id_list = self._parse_dataset_id(self.dataset_id) for dataset_id in dataset_id_list: self.log.info("Deleting dataset %s", dataset_id) hook.delete_dataset( dataset_id=dataset_id, location=self.location, project_id=self.project_id, retry=self.retry, timeout=self.timeout, metadata=self.metadata, ) self.log.info("Dataset deleted.")
apache-2.0
abimannans/scikit-learn
sklearn/neighbors/unsupervised.py
22
4751
"""Unsupervised nearest neighbors learner""" from .base import NeighborsBase from .base import KNeighborsMixin from .base import RadiusNeighborsMixin from .base import UnsupervisedMixin class NearestNeighbors(NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin, UnsupervisedMixin): """Unsupervised learner for implementing neighbor searches. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`k_neighbors` queries. radius : float, optional (default = 1.0) Range of parameter space to use by default for :meth`radius_neighbors` queries. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDtree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. p: integer, optional (default = 2) Parameter for the Minkowski metric from sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric : string or callable, default 'minkowski' metric to use for distance computation. Any metric from scikit-learn or scipy.spatial.distance can be used. If metric is a callable function, it is called on each pair of instances (rows) and the resulting value recorded. The callable should take two arrays as input and return one value indicating the distance between them. This works for Scipy's metrics, but is less efficient than passing the metric name as a string. Distance matrices are not supported. Valid values for metric are: - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'] - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'] See the documentation for scipy.spatial.distance for details on these metrics. metric_params : dict, optional (default = None) Additional keyword arguments for the metric function. n_jobs : int, optional (default = 1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Affects only :meth:`k_neighbors` and :meth:`kneighbors_graph` methods. Examples -------- >>> import numpy as np >>> from sklearn.neighbors import NearestNeighbors >>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]] >>> neigh = NearestNeighbors(2, 0.4) >>> neigh.fit(samples) #doctest: +ELLIPSIS NearestNeighbors(...) >>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False) ... #doctest: +ELLIPSIS array([[2, 0]]...) >>> rng = neigh.radius_neighbors([0, 0, 1.3], 0.4, return_distance=False) >>> np.asarray(rng[0][0]) array(2) See also -------- KNeighborsClassifier RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor BallTree Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``. http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm """ def __init__(self, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1, **kwargs): self._init_params(n_neighbors=n_neighbors, radius=radius, algorithm=algorithm, leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params, n_jobs=n_jobs, **kwargs)
bsd-3-clause
tdhopper/scikit-learn
sklearn/datasets/lfw.py
140
19372
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir from sklearn.utils import deprecated import logging import numpy as np try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warning("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warning("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) // (h_slice.step or 1) w = (w_slice.stop - w_slice.start) // (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) # Checks if jpeg reading worked. Refer to issue #3594 for more # details. img = imread(file_path) if img.ndim is 0: raise RuntimeError("Failed to read the image file %s, " "Please make sure that libjpeg is installed" % file_path) face = np.asarray(img[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person : int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. Changing the ``slice_`` or resize parameters will change the shape of the output. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) @deprecated("Function 'load_lfw_people' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_people(download_if_missing=False) instead.") def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt The original images are 250 x 250 pixels, but the default slice and resize arguments reduce them to 62 x 74. Read more in the :ref:`User Guide <labeled_faces_in_the_wild>`. Parameters ---------- subset : optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled : boolean, optional, default: True Download and use the funneled variant of the dataset. resize : float, optional, default 0.5 Ratio used to resize the each face picture. color : boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_ : optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing : optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 47 pixels. Changing the ``slice_`` or resize parameters will change the shape of the output. pairs : numpy array of shape (2200, 2, 62, 47) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. Changing the ``slice_`` or resize parameters will change the shape of the output. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) @deprecated("Function 'load_lfw_pairs' has been deprecated in 0.17 and will be " "removed in 0.19." "Use fetch_lfw_pairs(download_if_missing=False) instead.") def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
feranick/SpectralMachine
Other/experimental/new_TF_basic/SpectraLearnPredict_test-TF-new.py
1
66279
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ********************************************************** * * SpectraLearnPredict * Perform Machine Learning on Raman spectra. * version: 20170626c-test-TF-new * * Uses: Deep Neural Networks, TensorFlow, SVM, PCA, K-Means * * By: Nicola Ferralis <feranick@hotmail.com> * *********************************************************** ''' print(__doc__) import matplotlib if matplotlib.get_backend() == 'TkAgg': matplotlib.use('Agg') import numpy as np import sys, os.path, getopt, glob, csv from os.path import exists, splitext from os import rename from datetime import datetime, date import random #*************************************************************** ''' Spectra normalization, preprocessing, model selection ''' #*************************************************************** class preprocDef: Ynorm = True # Normalize spectra (True: recommended) fullYnorm = True # Normalize considering full range (True: recommended) StandardScalerFlag = False # Standardize features by removing the mean and scaling to unit variance (sklearn) subsetCrossValid = False percentCrossValid = 0.10 # proportion of TEST data for cross validation YnormTo = 1 YnormX = 1600 YnormXdelta = 30 enRestrictRegion = False enLim1 = 450 # for now use indexes rather than actual Energy enLim2 = 550 # for now use indexes rather than actual Energy scrambleNoiseFlag = False # Adds random noise to spectra (False: recommended) scrambleNoiseOffset = 0.1 if StandardScalerFlag == True: from sklearn.preprocessing import StandardScaler scaler = StandardScaler() #********************************************** ''' Calculation by limited number of points ''' #********************************************** cherryPickEnPoint = False # False recommended enSel = [1050, 1150, 1220, 1270, 1330, 1410, 1480, 1590, 1620, 1650] enSelDelta = [2, 2, 2, 2, 10, 2, 2, 15, 5, 2] #enSel = [1220, 1270, 1590] #enSelDelta = [2, 2, 30] if(cherryPickEnPoint == True): enRestrictRegion = False print(' Calculation by limited number of points: ENABLED ') print(' THIS IS AN EXPERIMENTAL FEATURE \n') print(' Restricted range: DISABLED') #*********************************************************** ''' Deep Neural Networks - tensorflow via DNNClassifier''' #*********************************************************** class dnntfDef: runDNNTF = False alwaysRetrain = False alwaysImprove = True # Format: [number_neurons_HL1, number_neurons_HL2, number_neurons_HL3,...] hidden_layers = [200] # Stock Optimizers: Adagrad (recommended), Adam, Ftrl, Momentum, RMSProp, SGD # https://www.tensorflow.org/api_guides/python/train optimizer = "Adagrad" # Additional optimizers: ProximalAdagrad, Adagrad-pro: (allow for parameters) # https://www.tensorflow.org/api_guides/python/train #optimizer = "ProximalAdagrad" learning_rate=0.1 l2_reg_strength=1e-8 # activation functions: https://www.tensorflow.org/api_guides/python/nn # relu, relu6, crelu, elu, softplus, softsign, dropout, bias_add # sigmoid, tanh activation_function = "tanh" # When not None, the probability of dropout. dropout_perc = None trainingSteps = 1000 # number of training steps valMonitorSecs = 10 # perform validation every given seconds # threshold in % of probabilities for listing prediction results thresholdProbabilityPred = 0.01 logCheckpoint = True plotMap = True #************************************************* # Setup variables and definitions- do not change. #************************************************* if runDNNTF == True: import tensorflow as tf if activation_function == "sigmoid" or activation_function == "tanh": actFn = "tf."+activation_function else: actFn = "tf.nn."+activation_function activationFn = eval(actFn) if optimizer == "ProximalAdagrad": print(" DNNTF: Using ProximalAdagrad, learn_rate:",learning_rate, ", l2_reg_strength:", l2_reg_strength,"\n") optimizer = tf.train.ProximalAdagradOptimizer(learning_rate=learning_rate, l2_regularization_strength=l2_reg_strength, name="ProximalAdagrad") if optimizer == "Adagrad-pro": print(" DNNTF: Using Adagrad, learn_rate:",learning_rate,"\n") optimizer = tf.train.ProximalAdagradOptimizer(learning_rate=learning_rate, name="Adagrad-pro") #********************************************** ''' Deep Neural Networks - sklearn''' #********************************************** class nnDef: runNN = False alwaysRetrain = False # Format: (number_neurons_HL1, number_neurons_HL2, number_neurons_HL3,) hidden_layers = (200,) # default: 200 # Optimizers: # - adam (default), for large datasets # - lbfgs (default) for smaller datasets optimizer = "adam" # activation functions: http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html # identity, logistic (sigmoid), tanh, relu activation_function = "tanh" l2_reg_strength=1e-5 MLPRegressor = False # threshold in % of probabilities for listing prediction results thresholdProbabilityPred = 0.001 plotMap = True nnClassReport = False #********************************************** ''' Support Vector Machines''' #********************************************** class svmDef: runSVM = False alwaysRetrain = False # threshold in % of probabilities for listing prediction results thresholdProbabilitySVMPred = 3 ''' Training algorithm for SVM Use either 'linear' or 'rbf' ('rbf' for large number of features) ''' Cfactor = 20 kernel = 'rbf' showClasses = False plotMap = True svmClassReport = False #********************************************** ''' Principal component analysis (PCA) ''' #********************************************** class pcaDef: runPCA = False customNumPCAComp = True numPCAcomponents = 2 #********************************************** ''' K-means ''' #********************************************** class kmDef: runKM = False customNumKMComp = False numKMcomponents = 20 plotKM = False plotMap = True #********************************************** ''' TensorFlow ''' #********************************************** class tfDef: runTF = True alwaysRetrain = True alwaysImprove = True # alwaysRetrain must be True for this to work # threshold in % of probabilities for listing prediction results thresholdProbabilityTFPred = 30 decayLearnRate = True learnRate = 0.75 subsetCrossValid = False percentCrossValid = 0.05 logCheckpoint = False plotMap = True plotClassDistribTF = False enableTensorboard = False #********************************************** ''' Plotting ''' #********************************************** class plotDef: showProbPlot = False showPCAPlots = True createTrainingDataPlot = False showTrainingDataPlot = False plotAllSpectra = True # Set to false for extremely large training sets if plotAllSpectra == False: stepSpectraPlot = 100 # steps in the number of spectra to be plotted #********************************************** ''' Multiprocessing ''' #********************************************** multiproc = False #********************************************** ''' Main ''' #********************************************** def main(): try: opts, args = getopt.getopt(sys.argv[1:], "fambkph:", ["file", "accuracy", "map", "batch", "kmaps", "pca", "help"]) except: usage() sys.exit(2) if opts == []: usage() sys.exit(2) print(" Using training file: ", sys.argv[2],"\n") for o, a in opts: if o in ("-f" , "--file"): try: LearnPredictFile(sys.argv[2], sys.argv[3]) except: usage() sys.exit(2) if o in ("-a" , "--accuracy"): print('\033[1m Running in cross validation mode for accuracy determination...\033[0m\n') try: if sys.argv[3]: testFile = sys.argv[3] except: preprocDef.subsetCrossValid = True testFile = "tmp" #try: trainAccuracy(sys.argv[2], testFile) #except: # usage() # sys.exit(2) if o in ("-m" , "--map"): try: LearnPredictMap(sys.argv[2], sys.argv[3]) except: usage() sys.exit(2) if o in ("-b" , "--batch"): try: LearnPredictBatch(sys.argv[2]) except: usage() sys.exit(2) if o in ("-p" , "--pca"): if len(sys.argv) > 3: numPCAcomp = int(sys.argv[3]) else: numPCAcomp = pcaDef.numPCAcomponents try: runPCA(sys.argv[2], numPCAcomp) except: usage() sys.exit(2) if o in ("-k" , "--kmaps"): if len(sys.argv) > 3: numKMcomp = int(sys.argv[3]) else: numKMcomp = kmDef.numKMcomponents try: KmMap(sys.argv[2], numKMcomp) except: usage() sys.exit(2) #********************************************** ''' Learn and Predict - File''' #********************************************** def LearnPredictFile(learnFile, sampleFile): ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) learnFileRoot = os.path.splitext(learnFile)[0] ''' Run PCA ''' if pcaDef.runPCA == True: runPCAmain(A, Cl, En) ''' Open prediction file ''' R, Rx = readPredFile(sampleFile) ''' Preprocess prediction data ''' A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) R, Rorig = preProcessNormPredData(R, Rx, A, En, Cl, YnormXind, 0) ''' Run Neural Network - TensorFlow''' if dnntfDef.runDNNTF == True: clf_dnntf, le_dnntf = trainDNNTF(A, Cl, A, Cl, learnFileRoot) predDNNTF(clf_dnntf, le_dnntf, R, Cl) ''' Run Neural Network - sklearn''' if nnDef.runNN == True: clf_nn = trainNN(A, Cl, A, Cl, learnFileRoot) predNN(clf_nn, A, Cl, R) ''' Run Support Vector Machines ''' if svmDef.runSVM == True: clf_svm = trainSVM(A, Cl, A, Cl, learnFileRoot) predSVM(clf_svm, A, Cl, R) ''' Tensorflow ''' if tfDef.runTF == True: trainTF(A, Cl, A, Cl, learnFileRoot) predTF(A, Cl, R, learnFileRoot) ''' Plot Training Data ''' if plotDef.createTrainingDataPlot == True: plotTrainData(A, En, R, plotDef.plotAllSpectra, learnFileRoot) ''' Run K-Means ''' if kmDef.runKM == True: runKMmain(A, Cl, En, R, Aorig, Rorig) #********************************************** ''' Train and accuracy''' #********************************************** def trainAccuracy(learnFile, testFile): ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) if preprocDef.subsetCrossValid == True: print(" Cross-validation training using: ",str(preprocDef.percentCrossValid*100), "% of training file as test subset\n") A, Cl, A_test, Cl_test = formatSubset(A, Cl, preprocDef.percentCrossValid) En_test = En else: print(" Cross-validation training using: privided test subset (",testFile,")\n") En_test, Cl_test, A_test, YnormXind2 = readLearnFile(testFile) learnFileRoot = os.path.splitext(learnFile)[0] ''' Plot Training Data - Raw ''' if plotDef.createTrainingDataPlot == True: plotTrainData(A, En, A_test, plotDef.plotAllSpectra, learnFileRoot+"_raw") ''' Preprocess prediction data ''' A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) A_test, Cl_test, En_test, Aorig_test = preProcessNormLearningData(A_test, En_test, Cl_test, YnormXind, 0) ''' Run Neural Network - TensorFlow''' if dnntfDef.runDNNTF == True: clf_dnntf, le_dnntf = trainDNNTF(A, Cl, A_test, Cl_test, learnFileRoot) ''' Run Neural Network - sklearn''' if nnDef.runNN == True: clf_nn = trainNN(A, Cl, A_test, Cl_test, learnFileRoot) ''' Run Support Vector Machines ''' if svmDef.runSVM == True: clf_svm = trainSVM(A, Cl, A_test, Cl_test, learnFileRoot) ''' Tensorflow ''' if tfDef.runTF == True: trainTF(A, Cl, A_test, Cl_test, learnFileRoot) ''' Plot Training Data - Normalized''' if plotDef.createTrainingDataPlot == True: plotTrainData(A, En, A_test, plotDef.plotAllSpectra, learnFileRoot+"_norm") #********************************************** ''' Process - Batch''' #********************************************** def LearnPredictBatch(learnFile): summary_filename = 'summary' + str(datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.csv')) makeHeaderSummary(summary_filename, learnFile) ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, 0) if multiproc == True: import multiprocessing as mp p = mp.Pool() for f in glob.glob('*.txt'): if (f != learnFile): p.apply_async(processSingleBatch, args=(f, En, Cl, A, Aorig, YnormXind, summary_filename, learnFile)) p.close() p.join() else: for f in glob.glob('*.txt'): if (f != learnFile): processSingleBatch(f, En, Cl, A, Aorig, YnormXind, summary_filename, learnFile) def processSingleBatch(f, En, Cl, A, Aorig, YnormXind, summary_filename, learnFile): print(' Processing file: \033[1m' + f + '\033[0m\n') R, Rx = readPredFile(f) summaryFile = [f] ''' Preprocess prediction data ''' R, Rorig = preProcessNormPredData(R, Rx, A, En, Cl, YnormXind, 0) learnFileRoot = os.path.splitext(learnFile)[0] ''' Run Neural Network - TensorFlow''' if dnntfDef.runDNNTF == True: clf_dnntf, le_dnntf = trainDNNTF(A, Cl, A, Cl, learnFileRoot) dnntfPred, dnntfProb = predDNNTF(clf_dnntf, le_dnntf, R, Cl) summaryFile.extend([nnPred, nnProb]) dnntfDef.alwaysRetrain = False ''' Run Neural Network - sklearn''' if nnDef.runNN == True: clf_nn = trainNN(A, Cl, A, Cl, learnFileRoot) nnPred, nnProb = predNN(clf_nn, A, Cl, R) summaryFile.extend([nnPred, nnProb]) nnDef.alwaysRetrain = False ''' Run Support Vector Machines ''' if svmDef.runSVM == True: clf_svm = trainSVM(A, Cl, A, Cl, learnFileRoot) svmPred, svmProb = predSVM(clf_svm, A, Cl, En, R) summaryFile.extend([svmPred, svmProb]) svmDef.alwaysRetrain = False ''' Tensorflow ''' if tfDef.runTF == True: trainTF(A, Cl, A, Cl, learnFileRoot) tfPred, tfProb = predTF(A, Cl, R, learnFileRoot) summaryFile.extend([tfPred, tfProb, tfAccur]) tfDef.tfalwaysRetrain = False ''' Run K-Means ''' if kmDef.runKM == True: kmDef.plotKM = False kmPred = runKMmain(A, Cl, En, R, Aorig, Rorig) summaryFile.extend([kmPred]) with open(summary_filename, "a") as sum_file: csv_out=csv.writer(sum_file) csv_out.writerow(summaryFile) sum_file.close() #********************************************** ''' Learn and Predict - Maps''' #********************************************** def LearnPredictMap(learnFile, mapFile): ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) learnFileRoot = os.path.splitext(learnFile)[0] ''' Open prediction map ''' X, Y, R, Rx = readPredMap(mapFile) type = 0 i = 0; svmPred = nnPred = tfPred = kmPred = np.empty([X.shape[0]]) A, Cl, En, Aorig = preProcessNormLearningData(A, En, Cl, YnormXind, type) print(' Processing map...' ) if nnDef.runNN == True: clf_nn = trainNN(A, Cl, A, Cl, learnFileRoot) if nnDef.runDNNTF == True: clf_dnntf, le_dnntf = trainDNNTF(A, Cl, A, Cl, learnFileRoot) if svmDef.runSVM == True: clf_svm = trainSVM(A, Cl, A, Cl, learnFileRoot) for r in R[:]: r, rorig = preProcessNormPredData(r, Rx, A, En, Cl, YnormXind, type) type = 1 ''' Run Neural Network - TensorFlow''' if nnDef.runDNNTF == True: dnntfPred[i], temp = predDNNTF(cl_dnntf, le_dnntf, r, Cl) saveMap(mapFile, 'DNN-TF', 'HC', dnntfPred[i], X[i], Y[i], True) dnnDef.alwaysRetrain = False ''' Run Neural Network - sklearn''' if nnDef.runNN == True: nnPred[i], temp = predNN(clf_nn, A, Cl, r) saveMap(mapFile, 'NN', 'HC', nnPred[i], X[i], Y[i], True) nnDef.alwaysRetrain = False ''' Run Support Vector Machines ''' if svmDef.runSVM == True: svmPred[i], temp = predSVM(clf_svm, A, Cl, En, r) saveMap(mapFile, 'svm', 'HC', svmPred[i], X[i], Y[i], True) svmDef.alwaysRetrain = False ''' Tensorflow ''' if tfDef.runTF == True: trainTF(A, Cl, A, Cl, learnFileRoot) tfPred, temp = predTF(A, Cl, r, learnFileRoot) saveMap(mapFile, 'TF', 'HC', tfPred[i], X[i], Y[i], True) tfDef.alwaysRetrain = False ''' Run K-Means ''' if kmDef.runKM == True: kmDef.plotKM = False kmPred[i] = runKMmain(A, Cl, En, r, Aorig, rorig) saveMap(mapFile, 'KM', 'HC', kmPred[i], X[i], Y[i], True) i+=1 if dnntfDef.plotMap == True and dnntfDef.runDNNTF == True: plotMaps(X, Y, dnntfPred, 'Deep Neural networks - tensorFlow') if nnDef.plotMap == True and nnDef.runNN == True: plotMaps(X, Y, nnPred, 'Deep Neural networks - sklearn') if svmDef.plotMap == True and svmDef.runSVM == True: plotMaps(X, Y, svmPred, 'SVM') if tfDef.plotMap == True and tfDef.runTF == True: plotMaps(X, Y, tfPred, 'TensorFlow') if kmDef.plotMap == True and kmDef.runKM == True: plotMaps(X, Y, kmPred, 'K-Means Prediction') #******************************************************************************** ''' TensorFlow ''' ''' Run SkFlow - DNN Classifier ''' ''' https://www.tensorflow.org/api_docs/python/tf/contrib/learn/DNNClassifier''' #******************************************************************************** ''' Train DNNClassifier model training via TensorFlow-skflow ''' #******************************************************************************** def trainDNNTF(A, Cl, A_test, Cl_test, Root): print('==========================================================================\n') print('\033[1m Running Deep Neural Networks: DNNClassifier - TensorFlow...\033[0m') print(' Hidden layers:', dnntfDef.hidden_layers) print(' Optimizer:',dnntfDef.optimizer,', Activation function:',dnntfDef.activation_function, ', Dropout:', dnntfDef.dropout_perc) import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if dnntfDef.logCheckpoint ==True: tf.logging.set_verbosity(tf.logging.INFO) if dnntfDef.alwaysRetrain == False: model_directory = Root + "/DNN-TF_" + str(len(dnntfDef.hidden_layers))+"HL_"+str(dnntfDef.hidden_layers[0]) print("\n Training model saved in: ", model_directory, "\n") else: dnntfDef.alwaysImprove = True model_directory = None print("\n Training model not saved\n") #********************************************** ''' Initialize Estimator and training data ''' #********************************************** print(' Initializing TensorFlow...') tf.reset_default_graph() totA = np.vstack((A, A_test)) totCl = np.append(Cl, Cl_test) numTotClasses = np.unique(totCl).size le = preprocessing.LabelEncoder() totCl2 = le.fit_transform(totCl) Cl2 = le.transform(Cl) Cl2_test = le.transform(Cl_test) validation_monitor = skflow.monitors.ValidationMonitor(input_fn=lambda: input_fn(A_test, Cl2_test), eval_steps=1, every_n_steps=dnntfDef.valMonitorSecs) feature_columns = skflow.infer_real_valued_columns_from_input(totA.astype(np.float32)) clf = skflow.DNNClassifier(feature_columns=feature_columns, hidden_units=dnntfDef.hidden_layers, optimizer=dnntfDef.optimizer, n_classes=numTotClasses, activation_fn=dnntfDef.activationFn, model_dir=model_directory, config=skflow.RunConfig(save_checkpoints_secs=1), dropout=dnntfDef.dropout_perc) print("\n Number of global steps:",dnntfDef.trainingSteps) #********************************************** ''' Train ''' #********************************************** if dnntfDef.alwaysImprove == True or os.path.exists(model_directory) is False: print(" (Re-)training using dataset: ", Root,"\n") clf.fit(input_fn=lambda: input_fn(A, Cl2), steps=dnntfDef.trainingSteps, monitors=[validation_monitor]) else: print(" Retreaving training model from: ", model_directory,"\n") accuracy_score = clf.evaluate(input_fn=lambda: input_fn(A_test, Cl2_test), steps=1) print('\n ================================') print(' \033[1mDNN-TF\033[0m - Accuracy') print(' ================================') print("\n Accuracy: {:.2f}%".format(100*accuracy_score["accuracy"])) print(" Loss: {:.2f}".format(accuracy_score["loss"])) print(" Global step: {:.2f}\n".format(accuracy_score["global_step"])) print(' ================================\n') return clf, le #******************************************************************************** ''' Predict using DNNClassifier model via TensorFlow-skflow ''' #******************************************************************************** def predDNNTF(clf, le, R, Cl): import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing #********************************************** ''' Predict ''' #********************************************** def input_fn_predict(): x = tf.constant(R.astype(np.float32)) return x pred_class = list(clf.predict_classes(input_fn=input_fn_predict))[0] predValue = le.inverse_transform(pred_class) prob = list(clf.predict_proba(input_fn=input_fn_predict))[0] predProb = round(100*prob[pred_class],2) rosterPred = np.where(prob>dnntfDef.thresholdProbabilityPred/100)[0] print('\n ================================') print(' \033[1mDNN-TF\033[0m - Probability >',str(dnntfDef.thresholdProbabilityPred),'%') print(' ================================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*prob[rosterPred][i]))) print(' ================================') print('\033[1m' + '\n Predicted regressor value (Deep Neural Networks - TensorFlow) = ' + predValue + ' (probability = ' + str(predProb) + '%)\033[0m\n') return predValue, predProb #********************************************** ''' Format input data for Estimator ''' #********************************************** def input_fn(A, Cl2): import tensorflow as tf x = tf.constant(A.astype(np.float32)) y = tf.constant(Cl2) return x,y #******************************************************************************** ''' MultiLayer Perceptron - SKlearn ''' ''' http://scikit-learn.org/stable/modules/neural_networks_supervised.html''' #******************************************************************************** ''' Train Neural Network - sklearn ''' #******************************************************************************** def trainNN(A, Cl, A_test, Cl_test, Root): from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.externals import joblib if nnDef.MLPRegressor is False: Root+"/DNN-TF_" nnTrainedData = Root + '.nnModelC.pkl' else: nnTrainedData = Root + '.nnModelR.pkl' print('==========================================================================\n') print('\033[1m Running Neural Network: multi-layer perceptron (MLP)\033[0m') print(' Hidden layers with neuron count:', nnDef.hidden_layers) print(' Optimizer:',nnDef.optimizer,', Activation Fn:',nnDef.activation_function, ', L2 reg. strength: ',nnDef.l2_reg_strength) try: if nnDef.alwaysRetrain == False: with open(nnTrainedData): print(' Opening NN training model...\n') clf = joblib.load(nnTrainedData) else: raise ValueError(' Force NN retraining.') except: #********************************************** ''' Retrain training data if not available''' #********************************************** if nnDef.MLPRegressor is False: print(' Retraining NN model using MLP Classifier...') clf = MLPClassifier(solver=nnDef.optimizer, alpha=nnDef.l2_reg_strength, activation = nnDef.activation_function, hidden_layer_sizes=nnDef.hidden_layers, random_state=1) else: print(' Retraining NN model using MLP Regressor...') clf = MLPRegressor(solver=nnDef.optimizer, alpha=nnDef.l2_reg_strength, hidden_layer_sizes=nnDef.hidden_layers, random_state=1) Cl = np.array(Cl,dtype=float) clf.fit(A, Cl) print(" Training on the full training dataset\n") accur = clf.score(A_test,Cl_test) if nnDef.MLPRegressor is False: print(' Accuracy: ',100*accur,'%\n Loss: {:.5f}'.format(clf.loss_),'\n') else: print(' Coefficient of determination R^2: ',accur, '\n Loss: {:.5f}'.format(clf.loss_),'\n') joblib.dump(clf, nnTrainedData) return clf #******************************************************************************** ''' Evaluate Neural Network - sklearn ''' #******************************************************************************** def predNN(clf, A, Cl, R): if nnDef.MLPRegressor is False: prob = clf.predict_proba(R)[0].tolist() rosterPred = np.where(clf.predict_proba(R)[0]>nnDef.thresholdProbabilityPred/100)[0] print('\n ==============================') print(' \033[1mNN\033[0m - Probability >',str(nnDef.thresholdProbabilityPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.4f}'.format(100*clf.predict_proba(R)[0][rosterPred][i]))) print(' ==============================') predValue = clf.predict(R)[0] predProb = round(100*max(prob),4) print('\033[1m' + '\n Predicted classifier value (Deep Neural Networks - sklearn) = ' + str(predValue) + ' (probability = ' + str(predProb) + '%)\033[0m\n') else: Cl = np.array(Cl,dtype=float) predValue = clf.predict(R)[0] predProb = clf.score(A,Cl) print('\033[1m' + '\n Predicted regressor value (Deep Neural Networks - sklearn) = ' + str('{:.3f}'.format(predValue)) + ' (R^2 = ' + str('{:.5f}'.format(predProb)) + ')\033[0m\n') #************************************** ''' Neural Networks Classification Report ''' #************************************** if nnDef.nnClassReport == True: print(' Neural Networks Classification Report\n') runClassReport(clf, A, Cl) #************************* ''' Plot probabilities ''' #************************* if plotDef.showProbPlot == True: if nnDef.MLPRegressor is False: plotProb(clf, R) return predValue, predProb #******************************************************************************** ''' Support Vector Machines - SVM ''' ''' http://scikit-learn.org/stable/modules/svm.html ''' #******************************************************************************** ''' Train SVM ''' #******************************************************************************** def trainSVM(A, Cl, A_test, Cl_test, Root): from sklearn import svm from sklearn.externals import joblib svmTrainedData = Root + '.svmModel.pkl' print('==========================================================================\n') print('\033[1m Running Support Vector Machine (kernel: ' + svmDef.kernel + ')\033[0m') try: if svmDef.alwaysRetrain == False: with open(svmTrainedData): print(' Opening SVM training model...\n') clf = joblib.load(svmTrainedData) else: raise ValueError(' Force retraining SVM model') except: #********************************************** ''' Retrain training model if not available''' #********************************************** print(' Retraining SVM data...') clf = svm.SVC(C = svmDef.Cfactor, decision_function_shape = 'ovr', probability=True) print(" Training on the full training dataset\n") clf.fit(A,Cl) accur = clf.score(A_test,Cl_test) print(' Mean accuracy: ',100*accur,'%') Z = clf.decision_function(A) print('\n Number of classes = ' + str(Z.shape[1])) joblib.dump(clf, svmTrainedData) if svmDef.showClasses == True: print(' List of classes: ' + str(clf.classes_)) print('\n==========================================================================\n') return clf #******************************************************************************** ''' Predict using SVM ''' #******************************************************************************** def predSVM(clf, A, Cl, R): R_pred = clf.predict(R) prob = clf.predict_proba(R)[0].tolist() rosterPred = np.where(clf.predict_proba(R)[0]>svmDef.thresholdProbabilitySVMPred/100)[0] print('\n ==============================') print(' \033[1mSVM\033[0m - Probability >',str(svmDef.thresholdProbabilitySVMPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(100*clf.predict_proba(R)[0][rosterPred][i]))) print(' ==============================') print('\033[1m' + '\n Predicted value (SVM) = ' + str(R_pred[0]) + ' (probability = ' + str(round(100*max(prob),1)) + '%)\033[0m\n') #************************************** ''' SVM Classification Report ''' #************************************** if svmDef.svmClassReport == True: print(' SVM Classification Report \n') runClassReport(clf, A, Cl) #************************* ''' Plot probabilities ''' #************************* if plotDef.showProbPlot == True: plotProb(clf, R) return R_pred[0], round(100*max(prob),1) #******************************************************************************** ''' Run PCA ''' ''' Transform data: pca.fit(data).transform(data) Loading Vectors (eigenvectors): pca.components_ Eigenvalues: pca.explained_variance_ratio ''' #******************************************************************************** def runPCA(learnFile, numPCAcomponents): from sklearn.decomposition import PCA import matplotlib.pyplot as plt from matplotlib import cm ''' Open and process training data ''' En, Cl, A, YnormXind = readLearnFile(learnFile) print('==========================================================================\n') print(' Running PCA...\n') print(' Number of unique identifiers in training data: ' + str(np.unique(Cl).shape[0])) if pcaDef.customNumPCAComp == False: numPCAcomp = np.unique(Cl).shape[0] else: numPCAcomp = numPCAcomponents print(' Number of Principal components: ' + str(numPCAcomp) + '\n') pca = PCA(n_components=numPCAcomp) A_r = pca.fit(A).transform(A) for i in range(0,pca.components_.shape[0]): print(' Score PC ' + str(i) + ': ' + '{0:.0f}%'.format(pca.explained_variance_ratio_[i] * 100)) print('') if plotDef.showPCAPlots == True: print(' Plotting Loadings and score plots... \n') #*************************** ''' Plotting Loadings ''' #*************************** for i in range(0,pca.components_.shape[0]): plt.plot(En, pca.components_[i,:], label='PC' + str(i) + ' ({0:.0f}%)'.format(pca.explained_variance_ratio_[i] * 100)) plt.plot((En[0], En[En.shape[0]-1]), (0.0, 0.0), 'k--') plt.title('Loadings plot') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Principal component') plt.legend() plt.figure() #*************************** ''' Plotting Scores ''' #*************************** Cl_ind = np.zeros(len(Cl)) Cl_labels = np.zeros(0) ind = np.zeros(np.unique(Cl).shape[0]) for i in range(len(Cl)): if (np.in1d(Cl[i], Cl_labels, invert=True)): Cl_labels = np.append(Cl_labels, Cl[i]) for i in range(len(Cl)): Cl_ind[i] = np.where(Cl_labels == Cl[i])[0][0] colors = [ cm.jet(x) for x in np.linspace(0, 1, ind.shape[0]) ] for color, i, target_name in zip(colors, range(ind.shape[0]), Cl_labels): plt.scatter(A_r[Cl_ind==i,0], A_r[Cl_ind==i,1], color=color, alpha=.8, lw=2, label=target_name) plt.title('Score plot') plt.xlabel('PC 0 ({0:.0f}%)'.format(pca.explained_variance_ratio_[0] * 100)) plt.ylabel('PC 1 ({0:.0f}%)'.format(pca.explained_variance_ratio_[1] * 100)) plt.figure() plt.title('Score box plot') plt.xlabel('Principal Component') plt.ylabel('Score') for j in range(pca.components_.shape[0]): for color, i, target_name in zip(colors, range(ind.shape[0]), Cl_labels): plt.scatter([j+1]*len(A_r[Cl_ind==i,j]), A_r[Cl_ind==i,j], color=color, alpha=.8, lw=2, label=target_name) plt.boxplot(A_r) plt.figure() #****************************** ''' Plotting Scores vs H:C ''' #****************************** for j in range(pca.components_.shape[0]): for color, i, target_name in zip(colors, range(ind.shape[0]), Cl_labels): plt.scatter(np.asarray(Cl)[Cl_ind==i], A_r[Cl_ind==i,j], color=color, alpha=.8, lw=2, label=target_name) plt.xlabel('H:C elemental ratio') plt.ylabel('PC ' + str(j) + ' ({0:.0f}%)'.format(pca.explained_variance_ratio_[j] * 100)) plt.figure() plt.show() #******************** ''' Run K-Means ''' #******************** def runKMmain(A, Cl, En, R, Aorig, Rorig): from sklearn.cluster import KMeans print('==========================================================================\n') print(' Running K-Means...') print(' Number of unique identifiers in training data: ' + str(np.unique(Cl).shape[0])) if kmDef.customNumKMComp == False: numKMcomp = np.unique(Cl).shape[0] else: numKMcomp = kmDef.numKMcomponents kmeans = KMeans(n_clusters=numKMcomp, random_state=0).fit(A) ''' for i in range(0, numKMcomp): print('\n Class: ' + str(i) + '\n ',end="") for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == i: print(' ' + str(Cl[j]), end="") ''' print('\n ==============================') print(' \033[1mKM\033[0m - Predicted class: \033[1m',str(kmeans.predict(R)[0]),'\033[0m') print(' ==============================') print(' Prediction') for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == 22: print(' ' + str(Cl[j])) print(' ==============================\n') if kmDef.plotKM == True: import matplotlib.pyplot as plt for j in range(0,kmeans.labels_.shape[0]): if kmeans.labels_[j] == kmeans.predict(R)[0]: plt.plot(En, Aorig[j,:]) plt.plot(En, Rorig[0,:], linewidth = 2, label='Predict') plt.title('K-Means') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Intensity') plt.legend() plt.show() return kmeans.predict(R)[0] #********************************************** ''' K-Means - Maps''' #********************************************** def KmMap(mapFile, numKMcomp): ''' Open prediction map ''' X, Y, R, Rx = readPredMap(mapFile) type = 0 i = 0; R, Rx, Rorig = preProcessNormMap(R, Rx, type) from sklearn.cluster import KMeans print(' Running K-Means...') print(' Number of classes: ' + str(numKMcomp)) kmeans = KMeans(n_clusters=kmDef.numKMcomponents, random_state=0).fit(R) kmPred = np.empty([R.shape[0]]) for i in range(0, R.shape[0]): kmPred[i] = kmeans.predict(R[i,:].reshape(1,-1))[0] saveMap(mapFile, 'KM', 'Class', int(kmPred[i]), X[i], Y[i], True) if kmPred[i] in kmeans.labels_: if os.path.isfile(saveMapName(mapFile, 'KM', 'Class_'+ str(int(kmPred[i]))+'-'+str(np.unique(kmeans.labels_).shape[0]), False)) == False: saveMap(mapFile, 'KM', 'Class_'+ str(int(kmPred[i])) + '-'+str(np.unique(kmeans.labels_).shape[0]) , '\t'.join(map(str, Rx)), ' ', ' ', False) saveMap(mapFile, 'KM', 'Class_'+ str(int(kmPred[i])) + '-'+str(np.unique(kmeans.labels_).shape[0]) , '\t'.join(map(str, R[1,:])), X[i], Y[i], False) if kmDef.plotKM == True: plotMaps(X, Y, kmPred, 'K-Means') #************************************ ''' Read Learning file ''' #************************************ def readLearnFile(learnFile): try: with open(learnFile, 'r') as f: M = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Learning file not found \n' + '\033[0m') return En = np.delete(np.array(M[0,:]),np.s_[0:1],0) M = np.delete(M,np.s_[0:1],0) Cl = ['{:.2f}'.format(x) for x in M[:,0]] A = np.delete(M,np.s_[0:1],1) Atemp = A[:,range(len(preprocDef.enSel))] if preprocDef.cherryPickEnPoint == True and preprocDef.enRestrictRegion == False: enPoints = list(preprocDef.enSel) enRange = list(preprocDef.enSel) for i in range(0, len(preprocDef.enSel)): enRange[i] = np.where((En<float(preprocDef.enSel[i]+preprocDef.enSelDelta[i])) & (En>float(preprocDef.enSel[i]-preprocDef.enSelDelta[i])))[0].tolist() for j in range(0, A.shape[0]): Atemp[j,i] = A[j,A[j,enRange[i]].tolist().index(max(A[j, enRange[i]].tolist()))+enRange[i][0]] enPoints[i] = int(np.average(enRange[i])) A = Atemp En = En[enPoints] if type == 0: print( ' Cheery picking points in the spectra\n') # Find index corresponding to energy value to be used for Y normalization if preprocDef.fullYnorm == True: YnormXind = np.where(En>0)[0].tolist() else: YnormXind_temp = np.where((En<float(preprocDef.YnormX+preprocDef.YnormXdelta)) & (En>float(preprocDef.YnormX-preprocDef.YnormXdelta)))[0].tolist() if YnormXind_temp == []: print( ' Renormalization region out of requested range. Normalizing over full range...\n') YnormXind = np.where(En>0)[0].tolist() else: YnormXind = YnormXind_temp print(' Number of datapoints = ' + str(A.shape[0])) print(' Size of each datapoint = ' + str(A.shape[1]) + '\n') return En, Cl, A, YnormXind #********************************************** ''' Open prediction file ''' #********************************************** def readPredFile(sampleFile): try: with open(sampleFile, 'r') as f: print(' Opening sample data for prediction...') Rtot = np.loadtxt(f, unpack =True) except: print('\033[1m' + '\n Sample data file not found \n ' + '\033[0m') return R=Rtot[1,:] Rx=Rtot[0,:] if preprocDef.cherryPickEnPoint == True and preprocDef.enRestrictRegion == False: Rtemp = R[range(len(preprocDef.enSel))] enPoints = list(preprocDef.enSel) enRange = list(preprocDef.enSel) for i in range(0, len(preprocDef.enSel)): enRange[i] = np.where((Rx<float(preprocDef.enSel[i]+preprocDef.enSelDelta[i])) & (Rx>float(preprocDef.enSel[i]-preprocDef.enSelDelta[i])))[0].tolist() Rtemp[i] = R[R[enRange[i]].tolist().index(max(R[enRange[i]].tolist()))+enRange[i][0]] enPoints[i] = int(np.average(enRange[i])) R = Rtemp Rx = Rx[enPoints] return R, Rx #********************************************************************************** ''' Preprocess Learning data ''' #********************************************************************************** def preProcessNormLearningData(A, En, Cl, YnormXind, type): print(' Processing dataset ... ') #********************************************************************************** ''' Reformat x-axis in case it does not match that of the training data ''' #********************************************************************************** if preprocDef.scrambleNoiseFlag == True: print(' Adding random noise to training set \n') scrambleNoise(A, preprocDef.scrambleNoiseOffset) Aorig = np.copy(A) #********************************************** ''' Normalize/preprocess if flags are set ''' #********************************************** if preprocDef.Ynorm == True: if type == 0: if preprocDef.fullYnorm == False: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; En = [' + str(preprocDef.YnormX-preprocDef.YnormXdelta) + ', ' + str(preprocDef.YnormX+preprocDef.YnormXdelta) + ']') else: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; to max intensity in spectra') for i in range(0,A.shape[0]): if(np.amin(A[i]) <= 0): A[i,:] = A[i,:] - np.amin(A[i,:]) + 1e-8 A[i,:] = np.multiply(A[i,:], preprocDef.YnormTo/A[i,A[i][YnormXind].tolist().index(max(A[i][YnormXind].tolist()))+YnormXind[0]]) if preprocDef.StandardScalerFlag == True: print(' Using StandardScaler from sklearn ') A = preprocDef.scaler.fit_transform(A) #********************************************** ''' Energy normalization range ''' #********************************************** if preprocDef.enRestrictRegion == True: A = A[:,range(preprocDef.enLim1, preprocDef.enLim2)] En = En[range(preprocDef.enLim1, preprocDef.enLim2)] Aorig = Aorig[:,range(preprocDef.enLim1, preprocDef.enLim2)] if type == 0: print( ' Restricting energy range between: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') else: if type == 0: if(preprocDef.cherryPickEnPoint == True): print( ' Using selected spectral points:') print(En) else: print( ' Using full energy range: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') return A, Cl, En, Aorig #********************************************************************************** ''' Preprocess Prediction data ''' #********************************************************************************** def preProcessNormPredData(R, Rx, A, En, Cl, YnormXind, type): print(' Processing Prediction data file... ') #********************************************************************************** ''' Reformat x-axis in case it does not match that of the training data ''' #********************************************************************************** if(R.shape[0] != A.shape[1]): if type == 0: print('\033[1m' + ' WARNING: Different number of datapoints for the x-axis\n for training (' + str(A.shape[1]) + ') and sample (' + str(R.shape[0]) + ') data.\n Reformatting x-axis of sample data...\n' + '\033[0m') R = np.interp(En, Rx, R) R = R.reshape(1,-1) Rorig = np.copy(R) #********************************************** ''' Normalize/preprocess if flags are set ''' #********************************************** if preprocDef.Ynorm == True: if type == 0: if preprocDef.fullYnorm == False: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; En = [' + str(preprocDef.YnormX-preprocDef.YnormXdelta) + ', ' + str(preprocDef.YnormX+preprocDef.YnormXdelta) + ']') else: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; to max intensity in spectra') if(np.amin(R) <= 0): print(' Spectra max below zero detected') R[0,:] = R[0,:] - np.amin(R[0,:]) + 1e-8 R[0,:] = np.multiply(R[0,:], preprocDef.YnormTo/R[0,R[0][YnormXind].tolist().index(max(R[0][YnormXind].tolist()))+YnormXind[0]]) if preprocDef.StandardScalerFlag == True: print(' Using StandardScaler from sklearn ') R = preprocDef.scaler.transform(R) #********************************************** ''' Energy normalization range ''' #********************************************** if preprocDef.enRestrictRegion == True: A = A[:,range(preprocDef.enLim1, preprocDef.enLim2)] En = En[range(preprocDef.enLim1, preprocDef.enLim2)] R = R[:,range(preprocDef.enLim1, preprocDef.enLim2)] if type == 0: print( ' Restricting energy range between: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') else: if type == 0: if(preprocDef.cherryPickEnPoint == True): print( ' Using selected spectral points:') print(En) else: print( ' Using full energy range: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') return R, Rorig #********************************************************************************** ''' Preprocess prediction data ''' #********************************************************************************** def preProcessNormMap(A, En, type): #********************************************************************************** ''' Reformat x-axis in case it does not match that of the training data ''' #********************************************************************************** # Find index corresponding to energy value to be used for Y normalization if preprocDef.fullYnorm == False: YnormXind = np.where((En<float(preprocDef.YnormX+preprocDef.YnormXdelta)) & (En>float(preprocDef.YnormX-preprocDef.YnormXdelta)))[0].tolist() else: YnormXind = np.where(En>0)[0].tolist() Aorig = np.copy(A) #********************************************** ''' Normalize/preprocess if flags are set ''' #********************************************** if preprocDef.Ynorm == True: if type == 0: print(' Normalizing spectral intensity to: ' + str(preprocDef.YnormTo) + '; En = [' + str(preprocDef.YnormX-preprocDef.YnormXdelta) + ', ' + str(preprocDef.YnormX+preprocDef.YnormXdelta) + ']') for i in range(0,A.shape[0]): A[i,:] = np.multiply(A[i,:], preprocDef.YnormTo/np.amax(A[i])) if preprocDef.StandardScalerFlag == True: print(' Using StandardScaler from sklearn ') A = preprocDef.scaler.fit_transform(A) #********************************************** ''' Energy normalization range ''' #********************************************** if preprocDef.enRestrictRegion == True: A = A[:,range(preprocDef.enLim1, preprocDef.enLim2)] En = En[range(preprocDef.enLim1, preprocDef.enLim2)] Aorig = Aorig[:,range(preprocDef.enLim1, preprocDef.enLim2)] if type == 0: print( ' Restricting energy range between: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') else: if type == 0: print( ' Using full energy range: [' + str(En[0]) + ', ' + str(En[En.shape[0]-1]) + ']\n') return A, En, Aorig #################################################################### ''' Format subset of training data ''' #################################################################### def formatSubset(A, Cl, percent): from sklearn.model_selection import train_test_split A_train, A_cv, Cl_train, Cl_cv = \ train_test_split(A, Cl, test_size=percent, random_state=42) return A_train, Cl_train, A_cv, Cl_cv #################################################################### ''' Open map files ''' #################################################################### def readPredMap(mapFile): try: with open(mapFile, 'r') as f: En = np.array(f.readline().split(), dtype=np.dtype(float)) A = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Map data file not found \n' + '\033[0m') return X = A[:,0] Y = A[:,1] A = np.delete(A, np.s_[0:2], 1) print(' Shape map: ' + str(A.shape)) return X, Y, A, En #################################################################### ''' Save map files ''' #################################################################### def saveMap(file, type, extension, s, x1, y1, comma): inputFile = saveMapName(file, type, extension, comma) with open(inputFile, "a") as coord_file: if comma==True: coord_file.write('{:},'.format(x1)) coord_file.write('{:},'.format(y1)) else: coord_file.write('{:}\t'.format(x1)) coord_file.write('{:}\t'.format(y1)) coord_file.write('{:}\n'.format(s)) coord_file.close() def saveMapName(file, type, extension, comma): if comma==True: extension2 = '_map.csv' else: extension2 = '_map.txt' return os.path.splitext(file)[0] + '_' + type + '-' + extension + extension2 #************************************ ''' Plot Probabilities''' #************************************ def plotProb(clf, R): prob = clf.predict_proba(R)[0].tolist() print(' Probabilities of this sample within each class: \n') for i in range(0,clf.classes_.shape[0]): print(' ' + str(clf.classes_[i]) + ': ' + str(round(100*prob[i],2)) + '%') import matplotlib.pyplot as plt print('\n Stand by: Plotting probabilities for each class... \n') plt.title('Probability density per class') for i in range(0, clf.classes_.shape[0]): plt.scatter(clf.classes_[i], round(100*prob[i],2), label='probability', c = 'red') plt.grid(True) plt.xlabel('Class') plt.ylabel('Probability [%]') plt.show() #************************************ ''' Plot Training data''' #************************************ def plotTrainData(A, En, R, plotAllSpectra, learnFileRoot): import matplotlib.pyplot as plt if plotDef.plotAllSpectra == True: step = 1 learnFileRoot = learnFileRoot + '_full-set' else: step = plotDef.stepSpectraPlot learnFileRoot = learnFileRoot + '_partial-' + str(step) print(' Plotting Training dataset in: ' + learnFileRoot + '.png\n') if preprocDef.Ynorm ==True: plt.title('Normalized Training Data') else: plt.title('Training Data') for i in range(0,A.shape[0], step): plt.plot(En, A[i,:], label='Training data') plt.plot(En, R[0,:], linewidth = 4, label='Sample data') plt.xlabel('Raman shift [1/cm]') plt.ylabel('Raman Intensity [arb. units]') plt.savefig(learnFileRoot + '.png', dpi = 160, format = 'png') # Save plot if plotDef.showTrainingDataPlot == True: plt.show() plt.close() #************************************ ''' Plot Processed Maps''' #************************************ def plotMaps(X, Y, A, label): print(' Plotting ' + label + ' Map...\n') import scipy.interpolate xi = np.linspace(min(X), max(X)) yi = np.linspace(min(Y), max(Y)) xi, yi = np.meshgrid(xi, yi) rbf = scipy.interpolate.Rbf(Y, -X, A, function='linear') zi = rbf(xi, yi) import matplotlib.pyplot as plt plt.imshow(zi, vmin=A.min(), vmax=A.max(), origin='lower',label='data', extent=[X.min(), X.max(), Y.min(), Y.max()]) plt.title(label) plt.xlabel('X [um]') plt.ylabel('Y [um]') plt.show() #################################################################### ''' Make header, if absent, for the summary file ''' #################################################################### def makeHeaderSummary(file, learnFile): if os.path.isfile(file) == False: summaryHeader1 = ['Training File:', learnFile] summaryHeader2 = ['File','SVM-HC','SVM-Prob%', 'NN-HC', 'NN-Prob%', 'TF-HC', 'TF-Prob%', 'TF-Accuracy%'] with open(file, "a") as sum_file: csv_out=csv.writer(sum_file) csv_out.writerow(summaryHeader1) csv_out.writerow(summaryHeader2) sum_file.close() #************************************ ''' Lists the program usage ''' #************************************ def usage(): print('\n Usage:\n') print(' Single files:') print(' python3 SpectraLearnPredict.py -f <learningfile> <spectrafile>\n') print(' Cross-validation for accuracy determination:') print(' python3 SpectraLearnPredict.py -a <learningfile> <testdataset>\n') print(' Cross-validation for accuracy determination (automatic splitting):') print(' python3 SpectraLearnPredict.py -a <learningfile>\n') print(' Maps (formatted for Horiba LabSpec):') print(' python3 SpectraLearnPredict.py -m <learningfile> <spectramap>\n') print(' Batch txt files:') print(' python3 SpectraLearnPredict.py -b <learningfile>\n') print(' K-means on maps:') print(' python3 SpectraLearnPredict.py -k <spectramap> <number_of_classes>\n') print(' Principal component analysis on spectral collection files: ') print(' python3 SpectraLearnPredict.py -p <spectrafile> <#comp>\n') print(' Requires python 3.x. Not compatible with python 2.x\n') #************************************ ''' Info on Classification Report ''' #************************************ def runClassReport(clf, A, Cl): from sklearn.metrics import classification_report y_pred = clf.predict(A) print(classification_report(Cl, y_pred, target_names=clf.classes_)) print(' Precision is the probability that, given a classification result for a sample,\n' + ' the sample actually belongs to that class. Recall (Accuracy) is the probability that a \n' + ' sample will be correctly classified for a given class. f1-score combines both \n' + ' accuracy and precision to give a single measure of relevancy of the classifier results.\n') #************************************ ''' Introduce Noise in Data ''' #************************************ def scrambleNoise(A, offset): from random import uniform for i in range(A.shape[1]): A[:,i] += offset*uniform(-1,1) #******************************************************************************** ''' TensorFlow ''' ''' Basic Tensorflow ''' ''' https://www.tensorflow.org/get_started/mnist/beginners''' #******************************************************************************** ''' Train basic TF training via TensorFlow- ''' #******************************************************************************** def trainTF(A, Cl, A_test, Cl_test, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow...\033[0m') import time import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint == True: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' print("\n Training model saved in: ", tfTrainedData, "\n") #********************************************** ''' Initialize Estimator and training data ''' #********************************************** print(' Initializing TensorFlow...') tf.reset_default_graph() totA = np.vstack((A, A_test)) totCl = np.append(Cl, Cl_test) numTotClasses = np.unique(totCl).size le = preprocessing.LabelBinarizer() totCl2 = le.fit_transform(totCl) # this is original from DNNTF Cl2 = le.transform(Cl) # this is original from DNNTF Cl2_test = le.transform(Cl_test) #validation_monitor = skflow.monitors.ValidationMonitor(input_fn=lambda: input_fn(A_test, Cl2_test), # eval_steps=1, # every_n_steps=dnntfDef.valMonitorSecs) #********************************************** ''' Construct TF model ''' #********************************************** x,y,y_,z = setupTFmodel(A, totCl) with tf.variable_scope('Loss'): losses = tf.nn.sigmoid_cross_entropy_with_logits(None, tf.cast(y_, tf.float32), z) loss_op = tf.reduce_mean(losses) with tf.variable_scope('Accuracy'): y_pred = tf.cast(z > 0, tf.float32) accuracy = tf.reduce_mean(tf.cast(tf.equal(y_pred, y_), tf.float32)) accuracy = tf.Print(accuracy, data=[accuracy], message="accuracy:") # We add the training operation, ... adam = tf.train.AdamOptimizer(1e-2) train_op = adam.minimize(loss_op, name="train_op") startTime = time.time() with tf.Session() as sess: # ... init our variables, ... sess.run(tf.global_variables_initializer()) # ... check the accuracy before training, ... print(" Run initial session...") x_input, y_input = sess.run([tf.stack(A), tf.stack(Cl2)]) print(" Check initial accuracy...") sess.run(accuracy, feed_dict={x: A_test, y_: Cl2_test}) # ... train ... for i in range(10): # ... by sampling some input data (fetching) ... print(" Run session:",str(i)) x_input, y_input = sess.run([tf.stack(A), tf.stack(Cl2)]) print(x_input) # ... and feeding it to our model _, loss = sess.run([train_op, loss_op], feed_dict={x: x_input,y_: y_input}) print(" Loss:",str(loss)) sess.run(accuracy, feed_dict={x: A_test,y_: Cl2_test}) # We regularly check the loss if i % 10 == 0: print('iter:%d - loss:%f' % (i, loss)) # Finally, we check our final accuracy x_input, y_input = sess.run([tf.stack(A), tf.stack(Cl2)]) sess.run(accuracy, feed_dict={x: A_test,y_: Cl2_test}) print("Time taken: %f" % (time.time() - startTime)) ''' cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)) if tfDef.decayLearnRate == True: print(' Using decaying learning rate, start at:',tfDef.learnRate, '\n') global_step = tf.Variable(0, trainable=False) starter_learning_rate = tfDef.learnRate learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 100000, 0.96, staircase=True) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(cross_entropy, global_step=global_step) else: print(' Using fix learning rate:', tfDef.learnRate, '\n') train_step = tf.train.GradientDescentOptimizer(tfDef.learnRate).minimize(cross_entropy) sess = tf.InteractiveSession() tf.global_variables_initializer().run() if tfDef.enableTensorboard == True: writer = tf.summary.FileWriter(".", sess.graph) print('\n Saving graph. Accessible via tensorboard. \n') saver = tf.train.Saver() accur = 0 #********************************************** #********************************************** try: if tfDef.alwaysRetrain == False: print(' Opening TF training model from:', tfTrainedData) saver.restore(sess, './' + tfTrainedData) print('\n Model restored.\n') else: raise ValueError(' Force TF model retraining.') except: init = tf.global_variables_initializer() sess.run(init) if os.path.isfile(tfTrainedData + '.meta') & tfDef.alwaysImprove == True: print('\n Improving TF model...') saver.restore(sess, './' + tfTrainedData) else: print('\n Rebuildind TF model...') print(' Performing training using subset (' + str(tfDef.percentCrossValid*100) + '%)') summary = sess.run(train_step, feed_dict={x: A, y_: Cl2}) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) accuracy_score = 100*accuracy.eval(feed_dict={x:A_test, y_:Cl2_test}) save_path = saver.save(sess, tfTrainedData) print(' Model saved in file: %s\n' % save_path) if tfDef.enableTensorboard == True: writer.close() sess.close() print('\n ================================') print(' \033[1mDNN-TF\033[0m - Accuracy') print(' ================================') print("\n Accuracy: {:.2f}%".format(accuracy_score)) #print(" Loss: {:.2f}".format(accuracy_score["loss"])) #print(" Global step: {:.2f}\n".format(accuracy_score["global_step"])) print(' ================================\n') ''' #********************************************** ''' Predict using basic Tensorflow ''' #********************************************** def predTF(A, Cl, R, Root): print('==========================================================================\n') print('\033[1m Running Basic TensorFlow Prediction...\033[0m') import tensorflow as tf import tensorflow.contrib.learn as skflow from sklearn import preprocessing if tfDef.logCheckpoint == True: tf.logging.set_verbosity(tf.logging.INFO) tfTrainedData = Root + '.tfmodel' x,y,y_ = setupTFmodel(A, Cl) sess = tf.InteractiveSession() tf.global_variables_initializer().run() print(' Opening TF training model from:', tfTrainedData) saver = tf.train.Saver() saver.restore(sess, './' + tfTrainedData) res1 = sess.run(y, feed_dict={x: R}) res2 = sess.run(tf.argmax(y, 1), feed_dict={x: R}) sess.close() rosterPred = np.where(res1[0]>tfDef.thresholdProbabilityTFPred)[0] print('\n ==============================') print(' \033[1mTF\033[0m - Probability >',str(tfDef.thresholdProbabilityTFPred),'%') print(' ==============================') print(' Prediction\tProbability [%]') for i in range(rosterPred.shape[0]): print(' ',str(np.unique(Cl)[rosterPred][i]),'\t\t',str('{:.1f}'.format(res1[0][rosterPred][i]))) print(' ==============================\n') print('\033[1m Predicted value (TF): ' + str(np.unique(Cl)[res2][0]) + ' (Probability: ' + str('{:.1f}'.format(res1[0][res2][0])) + '%)\n' + '\033[0m' ) return np.unique(Cl)[res2][0], res1[0][res2][0] #********************************************** ''' Setup Tensorflow Model''' #********************************************** def setupTFmodel(A, Cl): import tensorflow as tf tf.reset_default_graph() x = tf.placeholder(tf.float32, [None, A.shape[1]]) y_ = tf.placeholder(tf.float32, [None, np.unique(Cl).shape[0]]) W = tf.Variable(tf.zeros([A.shape[1], A.shape[1]]),name="W1") b = tf.Variable(tf.zeros(A.shape[1]),name="b") # The raw formulation of cross-entropy can be numerically unstable #y = tf.nn.softmax(tf.matmul(x, W) + b) #cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), axis=[1])) # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw # outputs of 'y', and then average across the batch. z = tf.matmul(x,W) + b y = tf.nn.relu(z) W2 = tf.Variable(tf.zeros([A.shape[1], np.unique(Cl).shape[0]]),name="W2") b2 = tf.Variable(tf.zeros(np.unique(Cl).shape[0]),name="b2") z = tf.matmul(y, W2) + b2 return x, y, y_, z #************************************ ''' Main initialization routine ''' #************************************ if __name__ == "__main__": sys.exit(main())
gpl-3.0
google-research/dp-imagenet
benchmark/mnist_tf.py
1
4616
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Runs MNIST training with differential privacy using Tensorflow.""" import time from absl import app from absl import flags from absl import logging import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import tensorflow as tf from tensorflow_privacy.privacy.keras_models.dp_keras_model import DPSequential flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, train with vanilla SGD.') flags.DEFINE_float('learning_rate', .25, 'Learning rate for training') flags.DEFINE_float('noise_multiplier', 1.3, 'Ratio of the standard deviation to the clipping norm') flags.DEFINE_float('l2_norm_clip', 1.5, 'Clipping norm') flags.DEFINE_integer('batch_size', 250, 'Batch size') flags.DEFINE_integer('epochs', 15, 'Number of epochs') flags.DEFINE_integer( 'microbatches', 250, 'Number of microbatches (must evenly divide batch_size)') FLAGS = flags.FLAGS def load_mnist(): MNIST_MEAN = 0.1307 MNIST_STD = 0.3081 """Loads MNIST and preprocesses to combine training and validation data.""" train, test = tf.keras.datasets.mnist.load_data() train_data, train_labels = train test_data, test_labels = test train_data = (np.array(train_data, dtype=np.float32) / 255 - MNIST_MEAN) / MNIST_STD test_data = (np.array(test_data, dtype=np.float32) / 255 - MNIST_MEAN) / MNIST_STD train_data = train_data.reshape((train_data.shape[0], 28, 28, 1)) test_data = test_data.reshape((test_data.shape[0], 28, 28, 1)) train_labels = np.array(train_labels, dtype=np.int32) test_labels = np.array(test_labels, dtype=np.int32) return train_data, train_labels, test_data, test_labels def main(unused_argv): logging.set_verbosity(logging.ERROR) if FLAGS.microbatches == -1: FLAGS.microbatches = FLAGS.batch_size if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0: raise ValueError('Number of microbatches should divide evenly batch_size') # Load training and test data. train_data, train_labels, test_data, test_labels = load_mnist() # Define a sequential Keras model layers = [ tf.keras.layers.Conv2D(16, 8, strides=2, padding='same', activation='relu', input_shape=(28, 28, 1)), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Conv2D(32, 4, strides=2, padding='valid', activation='relu'), tf.keras.layers.MaxPool2D(2, 1), tf.keras.layers.Flatten(), tf.keras.layers.Dense(32, activation='relu'), tf.keras.layers.Dense(10) ] if FLAGS.dpsgd: model = DPSequential( l2_norm_clip=FLAGS.l2_norm_clip, noise_multiplier=FLAGS.noise_multiplier, layers=layers) else: model = tf.keras.Sequential(layers=layers) optimizer = tf.keras.optimizers.SGD(learning_rate=FLAGS.learning_rate) loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Compile model with Keras model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy']) # Train model with Keras epoch_time = [] for epoch in range(FLAGS.epochs): start_time = time.time() model.fit(train_data, train_labels, epochs=1, validation_data=None, batch_size=FLAGS.batch_size) epoch_time.append(time.time() - start_time) print(f"Train Epoch: {epoch} \t took {epoch_time[-1]} seconds") print('Average epoch time (all epochs): ', np.average(epoch_time)) print('Median epoch time (all epochs): ', np.median(epoch_time)) print('Average epoch time (except first): ', np.average(epoch_time[1:])) print('Median epoch time (except first): ', np.median(epoch_time[1:])) model.evaluate(test_data, test_labels, batch_size=FLAGS.batch_size) if __name__ == '__main__': app.run(main)
apache-2.0
tdhopper/scikit-learn
examples/classification/plot_digits_classification.py
287
2397
""" ================================ Recognizing hand-written digits ================================ An example showing how the scikit-learn can be used to recognize images of hand-written digits. This example is commented in the :ref:`tutorial section of the user manual <introduction>`. """ print(__doc__) # Author: Gael Varoquaux <gael dot varoquaux at normalesup dot org> # License: BSD 3 clause # Standard scientific Python imports import matplotlib.pyplot as plt # Import datasets, classifiers and performance metrics from sklearn import datasets, svm, metrics # The digits dataset digits = datasets.load_digits() # The data that we are interested in is made of 8x8 images of digits, let's # have a look at the first 3 images, stored in the `images` attribute of the # dataset. If we were working from image files, we could load them using # pylab.imread. Note that each image must have the same size. For these # images, we know which digit they represent: it is given in the 'target' of # the dataset. images_and_labels = list(zip(digits.images, digits.target)) for index, (image, label) in enumerate(images_and_labels[:4]): plt.subplot(2, 4, index + 1) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Training: %i' % label) # To apply a classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) data = digits.images.reshape((n_samples, -1)) # Create a classifier: a support vector classifier classifier = svm.SVC(gamma=0.001) # We learn the digits on the first half of the digits classifier.fit(data[:n_samples / 2], digits.target[:n_samples / 2]) # Now predict the value of the digit on the second half: expected = digits.target[n_samples / 2:] predicted = classifier.predict(data[n_samples / 2:]) print("Classification report for classifier %s:\n%s\n" % (classifier, metrics.classification_report(expected, predicted))) print("Confusion matrix:\n%s" % metrics.confusion_matrix(expected, predicted)) images_and_predictions = list(zip(digits.images[n_samples / 2:], predicted)) for index, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, index + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) plt.show()
bsd-3-clause
samzhang111/scikit-learn
benchmarks/bench_plot_lasso_path.py
299
4003
"""Benchmarks of Lasso regularization path computation using Lars and CD The input data is mostly low rank but is a fat infinite tail. """ from __future__ import print_function from collections import defaultdict import gc import sys from time import time import numpy as np from sklearn.linear_model import lars_path from sklearn.linear_model import lasso_path from sklearn.datasets.samples_generator import make_regression def compute_bench(samples_range, features_range): it = 0 results = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: it += 1 print('====================') print('Iteration %03d of %03d' % (it, max_it)) print('====================') dataset_kwargs = { 'n_samples': n_samples, 'n_features': n_features, 'n_informative': n_features / 10, 'effective_rank': min(n_samples, n_features) / 10, #'effective_rank': None, 'bias': 0.0, } print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) X, y = make_regression(**dataset_kwargs) gc.collect() print("benchmarking lars_path (with Gram):", end='') sys.stdout.flush() tstart = time() G = np.dot(X.T, X) # precomputed Gram matrix Xy = np.dot(X.T, y) lars_path(X, y, Xy=Xy, Gram=G, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (with Gram)'].append(delta) gc.collect() print("benchmarking lars_path (without Gram):", end='') sys.stdout.flush() tstart = time() lars_path(X, y, method='lasso') delta = time() - tstart print("%0.3fs" % delta) results['lars_path (without Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (with Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=True) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (with Gram)'].append(delta) gc.collect() print("benchmarking lasso_path (without Gram):", end='') sys.stdout.flush() tstart = time() lasso_path(X, y, precompute=False) delta = time() - tstart print("%0.3fs" % delta) results['lasso_path (without Gram)'].append(delta) return results if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection import matplotlib.pyplot as plt samples_range = np.linspace(10, 2000, 5).astype(np.int) features_range = np.linspace(10, 2000, 5).astype(np.int) results = compute_bench(samples_range, features_range) max_time = max(max(t) for t in results.values()) fig = plt.figure('scikit-learn Lasso path benchmark results') i = 1 for c, (label, timings) in zip('bcry', sorted(results.items())): ax = fig.add_subplot(2, 2, i, projection='3d') X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z.T, cstride=1, rstride=1, color=c, alpha=0.8) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) #ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') ax.set_zlabel('Time (s)') ax.set_zlim3d(0.0, max_time * 1.1) ax.set_title(label) #ax.legend() i += 1 plt.show()
bsd-3-clause
phoebe-project/phoebe2-docs
2.4/tutorials/design_concepts.py
6
7730
#!/usr/bin/env python # coding: utf-8 # General Design Concepts of PHOEBE 2 # ====================== # # This document aims to introduce the design concepts for PHOEBE 2 and explain **why** it is designed in a slightly non-pythonic way. Hopefully understanding the rationale for these decisions will help to make the learning curve a little less steep - but feel free to skip straight to the tutorials as all the concepts will be re-explained there within the context of PHOEBE. # # General Goals of PHOEBE 2 # ------------------------------------------ # # Many eclipsing binary codes exist in the field, each with their own strenghts and weaknesses. The major motivation for *re-writing* PHOEBE into PHOEBE 2 was to address the improvement in photometric precision in the Kepler-era. As such, we try to emphasize the following goals even when at the cost of others: # # * **Precision**: achieve a precision (both numerical and in terms of advanced physics) necessary to adequately model observations from Kepler and future space missions; # * **Flexibility**: build a framework that is modular and allows for future expansion to include new physics and observables; # * **Self-Consistency**: re-use the same frameworks and concepts within the code so that once the basics are mastered, more advanced functionality should be easy to learn; # * **User-friendly**: replace the custom scripting language used in PHOEBE legacy with the widely-adopted Python scripting language. # # Whenever possible, without sacrificing the above goals, we also aim to achieve: # # * **Efficiency**: optimize the code to minimize computation time; # * **Simplicity**: don't overcomplicate things and try to keep the learning-curve manageable. # Why not use simple function calls? # ----------------------------------------------- # # Placing yourself in the shoes of a developer designing a code to model observables of eclipsing binary systems in Python, you would probably first consider the simplest option which is to have simple functions for each observable type to generate synthetic models. # # So for example, something like: # # ``` # fluxes = phoebe.lc(times=[...], teffA=6000, teffB=5500, massA=1.1, ...) # rvs = phoebe.rv(times=[...], ...) # ``` # # Although this is easy to learn and very intuitive, it does have several significant drawbacks for our use-case: # * Gets unwieldy if you want to pass a lot of (non-default) options # * Using A and B suffixes (ie. `teffA` vs `teffB`) for two stars in a binary makes sense, but becomes much more complicated if we want to extend to triples, quadruples, etc. # * Does not allow for any optimizations between observables/datasets. One of the more expensive steps in numerical modeling of EBs is creating the mesh of the star. Here if we want a light curve and radial velocity curve at the same time, we are unnecessarily duplicating that step. # Ok, so why not objects with attributes and methods? # ------------------------------------------------------ # # Any Python developer considering these drawbacks above will immediately realize that classes/objects will solve them. We can now have a `Orbit` and `Star` class and instantiate one `Orbit` and two `Stars` (for a binary system). # # Imagine something like: # # ``` # primary = Star(teff=6000, mass=1.2) # primary.requiv = 1.1 # # secondary = Star(teff=5500, mass=0.9, requiv=0.9) # # orbit = Orbit(period=3.14, primary=primary, secondary=secondary) # print(orbit.primary.mass) # ``` # # Now dealing with a lot of non-default options is a lot cleaner, as they can either be passed to the instantiation of the respective `Orbit` or `Star`, *or* we can change the attribute on the object later. # # A framework like this also adds a built-in object hierarchy. We no longer have `teffA` vs `teffB` but rather `orbit.primary.teff` vs `orbit.secondary.teff`, which will extend much nicer to higher-ordered systems. # # We could pass this `orbit` object to the functions above, but then we still have the optimization issue. So instead, we would also want include our dataset information (passbands, etc) so that we can compute all of our datasets at once. Maybe something like: # # ``` # orbit.add_lc(LC(times=[...], passband='Johnson:V', ...)) # orbit.add_rv(RV(times=[...], ...)) # # fluxes, rvs = phoebe.create_synthetics(orbit) # ``` # # We've now addressed all of the drawbacks from the simple function design, but we have uncovered a few more: # * Some parameters needed to define a dataset are still star-dependent - so where are these stored? For example, would we expect access limb-darkening as `orbit.lcs[0].ld.primary` or `orbit.primary.lcs[0].ld` or `orbit.lcs[0].primary.ld`? # * Do we define a mass-ratio `q` in the `Orbit` class or individual masses in the `Star` class? # # The two points above have really driven the design of the PHOEBE 2 interface and add significant power and flexibility, but it has come at the cost of a somewhat non-pythonic and a steep learning curve. # Introducing the Bundle # ---------------------------------------------- # # ### a database-like store of parameters # # What we really need to address the first point above is a *database* of options, where each *parameter* is tagged with the *dataset* and *component/star* that it is associate with. This would then remove the fixed, ambiguous, hierarchy of the parameters and allow the user to access the parameters through any order of "drilling-down" (what we call *filtering* in PHOEBE 2). # # In pseudo-code, this will look something like: # # ``` # b = phoebe.default_binary() # b.get_parameter(qualifier='teff', component='primary') # b.get_value(qualifier='teff', component='primary') # ``` # # for the case of `teffA` vs `teffB` from before. Or for the case of limb-darkening: # # ``` # b.get_value(qualifier='ld', component='primary', dataset='mylc') # ``` # # The first tutorial on [general concepts](general_concepts.ipynb) discusses the actual implementation and syntax in detail. # # ### support for custom parameterizations via "constraints" # # What we would really like to do for the second point (mass-ratio vs individual masses, semi-major axis and inclination vs asini, etc) is to have a framework that supports any *combination* of parameterizations by telling the parameters the equations that relate them to each other. These are what we call *constraints* in PHOEBE 2. # # In pseudo-code, this will look something like: # # ``` # b.get_value(qualifier='mass', component='primary') # 1.2 # b.set_value(qualifier='q', component='binary', value=0.8) # b.get_value(qualifier='mass', component='primary') # 1.4 # ``` # # Here the masses of the individual stars are *read-only* parameters which know how to be computed from `q` (and the orbital period and semi-major axis - following Kepler's third law). If you wanted to provide (or fit for) the primary mass instead of q, we can have PHOEBE re-arrange the equations to make q read-only instead. This looks something like: # # ``` # b.flip_constraint(qualifier='mass', component='primary', solve_for='q') # # b.set_value(qualifier='mass', component='primary', value=1.2) # b.get_value(qualifier='q', component='binary') # 1.2 # ``` # # The tutorial on [constraints](constraints.ipynb) covers these concepts in detail. Although the advanced functionality can somewhat be ignored unless you want the flexibility to change the default parameterization, it is still important to be aware of constraints, how they work, and the fact that some parameters are "read-only" by default. However, once you learn how to use (and perhaps abuse) constraints, a large number of advanced use-cases are opened up. # # In[ ]:
gpl-3.0
bthirion/scikit-learn
examples/cluster/plot_face_compress.py
73
2198
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Vector Quantization Example ========================================================= Face, a 1024 x 768 size image of a raccoon face, is used here to illustrate how `k`-means is used for vector quantization. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn import cluster try: # SciPy >= 0.16 have face in misc from scipy.misc import face face = face(gray=True) except ImportError: face = sp.face(gray=True) n_clusters = 5 np.random.seed(0) X = face.reshape((-1, 1)) # We need an (n_sample, n_feature) array k_means = cluster.KMeans(n_clusters=n_clusters, n_init=4) k_means.fit(X) values = k_means.cluster_centers_.squeeze() labels = k_means.labels_ # create an array from labels and values face_compressed = np.choose(labels, values) face_compressed.shape = face.shape vmin = face.min() vmax = face.max() # original face plt.figure(1, figsize=(3, 2.2)) plt.imshow(face, cmap=plt.cm.gray, vmin=vmin, vmax=256) # compressed face plt.figure(2, figsize=(3, 2.2)) plt.imshow(face_compressed, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # equal bins face regular_values = np.linspace(0, 256, n_clusters + 1) regular_labels = np.searchsorted(regular_values, face) - 1 regular_values = .5 * (regular_values[1:] + regular_values[:-1]) # mean regular_face = np.choose(regular_labels.ravel(), regular_values, mode="clip") regular_face.shape = face.shape plt.figure(3, figsize=(3, 2.2)) plt.imshow(regular_face, cmap=plt.cm.gray, vmin=vmin, vmax=vmax) # histogram plt.figure(4, figsize=(3, 2.2)) plt.clf() plt.axes([.01, .01, .98, .98]) plt.hist(X, bins=256, color='.5', edgecolor='.5') plt.yticks(()) plt.xticks(regular_values) values = np.sort(values) for center_1, center_2 in zip(values[:-1], values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b') for center_1, center_2 in zip(regular_values[:-1], regular_values[1:]): plt.axvline(.5 * (center_1 + center_2), color='b', linestyle='--') plt.show()
bsd-3-clause
abimannans/scikit-learn
examples/datasets/plot_iris_dataset.py
281
1928
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
tdhopper/scikit-learn
examples/datasets/plot_iris_dataset.py
281
1928
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
Delphine-L/tools-iuc
tools/fsd/fsd.py
12
44897
#!/usr/bin/env python # Family size distribution of SSCSs # # Author: Monika Heinzl, Johannes-Kepler University Linz (Austria) # Contact: monika.heinzl@edumail.at # # Takes at least one TABULAR file with tags before the alignment to the SSCS, but up to 4 files can be provided, as input. # The program produces a plot which shows the distribution of family sizes of the all SSCSs from the input files and # a tabular file with the data of the plot, as well as a TXT file with all tags of the DCS and their family sizes. # If only one file is provided, then a family size distribution, which is separated after SSCSs without a partner and DCSs, is produced. # Whereas a family size distribution with multiple data in one plot is produced, when more than one file (up to 4) is given. # USAGE: python FSD_Galaxy_1.4_commandLine_FINAL.py --inputFile1 filename --inputName1 filename --inputFile2 filename2 --inputName2 filename2 --inputFile3 filename3 --inputName3 filename3 --inputFile4 filename4 --inputName4 filename4 --log_axis --output_tabular outptufile_name_tabular --output_pdf outptufile_name_pdf import argparse import sys import matplotlib.pyplot as plt import numpy from matplotlib.backends.backend_pdf import PdfPages plt.switch_backend('agg') def readFileReferenceFree(file): with open(file, 'r') as dest_f: data_array = numpy.genfromtxt(dest_f, skip_header=0, delimiter='\t', comments='#', dtype=str) return(data_array) def make_argparser(): parser = argparse.ArgumentParser(description='Family Size Distribution of duplex sequencing data') parser.add_argument('--inputFile1', help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName1') parser.add_argument('--inputFile2', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName2') parser.add_argument('--inputFile3', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName3') parser.add_argument('--inputFile4', default=None, help='Tabular File with three columns: ab or ba, tag and family size.') parser.add_argument('--inputName4') parser.add_argument('--log_axis', action="store_false", help='Transform y axis in log scale.') parser.add_argument('--rel_freq', action="store_false", help='If False, the relative frequencies are displayed.') parser.add_argument('--output_pdf', default="data.pdf", type=str, help='Name of the pdf file.') parser.add_argument('--output_tabular', default="data.tabular", type=str, help='Name of the tabular file.') return parser def compare_read_families(argv): parser = make_argparser() args = parser.parse_args(argv[1:]) firstFile = args.inputFile1 name1 = args.inputName1 secondFile = args.inputFile2 name2 = args.inputName2 thirdFile = args.inputFile3 name3 = args.inputName3 fourthFile = args.inputFile4 name4 = args.inputName4 log_axis = args.log_axis rel_freq = args.rel_freq title_file = args.output_tabular title_file2 = args.output_pdf sep = "\t" plt.rc('figure', figsize=(11.69, 8.27)) # A4 format plt.rcParams['patch.edgecolor'] = "black" plt.rcParams['axes.facecolor'] = "E0E0E0" # grey background color plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 list_to_plot = [] label = [] data_array_list = [] list_to_plot_original = [] colors = [] bins = numpy.arange(1, 22) with open(title_file, "w") as output_file, PdfPages(title_file2) as pdf: fig = plt.figure() fig.subplots_adjust(left=0.12, right=0.97, bottom=0.23, top=0.94, hspace=0) fig2 = plt.figure() fig2.subplots_adjust(left=0.12, right=0.97, bottom=0.23, top=0.94, hspace=0) if firstFile is not None: file1 = readFileReferenceFree(firstFile) integers = numpy.array(file1[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers) colors.append("#0000FF") # for plot: replace all big family sizes by 22 data1 = numpy.clip(integers, bins[0], bins[-1]) name1 = name1.split(".tabular")[0] if len(name1) > 40: name1 = name1[:40] list_to_plot.append(data1) label.append(name1) data_array_list.append(file1) legend = "\n\n\n{}".format(name1) fig.text(0.05, 0.11, legend, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.11, legend, size=10, transform=plt.gcf().transFigure) legend1 = "singletons:\nnr. of tags\n{:,} ({:.3f})".format(numpy.bincount(data1)[1], float(numpy.bincount(data1)[1]) / len(data1)) fig.text(0.32, 0.11, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.11, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "PE reads\n{:,} ({:.3f})".format(numpy.bincount(data1)[1], float(numpy.bincount(data1)[1]) / sum(integers)) fig.text(0.45, 0.11, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.11, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "family size > 20:\nnr. of tags\n{:,} ({:.3f})".format(len(integers[integers > 20]), float(len(integers[integers > 20])) / len(integers)) fig.text(0.58, 0.11, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.11, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n{:,} ({:.3f})".format(sum(integers[integers > 20]), float(sum(integers[integers > 20])) / sum(integers)) fig.text(0.70, 0.11, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.11, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "total nr. of\ntags\n{:,}".format(len(data1)) fig.text(0.82, 0.11, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.11, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "PE reads\n{:,}".format(sum(integers)) fig.text(0.89, 0.11, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.11, legend6b, size=10, transform=plt.gcf().transFigure) if secondFile is not None: file2 = readFileReferenceFree(secondFile) integers2 = numpy.array(file2[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers2) colors.append("#298A08") data2 = numpy.clip(integers2, bins[0], bins[-1]) list_to_plot.append(data2) name2 = name2.split(".tabular")[0] if len(name2) > 40: name2 = name2[:40] label.append(name2) data_array_list.append(file2) fig.text(0.05, 0.09, name2, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.09, name2, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data2)[1], float(numpy.bincount(data2)[1]) / len(data2)) fig.text(0.32, 0.09, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.09, legend1, size=10, transform=plt.gcf().transFigure) legend3 = "{:,} ({:.3f})".format(numpy.bincount(data2)[1], float(numpy.bincount(data2)[1]) / sum(integers2)) fig.text(0.45, 0.09, legend3, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.09, legend3, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers2[integers2 > 20]), float(len(integers2[integers2 > 20])) / len(integers2)) fig.text(0.58, 0.09, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.09, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers2[integers2 > 20]), float(sum(integers2[integers2 > 20])) / sum(integers2)) fig.text(0.70, 0.09, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data2)) fig.text(0.82, 0.09, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.09, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers2)) fig.text(0.89, 0.09, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.09, legend6b, size=10, transform=plt.gcf().transFigure) if thirdFile is not None: file3 = readFileReferenceFree(thirdFile) integers3 = numpy.array(file3[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers3) colors.append("#DF0101") data3 = numpy.clip(integers3, bins[0], bins[-1]) list_to_plot.append(data3) name3 = name3.split(".tabular")[0] if len(name3) > 40: name3 = name3[:40] label.append(name3) data_array_list.append(file3) fig.text(0.05, 0.07, name3, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.07, name3, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data3)[1], float(numpy.bincount(data3)[1]) / len(data3)) fig.text(0.32, 0.07, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.07, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "{:,} ({:.3f})".format(numpy.bincount(data3)[1], float(numpy.bincount(data3)[1]) / sum(integers3)) fig.text(0.45, 0.07, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.07, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers3[integers3 > 20]), float(len(integers3[integers3 > 20])) / len(integers3)) fig.text(0.58, 0.07, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.07, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers3[integers3 > 20]), float(sum(integers3[integers3 > 20])) / sum(integers3)) fig.text(0.70, 0.07, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.07, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data3)) fig.text(0.82, 0.07, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.07, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers3)) fig.text(0.89, 0.07, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.07, legend6b, size=10, transform=plt.gcf().transFigure) if fourthFile is not None: file4 = readFileReferenceFree(fourthFile) integers4 = numpy.array(file4[:, 0]).astype(int) # keep original family sizes list_to_plot_original.append(integers4) colors.append("#04cec7") data4 = numpy.clip(integers4, bins[0], bins[-1]) list_to_plot.append(data4) name4 = name4.split(".tabular")[0] if len(name4) > 40: name4 = name4[:40] label.append(name4) data_array_list.append(file4) fig.text(0.05, 0.05, name4, size=10, transform=plt.gcf().transFigure) fig2.text(0.05, 0.05, name4, size=10, transform=plt.gcf().transFigure) legend1 = "{:,} ({:.3f})".format(numpy.bincount(data4)[1], float(numpy.bincount(data4)[1]) / len(data4)) fig.text(0.32, 0.05, legend1, size=10, transform=plt.gcf().transFigure) fig2.text(0.32, 0.05, legend1, size=10, transform=plt.gcf().transFigure) legend3b = "{:,} ({:.3f})".format(numpy.bincount(data4)[1], float(numpy.bincount(data4)[1]) / sum(integers4)) fig.text(0.45, 0.05, legend3b, size=10, transform=plt.gcf().transFigure) fig2.text(0.45, 0.05, legend3b, size=10, transform=plt.gcf().transFigure) legend4 = "{:,} ({:.3f})".format(len(integers4[integers4 > 20]), float(len(integers4[integers4 > 20])) / len(integers4)) fig.text(0.58, 0.05, legend4, size=10, transform=plt.gcf().transFigure) fig2.text(0.58, 0.05, legend4, size=10, transform=plt.gcf().transFigure) legend5 = "{:,} ({:.3f})".format(sum(integers4[integers4 > 20]), float(sum(integers4[integers4 > 20])) / sum(integers4)) fig.text(0.70, 0.05, legend5, size=10, transform=plt.gcf().transFigure) fig2.text(0.70, 0.05, legend5, size=10, transform=plt.gcf().transFigure) legend6 = "{:,}".format(len(data4)) fig.text(0.82, 0.05, legend6, size=10, transform=plt.gcf().transFigure) fig2.text(0.82, 0.05, legend6, size=10, transform=plt.gcf().transFigure) legend6b = "{:,}".format(sum(integers4)) fig.text(0.89, 0.05, legend6b, size=10, transform=plt.gcf().transFigure) fig2.text(0.89, 0.05, legend6b, size=10, transform=plt.gcf().transFigure) list_to_plot2 = list_to_plot if rel_freq: ylab = "Relative Frequency" else: ylab = "Absolute Frequency" # PLOT FSD based on tags fig.suptitle('Family Size Distribution (FSD) based on families', fontsize=14) ax = fig.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" ax.set_xticks([], []) if rel_freq: w = [numpy.zeros_like(data) + 1. / len(data) for data in list_to_plot2] counts = ax.hist(list_to_plot2, weights=w, bins=numpy.arange(1, 23), stacked=False, edgecolor="black", color=colors, linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8) ax.set_ylim(0, 1.07) else: counts = ax.hist(list_to_plot2, bins=numpy.arange(1, 23), stacked=False, edgecolor="black", linewidth=1, label=label, align="left", alpha=0.7, rwidth=0.8, color=colors) ax.set_xticks(numpy.array(ticks)) ax.set_xticklabels(ticks1) ax.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) ax.set_ylabel(ylab, fontsize=14) ax.set_xlabel("Family size", fontsize=14) if log_axis: ax.set_yscale('log') ax.grid(b=True, which="major", color="#424242", linestyle=":") ax.margins(0.01, None) pdf.savefig(fig) # PLOT FSD based on PE reads fig2.suptitle('Family Size Distribution (FSD) based on PE reads', fontsize=14) ax2 = fig2.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" reads = [] reads_rel = [] barWidth = 0 - (len(list_to_plot) + 1) / 2 * 1. / (len(list_to_plot) + 1) ax2.set_xticks([], []) for i in range(len(list_to_plot2)): x = list(numpy.arange(1, 22).astype(float)) unique, c = numpy.unique(list_to_plot2[i], return_counts=True) y = unique * c if sum(list_to_plot_original[i] > 20) > 0: y[len(y) - 1] = sum(list_to_plot_original[i][list_to_plot_original[i] > 20]) y = [y[x[idx] == unique][0] if x[idx] in unique else 0 for idx in range(len(x))] reads.append(y) reads_rel.append(list(numpy.float_(y)) / sum(y)) if len(list_to_plot2) == 1: x = [xi * 0.5 for xi in x] w = 0.4 else: x = [xi + barWidth for xi in x] w = 1. / (len(list_to_plot) + 1) if rel_freq: ax2.bar(x, list(numpy.float_(y)) / numpy.sum(y), align="edge", width=w, edgecolor="black", label=label[i], linewidth=1, alpha=0.7, color=colors[i]) ax2.set_ylim(0, 1.07) else: ax2.bar(x, y, align="edge", width=w, edgecolor="black", label=label[i], linewidth=1, alpha=0.7, color=colors[i]) if i == len(list_to_plot2) - 1: barWidth += 1. / (len(list_to_plot) + 1) + 1. / (len(list_to_plot) + 1) else: barWidth += 1. / (len(list_to_plot) + 1) ax2.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) if len(list_to_plot2) == 1: ax2.set_xticks(numpy.array([xi + 0.2 for xi in x])) else: ax2.set_xticks(numpy.array(ticks)) ax2.set_xticklabels(ticks1) ax2.set_xlabel("Family size", fontsize=14) ax2.set_ylabel(ylab, fontsize=14) if log_axis: ax2.set_yscale('log') ax2.grid(b=True, which="major", color="#424242", linestyle=":") ax2.margins(0.01, None) pdf.savefig(fig2) plt.close() # write data to CSV file tags counts = [numpy.bincount(di, minlength=22)[1:] for di in list_to_plot2] # original counts of family sizes output_file.write("Values from family size distribution with all datasets based on families\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("\n") j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(len(label)): output_file.write("{}{}".format(int(counts[n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) for i in counts: output_file.write("{}{}".format(int(sum(i)), sep)) # write data to CSV file PE reads output_file.write("\n\nValues from family size distribution with all datasets based on PE reads\n") output_file.write("\nFamily size") for i in label: output_file.write("{}{}".format(sep, i)) output_file.write("\n") j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) if len(label) == 1: output_file.write("{}{}".format(int(reads[0][j]), sep)) else: for n in range(len(label)): output_file.write("{}{}".format(int(reads[n][j]), sep)) output_file.write("\n") j += 1 output_file.write("sum{}".format(sep)) if len(label) == 1: output_file.write("{}{}".format(int(sum(numpy.concatenate(reads))), sep)) else: for i in reads: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("\n") # Family size distribution after DCS and SSCS for dataset, data_o, name_file in zip(list_to_plot, data_array_list, label): tags = numpy.array(data_o[:, 2]) seq = numpy.array(data_o[:, 1]) data = numpy.array(dataset) data_o = numpy.array(data_o[:, 0]).astype(int) # find all unique tags and get the indices for ALL tags, but only once u, index_unique, c = numpy.unique(numpy.array(seq), return_counts=True, return_index=True) d = u[c > 1] # get family sizes, tag for duplicates duplTags_double = data[numpy.in1d(seq, d)] duplTags_double_o = data_o[numpy.in1d(seq, d)] duplTags = duplTags_double[0::2] # ab of DCS duplTags_o = duplTags_double_o[0::2] # ab of DCS duplTagsBA = duplTags_double[1::2] # ba of DCS duplTagsBA_o = duplTags_double_o[1::2] # ba of DCS # get family sizes for SSCS with no partner ab = numpy.where(tags == "ab")[0] abSeq = seq[ab] ab_o = data_o[ab] ab = data[ab] ba = numpy.where(tags == "ba")[0] baSeq = seq[ba] ba_o = data_o[ba] ba = data[ba] dataAB = ab[numpy.in1d(abSeq, d, invert=True)] dataAB_o = ab_o[numpy.in1d(abSeq, d, invert=True)] dataBA = ba[numpy.in1d(baSeq, d, invert=True)] dataBA_o = ba_o[numpy.in1d(baSeq, d, invert=True)] list1 = [duplTags_double, dataAB, dataBA] # list for plotting list1_o = [duplTags_double_o, dataAB_o, dataBA_o] # list for plotting # information for family size >= 3 dataAB_FS3 = dataAB[dataAB >= 3] dataAB_FS3_o = dataAB_o[dataAB_o >= 3] dataBA_FS3 = dataBA[dataBA >= 3] dataBA_FS3_o = dataBA_o[dataBA_o >= 3] duplTags_FS3 = duplTags[(duplTags >= 3) & (duplTagsBA >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA = duplTagsBA[(duplTags >= 3) & (duplTagsBA >= 3)] # ba+ab with FS>=3 duplTags_double_FS3 = len(duplTags_FS3) + len(duplTags_FS3_BA) # both ab and ba strands with FS>=3 # original FS duplTags_FS3_o = duplTags_o[(duplTags_o >= 3) & (duplTagsBA_o >= 3)] # ab+ba with FS>=3 duplTags_FS3_BA_o = duplTagsBA_o[(duplTags_o >= 3) & (duplTagsBA_o >= 3)] # ba+ab with FS>=3 duplTags_double_FS3_o = sum(duplTags_FS3_o) + sum(duplTags_FS3_BA_o) # both ab and ba strands with FS>=3 fig = plt.figure() plt.subplots_adjust(left=0.12, right=0.97, bottom=0.3, top=0.94, hspace=0) if rel_freq: w = [numpy.zeros_like(dj) + 1. / len(numpy.concatenate(list1)) for dj in list1] plt.hist(list1, bins=numpy.arange(1, 23), stacked=True, label=["duplex", "ab", "ba"], weights=w, edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"], rwidth=0.8) plt.ylim(0, 1.07) else: plt.hist(list1, bins=numpy.arange(1, 23), stacked=True, label=["duplex", "ab", "ba"], edgecolor="black", linewidth=1, align="left", color=["#FF0000", "#5FB404", "#FFBF00"], rwidth=0.8) # tick labels of x axis ticks = numpy.arange(1, 22, 1) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" plt.xticks(numpy.array(ticks), ticks1) singl = len(data_o[data_o == 1]) last = len(data_o[data_o > 20]) # large families if log_axis: plt.yscale('log') plt.legend(loc='upper right', fontsize=14, bbox_to_anchor=(0.9, 1), frameon=True) plt.title("{}: FSD based on families".format(name_file), fontsize=14) plt.xlabel("Family size", fontsize=14) plt.ylabel(ylab, fontsize=14) plt.margins(0.01, None) plt.grid(b=True, which="major", color="#424242", linestyle=":") # extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \ntotal nr. of tags=" plt.text(0.1, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "nr. of tags\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)), (len(ab) + len(ba))) plt.text(0.23, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(sum(dataAB_o), sum(dataBA_o), sum(duplTags_o), sum(duplTags_double_o), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.38, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend = "rel. freq. of tags\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=10, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl, last) plt.text(0.23, 0.03, legend4, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / len(data), float(last) / len(data)) plt.text(0.64, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "\n\n{:,}".format(sum(data_o[data_o > 20])) plt.text(0.38, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / sum(data_o), float(sum(data_o[data_o > 20])) / sum(data_o)) plt.text(0.84, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend = "PE reads\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o))) plt.text(0.74, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format( float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)), float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.84, 0.09, legend, size=10, transform=plt.gcf().transFigure) pdf.savefig(fig) plt.close() # PLOT FSD based on PE reads fig3 = plt.figure() plt.subplots_adjust(left=0.12, right=0.97, bottom=0.3, top=0.94, hspace=0) fig3.suptitle("{}: FSD based on PE reads".format(name_file), fontsize=14) ax2 = fig3.add_subplot(1, 1, 1) ticks = numpy.arange(1, 22) ticks1 = [str(_) for _ in ticks] ticks1[len(ticks1) - 1] = ">20" reads = [] reads_rel = [] # barWidth = 0 - (len(list_to_plot) + 1) / 2 * 1. / (len(list_to_plot) + 1) ax2.set_xticks([], []) list_y = [] label = ["duplex", "ab", "ba"] col = ["#FF0000", "#5FB404", "#FFBF00"] for i in range(len(list1)): x = list(numpy.arange(1, 22).astype(float)) unique, c = numpy.unique(list1[i], return_counts=True) y = unique * c if sum(list1_o[i] > 20) > 0: y[len(y) - 1] = sum(list1_o[i][list1_o[i] > 20]) y = [y[x[idx] == unique][0] if x[idx] in unique else 0 for idx in range(len(x))] reads.append(y) reads_rel.append(list(numpy.float_(y)) / sum(numpy.concatenate(list1_o))) if rel_freq: y = list(numpy.float_(y)) / sum(numpy.concatenate(list1_o)) ax2.set_ylim(0, 1.07) else: y = y list_y.append(y) if i == 0: ax2.bar(x, y, align="center", width=0.8, edgecolor="black", label=label[0], linewidth=1, alpha=1, color=col[0]) elif i == 1: ax2.bar(x, y, bottom=list_y[i - 1], align="center", width=0.8, edgecolor="black", label=label[1], linewidth=1, alpha=1, color=col[1]) elif i == 2: bars = numpy.add(list_y[0], list_y[1]).tolist() ax2.bar(x, y, bottom=bars, align="center", width=0.8, edgecolor="black", label=label[2], linewidth=1, alpha=1, color=col[2]) ax2.legend(loc='upper right', fontsize=14, frameon=True, bbox_to_anchor=(0.9, 1)) singl = len(data_o[data_o == 1]) last = len(data_o[data_o > 20]) # large families ax2.set_xticks(numpy.array(ticks)) ax2.set_xticklabels(ticks1) ax2.set_xlabel("Family size", fontsize=14) ax2.set_ylabel(ylab, fontsize=14) if log_axis: ax2.set_yscale('log') ax2.grid(b=True, which="major", color="#424242", linestyle=":") ax2.margins(0.01, None) # extra information beneath the plot legend = "SSCS ab= \nSSCS ba= \nDCS (total)= \ntotal nr. of tags=" plt.text(0.1, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "nr. of tags\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(len(dataAB), len(dataBA), len(duplTags), len(duplTags_double), (len(dataAB) + len(dataBA) + len(duplTags)), (len(ab) + len(ba))) plt.text(0.23, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend5 = "PE reads\n\n{:,}\n{:,}\n{:,} ({:,})\n{:,} ({:,})".format(sum(dataAB_o), sum(dataBA_o), sum(duplTags_o), sum(duplTags_double_o), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.38, 0.09, legend5, size=10, transform=plt.gcf().transFigure) legend = "rel. freq. of tags\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), (len(dataAB) + len(dataBA) + len(duplTags))) plt.text(0.54, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format(float(len(dataAB)) / (len(ab) + len(ba)), float(len(dataBA)) / (len(ab) + len(ba)), float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), (len(ab) + len(ba))) plt.text(0.64, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend1 = "\nsingletons:\nfamily size > 20:" plt.text(0.1, 0.03, legend1, size=10, transform=plt.gcf().transFigure) legend4 = "{:,}\n{:,}".format(singl, last) plt.text(0.23, 0.03, legend4, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / len(data), float(last) / len(data)) plt.text(0.64, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "\n\n{:,}".format(sum(data_o[data_o > 20])) plt.text(0.38, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend3 = "{:.3f}\n{:.3f}".format(float(singl) / sum(data_o), float(sum(data_o[data_o > 20])) / sum(data_o)) plt.text(0.84, 0.03, legend3, size=10, transform=plt.gcf().transFigure) legend = "PE reads\nunique\n{:.3f}\n{:.3f}\n{:.3f}\n{:,}".format( float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o))) plt.text(0.74, 0.09, legend, size=10, transform=plt.gcf().transFigure) legend = "total\n{:.3f}\n{:.3f}\n{:.3f} ({:.3f})\n{:,}".format( float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)), float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)), (sum(ab_o) + sum(ba_o))) plt.text(0.84, 0.09, legend, size=10, transform=plt.gcf().transFigure) pdf.savefig(fig3) plt.close() # write same information to a csv file count = numpy.bincount(data_o) # original counts of family sizes output_file.write("\nDataset:{}{}\n".format(sep, name_file)) output_file.write("max. family size:{}{}\n".format(sep, max(data_o))) output_file.write("absolute frequency:{}{}\n".format(sep, count[len(count) - 1])) output_file.write("relative frequency:{}{:.3f}\n\n".format(sep, float(count[len(count) - 1]) / sum(count))) output_file.write("median family size:{}{}\n".format(sep, numpy.median(numpy.array(data_o)))) output_file.write("mean family size:{}{}\n\n".format(sep, numpy.mean(numpy.array(data_o)))) output_file.write( "{}singletons:{}{}{}family size > 20:{}{}{}{}length of dataset:\n".format(sep, sep, sep, sep, sep, sep, sep, sep)) output_file.write( "{}nr. of tags{}rel. freq of tags{}rel.freq of PE reads{}nr. of tags{}rel. freq of tags{}nr. of PE reads{}rel. freq of PE reads{}total nr. of tags{}total nr. of PE reads\n".format( sep, sep, sep, sep, sep, sep, sep, sep, sep)) output_file.write("{}{}{}{}{:.3f}{}{:.3f}{}{}{}{:.3f}{}{}{}{:.3f}{}{}{}{}\n\n".format( name_file, sep, singl, sep, float(singl) / len(data), sep, float(singl) / sum(data_o), sep, last, sep, float(last) / len(data), sep, sum(data_o[data_o > 20]), sep, float(sum(data_o[data_o > 20])) / sum(data_o), sep, len(data), sep, sum(data_o))) # information for FS >= 1 output_file.write( "The unique frequencies were calculated from the dataset where the tags occured only once (=ab without DCS, ba without DCS)\n" "Whereas the total frequencies were calculated from the whole dataset (=including the DCS).\n\n") output_file.write( "FS >= 1{}nr. of tags{}nr. of PE reads{}rel. freq of tags{}{}rel. freq of PE reads:\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}unique:{}total{}unique{}total:\n".format(sep, sep, sep, sep, sep, sep)) output_file.write("SSCS ab{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataAB), sep, sum(dataAB_o), sep, float(len(dataAB)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(dataAB)) / (len(ab) + len(ba)), sep, float(sum(dataAB_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(dataAB_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write("SSCS ba{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataBA), sep, sum(dataBA_o), sep, float(len(dataBA)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(dataBA)) / (len(ab) + len(ba)), sep, float(sum(dataBA_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(dataBA_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write( "DCS (total){}{} ({}){}{} ({}){}{:.3f}{}{:.3f} ({:.3f}){}{:.3f}{}{:.3f} ({:.3f})\n".format( sep, len(duplTags), len(duplTags_double), sep, sum(duplTags_o), sum(duplTags_double_o), sep, float(len(duplTags)) / (len(dataAB) + len(dataBA) + len(duplTags)), sep, float(len(duplTags)) / (len(ab) + len(ba)), float(len(duplTags_double)) / (len(ab) + len(ba)), sep, float(sum(duplTags_o)) / (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, float(sum(duplTags_o)) / (sum(ab_o) + sum(ba_o)), float(sum(duplTags_double_o)) / (sum(ab_o) + sum(ba_o)))) output_file.write("total nr. of tags{}{}{}{}{}{}{}{}{}{}{}{}\n".format( sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, (len(dataAB) + len(dataBA) + len(duplTags)), sep, (len(ab) + len(ba)), sep, (sum(dataAB_o) + sum(dataBA_o) + sum(duplTags_o)), sep, (sum(ab_o) + sum(ba_o)))) # information for FS >= 3 output_file.write( "\nFS >= 3{}nr. of tags{}nr. of PE reads{}rel. freq of tags{}{}rel. freq of PE reads:\n".format(sep, sep, sep, sep, sep)) output_file.write("{}{}{}unique:{}total{}unique{}total:\n".format(sep, sep, sep, sep, sep, sep)) output_file.write("SSCS ab{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataAB_FS3), sep, sum(dataAB_FS3_o), sep, float(len(dataAB_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataAB_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(dataAB_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(dataAB_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write("SSCS ba{}{}{}{}{}{:.3f}{}{:.3f}{}{:.3f}{}{:.3f}\n".format( sep, len(dataBA_FS3), sep, sum(dataBA_FS3_o), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(dataBA_FS3)) / (len(dataBA_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(dataBA_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(dataBA_FS3_o)) / (sum(dataBA_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write( "DCS (total){}{} ({}){}{} ({}){}{:.3f}{}{:.3f} ({:.3f}){}{:.3f}{}{:.3f} ({:.3f})\n".format( sep, len(duplTags_FS3), duplTags_double_FS3, sep, sum(duplTags_FS3_o), duplTags_double_FS3_o, sep, float(len(duplTags_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, float(len(duplTags_FS3)) / (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), float(duplTags_double_FS3) / (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, float(sum(duplTags_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, float(sum(duplTags_FS3_o)) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o), float(duplTags_double_FS3_o) / (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) output_file.write("total nr. of tags{}{}{}{}{}{}{}{}{}{}{}{}\n".format( sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + len(duplTags_FS3)), sep, (len(dataAB_FS3) + len(dataBA_FS3) + duplTags_double_FS3), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + sum(duplTags_FS3_o)), sep, (sum(dataAB_FS3_o) + sum(dataBA_FS3_o) + duplTags_double_FS3_o))) counts = [numpy.bincount(dk, minlength=22)[1:] for dk in list1] # original counts of family sizes output_file.write("\nValues from family size distribution based on families\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(3): output_file.write("{}{}".format(int(counts[n][j]), sep)) output_file.write("{}\n".format(counts[0][j] + counts[1][j] + counts[2][j])) j += 1 output_file.write("sum{}".format(sep)) for i in counts: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("{}\n".format(sum(counts[0] + counts[1] + counts[2]))) output_file.write("\nValues from family size distribution based on PE reads\n") output_file.write("{}duplex{}ab{}ba{}sum\n".format(sep, sep, sep, sep)) j = 0 for fs in bins: if fs == 21: fs = ">20" else: fs = "={}".format(fs) output_file.write("FS{}{}".format(fs, sep)) for n in range(3): output_file.write("{}{}".format(int(reads[n][j]), sep)) output_file.write("{}\n".format(reads[0][j] + reads[1][j] + reads[2][j])) j += 1 output_file.write("sum{}".format(sep)) for i in reads: output_file.write("{}{}".format(int(sum(i)), sep)) output_file.write("{}\n".format(sum(reads[0] + reads[1] + reads[2]))) print("Files successfully created!") if __name__ == '__main__': sys.exit(compare_read_families(sys.argv))
mit
UltronAI/Deep-Learning
CS231n/assignment1/cs231n/data_utils.py
2
8012
from __future__ import print_function from six.moves import cPickle as pickle import numpy as np import os from scipy.misc import imread import platform def load_pickle(f): version = platform.python_version_tuple() if version[0] == '2': return pickle.load(f) elif version[0] == '3': return pickle.load(f, encoding='latin1') raise ValueError("invalid python version: {}".format(version)) def load_CIFAR_batch(filename): """ load single batch of cifar """ with open(filename, 'rb') as f: datadict = load_pickle(f) X = datadict['data'] Y = datadict['labels'] X = X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): """ load all of cifar """ xs = [] ys = [] for b in range(1,6): f = os.path.join(ROOT, 'data_batch_%d' % (b, )) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch')) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, subtract_mean=True): """ Load the CIFAR-10 dataset from disk and perform preprocessing to prepare it for classifiers. These are the same steps as we used for the SVM, but condensed to a single function. """ # Load the raw CIFAR-10 data cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) # Subsample the data mask = list(range(num_training, num_training + num_validation)) X_val = X_train[mask] y_val = y_train[mask] mask = list(range(num_training)) X_train = X_train[mask] y_train = y_train[mask] mask = list(range(num_test)) X_test = X_test[mask] y_test = y_test[mask] # Normalize the data: subtract the mean image if subtract_mean: mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image # Transpose so that channels come first X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() # Package data into a dictionary return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, } def load_tiny_imagenet(path, dtype=np.float32, subtract_mean=True): """ Load TinyImageNet. Each of TinyImageNet-100-A, TinyImageNet-100-B, and TinyImageNet-200 have the same directory structure, so this can be used to load any of them. Inputs: - path: String giving path to the directory to load. - dtype: numpy datatype used to load the data. - subtract_mean: Whether to subtract the mean training image. Returns: A dictionary with the following entries: - class_names: A list where class_names[i] is a list of strings giving the WordNet names for class i in the loaded dataset. - X_train: (N_tr, 3, 64, 64) array of training images - y_train: (N_tr,) array of training labels - X_val: (N_val, 3, 64, 64) array of validation images - y_val: (N_val,) array of validation labels - X_test: (N_test, 3, 64, 64) array of testing images. - y_test: (N_test,) array of test labels; if test labels are not available (such as in student code) then y_test will be None. - mean_image: (3, 64, 64) array giving mean training image """ # First load wnids with open(os.path.join(path, 'wnids.txt'), 'r') as f: wnids = [x.strip() for x in f] # Map wnids to integer labels wnid_to_label = {wnid: i for i, wnid in enumerate(wnids)} # Use words.txt to get names for each class with open(os.path.join(path, 'words.txt'), 'r') as f: wnid_to_words = dict(line.split('\t') for line in f) for wnid, words in wnid_to_words.iteritems(): wnid_to_words[wnid] = [w.strip() for w in words.split(',')] class_names = [wnid_to_words[wnid] for wnid in wnids] # Next load training data. X_train = [] y_train = [] for i, wnid in enumerate(wnids): if (i + 1) % 20 == 0: print('loading training data for synset %d / %d' % (i + 1, len(wnids))) # To figure out the filenames we need to open the boxes file boxes_file = os.path.join(path, 'train', wnid, '%s_boxes.txt' % wnid) with open(boxes_file, 'r') as f: filenames = [x.split('\t')[0] for x in f] num_images = len(filenames) X_train_block = np.zeros((num_images, 3, 64, 64), dtype=dtype) y_train_block = wnid_to_label[wnid] * np.ones(num_images, dtype=np.int64) for j, img_file in enumerate(filenames): img_file = os.path.join(path, 'train', wnid, 'images', img_file) img = imread(img_file) if img.ndim == 2: ## grayscale file img.shape = (64, 64, 1) X_train_block[j] = img.transpose(2, 0, 1) X_train.append(X_train_block) y_train.append(y_train_block) # We need to concatenate all training data X_train = np.concatenate(X_train, axis=0) y_train = np.concatenate(y_train, axis=0) # Next load validation data with open(os.path.join(path, 'val', 'val_annotations.txt'), 'r') as f: img_files = [] val_wnids = [] for line in f: img_file, wnid = line.split('\t')[:2] img_files.append(img_file) val_wnids.append(wnid) num_val = len(img_files) y_val = np.array([wnid_to_label[wnid] for wnid in val_wnids]) X_val = np.zeros((num_val, 3, 64, 64), dtype=dtype) for i, img_file in enumerate(img_files): img_file = os.path.join(path, 'val', 'images', img_file) img = imread(img_file) if img.ndim == 2: img.shape = (64, 64, 1) X_val[i] = img.transpose(2, 0, 1) # Next load test images # Students won't have test labels, so we need to iterate over files in the # images directory. img_files = os.listdir(os.path.join(path, 'test', 'images')) X_test = np.zeros((len(img_files), 3, 64, 64), dtype=dtype) for i, img_file in enumerate(img_files): img_file = os.path.join(path, 'test', 'images', img_file) img = imread(img_file) if img.ndim == 2: img.shape = (64, 64, 1) X_test[i] = img.transpose(2, 0, 1) y_test = None y_test_file = os.path.join(path, 'test', 'test_annotations.txt') if os.path.isfile(y_test_file): with open(y_test_file, 'r') as f: img_file_to_wnid = {} for line in f: line = line.split('\t') img_file_to_wnid[line[0]] = line[1] y_test = [wnid_to_label[img_file_to_wnid[img_file]] for img_file in img_files] y_test = np.array(y_test) mean_image = X_train.mean(axis=0) if subtract_mean: X_train -= mean_image[None] X_val -= mean_image[None] X_test -= mean_image[None] return { 'class_names': class_names, 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, 'class_names': class_names, 'mean_image': mean_image, } def load_models(models_dir): """ Load saved models from disk. This will attempt to unpickle all files in a directory; any files that give errors on unpickling (such as README.txt) will be skipped. Inputs: - models_dir: String giving the path to a directory containing model files. Each model file is a pickled dictionary with a 'model' field. Returns: A dictionary mapping model file names to models. """ models = {} for model_file in os.listdir(models_dir): with open(os.path.join(models_dir, model_file), 'rb') as f: try: models[model_file] = load_pickle(f)['model'] except pickle.UnpicklingError: continue return models
mit
SysCV/tet
teter/models/roi_heads/track_heads/cem_head.py
1
3356
import numpy as np import torch import torch.nn as nn from mmcv.cnn import ConvModule from mmdet.models import HEADS, build_loss from teter.core import cal_similarity @HEADS.register_module(force=True) class ClsExemplarHead(nn.Module): def __init__( self, num_convs=4, num_fcs=1, roi_feat_size=7, in_channels=256, conv_out_channels=256, fc_out_channels=1024, embed_channels=256, conv_cfg=None, norm_cfg=None, softmax_temp=-1, loss_track=dict(type="MultiPosCrossEntropyLoss", loss_weight=1), ): super(ClsExemplarHead, self).__init__() self.num_convs = num_convs self.num_fcs = num_fcs self.roi_feat_size = roi_feat_size self.in_channels = in_channels self.conv_out_channels = conv_out_channels self.fc_out_channels = fc_out_channels self.embed_channels = embed_channels self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.relu = nn.ReLU(inplace=True) self.convs, self.fcs, last_layer_dim = self._add_conv_fc_branch( self.num_convs, self.num_fcs, self.in_channels ) self.fc_embed = nn.Linear(last_layer_dim, embed_channels) self.softmax_temp = softmax_temp self.loss_track = build_loss(loss_track) def _add_conv_fc_branch(self, num_convs, num_fcs, in_channels): last_layer_dim = in_channels # add branch specific conv layers convs = nn.ModuleList() if num_convs > 0: for i in range(num_convs): conv_in_channels = last_layer_dim if i == 0 else self.conv_out_channels convs.append( ConvModule( conv_in_channels, self.conv_out_channels, 3, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, ) ) last_layer_dim = self.conv_out_channels # add branch specific fc layers fcs = nn.ModuleList() if num_fcs > 0: last_layer_dim *= self.roi_feat_size * self.roi_feat_size for i in range(num_fcs): fc_in_channels = last_layer_dim if i == 0 else self.fc_out_channels fcs.append(nn.Linear(fc_in_channels, self.fc_out_channels)) last_layer_dim = self.fc_out_channels return convs, fcs, last_layer_dim def init_weights(self): for m in self.fcs: if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) nn.init.constant_(m.bias, 0) nn.init.normal_(self.fc_embed.weight, 0, 0.01) nn.init.constant_(self.fc_embed.bias, 0) def forward(self, x): if self.num_convs > 0: for i, conv in enumerate(self.convs): x = conv(x) x = x.view(x.size(0), -1) if self.num_fcs > 0: for i, fc in enumerate(self.fcs): x = self.relu(fc(x)) x = self.fc_embed(x) return x def sup_contra_loss(self, features, labels): losses = dict() loss_track = self.loss_track(features, labels) losses["loss_cem"] = loss_track return losses
apache-2.0
arahuja/scikit-learn
examples/linear_model/plot_ard.py
247
2622
""" ================================================== Automatic Relevance Determination Regression (ARD) ================================================== Fit regression model with Bayesian Ridge Regression. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. The histogram of the estimated weights is very peaked, as a sparsity-inducing prior is implied on the weights. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import ARDRegression, LinearRegression ############################################################################### # Generating simulated data with Gaussian weights # Parameters of the example np.random.seed(0) n_samples, n_features = 100, 100 # Create Gaussian data X = np.random.randn(n_samples, n_features) # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noite with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the ARD Regression clf = ARDRegression(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot the true weights, the estimated weights and the histogram of the # weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="ARD estimate") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.plot(w, 'g-', label="Ground truth") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc=1) plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
s40523141/2016fallcp_hw
plugin/liquid_tags/notebook.py
26
10904
""" Notebook Tag ------------ This is a liquid-style tag to include a static html rendering of an IPython notebook in a blog post. Syntax ------ {% notebook filename.ipynb [ cells[start:end] ]%} The file should be specified relative to the ``notebooks`` subdirectory of the content directory. Optionally, this subdirectory can be specified in the config file: NOTEBOOK_DIR = 'notebooks' The cells[start:end] statement is optional, and can be used to specify which block of cells from the notebook to include. Requirements ------------ - The plugin requires IPython version 1.0 or above. It no longer supports the standalone nbconvert package, which has been deprecated. Details ------- Because the notebook relies on some rather extensive custom CSS, the use of this plugin requires additional CSS to be inserted into the blog theme. After typing "make html" when using the notebook tag, a file called ``_nb_header.html`` will be produced in the main directory. The content of the file should be included in the header of the theme. An easy way to accomplish this is to add the following lines within the header template of the theme you use: {% if EXTRA_HEADER %} {{ EXTRA_HEADER }} {% endif %} and in your ``pelicanconf.py`` file, include the line: EXTRA_HEADER = open('_nb_header.html').read().decode('utf-8') this will insert the appropriate CSS. All efforts have been made to ensure that this CSS will not override formats within the blog theme, but there may still be some conflicts. """ import re import os from functools import partial from .mdx_liquid_tags import LiquidTags import IPython IPYTHON_VERSION = IPython.version_info[0] try: import nbformat except: pass if not IPYTHON_VERSION >= 1: raise ValueError("IPython version 1.0+ required for notebook tag") try: from nbconvert.filters.highlight import _pygments_highlight except ImportError: try: from IPython.nbconvert.filters.highlight import _pygments_highlight except ImportError: # IPython < 2.0 from IPython.nbconvert.filters.highlight import _pygment_highlight as _pygments_highlight from pygments.formatters import HtmlFormatter try: from nbconvert.exporters import HTMLExporter except ImportError: from IPython.nbconvert.exporters import HTMLExporter try: from traitlets.config import Config except ImportError: from IPython.config import Config try: from nbconvert.preprocessors import Preprocessor except ImportError: try: from IPython.nbconvert.preprocessors import Preprocessor except ImportError: # IPython < 2.0 from IPython.nbconvert.transformers import Transformer as Preprocessor try: from traitlets import Integer except ImportError: from IPython.utils.traitlets import Integer from copy import deepcopy #---------------------------------------------------------------------- # Some code that will be added to the header: # Some of the following javascript/css include is adapted from # IPython/nbconvert/templates/fullhtml.tpl, while some are custom tags # specifically designed to make the results look good within the # pelican-octopress theme. JS_INCLUDE = r""" <style type="text/css"> /* Overrides of notebook CSS for static HTML export */ div.entry-content { overflow: visible; padding: 8px; } .input_area { padding: 0.2em; } a.heading-anchor { white-space: normal; } .rendered_html code { font-size: .8em; } pre.ipynb { color: black; background: #f7f7f7; border: none; box-shadow: none; margin-bottom: 0; padding: 0; margin: 0px; font-size: 13px; } /* remove the prompt div from text cells */ div.text_cell .prompt { display: none; } /* remove horizontal padding from text cells, */ /* so it aligns with outer body text */ div.text_cell_render { padding: 0.5em 0em; } img.anim_icon{padding:0; border:0; vertical-align:middle; -webkit-box-shadow:none; -box-shadow:none} div.collapseheader { width=100%; background-color:#d3d3d3; padding: 2px; cursor: pointer; font-family:"Helvetica Neue",Helvetica,Arial,sans-serif; } </style> <script src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML" type="text/javascript"></script> <script type="text/javascript"> init_mathjax = function() { if (window.MathJax) { // MathJax loaded MathJax.Hub.Config({ tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ] }, displayAlign: 'left', // Change this to 'center' to center equations. "HTML-CSS": { styles: {'.MathJax_Display': {"margin": 0}} } }); MathJax.Hub.Queue(["Typeset",MathJax.Hub]); } } init_mathjax(); </script> <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script> <script type="text/javascript"> jQuery(document).ready(function($) { $("div.collapseheader").click(function () { $header = $(this).children("span").first(); $codearea = $(this).children(".input_area"); console.log($(this).children()); $codearea.slideToggle(500, function () { $header.text(function () { return $codearea.is(":visible") ? "Collapse Code" : "Expand Code"; }); }); }); }); </script> """ CSS_WRAPPER = """ <style type="text/css"> {0} </style> """ #---------------------------------------------------------------------- # Create a custom preprocessor class SliceIndex(Integer): """An integer trait that accepts None""" default_value = None def validate(self, obj, value): if value is None: return value else: return super(SliceIndex, self).validate(obj, value) class SubCell(Preprocessor): """A transformer to select a slice of the cells of a notebook""" start = SliceIndex(0, config=True, help="first cell of notebook to be converted") end = SliceIndex(None, config=True, help="last cell of notebook to be converted") def preprocess(self, nb, resources): nbc = deepcopy(nb) if IPYTHON_VERSION < 3: for worksheet in nbc.worksheets: cells = worksheet.cells[:] worksheet.cells = cells[self.start:self.end] else: nbc.cells = nbc.cells[self.start:self.end] return nbc, resources call = preprocess # IPython < 2.0 #---------------------------------------------------------------------- # Custom highlighter: # instead of using class='highlight', use class='highlight-ipynb' def custom_highlighter(source, language='ipython', metadata=None): formatter = HtmlFormatter(cssclass='highlight-ipynb') if not language: language = 'ipython' output = _pygments_highlight(source, formatter, language) return output.replace('<pre>', '<pre class="ipynb">') #---------------------------------------------------------------------- # Below is the pelican plugin code. # SYNTAX = "{% notebook /path/to/notebook.ipynb [ cells[start:end] ] [ language[language] ] %}" FORMAT = re.compile(r"""^(\s+)?(?P<src>\S+)(\s+)?((cells\[)(?P<start>-?[0-9]*):(?P<end>-?[0-9]*)(\]))?(\s+)?((language\[)(?P<language>-?[a-z0-9\+\-]*)(\]))?(\s+)?$""") @LiquidTags.register('notebook') def notebook(preprocessor, tag, markup): match = FORMAT.search(markup) if match: argdict = match.groupdict() src = argdict['src'] start = argdict['start'] end = argdict['end'] language = argdict['language'] else: raise ValueError("Error processing input, " "expected syntax: {0}".format(SYNTAX)) if start: start = int(start) else: start = 0 if end: end = int(end) else: end = None language_applied_highlighter = partial(custom_highlighter, language=language) nb_dir = preprocessor.configs.getConfig('NOTEBOOK_DIR') nb_path = os.path.join('content', nb_dir, src) if not os.path.exists(nb_path): raise ValueError("File {0} could not be found".format(nb_path)) # Create the custom notebook converter c = Config({'CSSHTMLHeaderTransformer': {'enabled':True, 'highlight_class':'.highlight-ipynb'}, 'SubCell': {'enabled':True, 'start':start, 'end':end}}) template_file = 'basic' if IPYTHON_VERSION >= 3: if os.path.exists('pelicanhtml_3.tpl'): template_file = 'pelicanhtml_3' elif IPYTHON_VERSION == 2: if os.path.exists('pelicanhtml_2.tpl'): template_file = 'pelicanhtml_2' else: if os.path.exists('pelicanhtml_1.tpl'): template_file = 'pelicanhtml_1' if IPYTHON_VERSION >= 2: subcell_kwarg = dict(preprocessors=[SubCell]) else: subcell_kwarg = dict(transformers=[SubCell]) exporter = HTMLExporter(config=c, template_file=template_file, filters={'highlight2html': language_applied_highlighter}, **subcell_kwarg) # read and parse the notebook with open(nb_path, encoding="utf-8") as f: nb_text = f.read() if IPYTHON_VERSION < 3: nb_json = IPython.nbformat.current.reads_json(nb_text) else: try: nb_json = nbformat.reads(nb_text, as_version=4) except: nb_json = IPython.nbformat.reads(nb_text, as_version=4) (body, resources) = exporter.from_notebook_node(nb_json) # if we haven't already saved the header, save it here. if not notebook.header_saved: print ("\n ** Writing styles to _nb_header.html: " "this should be included in the theme. **\n") header = '\n'.join(CSS_WRAPPER.format(css_line) for css_line in resources['inlining']['css']) header += JS_INCLUDE with open('_nb_header.html', 'w', encoding="utf-8") as f: f.write(header) notebook.header_saved = True # this will stash special characters so that they won't be transformed # by subsequent processes. body = preprocessor.configs.htmlStash.store(body, safe=True) return body notebook.header_saved = False #---------------------------------------------------------------------- # This import allows notebook to be a Pelican plugin from liquid_tags import register
agpl-3.0
tdhopper/scikit-learn
sklearn/tests/test_grid_search.py
83
28713
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
tdhopper/scikit-learn
examples/decomposition/plot_ica_vs_pca.py
303
3329
""" ========================== FastICA on 2D point clouds ========================== This example illustrates visually in the feature space a comparison by results using two different component analysis techniques. :ref:`ICA` vs :ref:`PCA`. Representing ICA in the feature space gives the view of 'geometric ICA': ICA is an algorithm that finds directions in the feature space corresponding to projections with high non-Gaussianity. These directions need not be orthogonal in the original feature space, but they are orthogonal in the whitened feature space, in which all directions correspond to the same variance. PCA, on the other hand, finds orthogonal directions in the raw feature space that correspond to directions accounting for maximum variance. Here we simulate independent sources using a highly non-Gaussian process, 2 student T with a low number of degrees of freedom (top left figure). We mix them to create observations (top right figure). In this raw observation space, directions identified by PCA are represented by orange vectors. We represent the signal in the PCA space, after whitening by the variance corresponding to the PCA vectors (lower left). Running ICA corresponds to finding a rotation in this space to identify the directions of largest non-Gaussianity (lower right). """ print(__doc__) # Authors: Alexandre Gramfort, Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, FastICA ############################################################################### # Generate sample data rng = np.random.RandomState(42) S = rng.standard_t(1.5, size=(20000, 2)) S[:, 0] *= 2. # Mix data A = np.array([[1, 1], [0, 2]]) # Mixing matrix X = np.dot(S, A.T) # Generate observations pca = PCA() S_pca_ = pca.fit(X).transform(X) ica = FastICA(random_state=rng) S_ica_ = ica.fit(X).transform(X) # Estimate the sources S_ica_ /= S_ica_.std(axis=0) ############################################################################### # Plot results def plot_samples(S, axis_list=None): plt.scatter(S[:, 0], S[:, 1], s=2, marker='o', zorder=10, color='steelblue', alpha=0.5) if axis_list is not None: colors = ['orange', 'red'] for color, axis in zip(colors, axis_list): axis /= axis.std() x_axis, y_axis = axis # Trick to get legend to work plt.plot(0.1 * x_axis, 0.1 * y_axis, linewidth=2, color=color) plt.quiver(0, 0, x_axis, y_axis, zorder=11, width=0.01, scale=6, color=color) plt.hlines(0, -3, 3) plt.vlines(0, -3, 3) plt.xlim(-3, 3) plt.ylim(-3, 3) plt.xlabel('x') plt.ylabel('y') plt.figure() plt.subplot(2, 2, 1) plot_samples(S / S.std()) plt.title('True Independent Sources') axis_list = [pca.components_.T, ica.mixing_] plt.subplot(2, 2, 2) plot_samples(X / np.std(X), axis_list=axis_list) legend = plt.legend(['PCA', 'ICA'], loc='upper right') legend.set_zorder(100) plt.title('Observations') plt.subplot(2, 2, 3) plot_samples(S_pca_ / np.std(S_pca_, axis=0)) plt.title('PCA recovered signals') plt.subplot(2, 2, 4) plot_samples(S_ica_ / np.std(S_ica_)) plt.title('ICA recovered signals') plt.subplots_adjust(0.09, 0.04, 0.94, 0.94, 0.26, 0.36) plt.show()
bsd-3-clause
abimannans/scikit-learn
sklearn/datasets/california_housing.py
197
3877
"""California housing dataset. The original database is available from StatLib http://lib.stat.cmu.edu/ The data contains 20,640 observations on 9 variables. This dataset contains the average house value as target variable and the following input variables (features): average income, housing average age, average rooms, average bedrooms, population, average occupation, latitude, and longitude in that order. References ---------- Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and Probability Letters, 33 (1997) 291-297. """ # Authors: Peter Prettenhofer # License: BSD 3 clause from io import BytesIO from os.path import join, exists from os import makedirs from zipfile import ZipFile try: # Python 2 from urllib2 import urlopen except ImportError: # Python 3+ from urllib.request import urlopen import numpy as np from .base import get_data_home, Bunch from ..externals import joblib DATA_URL = "http://lib.stat.cmu.edu/modules.php?op=modload&name=Downloads&"\ "file=index&req=getit&lid=83" TARGET_FILENAME = "cal_housing.pkz" # Grab the module-level docstring to use as a description of the # dataset MODULE_DOCS = __doc__ def fetch_california_housing(data_home=None, download_if_missing=True): """Loader for the California housing dataset from StatLib. Read more in the :ref:`User Guide <datasets>`. Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : ndarray, shape [20640, 8] Each row corresponding to the 8 feature values in order. dataset.target : numpy array of shape (20640,) Each value corresponds to the average house value in units of 100,000. dataset.feature_names : array of length 8 Array of ordered feature names used in the dataset. dataset.DESCR : string Description of the California housing dataset. Notes ------ This dataset consists of 20,640 samples and 9 features. """ data_home = get_data_home(data_home=data_home) if not exists(data_home): makedirs(data_home) if not exists(join(data_home, TARGET_FILENAME)): print('downloading Cal. housing from %s to %s' % (DATA_URL, data_home)) fhandle = urlopen(DATA_URL) buf = BytesIO(fhandle.read()) zip_file = ZipFile(buf) try: cadata_fd = zip_file.open('cadata.txt', 'r') cadata = BytesIO(cadata_fd.read()) # skip the first 27 lines (documentation) cal_housing = np.loadtxt(cadata, skiprows=27) joblib.dump(cal_housing, join(data_home, TARGET_FILENAME), compress=6) finally: zip_file.close() else: cal_housing = joblib.load(join(data_home, TARGET_FILENAME)) feature_names = ["MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude"] target, data = cal_housing[:, 0], cal_housing[:, 1:] # avg rooms = total rooms / households data[:, 2] /= data[:, 5] # avg bed rooms = total bed rooms / households data[:, 3] /= data[:, 5] # avg occupancy = population / housholds data[:, 5] = data[:, 4] / data[:, 5] # target in units of 100,000 target = target / 100000.0 return Bunch(data=data, target=target, feature_names=feature_names, DESCR=MODULE_DOCS)
bsd-3-clause
tdhopper/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
266
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
abimannans/scikit-learn
examples/calibration/plot_calibration_multiclass.py
270
6972
""" ================================================== Probability Calibration for 3-class classification ================================================== This example illustrates how sigmoid calibration changes predicted probabilities for a 3-class classification problem. Illustrated is the standard 2-simplex, where the three corners correspond to the three classes. Arrows point from the probability vectors predicted by an uncalibrated classifier to the probability vectors predicted by the same classifier after sigmoid calibration on a hold-out validation set. Colors indicate the true class of an instance (red: class 1, green: class 2, blue: class 3). The base classifier is a random forest classifier with 25 base estimators (trees). If this classifier is trained on all 800 training datapoints, it is overly confident in its predictions and thus incurs a large log-loss. Calibrating an identical classifier, which was trained on 600 datapoints, with method='sigmoid' on the remaining 200 datapoints reduces the confidence of the predictions, i.e., moves the probability vectors from the edges of the simplex towards the center. This calibration results in a lower log-loss. Note that an alternative would have been to increase the number of base estimators which would have resulted in a similar decrease in log-loss. """ print(__doc__) # Author: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de> # License: BSD Style. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import log_loss np.random.seed(0) # Generate data X, y = make_blobs(n_samples=1000, n_features=2, random_state=42, cluster_std=5.0) X_train, y_train = X[:600], y[:600] X_valid, y_valid = X[600:800], y[600:800] X_train_valid, y_train_valid = X[:800], y[:800] X_test, y_test = X[800:], y[800:] # Train uncalibrated random forest classifier on whole train and validation # data and evaluate on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train_valid, y_train_valid) clf_probs = clf.predict_proba(X_test) score = log_loss(y_test, clf_probs) # Train random forest classifier, calibrate on validation data and evaluate # on test data clf = RandomForestClassifier(n_estimators=25) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) sig_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit") sig_clf.fit(X_valid, y_valid) sig_clf_probs = sig_clf.predict_proba(X_test) sig_score = log_loss(y_test, sig_clf_probs) # Plot changes in predicted probabilities via arrows plt.figure(0) colors = ["r", "g", "b"] for i in range(clf_probs.shape[0]): plt.arrow(clf_probs[i, 0], clf_probs[i, 1], sig_clf_probs[i, 0] - clf_probs[i, 0], sig_clf_probs[i, 1] - clf_probs[i, 1], color=colors[y_test[i]], head_width=1e-2) # Plot perfect predictions plt.plot([1.0], [0.0], 'ro', ms=20, label="Class 1") plt.plot([0.0], [1.0], 'go', ms=20, label="Class 2") plt.plot([0.0], [0.0], 'bo', ms=20, label="Class 3") # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") # Annotate points on the simplex plt.annotate(r'($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)', xy=(1.0/3, 1.0/3), xytext=(1.0/3, .23), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.plot([1.0/3], [1.0/3], 'ko', ms=5) plt.annotate(r'($\frac{1}{2}$, $0$, $\frac{1}{2}$)', xy=(.5, .0), xytext=(.5, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $\frac{1}{2}$, $\frac{1}{2}$)', xy=(.0, .5), xytext=(.1, .5), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($\frac{1}{2}$, $\frac{1}{2}$, $0$)', xy=(.5, .5), xytext=(.6, .6), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $0$, $1$)', xy=(0, 0), xytext=(.1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($1$, $0$, $0$)', xy=(1, 0), xytext=(1, .1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') plt.annotate(r'($0$, $1$, $0$)', xy=(0, 1), xytext=(.1, 1), xycoords='data', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='center', verticalalignment='center') # Add grid plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Change of predicted probabilities after sigmoid calibration") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.legend(loc="best") print("Log-loss of") print(" * uncalibrated classifier trained on 800 datapoints: %.3f " % score) print(" * classifier trained on 600 datapoints and calibrated on " "200 datapoint: %.3f" % sig_score) # Illustrate calibrator plt.figure(1) # generate grid over 2-simplex p1d = np.linspace(0, 1, 20) p0, p1 = np.meshgrid(p1d, p1d) p2 = 1 - p0 - p1 p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()] p = p[p[:, 2] >= 0] calibrated_classifier = sig_clf.calibrated_classifiers_[0] prediction = np.vstack([calibrator.predict(this_p) for calibrator, this_p in zip(calibrated_classifier.calibrators_, p.T)]).T prediction /= prediction.sum(axis=1)[:, None] # Ploit modifications of calibrator for i in range(prediction.shape[0]): plt.arrow(p[i, 0], p[i, 1], prediction[i, 0] - p[i, 0], prediction[i, 1] - p[i, 1], head_width=1e-2, color=colors[np.argmax(p[i])]) # Plot boundaries of unit simplex plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], 'k', label="Simplex") plt.grid("off") for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]: plt.plot([0, x], [x, 0], 'k', alpha=0.2) plt.plot([0, 0 + (1-x)/2], [x, x + (1-x)/2], 'k', alpha=0.2) plt.plot([x, x + (1-x)/2], [0, 0 + (1-x)/2], 'k', alpha=0.2) plt.title("Illustration of sigmoid calibrator") plt.xlabel("Probability class 1") plt.ylabel("Probability class 2") plt.xlim(-0.05, 1.05) plt.ylim(-0.05, 1.05) plt.show()
bsd-3-clause
EUDAT-B2SHARE/invenio
invenio/legacy/search_engine/query_parser.py
19
56637
# -*- coding: utf-8 -*- # This file is part of Invenio. # Copyright (C) 2008, 2010, 2011, 2012, 2013, 2014 CERN. # # Invenio is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. # pylint: disable=C0301 """Invenio Search Engine query parsers.""" import re import string from datetime import datetime from six import iteritems from invenio.modules.indexer.tokenizers.BibIndexAuthorTokenizer import BibIndexAuthorTokenizer as FNT from invenio.utils.date import GOT_DATEUTIL if GOT_DATEUTIL: from invenio.utils.date import du_parser, du_delta, relativedelta from invenio.utils.logic import to_cnf from invenio.config import CFG_WEBSEARCH_SPIRES_SYNTAX from invenio.utils.date import strptime, strftime NameScanner = FNT() class InvenioWebSearchMismatchedParensError(Exception): """Exception for parse errors caused by mismatched parentheses.""" def __init__(self, message): """Initialization.""" self.message = message def __str__(self): """String representation.""" return repr(self.message) class SearchQueryParenthesisedParser(object): """Search query parser that handles arbitrarily-nested parentheses Parameters: * substitution_dict: a dictionary mapping strings to other strings. By default, maps 'and', 'or' and 'not' to '+', '|', and '-'. Dictionary values will be treated as valid operators for output. A note (valkyrie 25.03.2011): Based on looking through the prod search logs, it is evident that users, when they are using parentheses to do searches, only run word characters up against parens when they intend the parens to be part of the word (e.g. U(1)), and when they are using parentheses to combine operators, they put a space before and after them. As of writing, this is the behavior that SQPP now expects, in order that it be able to handle such queries as e(+)e(-) that contain operators in parentheses that should be interpreted as words. """ def __init__(self, substitution_dict = {'and': '+', 'or': '|', 'not': '-'}): self.substitution_dict = substitution_dict self.specials = set(['(', ')', '+', '|', '-', '+ -']) self.__tl_idx = 0 self.__tl_len = 0 # I think my names are both concise and clear # pylint: disable=C0103 def _invenio_to_python_logical(self, q): """Translate the + and - in invenio query strings into & and ~.""" p = q p = re.sub('\+ -', '&~', p) p = re.sub('\+', '&', p) p = re.sub('-', '~', p) p = re.sub(' ~', ' & ~', p) return p def _python_logical_to_invenio(self, q): """Translate the & and ~ in logical expression strings into + and -.""" p = q p = re.sub('\& ~', '-', p) p = re.sub('~', '-', p) p = re.sub('\&', '+', p) return p # pylint: enable=C0103 def parse_query(self, query): """Make query into something suitable for search_engine. This is the main entry point of the class. Given an expression of the form: "expr1 or expr2 (expr3 not (expr4 or expr5))" produces annoted list output suitable for consumption by search_engine, of the form: ['+', 'expr1', '|', 'expr2', '+', 'expr3 - expr4 | expr5'] parse_query() is a wrapper for self.tokenize() and self.parse(). """ toklist = self.tokenize(query) depth, balanced, dummy_d0_p = self.nesting_depth_and_balance(toklist) if not balanced: raise SyntaxError("Mismatched parentheses in "+str(toklist)) toklist, var_subs = self.substitute_variables(toklist) if depth > 1: toklist = self.tokenize(self.logically_reduce(toklist)) return self.parse(toklist, var_subs) def substitute_variables(self, toklist): """Given a token list, return a copy of token list in which all free variables are bound with boolean variable names of the form 'pN'. Additionally, all the substitutable logical operators are exchanged for their symbolic form and implicit ands are made explicit e.g., ((author:'ellis, j' and title:quark) or author:stevens jones) becomes: ((p0 + p1) | p2 + p3) with the substitution table: {'p0': "author:'ellis, j'", 'p1': "title:quark", 'p2': "author:stevens", 'p3': "jones" } Return value is the substituted token list and a copy of the substitution table. """ def labels(): i = 0 while True: yield 'p'+str(i) i += 1 def filter_front_ands(toklist): """Filter out extra logical connectives and whitespace from the front.""" while toklist[0] == '+' or toklist[0] == '|' or toklist[0] == '': toklist = toklist[1:] return toklist var_subs = {} labeler = labels() new_toklist = [''] cannot_be_anded = self.specials.difference((')',)) for token in toklist: token = token.lower() if token in self.substitution_dict: if token == 'not' and new_toklist[-1] == '+': new_toklist[-1] = '-' else: new_toklist.append(self.substitution_dict[token]) elif token == '(': if new_toklist[-1] not in self.specials: new_toklist.append('+') new_toklist.append(token) elif token not in self.specials: # apparently generators are hard for pylint to figure out # Turns off msg about labeler not having a 'next' method # pylint: disable=E1101 label = labeler.next() # pylint: enable=E1101 var_subs[label] = token if new_toklist[-1] not in cannot_be_anded: new_toklist.append('+') new_toklist.append(label) else: if token == '-' and new_toklist[-1] == '+': new_toklist[-1] = '-' else: new_toklist.append(token) return filter_front_ands(new_toklist), var_subs def nesting_depth_and_balance(self, token_list): """Checks that parentheses are balanced and counts how deep they nest""" depth = 0 maxdepth = 0 depth0_pairs = 0 good_depth = True for i in range(len(token_list)): token = token_list[i] if token == '(': if depth == 0: depth0_pairs += 1 depth += 1 if depth > maxdepth: maxdepth += 1 elif token == ')': depth -= 1 if depth == -1: # can only happen with unmatched ) good_depth = False # so force depth check to fail depth = 0 # but keep maxdepth in good range return maxdepth, depth == 0 and good_depth, depth0_pairs def logically_reduce(self, token_list): """Return token_list in conjunctive normal form as a string. CNF has the property that there will only ever be one level of parenthetical nesting, and all distributable operators (such as the not in -(p | q) will be fully distributed (as -p + -q). """ maxdepth, dummy_balanced, d0_p = self.nesting_depth_and_balance(token_list) s = ' '.join(token_list) s = self._invenio_to_python_logical(s) last_maxdepth = 0 while maxdepth != last_maxdepth: # XXX: sometimes NaryExpr doesn't try: # fully flatten Expr; but it usually s = str(to_cnf(s)) # does in 2 passes FIXME: diagnose except SyntaxError: raise SyntaxError(str(s)+" couldn't be converted to a logic expression.") last_maxdepth = maxdepth maxdepth, dummy_balanced, d0_p = self.nesting_depth_and_balance(self.tokenize(s)) if d0_p == 1 and s[0] == '(' and s[-1] == ')': # s can come back with extra parens s = s[1:-1] s = self._python_logical_to_invenio(s) return s def tokenize(self, query): """Given a query string, return a list of tokens from that string. * Isolates meaningful punctuation: ( ) + | - * Keeps single- and double-quoted strings together without interpretation. * Splits everything else on whitespace. i.e.: "expr1|expr2 (expr3-(expr4 or expr5))" becomes: ['expr1', '|', 'expr2', '(', 'expr3', '-', '(', 'expr4', 'or', 'expr5', ')', ')'] special case: "e(+)e(-)" interprets '+' and '-' as word characters since they are in parens with word characters run up against them. it becomes: ['e(+)e(-)'] """ ### # Invariants: # * Query is never modified # * In every loop iteration, querytokens grows to the right # * The only return point is at the bottom of the function, and the only # return value is querytokens ### def get_tokens(s): """ Given string s, return a list of s's tokens. Adds space around special punctuation, then splits on whitespace. """ s = ' '+s s = s.replace('->', '####DATE###RANGE##OP#') # XXX: Save '->' s = re.sub('(?P<outside>[a-zA-Z0-9_,=:]+)\((?P<inside>[a-zA-Z0-9_,+-/]*)\)', '#####\g<outside>####PAREN###\g<inside>##PAREN#', s) # XXX: Save U(1) and SL(2,Z) s = re.sub('####PAREN###(?P<content0>[.0-9/-]*)(?P<plus>[+])(?P<content1>[.0-9/-]*)##PAREN#', '####PAREN###\g<content0>##PLUS##\g<content1>##PAREN#', s) s = re.sub('####PAREN###(?P<content0>([.0-9/]|##PLUS##)*)(?P<minus>[-])' +\ '(?P<content1>([.0-9/]|##PLUS##)*)##PAREN#', '####PAREN###\g<content0>##MINUS##\g<content1>##PAREN#', s) # XXX: Save e(+)e(-) for char in self.specials: if char == '-': s = s.replace(' -', ' - ') s = s.replace(')-', ') - ') s = s.replace('-(', ' - (') else: s = s.replace(char, ' '+char+' ') s = re.sub('##PLUS##', '+', s) s = re.sub('##MINUS##', '-', s) # XXX: Restore e(+)e(-) s = re.sub('#####(?P<outside>[a-zA-Z0-9_,=:]+)####PAREN###(?P<inside>[a-zA-Z0-9_,+-/]*)##PAREN#', '\g<outside>(\g<inside>)', s) # XXX: Restore U(1) and SL(2,Z) s = s.replace('####DATE###RANGE##OP#', '->') # XXX: Restore '->' return s.split() querytokens = [] current_position = 0 re_quotes_match = re.compile(r'(?![\\])(".*?[^\\]")' + r"|(?![\\])('.*?[^\\]')") for match in re_quotes_match.finditer(query): match_start = match.start() quoted_region = match.group(0).strip() # clean the content after the previous quotes and before current quotes unquoted = query[current_position : match_start] querytokens.extend(get_tokens(unquoted)) # XXX: In case we end up with e.g. title:, "compton scattering", make it # title:"compton scattering" if querytokens and querytokens[0] and querytokens[-1][-1] == ':': querytokens[-1] += quoted_region # XXX: In case we end up with e.g. "expr1",->,"expr2", make it # "expr1"->"expr2" elif len(querytokens) >= 2 and querytokens[-1] == '->': arrow = querytokens.pop() querytokens[-1] += arrow + quoted_region else: # add our newly tokenized content to the token list querytokens.extend([quoted_region]) # move current position to the end of the tokenized content current_position = match.end() # get tokens from the last appearance of quotes until the query end unquoted = query[current_position : len(query)] querytokens.extend(get_tokens(unquoted)) return querytokens def parse(self, token_list, variable_substitution_dict=None): """Make token_list consumable by search_engine. Turns a list of tokens and a variable mapping into a grouped list of subexpressions in the format suitable for use by search_engine, e.g.: ['+', 'searchterm', '-', 'searchterm to exclude', '|', 'another term'] Incidentally, this works recursively so parens can cause arbitrarily deep nestings. But since the search_engine doesn't know about nested structures, we need to flatten the input structure first. """ ### # Invariants: # * Token list is never modified # * Balanced parens remain balanced; unbalanced parens are an error # * Individual tokens may only be exchanged for items in the variable # substitution dict; otherwise they pass through unmolested # * Return value is built up mostly as a stack ### op_symbols = self.substitution_dict.values() self.__tl_idx = 0 self.__tl_len = len(token_list) def inner_parse(token_list, open_parens=False): ''' although it's not in the API, it seems sensible to comment this function a bit. dist_token here is a token (e.g. a second-order operator) which needs to be distributed across other tokens inside the inner parens ''' if open_parens: parsed_values = [] else: parsed_values = ['+'] i = 0 while i < len(token_list): token = token_list[i] if i > 0 and parsed_values[-1] not in op_symbols: parsed_values.append('+') if token == '(': # if we need to distribute something over the tokens inside the parens # we will know it because... it will end in a : # that part of the list will be 'px', '+', '(' distributing = (len(parsed_values) > 2 and parsed_values[-2].endswith(':') and parsed_values[-1] == '+') if distributing: # we don't need the + if we are distributing parsed_values = parsed_values[:-1] offset = self.__tl_len - len(token_list) inner_value = inner_parse(token_list[i+1:], True) inner_value = ' '.join(inner_value) if distributing: if len(self.tokenize(inner_value)) == 1: parsed_values[-1] = parsed_values[-1] + inner_value elif "'" in inner_value: parsed_values[-1] = parsed_values[-1] + '"' + inner_value + '"' elif '"' in inner_value: parsed_values[-1] = parsed_values[-1] + "'" + inner_value + "'" else: parsed_values[-1] = parsed_values[-1] + '"' + inner_value + '"' else: parsed_values.append(inner_value) self.__tl_idx += 1 i = self.__tl_idx - offset elif token == ')': if parsed_values[-1] in op_symbols: parsed_values = parsed_values[:-1] if len(parsed_values) > 1 and parsed_values[0] == '+' and parsed_values[1] in op_symbols: parsed_values = parsed_values[1:] return parsed_values elif token in op_symbols: if len(parsed_values) > 0: parsed_values[-1] = token else: parsed_values = [token] else: if variable_substitution_dict != None and token in variable_substitution_dict: token = variable_substitution_dict[token] parsed_values.append(token) i += 1 self.__tl_idx += 1 # If we have an extra start symbol, remove the default one if parsed_values[1] in op_symbols: parsed_values = parsed_values[1:] return parsed_values return inner_parse(token_list, False) class SpiresToInvenioSyntaxConverter: """Converts queries defined with SPIRES search syntax into queries that use Invenio search syntax. """ # Constants defining fields _DATE_ADDED_FIELD = 'datecreated:' _DATE_UPDATED_FIELD = 'datemodified:' _DATE_FIELD = 'year:' _A_TAG = 'author:' _EA_TAG = 'exactauthor:' # Dictionary containing the matches between SPIRES keywords # and their corresponding Invenio keywords or fields # SPIRES keyword : Invenio keyword or field _SPIRES_TO_INVENIO_KEYWORDS_MATCHINGS = { # address 'address' : 'address:', # affiliation 'affiliation' : 'affiliation:', 'affil' : 'affiliation:', 'aff' : 'affiliation:', 'af' : 'affiliation:', 'institution' : 'affiliation:', 'inst' : 'affiliation:', # any field 'any' : 'anyfield:', # author count 'ac' : 'authorcount:', # bulletin 'bb' : 'reportnumber:', 'bbn' : 'reportnumber:', 'bull' : 'reportnumber:', 'bulletin-bd' : 'reportnumber:', 'bulletin-bd-no' : 'reportnumber:', 'eprint' : 'reportnumber:', # citation / reference 'c' : 'reference:', 'citation' : 'reference:', 'cited' : 'reference:', 'jour-vol-page' : 'reference:', 'jvp' : 'reference:', # collaboration 'collaboration' : 'collaboration:', 'collab-name' : 'collaboration:', 'cn' : 'collaboration:', # conference number 'conf-number' : '111__g:', 'cnum' : '773__w:', # country 'cc' : '044__a:', 'country' : '044__a:', # date 'date': _DATE_FIELD, 'd': _DATE_FIELD, # date added 'date-added': _DATE_ADDED_FIELD, 'dadd': _DATE_ADDED_FIELD, 'da': _DATE_ADDED_FIELD, # date updated 'date-updated': _DATE_UPDATED_FIELD, 'dupd': _DATE_UPDATED_FIELD, 'du': _DATE_UPDATED_FIELD, # first author 'fa' : 'firstauthor:', 'first-author' : 'firstauthor:', # author 'a' : 'author:', 'au' : 'author:', 'author' : 'author:', 'name' : 'author:', # exact author # this is not a real keyword match. It is pseudo keyword that # will be replaced later with author search 'ea' : 'exactauthor:', 'exact-author' : 'exactauthor:', # experiment 'exp' : 'experiment:', 'experiment' : 'experiment:', 'expno' : 'experiment:', 'sd' : 'experiment:', 'se' : 'experiment:', # journal 'journal' : 'journal:', 'j' : 'journal:', 'published_in' : 'journal:', 'spicite' : 'journal:', 'vol' : 'volume:', # journal page 'journal-page' : '773__c:', 'jp' : '773__c:', # journal year 'journal-year' : '773__y:', 'jy' : '773__y:', # key 'key' : '970__a:', 'irn' : '970__a:', 'record' : '970__a:', 'document' : '970__a:', 'documents' : '970__a:', # keywords 'k' : 'keyword:', 'keywords' : 'keyword:', 'kw' : 'keyword:', # note 'note' : '500__a:', # old title 'old-title' : '246__a:', 'old-t' : '246__a:', 'ex-ti' : '246__a:', 'et' : '246__a:', #postal code 'postalcode' : 'postalcode:', 'zip' : 'postalcode:', 'cc' : 'postalcode:', # ppf subject 'ppf-subject' : '650__a:', 'status' : '650__a:', # recid 'recid' : 'recid:', # report number 'r' : 'reportnumber:', 'rn' : 'reportnumber:', 'rept' : 'reportnumber:', 'report' : 'reportnumber:', 'report-num' : 'reportnumber:', # title 't' : 'title:', 'ti' : 'title:', 'title' : 'title:', 'with-language' : 'title:', # fulltext 'fulltext' : 'fulltext:', 'ft' : 'fulltext:', # topic 'topic' : '695__a:', 'tp' : '695__a:', 'hep-topic' : '695__a:', 'desy-keyword' : '695__a:', 'dk' : '695__a:', # doi 'doi': 'doi:', # topcite 'topcit' : 'cited:', 'topcite' : 'cited:', # captions 'caption' : 'caption:', # category 'arx' : '037__c:', 'category' : '037__c:', # primarch 'parx' : '037__c:', 'primarch' : '037__c:', # texkey 'texkey' : '035__%:', # type code 'tc' : 'collection:', 'ty' : 'collection:', 'type' : 'collection:', 'type-code' : 'collection:', 'scl': 'collection:', 'ps': 'collection:', # field code 'f' : 'subject:', 'fc' : 'subject:', 'field' : 'subject:', 'field-code' : 'subject:', 'subject' : 'subject:', # coden 'bc' : 'journal:', 'browse-only-indx' : 'journal:', 'coden' : 'journal:', 'journal-coden' : 'journal:', # jobs specific codes 'job' : 'title:', 'position' : 'title:', 'region' : 'region:', 'continent' : 'region:', 'deadline' : '046__a:', 'rank' : 'rank:', 'cat' : 'cataloguer:', # replace all the keywords without match with empty string # this will remove the noise from the unknown keywrds in the search # and will in all fields for the words following the keywords # energy 'e' : '', 'energy' : '', 'energyrange-code' : '', # exact experiment number 'ee' : '', 'exact-exp' : '', 'exact-expno' : '', # hidden note 'hidden-note' : '', 'hn' : '', # ppf 'ppf' : '', 'ppflist' : '', # slac topics 'ppfa' : '', 'slac-topics' : '', 'special-topics' : '', 'stp' : '', # test index 'test' : '', 'testindex' : '', } _SECOND_ORDER_KEYWORD_MATCHINGS = { 'rawref' : 'rawref:', 'refersto' : 'refersto:', 'refs': 'refersto:', 'citedby' : 'citedby:' } _INVENIO_KEYWORDS_FOR_SPIRES_PHRASE_SEARCHES = [ 'affiliation:', #'cited:', # topcite is technically a phrase index - this isn't necessary '773__y:', # journal-year '773__c:', # journal-page '773__w:', # cnum '044__a:', # country code 'subject:', # field code 'collection:', # type code '035__z:', # texkey # also exact expno, corp-auth, url, abstract, doi, mycite, citing # but we have no invenio equivalents for these ATM ] def __init__(self): """Initialize the state of the converter""" self._months = {} self._month_name_to_month_number = {} self._init_months() self._compile_regular_expressions() def _compile_regular_expressions(self): """Compiles some of the regular expressions that are used in the class for higher performance.""" # regular expression that matches the contents in single and double quotes # taking in mind if they are escaped. self._re_quotes_match = re.compile(r'(?![\\])(".*?[^\\]")' + r"|(?![\\])('.*?[^\\]')") # match cases where a keyword distributes across a conjunction self._re_distribute_keywords = re.compile(r'''(?ix) # verbose, ignorecase on \b(?P<keyword>\S*:) # a keyword is anything that's not whitespace with a colon (?P<content>[^:]+?)\s* # content is the part that comes after the keyword; it should NOT # have colons in it! that implies that we might be distributing # a keyword OVER another keyword. see ticket #701 (?P<combination>\ and\ not\ |\ and\ |\ or\ |\ not\ )\s* (?P<last_content>[^:]*?) # oh look, content without a keyword! (?=\ and\ |\ or\ |\ not\ |$)''') # massaging SPIRES quirks self._re_pattern_IRN_search = re.compile(r'970__a:(?P<irn>\d+)') self._re_topcite_match = re.compile(r'(?P<x>cited:\d+)\+') # regular expression that matches author patterns # and author patterns with second-order-ops on top # does not match names with " or ' around them, since # those should not be touched self._re_author_match = re.compile(r'''(?ix) # verbose, ignorecase \b((?P<secondorderop>[^\s]+:)?) # do we have a second-order-op on top? ((?P<first>first)?)author:(?P<name> [^\'\"] # first character not a quotemark [^()]*? # some stuff that isn't parentheses (that is dealt with in pp) [^\'\"]) # last character not a quotemark (?=\ and\ not\ |\ and\ |\ or\ |\ not\ |$)''') # regular expression that matches exact author patterns # the group defined in this regular expression is used in method # _convert_spires_exact_author_search_to_invenio_author_search(...) # in case of changes correct also the code in this method self._re_exact_author_match = re.compile(r'\b((?P<secondorderop>[^\s]+:)?)exactauthor:(?P<author_name>[^\'\"].*?[^\'\"]\b)(?= and not | and | or | not |$)', re.IGNORECASE) # match a second-order operator with no operator following it self._re_second_order_op_no_index_match = re.compile(r'''(?ix) # ignorecase, verbose (^|\b|:)(?P<second_order_op>(refersto|citedby):) (?P<search_terms>[^\"\'][^:]+?) # anything without an index should be absorbed here \s* (?P<conjunction_or_next_keyword>(\ and\ |\ not\ |\ or\ |\ \w+:\w+|$)) ''') # match search term, its content (words that are searched) and # the operator preceding the term. self._re_search_term_pattern_match = re.compile(r'\b(?P<combine_operator>find|and|or|not)\s+(?P<search_term>\S+:)(?P<search_content>.+?)(?= and not | and | or | not |$)', re.IGNORECASE) # match journal searches self._re_search_term_is_journal = re.compile(r'''(?ix) # verbose, ignorecase \b(?P<leading>(find|and|or|not)\s+journal:) # first combining operator and index (?P<search_content>.+?) # what we are searching (?=\ and\ not\ |\ and\ |\ or\ |\ not\ |$)''') # regular expression matching date after pattern self._re_date_after_match = re.compile(r'\b(?P<searchop>d|date|dupd|dadd|da|date-added|du|date-updated)\b\s*(after|>)\s*(?P<search_content>.+?)(?= and not | and | or | not |$)', re.IGNORECASE) # regular expression matching date after pattern self._re_date_before_match = re.compile(r'\b(?P<searchop>d|date|dupd|dadd|da|date-added|du|date-updated)\b\s*(before|<)\s*(?P<search_content>.+?)(?= and not | and | or | not |$)', re.IGNORECASE) # match date searches which have been keyword-substituted self._re_keysubbed_date_expr = re.compile(r'\b(?P<term>(' + self._DATE_ADDED_FIELD + ')|(' + self._DATE_UPDATED_FIELD + ')|(' + self._DATE_FIELD + '))(?P<content>.+?)(?= and not | and | or | not |$)', re.IGNORECASE) # for finding (and changing) a variety of different SPIRES search keywords self._re_spires_find_keyword = re.compile('^(f|fin|find)\s+', re.IGNORECASE) # for finding boolean expressions self._re_boolean_expression = re.compile(r' and | or | not | and not ') # patterns for subbing out spaces within quotes temporarily self._re_pattern_single_quotes = re.compile("'(.*?)'") self._re_pattern_double_quotes = re.compile("\"(.*?)\"") self._re_pattern_regexp_quotes = re.compile("\/(.*?)\/") self._re_pattern_space = re.compile("__SPACE__") self._re_pattern_equals = re.compile("__EQUALS__") # for date math: self._re_datemath = re.compile(r'(?P<datestamp>.+)\s+(?P<operator>[-+])\s+(?P<units>\d+)') def is_applicable(self, query): """Is this converter applicable to this query? Return true if query begins with find, fin, or f, or if it contains a SPIRES-specific keyword (a, t, etc.), or if it contains the invenio author: field search. """ if not CFG_WEBSEARCH_SPIRES_SYNTAX: #SPIRES syntax is switched off return False query = query.lower() if self._re_spires_find_keyword.match(query): #leading 'find' is present and SPIRES syntax is switched on return True if CFG_WEBSEARCH_SPIRES_SYNTAX > 1: query = self._re_pattern_double_quotes.sub('', query) for word in query.split(' '): if word in self._SPIRES_TO_INVENIO_KEYWORDS_MATCHINGS: return True return False def convert_query(self, query): """Convert SPIRES syntax queries to Invenio syntax. Do nothing to queries not in SPIRES syntax.""" # SPIRES syntax allows searches with 'find' or 'fin'. if self.is_applicable(query): query = re.sub(self._re_spires_find_keyword, 'find ', query) if not query.startswith('find'): query = 'find ' + query # a holdover from SPIRES syntax is e.g. date = 2000 rather than just date 2000 query = self._remove_extraneous_equals_signs(query) # these calls are before keywords replacement because when keywords # are replaced, date keyword is replaced by specific field search # and the DATE keyword is not match in DATE BEFORE or DATE AFTER query = self._convert_spires_date_before_to_invenio_span_query(query) query = self._convert_spires_date_after_to_invenio_span_query(query) # call to _replace_spires_keywords_with_invenio_keywords should be at the # beginning because the next methods use the result of the replacement query = self._standardize_already_invenio_keywords(query) query = self._replace_spires_keywords_with_invenio_keywords(query) query = self._normalise_journal_page_format(query) query = self._distribute_keywords_across_combinations(query) query = self._distribute_and_quote_second_order_ops(query) query = self._convert_all_dates(query) query = self._convert_irns_to_spires_irns(query) query = self._convert_topcite_to_cited(query) query = self._convert_spires_author_search_to_invenio_author_search(query) query = self._convert_spires_exact_author_search_to_invenio_author_search(query) query = self._convert_spires_truncation_to_invenio_truncation(query) query = self._expand_search_patterns(query) # remove FIND in the beginning of the query as it is not necessary in Invenio query = query[4:] query = query.strip() return query def _init_months(self): """Defines a dictionary matching the name of the month with its corresponding number""" # this dictionary is used when generating match patterns for months self._months = {'jan':'01', 'january':'01', 'feb':'02', 'february':'02', 'mar':'03', 'march':'03', 'apr':'04', 'april':'04', 'may':'05', 'may':'05', 'jun':'06', 'june':'06', 'jul':'07', 'july':'07', 'aug':'08', 'august':'08', 'sep':'09', 'september':'09', 'oct':'10', 'october':'10', 'nov':'11', 'november':'11', 'dec':'12', 'december':'12'} # this dictionary is used to transform name of the month # to a number used in the date format. By this reason it # contains also the numbers itself to simplify the conversion self._month_name_to_month_number = {'1':'01', '01':'01', '2':'02', '02':'02', '3':'03', '03':'03', '4':'04', '04':'04', '5':'05', '05':'05', '6':'06', '06':'06', '7':'07', '07':'07', '8':'08', '08':'08', '9':'09', '09':'09', '10':'10', '11':'11', '12':'12',} # combine it with months in order to cover all the cases self._month_name_to_month_number.update(self._months) def _get_month_names_match(self): """Retruns part of a patter that matches month in a date""" months_match = '' for month_name in self._months.keys(): months_match = months_match + month_name + '|' months_match = r'\b(' + months_match[0:-1] + r')\b' return months_match def _convert_all_dates(self, query): """Tries to find dates in query and make them look like ISO-8601.""" def mangle_with_dateutils(query): result = '' position = 0 for match in self._re_keysubbed_date_expr.finditer(query): result += query[position : match.start()] datestamp = match.group('content') daterange = self.convert_date(datestamp) result += match.group('term') + daterange position = match.end() result += query[position : ] return result if GOT_DATEUTIL: query = mangle_with_dateutils(query) # else do nothing with the dates return query def convert_date(self, date_str): def parse_relative_unit(date_str): units = 0 datemath = self._re_datemath.match(date_str) if datemath: date_str = datemath.group('datestamp') units = int(datemath.group('operator') + datemath.group('units')) return date_str, units def guess_best_year(d): if d.year > datetime.today().year + 10: return d - du_delta(years=100) else: return d def parse_date_unit(date_str): begin = date_str end = None # First split, relative time directive # e.g. "2012-01-01 - 3" to ("2012-01-01", -3) date_str, relative_units = parse_relative_unit(date_str) try: d = strptime(date_str, '%Y-%m-%d') d += du_delta(days=relative_units) return strftime('%Y-%m-%d', d), end except ValueError: pass try: d = strptime(date_str, '%y-%m-%d') d += du_delta(days=relative_units) d = guess_best_year(d) return strftime('%Y-%m-%d', d), end except ValueError: pass for date_fmt in ('%Y-%m', '%y-%m', '%m/%y', '%m/%Y'): try: d = strptime(date_str, date_fmt) d += du_delta(months=relative_units) return strftime('%Y-%m', d), end except ValueError: pass try: d = strptime(date_str, '%Y') d += du_delta(years=relative_units) return strftime('%Y', d), end except ValueError: pass try: d = strptime(date_str, '%y') d += du_delta(days=relative_units) d = guess_best_year(d) return strftime('%Y', d), end except ValueError: pass try: d = strptime(date_str, '%b %y') d = guess_best_year(d) return strftime('%Y-%m', d), end except ValueError: pass if 'this week' in date_str: # Past monday to today # This week is iffy, not sure if we should # start with sunday or monday begin = datetime.today() begin += du_delta(weekday=relativedelta.SU(-1)) end = datetime.today() begin = strftime('%Y-%m-%d', begin) end = strftime('%Y-%m-%d', end) elif 'last week' in date_str: # Past monday to today # Same problem as last week begin = datetime.today() begin += du_delta(weekday=relativedelta.SU(-2)) end = begin + du_delta(weekday=relativedelta.SA(1)) begin = strftime('%Y-%m-%d', begin) end = strftime('%Y-%m-%d', end) elif 'this month' in date_str: d = datetime.today() begin = strftime('%Y-%m', d) elif 'last month' in date_str: d = datetime.today() - du_delta(months=1) begin = strftime('%Y-%m', d) elif 'yesterday' in date_str: d = datetime.today() - du_delta(days=1) begin = strftime('%Y-%m-%d', d) elif 'today' in date_str: start = datetime.today() start += du_delta(days=relative_units) begin = strftime('%Y-%m-%d', start) elif date_str.strip() == '0': begin = '0' else: default = datetime(datetime.today().year, 1, 1) try: d = du_parser.parse(date_str, default=default) except (ValueError, TypeError): begin = date_str else: begin = strftime('%Y-%m-%d', d) return begin, end if '->' in date_str: begin_unit, end_unit = date_str.split('->', 1) begin, dummy = parse_date_unit(begin_unit) end, dummy = parse_date_unit(end_unit) else: begin, end = parse_date_unit(date_str) if end: daterange = '%s->%s' % (begin, end) else: daterange = begin return daterange def _convert_irns_to_spires_irns(self, query): """Prefix IRN numbers with SPIRES- so they match the INSPIRE format.""" def create_replacement_pattern(match): """method used for replacement with regular expression""" return '970__a:SPIRES-' + match.group('irn') query = self._re_pattern_IRN_search.sub(create_replacement_pattern, query) return query def _convert_topcite_to_cited(self, query): """Replace SPIRES topcite x+ with cited:x->999999999""" def create_replacement_pattern(match): """method used for replacement with regular expression""" return match.group('x') + '->999999999' query = self._re_topcite_match.sub(create_replacement_pattern, query) return query def _convert_spires_date_after_to_invenio_span_query(self, query): """Converts date after SPIRES search term into invenio span query""" def create_replacement_pattern(match): """method used for replacement with regular expression""" return match.group('searchop') + ' ' + match.group('search_content') + '->9999' query = self._re_date_after_match.sub(create_replacement_pattern, query) return query def _convert_spires_date_before_to_invenio_span_query(self, query): """Converts date before SPIRES search term into invenio span query""" # method used for replacement with regular expression def create_replacement_pattern(match): return match.group('searchop') + ' ' + '0->' + match.group('search_content') query = self._re_date_before_match.sub(create_replacement_pattern, query) return query def _expand_search_patterns(self, query): """Expands search queries. If a search term is followed by several words e.g. author:ellis or title:THESE THREE WORDS it is expanded to author:ellis or (title:THESE and title:THREE...) All keywords are thus expanded. XXX: this may lead to surprising results for any later parsing stages if we're not careful. """ def create_replacements(term, content): result = '' content = content.strip() # replace spaces within quotes by __SPACE__ temporarily: content = self._re_pattern_single_quotes.sub(lambda x: "'"+string.replace(x.group(1), ' ', '__SPACE__')+"'", content) content = self._re_pattern_double_quotes.sub(lambda x: "\""+string.replace(x.group(1), ' ', '__SPACE__')+"\"", content) content = self._re_pattern_regexp_quotes.sub(lambda x: "/"+string.replace(x.group(1), ' ', '__SPACE__')+"/", content) if term in self._INVENIO_KEYWORDS_FOR_SPIRES_PHRASE_SEARCHES \ and not self._re_boolean_expression.search(content) and ' ' in content: # the case of things which should be searched as phrases result = term + '"' + content + '"' else: words = content.split() if len(words) == 0: # this should almost never happen, req user to say 'find a junk:' result = term elif len(words) == 1: # this is more common but still occasional result = term + words[0] else: # general case result = '(' + term + words[0] for word in words[1:]: result += ' and ' + term + word result += ')' # replace back __SPACE__ by spaces: result = self._re_pattern_space.sub(" ", result) return result.strip() result = '' current_position = 0 for match in self._re_search_term_pattern_match.finditer(query): result += query[current_position : match.start()] result += ' ' + match.group('combine_operator') + ' ' result += create_replacements(match.group('search_term'), match.group('search_content')) current_position = match.end() result += query[current_position : len(query)] return result.strip() def _remove_extraneous_equals_signs(self, query): """In SPIRES, both date = 2000 and date 2000 are acceptable. Get rid of the =""" query = self._re_pattern_single_quotes.sub(lambda x: "'"+string.replace(x.group(1), '=', '__EQUALS__')+"'", query) query = self._re_pattern_double_quotes.sub(lambda x: "\""+string.replace(x.group(1), '=', '__EQUALS__')+'\"', query) query = self._re_pattern_regexp_quotes.sub(lambda x: "/"+string.replace(x.group(1), '=', '__EQUALS__')+"/", query) query = query.replace('=', '') query = self._re_pattern_equals.sub("=", query) return query def _convert_spires_truncation_to_invenio_truncation(self, query): """Replace SPIRES truncation symbol # with invenio trancation symbol *""" return query.replace('#', '*') def _convert_spires_exact_author_search_to_invenio_author_search(self, query): """Converts SPIRES search patterns for exact author into search pattern for invenio""" # method used for replacement with regular expression def create_replacement_pattern(match): # the regular expression where this group name is defined is in # the method _compile_regular_expressions() return self._EA_TAG + '"' + match.group('author_name') + '"' query = self._re_exact_author_match.sub(create_replacement_pattern, query) return query def _convert_spires_author_search_to_invenio_author_search(self, query): """Converts SPIRES search patterns for authors to search patterns in invenio that give similar results to the spires search. """ # result of the replacement result = '' current_position = 0 for match in self._re_author_match.finditer(query): result += query[current_position : match.start() ] if match.group('secondorderop'): result += match.group('secondorderop') scanned_name = NameScanner.scan_string_for_phrases(match.group('name')) author_atoms = self._create_author_search_pattern_from_fuzzy_name_dict(scanned_name) if match.group('first'): author_atoms = author_atoms.replace('author:', 'firstauthor:') if author_atoms.find(' ') == -1: result += author_atoms + ' ' else: result += '(' + author_atoms + ') ' current_position = match.end() result += query[current_position : len(query)] return result def _create_author_search_pattern_from_fuzzy_name_dict(self, fuzzy_name): """Creates an invenio search pattern for an author from a fuzzy name dict""" author_name = '' author_middle_name = '' author_surname = '' full_search = '' if len(fuzzy_name['nonlastnames']) > 0: author_name = fuzzy_name['nonlastnames'][0] if len(fuzzy_name['nonlastnames']) == 2: author_middle_name = fuzzy_name['nonlastnames'][1] if len(fuzzy_name['nonlastnames']) > 2: author_middle_name = ' '.join(fuzzy_name['nonlastnames'][1:]) if fuzzy_name['raw']: full_search = fuzzy_name['raw'] author_surname = ' '.join(fuzzy_name['lastnames']) NAME_IS_INITIAL = (len(author_name) == 1) NAME_IS_NOT_INITIAL = not NAME_IS_INITIAL # we expect to have at least surname if author_surname == '' or author_surname == None: return '' # ellis ---> "author:ellis" #if author_name == '' or author_name == None: if not author_name: return self._A_TAG + author_surname # ellis, j ---> "ellis, j*" if NAME_IS_INITIAL and not author_middle_name: return self._A_TAG + '"' + author_surname + ', ' + author_name + '*"' # if there is middle name we expect to have also name and surname # ellis, j. r. ---> ellis, j* r* # j r ellis ---> ellis, j* r* # ellis, john r. ---> ellis, j* r* or ellis, j. r. or ellis, jo. r. # ellis, john r. ---> author:ellis, j* r* or exactauthor:ellis, j r or exactauthor:ellis jo r if author_middle_name: search_pattern = self._A_TAG + '"' + author_surname + ', ' + author_name + '*' + ' ' + author_middle_name.replace(" ","* ") + '*"' if NAME_IS_NOT_INITIAL: for i in range(1, len(author_name)): search_pattern += ' or ' + self._EA_TAG + "\"%s, %s %s\"" % (author_surname, author_name[0:i], author_middle_name) return search_pattern # ellis, jacqueline ---> "ellis, jacqueline" or "ellis, j.*" or "ellis, j" or "ellis, ja.*" or "ellis, ja" or "ellis, jacqueline *, ellis, j *" # in case we don't use SPIRES data, the ending dot is ommited. search_pattern = self._A_TAG + '"' + author_surname + ', ' + author_name + '*"' search_pattern += " or " + self._EA_TAG + "\"%s, %s *\"" % (author_surname, author_name[0]) if NAME_IS_NOT_INITIAL: for i in range(1,len(author_name)): search_pattern += ' or ' + self._EA_TAG + "\"%s, %s\"" % (author_surname, author_name[0:i]) search_pattern += ' or %s"%s, *"' % (self._A_TAG, full_search) return search_pattern def _normalise_journal_page_format(self, query): """Phys.Lett, 0903, 024 -> Phys.Lett,0903,024""" def _is_triple(search): return (len(re.findall('\s+', search)) + len(re.findall(':', search))) == 2 def _normalise_spaces_and_colons_to_commas_in_triple(search): if not _is_triple(search): return search search = re.sub(',\s+', ',', search) search = re.sub('\s+', ',', search) search = re.sub(':', ',', search) return search result = "" current_position = 0 for match in self._re_search_term_is_journal.finditer(query): result += query[current_position : match.start()] result += match.group('leading') search = match.group('search_content') search = _normalise_spaces_and_colons_to_commas_in_triple(search) result += search current_position = match.end() result += query[current_position : ] return result def _standardize_already_invenio_keywords(self, query): """Replaces invenio keywords kw with "and kw" in order to parse them correctly further down the line.""" unique_invenio_keywords = set(self._SPIRES_TO_INVENIO_KEYWORDS_MATCHINGS.values()) |\ set(self._SECOND_ORDER_KEYWORD_MATCHINGS.values()) unique_invenio_keywords.remove('') # for the ones that don't have invenio equivalents for invenio_keyword in unique_invenio_keywords: query = re.sub("(?<!... \+|... -| and |. or | not |....:)"+invenio_keyword, "and "+invenio_keyword, query) query = re.sub("\+"+invenio_keyword, "and "+invenio_keyword, query) query = re.sub("-"+invenio_keyword, "and not "+invenio_keyword, query) return query def _replace_spires_keywords_with_invenio_keywords(self, query): """Replaces SPIRES keywords that have directly corresponding Invenio keywords Replacements are done only in content that is not in quotes.""" # result of the replacement result = "" current_position = 0 for match in self._re_quotes_match.finditer(query): # clean the content after the previous quotes and before current quotes cleanable_content = query[current_position : match.start()] cleanable_content = self._replace_all_spires_keywords_in_string(cleanable_content) # get the content in the quotes (group one matches double # quotes, group 2 singles) if match.group(1): quoted_content = match.group(1) elif match.group(2): quoted_content = match.group(2) # append the processed content to the result result = result + cleanable_content + quoted_content # move current position at the end of the processed content current_position = match.end() # clean the content from the last appearance of quotes till the end of the query cleanable_content = query[current_position : len(query)] cleanable_content = self._replace_all_spires_keywords_in_string(cleanable_content) result = result + cleanable_content return result def _replace_all_spires_keywords_in_string(self, query): """Replaces all SPIRES keywords in the string with their corresponding Invenio keywords""" for spires_keyword, invenio_keyword in iteritems(self._SPIRES_TO_INVENIO_KEYWORDS_MATCHINGS): query = self._replace_keyword(query, spires_keyword, invenio_keyword) for spires_keyword, invenio_keyword in iteritems(self._SECOND_ORDER_KEYWORD_MATCHINGS): query = self._replace_second_order_keyword(query, spires_keyword, invenio_keyword) return query def _replace_keyword(self, query, old_keyword, new_keyword): """Replaces old keyword in the query with a new keyword""" regex_string = r'(?P<operator>(^find|\band|\bor|\bnot|\brefersto|\bcitedby|^)\b[:\s\(]*)' + \ old_keyword + r'(?P<end>[\s\(]+|$)' regular_expression = re.compile(regex_string, re.IGNORECASE) result = regular_expression.sub(r'\g<operator>' + new_keyword + r'\g<end>', query) result = re.sub(':\s+', ':', result) return result def _replace_second_order_keyword(self, query, old_keyword, new_keyword): """Replaces old second-order keyword in the query with a new keyword""" regular_expression =\ re.compile(r'''(?ix) # verbose, ignorecase (?P<operator> (^find|\band|\bor|\bnot|\brefersto|\bcitedby|^)\b # operator preceding our operator [:\s\(]* # trailing colon, spaces, parens, etc. for that operator ) %s # the keyword we're searching for (?P<endorop> \s*[a-z]+:| # either an operator (like author:) [\s\(]+| # or a paren opening $ # or the end of the string )''' % old_keyword) result = regular_expression.sub(r'\g<operator>' + new_keyword + r'\g<endorop>', query) result = re.sub(':\s+', ':', result) return result def _distribute_keywords_across_combinations(self, query): """author:ellis and james -> author:ellis and author:james""" # method used for replacement with regular expression def create_replacement_pattern(match): return match.group('keyword') + match.group('content') + \ match.group('combination') + match.group('keyword') + \ match.group('last_content') still_matches = True while still_matches: query = self._re_distribute_keywords.sub(create_replacement_pattern, query) still_matches = self._re_distribute_keywords.search(query) query = re.sub(r'\s+', ' ', query) return query def _distribute_and_quote_second_order_ops(self, query): """refersto:s parke -> refersto:\"s parke\"""" def create_replacement_pattern(match): return match.group('second_order_op') + '"' +\ match.group('search_terms') + '"' +\ match.group('conjunction_or_next_keyword') for match in self._re_second_order_op_no_index_match.finditer(query): query = self._re_second_order_op_no_index_match.sub(create_replacement_pattern, query) query = re.sub(r'\s+', ' ', query) return query
gpl-2.0
r-mart/scikit-learn
examples/cluster/plot_cluster_comparison.py
244
4684
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example aims at showing characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this behavior. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler np.random.seed(0) # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'SpectralClustering', 'Ward', 'AgglomerativeClustering', 'DBSCAN', 'Birch'] plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 datasets = [noisy_circles, noisy_moons, blobs, no_structure] for i_dataset, dataset in enumerate(datasets): X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=2) ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.2) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=2, connectivity=connectivity) birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ two_means, affinity_propagation, ms, spectral, ward, average_linkage, dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
bsd-3-clause
JeanKossaifi/scikit-learn
examples/cluster/plot_cluster_comparison.py
244
4684
""" ========================================================= Comparing different clustering algorithms on toy datasets ========================================================= This example aims at showing characteristics of different clustering algorithms on datasets that are "interesting" but still in 2D. The last dataset is an example of a 'null' situation for clustering: the data is homogeneous, and there is no good clustering. While these examples give some intuition about the algorithms, this intuition might not apply to very high dimensional data. The results could be improved by tweaking the parameters for each clustering strategy, for instance setting the number of clusters for the methods that needs this parameter specified. Note that affinity propagation has a tendency to create many clusters. Thus in this example its two parameters (damping and per-point preference) were set to to mitigate this behavior. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import StandardScaler np.random.seed(0) # Generate datasets. We choose the size big enough to see the scalability # of the algorithms, but not too big to avoid too long running times n_samples = 1500 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) no_structure = np.random.rand(n_samples, 2), None colors = np.array([x for x in 'bgrcmykbgrcmykbgrcmykbgrcmyk']) colors = np.hstack([colors] * 20) clustering_names = [ 'MiniBatchKMeans', 'AffinityPropagation', 'MeanShift', 'SpectralClustering', 'Ward', 'AgglomerativeClustering', 'DBSCAN', 'Birch'] plt.figure(figsize=(len(clustering_names) * 2 + 3, 9.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 datasets = [noisy_circles, noisy_moons, blobs, no_structure] for i_dataset, dataset in enumerate(datasets): X, y = dataset # normalize dataset for easier parameter selection X = StandardScaler().fit_transform(X) # estimate bandwidth for mean shift bandwidth = cluster.estimate_bandwidth(X, quantile=0.3) # connectivity matrix for structured Ward connectivity = kneighbors_graph(X, n_neighbors=10, include_self=False) # make connectivity symmetric connectivity = 0.5 * (connectivity + connectivity.T) # create clustering estimators ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True) two_means = cluster.MiniBatchKMeans(n_clusters=2) ward = cluster.AgglomerativeClustering(n_clusters=2, linkage='ward', connectivity=connectivity) spectral = cluster.SpectralClustering(n_clusters=2, eigen_solver='arpack', affinity="nearest_neighbors") dbscan = cluster.DBSCAN(eps=.2) affinity_propagation = cluster.AffinityPropagation(damping=.9, preference=-200) average_linkage = cluster.AgglomerativeClustering( linkage="average", affinity="cityblock", n_clusters=2, connectivity=connectivity) birch = cluster.Birch(n_clusters=2) clustering_algorithms = [ two_means, affinity_propagation, ms, spectral, ward, average_linkage, dbscan, birch] for name, algorithm in zip(clustering_names, clustering_algorithms): # predict cluster memberships t0 = time.time() algorithm.fit(X) t1 = time.time() if hasattr(algorithm, 'labels_'): y_pred = algorithm.labels_.astype(np.int) else: y_pred = algorithm.predict(X) # plot plt.subplot(4, len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) plt.scatter(X[:, 0], X[:, 1], color=colors[y_pred].tolist(), s=10) if hasattr(algorithm, 'cluster_centers_'): centers = algorithm.cluster_centers_ center_colors = colors[:len(centers)] plt.scatter(centers[:, 0], centers[:, 1], s=100, c=center_colors) plt.xlim(-2, 2) plt.ylim(-2, 2) plt.xticks(()) plt.yticks(()) plt.text(.99, .01, ('%.2fs' % (t1 - t0)).lstrip('0'), transform=plt.gca().transAxes, size=15, horizontalalignment='right') plot_num += 1 plt.show()
bsd-3-clause
Intel-Corporation/tensorflow
tensorflow/python/keras/engine/training_arrays_v1.py
14
28123
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Part of the Keras training engine related to plain array data.""" # pylint: disable=protected-access import functools import numpy as np from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import iterator_ops from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.keras import backend from tensorflow.python.keras import callbacks as cbks from tensorflow.python.keras.distribute import distributed_training_utils_v1 from tensorflow.python.keras.engine import training_utils_v1 from tensorflow.python.keras.utils.generic_utils import make_batches from tensorflow.python.keras.utils.generic_utils import slice_arrays from tensorflow.python.keras.utils.mode_keys import ModeKeys from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest try: from scipy.sparse import issparse # pylint: disable=g-import-not-at-top except ImportError: issparse = None def model_iteration(model, inputs, targets=None, sample_weights=None, batch_size=None, epochs=1, verbose=1, callbacks=None, val_inputs=None, val_targets=None, val_sample_weights=None, shuffle=True, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, mode=ModeKeys.TRAIN, validation_in_fit=False, prepared_feed_values_from_dataset=False, steps_name='steps', **kwargs): """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. Args: model: Keras Model instance. inputs: Either a list or dictionary of arrays, or a dataset instance. targets: List/dictionary of input arrays. sample_weights: Optional list of sample weight arrays. batch_size: Integer batch size or None if unknown. epochs: Number of times to iterate over the data verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Note that the progress bar is not particularly useful when logged to a file, so verbose=2 is recommended when not running interactively (eg, in a production environment). callbacks: List of callbacks to be called during training val_inputs: Either a list or dictionary of arrays, or a dataset instance. val_targets: List/dictionary of target arrays. val_sample_weights: Optional list of sample weight arrays. shuffle: Whether to shuffle the data at the beginning of each epoch concatenation of list the display names of the outputs of `f` and the list of display names of the outputs of `f_val`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run) steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_steps: Number of steps to run validation for (only if doing validation from data tensors). Ignored with the default value of `None`. validation_freq: Only relevant if validation data is provided. Integer or `collections.abc.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. validation_in_fit: if true, then this method is invoked from within training iteration (for validation). In the case where `val_inputs` is a dataset, this flag indicates that its iterator and feed values are already created so should properly reuse resources. prepared_feed_values_from_dataset: if True, `inputs` is a list of feed tensors returned from `_prepare_feed_values` call on the validation dataset, so do not call it again on `inputs`. Should only be used for inline validation (i.e., only if `validation_in_fit` is also True). steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. **kwargs: Additional arguments for backwards compatibility. Returns: - In TRAIN mode: `History` object. - In TEST mode: Evaluation metrics. - In PREDICT mode: Outputs of the Model called on inputs. Raises: ValueError: in case of invalid arguments. """ # Backwards compatibility. if 'steps' in kwargs: steps_per_epoch = kwargs.pop('steps') if kwargs: raise TypeError('Unknown arguments: %s' % (kwargs,)) # In case we were passed a dataset, we extract symbolic tensors from it. reset_dataset_after_each_epoch = False input_iterator = None is_dataset = isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)) # TODO(fchollet): consider moving `steps_per_epoch` inference to # _standardize_user_data and set reset_dataset_after_each_epoch as an # attribute on the dataset instance. if is_dataset: if steps_per_epoch is None: reset_dataset_after_each_epoch = True steps_per_epoch = training_utils_v1.infer_steps_for_dataset( model, inputs, steps_per_epoch, epochs=epochs, steps_name=steps_name) input_iterator = _get_iterator(inputs, model._distribution_strategy) # Enter tf.distribute.Strategy scope. if model._distribution_strategy: scope = distributed_training_utils_v1.distributed_scope( strategy=model._distribution_strategy, learning_phase=(1 if mode == ModeKeys.TRAIN else 0)) scope.__enter__() use_steps = is_dataset or steps_per_epoch is not None do_validation = val_inputs is not None # Prepare input data. inputs = input_iterator or inputs if validation_in_fit and prepared_feed_values_from_dataset: # When invoking validation in training loop, avoid creating iterator and # list of feed values for the same validation dataset multiple times (which # essentially would call `iterator.get_next()` that slows down execution and # leads to OOM errors eventually. ins = inputs else: ins = _prepare_feed_values(model, inputs, targets, sample_weights, mode) # `ins` is a function when a distribute strategy is used in Eager mode. In # that case `is_dataset` is True. The code branches that have requirements # about the type of `ins` do not trigger in the distributed case. if not is_dataset: num_samples_or_steps = _get_num_samples_or_steps(ins, batch_size, steps_per_epoch) else: num_samples_or_steps = steps_per_epoch # Update sample_weight_mode of the model if sample_weights is specified by the # user. We need to call this function after we have a handle on the inputs # (both numpy arrays and datasets) in order to determine if the user has # specified sample_weights. _update_sample_weight_mode(model, mode, ins) # Get step function and loop type. As part of building the execution # function we recompile the metrics based on the updated # sample_weight_mode value. f = _make_execution_function(model, mode) # Prepare validation data. Hold references to the iterator and the input list # to properly reinitialize and reuse in multiple validation passes. val_iterator = None if isinstance(val_inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)): if validation_steps is None: # Because we pass an iterator feed instead of a Dataset to the eval # model_iteration() call, it will not trigger the dataset-input path # that determines the number of steps required. To avoid this issue, # set validation_steps here if validation_steps is None. validation_steps = training_utils_v1.infer_steps_for_dataset( model, val_inputs, validation_steps, epochs=epochs, steps_name='validation_steps') val_iterator = _get_iterator(val_inputs, model._distribution_strategy) val_inputs = _prepare_feed_values( model, val_iterator, val_targets, val_sample_weights, ModeKeys.TEST) # Get num steps for printing. val_samples_or_steps = validation_steps else: # Get num samples for printing. val_samples_or_steps = val_inputs and nest.flatten( val_inputs)[0].shape[0] or None if mode == ModeKeys.TRAIN and verbose: _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset) # Configure callbacks. count_mode = 'steps' if use_steps else 'samples' callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_samples_or_steps, count_mode=count_mode, verbose=verbose, mode=mode) # Find beforehand arrays that need sparse-to-dense conversion. if issparse is not None and not use_steps: indices_for_conversion_to_dense = [] feed = _get_model_feed(model, mode) for i, (input_data, feed_tensor) in enumerate(zip(ins, feed)): if issparse(input_data) and not backend.is_sparse(feed_tensor): indices_for_conversion_to_dense.append(i) # Select aggregation method. if mode == ModeKeys.PREDICT: aggregator = training_utils_v1.OutputsAggregator( use_steps, num_samples=None if steps_per_epoch else num_samples_or_steps, steps=steps_per_epoch) else: aggregator = training_utils_v1.MetricsAggregator( use_steps, num_samples=None if steps_per_epoch else num_samples_or_steps, steps=steps_per_epoch) if model._compile_distribution: distributed_training_utils_v1._copy_weights_to_distributed_model( model, mode) callbacks.model.stop_training = False callbacks._call_begin_hook(mode) initial_epoch = model._maybe_load_initial_epoch_from_ckpt(initial_epoch, mode) for epoch in range(initial_epoch, epochs): if callbacks.model.stop_training: break # Setup work for each epoch epoch_logs = {} if mode != ModeKeys.PREDICT: # Collecting and resetting metrics has non-zero cost and will needlessly # slow down model.predict. model.reset_metrics() if mode == ModeKeys.TRAIN: callbacks.on_epoch_begin(epoch, epoch_logs) if use_steps: # Step-wise loop. if steps_per_epoch is None: # Loop over dataset until `OutOfRangeError` is raised. target_steps = np.inf else: # Loop over dataset for the specified number of steps. target_steps = steps_per_epoch step = 0 while step < target_steps: batch_logs = {'batch': step, 'size': 1} callbacks._call_batch_hook(mode, 'begin', step, batch_logs) # Get outputs. try: # `ins` can be callable in tf.distribute.Strategy + eager case. if not callable(ins) or (model._distribution_strategy and not distributed_training_utils_v1 .is_distributing_by_cloning(model)): actual_inputs = ins else: actual_inputs = ins() batch_outs = f(actual_inputs) except errors.OutOfRangeError: if is_dataset: # The dataset passed by the user ran out of batches. # Now we know the cardinality of the dataset. # If steps_per_epoch was specified, then running out of data is # unexpected, so we stop training and inform the user. if steps_per_epoch: callbacks.model.stop_training = True logging.warning( 'Your dataset ran out of data; interrupting training. ' 'Make sure that your dataset can generate at least ' '`%s * epochs` batches (in this case, %d batches). ' 'You may need to use the repeat() function when ' 'building your dataset.' % (steps_name, steps_per_epoch * epochs)) elif step > 0: steps_per_epoch = step aggregator.steps = steps_per_epoch else: # We ran out of batches while the user passed an iterator (legacy). callbacks.model.stop_training = True logging.warning( 'Your dataset iterator ran out of data; ' 'interrupting training. Make sure that your iterator ' 'can generate at least `%s * epochs` ' 'batches (in this case, %d batches). You may need to' 'use the repeat() function when building your ' 'dataset.' % (steps_name, steps_per_epoch * epochs)) break if not isinstance(batch_outs, list): batch_outs = [batch_outs] if model._distribution_strategy: batch_outs = ( distributed_training_utils_v1._per_replica_aggregate_batch( model._distribution_strategy, batch_outs, model, mode)) # Aggregate results. if step == 0: aggregator.create(batch_outs) aggregator.aggregate(batch_outs) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', step, batch_logs) step += 1 if callbacks.model.stop_training: break else: # Sample-wise loop. index_array = np.arange(num_samples_or_steps) if shuffle == 'batch': index_array = training_utils_v1.batch_shuffle(index_array, batch_size) elif shuffle: np.random.shuffle(index_array) batches = make_batches(num_samples_or_steps, batch_size) for batch_index, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] # Slice into a batch. if len(batches) == 1: # If we only have one batch, do not slice. This takes care of # composite tensors in non-Dataset modes; we currently don't support # slicing them. # TODO(b/133517906): Add slicing support. ins_batch = ins else: try: if ins and isinstance(ins[-1], int): # Do not slice the training phase flag. ins_batch = slice_arrays(ins[:-1], batch_ids) + [ins[-1]] else: ins_batch = slice_arrays(ins, batch_ids) except TypeError: raise TypeError('TypeError while preparing batch. ' 'If using HDF5 input data, ' 'pass shuffle="batch".') # Sparse to dense conversion. if issparse is not None: for i in indices_for_conversion_to_dense: ins_batch[i] = ins_batch[i].toarray() # Callbacks batch_begin. batch_logs = {'batch': batch_index, 'size': len(batch_ids)} callbacks._call_batch_hook(mode, 'begin', batch_index, batch_logs) # Get outputs. batch_outs = f(ins_batch) if not isinstance(batch_outs, list): batch_outs = [batch_outs] # Aggregate results. if batch_index == 0: aggregator.create(batch_outs) aggregator.aggregate(batch_outs, batch_start, batch_end) # Callbacks batch end. batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode) callbacks._call_batch_hook(mode, 'end', batch_index, batch_logs) if callbacks.model.stop_training: break aggregator.finalize() results = aggregator.results epoch_logs = cbks.make_logs(model, epoch_logs, results, mode) if len(results) == 1: results = results[0] # Run the test loop every `validation_freq` epochs during training. if (do_validation and training_utils_v1.should_run_validation(validation_freq, epoch) and not callbacks.model.stop_training): if model._compile_distribution: # Since we create a new clone from the original model we need to copy # the weights back to the original model before we can run validation. distributed_training_utils_v1._copy_weights_to_original_model( model, ModeKeys.TRAIN) val_results = model_iteration( model, val_inputs, targets=val_targets, sample_weights=val_sample_weights, batch_size=batch_size, steps_per_epoch=validation_steps, callbacks=callbacks, verbose=0, mode=ModeKeys.TEST, validation_in_fit=True, prepared_feed_values_from_dataset=(val_iterator is not None), steps_name='validation_steps') if not isinstance(val_results, list): val_results = [val_results] epoch_logs = cbks.make_logs( model, epoch_logs, val_results, mode, prefix='val_') if val_iterator and epoch < epochs - 1: _reinitialize_iterator(val_iterator, model._distribution_strategy) if mode == ModeKeys.TRAIN: # Epochs only apply to `fit`. callbacks.on_epoch_end(epoch, epoch_logs) # Reinitialize dataset iterator for the next epoch. if reset_dataset_after_each_epoch and epoch < epochs - 1: _reinitialize_iterator(input_iterator, model._distribution_strategy) model._successful_loop_finish = True callbacks._call_end_hook(mode) if model._distribution_strategy: if model._compile_distribution: # TODO(priyag, psv): Copy back metrics to the original model as well? distributed_training_utils_v1._copy_weights_to_original_model(model, mode) scope.__exit__(None, None, None) if mode == ModeKeys.TRAIN: return model.history return results def _get_model_feed(model, mode): if mode == ModeKeys.PREDICT: feed = model._feed_inputs else: feed = ( model._feed_inputs + model._feed_targets + model._feed_sample_weights) return feed def _print_train_info(num_samples_or_steps, val_samples_or_steps, is_dataset): increment = 'steps' if is_dataset else 'samples' msg = 'Train on {0} {increment}'.format( num_samples_or_steps, increment=increment) if val_samples_or_steps: msg += ', validate on {0} {increment}'.format( val_samples_or_steps, increment=increment) print(msg) def _get_num_samples_or_steps(ins, batch_size, steps_per_epoch): """Returns total number of samples (when training in batch mode) or steps.""" if steps_per_epoch: return steps_per_epoch return training_utils_v1.check_num_samples(ins, batch_size, steps_per_epoch, 'steps_per_epoch') def _prepare_feed_values(model, inputs, targets, sample_weights, mode): """Prepare feed values to the model execution function. Args: model: Model to prepare feed values for. inputs: List or dict of model inputs. targets: Optional list of model targets. sample_weights: Optional list of sample weight arrays. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. Returns: Feed values for the model in the given mode. """ if model._distribution_strategy: if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2)): inputs = distributed_training_utils_v1.get_iterator( inputs, model._distribution_strategy) def get_distributed_inputs(): return distributed_training_utils_v1._prepare_feed_values( model, inputs, targets, sample_weights, mode) # In the eager case, we want to call the input method per step, so return # a lambda from here that can be called. Note that this is applicable only # in Distribution Strategy case as it follows the same code path for both # eager and graph modes. # TODO(priyag,omalleyt): Either we should move the training DS with # IteratorBase to use training_generator code path, or figure out how to # set a symbolic Iterator out of a Dataset when in eager mode. if context.executing_eagerly(): return get_distributed_inputs else: return get_distributed_inputs() if isinstance(inputs, (dataset_ops.DatasetV1, dataset_ops.DatasetV2, iterator_ops.Iterator)): inputs, targets, sample_weights = model._standardize_user_data( inputs, extract_tensors_from_dataset=True) inputs = training_utils_v1.ModelInputs(inputs).as_list() targets = list(targets or []) sample_weights = list(sample_weights or []) ins = inputs + targets + sample_weights if mode == ModeKeys.TRAIN and not isinstance( backend.symbolic_learning_phase(), int): ins += [True] # Add learning phase value. return ins def _get_iterator(inputs, distribution_strategy=None): if distribution_strategy: return distributed_training_utils_v1.get_iterator( inputs, distribution_strategy) return training_utils_v1.get_iterator(inputs) def _reinitialize_iterator(iterator, distribution_strategy=None): if distribution_strategy: distributed_training_utils_v1.initialize_iterator( iterator, distribution_strategy) else: training_utils_v1.initialize_iterator(iterator) def _make_execution_function(model, mode): """Makes function to run one step of model execution.""" if model._distribution_strategy: return distributed_training_utils_v1._make_execution_function(model, mode) return model._make_execution_function(mode) def _update_sample_weight_mode(model, mode, inputs): """Updates the sample_weight_mode of a given model.""" # Add a quick return to prevent us from calling model._feed_targets that # accesses certain model properties that may not be set in the `PREDICT` mode. if mode == ModeKeys.PREDICT: return sample_weights = None # `inputs` is the model's inputs + targets + sample_weights + # learning phase placeholder if specified. To update the sample_weight_mode # we need to determine if the user has passed sample weights as part of the # input. if not callable(inputs): sample_weights = inputs[len(model._feed_inputs) + len(model._feed_targets):] has_learning_phase_pl = (mode == ModeKeys.TRAIN and not isinstance(backend.symbolic_learning_phase(), int)) if has_learning_phase_pl: sample_weights = sample_weights[:-1] model._update_sample_weight_modes(sample_weights=sample_weights) # Call the DistributionStrategy specific function to update the # sample_weight_mode on the model. if model._distribution_strategy: distributed_training_utils_v1._update_sample_weight_modes(model, mode, sample_weights) # For backwards compatibility for internal users of these loops. fit_loop = functools.partial(model_iteration, mode=ModeKeys.TRAIN) test_loop = functools.partial( model_iteration, mode=ModeKeys.TEST, shuffle=False) predict_loop = functools.partial( model_iteration, mode=ModeKeys.PREDICT, shuffle=False) class ArrayLikeTrainingLoop(training_utils_v1.TrainingLoop): """TrainingLoop that handle inputs like array. This is the default handler for most of the input data types, includes symbolic tensors or Numpy array-like, Datasets and iterators in graph mode (since they generate symbolic tensors). This Function is used to handle model with `run_eagerly` = False. """ def fit(self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, check_steps=True, steps_name='steps_per_epoch', steps=steps_per_epoch, validation_split=validation_split, shuffle=shuffle) if validation_data: val_x, val_y, val_sample_weights = model._prepare_validation_data( validation_data, batch_size, validation_steps) elif validation_split and 0. < validation_split < 1.: (x, y, sample_weights, val_x, val_y, val_sample_weights ) = training_utils_v1.split_training_and_validation_data( x, y, sample_weights, validation_split) else: if validation_steps: raise ValueError('`validation_steps` should not be specified if ' '`validation_data` is None.') val_x, val_y, val_sample_weights = None, None, None return fit_loop( model, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_x, val_targets=val_y, val_sample_weights=val_sample_weights, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, steps_name='steps_per_epoch') def evaluate(self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size, check_steps=True, steps_name='steps', steps=steps) return test_loop( model, inputs=x, targets=y, sample_weights=sample_weights, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks) def predict(self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, _, _ = model._standardize_user_data( x, check_steps=True, steps_name='steps', steps=steps) return predict_loop( model, x, batch_size=batch_size, verbose=verbose, steps=steps, callbacks=callbacks)
apache-2.0
JeanKossaifi/scikit-learn
examples/linear_model/plot_bayesian_ridge.py
247
2588
""" ========================= Bayesian Ridge Regression ========================= Computes a Bayesian Ridge Regression on a synthetic dataset. See :ref:`bayesian_ridge_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the coefficient weights are slightly shifted toward zeros, which stabilises them. As the prior on the weights is a Gaussian prior, the histogram of the estimated weights is Gaussian. The estimation of the model is done by iteratively maximizing the marginal log-likelihood of the observations. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.linear_model import BayesianRidge, LinearRegression ############################################################################### # Generating simulated data with Gaussian weigthts np.random.seed(0) n_samples, n_features = 100, 100 X = np.random.randn(n_samples, n_features) # Create Gaussian data # Create weigts with a precision lambda_ of 4. lambda_ = 4. w = np.zeros(n_features) # Only keep 10 weights of interest relevant_features = np.random.randint(0, n_features, 10) for i in relevant_features: w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_)) # Create noise with a precision alpha of 50. alpha_ = 50. noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples) # Create the target y = np.dot(X, w) + noise ############################################################################### # Fit the Bayesian Ridge Regression and an OLS for comparison clf = BayesianRidge(compute_score=True) clf.fit(X, y) ols = LinearRegression() ols.fit(X, y) ############################################################################### # Plot true weights, estimated weights and histogram of the weights plt.figure(figsize=(6, 5)) plt.title("Weights of the model") plt.plot(clf.coef_, 'b-', label="Bayesian Ridge estimate") plt.plot(w, 'g-', label="Ground truth") plt.plot(ols.coef_, 'r--', label="OLS estimate") plt.xlabel("Features") plt.ylabel("Values of the weights") plt.legend(loc="best", prop=dict(size=12)) plt.figure(figsize=(6, 5)) plt.title("Histogram of the weights") plt.hist(clf.coef_, bins=n_features, log=True) plt.plot(clf.coef_[relevant_features], 5 * np.ones(len(relevant_features)), 'ro', label="Relevant features") plt.ylabel("Features") plt.xlabel("Values of the weights") plt.legend(loc="lower left") plt.figure(figsize=(6, 5)) plt.title("Marginal log-likelihood") plt.plot(clf.scores_) plt.ylabel("Score") plt.xlabel("Iterations") plt.show()
bsd-3-clause
pierrelapointe/scancode-toolkit
src/textcode/strings.py
3
9395
# # Copyright (c) 2015 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import, print_function import os import string import re from commoncode.text import toascii """ Extract ASCII strings from a (possibly) binary string. Use character translations tables for this, replacing all non-printable characters by a newline char. Then split on lines, yield these lines filtering out junk strings. This is similar to what GNU Binutils strings does. TODO: Add support for some additional and common strings-inbinary encodings such ass UTC-16 in Windows binary executables. """ """ Definition of non printable text: Remove digit,letters, punctuation and white spaces, all the rest is junk. Note: we replace also \r and \f with a newline. Since \r will be replaced by a new line, some empty lines are possible, which is not a problem. The fact that strings could be null-terminated is handled since the null is also replaced by a newline. The translation table is: 0123456789abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \n """ allchars = string.maketrans('', '') non_printable = string.translate(allchars, allchars, string.digits + string.letters + string.punctuation + ' \t\n') """ This create a translation table to replace junk chars with a newline char """ printable = string.maketrans(non_printable, '\n' * len(non_printable)) # this is heart of the code... a one liner def strings(binary_string): """ Return a list of strings extracted from a binary string. """ return lines(remove_non_printable(binary_string)) def lines(s): for x in s.splitlines(): yield x def remove_non_printable(binary_string): """ Returns an ASCII printable string for a binary string, removing all non printable characters. """ return binary_string.translate(printable) def file_strings(location, buff_size=1024 * 1024): """ Process (eventually large) files in chunks and yield ASCII strings found in file as location, encoded as Unicode. """ file_size = os.path.getsize(location) count = 0 with open(location, 'rb') as f: while True: start = f.tell() buf = f.read(buff_size) count += 1 if not buf or not buf.strip(): break s = remove_non_printable(buf) if file_size >= buff_size * count: # if the last char is not a '\n' we need to backtrack to avoid # truncating lines in the middle last_ln_end = s.rfind('\n') # what if we did not find any?? # in this case we likely need to read forward instead of # backward since this is a very unlikely event, we are just # yielding what we have if last_ln_end != -1: to_truncate = len(s) - last_ln_end back_pos = start - to_truncate f.seek(back_pos, os.SEEK_CUR) s = s[:last_ln_end + 1] for l in s.splitlines(): ls = l.strip() if ls: yield ls # # Junk strings filtering # # Filters accept or reject a string: a filtering function returns True if the # strings needs to be filtered out non_chars = string.translate(allchars, allchars, string.letters) letters = string.maketrans(non_chars, ' ' * len(non_chars)) def filter_string(S, min_length=2): """ Filters strings composed of : * only one repeated character * only short tokens """ tok = del_special(S) tok = tok.translate(letters) tok = tok.strip().lower().split() if S: repeat = S[0] else: repeat = ' ' return (all(len(x) <= min_length for x in tok) or all(x == repeat for x in list(S))) def filter_strict(S): return filter_string (S, min_length=4) # Ensure certain short strings are not filtered out token_to_keep = set( ( # elf related 'gnu', 'gnu as', 'elf', 'rel', 'dyn', 'jcr', 'dot', 'jss', 'plt', 'bss', 'jcr', 'end', 'die', # license related 'gpl', 'mit', 'bsd', '(c)', ) ) def to_keep(S): """ Keeps strings that are in a reference set. """ return S.lower() in token_to_keep def is_good(S, filt=filter_string): """ Returns True if if string is a keeper or False if filtered. """ if not S: return False return to_keep(S) or not filt(S) # # transformers change the content of strings # # TODO: add c++ demangling, etc) def del_special(S): """ Replace verbatim white space lien endings and tabs (\\n, \\r, \\t) that may exist as-is as literals in the extracted string by a space. """ return S.replace('\\r', ' ').replace('\\n', ' ').replace('\\t', ' ') def is_mangled_ccp(S): # @UnusedVariable return False def demangle_cpp(S): return S def is_mangled_java(S): # @UnusedVariable return False def demangle_java(S): return S def strings_in_file(location, filt=filter_string): """ Yield ASCCI strings encoded as Unicode extracted from a file at location. """ for s in file_strings(location): if is_good(s, filt): s = s.strip() if s: yield toascii(s) # http://code.activestate.com/recipes/466293-efficient-character-escapes-decoding/?in=user-2382677 # classifiers detect specific patterns in the strings # TODO: add path detection, etc # Detect paths and file names def FILE_RE(): return re.compile('^[\w_\-]+\.\w{1,4}$', re.IGNORECASE) def is_file(S): """ Return True is S looks like a file name. Exmaple: dsdsd.dll """ return 'file-name' if re.match(FILE_RE(), S) else None def SO_RE(): return re.compile('^[\w_\-]+\.so\.[0-9]+\.*.[0-9]*$', re.IGNORECASE) def is_shared_object(S): """ Return True is S looks like a shared object file. Example: librt.so.1 """ return 'elf-shared-object' if re.match(SO_RE(), S) else None def POSIXPATH_RE(): return re.compile('^[\w_\-]+\.so\.[0-9]+\.*.[0-9]*$', re.IGNORECASE) def is_posix_path(S): """ Return True is S looks like a posix path. Example: /usr/lib/librt.so.1 or usr/lib """ return re.match(POSIXPATH_RE(), S) def RELATIVE_RE(): return re.compile('^[\w_\-]+\.so\.[0-9]+\.*.[0-9]*$', re.IGNORECASE) def is_relative_path(S): """ Return True is S looks like a relative posix path. Example: usr/lib/librt.so.1 or ../usr/lib """ return re.match(POSIXPATH_RE(), S) def WINPATH_RE(): return re.compile('^[\w_\-]+\.so\.[0-9]+\.*.[0-9]*$', re.IGNORECASE) def is_win_path(S): """ Return True is S looks like a win path. Example: c:\usr\lib\librt.so.1. """ return re.match(WINPATH_RE(), S) def is_c_source(S): """ Return True is S looks like a C source path. Example: this.c FIXME: should get actual algo from contenttype. """ return S.endswith(('.c', '.cpp', '.hpp', '.h',)) def is_java_source(S): """ Return True is S looks like a Java source path. Example: this.java FIXME: should get actual algo from contenttype. """ return S.endswith(('.java', '.jsp', '.aj',)) def is_GLIBC_ref(S): """ Return True is S looks like a reference to GLIBC as typically found in Elfs. """ return '@@GLIBC' in S def JAVAREF_RE(): return re.compile('^.*$', re.IGNORECASE) def is_java_ref(S): # @UnusedVariable """ Return True is S looks like a reference to a java class or package in a class file. """ return False class BinaryStringsClassifier(object): """ Classify extracted strings as good or bad/junk. The types of strings that are recognized include: file file_path junk text """ # TODO: Implement me
apache-2.0
ElettraSciComp/STP-Core
STP-Core/postprocess/polarfilter.py
1
3340
########################################################################### # (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved. # # # # # # This file is part of STP-Core, the Python core of SYRMEP Tomo Project, # # a software tool for the reconstruction of experimental CT datasets. # # # # STP-Core is free software: you can redistribute it and/or modify it # # under the terms of the GNU General Public License as published by the # # Free Software Foundation, either version 3 of the License, or (at your # # option) any later version. # # # # STP-Core is distributed in the hope that it will be useful, but WITHOUT # # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # # for more details. # # # # You should have received a copy of the GNU General Public License # # along with STP-Core. If not, see <http://www.gnu.org/licenses/>. # # # ########################################################################### # # Author: Francesco Brun # Last modified: April, 6th 2017 # from numpy import float32, amin, amax, sqrt, max, pad import imp, inspect, os import polarfilters import cv2 def polarfilter(im, polarfilt_opt): """Post-process a reconstructed image with a filter in polar coordinates. Parameters ---------- im : array_like Image data as numpy array. filt_opt : string String containing filter method and the related parameters. """ # Get method and args: method, args = polarfilt_opt.split(":", 1) # The "none" filter means no filtering: if (method != "none"): # Dinamically load module: path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) str = os.path.join(path, "polarfilters", method + '.py') m = imp.load_source(method, str) # Convert to 8-bit or 16-bit: filt_method, filt_args = polarfilt_opt.split(":", 1) # Get original size: origsize = im.shape # Up-scaling: im = cv2.resize(im, None, 2, 2, cv2.INTER_CUBIC) rows, cols = im.shape cen_x = im.shape[1] / 2 cen_y = im.shape[0] / 2 # To polar: im = cv2.linearPolar(im, (cen_x, cen_y), amax([rows,cols]), cv2.INTER_CUBIC) # Padding: cropsize = im.shape im = pad(im, ((origsize[0] / 4, origsize[0] / 4), (origsize[1] / 2, 0)), 'symmetric') # Call the filter dynamically: im = getattr(m, method)(im, args) # Crop: im = im[origsize[0] / 4:origsize[0] / 4 + cropsize[0],origsize[1] / 2:origsize[1] / 2 + cropsize[1]] # Back to cartesian: im = cv2.linearPolar(im, (cen_x, cen_y), amax([rows,cols]), cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP) # Down-scaling to original size: im = cv2.resize(im, (origsize[0], origsize[1]), interpolation = cv2.INTER_CUBIC) return im
gpl-3.0
thanhan/subjective-crowd-hcomp16
learner.py
1
38536
import analysis import numpy as np from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures from sklearn import cross_validation from sklearn.pipeline import Pipeline import sklearn #from sklearn.kernel_ridge import KernelRidge from sklearn import svm from sklearn import gaussian_process from scipy.special import digamma import scipy.stats from sklearn.metrics import roc_auc_score import copy from scipy.stats.stats import pearsonr import matplotlib.pyplot as plt list_freq = [422400, 729600, 1036800, 1497600, 1958400, 2457600] def preprocess(dic, app = 'angry_birds'): """ given dic: conf -> labels return the design matrix, each row = (features, target) """ a = np.zeros((24, 3)) i = 0 for cores in [1,2,3,4]: for freq in list_freq: m = np.mean(dic[app, cores, freq, 0]) a[i,:] = np.asarray([cores, freq, m]) i+= 1 return a def learn(a): data = a[:,0:-1] target = a[:,-1] LR = linear_model.LinearRegression() scores = cross_validation.cross_val_score(LR, data, target, cv=4, scoring = 'mean_absolute_error') print 'LR:', -scores.mean() LR_poly2 = Pipeline([('poly', PolynomialFeatures(degree=3)), ('linear', linear_model.LinearRegression())]) scores = cross_validation.cross_val_score(LR_poly2, data, target, cv=4, scoring = 'mean_absolute_error') print 'LR_poly3:', -scores.mean() Ridge = linear_model.Ridge (alpha = 0) scores = cross_validation.cross_val_score(Ridge, data, target, cv=4, scoring = 'mean_absolute_error') print 'Ridge:', -scores.mean() KR = KernelRidge() scores = cross_validation.cross_val_score(KR, data, target, cv=4, scoring = 'mean_absolute_error') print 'KR:', -scores.mean() SVR = clf = svm.SVR() scores = cross_validation.cross_val_score(SVR, data, target, cv=4, scoring = 'mean_absolute_error') print 'SVR:', -scores.mean() GP = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1) scores = cross_validation.cross_val_score(GP, data, target, cv=4, scoring = 'mean_absolute_error') print 'GP:', -scores.mean() app = [ 'angry_birds', 'youtube', 'gladiator', 'chrome_cnn', 'epic_citadel', 'facebook', 'photoshop', 'compubench_rs_particles', 'compubench_rs_gaussian', 'compubench_rs_julia', 'compubench_rs_facedetection', 'compubench_rs_ambiant'] gpu = [200, 320, 389, 462.4, 578] def create_features(conf): f = [0]*12 + [0,0,0,1] for i, a in enumerate(app): if a == conf[0]: f[i] = 1 f[12] = conf[1] * 1.0 / 4 f[13] = conf[2] * 1.0 / 2457600 f[14] = gpu[conf[3]] *1.0 / 578 f[15] = 1.0 return f class model: def __init__(self, data, lambda_w = 0, lambda_v = 0, A = 0, B = 0): """ data is an array of [wid, question, url, rating, time, ip, application, cpu cores, cpu freq, gpu index] e.g: ['A2XXXXXXXXXXX', 'Question Random Assignment - Text 18', 'www.youtube.com/embed/ZqD83lS8exs?wmode=transparent', '1 - Very Dissatisfied', 'Thu Jul 31 02:56:58 GMT 2014', '11.11.1.111', 'compubench_rs_particles', '3', '2457600', '0'] lambda: weight for regularization of W and V A, B: weights (prior) on theta organize: - F: a features matrix, row i = list of features for item i - L: crowd label, elem i = (list of W, list of L) """ self.data = data self.dic_conf_wl = analysis.get_dic_conf_wl(data) n = len(self.dic_conf_wl) self.list_conf = self.dic_conf_wl.keys() self.F = [] self.empi_mean = [] self.empi_var = [] for conf in self.list_conf: f = create_features(conf) self.F.append(f) labels = self.dic_conf_wl[conf][1] self.empi_mean.append( np.mean(labels) ) self.empi_var.append ( np.var(labels) ) self.F = np.asarray(self.F) self.L = [] for conf in self.list_conf: labels = self.dic_conf_wl[conf] self.L.append(labels) self.n = len(self.L) # number of items self.m = len(self.F[0]) # number of features # build dic_w_il self.dic_w_il = {} for i in range(self.n): workers, labels = self.L[i] for w, l in zip(workers, labels): if w not in self.dic_w_il: self.dic_w_il[w] = [] self.dic_w_il[w].append( (i,l)) self.ep = 1e-100 self.lambda_w = lambda_w self.lambda_v = lambda_v self.A = A self.B = B def get_mean(self, i): return self.F[i].dot(self.w) def get_std(self, i): return np.exp( self.F[i].dot(self.v) ) def get_var(self, i): return pow( self.get_std(i), 2) def spam_dist(self, l): """ distribution of labels from spammers """ return scipy.stats.norm(3,self.s).pdf(l) def e_step(self): """ evaluate posterior over Z """ self.pt = [] for i in range(self.n): self.pt.append([]) workers, labels = self.L[i] for w, l in zip(workers, labels): p1 = scipy.stats.norm.pdf(l, loc = self.get_mean(i), scale = self.get_std(i) ) * self.theta[w] p0 = self.spam_dist(l) * (1-self.theta[w]) p = p1 *1.0/ (p0 + p1) self.pt[i].append(p) def expected_ll(self, w, v): """ return expected log likelihood """ res = 0 for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): pt0 = 1 - pt1 #theta = self.theta[worker] ll0 = np.log( self.spam_dist(l) ) # + np.log(1-theta) mean = self.F[i].dot(w) std = np.exp(self.F[i].dot(v)) if std < self.ep: std = self.ep ll1 = scipy.stats.norm.logpdf(l, loc = mean, scale = std )# + np.log(theta) res += pt0*ll0 + pt1*ll1 #regularization for i in range(self.m-1): res -= self.lambda_w * w[i]*w[i] + self.lambda_v * v[i]*v[i] return res def grad_expected_ll(self, w, v): gw = np.zeros( (self.m,) ) gv = np.zeros( (self.m,) ) for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): wtc = self.F[i].dot(w) sigma = np.exp(self.F[i].dot(v)) if sigma < self.ep: sigma = self.ep update_w = pt1*(l-wtc)/pow(sigma,2)*self.F[i] gw += update_w update_v = pt1*(-self.F[i] + pow(l-wtc,2)/pow(sigma,2)*self.F[i]) gv += update_v for i in range(self.m-1): gw[i] -= 2 * self.lambda_w * w[i] gv[i] -= 2 * self.lambda_v * v[i] return np.hstack( (gw, gv) ) def check_grad(self, ep = 0.0000001, check_range = None): if check_range==None: check_range = range(self.m) w = np.random.rand(self.m) - 0.5 v = np.random.rand(self.m) - 0.5 a = self.expected_ll(w, v) fw = np.zeros(self.m) fv = np.zeros(self.m) for i in check_range: x = np.zeros(self.m) x[i] = ep fw[i] = (self.expected_ll(w + x, v) - a ) / ep fv[i] = (self.expected_ll(w, v + x) - a ) / ep print w print v print 'calculated grad = ', zip(range(self.m*2), self.grad_expected_ll(w, v)) print 'finite diff grad = ', zip(range(self.m*2), np.hstack((fw, fv))) def m_step_theta(self): """ set theta_j to max expected ll """ for w in self.dic_w_il: self.theta[w] = 0 for i in range(self.n): workers, labels = self.L[i] for w, l, pt1 in zip(workers, labels, self.pt[i]): self.theta[w] += pt1 for w in self.dic_w_il: num = len(self.dic_w_il[w]) r = self.theta[w] * 1.0 / num self.theta[w] = r #if (r < 0.85 ): # self.theta[w] = r # no regularize #else: # # regularize # self.theta[w] = (self.theta[w] * 1.0 + self.A) / ( len( self.dic_w_il[w]) + self.A + self.B) # set self.s = sd of spam dist s = 0 sw = 0 for i in range(self.n): workers, labels = self.L[i] for w, l, pt1 in zip(workers, labels, self.pt[i]): s += pow(l - 3, 2)*(1-self.theta[w]) sw += 1- self.theta[w] if sw > 0: self.s = pow(s*1.0/sw, 0.5) def m_step_wv(self, update_v = True): """ maximize w and v """ m = self.m f = lambda x: -self.expected_ll(x[:m], x[m:]) fp = lambda x: -self.grad_expected_ll(x[:m], x[m:]) x0 = np.hstack( (self.w, self.v) ) #opt_method = 'Nelder-Mead' opt_method = 'BFGS' res = scipy.optimize.minimize(f, x0, method=opt_method, jac=fp) #print res self.w = res.x[:m] if update_v: self.v = res.x[m:] def m_step(self, update_v = True): """ maximize expected ll of w, v, theta """ self.m_step_theta() self.m_step_wv(update_v) def init_wv(self): """ init the params w and v using the results of linear regression on empirical """ self.lr = sklearn.linear_model.LinearRegression(fit_intercept = False) self.lr.fit(self.F, self.empi_mean) self.w = self.lr.coef_ self.lr.fit(self.F, np.log( pow(np.asarray(self.empi_var), 0.5)) ) self.v = self.lr.coef_ def init_em(self, h_theta = 0.8): """ init w, v, theta """ self.s = 2 # sd of spam distribution self.w = np.zeros((self.m,)) self.v = np.zeros((self.m,)) self.theta = {} dic_ul = analysis.get_dic_url_labels(self.data) dic_w, dic_mean = analysis.agreement(self.data, dic_ul) for w in self.dic_w_il: #self.theta[w] = 1 - h_theta*abs(dic_mean[w]) self.theta[w] = h_theta self.init_wv() #self.pt = [] #for i in range(self.n): # self.pt.append([]) # workers, labels = self.L[i] # for w, l in zip(workers, labels): # self.pt[i].append(0.99) def em(self, w_it = 3, v_it = 1): """ """ # iterate for it in range(w_it): self.e_step() update_v = it < v_it self.m_step(update_v) def get_var_f(self, f): """ return variance for a feature vector """ return pow ( np.exp ( f.dot(self.v) ), 2) def predict(self, list_conf): """ predict mean and var of new conf """ res_mean = [] res_var = [] for conf in list_conf: f = np.asarray( create_features(conf) ) mean = f.dot(self.w) var = self.get_var_f(f) res_mean.append(mean) res_var.append(var) return (res_mean, res_var) def spam_score(self, workers): """ return prob of the worker being a spammer """ res = [] for w in workers: res.append(1 - self.theta[w]) return res def get_dic(self, w, v): """ return dics of conf to mean and var using prediction by w and v """ dic_mean = {} dic_var = {} for i in range(self.n): conf = tuple(self.list_conf[i]) f = self.F[i] mean = f.dot(w) var = pow( np.exp(f.dot(v)), 2) dic_mean[conf] = mean dic_var[conf] = var return (dic_mean, dic_var) class LR: """ baseline: linear regression """ def __init__(self, data, hetero = False): self.dic_conf_wl = analysis.get_dic_conf_wl(data) n = len(self.dic_conf_wl) list_conf = self.dic_conf_wl.keys() self.F = [] self.empi_mean = [] self.empi_var = [] for conf in list_conf: f = create_features(conf) self.F.append(f) labels = self.dic_conf_wl[conf][1] self.empi_mean.append( np.mean(labels) ) self.empi_var.append ( np.var(labels) ) self.lr_mean = sklearn.linear_model.LinearRegression(fit_intercept = False) self.lr_mean.fit(self.F, self.empi_mean) self.const_var = np.sum((self.lr_mean.predict(self.F) - self.empi_mean)**2) *1.0/ (n-2) self.lr_var = sklearn.linear_model.LinearRegression(fit_intercept = False) #self.lr_var.fit(self.F, self.empi_var ) #self.lr_var.fit(self.F, np.log( pow(np.asarray(self.empi_var), 0.5))) self.hetero = hetero def predict(self, list_conf): """ predict mean and var of new conf """ self.tF = [] for conf in list_conf: f = create_features(conf) self.tF.append(f) res_mean = self.lr_mean.predict(self.tF) if self.hetero: res_var = self.lr_var.predict(self.tF) #res_var = pow( np.exp(self.lr_var.predict(self.tF)), 2) else: res_var = [self.const_var] * len(list_conf) return (res_mean, res_var) class baseline_spam(model): """ baselines for spam detection """ def __init__(self, data): model.__init__(self, data) #get spam score self.ss = {} for w in self.dic_w_il: self.ss[w] = 0 for i, l in self.dic_w_il[w]: # difference between label and average label self.ss[w] += np.abs( l - np.mean(self.L[i][1]) ) self.ss[w] = self.ss[w] * 1.0 / len(self.dic_w_il[w]) #normalize: max_score = max(self.ss.values()) for w in self.ss: self.ss[w] = self.ss[w] * 1.0 / max_score def spam_score(self, workers): res = [] for w in workers: res.append(self.ss[w]) return res empirical_spam = [0.13, 0.25, 0.22, 0.27, 0.14] def plot_empi_spam(): fig, ax = plt.subplots() ax.bar(np.asarray([1,2,3,4,5]) - 0.5, empirical_spam) ax.set_xlabel('Rating') ax.set_ylabel('Proportion') ax.set_xticks(np.asarray([1,2,3,4,5])) class eval(): """ evaluate """ def __init__(self, data, ptrain = 0.6, pval = 0.2, prw = 0.1, prl = 0.8, ptr = 1.0, plt = 1.0, pwk = 0.0, rand_seed = 1234, noise = 'empirical', bad_guys = []): """ ptrain = train set pval = validation set prw = proportion of random workers (spammers) prl = proportion of random labels (how often a random worker gives a random label) ptr = proportion of train conf plt = proportion of labels for each conf in the train set pwk = proportion of workers to be removed (remove the ones with high diff) """ self.data = copy.deepcopy(data) self.pwk = pwk self.del_wk() self.dic_conf_wl = analysis.get_dic_conf_wl(self.data) self.list_conf = self.dic_conf_wl.keys() #self.rs = np.random.RandomState(1) #self.rs.shuffle(self.list_conf) self.rs = np.random.RandomState(rand_seed) self.rs.shuffle(self.list_conf) self.n = len(self.list_conf) self.n_train = int(ptrain * self.n) # number of total train conf self.n_given = int(self.n_train * ptr) # number of train conf given to method self.train_conf = self.list_conf[:self.n_given] self.n_val = int(pval * self.n) # number of total validation conf self.val_conf = self.list_conf[self.n_train:self.n_train+self.n_val] self.test_conf = self.list_conf[self.n_train+self.n_val:] # get gold L for test self.gold_mean = []; self.gold_var = []; self.gold_num = [] for conf in self.test_conf: labs = self.dic_conf_wl[conf][1] workers = self.dic_conf_wl[conf][0] labels = [] for l, w in zip(labs, workers): if w not in bad_guys: labels.append(l) self.gold_mean.append( np.mean(labels) ) self.gold_var.append ( np.var(labels) ) self.gold_num.append( len(labels) ) # also get gold L for train self.train_mean = []; self.train_var = []; self.train_num = [] for conf in self.train_conf: labels = self.dic_conf_wl[conf][1] self.train_mean.append( np.mean(labels) ) self.train_var.append ( np.var(labels) ) self.train_num.append( len(labels) ) # also get gold L for valildataion self.val_mean = []; self.val_var = []; self.val_num = [] for conf in self.val_conf: labels = self.dic_conf_wl[conf][1] self.val_mean.append( np.mean(labels) ) self.val_var.append ( np.var(labels) ) self.val_num.append( len(labels) ) self.plt = plt self.get_train_data() #inject noise train_workers = analysis.get_list_workers(self.train_data) self.rs.shuffle(train_workers) self.n_random_workers = int(prw * len(train_workers)) self.random_workers = train_workers[:self.n_random_workers] self.train_workers = train_workers self.noise = noise self.prl = prl self.inject_noise() def rand_rating(self): if self.noise == 'uniform': return self.rs.randint(1,6) elif self.noise == 'empirical': return np.nonzero(self.rs.multinomial(1, empirical_spam))[0][0]+1 else: raise "unknown noise" def inject_noise(self): for i in range(len(self.train_data)): w = self.train_data[i][0] if w in self.random_workers: if np.random.uniform() < self.prl: self.train_data[i][3] = str(self.rand_rating()) def get_train_data(self): self.train_data = [] dic_conf_num = {}# conf-> number of crowd labels this conf got for d in self.data: conf = analysis.get_conf(d) if conf in self.train_conf: if conf not in dic_conf_num: dic_conf_num[conf] = 0 if dic_conf_num[conf] > self.plt * len(self.dic_conf_wl[conf][0]): continue dic_conf_num[conf] += 1 self.train_data.append(d) def del_wk(self): """ remove workers with high deviation remove a proportion of self.pwk workers """ if self.pwk == 0.0: return dic_ul = analysis.get_dic_url_labels(self.data) dic_w, dic_mean = analysis.agreement(self.data, dic_ul) self.workers = sorted(dic_mean.items(), key = lambda i : abs(i[1]), reverse = False) nwk = len(self.workers) keep_workers = list( zip(*self.workers[:int((1-self.pwk) * nwk)])[0]) # list of workers to keep new_data = [] for i in self.data: if i[0] in keep_workers: new_data.append(i) self.data = new_data def get_mae(self, a, b): if ( len(a) != len(b) ) : raise "len not equal" res = 0 for x,y in zip(a,b): res += np.abs(x-y) res = res * 1.0 / len(a) return res def eval(self, model): """ model has beeen trained model has a predict method """ res_mean, res_var = model.predict(self.test_conf) mae_mean = self.get_mae(res_mean, self.gold_mean) mae_var = self.get_mae(res_var, self.gold_var) #print "correlation: ", pearsonr(res_var, self.gold_var) return [mae_mean, mae_var] def eval_val(self, model): """ model has beeen trained model has a predict method evaluate on validation data """ res_mean, res_var = model.predict(self.val_conf) mae_mean = self.get_mae(res_mean, self.val_mean) mae_var = self.get_mae(res_var, self.val_var) #print "correlation: ", pearsonr(res_var, self.gold_var) return [mae_mean, mae_var] def print_val(self, model): res_mean, res_var = model.predict(self.val_conf) mae_var = self.get_mae(res_var, self.val_var) s = 0 for i,j in zip(res_var, self.val_var): print i, j, i - j s += (i-j) print "s = ", s def eval_all(self, em_it = 3): """ evaluate """ # LR #lr = LR(self.train_data, hetero = True) lr = LR(self.train_data, hetero = False) eval_lr = self.eval(lr) # nospam model #ns = model_nospam(self.train_data) #ns.init_em() #ns.em(em_it) #eval_ns = self.eval(ns) # model #new99 = model(self.train_data) #new99.init_em(0.99) #new99.em(em_it) #eval_new99 = self.eval(new99) new8 = model(self.train_data) #new8.init_em(0.99) new8.init_em(1) new8.em(1,1) eval_new8 = self.eval(new8) # fix bias model #fb = model_fixbias(self.train_data) #fb.init_em() #fb.em(em_it) #eval_fb = self.eval(fb) # variational model var82 = model_var(self.train_data, 9.9, 0.1) var82.init_em() #var82.e_step() var82.em(1,1) eval_var82 = self.eval(var82) #var191 = model_var(self.train_data, 19, 1) #var191.init_em() #var191.em(em_it) #eval_var191 = self.eval(var191) # spamer score ss_baseline = self.detect_spammer(baseline_spam(self.train_data)) ss_new = self.detect_spammer(new8) ss_var82 = self.detect_spammer(var82) print "linear reg/baseline:", eval_lr, ss_baseline #print "no spam model:", eval_ns print "new model:", eval_new8, ss_new #print "new model(fixbias)", eval_fb print "var model", eval_var82, ss_var82 #return ([eval_lr, eval_new99, eval_new9, eval_ns, eval_fb, eval_var91, eval_var191], ss_baseline, ss_new) #return ([eval_lr, eval_new8], ss_baseline, ss_new) return ([eval_lr, eval_new8, eval_var82], ss_baseline, ss_new, ss_var82) def detect_spammer(self, model): """ return AUC of the model in detecting the spammers. model has a method spam_score(list_workers) that return the prob of being spammer """ # in self.train_workers, the first n_random_workers if self.n_random_workers == 0: return -1 score = model.spam_score(self.train_workers) y = [1] * self.n_random_workers + [0] * (len(self.train_workers) - self.n_random_workers) return roc_auc_score(y, score) class model_constvar(model): """ same model with constant variance """ def __init__(self, data): model.__init__(self,data) self.std = 1 def get_std(self, i): return self.std def expected_ll(self, w): """ return expected log likelihood """ res = 0 for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): pt0 = 1 - pt1 theta = self.theta[worker] ll0 = np.log(self.spam_dist(l)) + np.log(1-theta) mean = self.F[i].dot(w) std = self.std if std < self.ep: std = self.ep ll1 = scipy.stats.norm.logpdf(l, loc = mean, scale = std ) + np.log(theta) res += pt0*ll0 + pt1*ll1 return res def grad_expected_ll(self, w): gw = np.zeros( (self.m,) ) for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): wtc = self.F[i].dot(w) sigma = self.std if sigma < self.ep: sigma = self.ep update_w = pt1*(l-wtc)/pow(sigma,2)*self.F[i] gw += update_w return gw def m_step_var(self): s1 = 0 s2 = 0 for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): wtx = self.F[i].dot(self.w) s1 += pt1*pow(l-wtx,2) s2 += pt1 self.var = s1*1.0/s2 def m_step(self): """ maximize theta, W and var """ self.m_step_theta() # maximize W m = self.m f = lambda x: -self.expected_ll(x) fp = lambda x: -self.grad_expected_ll(x) x0 = self.w #opt_method = 'Nelder-Mead' opt_method = 'BFGS' res = scipy.optimize.minimize(f, x0, method=opt_method, jac=fp) print res self.w = res.x # maximize var self.m_step_var() class model_var(model): """ theta is hidden variable inference by meanfield variational """ def __init__(self, data, A = 8.0, B = 2.0): model.__init__(self, data) self.A = A self.B = B def init_em(self): """ init params: w and v init variational params alpha, beta, gamma """ self.s = 2 model.init_wv(self) self.alpha = {} self.beta = {} for w in self.dic_w_il: self.alpha[w] = self.A self.beta[w] = self.B self.gamma = [] for i in range(self.n): workers, labels = self.L[i] self.gamma.append([]) for w, l in zip(workers, labels): self.gamma[i].append( self.A*1.0/(self.A+self.B) ) def update(self, a, b): self.n_update += 1 self.change += np.abs(a-b) def e_step(self, max_it = 10): for it in range(max_it): self.change = 0; self.n_update = 0 # update q(Z) for i in range(self.n): workers, labels = self.L[i] for w, l, j in zip(workers, labels, range(len(workers))): alpha = self.alpha[w] beta = self.beta[w] z0 = (self.spam_dist(l)) * np.exp( digamma(beta) - digamma(alpha+beta) ) z1 = scipy.stats.norm.pdf(l, loc = self.get_mean(i), scale = self.get_std(i) ) * np.exp( digamma(alpha) - digamma(alpha+beta) ) g = z1*1.0 / (z0+z1) self.update(self.gamma[i][j], g) self.gamma[i][j] = g # update q(theta) new_alpha = {} new_beta = {} for w in self.dic_w_il: new_alpha[w] = self.A new_beta[w] = self.B for i in range(self.n): workers, labels = self.L[i] for w, l, g in zip(workers, labels, self.gamma[i]): new_alpha[w] += (1-g) new_beta[w] += g for w in self.dic_w_il: self.update(self.alpha[w], new_alpha[w]) self.alpha[w] = new_alpha[w] self.update(self.beta[w], new_beta[w]) self.beta[w] = new_beta[w] # avg_change = self.change * 1.0/self.n_update if avg_change < 0.01:break def m_step(self, update_v = True): self.pt = self.gamma model.m_step_wv(self, update_v) def spam_score(self, workers): """ return prob of being a spammer """ res = [] for w in workers: a = self.alpha[w]- self.A; b = self.beta[w] - self.B res.append( a * 1.0/(a+b) ) return res class model_nospam(model): def __init__(self, data): model.__init__(self, data) def e_step(self): self.pt = [] for i in range(self.n): self.pt.append([]) workers, labels = self.L[i] for w, l in zip(workers, labels): self.pt[i].append(1.0) class test: def __init__(self, data, n_train = 1): self.data = copy.deepcopy(data) self.reduce() self.dic_conf_wl = analysis.get_dic_conf_wl(self.data) self.list_conf = self.dic_conf_wl.keys() #self.rs = np.random.RandomState(rand_seed) #self.rs.shuffle(self.list_conf) self.n = len(self.list_conf) self.n_train = n_train self.train_conf = self.list_conf[:self.n_train] self.test_conf = self.list_conf[self.n_train:] # get gold L for test self.gold_mean = []; self.gold_var = []; self.gold_num = [] for conf in self.test_conf: labels = self.dic_conf_wl[conf][1] self.gold_mean.append( np.mean(labels) ) self.gold_var.append ( np.var(labels) ) self.gold_num.append( len(labels) ) # also get gold L for train self.train_mean = []; self.train_var = []; self.train_num = [] for conf in self.train_conf: labels = self.dic_conf_wl[conf][1] self.train_mean.append( np.mean(labels) ) self.train_var.append ( np.var(labels) ) self.train_num.append( len(labels) ) self.get_train_data() def reduce(self): """ del label so that each conf has ~ same number of L """ dic_conf_wl = analysis.get_dic_conf_wl(self.data) dic_conf_num = {} for conf in dic_conf_wl.keys(): labels = dic_conf_wl[conf][1] dic_conf_num[conf] = len(labels) new_data = [] for d in self.data: conf = analysis.get_conf(d) if dic_conf_num[conf] > 50: dic_conf_num[conf] -= 1 else: new_data.append(d) self.data = new_data def get_train_data(self): self.train_data = [] for d in self.data: conf = analysis.get_conf(d) if conf in self.train_conf: self.train_data.append(d) def run(self, model, n_it = 1): self.M = model(self.train_data) self.M.init_em() x = self.M.predict(self.train_conf) self.M.em(n_it) x1 = self.M.predict(self.train_conf) self.print_res(self.train_var, x, x1) def print_res(self, gold, x, x1): sum_x = 0 sum_x1 = 0 for i in range(len(gold)): #print i, gold[i], x[1][i], x1[1][i] sum_x += x[1][i] - gold[i] sum_x1 += x1[1][i] - gold[i] e0 = eval([]) print 'mae x = ' , e0.get_mae(gold, x[1]) print 'mae x1 = ', e0.get_mae(gold, x1[1]) print 'sum x = ', sum_x, ' sum x1 = ', sum_x1 class model_fixbias(model): def m_step_wv(self): self.wm = [] self.wv = [] for i in range(self.n): workers, labels = self.L[i] m = len(labels) s = 0 sw = 0 for w, l, pt1 in zip(workers, labels, self.pt[i]): s += pt1 * l sw += pt1 wmean = s * 1.0 / sw self.wm.append(wmean) s = 0 for w, l, pt1 in zip(workers, labels, self.pt[i]): s += pt1 * pow(l - wmean, 2) wvar = s * 1.0 / sw self.wv.append(wvar) self.lr = sklearn.linear_model.LinearRegression(fit_intercept = False) self.lr.fit(self.F, self.wm) self.w = self.lr.coef_ self.lr.fit(self.F, np.log( pow(np.asarray(self.wv), 0.5)) ) self.v = self.lr.coef_ class model_vf(model_var, model_fixbias): def m_step(self): self.pt = self.gamma model_fixbias.m_step_wv(self) class model_stoch(model): """ using stochastic gradient descent to optimize params """ def __init__(self, data, lr_w = 0.001, lr_v = 0.001): model.__init__(self, data) self.lr_w = lr_w self.lr_v = lr_v def m_step_wv(self): """ maximize w and v using SGD """ for it in range(50): for i in range(self.n): gw = np.zeros( (self.m,) ) gv = np.zeros( (self.m,) ) workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): wtc = self.F[i].dot(self.w) sigma = np.exp(self.F[i].dot(self.v)) if sigma < self.ep: sigma = self.ep update_w = pt1*(l-wtc)/pow(sigma,2)*self.F[i] gw += update_w update_v = pt1*(-self.F[i] + pow(l-wtc,2)/pow(sigma,2)*self.F[i]) gv += update_v self.w = self.w + self.lr_w * gw self.v = self.v + self.lr_v * gv #for i in range(self.m-1): # gw[i] -= 2 * self.lambda_w * w[i] # gv[i] -= 2 * self.lambda_v * v[i] class model_school(model): def __init__(self, data): model.__init__(self, data) def get_mean(self, i, k): return self.F[i].dot(self.w[k]) def get_std(self, i, k): return np.exp(self.F[i].dot(self.v[k])) def get_var(self, i, k): return pow(self.get_std(i,k), 2) def e_step(self): """ evaluate posterior over Z """ self.pt = [] for i in range(self.n): self.pt.append([]) workers, labels = self.L[i] for w, l in zip(workers, labels): p1 = scipy.stats.norm.pdf(l, loc = self.get_mean(i, 1), scale = self.get_std(i, 1) ) * self.theta[w] p0 = scipy.stats.norm.pdf(l, loc = self.get_mean(i, 0), scale = self.get_std(i, 0) ) * (1-self.theta[w]) p = p1 *1.0/ (p0 + p1) self.pt[i].append(p) def expected_ll(self, x): """ return expected log likelihood """ l = len(x)/2 w = x[:l].reshape((2, self.m)) v = x[l:].reshape((2, self.m)) res = 0 for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): pt0 = 1 - pt1 #theta = self.theta[worker] ll = [0,0] for k in [0,1]: mean = self.F[i].dot(w[k]) std = np.exp(self.F[i].dot(v[k])) if std < self.ep: std = self.ep ll[k] = scipy.stats.norm.logpdf(l, loc = mean, scale = std )# + np.log(theta) res += pt0*ll[0] + pt1*ll[1] #regularization #for i in range(self.m-1): # res -= self.lambda_w * w[i]*w[i] + self.lambda_v * v[i]*v[i] return res def grad_expected_ll(self, x): l = len(x)/2 w = x[:l].reshape((2, self.m)) v = x[l:].reshape((2, self.m)) gw = np.zeros( (2, self.m) ) gv = np.zeros( (2, self.m) ) for k in [0,1]: for i in range(self.n): workers, labels = self.L[i] for worker, l, pt1 in zip(workers, labels, self.pt[i]): wtc = self.F[i].dot(w[k]) sigma = np.exp(self.F[i].dot(v[k])) if sigma < self.ep: sigma = self.ep pt = pt1 if (k==1) else 1 - pt1 update_w = pt*(l-wtc)/pow(sigma,2)*self.F[i] gw[k] += update_w[k] update_v = pt*(-self.F[i] + pow(l-wtc,2)/pow(sigma,2)*self.F[i]) gv[k] += update_v[k] # regularization #for i in range(self.m-1): # gw[i] -= 2 * self.lambda_w * w[i] # gv[i] -= 2 * self.lambda_v * v[i] return np.hstack( (gw[0,:], gw[1,:], gv[0,:], gv[1,:]) ) def m_step_wv(self): """ maximize w and v """ m = self.m f = lambda x: -self.expected_ll(x) fp = lambda x: -self.grad_expected_ll(x) x0 = np.hstack( (self.w.reshape((2*m,)), self.v.reshape((2*m,))) ) #opt_method = 'Nelder-Mead' opt_method = 'BFGS' res = scipy.optimize.minimize(f, x0, method=opt_method, jac=fp) #print res x = res.x l = len(x)/2 self.w = x[:l].reshape((2, self.m)) self.v = x[l:].reshape((2, self.m)) def m_step(self): """ maximize expected ll of w, v, theta """ self.m_step_theta() self.m_step_wv() def init_wv(self): """ init the params w and v using the results of linear regression on empirical """ self.lr = sklearn.linear_model.LinearRegression(fit_intercept = False) self.lr.fit(self.F, self.empi_mean) self.w[0] = self.lr.coef_ + self.rs.normal(0, 0.1, self.m) self.w[1] = self.lr.coef_ + self.rs.normal(0, 0.1, self.m) self.lr.fit(self.F, np.log( pow(np.asarray(self.empi_var), 0.5)) ) self.v[0] = self.lr.coef_ + self.rs.normal(0, 0.1, self.m) self.v[1] = self.lr.coef_ + self.rs.normal(0, 0.1, self.m) def init_em(self, rseed = 1): """ init w, v, theta """ self.rs = np.random.RandomState(rseed) self.w = np.zeros((2, self.m)) self.v = np.zeros((2, self.m)) self.theta = {} for w in self.dic_w_il: self.theta[w] = self.rs.rand() self.init_wv() def em(self, n_it = 3): """ """ # iterate for it in range(n_it): self.e_step() self.m_step()
mit
miptliot/edx-platform
lms/djangoapps/course_api/blocks/serializers.py
13
3789
""" Serializers for Course Blocks related return objects. """ from django.conf import settings from rest_framework import serializers from rest_framework.reverse import reverse from .transformers import SUPPORTED_FIELDS class BlockSerializer(serializers.Serializer): # pylint: disable=abstract-method """ Serializer for single course block """ def _get_field(self, block_key, transformer, field_name, default): """ Get the field value requested. The field may be an XBlock field, a transformer block field, or an entire tranformer block data dict. """ value = None if transformer is None: value = self.context['block_structure'].get_xblock_field(block_key, field_name) elif field_name is None: try: value = self.context['block_structure'].get_transformer_block_data(block_key, transformer).fields except KeyError: pass else: value = self.context['block_structure'].get_transformer_block_field(block_key, transformer, field_name) return value if (value is not None) else default def to_representation(self, block_key): """ Return a serializable representation of the requested block """ # create response data dict for basic fields data = { 'id': unicode(block_key), 'block_id': unicode(block_key.block_id), 'lms_web_url': reverse( 'jump_to', kwargs={'course_id': unicode(block_key.course_key), 'location': unicode(block_key)}, request=self.context['request'], ), 'student_view_url': reverse( 'courseware.views.views.render_xblock', kwargs={'usage_key_string': unicode(block_key)}, request=self.context['request'], ), } if settings.FEATURES.get("ENABLE_LTI_PROVIDER") and 'lti_url' in self.context['requested_fields']: data['lti_url'] = reverse( 'lti_provider_launch', kwargs={'course_id': unicode(block_key.course_key), 'usage_id': unicode(block_key)}, request=self.context['request'], ) # add additional requested fields that are supported by the various transformers for supported_field in SUPPORTED_FIELDS: if supported_field.requested_field_name in self.context['requested_fields']: field_value = self._get_field( block_key, supported_field.transformer, supported_field.block_field_name, supported_field.default_value, ) if field_value is not None: # only return fields that have data data[supported_field.serializer_field_name] = field_value if 'children' in self.context['requested_fields']: children = self.context['block_structure'].get_children(block_key) if children: data['children'] = [unicode(child) for child in children] return data class BlockDictSerializer(serializers.Serializer): # pylint: disable=abstract-method """ Serializer that formats a BlockStructure object to a dictionary, rather than a list, of blocks """ root = serializers.CharField(source='root_block_usage_key') blocks = serializers.SerializerMethodField() def get_blocks(self, structure): """ Serialize to a dictionary of blocks keyed by the block's usage_key. """ return { unicode(block_key): BlockSerializer(block_key, context=self.context).data for block_key in structure }
agpl-3.0
ljjt/azure-sdk-for-python
azure/storage/blobservice.py
1
109280
#------------------------------------------------------------------------- # Copyright (c) Microsoft. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #-------------------------------------------------------------------------- from azure import ( WindowsAzureError, BLOB_SERVICE_HOST_BASE, DEV_BLOB_HOST, _ERROR_VALUE_NEGATIVE, _ERROR_PAGE_BLOB_SIZE_ALIGNMENT, _convert_class_to_xml, _dont_fail_not_exist, _dont_fail_on_exist, _encode_base64, _get_request_body, _get_request_body_bytes_only, _int_or_none, _parse_enum_results_list, _parse_response, _parse_response_for_dict, _parse_response_for_dict_filter, _parse_response_for_dict_prefix, _parse_simple_list, _str, _str_or_none, _update_request_uri_query_local_storage, _validate_type_bytes, _validate_not_none, ) from azure.http import HTTPRequest from azure.storage import ( Container, ContainerEnumResults, PageList, PageRange, SignedIdentifiers, StorageServiceProperties, _convert_block_list_to_xml, _convert_response_to_block_list, _create_blob_result, _parse_blob_enum_results_list, _update_storage_blob_header, ) from azure.storage.storageclient import _StorageClient from os import path import sys if sys.version_info >= (3,): from io import BytesIO else: from cStringIO import StringIO as BytesIO # Keep this value sync with _ERROR_PAGE_BLOB_SIZE_ALIGNMENT _PAGE_SIZE = 512 class BlobService(_StorageClient): ''' This is the main class managing Blob resources. ''' def __init__(self, account_name=None, account_key=None, protocol='https', host_base=BLOB_SERVICE_HOST_BASE, dev_host=DEV_BLOB_HOST): ''' account_name: your storage account name, required for all operations. account_key: your storage account key, required for all operations. protocol: Optional. Protocol. Defaults to https. host_base: Optional. Live host base url. Defaults to Azure url. Override this for on-premise. dev_host: Optional. Dev host url. Defaults to localhost. ''' self._BLOB_MAX_DATA_SIZE = 64 * 1024 * 1024 self._BLOB_MAX_CHUNK_DATA_SIZE = 4 * 1024 * 1024 super(BlobService, self).__init__( account_name, account_key, protocol, host_base, dev_host) def make_blob_url(self, container_name, blob_name, account_name=None, protocol=None, host_base=None): ''' Creates the url to access a blob. container_name: Name of container. blob_name: Name of blob. account_name: Name of the storage account. If not specified, uses the account specified when BlobService was initialized. protocol: Protocol to use: 'http' or 'https'. If not specified, uses the protocol specified when BlobService was initialized. host_base: Live host base url. If not specified, uses the host base specified when BlobService was initialized. ''' if not account_name: account_name = self.account_name if not protocol: protocol = self.protocol if not host_base: host_base = self.host_base return '{0}://{1}{2}/{3}/{4}'.format(protocol, account_name, host_base, container_name, blob_name) def list_containers(self, prefix=None, marker=None, maxresults=None, include=None): ''' The List Containers operation returns a list of the containers under the specified account. prefix: Optional. Filters the results to return only containers whose names begin with the specified prefix. marker: Optional. A string value that identifies the portion of the list to be returned with the next list operation. maxresults: Optional. Specifies the maximum number of containers to return. include: Optional. Include this parameter to specify that the container's metadata be returned as part of the response body. set this parameter to string 'metadata' to get container's metadata. ''' request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/?comp=list' request.query = [ ('prefix', _str_or_none(prefix)), ('marker', _str_or_none(marker)), ('maxresults', _int_or_none(maxresults)), ('include', _str_or_none(include)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_enum_results_list(response, ContainerEnumResults, "Containers", Container) def create_container(self, container_name, x_ms_meta_name_values=None, x_ms_blob_public_access=None, fail_on_exist=False): ''' Creates a new container under the specified account. If the container with the same name already exists, the operation fails. container_name: Name of container to create. x_ms_meta_name_values: Optional. A dict with name_value pairs to associate with the container as metadata. Example:{'Category':'test'} x_ms_blob_public_access: Optional. Possible values include: container, blob fail_on_exist: specify whether to throw an exception when the container exists. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '?restype=container' request.headers = [ ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-blob-public-access', _str_or_none(x_ms_blob_public_access)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) if not fail_on_exist: try: self._perform_request(request) return True except WindowsAzureError as ex: _dont_fail_on_exist(ex) return False else: self._perform_request(request) return True def get_container_properties(self, container_name, x_ms_lease_id=None): ''' Returns all user-defined metadata and system properties for the specified container. container_name: Name of existing container. x_ms_lease_id: If specified, get_container_properties only succeeds if the container's lease is active and matches this ID. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + _str(container_name) + '?restype=container' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict(response) def get_container_metadata(self, container_name, x_ms_lease_id=None): ''' Returns all user-defined metadata for the specified container. The metadata will be in returned dictionary['x-ms-meta-(name)']. container_name: Name of existing container. x_ms_lease_id: If specified, get_container_metadata only succeeds if the container's lease is active and matches this ID. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '?restype=container&comp=metadata' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict_prefix(response, prefixes=['x-ms-meta']) def set_container_metadata(self, container_name, x_ms_meta_name_values=None, x_ms_lease_id=None): ''' Sets one or more user-defined name-value pairs for the specified container. container_name: Name of existing container. x_ms_meta_name_values: A dict containing name, value for metadata. Example: {'category':'test'} x_ms_lease_id: If specified, set_container_metadata only succeeds if the container's lease is active and matches this ID. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '?restype=container&comp=metadata' request.headers = [ ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def get_container_acl(self, container_name, x_ms_lease_id=None): ''' Gets the permissions for the specified container. container_name: Name of existing container. x_ms_lease_id: If specified, get_container_acl only succeeds if the container's lease is active and matches this ID. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '?restype=container&comp=acl' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response(response, SignedIdentifiers) def set_container_acl(self, container_name, signed_identifiers=None, x_ms_blob_public_access=None, x_ms_lease_id=None): ''' Sets the permissions for the specified container. container_name: Name of existing container. signed_identifiers: SignedIdentifers instance x_ms_blob_public_access: Optional. Possible values include: container, blob x_ms_lease_id: If specified, set_container_acl only succeeds if the container's lease is active and matches this ID. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '?restype=container&comp=acl' request.headers = [ ('x-ms-blob-public-access', _str_or_none(x_ms_blob_public_access)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ] request.body = _get_request_body( _convert_class_to_xml(signed_identifiers)) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def delete_container(self, container_name, fail_not_exist=False, x_ms_lease_id=None): ''' Marks the specified container for deletion. container_name: Name of container to delete. fail_not_exist: Specify whether to throw an exception when the container doesn't exist. x_ms_lease_id: Required if the container has an active lease. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'DELETE' request.host = self._get_host() request.path = '/' + _str(container_name) + '?restype=container' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) if not fail_not_exist: try: self._perform_request(request) return True except WindowsAzureError as ex: _dont_fail_not_exist(ex) return False else: self._perform_request(request) return True def lease_container(self, container_name, x_ms_lease_action, x_ms_lease_id=None, x_ms_lease_duration=60, x_ms_lease_break_period=None, x_ms_proposed_lease_id=None): ''' Establishes and manages a lock on a container for delete operations. The lock duration can be 15 to 60 seconds, or can be infinite. container_name: Name of existing container. x_ms_lease_action: Required. Possible values: acquire|renew|release|break|change x_ms_lease_id: Required if the container has an active lease. x_ms_lease_duration: Specifies the duration of the lease, in seconds, or negative one (-1) for a lease that never expires. A non-infinite lease can be between 15 and 60 seconds. A lease duration cannot be changed using renew or change. For backwards compatibility, the default is 60, and the value is only used on an acquire operation. x_ms_lease_break_period: Optional. For a break operation, this is the proposed duration of seconds that the lease should continue before it is broken, between 0 and 60 seconds. This break period is only used if it is shorter than the time remaining on the lease. If longer, the time remaining on the lease is used. A new lease will not be available before the break period has expired, but the lease may be held for longer than the break period. If this header does not appear with a break operation, a fixed-duration lease breaks after the remaining lease period elapses, and an infinite lease breaks immediately. x_ms_proposed_lease_id: Optional for acquire, required for change. Proposed lease ID, in a GUID string format. ''' _validate_not_none('container_name', container_name) _validate_not_none('x_ms_lease_action', x_ms_lease_action) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '?restype=container&comp=lease' request.headers = [ ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-lease-action', _str_or_none(x_ms_lease_action)), ('x-ms-lease-duration', _str_or_none( x_ms_lease_duration if x_ms_lease_action == 'acquire'\ else None)), ('x-ms-lease-break-period', _str_or_none(x_ms_lease_break_period)), ('x-ms-proposed-lease-id', _str_or_none(x_ms_proposed_lease_id)), ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict_filter( response, filter=['x-ms-lease-id', 'x-ms-lease-time']) def list_blobs(self, container_name, prefix=None, marker=None, maxresults=None, include=None, delimiter=None): ''' Returns the list of blobs under the specified container. container_name: Name of existing container. prefix: Optional. Filters the results to return only blobs whose names begin with the specified prefix. marker: Optional. A string value that identifies the portion of the list to be returned with the next list operation. The operation returns a marker value within the response body if the list returned was not complete. The marker value may then be used in a subsequent call to request the next set of list items. The marker value is opaque to the client. maxresults: Optional. Specifies the maximum number of blobs to return, including all BlobPrefix elements. If the request does not specify maxresults or specifies a value greater than 5,000, the server will return up to 5,000 items. Setting maxresults to a value less than or equal to zero results in error response code 400 (Bad Request). include: Optional. Specifies one or more datasets to include in the response. To specify more than one of these options on the URI, you must separate each option with a comma. Valid values are: snapshots: Specifies that snapshots should be included in the enumeration. Snapshots are listed from oldest to newest in the response. metadata: Specifies that blob metadata be returned in the response. uncommittedblobs: Specifies that blobs for which blocks have been uploaded, but which have not been committed using Put Block List (REST API), be included in the response. copy: Version 2012-02-12 and newer. Specifies that metadata related to any current or previous Copy Blob operation should be included in the response. delimiter: Optional. When the request includes this parameter, the operation returns a BlobPrefix element in the response body that acts as a placeholder for all blobs whose names begin with the same substring up to the appearance of the delimiter character. The delimiter may be a single character or a string. ''' _validate_not_none('container_name', container_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '?restype=container&comp=list' request.query = [ ('prefix', _str_or_none(prefix)), ('delimiter', _str_or_none(delimiter)), ('marker', _str_or_none(marker)), ('maxresults', _int_or_none(maxresults)), ('include', _str_or_none(include)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_blob_enum_results_list(response) def set_blob_service_properties(self, storage_service_properties, timeout=None): ''' Sets the properties of a storage account's Blob service, including Windows Azure Storage Analytics. You can also use this operation to set the default request version for all incoming requests that do not have a version specified. storage_service_properties: a StorageServiceProperties object. timeout: Optional. The timeout parameter is expressed in seconds. ''' _validate_not_none('storage_service_properties', storage_service_properties) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/?restype=service&comp=properties' request.query = [('timeout', _int_or_none(timeout))] request.body = _get_request_body( _convert_class_to_xml(storage_service_properties)) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def get_blob_service_properties(self, timeout=None): ''' Gets the properties of a storage account's Blob service, including Windows Azure Storage Analytics. timeout: Optional. The timeout parameter is expressed in seconds. ''' request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/?restype=service&comp=properties' request.query = [('timeout', _int_or_none(timeout))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response(response, StorageServiceProperties) def get_blob_properties(self, container_name, blob_name, x_ms_lease_id=None): ''' Returns all user-defined metadata, standard HTTP properties, and system properties for the blob. container_name: Name of existing container. blob_name: Name of existing blob. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'HEAD' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict(response) def set_blob_properties(self, container_name, blob_name, x_ms_blob_cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_md5=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_lease_id=None): ''' Sets system properties on the blob. container_name: Name of existing container. blob_name: Name of existing blob. x_ms_blob_cache_control: Optional. Modifies the cache control string for the blob. x_ms_blob_content_type: Optional. Sets the blob's content type. x_ms_blob_content_md5: Optional. Sets the blob's MD5 hash. x_ms_blob_content_encoding: Optional. Sets the blob's content encoding. x_ms_blob_content_language: Optional. Sets the blob's content language. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=properties' request.headers = [ ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def put_blob(self, container_name, blob_name, blob, x_ms_blob_type, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, x_ms_blob_content_length=None, x_ms_blob_sequence_number=None): ''' Creates a new block blob or page blob, or updates the content of an existing block blob. See put_block_blob_from_* and put_page_blob_from_* for high level functions that handle the creation and upload of large blobs with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. blob: For BlockBlob: Content of blob as bytes (size < 64MB). For larger size, you must call put_block and put_block_list to set content of blob. For PageBlob: Use None and call put_page to set content of blob. x_ms_blob_type: Required. Could be BlockBlob or PageBlob. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. x_ms_blob_content_length: Required for page blobs. This header specifies the maximum size for the page blob, up to 1 TB. The page blob size must be aligned to a 512-byte boundary. x_ms_blob_sequence_number: Optional. Set for page blobs only. The sequence number is a user-controlled value that you can use to track requests. The value of the sequence number must be between 0 and 2^63 - 1. The default value is 0. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('x_ms_blob_type', x_ms_blob_type) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-blob-type', _str_or_none(x_ms_blob_type)), ('Content-Encoding', _str_or_none(content_encoding)), ('Content-Language', _str_or_none(content_language)), ('Content-MD5', _str_or_none(content_md5)), ('Cache-Control', _str_or_none(cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-blob-content-length', _str_or_none(x_ms_blob_content_length)), ('x-ms-blob-sequence-number', _str_or_none(x_ms_blob_sequence_number)) ] request.body = _get_request_body_bytes_only('blob', blob) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def put_block_blob_from_path(self, container_name, blob_name, file_path, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, progress_callback=None): ''' Creates a new block blob from a file path, or updates the content of an existing block blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. file_path: Path of the file to upload as the blob content. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('file_path', file_path) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-blob-type', 'BlockBlob'), ('Content-Encoding', _str_or_none(content_encoding)), ('Content-Language', _str_or_none(content_language)), ('Content-MD5', _str_or_none(content_md5)), ('Cache-Control', _str_or_none(cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ] count = path.getsize(file_path) with open(file_path, 'rb') as stream: self.put_block_blob_from_file(container_name, blob_name, stream, count, content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id, progress_callback) def put_block_blob_from_file(self, container_name, blob_name, stream, count=None, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, progress_callback=None): ''' Creates a new block blob from a file/stream, or updates the content of an existing block blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. stream: Opened file/stream to upload as the blob content. count: Number of bytes to read from the stream. This is optional, but should be supplied for optimal performance. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('stream', stream) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-blob-type', 'BlockBlob'), ('Content-Encoding', _str_or_none(content_encoding)), ('Content-Language', _str_or_none(content_language)), ('Content-MD5', _str_or_none(content_md5)), ('Cache-Control', _str_or_none(cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ] if count and count < self._BLOB_MAX_DATA_SIZE: if progress_callback: progress_callback(0, count) data = stream.read(count) self.put_blob(container_name, blob_name, data, 'BlockBlob', content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id) if progress_callback: progress_callback(count, count) else: if progress_callback: progress_callback(0, count) self.put_blob(container_name, blob_name, None, 'BlockBlob', content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id) remain_bytes = count block_ids = [] block_index = 0 index = 0 while True: request_count = self._BLOB_MAX_CHUNK_DATA_SIZE\ if remain_bytes is None else min( remain_bytes, self._BLOB_MAX_CHUNK_DATA_SIZE) data = stream.read(request_count) if data: length = len(data) index += length remain_bytes = remain_bytes - \ length if remain_bytes else None block_id = '{0:08d}'.format(block_index) self.put_block(container_name, blob_name, data, block_id, x_ms_lease_id=x_ms_lease_id) block_ids.append(block_id) block_index += 1 if progress_callback: progress_callback(index, count) else: break self.put_block_list(container_name, blob_name, block_ids) def put_block_blob_from_bytes(self, container_name, blob_name, blob, index=0, count=None, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, progress_callback=None): ''' Creates a new block blob from an array of bytes, or updates the content of an existing block blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. blob: Content of blob as an array of bytes. index: Start index in the array of bytes. count: Number of bytes to upload. Set to None or negative value to upload all bytes starting from index. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('blob', blob) _validate_not_none('index', index) _validate_type_bytes('blob', blob) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-blob-type', 'BlockBlob'), ('Content-Encoding', _str_or_none(content_encoding)), ('Content-Language', _str_or_none(content_language)), ('Content-MD5', _str_or_none(content_md5)), ('Cache-Control', _str_or_none(cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ] if index < 0: raise TypeError(_ERROR_VALUE_NEGATIVE.format('index')) if count is None or count < 0: count = len(blob) - index if count < self._BLOB_MAX_DATA_SIZE: if progress_callback: progress_callback(0, count) data = blob[index: index + count] self.put_blob(container_name, blob_name, data, 'BlockBlob', content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id) if progress_callback: progress_callback(count, count) else: stream = BytesIO(blob) stream.seek(index) self.put_block_blob_from_file(container_name, blob_name, stream, count, content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id, progress_callback) def put_block_blob_from_text(self, container_name, blob_name, text, text_encoding='utf-8', content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, progress_callback=None): ''' Creates a new block blob from str/unicode, or updates the content of an existing block blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. text: Text to upload to the blob. text_encoding: Encoding to use to convert the text to bytes. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('text', text) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-blob-type', 'BlockBlob'), ('Content-Encoding', _str_or_none(content_encoding)), ('Content-Language', _str_or_none(content_language)), ('Content-MD5', _str_or_none(content_md5)), ('Cache-Control', _str_or_none(cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ] if not isinstance(text, bytes): _validate_not_none('text_encoding', text_encoding) text = text.encode(text_encoding) self.put_block_blob_from_bytes(container_name, blob_name, text, 0, len(text), content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id, progress_callback) def put_page_blob_from_path(self, container_name, blob_name, file_path, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, x_ms_blob_sequence_number=None, progress_callback=None): ''' Creates a new page blob from a file path, or updates the content of an existing page blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. file_path: Path of the file to upload as the blob content. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. x_ms_blob_sequence_number: Optional. Set for page blobs only. The sequence number is a user-controlled value that you can use to track requests. The value of the sequence number must be between 0 and 2^63 - 1. The default value is 0. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('file_path', file_path) count = path.getsize(file_path) with open(file_path, 'rb') as stream: self.put_page_blob_from_file(container_name, blob_name, stream, count, content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id, x_ms_blob_sequence_number, progress_callback) def put_page_blob_from_file(self, container_name, blob_name, stream, count, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, x_ms_blob_sequence_number=None, progress_callback=None): ''' Creates a new page blob from a file/stream, or updates the content of an existing page blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. stream: Opened file/stream to upload as the blob content. count: Number of bytes to read from the stream. This is required, a page blob cannot be created if the count is unknown. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. x_ms_blob_sequence_number: Optional. Set for page blobs only. The sequence number is a user-controlled value that you can use to track requests. The value of the sequence number must be between 0 and 2^63 - 1. The default value is 0. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('stream', stream) _validate_not_none('count', count) if count < 0: raise TypeError(_ERROR_VALUE_NEGATIVE.format('count')) if count % _PAGE_SIZE != 0: raise TypeError(_ERROR_PAGE_BLOB_SIZE_ALIGNMENT.format(count)) if progress_callback: progress_callback(0, count) self.put_blob(container_name, blob_name, b'', 'PageBlob', content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id, count, x_ms_blob_sequence_number) remain_bytes = count page_start = 0 while True: request_count = min(remain_bytes, self._BLOB_MAX_CHUNK_DATA_SIZE) data = stream.read(request_count) if data: length = len(data) remain_bytes = remain_bytes - length page_end = page_start + length - 1 self.put_page(container_name, blob_name, data, 'bytes={0}-{1}'.format(page_start, page_end), 'update', x_ms_lease_id=x_ms_lease_id) page_start = page_start + length if progress_callback: progress_callback(page_start, count) else: break def put_page_blob_from_bytes(self, container_name, blob_name, blob, index=0, count=None, content_encoding=None, content_language=None, content_md5=None, cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_blob_cache_control=None, x_ms_meta_name_values=None, x_ms_lease_id=None, x_ms_blob_sequence_number=None, progress_callback=None): ''' Creates a new page blob from an array of bytes, or updates the content of an existing page blob, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of blob to create or update. blob: Content of blob as an array of bytes. index: Start index in the array of bytes. count: Number of bytes to upload. Set to None or negative value to upload all bytes starting from index. content_encoding: Optional. Specifies which content encodings have been applied to the blob. This value is returned to the client when the Get Blob (REST API) operation is performed on the blob resource. The client can use this value when returned to decode the blob content. content_language: Optional. Specifies the natural languages used by this resource. content_md5: Optional. An MD5 hash of the blob content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). cache_control: Optional. The Blob service stores this value but does not use or modify it. x_ms_blob_content_type: Optional. Set the blob's content type. x_ms_blob_content_encoding: Optional. Set the blob's content encoding. x_ms_blob_content_language: Optional. Set the blob's content language. x_ms_blob_content_md5: Optional. Set the blob's MD5 hash. x_ms_blob_cache_control: Optional. Sets the blob's cache control. x_ms_meta_name_values: A dict containing name, value for metadata. x_ms_lease_id: Required if the blob has an active lease. x_ms_blob_sequence_number: Optional. Set for page blobs only. The sequence number is a user-controlled value that you can use to track requests. The value of the sequence number must be between 0 and 2^63 - 1. The default value is 0. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob, or None if the total size is unknown. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('blob', blob) _validate_type_bytes('blob', blob) if index < 0: raise TypeError(_ERROR_VALUE_NEGATIVE.format('index')) if count is None or count < 0: count = len(blob) - index stream = BytesIO(blob) stream.seek(index) self.put_page_blob_from_file(container_name, blob_name, stream, count, content_encoding, content_language, content_md5, cache_control, x_ms_blob_content_type, x_ms_blob_content_encoding, x_ms_blob_content_language, x_ms_blob_content_md5, x_ms_blob_cache_control, x_ms_meta_name_values, x_ms_lease_id, x_ms_blob_sequence_number, progress_callback) def get_blob(self, container_name, blob_name, snapshot=None, x_ms_range=None, x_ms_lease_id=None, x_ms_range_get_content_md5=None): ''' Reads or downloads a blob from the system, including its metadata and properties. See get_blob_to_* for high level functions that handle the download of large blobs with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of existing blob. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve. x_ms_range: Optional. Return only the bytes of the blob in the specified range. x_ms_lease_id: Required if the blob has an active lease. x_ms_range_get_content_md5: Optional. When this header is set to true and specified together with the Range header, the service returns the MD5 hash for the range, as long as the range is less than or equal to 4 MB in size. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-range', _str_or_none(x_ms_range)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-range-get-content-md5', _str_or_none(x_ms_range_get_content_md5)) ] request.query = [('snapshot', _str_or_none(snapshot))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request, None) return _create_blob_result(response) def get_blob_to_path(self, container_name, blob_name, file_path, open_mode='wb', snapshot=None, x_ms_lease_id=None, progress_callback=None): ''' Downloads a blob to a file path, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of existing blob. file_path: Path of file to write to. open_mode: Mode to use when opening the file. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('file_path', file_path) _validate_not_none('open_mode', open_mode) with open(file_path, open_mode) as stream: self.get_blob_to_file(container_name, blob_name, stream, snapshot, x_ms_lease_id, progress_callback) def get_blob_to_file(self, container_name, blob_name, stream, snapshot=None, x_ms_lease_id=None, progress_callback=None): ''' Downloads a blob to a file/stream, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of existing blob. stream: Opened file/stream to write to. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('stream', stream) props = self.get_blob_properties(container_name, blob_name) blob_size = int(props['content-length']) if blob_size < self._BLOB_MAX_DATA_SIZE: if progress_callback: progress_callback(0, blob_size) data = self.get_blob(container_name, blob_name, snapshot, x_ms_lease_id=x_ms_lease_id) stream.write(data) if progress_callback: progress_callback(blob_size, blob_size) else: if progress_callback: progress_callback(0, blob_size) index = 0 while index < blob_size: chunk_range = 'bytes={}-{}'.format( index, index + self._BLOB_MAX_CHUNK_DATA_SIZE - 1) data = self.get_blob( container_name, blob_name, x_ms_range=chunk_range) length = len(data) index += length if length > 0: stream.write(data) if progress_callback: progress_callback(index, blob_size) if length < self._BLOB_MAX_CHUNK_DATA_SIZE: break else: break def get_blob_to_bytes(self, container_name, blob_name, snapshot=None, x_ms_lease_id=None, progress_callback=None): ''' Downloads a blob as an array of bytes, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of existing blob. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) stream = BytesIO() self.get_blob_to_file(container_name, blob_name, stream, snapshot, x_ms_lease_id, progress_callback) return stream.getvalue() def get_blob_to_text(self, container_name, blob_name, text_encoding='utf-8', snapshot=None, x_ms_lease_id=None, progress_callback=None): ''' Downloads a blob as unicode text, with automatic chunking and progress notifications. container_name: Name of existing container. blob_name: Name of existing blob. text_encoding: Encoding to use when decoding the blob data. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve. x_ms_lease_id: Required if the blob has an active lease. progress_callback: Callback for progress with signature function(current, total) where current is the number of bytes transfered so far, and total is the size of the blob. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('text_encoding', text_encoding) result = self.get_blob_to_bytes(container_name, blob_name, snapshot, x_ms_lease_id, progress_callback) return result.decode(text_encoding) def get_blob_metadata(self, container_name, blob_name, snapshot=None, x_ms_lease_id=None): ''' Returns all user-defined metadata for the specified blob or snapshot. container_name: Name of existing container. blob_name: Name of existing blob. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=metadata' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.query = [('snapshot', _str_or_none(snapshot))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict_prefix(response, prefixes=['x-ms-meta']) def set_blob_metadata(self, container_name, blob_name, x_ms_meta_name_values=None, x_ms_lease_id=None): ''' Sets user-defined metadata for the specified blob as one or more name-value pairs. container_name: Name of existing container. blob_name: Name of existing blob. x_ms_meta_name_values: Dict containing name and value pairs. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=metadata' request.headers = [ ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def lease_blob(self, container_name, blob_name, x_ms_lease_action, x_ms_lease_id=None, x_ms_lease_duration=60, x_ms_lease_break_period=None, x_ms_proposed_lease_id=None): ''' Establishes and manages a one-minute lock on a blob for write operations. container_name: Name of existing container. blob_name: Name of existing blob. x_ms_lease_action: Required. Possible values: acquire|renew|release|break|change x_ms_lease_id: Required if the blob has an active lease. x_ms_lease_duration: Specifies the duration of the lease, in seconds, or negative one (-1) for a lease that never expires. A non-infinite lease can be between 15 and 60 seconds. A lease duration cannot be changed using renew or change. For backwards compatibility, the default is 60, and the value is only used on an acquire operation. x_ms_lease_break_period: Optional. For a break operation, this is the proposed duration of seconds that the lease should continue before it is broken, between 0 and 60 seconds. This break period is only used if it is shorter than the time remaining on the lease. If longer, the time remaining on the lease is used. A new lease will not be available before the break period has expired, but the lease may be held for longer than the break period. If this header does not appear with a break operation, a fixed-duration lease breaks after the remaining lease period elapses, and an infinite lease breaks immediately. x_ms_proposed_lease_id: Optional for acquire, required for change. Proposed lease ID, in a GUID string format. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('x_ms_lease_action', x_ms_lease_action) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=lease' request.headers = [ ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-lease-action', _str_or_none(x_ms_lease_action)), ('x-ms-lease-duration', _str_or_none(x_ms_lease_duration\ if x_ms_lease_action == 'acquire' else None)), ('x-ms-lease-break-period', _str_or_none(x_ms_lease_break_period)), ('x-ms-proposed-lease-id', _str_or_none(x_ms_proposed_lease_id)), ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict_filter( response, filter=['x-ms-lease-id', 'x-ms-lease-time']) def snapshot_blob(self, container_name, blob_name, x_ms_meta_name_values=None, if_modified_since=None, if_unmodified_since=None, if_match=None, if_none_match=None, x_ms_lease_id=None): ''' Creates a read-only snapshot of a blob. container_name: Name of existing container. blob_name: Name of existing blob. x_ms_meta_name_values: Optional. Dict containing name and value pairs. if_modified_since: Optional. Datetime string. if_unmodified_since: DateTime string. if_match: Optional. snapshot the blob only if its ETag value matches the value specified. if_none_match: Optional. An ETag value x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=snapshot' request.headers = [ ('x-ms-meta-name-values', x_ms_meta_name_values), ('If-Modified-Since', _str_or_none(if_modified_since)), ('If-Unmodified-Since', _str_or_none(if_unmodified_since)), ('If-Match', _str_or_none(if_match)), ('If-None-Match', _str_or_none(if_none_match)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict_filter( response, filter=['x-ms-snapshot', 'etag', 'last-modified']) def copy_blob(self, container_name, blob_name, x_ms_copy_source, x_ms_meta_name_values=None, x_ms_source_if_modified_since=None, x_ms_source_if_unmodified_since=None, x_ms_source_if_match=None, x_ms_source_if_none_match=None, if_modified_since=None, if_unmodified_since=None, if_match=None, if_none_match=None, x_ms_lease_id=None, x_ms_source_lease_id=None): ''' Copies a blob to a destination within the storage account. container_name: Name of existing container. blob_name: Name of existing blob. x_ms_copy_source: URL up to 2 KB in length that specifies a blob. A source blob in the same account can be private, but a blob in another account must be public or accept credentials included in this URL, such as a Shared Access Signature. Examples: https://myaccount.blob.core.windows.net/mycontainer/myblob https://myaccount.blob.core.windows.net/mycontainer/myblob?snapshot=<DateTime> x_ms_meta_name_values: Optional. Dict containing name and value pairs. x_ms_source_if_modified_since: Optional. An ETag value. Specify this conditional header to copy the source blob only if its ETag matches the value specified. x_ms_source_if_unmodified_since: Optional. An ETag value. Specify this conditional header to copy the blob only if its ETag does not match the value specified. x_ms_source_if_match: Optional. A DateTime value. Specify this conditional header to copy the blob only if the source blob has been modified since the specified date/time. x_ms_source_if_none_match: Optional. An ETag value. Specify this conditional header to copy the source blob only if its ETag matches the value specified. if_modified_since: Optional. Datetime string. if_unmodified_since: DateTime string. if_match: Optional. Snapshot the blob only if its ETag value matches the value specified. if_none_match: Optional. An ETag value x_ms_lease_id: Required if the blob has an active lease. x_ms_source_lease_id: Optional. Specify this to perform the Copy Blob operation only if the lease ID given matches the active lease ID of the source blob. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('x_ms_copy_source', x_ms_copy_source) if x_ms_copy_source.startswith('/'): # Backwards compatibility for earlier versions of the SDK where # the copy source can be in the following formats: # - Blob in named container: # /accountName/containerName/blobName # - Snapshot in named container: # /accountName/containerName/blobName?snapshot=<DateTime> # - Blob in root container: # /accountName/blobName # - Snapshot in root container: # /accountName/blobName?snapshot=<DateTime> account, _, source =\ x_ms_copy_source.partition('/')[2].partition('/') x_ms_copy_source = self.protocol + '://' + \ account + self.host_base + '/' + source request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [ ('x-ms-copy-source', _str_or_none(x_ms_copy_source)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-source-if-modified-since', _str_or_none(x_ms_source_if_modified_since)), ('x-ms-source-if-unmodified-since', _str_or_none(x_ms_source_if_unmodified_since)), ('x-ms-source-if-match', _str_or_none(x_ms_source_if_match)), ('x-ms-source-if-none-match', _str_or_none(x_ms_source_if_none_match)), ('If-Modified-Since', _str_or_none(if_modified_since)), ('If-Unmodified-Since', _str_or_none(if_unmodified_since)), ('If-Match', _str_or_none(if_match)), ('If-None-Match', _str_or_none(if_none_match)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-source-lease-id', _str_or_none(x_ms_source_lease_id)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_response_for_dict(response) def abort_copy_blob(self, container_name, blob_name, x_ms_copy_id, x_ms_lease_id=None): ''' Aborts a pending copy_blob operation, and leaves a destination blob with zero length and full metadata. container_name: Name of destination container. blob_name: Name of destination blob. x_ms_copy_id: Copy identifier provided in the x-ms-copy-id of the original copy_blob operation. x_ms_lease_id: Required if the destination blob has an active infinite lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('x_ms_copy_id', x_ms_copy_id) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + \ _str(blob_name) + '?comp=copy&copyid=' + \ _str(x_ms_copy_id) request.headers = [ ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-copy-action', 'abort'), ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def delete_blob(self, container_name, blob_name, snapshot=None, x_ms_lease_id=None): ''' Marks the specified blob or snapshot for deletion. The blob is later deleted during garbage collection. To mark a specific snapshot for deletion provide the date/time of the snapshot via the snapshot parameter. container_name: Name of existing container. blob_name: Name of existing blob. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to delete. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'DELETE' request.host = self._get_host() request.path = '/' + _str(container_name) + '/' + _str(blob_name) + '' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.query = [('snapshot', _str_or_none(snapshot))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def put_block(self, container_name, blob_name, block, blockid, content_md5=None, x_ms_lease_id=None): ''' Creates a new block to be committed as part of a blob. container_name: Name of existing container. blob_name: Name of existing blob. block: Content of the block. blockid: Required. A value that identifies the block. The string must be less than or equal to 64 bytes in size. content_md5: Optional. An MD5 hash of the block content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('block', block) _validate_not_none('blockid', blockid) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=block' request.headers = [ ('Content-MD5', _str_or_none(content_md5)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)) ] request.query = [('blockid', _encode_base64(_str_or_none(blockid)))] request.body = _get_request_body_bytes_only('block', block) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def put_block_list(self, container_name, blob_name, block_list, content_md5=None, x_ms_blob_cache_control=None, x_ms_blob_content_type=None, x_ms_blob_content_encoding=None, x_ms_blob_content_language=None, x_ms_blob_content_md5=None, x_ms_meta_name_values=None, x_ms_lease_id=None): ''' Writes a blob by specifying the list of block IDs that make up the blob. In order to be written as part of a blob, a block must have been successfully written to the server in a prior Put Block (REST API) operation. container_name: Name of existing container. blob_name: Name of existing blob. block_list: A str list containing the block ids. content_md5: Optional. An MD5 hash of the block content. This hash is used to verify the integrity of the blob during transport. When this header is specified, the storage service checks the hash that has arrived with the one that was sent. x_ms_blob_cache_control: Optional. Sets the blob's cache control. If specified, this property is stored with the blob and returned with a read request. x_ms_blob_content_type: Optional. Sets the blob's content type. If specified, this property is stored with the blob and returned with a read request. x_ms_blob_content_encoding: Optional. Sets the blob's content encoding. If specified, this property is stored with the blob and returned with a read request. x_ms_blob_content_language: Optional. Set the blob's content language. If specified, this property is stored with the blob and returned with a read request. x_ms_blob_content_md5: Optional. An MD5 hash of the blob content. Note that this hash is not validated, as the hashes for the individual blocks were validated when each was uploaded. x_ms_meta_name_values: Optional. Dict containing name and value pairs. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('block_list', block_list) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=blocklist' request.headers = [ ('Content-MD5', _str_or_none(content_md5)), ('x-ms-blob-cache-control', _str_or_none(x_ms_blob_cache_control)), ('x-ms-blob-content-type', _str_or_none(x_ms_blob_content_type)), ('x-ms-blob-content-encoding', _str_or_none(x_ms_blob_content_encoding)), ('x-ms-blob-content-language', _str_or_none(x_ms_blob_content_language)), ('x-ms-blob-content-md5', _str_or_none(x_ms_blob_content_md5)), ('x-ms-meta-name-values', x_ms_meta_name_values), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)) ] request.body = _get_request_body( _convert_block_list_to_xml(block_list)) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def get_block_list(self, container_name, blob_name, snapshot=None, blocklisttype=None, x_ms_lease_id=None): ''' Retrieves the list of blocks that have been uploaded as part of a block blob. container_name: Name of existing container. blob_name: Name of existing blob. snapshot: Optional. Datetime to determine the time to retrieve the blocks. blocklisttype: Specifies whether to return the list of committed blocks, the list of uncommitted blocks, or both lists together. Valid values are: committed, uncommitted, or all. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=blocklist' request.headers = [('x-ms-lease-id', _str_or_none(x_ms_lease_id))] request.query = [ ('snapshot', _str_or_none(snapshot)), ('blocklisttype', _str_or_none(blocklisttype)) ] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _convert_response_to_block_list(response) def put_page(self, container_name, blob_name, page, x_ms_range, x_ms_page_write, timeout=None, content_md5=None, x_ms_lease_id=None, x_ms_if_sequence_number_lte=None, x_ms_if_sequence_number_lt=None, x_ms_if_sequence_number_eq=None, if_modified_since=None, if_unmodified_since=None, if_match=None, if_none_match=None): ''' Writes a range of pages to a page blob. container_name: Name of existing container. blob_name: Name of existing blob. page: Content of the page. x_ms_range: Required. Specifies the range of bytes to be written as a page. Both the start and end of the range must be specified. Must be in format: bytes=startByte-endByte. Given that pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the end offset must be a modulus of 512-1. Examples of valid byte ranges are 0-511, 512-1023, etc. x_ms_page_write: Required. You may specify one of the following options: update (lower case): Writes the bytes specified by the request body into the specified range. The Range and Content-Length headers must match to perform the update. clear (lower case): Clears the specified range and releases the space used in storage for that range. To clear a range, set the Content-Length header to zero, and the Range header to a value that indicates the range to clear, up to maximum blob size. timeout: the timeout parameter is expressed in seconds. content_md5: Optional. An MD5 hash of the page content. This hash is used to verify the integrity of the page during transport. When this header is specified, the storage service compares the hash of the content that has arrived with the header value that was sent. If the two hashes do not match, the operation will fail with error code 400 (Bad Request). x_ms_lease_id: Required if the blob has an active lease. x_ms_if_sequence_number_lte: Optional. If the blob's sequence number is less than or equal to the specified value, the request proceeds; otherwise it fails. x_ms_if_sequence_number_lt: Optional. If the blob's sequence number is less than the specified value, the request proceeds; otherwise it fails. x_ms_if_sequence_number_eq: Optional. If the blob's sequence number is equal to the specified value, the request proceeds; otherwise it fails. if_modified_since: Optional. A DateTime value. Specify this conditional header to write the page only if the blob has been modified since the specified date/time. If the blob has not been modified, the Blob service fails. if_unmodified_since: Optional. A DateTime value. Specify this conditional header to write the page only if the blob has not been modified since the specified date/time. If the blob has been modified, the Blob service fails. if_match: Optional. An ETag value. Specify an ETag value for this conditional header to write the page only if the blob's ETag value matches the value specified. If the values do not match, the Blob service fails. if_none_match: Optional. An ETag value. Specify an ETag value for this conditional header to write the page only if the blob's ETag value does not match the value specified. If the values are identical, the Blob service fails. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) _validate_not_none('page', page) _validate_not_none('x_ms_range', x_ms_range) _validate_not_none('x_ms_page_write', x_ms_page_write) request = HTTPRequest() request.method = 'PUT' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=page' request.headers = [ ('x-ms-range', _str_or_none(x_ms_range)), ('Content-MD5', _str_or_none(content_md5)), ('x-ms-page-write', _str_or_none(x_ms_page_write)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)), ('x-ms-if-sequence-number-le', _str_or_none(x_ms_if_sequence_number_lte)), ('x-ms-if-sequence-number-lt', _str_or_none(x_ms_if_sequence_number_lt)), ('x-ms-if-sequence-number-eq', _str_or_none(x_ms_if_sequence_number_eq)), ('If-Modified-Since', _str_or_none(if_modified_since)), ('If-Unmodified-Since', _str_or_none(if_unmodified_since)), ('If-Match', _str_or_none(if_match)), ('If-None-Match', _str_or_none(if_none_match)) ] request.query = [('timeout', _int_or_none(timeout))] request.body = _get_request_body_bytes_only('page', page) request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) self._perform_request(request) def get_page_ranges(self, container_name, blob_name, snapshot=None, range=None, x_ms_range=None, x_ms_lease_id=None): ''' Retrieves the page ranges for a blob. container_name: Name of existing container. blob_name: Name of existing blob. snapshot: Optional. The snapshot parameter is an opaque DateTime value that, when present, specifies the blob snapshot to retrieve information from. range: Optional. Specifies the range of bytes over which to list ranges, inclusively. If omitted, then all ranges for the blob are returned. x_ms_range: Optional. Specifies the range of bytes to be written as a page. Both the start and end of the range must be specified. Must be in format: bytes=startByte-endByte. Given that pages must be aligned with 512-byte boundaries, the start offset must be a modulus of 512 and the end offset must be a modulus of 512-1. Examples of valid byte ranges are 0-511, 512-1023, etc. x_ms_lease_id: Required if the blob has an active lease. ''' _validate_not_none('container_name', container_name) _validate_not_none('blob_name', blob_name) request = HTTPRequest() request.method = 'GET' request.host = self._get_host() request.path = '/' + \ _str(container_name) + '/' + _str(blob_name) + '?comp=pagelist' request.headers = [ ('Range', _str_or_none(range)), ('x-ms-range', _str_or_none(x_ms_range)), ('x-ms-lease-id', _str_or_none(x_ms_lease_id)) ] request.query = [('snapshot', _str_or_none(snapshot))] request.path, request.query = _update_request_uri_query_local_storage( request, self.use_local_storage) request.headers = _update_storage_blob_header( request, self.account_name, self.account_key) response = self._perform_request(request) return _parse_simple_list(response, PageList, PageRange, "page_ranges")
apache-2.0
kinnou02/navitia
source/jormungandr/jormungandr/interfaces/v1/serializer/api.py
1
15557
# coding: utf-8 # This file is part of Navitia, # the software to build cool stuff with public transport. # # Hope you'll enjoy and contribute to this project, # powered by Canal TP (www.canaltp.fr). # Help us simplify mobility and open public transport: # a non ending quest to the responsive locomotion way of traveling! # # LICENCE: This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Stay tuned using # twitter @navitia # channel `#navitia` on riot https://riot.im/app/#/room/#navitia:matrix.org # https://groups.google.com/d/forum/navitia # www.navitia.io from __future__ import absolute_import, print_function, unicode_literals, division import datetime import pytz from jormungandr.interfaces.v1.serializer import ( pt, schedule, report, base, status, geo_status, graphical_isochron, heat_map, ) from jormungandr.interfaces.v1.serializer.base import ( NullableDictSerializer, LambdaField, PbNestedSerializer, DescribedField, AmountSerializer, ) from jormungandr.interfaces.v1.serializer.fields import ( ErrorSerializer, FeedPublisherSerializer, PaginationSerializer, LinkSchema, NoteSerializer, ExceptionSerializer, ) from jormungandr.interfaces.v1.make_links import create_external_link from jormungandr.interfaces.v1.serializer.journey import TicketSerializer, JourneySerializer import serpy from jormungandr.interfaces.v1.serializer.jsonschema.fields import Field, MethodField from jormungandr.interfaces.v1.serializer.time import DateTimeDictField from jormungandr.utils import ( get_current_datetime_str, get_timezone_str, NOT_A_DATE_TIME, navitia_utcfromtimestamp, ) from jormungandr.interfaces.v1.serializer.pt import AddressSerializer from jormungandr.interfaces.v1.serializer import jsonschema from jormungandr.interfaces.v1.serializer.status import CoverageErrorSerializer class CO2Serializer(PbNestedSerializer): co2_emission = AmountSerializer(attr='car_co2_emission', display_none=False) class ContextSerializer(PbNestedSerializer): def __init__(self, obj=None, is_utc=False, *args, **kwargs): super(ContextSerializer, self).__init__(obj, *args, **kwargs) self.is_utc = is_utc car_direct_path = MethodField(schema_type=CO2Serializer(), display_none=False) current_datetime = MethodField( schema_type=str, display_none=False, description='The datetime of the request (considered as "now")' ) timezone = MethodField( schema_type=str, display_none=False, description='Timezone of any datetime in the response, ' 'default value Africa/Abidjan (UTC)', ) def get_car_direct_path(self, obj): from navitiacommon import response_pb2 if isinstance(obj, response_pb2.Response) and obj.HasField(str('car_co2_emission')): return CO2Serializer(obj, display_none=False).data return None def get_current_datetime(self, _): return get_current_datetime_str(is_utc=self.is_utc) def get_timezone(self, _): return 'Africa/Abidjan' if self.is_utc else get_timezone_str() class PTReferentialSerializerNoContext(serpy.Serializer): pagination = PaginationSerializer(attr='pagination', display_none=True) error = ErrorSerializer(display_none=False) feed_publishers = FeedPublisherSerializer(many=True, display_none=True) disruptions = pt.DisruptionSerializer(attr='impacts', many=True, display_none=True) notes = DescribedField(schema_type=NoteSerializer(many=True)) links = DescribedField(schema_type=LinkSchema(many=True)) class PTReferentialSerializer(PTReferentialSerializerNoContext): # ContextSerializer can not be used directly because context does not exist in protobuf context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, display_none=False).data class LinesSerializer(PTReferentialSerializer): lines = pt.LineSerializer(many=True) class DisruptionsSerializer(PTReferentialSerializer): # we already have a disruptions fields by default pass class VehicleJourneysSerializer(PTReferentialSerializer): vehicle_journeys = pt.VehicleJourneySerializer(many=True) class TripsSerializer(PTReferentialSerializer): trips = pt.TripSerializer(many=True) class JourneyPatternsSerializer(PTReferentialSerializer): journey_patterns = pt.JourneyPatternSerializer(many=True) class JourneyPatternPointsSerializer(PTReferentialSerializer): journey_pattern_points = pt.JourneyPatternPointSerializer(many=True) class CommercialModesSerializer(PTReferentialSerializer): commercial_modes = pt.CommercialModeSerializer(many=True) class PhysicalModesSerializer(PTReferentialSerializer): physical_modes = pt.PhysicalModeSerializer(many=True) class StopPointsSerializer(PTReferentialSerializer): stop_points = pt.StopPointSerializer(many=True) class StopAreasSerializer(PTReferentialSerializer): stop_areas = pt.StopAreaSerializer(many=True) class RoutesSerializer(PTReferentialSerializer): routes = pt.RouteSerializer(many=True) class LineGroupsSerializer(PTReferentialSerializer): line_groups = pt.LineGroupSerializer(many=True) class NetworksSerializer(PTReferentialSerializer): networks = pt.NetworkSerializer(many=True) class ConnectionsSerializer(PTReferentialSerializer): connections = pt.ConnectionSerializer(many=True) class CompaniesSerializer(PTReferentialSerializer): companies = pt.CompanieSerializer(many=True) class PoiTypesSerializer(PTReferentialSerializer): poi_types = pt.PoiTypeSerializer(many=True) class PoisSerializer(PTReferentialSerializer): pois = pt.PoiSerializer(many=True) class ContributorsSerializer(PTReferentialSerializer): contributors = pt.ContributorSerializer(many=True) class DatasetsSerializer(PTReferentialSerializerNoContext): datasets = pt.DatasetSerializer(many=True) context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, is_utc=True, display_none=False).data class PlacesSerializer(serpy.Serializer): error = ErrorSerializer(display_none=False) feed_publishers = FeedPublisherSerializer(many=True, display_none=True) disruptions = pt.DisruptionSerializer(attr='impacts', many=True, display_none=True) places = pt.PlaceSerializer(many=True) context = MethodField(schema_type=ContextSerializer(), display_none=False) links = DescribedField(schema_type=LinkSchema(many=True)) def get_context(self, obj): return ContextSerializer(obj, display_none=False).data class PtObjectsSerializer(serpy.Serializer): error = ErrorSerializer(display_none=False) feed_publishers = FeedPublisherSerializer(many=True, display_none=True) disruptions = pt.DisruptionSerializer(attr='impacts', many=True, display_none=True) pt_objects = pt.PtObjectSerializer(many=True, attr='places') links = DescribedField(schema_type=LinkSchema(many=True)) context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, False, display_none=False).data class PlacesNearbySerializer(PTReferentialSerializer): places_nearby = pt.PlaceNearbySerializer(many=True) class CoverageDateTimeField(DateTimeDictField): """ custom date time field for coverage, uses the coverage's timezone to format the date """ def __init__(self, field_name=None, **kwargs): super(CoverageDateTimeField, self).__init__(**kwargs) self.field_name = field_name def to_value(self, coverage): tz_name = coverage.get('timezone') field_value = coverage.get(self.field_name) if not tz_name or field_value is None: return None dt = navitia_utcfromtimestamp(field_value) if not dt: return NOT_A_DATE_TIME tz = pytz.timezone(tz_name) if not tz: return None dt = pytz.utc.localize(dt) dt = dt.astimezone(tz) return dt.strftime("%Y%m%dT%H%M%S") class CoverageSerializer(NullableDictSerializer): id = Field(attr="region_id", schema_type=str, display_none=True, description='Identifier of the coverage') start_production_date = Field( schema_type=str, description='Beginning of the production period. ' 'We only have data on this production period', ) end_production_date = Field( schema_type=str, description='End of the production period. ' 'We only have data on this production period', ) last_load_at = LambdaField( method=lambda _, o: CoverageDateTimeField('last_load_at').to_value(o), description='Datetime of the last data loading', schema_type=str, ) name = Field(schema_type=str, display_none=True, description='Name of the coverage') status = Field(schema_type=str) shape = Field(schema_type=str, display_none=True, description='GeoJSON of the shape of the coverage') error = CoverageErrorSerializer(display_none=False) dataset_created_at = Field(schema_type=str, description='Creation date of the dataset') class CoveragesSerializer(serpy.DictSerializer): regions = CoverageSerializer(many=True) links = DescribedField(schema_type=LinkSchema(many=True)) context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, is_utc=True, display_none=False).data class JourneysCommon(PbNestedSerializer): error = ErrorSerializer(display_none=False) feed_publishers = FeedPublisherSerializer(many=True, display_none=True) links = MethodField(schema_type=LinkSchema(many=True), display_none=True) def get_links(self, obj): # note: some request args can be there several times, # but when there is only one elt, flask does not want lists response = [] for value in obj.links: args = {} for e in value.kwargs: if len(e.values) > 1: args[e.key] = [v for v in e.values] else: args[e.key] = e.values[0] args["_type"] = value.type args["templated"] = value.is_templated args["description"] = value.description args["rel"] = value.rel response.append(create_external_link('v1.{}'.format(value.ressource_name), **args)) return response class JourneysSerializer(JourneysCommon): journeys = JourneySerializer(many=True) tickets = TicketSerializer(many=True, display_none=True) disruptions = pt.DisruptionSerializer(attr='impacts', many=True, display_none=True) context = MethodField(schema_type=ContextSerializer(), display_none=False) notes = DescribedField(schema_type=NoteSerializer(many=True)) exceptions = DescribedField(schema_type=ExceptionSerializer(many=True)) def get_context(self, obj): return ContextSerializer(obj, display_none=False).data class SchedulesSerializer(PTReferentialSerializer): exceptions = DescribedField(schema_type=ExceptionSerializer(many=True)) class DeparturesSerializer(SchedulesSerializer): departures = schedule.PassageSerializer(many=True, attr='next_departures', display_none=True) class ArrivalsSerializer(SchedulesSerializer): arrivals = schedule.PassageSerializer(many=True, attr='next_arrivals', display_none=True) class StopSchedulesSerializer(SchedulesSerializer): stop_schedules = schedule.StopScheduleSerializer(many=True, display_none=True) class RouteSchedulesSerializer(SchedulesSerializer): route_schedules = schedule.RouteScheduleSerializer(many=True, display_none=True) class LineReportsSerializer(PTReferentialSerializer): line_reports = report.LineReportSerializer(many=True, display_none=True) warnings = base.BetaEndpointsSerializer() class EquipmentReportsSerializer(PTReferentialSerializer): equipment_reports = report.EquipmentReportSerializer(many=True, display_none=True) warnings = base.BetaEndpointsSerializer() class TrafficReportsSerializer(PTReferentialSerializer): traffic_reports = report.TrafficReportSerializer(many=True, display_none=True) class CalendarsSerializer(PTReferentialSerializer): calendars = pt.CalendarSerializer(many=True, display_none=True) class StatusSerializer(serpy.DictSerializer): status = status.StatusSerializer() context = MethodField(schema_type=ContextSerializer(), display_none=False) warnings = base.BetaEndpointsSerializer() def get_context(self, obj): return ContextSerializer(obj, is_utc=True, display_none=False).data class GeoStatusSerializer(serpy.DictSerializer): geo_status = geo_status.GeoStatusSerializer() context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, is_utc=True, display_none=False).data class GraphicalIsrochoneSerializer(JourneysCommon): isochrones = graphical_isochron.GraphicalIsrochoneSerializer(attr='graphical_isochrones', many=True) warnings = base.BetaEndpointsSerializer() context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, display_none=False).data class HeatMapSerializer(JourneysCommon): heat_maps = heat_map.HeatMapSerializer(many=True) warnings = base.BetaEndpointsSerializer() context = MethodField(schema_type=ContextSerializer(), display_none=False) def get_context(self, obj): return ContextSerializer(obj, display_none=False).data class DictAddressesSerializer(serpy.DictSerializer): address = MethodField(schema_type=AddressSerializer(many=False, display_none=False)) context = MethodField(schema_type=ContextSerializer(), display_none=False) regions = jsonschema.Field(schema_type=str, display_none=True, many=True) message = MethodField(schema_type=str) def get_context(self, obj): return ContextSerializer(obj, display_none=False).data def get_address(self, obj): return obj.get('address', None) def get_message(self, obj): return obj.get('message') class TechnicalStatusSerializer(NullableDictSerializer): regions = status.CommonStatusSerializer(many=True, display_none=False) jormungandr_version = Field(schema_type=str, display_none=True) bss_providers = status.BssProviderSerializer(many=True, display_none=False) context = MethodField(schema_type=ContextSerializer(), display_none=False) warnings = base.BetaEndpointsSerializer() redis = status.RedisStatusSerializer(display_none=False) def get_context(self, obj): return ContextSerializer(obj, is_utc=True, display_none=False).data
agpl-3.0
poryfly/scikit-learn
sklearn/linear_model/coordinate_descent.py
43
75144
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Gael Varoquaux <gael.varoquaux@inria.fr> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data, sparse_center_data from ..utils import check_array, check_X_y, deprecated from ..utils.validation import check_random_state from ..cross_validation import check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils.validation import column_or_1d from ..utils import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean, default True Whether to fit an intercept or not normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_mean, _, X_std = sparse_center_data(X, y, fit_intercept, normalize) mean_dot = X_mean * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_std[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) if alpha_max <= np.finfo(float).resolution: alphas = np.empty(n_alphas) alphas.fill(np.finfo(float).resolution) return alphas return np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <lasso>`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ # We expect X and y to be already float64 Fortran ordered when bypassing # checks check_input = 'check_input' not in params or params['check_input'] pre_fit = 'check_input' not in params or params['pre_fit'] if check_input: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) y = check_array(y, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) if Xy is not None: Xy = check_array(Xy, 'csc', dtype=np.float64, order='F', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.zeros(n_features) # X should be normalized and fit already if function is called # from ElasticNet.fit if pre_fit: X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False, Xy_precompute_order='F') if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=np.float64) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=np.float64) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1])) else: coef_ = np.asfortranarray(coef_init) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, 'csc', dtype=np.float64, order='F') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like") coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 self.random_state = random_state self.selection = selection def fit(self, X, y, check_input=True): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if self.precompute == 'auto': warnings.warn("Setting precompute to 'auto', was found to be " "slower even when n_samples > n_features. Hence " "it will be removed in 0.18.", DeprecationWarning, stacklevel=2) # We expect X and y to be already float64 Fortran ordered arrays # when bypassing checks if check_input: X, y = check_X_y(X, y, accept_sparse='csc', dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept, multi_output=True, y_numeric=True) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=False, Xy_precompute_order='F') if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection, check_input=False, pre_fit=False) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) @deprecated(" and will be removed in 0.19") def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ return self._decision_function(X) def _decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self)._decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Read more in the :ref:`User Guide <lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_mean = np.atleast_1d(y_mean) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_std) coefs[:, nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean[:, np.newaxis] - np.dot(X_mean, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = np.asarray(y, dtype=np.float64) if y.shape[0] == 0: raise ValueError("y has 0 samples: %r" % y) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1 and y.shape[1] > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) y = column_or_1d(y, warn=True) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if (hasattr(reference_to_old_X, "data") and not np.may_share_memory(reference_to_old_X.data, X.data)): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=np.float64) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Read more in the :ref:`User Guide <lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape (n_targets,) independent term in decision function. mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X : ndarray, shape (n_samples, n_features) Data y : ndarray, shape (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = check_array(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_mean, y_mean, X_std) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or \ (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <multi_task_lasso>`. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automaticlly. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
r-mart/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
179
15664
from __future__ import division from collections import defaultdict from functools import partial import numpy as np import scipy.sparse as sp from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): X, y = make_classification(n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=[0.1, 0.25], random_state=0) assert_equal(X.shape, (100, 20), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of classes") assert_equal(sum(y == 0), 10, "Unexpected number of samples in class #0") assert_equal(sum(y == 1), 25, "Unexpected number of samples in class #1") assert_equal(sum(y == 2), 65, "Unexpected number of samples in class #2") def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial(make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False) for n_informative, weights, n_clusters_per_class in [(2, [1], 1), (2, [1/3] * 3, 1), (2, [1/4] * 4, 1), (2, [1/2] * 2, 2), (2, [3/4, 1/4], 2), (10, [1/3] * 3, 10) ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make(n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0) assert_equal(X.shape, (n_samples, n_informative)) assert_equal(y.shape, (n_samples,)) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype='|S{0}'.format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert_equal(len(unique_signs), n_clusters, "Wrong number of clusters, or not in distinct " "quadrants") clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert_equal(len(clusters), n_clusters_per_class, "Wrong number of clusters per class") assert_equal(len(clusters_by_class), n_classes, "Wrong number of classes") assert_array_almost_equal(np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples " "per class") # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal(np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters are not " "centered on hypercube " "vertices") else: assert_raises(AssertionError, assert_array_almost_equal, np.abs(centroid), [class_sep] * n_informative, decimal=0, err_msg="Clusters should not be cenetered " "on hypercube vertices") assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) assert_raises(ValueError, make, n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (100, 20), "X shape mismatch") if not allow_unlabeled: assert_equal(max([max(y) for y in Y]), 2) assert_equal(min([len(y) for y in Y]), min_length) assert_true(max([len(y) for y in Y]) <= 3) def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(np.all(np.sum(Y, axis=0) > min_length)) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True) assert_array_equal(X, X2) assert_array_equal(Y, Y2) assert_equal(p_c.shape, (3,)) assert_almost_equal(p_c.sum(), 1) assert_equal(p_w_c.shape, (20, 3)) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification(n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator='sparse', allow_unlabeled=allow_unlabeled) assert_equal(X.shape, (25, 20), "X shape mismatch") assert_equal(Y.shape, (25, 3), "Y shape mismatch") assert_true(sp.issparse(Y)) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(np.unique(y).shape, (2,), "Unexpected number of classes") def test_make_regression(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100,), "y shape mismatch") assert_equal(c.shape, (10,), "coef shape mismatch") assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert_equal(X.shape, (100, 1)) def test_make_regression_multitarget(): X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1., random_state=0) assert_equal(X.shape, (100, 10), "X shape mismatch") assert_equal(y.shape, (100, 3), "y shape mismatch") assert_equal(c.shape, (10, 3), "coef shape mismatch") assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs(random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds) assert_equal(X.shape, (50, 2), "X shape mismatch") assert_equal(y.shape, (50,), "y shape mismatch") assert_equal(np.unique(y).shape, (3,), "Unexpected number of blobs") for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4]) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 4), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") assert_array_almost_equal(y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])) def test_make_low_rank_matrix(): X = make_low_rank_matrix(n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0) assert_equal(X.shape, (50, 25), "X shape mismatch") from numpy.linalg import svd u, s, v = svd(X) assert_less(sum(s) - 5, 0.1, "X rank is not approximately 5") def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal(n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0) assert_equal(Y.shape, (10, 5), "Y shape mismatch") assert_equal(D.shape, (10, 8), "D shape mismatch") assert_equal(X.shape, (8, 5), "X shape mismatch") for col in X.T: assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch') assert_array_almost_equal(np.dot(D, X), Y) assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)), np.ones(D.shape[1])) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert_equal(X.shape, (5, 10), "X shape mismatch") assert_equal(y.shape, (5,), "y shape mismatch") def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert_equal(X.shape, (5, 5), "X shape mismatch") assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal(eigenvalues > 0, np.array([True] * 5), "X is not positive-definite") def test_make_swiss_roll(): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert_equal(X.shape, (5, 3), "X shape mismatch") assert_equal(t.shape, (5,), "t shape mismatch") assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (4, 100), "rows shape mismatch") assert_equal(cols.shape, (4, 100,), "columns shape mismatch") assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters(shape=(100, 100), n_clusters=4, shuffle=True, random_state=0) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0) assert_equal(X.shape, (100, 100), "X shape mismatch") assert_equal(rows.shape, (100, 100), "rows shape mismatch") assert_equal(cols.shape, (100, 100,), "columns shape mismatch") X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) X2, _, _ = make_checkerboard(shape=(100, 100), n_clusters=2, shuffle=True, random_state=0) assert_array_equal(X1, X2)
bsd-3-clause
antoinecarme/pyaf
tests/probabilistic_forecasting/test_ozone.py
1
1441
from __future__ import absolute_import import pandas as pd import numpy as np import pyaf.ForecastEngine as autof import pyaf.Bench.TS_datasets as tsds b1 = tsds.load_ozone() df = b1.mPastData #df.tail(10) #df[:-10].tail() #df[:-10:-1] #df.describe() lEngine = autof.cForecastEngine() lEngine H = b1.mHorizon; # lEngine.mOptions.enable_slow_mode(); lEngine.mOptions.mDebugPerformance = True; lEngine.mOptions.mModelSelection_Criterion = "CRPS" lEngine.train(df , b1.mTimeVar , b1.mSignalVar, H); lEngine.getModelInfo(); print(lEngine.mSignalDecomposition.mTrPerfDetails.columns); lColumns = ['Split', 'Transformation', 'Model', 'Category', 'Complexity', 'FitCRPS', 'ForecastCRPS', 'TestCRPS'] print(lEngine.mSignalDecomposition.mTrPerfDetails[lColumns].head(10)); lEngine.mSignalDecomposition.mBestModel.mTimeInfo.mResolution lEngine.standardPlots("outputs/my_ozone"); dfapp_in = df.copy(); dfapp_in.tail() #H = 12 dfapp_out = lEngine.forecast(dfapp_in, H); #dfapp_out.to_csv("outputs/ozone_apply_out.csv") dfapp_out.tail(2 * H) print("Forecast Columns " , dfapp_out.columns); Forecast_DF = dfapp_out[[b1.mTimeVar , b1.mSignalVar, b1.mSignalVar + '_Forecast']] print(Forecast_DF.info()) print("Forecasts\n" , Forecast_DF.tail(H)); print("\n\n<ModelInfo>") print(lEngine.to_json()); print("</ModelInfo>\n\n") print("\n\n<Forecast>") print(Forecast_DF.tail(2*H).to_json(date_format='iso')) print("</Forecast>\n\n")
bsd-3-clause
Avikalp7/image-aesthetics-learning
src/Learning/selected_feature.py
1
15701
""" Constructing the final feature vectors with selected features from the initial 56 along with RAG cut features. """ from __future__ import division from scipy import misc import numpy as np from skimage import color from skimage import data import os import PIL from PIL import Image from pywt import wavedec2 from sklearn.cluster import KMeans from disjoint_sets import Graph # from disjoint_sets import countIslands global IH, IS, IV, path, image_sizes global LH, HL, HH, S1, S2, S3 global _f10, _f11, _f12, _f13, _f14, _f15, _f16, _f17, _f18 # Parameter K for Kmeans is set here kmeans_cluster_num = 12 # Some images (b/w) give zero values on S1, S2, S3 - leading to division by zero def check_zero(epsilon = 50): global S1, S2, S3 if S1 == 0: S1 = epsilon if S2 == 0: S2 = epsilon if S3 == 0: S3 = epsilon # Prerequiste for features _f10,11,12, calculating LL, LH, HL, HH for 3-level 2-D Discrete Wavelet Transform def prereq_f10_f11_f12(i): global S1, S2, S3, LH, HL, HH HL = LH = HH = [0]*3 coeffs = wavedec2(IH[i], 'db1', level = 3) LL, (HL[2], LH[2], HH[2]), (HL[1], LH[1], HH[1]), (HL[0], LH[0], HH[0]) = coeffs S1 = sum(sum(abs(LH[0]))) + sum(sum(abs(HL[0]))) + sum(sum(abs(HH[0]))) S2 = sum(sum(abs(LH[1]))) + sum(sum(abs(HL[1]))) + sum(sum(abs(HH[1]))) S3 = sum(sum(abs(LH[2]))) + sum(sum(abs(HL[2]))) + sum(sum(abs(HH[2]))) # print('S1, S2, S3',S1, S2, S3) check_zero() # Prerequiste for features _f10,11,12, calculating LL, LH, HL, HH for 3-level 2-D Discrete Wavelet Transform def prereq_f13_f14_f15(i): global S1, S2, S3, LL, HL, HH HL = LH = HH = [0]*3 coeffs = wavedec2(IS[i], 'db1', level = 3) LL, (HL[2], HL[2], HH[2]), (HL[1], HL[1], HH[1]), (HL[0], HL[0], HH[0]) = coeffs S1 = sum(sum(abs(LH[0]))) + sum(sum(abs(HL[0]))) + sum(sum(abs(HH[0]))) S2 = sum(sum(abs(LH[1]))) + sum(sum(abs(HL[1]))) + sum(sum(abs(HH[1]))) S3 = sum(sum(abs(LH[2]))) + sum(sum(abs(HL[2]))) + sum(sum(abs(HH[2]))) check_zero() # Prerequiste for features _f10,11,12, calculating LL, LH, HL, HH for 3-level 2-D Discrete Wavelet Transform def prereq_f16_f17_f18(i): global S1, S2, S3, LL, HL, HH HL = LH = HH = [0]*3 coeffs = wavedec2(IV[i], 'db1', level = 3) LL, (HL[2], HL[2], HH[2]), (HL[1], HL[1], HH[1]), (HL[0], HL[0], HH[0]) = coeffs S1 = sum(sum(abs(LH[0]))) + sum(sum(abs(HL[0]))) + sum(sum(abs(HH[0]))) S2 = sum(sum(abs(LH[1]))) + sum(sum(abs(HL[1]))) + sum(sum(abs(HH[1]))) S3 = sum(sum(abs(LH[2]))) + sum(sum(abs(HL[2]))) + sum(sum(abs(HH[2]))) check_zero() def segmentation(graph): row = len(graph) col = len(graph[0]) g = Graph(row, col, graph) dic = {} for cluster_num in range(kmeans_cluster_num): # print ("Number of points in cluster number", cluster_num, "is: ") dic[cluster_num] = g.countIslands(cluster_num) # print('Len pathces = ', len(dic[cluster_num][1]), ' Len lis = ', len(dic[cluster_num][0])) # print('i, BLOB_COUNT = ', i, blob_count) # print('Ending K-Means') return dic def segments(dic): all_lengths = [] all_patches = [] for key in dic: all_lengths += dic[key][0] all_patches += dic[key][1] # print (len(all_lengths), len(all_patches)) all_lengths = np.array(all_lengths) all_patches = np.array(all_patches) max_5_indices = all_lengths.argsort()[-5:][::-1] # np.array return all_patches[max_5_indices] # Exposure of Light def f1(i): return sum(sum(IV[i]))/(IV.shape[0] * IV.shape[1]) # Average Saturation / Saturation Indicator def f3(i): return sum(sum(IS[i]))/(IS.shape[0] * IS.shape[1]) # Average Hue / Hue Indicator def f4(i): return sum(sum(IH[i]))/(IH.shape[0] * IH.shape[1]) # Average hue in inner rectangle for rule of thirds inference def f5(i): X = IH[i].shape[0] Y = IH[i].shape[1] return sum(sum(IH[i, int(X/3) : int(2*X/3), int(Y/3) : int(2*Y/3)])) * 9 / (X * Y) # Average saturation in inner rectangle for rule of thirds inference def f6(i): X = IS[i].shape[0] Y = IS[i].shape[1] return sum(sum(IS[i, int(X/3) : int(2*X/3), int(Y/3) : int(2*Y/3)])) * (9/(X * Y)) # Average V in inner rectangle for rule of thirds inference def f7(i): X = IV[i].shape[0] Y = IV[i].shape[1] return sum(sum(IV[i, int(X/3) : int(2*X/3), int(Y/3) : int(2*Y/3)])) * (9/(X * Y)) # Spacial Smoothness of first level of Hue property def f10(i): global _f10 prereq_f10_f11_f12(i) _f10 = (1/S1)*(sum(sum(HH[0])) + sum(sum(HL[0])) + sum(sum(LH[0]))) return _f10 # Spacial Smoothness of second level of Hue property def f11(i): global _f11 _f11 = (1/S2)*(sum(sum(HH[1])) + sum(sum(HL[1])) + sum(sum(LH[1]))) return _f11 # Spacial Smoothness of third level of Hue property def f12(i): global _f12 _f12 = (1/S3)*(sum(sum(HH[2])) + sum(sum(HL[2])) + sum(sum(LH[2]))) return _f12 # Spacial Smoothness of first level of Saturation property def f13(i): global _f13 prereq_f13_f14_f15(i) _f13 = (1/S1)*(sum(sum(HH[0])) + sum(sum(HL[0])) + sum(sum(LH[0]))) return _f13 # Spacial Smoothness of second level of Saturation property def f14(i): global _f14 _f14 = (1/S2)*(sum(sum(HH[1])) + sum(sum(HL[1])) + sum(sum(LH[1]))) return _f14 # Spacial Smoothness of third level of Saturation property def f15(i): global _f15 _f15 = (1/S3)*(sum(sum(HH[2])) + sum(sum(HL[2])) + sum(sum(LH[2]))) return _f15 # Spacial Smoothness of first level of Intensity property def f16(i): global _f16 prereq_f16_f17_f18(i) _f16 = (1/S1)*(sum(sum(HH[0])) + sum(sum(HL[0])) + sum(sum(LH[0]))) return _f16 # Spacial Smoothness of second level of Intensity property def f17(i): global _f17 _f17 = (1/S2)*(sum(sum(HH[1])) + sum(sum(HL[1])) + sum(sum(LH[1]))) return _f17 # Spacial Smoothness of third level of Intensity property def f18(i): global _f18 _f18 = (1/S3)*(sum(sum(HH[2])) + sum(sum(HL[2])) + sum(sum(LH[2]))) return _f18 # Sum of the average wavelet coefficients over all three frequency levels of Hue property def f19(i): return _f10 + _f11 + _f12 # Sum of the average wavelet coefficients over all three frequency levels of Saturation property def f20(i): return _f13 + _f14 + _f15 # Sum of the average wavelet coefficients over all three frequency levels of Intensity property def f21(i): return _f16 + _f17 + _f18 # Image Size feature def f22(i): return image_sizes[i][0] + image_sizes[i][1] # Aspect Ratio Feature def f23(i): return image_sizes[i][0] / float(image_sizes[i][1]) # Number of patches > XY/100 pixels, how many disconnected significantly large regions are present def f24(i, s): count = 0 for si in s: if len(si) >= 164: count += 1 return count # Number of different color blobs / color complexity of image def f25(i, dic): count = 0 for key in dic: max_length = max(dic[key][0]) if max_length > 1000: count += 1 return count # Average Hue value for patch 1 def f26(i, s): si = s[0] sum_ = 0 for pixel in si: j, k = pixel sum_ += IH[i][j][k] return sum_/len(si) # Average Hue value for patch 2 def f27(i, s): si = s[1] sum_ = 0 for pixel in si: j, k = pixel sum_ += IH[i][j][k] return sum_/len(si) # Average Hue value for patch 3 def f28(i, s): si = s[2] sum_ = 0 for pixel in si: j, k = pixel sum_ += IH[i][j][k] return sum_/len(si) # Average Hue value for patch 4 def f29(i, s): si = s[3] sum_ = 0 for pixel in si: j, k = pixel sum_ += IH[i][j][k] return sum_/len(si) # Average Hue value for patch 5 def f30(i, s): si = s[4] sum_ = 0 for pixel in si: j, k = pixel sum_ += IH[i][j][k] return sum_/len(si) # Average Saturation value for patch 1 def f31(i, s): si = s[0] sum_ = 0 for pixel in si: j, k = pixel sum_ += IS[i][j][k] return sum_/len(si) # Average Saturation value for patch 2 def f32(i, s): si = s[1] sum_ = 0 for pixel in si: j, k = pixel sum_ += IS[i][j][k] return sum_/len(si) # Average Saturation value for patch 3 def f33(i, s): si = s[2] sum_ = 0 for pixel in si: j, k = pixel sum_ += IS[i][j][k] return sum_/len(si) # Average Saturation value for patch 4 def f34(i, s): si = s[3] sum_ = 0 for pixel in si: j, k = pixel sum_ += IS[i][j][k] return sum_/len(si) # Average Saturation value for patch 5 def f35(i, s): si = s[4] sum_ = 0 for pixel in si: j, k = pixel sum_ += IS[i][j][k] return sum_/len(si) # Average Intensity value for patch 1 def f36(i, s): si = s[0] sum_ = 0 for pixel in si: j, k = pixel sum_ += IV[i][j][k] return sum_/len(si) # Average Intensity value for patch 2 def f37(i, s): si = s[1] sum_ = 0 for pixel in si: j, k = pixel sum_ += IV[i][j][k] return sum_/len(si) # Average Intensity value for patch 3 def f38(i, s): si = s[2] sum_ = 0 for pixel in si: j, k = pixel sum_ += IV[i][j][k] return sum_/len(si) # Average Intensity value for patch 4 def f39(i, s): si = s[3] sum_ = 0 for pixel in si: j, k = pixel sum_ += IV[i][j][k] return sum_/len(si) # Average Intensity value for patch 5 def f40(i, s): si = s[4] sum_ = 0 for pixel in si: j, k = pixel sum_ += IV[i][j][k] return sum_/len(si) # Measure of largest patch def f41(i): si = s[0] return len(si)/16384 def f42(i): si = s[1] return len(si)/16384 def f43(i): si = s[2] return len(si)/16384 def f44(i): si = s[3] return len(si)/16384 def f45(i): si = s[4] return len(si)/16384 def f46(i, h): sumh = 0 for j in range(5): for k in range(5): sumh += abs(h[j] - h[k]) return sumh def f47(i, h): sumh = 0 for j in range(5): for k in range(5): t = abs(h[j] - h[k]) if t < 0.5: sumh += 360*t else: sumh += 360 - 360*t return sumh def f48_pre(i, s): centers = [] for si in s: point_sum_x = 0 point_sum_y = 0 for point in si: x, y = point point_sum_x += x point_sum_y += y x = point_sum_x/len(si) y = point_sum_y/len(si) centers.append([x,y]) return centers def f48(i, s): centers = f48_pre(i, s) n = 0 c = centers[n] if c[0] < 43: r = 10 elif c[1] < 86: r = 20 else: r = 30 if c[1] < 43: cc = 1 elif c[1] < 86: cc = 2 else: cc = 3 return r + cc def f49(i, s): centers = f48_pre(i, s) n = 1 c = centers[n] if c[0] < 43: r = 10 elif c[1] < 86: r = 20 else: r = 30 if c[1] < 43: cc = 1 elif c[1] < 86: cc = 2 else: cc = 3 return r + cc def f50(i, s): centers = f48_pre(i, s) n = 2 c = centers[n] if c[0] < 43: r = 10 elif c[1] < 86: r = 20 else: r = 30 if c[1] < 43: cc = 1 elif c[1] < 86: cc = 2 else: cc = 3 return r + cc def f51(i, s): centers = f48_pre(i, s) n = 3 c = centers[n] if c[0] < 43: r = 10 elif c[1] < 86: r = 20 else: r = 30 if c[1] < 43: cc = 1 elif c[1] < 86: cc = 2 else: cc = 3 return r + cc def f52(i, s): centers = f48_pre(i, s) n = 4 c = centers[n] if c[0] < 43: r = 10 elif c[1] < 86: r = 20 else: r = 30 if c[1] < 43: cc = 1 elif c[1] < 86: cc = 2 else: cc = 3 return r + cc # DoF feature for Hue property def f53(i): prereq_f10_f11_f12(i) v1 = v2 = v3 = 0 sumv1 = sum(sum(LH[2])) if sumv1 > 0: v1 = sum(sum(abs(LH[2][4:12,4:12]))) / sumv1 sumv2 = sum(sum(HL[2])) if sumv2 > 0: v2 = sum(sum(abs(HL[2][4:12,4:12]))) / sumv2 sumv3 = sum(sum(HH[2])) if sumv3 > 0: v3 = sum(sum(abs(HH[2][4:12,4:12]))) / sumv3 if sumv1 == 0: v1 = (v2 + v3)/2 if sumv2 == 0: v2 = (v1 + v3)/2 if sumv3 == 0: v3 = (v1 + v2)/2 return v1 + v2 + v3 # DoF feature for Saturation property def f54(i): prereq_f13_f14_f15(i) v1 = v2 = v3 = 0 sumv1 = sum(sum(LH[2])) if sumv1 > 0: v1 = sum(sum(abs(LH[2][4:12,4:12]))) / sumv1 sumv2 = sum(sum(HL[2])) if sumv2 > 0: v2 = sum(sum(abs(HL[2][4:12,4:12]))) / sumv2 sumv3 = sum(sum(HH[2])) if sumv3 > 0: v3 = sum(sum(abs(HH[2][4:12,4:12]))) / sumv3 if sumv1 == 0: v1 = (v2 + v3)/2 if sumv2 == 0: v2 = (v1 + v3)/2 if sumv3 == 0: v3 = (v1 + v2)/2 return v1 + v2 + v3 # DoF feature for Intensity property def f55(i): prereq_f16_f17_f18(i) v1 = v2 = v3 = 0 sumv1 = sum(sum(LH[2])) if sumv1 > 0: v1 = sum(sum(abs(LH[2][4:12,4:12]))) / sumv1 sumv2 = sum(sum(HL[2])) if sumv2 > 0: v2 = sum(sum(abs(HL[2][4:12,4:12]))) / sumv2 sumv3 = sum(sum(HH[2])) if sumv3 > 0: v3 = sum(sum(abs(HH[2][4:12,4:12]))) / sumv3 if sumv1 == 0: v1 = (v2 + v3)/2 if sumv2 == 0: v2 = (v1 + v3)/2 if sumv3 == 0: v3 = (v1 + v2)/2 return v1 + v2 + v3 path = "/home/avikalp/semester6/SIGIR/photonet_dataset/images/" if __name__ == '__main__': # graph = [[1, 1, 0, 0, 0], # [0, 1, 0, 0, 2], # [1, 0, 0, 2, 2], # [0, 0, 0, 0, 0], # [1, 0, 1, 0, 1]] # row = len(graph) # col = len(graph[0]) # g= Graph(row, col, graph) # k = 0 # print ("Number of islands is :",) # print(g.countIslands(k)) # exit() subset_indices = list(np.load('good_indices.npy')) image_sizes = list(np.load('image_sizes_40p.npy')) print('Loading IHSV...') IH = np.load('IH_40p.npy') IS = np.load('IS_40p.npy') IV = np.load('IV_40p.npy') print('IV','IHSV loaded.') print('Loading LUV...') LUV = np.load('LUV_40p.npy') print('LUV loaded.') feature_vec = [] for i, index in enumerate(subset_indices): print (i) feature_vec.append([]) feature_vec[i].append(f1(i)) # feature_vec[i].append(f2(i)) # feature_vec[i].append(f3(i)) # feature_vec[i].append(f4(i)) # feature_vec[i].append(f5(i)) feature_vec[i].append(f6(i)) # feature_vec[i].append(f7(i)) # feature_vec[i].append(f8(i)) # feature_vec[i].append(f9(i)) # feature_vec[i].append(f10(i)) # feature_vec[i].append(f11(i)) # feature_vec[i].append(f12(i)) # feature_vec[i].append(f13(i)) # feature_vec[i].append(f14(i)) feature_vec[i].append(f15(i)) # feature_vec[i].append(f16(i)) feature_vec[i].append(f17(i)) # feature_vec[i].append(f18(i)) # feature_vec[i].append(f19(i)) feature_vec[i].append(f20(i)) feature_vec[i].append(f21(i)) feature_vec[i].append(f22(i)) feature_vec[i].append(f23(i)) # print('Starting K-Means') # kmeans = KMeans(n_clusters=2, random_state=0).fit(X) # kmeans.labels_ # kmeans.predict([[0, 0], [4, 4]]) _LUV = LUV[i].reshape((16384, 3)) kmeans = KMeans(n_clusters=kmeans_cluster_num, random_state=0).fit(_LUV) # centers = kmeans.cluster_centers_ graph = kmeans.labels_ graph = graph.reshape((128,128)) dic = segmentation(graph) s = list(segments(dic)) H = [] for k in range(5): sumh = 0 for i1, j1 in s[k]: sumh += IH[i][i1][j1] H.append(sumh) # feature_vec[i].append(f24(i, s)) feature_vec[i].append(f25(i, dic)) # feature_vec[i].append(f26(i, s)) # feature_vec[i].append(f27(i, s)) feature_vec[i].append(f28(i, s)) # feature_vec[i].append(f29(i, s)) # feature_vec[i].append(f30(i, s)) feature_vec[i].append(f31(i, s)) # feature_vec[i].append(f32(i, s)) # feature_vec[i].append(f33(i, s)) # feature_vec[i].append(f34(i, s)) # feature_vec[i].append(f35(i, s)) # feature_vec[i].append(f36(i, s)) # feature_vec[i].append(f37(i, s)) # feature_vec[i].append(f38(i, s)) # feature_vec[i].append(f39(i, s)) # feature_vec[i].append(f40(i, s)) # feature_vec[i].append(f41(i)) # feature_vec[i].append(f42(i)) feature_vec[i].append(f43(i)) # feature_vec[i].append(f44(i)) # feature_vec[i].append(f45(i)) # feature_vec[i].append(f46(i, H)) # feature_vec[i].append(f47(i, H)) # feature_vec[i].append(f48(i, s)) # feature_vec[i].append(f49(i, s)) # feature_vec[i].append(f50(i, s)) # feature_vec[i].append(f51(i, s)) # feature_vec[i].append(f52(i, s)) # feature_vec[i].append(f53(i)) feature_vec[i].append(f54(i)) # feature_vec[i].append(f55(i)) # feature_vec[i].append(f56(i)) # -------------------------- # # Do something # # # del feature_vec[i][:] np.save('../../data/selected_feature_vecs.npy', feature_vec)
mit
nouiz/pylearn2
pylearn2/training_algorithms/default.py
44
6791
""" A generic training algorithm that implements no real training code of its own but just calls the model.train_batch method on minibatches of data. """ import functools from theano.compat.six.moves import xrange from pylearn2.monitor import Monitor from pylearn2.training_algorithms.training_algorithm import TrainingAlgorithm from pylearn2.utils import safe_zip from pylearn2.utils.data_specs import DataSpecsMapping class DefaultTrainingAlgorithm(TrainingAlgorithm): """ A generic training algorithm that implements no real training code of its own but just calls the model.train_batch method on minibatches of data. Parameters ---------- batch_size : int, optional If batch_size is None, reverts to the `force_batch_size` field of the model batches_per_iter : int, optional WRITEME monitoring_batch_size : int, optional Size of monitoring batches. monitoring_batches : int, optional WRITEME monitoring_dataset : Dataset or dict, optional A Dataset or a dictionary mapping string dataset names to Datasets termination_criterion : WRITEME If specified, can cause the algorithm to terminate before `model.learn_batch` says to set_batch_size : bool, optional If True, if `model` has a batch size but is not forced to use that one, the training algorithm will set the model to use `batch_size` instead. """ def __init__(self, batch_size=None, batches_per_iter=1000, monitoring_batch_size=None, monitoring_batches=-1, monitoring_dataset=None, termination_criterion=None, set_batch_size=False): self.__dict__.update(locals()) del self.self if monitoring_dataset is None: assert monitoring_batches == -1 assert monitoring_batch_size is None self._set_monitoring_dataset(monitoring_dataset) self.monitoring_batches = monitoring_batches self.bSetup = False self.termination_criterion = termination_criterion def setup(self, model, dataset): """ Allows the training algorithm to do some preliminary configuration *before* we actually start training the model. The dataset is provided in case other derived training algorithms need to modify model based on the dataset. Parameters ---------- model : object Python object representing the model to train loosely implementing the interface of models.model.Model. dataset : pylearn2.datasets.dataset.Dataset Dataset object used to draw training data """ self._synchronize_batch_size(model) self.model = model self.monitor = Monitor.get_monitor(model) if self.monitoring_dataset is not None: # Get the data specifications needed by the model space, source = model.get_monitoring_data_specs() # Create Theano variables for each of the individual components # of that data. Usually, it will be X for inputs and Y for targets. # First, we need to find these components, and put them in a tuple mapping = DataSpecsMapping((space, source)) space_tuple = mapping.flatten(space, return_tuple=True) source_tuple = mapping.flatten(source, return_tuple=True) # Then, build a flat tuple of these Theano variables ipt = tuple(sp.make_theano_batch(name='monitor_%s' % src) for (sp, src) in safe_zip(space_tuple, source_tuple)) # Finally, organize them back into a structure expected by the # monitoring channels of the model nested_ipt = mapping.nest(ipt) channels = model.get_monitoring_channels(nested_ipt) if not isinstance(channels, dict): raise TypeError("model.get_monitoring_channels must return a " "dictionary, but it returned " + str(channels)) for dataset_name in self.monitoring_dataset: if dataset_name == '': prefix = '' else: prefix = dataset_name + '_' monitoring_dataset = self.monitoring_dataset[dataset_name] if (self.monitoring_batch_size is None and self.monitoring_batches == -1): self.monitoring_batch_size = self.batch_size self.monitoring_batches = self.batches_per_iter self.monitor.add_dataset(dataset=monitoring_dataset, mode="sequential", batch_size=self.monitoring_batch_size, num_batches=self.monitoring_batches) for name in channels: J = channels[name] if isinstance(J, tuple): assert len(J) == 2 J, prereqs = J else: prereqs = None self.monitor.add_channel(name=prefix + name, ipt=nested_ipt, val=J, dataset=monitoring_dataset, prereqs=prereqs, data_specs=(space, source)) self.first = True self.bSetup = True @functools.wraps(TrainingAlgorithm.train) def train(self, dataset): assert self.bSetup model = self.model batch_size = self.batch_size for i in xrange(self.batches_per_iter): # model.train_batch and self.train both return False when training # should terminate. learn_more = model.train_batch(dataset, batch_size) model.monitor.report_batch(batch_size) if not learn_more: break # Make sure we didn't exit training loop because Model.learn # hasn't been updated to new interface yet. if learn_more not in [True, False]: msg = ('The learn method of model %s did not return a boolean ' + 'value. Please update your model accordingly.') raise ValueError(msg % str(model)) self.learn_more = learn_more def continue_learning(self, model): """ .. todo:: WRITEME """ if self.learn_more: if self.termination_criterion is not None: return self.termination_criterion.continue_learning(model) return True return False
bsd-3-clause
CforED/Machine-Learning
sklearn/tests/test_cross_validation.py
19
46586
"""Test the cross_validation module""" from __future__ import division import warnings import numpy as np from scipy.sparse import coo_matrix from scipy.sparse import csr_matrix from scipy import stats from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_greater_equal from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame with warnings.catch_warnings(): warnings.simplefilter('ignore') from sklearn import cross_validation as cval from sklearn.datasets import make_regression from sklearn.datasets import load_boston from sklearn.datasets import load_digits from sklearn.datasets import load_iris from sklearn.datasets import make_multilabel_classification from sklearn.metrics import explained_variance_score from sklearn.metrics import make_scorer from sklearn.metrics import precision_score from sklearn.externals import six from sklearn.externals.six.moves import zip from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.cluster import KMeans from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, a=0, allow_nd=False): self.a = a self.allow_nd = allow_nd def fit(self, X, Y=None, sample_weight=None, class_prior=None, sparse_sample_weight=None, sparse_param=None, dummy_int=None, dummy_str=None, dummy_obj=None, callback=None): """The dummy arguments are to test that this fit function can accept non-array arguments through cross-validation, such as: - int - str (this is actually array-like) - object - function """ self.dummy_int = dummy_int self.dummy_str = dummy_str self.dummy_obj = dummy_obj if callback is not None: callback(self) if self.allow_nd: X = X.reshape(len(X), -1) if X.ndim >= 3 and not self.allow_nd: raise ValueError('X cannot be d') if sample_weight is not None: assert_true(sample_weight.shape[0] == X.shape[0], 'MockClassifier extra fit_param sample_weight.shape[0]' ' is {0}, should be {1}'.format(sample_weight.shape[0], X.shape[0])) if class_prior is not None: assert_true(class_prior.shape[0] == len(np.unique(y)), 'MockClassifier extra fit_param class_prior.shape[0]' ' is {0}, should be {1}'.format(class_prior.shape[0], len(np.unique(y)))) if sparse_sample_weight is not None: fmt = ('MockClassifier extra fit_param sparse_sample_weight' '.shape[0] is {0}, should be {1}') assert_true(sparse_sample_weight.shape[0] == X.shape[0], fmt.format(sparse_sample_weight.shape[0], X.shape[0])) if sparse_param is not None: fmt = ('MockClassifier extra fit_param sparse_param.shape ' 'is ({0}, {1}), should be ({2}, {3})') assert_true(sparse_param.shape == P_sparse.shape, fmt.format(sparse_param.shape[0], sparse_param.shape[1], P_sparse.shape[0], P_sparse.shape[1])) return self def predict(self, T): if self.allow_nd: T = T.reshape(len(T), -1) return T[:, 0] def score(self, X=None, Y=None): return 1. / (1 + np.abs(self.a)) def get_params(self, deep=False): return {'a': self.a, 'allow_nd': self.allow_nd} X = np.ones((10, 2)) X_sparse = coo_matrix(X) W_sparse = coo_matrix((np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)) P_sparse = coo_matrix(np.eye(5)) # avoid StratifiedKFold's Warning about least populated class in y y = np.arange(10) % 3 ############################################################################## # Tests def check_valid_split(train, test, n_samples=None): # Use python sets to get more informative assertion failure messages train, test = set(train), set(test) # Train and test split should not overlap assert_equal(train.intersection(test), set()) if n_samples is not None: # Check that the union of train an test split cover all the indices assert_equal(train.union(test), set(range(n_samples))) def check_cv_coverage(cv, expected_n_iter=None, n_samples=None): # Check that a all the samples appear at least once in a test fold if expected_n_iter is not None: assert_equal(len(cv), expected_n_iter) else: expected_n_iter = len(cv) collected_test_samples = set() iterations = 0 for train, test in cv: check_valid_split(train, test, n_samples=n_samples) iterations += 1 collected_test_samples.update(test) # Check that the accumulated test samples cover the whole dataset assert_equal(iterations, expected_n_iter) if n_samples is not None: assert_equal(collected_test_samples, set(range(n_samples))) def test_kfold_valueerrors(): # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.KFold, 3, 4) # Check that a warning is raised if the least populated class has too few # members. y = [3, 3, -1, -1, 2] cv = assert_warns_message(Warning, "The least populated class", cval.StratifiedKFold, y, 3) # Check that despite the warning the folds are still computed even # though all the classes are not necessarily represented at on each # side of the split at each split check_cv_coverage(cv, expected_n_iter=3, n_samples=len(y)) # Error when number of folds is <= 1 assert_raises(ValueError, cval.KFold, 2, 0) assert_raises(ValueError, cval.KFold, 2, 1) assert_raises(ValueError, cval.StratifiedKFold, y, 0) assert_raises(ValueError, cval.StratifiedKFold, y, 1) # When n is not integer: assert_raises(ValueError, cval.KFold, 2.5, 2) # When n_folds is not integer: assert_raises(ValueError, cval.KFold, 5, 1.5) assert_raises(ValueError, cval.StratifiedKFold, y, 1.5) def test_kfold_indices(): # Check all indices are returned in the test folds kf = cval.KFold(300, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=300) # Check all indices are returned in the test folds even when equal-sized # folds are not possible kf = cval.KFold(17, 3) check_cv_coverage(kf, expected_n_iter=3, n_samples=17) def test_kfold_no_shuffle(): # Manually check that KFold preserves the data ordering on toy datasets splits = iter(cval.KFold(4, 2)) train, test = next(splits) assert_array_equal(test, [0, 1]) assert_array_equal(train, [2, 3]) train, test = next(splits) assert_array_equal(test, [2, 3]) assert_array_equal(train, [0, 1]) splits = iter(cval.KFold(5, 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 2]) assert_array_equal(train, [3, 4]) train, test = next(splits) assert_array_equal(test, [3, 4]) assert_array_equal(train, [0, 1, 2]) def test_stratified_kfold_no_shuffle(): # Manually check that StratifiedKFold preserves the data ordering as much # as possible on toy datasets in order to avoid hiding sample dependencies # when possible splits = iter(cval.StratifiedKFold([1, 1, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 2]) assert_array_equal(train, [1, 3]) train, test = next(splits) assert_array_equal(test, [1, 3]) assert_array_equal(train, [0, 2]) splits = iter(cval.StratifiedKFold([1, 1, 1, 0, 0, 0, 0], 2)) train, test = next(splits) assert_array_equal(test, [0, 1, 3, 4]) assert_array_equal(train, [2, 5, 6]) train, test = next(splits) assert_array_equal(test, [2, 5, 6]) assert_array_equal(train, [0, 1, 3, 4]) def test_stratified_kfold_ratios(): # Check that stratified kfold preserves label ratios in individual splits # Repeat with shuffling turned off and on n_samples = 1000 labels = np.array([4] * int(0.10 * n_samples) + [0] * int(0.89 * n_samples) + [1] * int(0.01 * n_samples)) for shuffle in [False, True]: for train, test in cval.StratifiedKFold(labels, 5, shuffle=shuffle): assert_almost_equal(np.sum(labels[train] == 4) / len(train), 0.10, 2) assert_almost_equal(np.sum(labels[train] == 0) / len(train), 0.89, 2) assert_almost_equal(np.sum(labels[train] == 1) / len(train), 0.01, 2) assert_almost_equal(np.sum(labels[test] == 4) / len(test), 0.10, 2) assert_almost_equal(np.sum(labels[test] == 0) / len(test), 0.89, 2) assert_almost_equal(np.sum(labels[test] == 1) / len(test), 0.01, 2) def test_kfold_balance(): # Check that KFold returns folds with balanced sizes for kf in [cval.KFold(i, 5) for i in range(11, 17)]: sizes = [] for _, test in kf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), kf.n) def test_stratifiedkfold_balance(): # Check that KFold returns folds with balanced sizes (only when # stratification is possible) # Repeat with shuffling turned off and on labels = [0] * 3 + [1] * 14 for shuffle in [False, True]: for skf in [cval.StratifiedKFold(labels[:i], 3, shuffle=shuffle) for i in range(11, 17)]: sizes = [] for _, test in skf: sizes.append(len(test)) assert_true((np.max(sizes) - np.min(sizes)) <= 1) assert_equal(np.sum(sizes), skf.n) def test_shuffle_kfold(): # Check the indices are shuffled properly, and that all indices are # returned in the different test folds kf = cval.KFold(300, 3, shuffle=True, random_state=0) ind = np.arange(300) all_folds = None for train, test in kf: assert_true(np.any(np.arange(100) != ind[test])) assert_true(np.any(np.arange(100, 200) != ind[test])) assert_true(np.any(np.arange(200, 300) != ind[test])) if all_folds is None: all_folds = ind[test].copy() else: all_folds = np.concatenate((all_folds, ind[test])) all_folds.sort() assert_array_equal(all_folds, ind) def test_shuffle_stratifiedkfold(): # Check that shuffling is happening when requested, and for proper # sample coverage labels = [0] * 20 + [1] * 20 kf0 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=0)) kf1 = list(cval.StratifiedKFold(labels, 5, shuffle=True, random_state=1)) for (_, test0), (_, test1) in zip(kf0, kf1): assert_true(set(test0) != set(test1)) check_cv_coverage(kf0, expected_n_iter=5, n_samples=40) def test_kfold_can_detect_dependent_samples_on_digits(): # see #2372 # The digits samples are dependent: they are apparently grouped by authors # although we don't have any information on the groups segment locations # for this data. We can highlight this fact be computing k-fold cross- # validation with and without shuffling: we observe that the shuffling case # wrongly makes the IID assumption and is therefore too optimistic: it # estimates a much higher accuracy (around 0.96) than than the non # shuffling variant (around 0.86). digits = load_digits() X, y = digits.data[:800], digits.target[:800] model = SVC(C=10, gamma=0.005) n = len(y) cv = cval.KFold(n, 5, shuffle=False) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) # Shuffling the data artificially breaks the dependency and hides the # overfitting of the model with regards to the writing style of the authors # by yielding a seriously overestimated score: cv = cval.KFold(n, 5, shuffle=True, random_state=0) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) cv = cval.KFold(n, 5, shuffle=True, random_state=1) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(mean_score, 0.95) # Similarly, StratifiedKFold should try to shuffle the data as little # as possible (while respecting the balanced class constraints) # and thus be able to detect the dependency by not overestimating # the CV score either. As the digits dataset is approximately balanced # the estimated mean score is close to the score measured with # non-shuffled KFold cv = cval.StratifiedKFold(y, 5) mean_score = cval.cross_val_score(model, X, y, cv=cv).mean() assert_greater(0.88, mean_score) assert_greater(mean_score, 0.85) def test_label_kfold(): rng = np.random.RandomState(0) # Parameters of the test n_labels = 15 n_samples = 1000 n_folds = 5 # Construct the test data tolerance = 0.05 * n_samples # 5 percent error allowed labels = rng.randint(0, n_labels, n_samples) folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split labels = np.asarray(labels, dtype=object) for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Construct the test data labels = ['Albert', 'Jean', 'Bertrand', 'Michel', 'Jean', 'Francis', 'Robert', 'Michel', 'Rachel', 'Lois', 'Michelle', 'Bernard', 'Marion', 'Laura', 'Jean', 'Rachel', 'Franck', 'John', 'Gael', 'Anna', 'Alix', 'Robert', 'Marion', 'David', 'Tony', 'Abel', 'Becky', 'Madmood', 'Cary', 'Mary', 'Alexandre', 'David', 'Francis', 'Barack', 'Abdoul', 'Rasha', 'Xi', 'Silvia'] labels = np.asarray(labels, dtype=object) n_labels = len(np.unique(labels)) n_samples = len(labels) n_folds = 5 tolerance = 0.05 * n_samples # 5 percent error allowed folds = cval.LabelKFold(labels, n_folds=n_folds).idxs ideal_n_labels_per_fold = n_samples // n_folds # Check that folds have approximately the same size assert_equal(len(folds), len(labels)) for i in np.unique(folds): assert_greater_equal(tolerance, abs(sum(folds == i) - ideal_n_labels_per_fold)) # Check that each label appears only in 1 fold for label in np.unique(labels): assert_equal(len(np.unique(folds[labels == label])), 1) # Check that no label is on both sides of the split for train, test in cval.LabelKFold(labels, n_folds=n_folds): assert_equal(len(np.intersect1d(labels[train], labels[test])), 0) # Should fail if there are more folds than labels labels = np.array([1, 1, 1, 2, 2]) assert_raises(ValueError, cval.LabelKFold, labels, n_folds=3) def test_shuffle_split(): ss1 = cval.ShuffleSplit(10, test_size=0.2, random_state=0) ss2 = cval.ShuffleSplit(10, test_size=2, random_state=0) ss3 = cval.ShuffleSplit(10, test_size=np.int32(2), random_state=0) for typ in six.integer_types: ss4 = cval.ShuffleSplit(10, test_size=typ(2), random_state=0) for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4): assert_array_equal(t1[0], t2[0]) assert_array_equal(t2[0], t3[0]) assert_array_equal(t3[0], t4[0]) assert_array_equal(t1[1], t2[1]) assert_array_equal(t2[1], t3[1]) assert_array_equal(t3[1], t4[1]) def test_stratified_shuffle_split_init(): y = np.asarray([0, 1, 1, 1, 2, 2, 2]) # Check that error is raised if there is a class with only one sample assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.2) # Check that error is raised if the test set size is smaller than n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 2) # Check that error is raised if the train set size is smaller than # n_classes assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 3, 2) y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2]) # Check that errors are raised if there is not enough samples assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.5, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 8, 0.6) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, 3, 0.6, 8) # Train size or test size too small assert_raises(ValueError, cval.StratifiedShuffleSplit, y, train_size=2) assert_raises(ValueError, cval.StratifiedShuffleSplit, y, test_size=2) def test_stratified_shuffle_split_iter(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), np.array([-1] * 800 + [1] * 50) ] for y in ys: sss = cval.StratifiedShuffleSplit(y, 6, test_size=0.33, random_state=0) for train, test in sss: assert_array_equal(np.unique(y[train]), np.unique(y[test])) # Checks if folds keep classes proportions p_train = (np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(len(y[train]))) p_test = (np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(len(y[test]))) assert_array_almost_equal(p_train, p_test, 1) assert_equal(y[train].size + y[test].size, y.size) assert_array_equal(np.intersect1d(train, test), []) def test_stratified_shuffle_split_even(): # Test the StratifiedShuffleSplit, indices are drawn with a # equal chance n_folds = 5 n_iter = 1000 def assert_counts_are_ok(idx_counts, p): # Here we test that the distribution of the counts # per index is close enough to a binomial threshold = 0.05 / n_splits bf = stats.binom(n_splits, p) for count in idx_counts: p = bf.pmf(count) assert_true(p > threshold, "An index is not drawn with chance corresponding " "to even draws") for n_samples in (6, 22): labels = np.array((n_samples // 2) * [0, 1]) splits = cval.StratifiedShuffleSplit(labels, n_iter=n_iter, test_size=1. / n_folds, random_state=0) train_counts = [0] * n_samples test_counts = [0] * n_samples n_splits = 0 for train, test in splits: n_splits += 1 for counter, ids in [(train_counts, train), (test_counts, test)]: for id in ids: counter[id] += 1 assert_equal(n_splits, n_iter) assert_equal(len(train), splits.n_train) assert_equal(len(test), splits.n_test) assert_equal(len(set(train).intersection(test)), 0) label_counts = np.unique(labels) assert_equal(splits.test_size, 1.0 / n_folds) assert_equal(splits.n_train + splits.n_test, len(labels)) assert_equal(len(label_counts), 2) ex_test_p = float(splits.n_test) / n_samples ex_train_p = float(splits.n_train) / n_samples assert_counts_are_ok(train_counts, ex_train_p) assert_counts_are_ok(test_counts, ex_test_p) def test_predefinedsplit_with_kfold_split(): # Check that PredefinedSplit can reproduce a split generated by Kfold. folds = -1 * np.ones(10) kf_train = [] kf_test = [] for i, (train_ind, test_ind) in enumerate(cval.KFold(10, 5, shuffle=True)): kf_train.append(train_ind) kf_test.append(test_ind) folds[test_ind] = i ps_train = [] ps_test = [] ps = cval.PredefinedSplit(folds) for train_ind, test_ind in ps: ps_train.append(train_ind) ps_test.append(test_ind) assert_array_equal(ps_train, kf_train) assert_array_equal(ps_test, kf_test) def test_label_shuffle_split(): ys = [np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]), np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]), np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]), np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]), ] for y in ys: n_iter = 6 test_size = 1. / 3 slo = cval.LabelShuffleSplit(y, n_iter, test_size=test_size, random_state=0) # Make sure the repr works repr(slo) # Test that the length is correct assert_equal(len(slo), n_iter) y_unique = np.unique(y) for train, test in slo: # First test: no train label is in the test set and vice versa y_train_unique = np.unique(y[train]) y_test_unique = np.unique(y[test]) assert_false(np.any(np.in1d(y[train], y_test_unique))) assert_false(np.any(np.in1d(y[test], y_train_unique))) # Second test: train and test add up to all the data assert_equal(y[train].size + y[test].size, y.size) # Third test: train and test are disjoint assert_array_equal(np.intersect1d(train, test), []) # Fourth test: # unique train and test labels are correct, # +- 1 for rounding error assert_true(abs(len(y_test_unique) - round(test_size * len(y_unique))) <= 1) assert_true(abs(len(y_train_unique) - round((1.0 - test_size) * len(y_unique))) <= 1) def test_leave_label_out_changing_labels(): # Check that LeaveOneLabelOut and LeavePLabelOut work normally if # the labels variable is changed before calling __iter__ labels = np.array([0, 1, 2, 1, 1, 2, 0, 0]) labels_changing = np.array(labels, copy=True) lolo = cval.LeaveOneLabelOut(labels) lolo_changing = cval.LeaveOneLabelOut(labels_changing) lplo = cval.LeavePLabelOut(labels, p=2) lplo_changing = cval.LeavePLabelOut(labels_changing, p=2) labels_changing[:] = 0 for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]: for (train, test), (train_chan, test_chan) in zip(llo, llo_changing): assert_array_equal(train, train_chan) assert_array_equal(test, test_chan) def test_cross_val_score(): clf = MockClassifier() for a in range(-10, 10): clf.a = a # Smoke test scores = cval.cross_val_score(clf, X, y) assert_array_equal(scores, clf.score(X, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) scores = cval.cross_val_score(clf, X_sparse, y) assert_array_equal(scores, clf.score(X_sparse, y)) # test with multioutput y scores = cval.cross_val_score(clf, X_sparse, X) assert_array_equal(scores, clf.score(X_sparse, X)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) scores = cval.cross_val_score(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) scores = cval.cross_val_score(clf, X, y.tolist()) assert_raises(ValueError, cval.cross_val_score, clf, X, y, scoring="sklearn") # test with 3d X and X_3d = X[:, :, np.newaxis] clf = MockClassifier(allow_nd=True) scores = cval.cross_val_score(clf, X_3d, y) clf = MockClassifier(allow_nd=False) assert_raises(ValueError, cval.cross_val_score, clf, X_3d, y) def test_cross_val_score_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_score(clf, X_df, y_ser) def test_cross_val_score_mask(): # test that cross_val_score works with boolean masks svm = SVC(kernel="linear") iris = load_iris() X, y = iris.data, iris.target cv_indices = cval.KFold(len(y), 5) scores_indices = cval.cross_val_score(svm, X, y, cv=cv_indices) cv_indices = cval.KFold(len(y), 5) cv_masks = [] for train, test in cv_indices: mask_train = np.zeros(len(y), dtype=np.bool) mask_test = np.zeros(len(y), dtype=np.bool) mask_train[train] = 1 mask_test[test] = 1 cv_masks.append((train, test)) scores_masks = cval.cross_val_score(svm, X, y, cv=cv_masks) assert_array_equal(scores_indices, scores_masks) def test_cross_val_score_precomputed(): # test for svm with precomputed kernel svm = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target linear_kernel = np.dot(X, X.T) score_precomputed = cval.cross_val_score(svm, linear_kernel, y) svm = SVC(kernel="linear") score_linear = cval.cross_val_score(svm, X, y) assert_array_equal(score_precomputed, score_linear) # Error raised for non-square X svm = SVC(kernel="precomputed") assert_raises(ValueError, cval.cross_val_score, svm, X, y) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cval.cross_val_score, svm, linear_kernel.tolist(), y) def test_cross_val_score_fit_params(): clf = MockClassifier() n_samples = X.shape[0] n_classes = len(np.unique(y)) DUMMY_INT = 42 DUMMY_STR = '42' DUMMY_OBJ = object() def assert_fit_params(clf): # Function to test that the values are passed correctly to the # classifier arguments for non-array type assert_equal(clf.dummy_int, DUMMY_INT) assert_equal(clf.dummy_str, DUMMY_STR) assert_equal(clf.dummy_obj, DUMMY_OBJ) fit_params = {'sample_weight': np.ones(n_samples), 'class_prior': np.ones(n_classes) / n_classes, 'sparse_sample_weight': W_sparse, 'sparse_param': P_sparse, 'dummy_int': DUMMY_INT, 'dummy_str': DUMMY_STR, 'dummy_obj': DUMMY_OBJ, 'callback': assert_fit_params} cval.cross_val_score(clf, X, y, fit_params=fit_params) def test_cross_val_score_score_func(): clf = MockClassifier() _score_func_args = [] def score_func(y_test, y_predict): _score_func_args.append((y_test, y_predict)) return 1.0 with warnings.catch_warnings(record=True): scoring = make_scorer(score_func) score = cval.cross_val_score(clf, X, y, scoring=scoring) assert_array_equal(score, [1.0, 1.0, 1.0]) assert len(_score_func_args) == 3 def test_cross_val_score_errors(): class BrokenEstimator: pass assert_raises(TypeError, cval.cross_val_score, BrokenEstimator(), X) def test_train_test_split_errors(): assert_raises(ValueError, cval.train_test_split) assert_raises(ValueError, cval.train_test_split, range(3), train_size=1.1) assert_raises(ValueError, cval.train_test_split, range(3), test_size=0.6, train_size=0.6) assert_raises(ValueError, cval.train_test_split, range(3), test_size=np.float32(0.6), train_size=np.float32(0.6)) assert_raises(ValueError, cval.train_test_split, range(3), test_size="wrong_type") assert_raises(ValueError, cval.train_test_split, range(3), test_size=2, train_size=4) assert_raises(TypeError, cval.train_test_split, range(3), some_argument=1.1) assert_raises(ValueError, cval.train_test_split, range(3), range(42)) def test_train_test_split(): X = np.arange(100).reshape((10, 10)) X_s = coo_matrix(X) y = np.arange(10) # simple test split = cval.train_test_split(X, y, test_size=None, train_size=.5) X_train, X_test, y_train, y_test = split assert_equal(len(y_test), len(y_train)) # test correspondence of X and y assert_array_equal(X_train[:, 0], y_train * 10) assert_array_equal(X_test[:, 0], y_test * 10) # conversion of lists to arrays (deprecated?) with warnings.catch_warnings(record=True): split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_array_equal(X_train, X_s_train.toarray()) assert_array_equal(X_test, X_s_test.toarray()) # don't convert lists to anything else by default split = cval.train_test_split(X, X_s, y.tolist()) X_train, X_test, X_s_train, X_s_test, y_train, y_test = split assert_true(isinstance(y_train, list)) assert_true(isinstance(y_test, list)) # allow nd-arrays X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) split = cval.train_test_split(X_4d, y_3d) assert_equal(split[0].shape, (7, 5, 3, 2)) assert_equal(split[1].shape, (3, 5, 3, 2)) assert_equal(split[2].shape, (7, 7, 11)) assert_equal(split[3].shape, (3, 7, 11)) # test stratification option y = np.array([1, 1, 1, 1, 2, 2, 2, 2]) for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]): train, test = cval.train_test_split(y, test_size=test_size, stratify=y, random_state=0) assert_equal(len(test), exp_test_size) assert_equal(len(test) + len(train), len(y)) # check the 1:1 ratio of ones and twos in the data is preserved assert_equal(np.sum(train == 1), np.sum(train == 2)) def train_test_split_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [MockDataFrame] try: from pandas import DataFrame types.append(DataFrame) except ImportError: pass for InputFeatureType in types: # X dataframe X_df = InputFeatureType(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, InputFeatureType)) assert_true(isinstance(X_test, InputFeatureType)) def train_test_split_mock_pandas(): # X mock dataframe X_df = MockDataFrame(X) X_train, X_test = cval.train_test_split(X_df) assert_true(isinstance(X_train, MockDataFrame)) assert_true(isinstance(X_test, MockDataFrame)) def test_cross_val_score_with_score_func_classification(): iris = load_iris() clf = SVC(kernel='linear') # Default score (should be the accuracy score) scores = cval.cross_val_score(clf, iris.data, iris.target, cv=5) assert_array_almost_equal(scores, [0.97, 1., 0.97, 0.97, 1.], 2) # Correct classification score (aka. zero / one score) - should be the # same as the default estimator score zo_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="accuracy", cv=5) assert_array_almost_equal(zo_scores, [0.97, 1., 0.97, 0.97, 1.], 2) # F1 score (class are balanced so f1_score should be equal to zero/one # score f1_scores = cval.cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted", cv=5) assert_array_almost_equal(f1_scores, [0.97, 1., 0.97, 0.97, 1.], 2) def test_cross_val_score_with_score_func_regression(): X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0) reg = Ridge() # Default score of the Ridge regression estimator scores = cval.cross_val_score(reg, X, y, cv=5) assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # R2 score (aka. determination coefficient) - should be the # same as the default estimator score r2_scores = cval.cross_val_score(reg, X, y, scoring="r2", cv=5) assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) # Mean squared error; this is a loss function, so "scores" are negative mse_scores = cval.cross_val_score(reg, X, y, cv=5, scoring="mean_squared_error") expected_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99]) assert_array_almost_equal(mse_scores, expected_mse, 2) # Explained variance scoring = make_scorer(explained_variance_score) ev_scores = cval.cross_val_score(reg, X, y, cv=5, scoring=scoring) assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) def test_permutation_score(): iris = load_iris() X = iris.data X_sparse = coo_matrix(X) y = iris.target svm = SVC(kernel='linear') cv = cval.StratifiedKFold(y, 2) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_greater(score, 0.9) assert_almost_equal(pvalue, 0.0, 1) score_label, _, pvalue_label = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # check that we obtain the same results with a sparse representation svm_sparse = SVC(kernel='linear') cv_sparse = cval.StratifiedKFold(y, 2) score_label, _, pvalue_label = cval.permutation_test_score( svm_sparse, X_sparse, y, n_permutations=30, cv=cv_sparse, scoring="accuracy", labels=np.ones(y.size), random_state=0) assert_true(score_label == score) assert_true(pvalue_label == pvalue) # test with custom scoring object def custom_score(y_true, y_pred): return (((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]) scorer = make_scorer(custom_score) score, _, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0) assert_almost_equal(score, .93, 2) assert_almost_equal(pvalue, 0.01, 3) # set random y y = np.mod(np.arange(len(y)), 3) score, scores, pvalue = cval.permutation_test_score( svm, X, y, n_permutations=30, cv=cv, scoring="accuracy") assert_less(score, 0.5) assert_greater(pvalue, 0.2) def test_cross_val_generator_with_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) # explicitly passing indices value is deprecated loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ps = cval.PredefinedSplit([1, 1, 2, 2]) ss = cval.ShuffleSplit(2) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] @ignore_warnings def test_cross_val_generator_with_default_indices(): X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) y = np.array([1, 1, 2, 2]) labels = np.array([1, 2, 3, 4]) loo = cval.LeaveOneOut(4) lpo = cval.LeavePOut(4, 2) kf = cval.KFold(4, 2) skf = cval.StratifiedKFold(y, 2) lolo = cval.LeaveOneLabelOut(labels) lopo = cval.LeavePLabelOut(labels, 2) ss = cval.ShuffleSplit(2) ps = cval.PredefinedSplit([1, 1, 2, 2]) for cv in [loo, lpo, kf, skf, lolo, lopo, ss, ps]: for train, test in cv: assert_not_equal(np.asarray(train).dtype.kind, 'b') assert_not_equal(np.asarray(train).dtype.kind, 'b') X[train], X[test] y[train], y[test] def test_shufflesplit_errors(): assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=2.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=1.0) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=0.1, train_size=0.95) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=11) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=10) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=8, train_size=3) assert_raises(ValueError, cval.ShuffleSplit, 10, train_size=1j) assert_raises(ValueError, cval.ShuffleSplit, 10, test_size=None, train_size=None) def test_shufflesplit_reproducible(): # Check that iterating twice on the ShuffleSplit gives the same # sequence of train-test when the random_state is given ss = cval.ShuffleSplit(10, random_state=21) assert_array_equal(list(a for a, b in ss), list(a for a, b in ss)) def test_safe_split_with_precomputed_kernel(): clf = SVC() clfp = SVC(kernel="precomputed") iris = load_iris() X, y = iris.data, iris.target K = np.dot(X, X.T) cv = cval.ShuffleSplit(X.shape[0], test_size=0.25, random_state=0) tr, te = list(cv)[0] X_tr, y_tr = cval._safe_split(clf, X, y, tr) K_tr, y_tr2 = cval._safe_split(clfp, K, y, tr) assert_array_almost_equal(K_tr, np.dot(X_tr, X_tr.T)) X_te, y_te = cval._safe_split(clf, X, y, te, tr) K_te, y_te2 = cval._safe_split(clfp, K, y, te, tr) assert_array_almost_equal(K_te, np.dot(X_te, X_tr.T)) def test_cross_val_score_allow_nans(): # Check that cross_val_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.cross_val_score(p, X, y, cv=5) def test_train_test_split_allow_nans(): # Check that train_test_split allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) cval.train_test_split(X, y, test_size=0.2, random_state=42) def test_permutation_test_score_allow_nans(): # Check that permutation_test_score allows input data with NaNs X = np.arange(200, dtype=np.float64).reshape(10, -1) X[2, :] = np.nan y = np.repeat([0, 1], X.shape[0] / 2) p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) cval.permutation_test_score(p, X, y, cv=5) def test_check_cv_return_types(): X = np.ones((9, 2)) cv = cval.check_cv(3, X, classifier=False) assert_true(isinstance(cv, cval.KFold)) y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1]) cv = cval.check_cv(3, X, y_binary, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2]) cv = cval.check_cv(3, X, y_multiclass, classifier=True) assert_true(isinstance(cv, cval.StratifiedKFold)) X = np.ones((5, 2)) y_multilabel = [[1, 0, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [1, 0, 0]] cv = cval.check_cv(3, X, y_multilabel, classifier=True) assert_true(isinstance(cv, cval.KFold)) y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]]) cv = cval.check_cv(3, X, y_multioutput, classifier=True) assert_true(isinstance(cv, cval.KFold)) def test_cross_val_score_multilabel(): X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1], [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]]) y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]) clf = KNeighborsClassifier(n_neighbors=1) scoring_micro = make_scorer(precision_score, average='micro') scoring_macro = make_scorer(precision_score, average='macro') scoring_samples = make_scorer(precision_score, average='samples') score_micro = cval.cross_val_score(clf, X, y, scoring=scoring_micro, cv=5) score_macro = cval.cross_val_score(clf, X, y, scoring=scoring_macro, cv=5) score_samples = cval.cross_val_score(clf, X, y, scoring=scoring_samples, cv=5) assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3]) assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) def test_cross_val_predict(): boston = load_boston() X, y = boston.data, boston.target cv = cval.KFold(len(boston.target)) est = Ridge() # Naive loop (should be same as cross_val_predict): preds2 = np.zeros_like(y) for train, test in cv: est.fit(X[train], y[train]) preds2[test] = est.predict(X[test]) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_array_almost_equal(preds, preds2) preds = cval.cross_val_predict(est, X, y) assert_equal(len(preds), len(y)) cv = cval.LeaveOneOut(len(y)) preds = cval.cross_val_predict(est, X, y, cv=cv) assert_equal(len(preds), len(y)) Xsp = X.copy() Xsp *= (Xsp > np.median(Xsp)) Xsp = coo_matrix(Xsp) preds = cval.cross_val_predict(est, Xsp, y) assert_array_almost_equal(len(preds), len(y)) preds = cval.cross_val_predict(KMeans(), X) assert_equal(len(preds), len(y)) def bad_cv(): for i in range(4): yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8]) assert_raises(ValueError, cval.cross_val_predict, est, X, y, cv=bad_cv()) def test_cross_val_predict_input_types(): clf = Ridge() # Smoke test predictions = cval.cross_val_predict(clf, X, y) assert_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_equal(predictions.shape, (10, 2)) predictions = cval.cross_val_predict(clf, X_sparse, y) assert_array_equal(predictions.shape, (10,)) # test with multioutput y predictions = cval.cross_val_predict(clf, X_sparse, X) assert_array_equal(predictions.shape, (10, 2)) # test with X and y as list list_check = lambda x: isinstance(x, list) clf = CheckingClassifier(check_X=list_check) predictions = cval.cross_val_predict(clf, X.tolist(), y.tolist()) clf = CheckingClassifier(check_y=list_check) predictions = cval.cross_val_predict(clf, X, y.tolist()) # test with 3d X and X_3d = X[:, :, np.newaxis] check_3d = lambda x: x.ndim == 3 clf = CheckingClassifier(check_X=check_3d) predictions = cval.cross_val_predict(clf, X_3d, y) assert_array_equal(predictions.shape, (10,)) def test_cross_val_predict_pandas(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((Series, DataFrame)) except ImportError: pass for TargetType, InputFeatureType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) cval.cross_val_predict(clf, X_df, y_ser) def test_sparse_fit_params(): iris = load_iris() X, y = iris.data, iris.target clf = MockClassifier() fit_params = {'sparse_sample_weight': coo_matrix(np.eye(X.shape[0]))} a = cval.cross_val_score(clf, X, y, fit_params=fit_params) assert_array_equal(a, np.ones(3)) def test_check_is_partition(): p = np.arange(100) assert_true(cval._check_is_partition(p, 100)) assert_false(cval._check_is_partition(np.delete(p, 23), 100)) p[0] = 23 assert_false(cval._check_is_partition(p, 100)) def test_cross_val_predict_sparse_prediction(): # check that cross_val_predict gives same result for sparse and dense input X, y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, return_indicator=True, random_state=1) X_sparse = csr_matrix(X) y_sparse = csr_matrix(y) classif = OneVsRestClassifier(SVC(kernel='linear')) preds = cval.cross_val_predict(classif, X, y, cv=10) preds_sparse = cval.cross_val_predict(classif, X_sparse, y_sparse, cv=10) preds_sparse = preds_sparse.toarray() assert_array_almost_equal(preds_sparse, preds)
bsd-3-clause
inspirehep/invenio
modules/websearch/lib/search_engine.py
2
334473
# -*- coding: utf-8 -*- ## This file is part of Invenio. ## Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, ## 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2018, 2019, 2020 CERN. ## ## Invenio is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 2 of the ## License, or (at your option) any later version. ## ## Invenio is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Invenio; if not, write to the Free Software Foundation, Inc., ## 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. # pylint: disable=C0301,W0703 """Invenio Search Engine in mod_python.""" __lastupdated__ = """$Date$""" __revision__ = "$Id$" ## import general modules: import cgi import cStringIO import copy import os import re import time import string import urllib import urlparse import zlib import sys try: ## import optional module: import numpy CFG_NUMPY_IMPORTABLE = True except ImportError: CFG_NUMPY_IMPORTABLE = False if sys.hexversion < 0x2040000: # pylint: disable=W0622 from sets import Set as set # pylint: enable=W0622 ## import Invenio stuff: from invenio.config import \ CFG_CERN_SITE, \ CFG_INSPIRE_SITE, \ CFG_SCOAP3_SITE, \ CFG_OAI_ID_FIELD, \ CFG_WEBCOMMENT_ALLOW_REVIEWS, \ CFG_WEBSEARCH_CALL_BIBFORMAT, \ CFG_WEBSEARCH_CREATE_SIMILARLY_NAMED_AUTHORS_LINK_BOX, \ CFG_WEBSEARCH_FIELDS_CONVERT, \ CFG_WEBSEARCH_NB_RECORDS_TO_SORT, \ CFG_WEBSEARCH_SEARCH_CACHE_SIZE, \ CFG_WEBSEARCH_USE_MATHJAX_FOR_FORMATS, \ CFG_WEBSEARCH_USE_ALEPH_SYSNOS, \ CFG_WEBSEARCH_DEF_RECORDS_IN_GROUPS, \ CFG_WEBSEARCH_FULLTEXT_SNIPPETS, \ CFG_WEBSEARCH_DISPLAY_NEAREST_TERMS, \ CFG_BIBUPLOAD_SERIALIZE_RECORD_STRUCTURE, \ CFG_BIBUPLOAD_EXTERNAL_SYSNO_TAG, \ CFG_BIBRANK_SHOW_DOWNLOAD_GRAPHS, \ CFG_WEBSEARCH_SYNONYM_KBRS, \ CFG_SITE_LANG, \ CFG_SITE_NAME, \ CFG_LOGDIR, \ CFG_BIBFORMAT_HIDDEN_TAGS, \ CFG_BIBFORMAT_HIDDEN_RECJSON_FIELDS, \ CFG_SITE_URL, \ CFG_ACCESS_CONTROL_LEVEL_ACCOUNTS, \ CFG_SOLR_URL, \ CFG_WEBSEARCH_DETAILED_META_FORMAT, \ CFG_SITE_RECORD, \ CFG_WEBSEARCH_PREV_NEXT_HIT_LIMIT, \ CFG_WEBSEARCH_VIEWRESTRCOLL_POLICY, \ CFG_BIBSORT_BUCKETS, \ CFG_BIBSORT_ENABLED, \ CFG_XAPIAN_ENABLED, \ CFG_BIBINDEX_CHARS_PUNCTUATION, \ CFG_BASE_URL, \ CFG_WEBSEARCH_BLACKLISTED_FORMATS, \ CFG_WEBSEARCH_MAX_RECORDS_REFERSTO, \ CFG_WEBSEARCH_MAX_RECORDS_CITEDBY from invenio.search_engine_config import \ InvenioWebSearchUnknownCollectionError, \ InvenioWebSearchWildcardLimitError, \ InvenioWebSearchReferstoLimitError, \ InvenioWebSearchCitedbyLimitError, \ CFG_WEBSEARCH_IDXPAIRS_FIELDS,\ CFG_WEBSEARCH_IDXPAIRS_EXACT_SEARCH from invenio.search_engine_utils import (get_fieldvalues, get_fieldvalues_alephseq_like, record_exists) from invenio.bibrecord import create_record, record_xml_output from invenio.bibrank_record_sorter import (get_bibrank_methods, is_method_valid, rank_records as rank_records_bibrank, rank_by_citations) from invenio.bibrank_downloads_similarity import register_page_view_event, calculate_reading_similarity_list from invenio.bibindex_engine_stemmer import stem from invenio.bibindex_tokenizers.BibIndexDefaultTokenizer import BibIndexDefaultTokenizer from invenio.bibindex_tokenizers.BibIndexCJKTokenizer import BibIndexCJKTokenizer, is_there_any_CJK_character_in_text from invenio.bibindex_engine_utils import author_name_requires_phrase_search, \ get_field_tags from invenio.bibindex_engine_washer import wash_index_term, lower_index_term, wash_author_name from invenio.bibindex_engine_config import CFG_BIBINDEX_SYNONYM_MATCH_TYPE from invenio.bibindex_engine_utils import get_idx_indexer, is_index_using_unicode_520 from invenio.bibformat import format_record, format_records, get_output_format_content_type, create_excel from invenio.bibrank_downloads_grapher import create_download_history_graph_and_box from invenio.bibknowledge import get_kbr_values from invenio.data_cacher import DataCacher from invenio.websearch_external_collections import print_external_results_overview, perform_external_collection_search from invenio.access_control_admin import acc_get_action_id from invenio.access_control_config import VIEWRESTRCOLL, \ CFG_ACC_GRANT_AUTHOR_RIGHTS_TO_EMAILS_IN_TAGS, \ CFG_ACC_GRANT_VIEWER_RIGHTS_TO_EMAILS_IN_TAGS from invenio.websearchadminlib import get_detailed_page_tabs, get_detailed_page_tabs_counts from invenio.intbitset import intbitset from invenio.dbquery import DatabaseError, deserialize_via_marshal, InvenioDbQueryWildcardLimitError from invenio.access_control_engine import acc_authorize_action from invenio.errorlib import register_exception from invenio.textutils import encode_for_xml, wash_for_utf8, strip_accents, translate_to_ascii from invenio.htmlutils import get_mathjax_header from invenio.htmlutils import nmtoken_from_string from invenio.urlutils import redirect_to_url from invenio import bibrecord import invenio.template webstyle_templates = invenio.template.load('webstyle') webcomment_templates = invenio.template.load('webcomment') from invenio.bibrank_citation_searcher import calculate_cited_by_list, \ calculate_co_cited_with_list, get_records_with_num_cites, \ get_refersto_hitset, get_citedby_hitset, get_cited_by_list, \ get_refers_to_list, get_citers_log from invenio.bibrank_citation_grapher import create_citation_history_graph_and_box from invenio.bibrank_selfcites_searcher import get_self_cited_by_list, \ get_self_cited_by, \ get_self_refers_to_list from invenio.dbquery import run_sql, \ run_sql_with_limit, \ wash_table_column_name, \ get_table_update_time from invenio.webuser import getUid, collect_user_info, session_param_set from invenio.webpage import pageheaderonly, pagefooteronly, create_error_box, write_warning from invenio.messages import gettext_set_language from invenio.search_engine_query_parser import SearchQueryParenthesisedParser, \ SpiresToInvenioSyntaxConverter from invenio import webinterface_handler_config as apache from invenio.solrutils_bibindex_searcher import solr_get_bitset from invenio.xapianutils_bibindex_searcher import xapian_get_bitset from invenio.websearch_services import \ get_search_services, \ CFG_WEBSEARCH_SERVICE_MAX_SERVICE_ANSWER_RELEVANCE, \ CFG_WEBSEARCH_SERVICE_MAX_NB_SERVICE_DISPLAY, \ CFG_WEBSEARCH_SERVICE_MIN_RELEVANCE_TO_DISPLAY, \ CFG_WEBSEARCH_SERVICE_MAX_RELEVANCE_DIFFERENCE try: import invenio.template websearch_templates = invenio.template.load('websearch') except: pass from invenio.websearch_external_collections import calculate_hosted_collections_results, do_calculate_hosted_collections_results from invenio.websearch_external_collections_config import CFG_HOSTED_COLLECTION_TIMEOUT_ANTE_SEARCH from invenio.websearch_external_collections_config import CFG_HOSTED_COLLECTION_TIMEOUT_POST_SEARCH from invenio.websearch_external_collections_config import CFG_EXTERNAL_COLLECTION_MAXRESULTS from invenio.bibauthorid_config import LIMIT_TO_COLLECTIONS as BIBAUTHORID_LIMIT_TO_COLLECTIONS websearch_templates = invenio.template.load('websearch') VIEWRESTRCOLL_ID = acc_get_action_id(VIEWRESTRCOLL) ## global vars: cfg_nb_browse_seen_records = 100 # limit of the number of records to check when browsing certain collection cfg_nicely_ordered_collection_list = 0 # do we propose collection list nicely ordered or alphabetical? ## precompile some often-used regexp for speed reasons: re_word = re.compile(r'[\s]') re_quotes = re.compile('[\'\"]') re_doublequote = re.compile('\"') re_logical_and = re.compile(r'\sand\s', re.I) re_logical_or = re.compile(r'\sor\s', re.I) re_logical_not = re.compile(r'\snot\s', re.I) re_operators = re.compile(r'\s([\+\-\|])\s') re_pattern_wildcards_after_spaces = re.compile(r'(\s)[\*\%]+') re_pattern_single_quotes = re.compile("'(.*?)'") re_pattern_double_quotes = re.compile("\"(.*?)\"") re_pattern_parens_quotes = re.compile(r'[\'\"]{1}[^\'\"]*(\([^\'\"]*\))[^\'\"]*[\'\"]{1}') re_pattern_regexp_quotes = re.compile(r"\/(.*?)\/") re_pattern_spaces_after_colon = re.compile(r'(:\s+)') re_pattern_short_words = re.compile(r'([\s\"]\w{1,3})[\*\%]+') re_pattern_space = re.compile("__SPACE__") re_pattern_today = re.compile(r"\$TODAY\$") re_pattern_parens = re.compile(r'\([^\)]+\s+[^\)]+\)') re_punctuation_followed_by_space = re.compile(CFG_BIBINDEX_CHARS_PUNCTUATION + r'\s') ## em possible values EM_REPOSITORY={"body" : "B", "header" : "H", "footer" : "F", "search_box" : "S", "see_also_box" : "L", "basket" : "K", "alert" : "A", "search_info" : "I", "overview" : "O", "all_portalboxes" : "P", "te_portalbox" : "Pte", "tp_portalbox" : "Ptp", "np_portalbox" : "Pnp", "ne_portalbox" : "Pne", "lt_portalbox" : "Plt", "rt_portalbox" : "Prt", "search_services": "SER"}; class RestrictedCollectionDataCacher(DataCacher): def __init__(self): def cache_filler(): ret = [] res = run_sql("""SELECT DISTINCT ar.value FROM accROLE_accACTION_accARGUMENT raa JOIN accARGUMENT ar ON raa.id_accARGUMENT = ar.id WHERE ar.keyword = 'collection' AND raa.id_accACTION = %s""", (VIEWRESTRCOLL_ID,), run_on_slave=True) for coll in res: ret.append(coll[0]) return ret def timestamp_verifier(): return max(get_table_update_time('accROLE_accACTION_accARGUMENT'), get_table_update_time('accARGUMENT')) DataCacher.__init__(self, cache_filler, timestamp_verifier) def collection_restricted_p(collection, recreate_cache_if_needed=True): if recreate_cache_if_needed: restricted_collection_cache.recreate_cache_if_needed() return collection in restricted_collection_cache.cache try: restricted_collection_cache.is_ok_p except NameError: restricted_collection_cache = RestrictedCollectionDataCacher() def ziplist(*lists): """Just like zip(), but returns lists of lists instead of lists of tuples Example: zip([f1, f2, f3], [p1, p2, p3], [op1, op2, '']) => [(f1, p1, op1), (f2, p2, op2), (f3, p3, '')] ziplist([f1, f2, f3], [p1, p2, p3], [op1, op2, '']) => [[f1, p1, op1], [f2, p2, op2], [f3, p3, '']] FIXME: This is handy to have, and should live somewhere else, like miscutil.really_useful_functions or something. XXX: Starting in python 2.6, the same can be achieved (faster) by using itertools.izip_longest(); when the minimum recommended Python is bumped, we should use that instead. """ def l(*items): return list(items) return map(l, *lists) def get_permitted_restricted_collections(user_info, recreate_cache_if_needed=True): """Return a list of collection that are restricted but for which the user is authorized.""" if recreate_cache_if_needed: restricted_collection_cache.recreate_cache_if_needed() ret = [] for collection in restricted_collection_cache.cache: if acc_authorize_action(user_info, 'viewrestrcoll', collection=collection)[0] == 0: ret.append(collection) return ret def get_all_restricted_recids(): """ Return the set of all the restricted recids, i.e. the ids of those records which belong to at least one restricted collection. """ ret = intbitset() for collection in restricted_collection_cache.cache: ret |= get_collection_reclist(collection) return ret def get_restricted_collections_for_recid(recid, recreate_cache_if_needed=True): """ Return the list of restricted collection names to which recid belongs. """ if recreate_cache_if_needed: restricted_collection_cache.recreate_cache_if_needed() collection_reclist_cache.recreate_cache_if_needed() return [collection for collection in restricted_collection_cache.cache if recid in get_collection_reclist(collection, recreate_cache_if_needed=False)] def is_user_owner_of_record(user_info, recid): """ Check if the user is owner of the record, i.e. he is the submitter and/or belongs to a owner-like group authorized to 'see' the record. @param user_info: the user_info dictionary that describe the user. @type user_info: user_info dictionary @param recid: the record identifier. @type recid: positive integer @return: True if the user is 'owner' of the record; False otherwise @rtype: bool """ authorized_emails_or_group = [] for tag in CFG_ACC_GRANT_AUTHOR_RIGHTS_TO_EMAILS_IN_TAGS: authorized_emails_or_group.extend(get_fieldvalues(recid, tag)) for email_or_group in authorized_emails_or_group: if email_or_group in user_info['group']: return True email = email_or_group.strip().lower() if user_info['email'].strip().lower() == email: return True return False ###FIXME: This method needs to be refactorized def is_user_viewer_of_record(user_info, recid): """ Check if the user is allow to view the record based in the marc tags inside CFG_ACC_GRANT_VIEWER_RIGHTS_TO_EMAILS_IN_TAGS i.e. his email is inside the 506__m tag or he is inside an e-group listed in the 506__m tag @param user_info: the user_info dictionary that describe the user. @type user_info: user_info dictionary @param recid: the record identifier. @type recid: positive integer @return: True if the user is 'allow to view' the record; False otherwise @rtype: bool """ authorized_emails_or_group = [] for tag in CFG_ACC_GRANT_VIEWER_RIGHTS_TO_EMAILS_IN_TAGS: authorized_emails_or_group.extend(get_fieldvalues(recid, tag)) for email_or_group in authorized_emails_or_group: if email_or_group in user_info['group']: return True email = email_or_group.strip().lower() if user_info['email'].strip().lower() == email: return True return False def check_user_can_view_record(user_info, recid, ln=CFG_SITE_LANG): """ Check if the user is authorized to view the given recid. The function grants access in two cases: either user has author rights on this record, or he has view rights to the primary collection this record belongs to. @param user_info: the user_info dictionary that describe the user. @type user_info: user_info dictionary @param recid: the record identifier. @type recid: positive integer @return: (0, ''), when authorization is granted, (>0, 'message') when authorization is not granted @rtype: (int, string) """ _ = gettext_set_language(ln) policy = CFG_WEBSEARCH_VIEWRESTRCOLL_POLICY.strip().upper() if isinstance(recid, str): recid = int(recid) ## At this point, either webcoll has not yet run or there are some ## restricted collections. Let's see first if the user own the record. if is_user_owner_of_record(user_info, recid): ## Perfect! It's authorized then! return (0, '') if is_user_viewer_of_record(user_info, recid): ## Perfect! It's authorized then! return (0, '') restricted_collections = get_restricted_collections_for_recid(recid, recreate_cache_if_needed=False) if not restricted_collections and record_public_p(recid): ## The record is public and not part of any restricted collection return (0, '') if restricted_collections: ## If there are restricted collections the user must be authorized to all/any of them (depending on the policy) auth_code, auth_msg = 0, '' for collection in restricted_collections: (auth_code, auth_msg) = acc_authorize_action(user_info, VIEWRESTRCOLL, collection=collection) if auth_code and policy != 'ANY': ## Ouch! the user is not authorized to this collection return (auth_code, auth_msg) elif auth_code == 0 and policy == 'ANY': ## Good! At least one collection is authorized return (0, '') ## Depending on the policy, the user will be either authorized or not return auth_code, auth_msg if is_record_in_any_collection(recid, recreate_cache_if_needed=False): ## the record is not in any restricted collection return (0, '') elif record_exists(recid) > 0: ## We are in the case where webcoll has not run. ## Let's authorize SUPERADMIN (auth_code, auth_msg) = acc_authorize_action(user_info, VIEWRESTRCOLL, collection=None) if auth_code == 0: return (0, '') else: ## Too bad. Let's print a nice message: return (2, _("""The record you are trying to access has just been submitted to the system and needs to be assigned to the proper collections. It is currently restricted for security reasons until the assignment will be fully completed. Please come back later to properly access this record.""")) else: ## The record either does not exists or has been deleted. ## Let's handle these situations outside of this code. return (0, '') class IndexStemmingDataCacher(DataCacher): """ Provides cache for stemming information for word/phrase indexes. This class is not to be used directly; use function get_index_stemming_language() instead. """ def __init__(self): def cache_filler(): try: res = run_sql("""SELECT id, stemming_language FROM idxINDEX""") except DatabaseError: # database problems, return empty cache return {} return dict(res) def timestamp_verifier(): return get_table_update_time('idxINDEX') DataCacher.__init__(self, cache_filler, timestamp_verifier) try: index_stemming_cache.is_ok_p except Exception: index_stemming_cache = IndexStemmingDataCacher() def get_index_stemming_language(index_id, recreate_cache_if_needed=True): """Return stemming langugage for given index.""" if recreate_cache_if_needed: index_stemming_cache.recreate_cache_if_needed() return index_stemming_cache.cache[index_id] class FieldTokenizerDataCacher(DataCacher): """ Provides cache for tokenizer information for fields corresponding to indexes. This class is not to be used directly; use function get_field_tokenizer_type() instead. """ def __init__(self): def cache_filler(): try: res = run_sql("""SELECT fld.code, ind.tokenizer FROM idxINDEX AS ind, field AS fld, idxINDEX_field AS indfld WHERE ind.id = indfld.id_idxINDEX AND indfld.id_field = fld.id""") except DatabaseError: # database problems, return empty cache return {} return dict(res) def timestamp_verifier(): return get_table_update_time('idxINDEX') DataCacher.__init__(self, cache_filler, timestamp_verifier) try: field_tokenizer_cache.is_ok_p except Exception: field_tokenizer_cache = FieldTokenizerDataCacher() def get_field_tokenizer_type(field_name, recreate_cache_if_needed=True): """Return tokenizer type for given field corresponding to an index if applicable.""" if recreate_cache_if_needed: field_tokenizer_cache.recreate_cache_if_needed() tokenizer = None try: tokenizer = field_tokenizer_cache.cache[field_name] except KeyError: return None return tokenizer class CollectionRecListDataCacher(DataCacher): """ Provides cache for collection reclist hitsets. This class is not to be used directly; use function get_collection_reclist() instead. """ def __init__(self): def cache_filler(): ret = {} res = run_sql("SELECT name FROM collection") for name in res: ret[name[0]] = None # this will be filled later during runtime by calling get_collection_reclist(coll) return ret def timestamp_verifier(): return get_table_update_time('collection') DataCacher.__init__(self, cache_filler, timestamp_verifier) try: if not collection_reclist_cache.is_ok_p: raise Exception except Exception: collection_reclist_cache = CollectionRecListDataCacher() def get_collection_reclist(coll, recreate_cache_if_needed=True): """Return hitset of recIDs that belong to the collection 'coll'.""" if recreate_cache_if_needed: collection_reclist_cache.recreate_cache_if_needed() if coll not in collection_reclist_cache.cache: return intbitset() # collection does not exist; return empty set if not collection_reclist_cache.cache[coll]: # collection's reclist not in the cache yet, so calculate it # and fill the cache: reclist = intbitset() query = "SELECT nbrecs,reclist FROM collection WHERE name=%s" res = run_sql(query, (coll, ), 1) try: reclist = intbitset(res[0][1]) except (IndexError, TypeError): pass collection_reclist_cache.cache[coll] = reclist # finally, return reclist: return collection_reclist_cache.cache[coll] def get_available_output_formats(visible_only=False): """ Return the list of available output formats. When visible_only is True, returns only those output formats that have visibility flag set to 1. """ formats = [] query = "SELECT code,name FROM format" if visible_only: query += " WHERE visibility='1'" query += " ORDER BY name ASC" res = run_sql(query) if res: # propose found formats: for code, name in res: formats.append({'value': code, 'text': name }) else: formats.append({'value': 'hb', 'text': "HTML brief" }) return formats class SearchResultsCache(DataCacher): """ Provides temporary lazy cache for Search Results. Useful when users click on `next page'. """ def __init__(self): def cache_filler(): return {} def timestamp_verifier(): return '1970-01-01 00:00:00' # lazy cache is always okay; # its filling is governed by # CFG_WEBSEARCH_SEARCH_CACHE_SIZE DataCacher.__init__(self, cache_filler, timestamp_verifier) try: if not search_results_cache.is_ok_p: raise Exception except Exception: search_results_cache = SearchResultsCache() class CollectionI18nNameDataCacher(DataCacher): """ Provides cache for I18N collection names. This class is not to be used directly; use function get_coll_i18nname() instead. """ def __init__(self): def cache_filler(): ret = {} try: res = run_sql("SELECT c.name,cn.ln,cn.value FROM collectionname AS cn, collection AS c WHERE cn.id_collection=c.id AND cn.type='ln'") # ln=long name except Exception: # database problems return {} for c, ln, i18nname in res: if i18nname: if c not in ret: ret[c] = {} ret[c][ln] = i18nname return ret def timestamp_verifier(): return get_table_update_time('collectionname') DataCacher.__init__(self, cache_filler, timestamp_verifier) try: if not collection_i18nname_cache.is_ok_p: raise Exception except Exception: collection_i18nname_cache = CollectionI18nNameDataCacher() def get_coll_i18nname(c, ln=CFG_SITE_LANG, verify_cache_timestamp=True): """ Return nicely formatted collection name (of the name type `ln' (=long name)) for collection C in language LN. This function uses collection_i18nname_cache, but it verifies whether the cache is up-to-date first by default. This verification step is performed by checking the DB table update time. So, if you call this function 1000 times, it can get very slow because it will do 1000 table update time verifications, even though collection names change not that often. Hence the parameter VERIFY_CACHE_TIMESTAMP which, when set to False, will assume the cache is already up-to-date. This is useful namely in the generation of collection lists for the search results page. """ if verify_cache_timestamp: collection_i18nname_cache.recreate_cache_if_needed() out = c try: out = collection_i18nname_cache.cache[c][ln] except KeyError: pass # translation in LN does not exist return out class FieldI18nNameDataCacher(DataCacher): """ Provides cache for I18N field names. This class is not to be used directly; use function get_field_i18nname() instead. """ def __init__(self): def cache_filler(): ret = {} try: res = run_sql("SELECT f.name,fn.ln,fn.value FROM fieldname AS fn, field AS f WHERE fn.id_field=f.id AND fn.type='ln'") # ln=long name except Exception: # database problems, return empty cache return {} for f, ln, i18nname in res: if i18nname: if f not in ret: ret[f] = {} ret[f][ln] = i18nname return ret def timestamp_verifier(): return get_table_update_time('fieldname') DataCacher.__init__(self, cache_filler, timestamp_verifier) try: if not field_i18nname_cache.is_ok_p: raise Exception except Exception: field_i18nname_cache = FieldI18nNameDataCacher() def get_field_i18nname(f, ln=CFG_SITE_LANG, verify_cache_timestamp=True): """ Return nicely formatted field name (of type 'ln', 'long name') for field F in language LN. If VERIFY_CACHE_TIMESTAMP is set to True, then verify DB timestamp and field I18N name cache timestamp and refresh cache from the DB if needed. Otherwise don't bother checking DB timestamp and return the cached value. (This is useful when get_field_i18nname is called inside a loop.) """ if verify_cache_timestamp: field_i18nname_cache.recreate_cache_if_needed() out = f try: out = field_i18nname_cache.cache[f][ln] except KeyError: pass # translation in LN does not exist return out def get_alphabetically_ordered_collection_list(level=0, ln=CFG_SITE_LANG): """Returns nicely ordered (score respected) list of collections, more exactly list of tuples (collection name, printable collection name). Suitable for create_search_box().""" out = [] res = run_sql("SELECT name FROM collection ORDER BY name ASC") for c_name in res: c_name = c_name[0] # make a nice printable name (e.g. truncate c_printable for # long collection names in given language): c_printable_fullname = get_coll_i18nname(c_name, ln, False) c_printable = wash_index_term(c_printable_fullname, 30, False) if c_printable != c_printable_fullname: c_printable = c_printable + "..." if level: c_printable = " " + level * '-' + " " + c_printable out.append([c_name, c_printable]) return out def get_nicely_ordered_collection_list(collid=1, level=0, ln=CFG_SITE_LANG): """Returns nicely ordered (score respected) list of collections, more exactly list of tuples (collection name, printable collection name). Suitable for create_search_box().""" colls_nicely_ordered = [] res = run_sql("""SELECT c.name,cc.id_son FROM collection_collection AS cc, collection AS c WHERE c.id=cc.id_son AND cc.id_dad=%s ORDER BY score DESC""", (collid, )) for c, cid in res: # make a nice printable name (e.g. truncate c_printable for # long collection names in given language): c_printable_fullname = get_coll_i18nname(c, ln, False) c_printable = wash_index_term(c_printable_fullname, 30, False) if c_printable != c_printable_fullname: c_printable = c_printable + "..." if level: c_printable = " " + level * '-' + " " + c_printable colls_nicely_ordered.append([c, c_printable]) colls_nicely_ordered = colls_nicely_ordered + get_nicely_ordered_collection_list(cid, level+1, ln=ln) return colls_nicely_ordered def get_index_id_from_field(field): """ Return index id with name corresponding to FIELD, or the first index id where the logical field code named FIELD is indexed. Return zero in case there is no index defined for this field. Example: field='author', output=4. """ out = 0 if not field: field = 'global' # empty string field means 'global' index (field 'anyfield') # first look in the index table: res = run_sql("""SELECT id FROM idxINDEX WHERE name=%s""", (field,)) if res: out = res[0][0] return out # not found in the index table, now look in the field table: res = run_sql("""SELECT w.id FROM idxINDEX AS w, idxINDEX_field AS wf, field AS f WHERE f.code=%s AND wf.id_field=f.id AND w.id=wf.id_idxINDEX LIMIT 1""", (field,)) if res: out = res[0][0] return out def get_words_from_pattern(pattern): """ Returns list of whitespace-separated words from pattern, removing any trailing punctuation-like signs from words in pattern. """ words = {} # clean trailing punctuation signs inside pattern pattern = re_punctuation_followed_by_space.sub(' ', pattern) for word in pattern.split(): if word not in words: words[word] = 1 return words.keys() def create_basic_search_units(req, p, f, m=None, of='hb'): """Splits search pattern and search field into a list of independently searchable units. - A search unit consists of '(operator, pattern, field, type, hitset)' tuples where 'operator' is set union (|), set intersection (+) or set exclusion (-); 'pattern' is either a word (e.g. muon*) or a phrase (e.g. 'nuclear physics'); 'field' is either a code like 'title' or MARC tag like '100__a'; 'type' is the search type ('w' for word file search, 'a' for access file search). - Optionally, the function accepts the match type argument 'm'. If it is set (e.g. from advanced search interface), then it performs this kind of matching. If it is not set, then a guess is made. 'm' can have values: 'a'='all of the words', 'o'='any of the words', 'p'='phrase/substring', 'r'='regular expression', 'e'='exact value'. - Warnings are printed on req (when not None) in case of HTML output formats.""" opfts = [] # will hold (o,p,f,t,h) units # FIXME: quick hack for the journal index if f == 'journal': opfts.append(['+', p, f, 'e']) return opfts ## check arguments: is desired matching type set? if m: ## A - matching type is known; good! if m == 'e': # A1 - exact value: opfts.append(['+', p, f, 'a']) # '+' since we have only one unit elif m == 'p': # A2 - phrase/substring: opfts.append(['+', "%" + p + "%", f, 'a']) # '+' since we have only one unit elif m == 'r': # A3 - regular expression: opfts.append(['+', p, f, 'r']) # '+' since we have only one unit elif m == 'a' or m == 'w': # A4 - all of the words: p = strip_accents(p) # strip accents for 'w' mode, FIXME: delete when not needed for word in get_words_from_pattern(p): opfts.append(['+', word, f, 'w']) # '+' in all units elif m == 'o': # A5 - any of the words: p = strip_accents(p) # strip accents for 'w' mode, FIXME: delete when not needed for word in get_words_from_pattern(p): if len(opfts)==0: opfts.append(['+', word, f, 'w']) # '+' in the first unit else: opfts.append(['|', word, f, 'w']) # '|' in further units else: if of.startswith("h"): write_warning("Matching type '%s' is not implemented yet." % cgi.escape(m), "Warning", req=req) opfts.append(['+', "%" + p + "%", f, 'w']) else: ## B - matching type is not known: let us try to determine it by some heuristics if f and p[0] == '"' and p[-1] == '"': ## B0 - does 'p' start and end by double quote, and is 'f' defined? => doing ACC search opfts.append(['+', p[1:-1], f, 'a']) elif f in ('author', 'firstauthor', 'exactauthor', 'exactfirstauthor', 'authorityauthor') and author_name_requires_phrase_search(p): ## B1 - do we search in author, and does 'p' contain space/comma/dot/etc? ## => doing washed ACC search opfts.append(['+', p, f, 'a']) elif f and p[0] == "'" and p[-1] == "'": ## B0bis - does 'p' start and end by single quote, and is 'f' defined? => doing ACC search opfts.append(['+', '%' + p[1:-1] + '%', f, 'a']) elif f and p[0] == "/" and p[-1] == "/": ## B0ter - does 'p' start and end by a slash, and is 'f' defined? => doing regexp search opfts.append(['+', p[1:-1], f, 'r']) elif f and p.find(',') >= 0: ## B1 - does 'p' contain comma, and is 'f' defined? => doing ACC search opfts.append(['+', p, f, 'a']) elif f and str(f[0:2]).isdigit(): ## B2 - does 'f' exist and starts by two digits? => doing ACC search opfts.append(['+', p, f, 'a']) else: ## B3 - doing WRD search, but maybe ACC too # search units are separated by spaces unless the space is within single or double quotes # so, let us replace temporarily any space within quotes by '__SPACE__' p = re_pattern_single_quotes.sub(lambda x: "'"+x.group(1).replace(' ', '__SPACE__')+"'", p) p = re_pattern_double_quotes.sub(lambda x: "\""+x.group(1).replace(' ', '__SPACE__')+"\"", p) p = re_pattern_regexp_quotes.sub(lambda x: "/"+x.group(1).replace(' ', '__SPACE__')+"/", p) # and spaces after colon as well: p = re_pattern_spaces_after_colon.sub(lambda x: x.group(1).replace(' ', '__SPACE__'), p) # wash argument: p = re_logical_and.sub(" ", p) p = re_logical_or.sub(" |", p) p = re_logical_not.sub(" -", p) p = re_operators.sub(r' \1', p) for pi in p.split(): # iterate through separated units (or items, as "pi" stands for "p item") pi = re_pattern_space.sub(" ", pi) # replace back '__SPACE__' by ' ' # firstly, determine set operator if pi[0] == '+' or pi[0] == '-' or pi[0] == '|': oi = pi[0] pi = pi[1:] else: # okay, there is no operator, so let us decide what to do by default oi = '+' # by default we are doing set intersection... # secondly, determine search pattern and field: if pi.find(":") > 0: fi, pi = pi.split(":", 1) fi = wash_field(fi) # test whether fi is a real index code or a MARC-tag defined code: if fi in get_fieldcodes() or '00' <= fi[:2] <= '99': pass else: # it is not, so join it back: fi, pi = f, fi + ":" + pi else: fi, pi = f, pi # wash 'fi' argument: fi = wash_field(fi) # wash 'pi' argument: pi = pi.strip() # strip eventual spaces if re_quotes.match(pi): # B3a - quotes are found => do ACC search (phrase search) if pi[0] == '"' and pi[-1] == '"': pi = pi.replace('"', '') # remove quote signs opfts.append([oi, pi, fi, 'a']) elif pi[0] == "'" and pi[-1] == "'": pi = pi.replace("'", "") # remove quote signs opfts.append([oi, "%" + pi + "%", fi, 'a']) else: # unbalanced quotes, so fall back to WRD query: opfts.append([oi, pi, fi, 'w']) elif pi.startswith('/') and pi.endswith('/'): # B3b - pi has slashes around => do regexp search opfts.append([oi, pi[1:-1], fi, 'r']) elif fi and len(fi) > 1 and str(fi[0]).isdigit() and str(fi[1]).isdigit(): # B3c - fi exists and starts by two digits => do ACC search opfts.append([oi, pi, fi, 'a']) elif fi and not get_index_id_from_field(fi) and get_field_name(fi): # B3d - logical field fi exists but there is no WRD index for fi => try ACC search opfts.append([oi, pi, fi, 'a']) else: # B3e - general case => do WRD search pi = strip_accents(pi) # strip accents for 'w' mode, FIXME: delete when not needed for pii in get_words_from_pattern(pi): opfts.append([oi, pii, fi, 'w']) ## sanity check: for i in range(0, len(opfts)): try: pi = opfts[i][1] if pi == '*': if of.startswith("h"): write_warning("Ignoring standalone wildcard word.", "Warning", req=req) del opfts[i] if pi == '' or pi == ' ': fi = opfts[i][2] if fi: if of.startswith("h"): write_warning("Ignoring empty <em>%s</em> search term." % fi, "Warning", req=req) del opfts[i] except: pass ## replace old logical field names if applicable: if CFG_WEBSEARCH_FIELDS_CONVERT: opfts = [[o, p, wash_field(f), t] for o, p, f, t in opfts] ## return search units: return opfts def page_start(req, of, cc, aas, ln, uid, title_message=None, description='', keywords='', recID=-1, tab='', p='', em=''): """ Start page according to given output format. @param title_message: title of the page, not escaped for HTML @param description: description of the page, not escaped for HTML @param keywords: keywords of the page, not escaped for HTML """ _ = gettext_set_language(ln) if not req or isinstance(req, cStringIO.OutputType): return # we were called from CLI if not title_message: title_message = _("Search Results") content_type = get_output_format_content_type(of) if of.startswith('x'): if of == 'xr': # we are doing RSS output req.content_type = "application/rss+xml" req.send_http_header() req.write("""<?xml version="1.0" encoding="UTF-8"?>\n""") else: # we are doing XML output: req.content_type = get_output_format_content_type(of, 'text/xml') if 'Origin' in req.headers_in: req.headers_out["Access-Control-Allow-Origin"] = '*' req.send_http_header() req.write("""<?xml version="1.0" encoding="UTF-8"?>\n""") elif of.startswith('t') or str(of[0:3]).isdigit(): # we are doing plain text output: req.content_type = "text/plain" req.send_http_header() elif of == "intbitset": req.content_type = "application/octet-stream" req.send_http_header() elif of == "recjson": req.content_type = "application/json" if 'Origin' in req.headers_in: req.headers_out["Access-Control-Allow-Origin"] = '*' req.send_http_header() elif of == "id": pass # nothing to do, we shall only return list of recIDs elif content_type == 'text/html': # we are doing HTML output: req.content_type = "text/html" req.send_http_header() if not description: description = "%s %s." % (cc, _("Search Results")) if not keywords: keywords = "%s, WebSearch, %s" % (get_coll_i18nname(CFG_SITE_NAME, ln, False), get_coll_i18nname(cc, ln, False)) ## generate RSS URL: argd = {} if req.args: argd = cgi.parse_qs(req.args) rssurl = websearch_templates.build_rss_url(argd) ## add MathJax if displaying single records (FIXME: find ## eventual better place to this code) if of.lower() in CFG_WEBSEARCH_USE_MATHJAX_FOR_FORMATS: metaheaderadd = get_mathjax_header(req.is_https()) else: metaheaderadd = '' # Add metadata in meta tags for Google scholar-esque harvesting... # only if we have a detailed meta format and we are looking at a # single record if recID != -1 and CFG_WEBSEARCH_DETAILED_META_FORMAT and \ record_exists(recID) == 1: metaheaderadd += format_record(recID, CFG_WEBSEARCH_DETAILED_META_FORMAT, ln=ln) ## generate navtrail: navtrail = create_navtrail_links(cc, aas, ln) if navtrail != '': navtrail += ' &gt; ' if (tab != '' or ((of != '' or of.lower() != 'hd') and of != 'hb')) and \ recID != -1: # If we are not in information tab in HD format, customize # the nav. trail to have a link back to main record. (Due # to the way perform_request_search() works, hb # (lowercase) is equal to hd) navtrail += ' <a class="navtrail" href="%s/%s/%s">%s</a>' % \ (CFG_BASE_URL, CFG_SITE_RECORD, recID, cgi.escape(title_message)) if (of != '' or of.lower() != 'hd') and of != 'hb': # Export format_name = of query = "SELECT name FROM format WHERE code=%s" res = run_sql(query, (of,)) if res: format_name = res[0][0] navtrail += ' &gt; ' + format_name else: # Discussion, citations, etc. tabs tab_label = get_detailed_page_tabs(cc, ln=ln)[tab]['label'] navtrail += ' &gt; ' + _(tab_label) else: navtrail += cgi.escape(title_message) if p: # we are serving search/browse results pages, so insert pattern: navtrail += ": " + cgi.escape(p) title_message = p + " - " + title_message body_css_classes = [] if cc: # we know the collection, lets allow page styles based on cc #collection names may not satisfy rules for css classes which #are something like: -?[_a-zA-Z]+[_a-zA-Z0-9-]* #however it isn't clear what we should do about cases with #numbers, so we leave them to fail. Everything else becomes "_" css = nmtoken_from_string(cc).replace('.', '_').replace('-', '_').replace(':', '_') body_css_classes.append(css) ## finally, print page header: if em == '' or EM_REPOSITORY["header"] in em: req.write(pageheaderonly(req=req, title=title_message, navtrail=navtrail, description=description, keywords=keywords, metaheaderadd=metaheaderadd, uid=uid, language=ln, navmenuid='search', navtrail_append_title_p=0, rssurl=rssurl, body_css_classes=body_css_classes)) req.write(websearch_templates.tmpl_search_pagestart(ln=ln)) else: req.content_type = content_type req.send_http_header() def page_end(req, of="hb", ln=CFG_SITE_LANG, em=""): "End page according to given output format: e.g. close XML tags, add HTML footer, etc." if of == "id": return [] # empty recID list if of == "intbitset": return intbitset() if not req: return # we were called from CLI if of.startswith('h'): req.write(websearch_templates.tmpl_search_pageend(ln = ln)) # pagebody end if em == "" or EM_REPOSITORY["footer"] in em: req.write(pagefooteronly(lastupdated=__lastupdated__, language=ln, req=req)) return def create_page_title_search_pattern_info(p, p1, p2, p3): """Create the search pattern bit for the page <title> web page HTML header. Basically combine p and (p1,p2,p3) together so that the page header may be filled whether we are in the Simple Search or Advanced Search interface contexts.""" out = "" if p: out = p else: out = p1 if p2: out += ' ' + p2 if p3: out += ' ' + p3 return out def create_inputdate_box(name="d1", selected_year=0, selected_month=0, selected_day=0, ln=CFG_SITE_LANG): "Produces 'From Date', 'Until Date' kind of selection box. Suitable for search options." _ = gettext_set_language(ln) box = "" # day box += """<select name="%sd">""" % name box += """<option value="">%s""" % _("any day") for day in range(1, 32): box += """<option value="%02d"%s>%02d""" % (day, is_selected(day, selected_day), day) box += """</select>""" # month box += """<select name="%sm">""" % name box += """<option value="">%s""" % _("any month") # trailing space in May distinguishes short/long form of the month name for mm, month in [(1, _("January")), (2, _("February")), (3, _("March")), (4, _("April")), (5, _("May ")), (6, _("June")), (7, _("July")), (8, _("August")), (9, _("September")), (10, _("October")), (11, _("November")), (12, _("December"))]: box += """<option value="%02d"%s>%s""" % (mm, is_selected(mm, selected_month), month.strip()) box += """</select>""" # year box += """<select name="%sy">""" % name box += """<option value="">%s""" % _("any year") this_year = int(time.strftime("%Y", time.localtime())) for year in range(this_year-20, this_year+1): box += """<option value="%d"%s>%d""" % (year, is_selected(year, selected_year), year) box += """</select>""" return box def create_search_box(cc, colls, p, f, rg, sf, so, sp, rm, of, ot, aas, ln, p1, f1, m1, op1, p2, f2, m2, op2, p3, f3, m3, sc, pl, d1y, d1m, d1d, d2y, d2m, d2d, dt, jrec, ec, action="", em=""): """Create search box for 'search again in the results page' functionality.""" if em != "" and EM_REPOSITORY["search_box"] not in em: if EM_REPOSITORY["body"] in em and cc != CFG_SITE_NAME: return ''' <h1 class="headline">%(ccname)s</h1>''' % {'ccname' : cgi.escape(cc), } else: return "" # load the right message language _ = gettext_set_language(ln) # some computations cc_intl = get_coll_i18nname(cc, ln, False) cc_colID = get_colID(cc) colls_nicely_ordered = [] if cfg_nicely_ordered_collection_list: colls_nicely_ordered = get_nicely_ordered_collection_list(ln=ln) else: colls_nicely_ordered = get_alphabetically_ordered_collection_list(ln=ln) colls_nice = [] for (cx, cx_printable) in colls_nicely_ordered: if not cx.startswith("Unnamed collection"): colls_nice.append({'value': cx, 'text': cx_printable }) coll_selects = [] if colls and colls[0] != CFG_SITE_NAME: # some collections are defined, so print these first, and only then print 'add another collection' heading: for c in colls: if c: temp = [] temp.append({'value': CFG_SITE_NAME, 'text': '*** %s ***' % (CFG_SCOAP3_SITE and _("any publisher or journal") or _("any public collection")) }) # this field is used to remove the current collection from the ones to be searched. temp.append({'value': '', 'text': '*** %s ***' % (CFG_SCOAP3_SITE and _("remove this publisher or journal") or _("remove this collection")) }) for val in colls_nice: # print collection: if not cx.startswith("Unnamed collection"): temp.append({'value': val['value'], 'text': val['text'], 'selected' : (c == re.sub(r"^[\s\-]*", "", val['value'])) }) coll_selects.append(temp) coll_selects.append([{'value': '', 'text' : '*** %s ***' % (CFG_SCOAP3_SITE and _("add another publisher or journal") or _("add another collection")) }] + colls_nice) else: # we searched in CFG_SITE_NAME, so print 'any public collection' heading coll_selects.append([{'value': CFG_SITE_NAME, 'text' : '*** %s ***' % (CFG_SCOAP3_SITE and _("any publisher or journal") or _("any public collection")) }] + colls_nice) ## ranking methods ranks = [{ 'value' : '', 'text' : "- %s %s -" % (_("OR").lower(), _("rank by")), }] for (code, name) in get_bibrank_methods(cc_colID, ln): # propose found rank methods: ranks.append({ 'value': code, 'text': name, }) formats = get_available_output_formats(visible_only=True) # show collections in the search box? (not if there is only one # collection defined, and not if we are in light search) show_colls = True show_title = True if len(collection_reclist_cache.cache.keys()) == 1 or \ aas == -1: show_colls = False show_title = False if cc == CFG_SITE_NAME: show_title = False if CFG_INSPIRE_SITE: show_title = False return websearch_templates.tmpl_search_box( ln = ln, aas = aas, cc_intl = cc_intl, cc = cc, ot = ot, sp = sp, action = action, fieldslist = get_searchwithin_fields(ln=ln, colID=cc_colID), f1 = f1, f2 = f2, f3 = f3, m1 = m1, m2 = m2, m3 = m3, p1 = p1, p2 = p2, p3 = p3, op1 = op1, op2 = op2, rm = rm, p = p, f = f, coll_selects = coll_selects, d1y = d1y, d2y = d2y, d1m = d1m, d2m = d2m, d1d = d1d, d2d = d2d, dt = dt, sort_fields = get_sortby_fields(ln=ln, colID=cc_colID), sf = sf, so = so, ranks = ranks, sc = sc, rg = rg, formats = formats, of = of, pl = pl, jrec = jrec, ec = ec, show_colls = show_colls, show_title = show_title and (em=="" or EM_REPOSITORY["body"] in em) ) def create_exact_author_browse_help_link(p=None, p1=None, p2=None, p3=None, f=None, f1=None, f2=None, f3=None, rm=None, cc=None, ln=None, jrec=None, rg=None, aas=0, action=""): """Creates a link to help switch from author to exact author while browsing""" if action == 'browse': search_fields = (f, f1, f2, f3) if 'author' in search_fields or 'firstauthor' in search_fields: def add_exact(field): if field == 'author' or field == 'firstauthor': return 'exact' + field return field fe, f1e, f2e, f3e = [add_exact(field) for field in search_fields] link_name = f or f1 link_name = (link_name == 'firstauthor' and 'exact first author') or 'exact author' return websearch_templates.tmpl_exact_author_browse_help_link(p=p, p1=p1, p2=p2, p3=p3, f=fe, f1=f1e, f2=f2e, f3=f3e, rm=rm, cc=cc, ln=ln, jrec=jrec, rg=rg, aas=aas, action=action, link_name=link_name) return "" def create_navtrail_links(cc=CFG_SITE_NAME, aas=0, ln=CFG_SITE_LANG, self_p=1, tab=''): """Creates navigation trail links, i.e. links to collection ancestors (except Home collection). If aas==1, then links to Advanced Search interfaces; otherwise Simple Search. """ dads = [] for dad in get_coll_ancestors(cc): if dad != CFG_SITE_NAME: # exclude Home collection dads.append((dad, get_coll_i18nname(dad, ln, False))) if self_p and cc != CFG_SITE_NAME: dads.append((cc, get_coll_i18nname(cc, ln, False))) return websearch_templates.tmpl_navtrail_links( aas=aas, ln=ln, dads=dads) def get_searchwithin_fields(ln='en', colID=None): """Retrieves the fields name used in the 'search within' selection box for the collection ID colID.""" res = None if colID: res = run_sql("""SELECT f.code,f.name FROM field AS f, collection_field_fieldvalue AS cff WHERE cff.type='sew' AND cff.id_collection=%s AND cff.id_field=f.id ORDER BY cff.score DESC, f.name ASC""", (colID,)) if not res: res = run_sql("SELECT code,name FROM field ORDER BY name ASC") fields = [{ 'value' : '', 'text' : get_field_i18nname("any field", ln, False) }] for field_code, field_name in res: if field_code and field_code != "anyfield": fields.append({'value': field_code, 'text': get_field_i18nname(field_name, ln, False) }) return fields def get_sortby_fields(ln='en', colID=None): """Retrieves the fields name used in the 'sort by' selection box for the collection ID colID.""" _ = gettext_set_language(ln) res = None if colID: res = run_sql("""SELECT DISTINCT(f.code),f.name FROM field AS f, collection_field_fieldvalue AS cff WHERE cff.type='soo' AND cff.id_collection=%s AND cff.id_field=f.id ORDER BY cff.score DESC, f.name ASC""", (colID,)) if not res: # no sort fields defined for this colID, try to take Home collection: res = run_sql("""SELECT DISTINCT(f.code),f.name FROM field AS f, collection_field_fieldvalue AS cff WHERE cff.type='soo' AND cff.id_collection=%s AND cff.id_field=f.id ORDER BY cff.score DESC, f.name ASC""", (1,)) if not res: # no sort fields defined for the Home collection, take all sort fields defined wherever they are: res = run_sql("""SELECT DISTINCT(f.code),f.name FROM field AS f, collection_field_fieldvalue AS cff WHERE cff.type='soo' AND cff.id_field=f.id ORDER BY cff.score DESC, f.name ASC""",) fields = [{ 'value': '', 'text': _("latest first") }] for field_code, field_name in res: if field_code and field_code != "anyfield": fields.append({'value': field_code, 'text': get_field_i18nname(field_name, ln, False) }) return fields def create_andornot_box(name='op', value='', ln='en'): "Returns HTML code for the AND/OR/NOT selection box." _ = gettext_set_language(ln) out = """ <select name="%s"> <option value="a"%s>%s <option value="o"%s>%s <option value="n"%s>%s </select> """ % (name, is_selected('a', value), _("AND"), is_selected('o', value), _("OR"), is_selected('n', value), _("AND NOT")) return out def create_matchtype_box(name='m', value='', ln='en'): "Returns HTML code for the 'match type' selection box." _ = gettext_set_language(ln) out = """ <select name="%s"> <option value="a"%s>%s <option value="o"%s>%s <option value="e"%s>%s <option value="p"%s>%s <option value="r"%s>%s </select> """ % (name, is_selected('a', value), _("All of the words:"), is_selected('o', value), _("Any of the words:"), is_selected('e', value), _("Exact phrase:"), is_selected('p', value), _("Partial phrase:"), is_selected('r', value), _("Regular expression:")) return out def is_selected(var, fld): "Checks if the two are equal, and if yes, returns ' selected'. Useful for select boxes." if type(var) is int and type(fld) is int: if var == fld: return " selected" elif str(var) == str(fld): return " selected" elif fld and len(fld)==3 and fld[0] == "w" and var == fld[1:]: return " selected" return "" def wash_colls(cc, c, split_colls=0, verbose=0): """Wash collection list by checking whether user has deselected anything under 'Narrow search'. Checks also if cc is a list or not. Return list of cc, colls_to_display, colls_to_search since the list of collections to display is different from that to search in. This is because users might have chosen 'split by collection' functionality. The behaviour of "collections to display" depends solely whether user has deselected a particular collection: e.g. if it started from 'Articles and Preprints' page, and deselected 'Preprints', then collection to display is 'Articles'. If he did not deselect anything, then collection to display is 'Articles & Preprints'. The behaviour of "collections to search in" depends on the 'split_colls' parameter: * if is equal to 1, then we can wash the colls list down and search solely in the collection the user started from; * if is equal to 0, then we are splitting to the first level of collections, i.e. collections as they appear on the page we started to search from; The function raises exception InvenioWebSearchUnknownCollectionError if cc or one of c collections is not known. """ colls_out = [] colls_out_for_display = [] # list to hold the hosted collections to be searched and displayed hosted_colls_out = [] debug = "" if verbose: debug += "<br />" debug += "<br />1) --- initial parameters ---" debug += "<br />cc : %s" % cc debug += "<br />c : %s" % c debug += "<br />" # check what type is 'cc': if type(cc) is list: for ci in cc: if ci in collection_reclist_cache.cache: # yes this collection is real, so use it: cc = ci break else: # check once if cc is real: if cc not in collection_reclist_cache.cache: if cc: raise InvenioWebSearchUnknownCollectionError(cc) else: cc = CFG_SITE_NAME # cc is not set, so replace it with Home collection # check type of 'c' argument: if type(c) is list: colls = c else: colls = [c] if verbose: debug += "<br />2) --- after check for the integrity of cc and the being or not c a list ---" debug += "<br />cc : %s" % cc debug += "<br />c : %s" % c debug += "<br />" # remove all 'unreal' collections: colls_real = [] for coll in colls: if coll in collection_reclist_cache.cache: colls_real.append(coll) else: if coll: raise InvenioWebSearchUnknownCollectionError(coll) colls = colls_real if verbose: debug += "<br />3) --- keeping only the real colls of c ---" debug += "<br />colls : %s" % colls debug += "<br />" # check if some real collections remain: if len(colls)==0: colls = [cc] if verbose: debug += "<br />4) --- in case no colls were left we use cc directly ---" debug += "<br />colls : %s" % colls debug += "<br />" # then let us check the list of non-restricted "real" sons of 'cc' and compare it to 'coll': res = run_sql("""SELECT c.name FROM collection AS c, collection_collection AS cc, collection AS ccc WHERE c.id=cc.id_son AND cc.id_dad=ccc.id AND ccc.name=%s AND cc.type='r'""", (cc,)) # list that holds all the non restricted sons of cc that are also not hosted collections l_cc_nonrestricted_sons_and_nonhosted_colls = [] res_hosted = run_sql("""SELECT c.name FROM collection AS c, collection_collection AS cc, collection AS ccc WHERE c.id=cc.id_son AND cc.id_dad=ccc.id AND ccc.name=%s AND cc.type='r' AND (c.dbquery NOT LIKE 'hostedcollection:%%' OR c.dbquery IS NULL)""", (cc,)) for row_hosted in res_hosted: l_cc_nonrestricted_sons_and_nonhosted_colls.append(row_hosted[0]) l_cc_nonrestricted_sons_and_nonhosted_colls.sort() l_cc_nonrestricted_sons = [] l_c = colls[:] for row in res: if not collection_restricted_p(row[0]): l_cc_nonrestricted_sons.append(row[0]) l_c.sort() l_cc_nonrestricted_sons.sort() if l_cc_nonrestricted_sons == l_c: colls_out_for_display = [cc] # yep, washing permitted, it is sufficient to display 'cc' # the following elif is a hack that preserves the above funcionality when we start searching from # the frontpage with some hosted collections deselected (either by default or manually) elif set(l_cc_nonrestricted_sons_and_nonhosted_colls).issubset(set(l_c)): colls_out_for_display = colls split_colls = 0 else: colls_out_for_display = colls # nope, we need to display all 'colls' successively # remove duplicates: #colls_out_for_display_nondups=filter(lambda x, colls_out_for_display=colls_out_for_display: colls_out_for_display[x-1] not in colls_out_for_display[x:], range(1, len(colls_out_for_display)+1)) #colls_out_for_display = map(lambda x, colls_out_for_display=colls_out_for_display:colls_out_for_display[x-1], colls_out_for_display_nondups) #colls_out_for_display = list(set(colls_out_for_display)) #remove duplicates while preserving the order set_out = set() colls_out_for_display = [coll for coll in colls_out_for_display if coll not in set_out and not set_out.add(coll)] if verbose: debug += "<br />5) --- decide whether colls_out_for_diplay should be colls or is it sufficient for it to be cc; remove duplicates ---" debug += "<br />colls_out_for_display : %s" % colls_out_for_display debug += "<br />" # FIXME: The below quoted part of the code has been commented out # because it prevents searching in individual restricted daughter # collections when both parent and all its public daughter # collections were asked for, in addition to some restricted # daughter collections. The removal was introduced for hosted # collections, so we may want to double check in this context. # the following piece of code takes care of removing collections whose ancestors are going to be searched anyway # list to hold the collections to be removed #colls_to_be_removed = [] # first calculate the collections that can safely be removed #for coll in colls_out_for_display: # for ancestor in get_coll_ancestors(coll): # #if ancestor in colls_out_for_display: colls_to_be_removed.append(coll) # if ancestor in colls_out_for_display and not is_hosted_collection(coll): colls_to_be_removed.append(coll) # secondly remove the collections #for coll in colls_to_be_removed: # colls_out_for_display.remove(coll) if verbose: debug += "<br />6) --- remove collections that have ancestors about to be search, unless they are hosted ---" debug += "<br />colls_out_for_display : %s" % colls_out_for_display debug += "<br />" # calculate the hosted collections to be searched. if colls_out_for_display == [cc]: if is_hosted_collection(cc): hosted_colls_out.append(cc) else: for coll in get_coll_sons(cc): if is_hosted_collection(coll): hosted_colls_out.append(coll) else: for coll in colls_out_for_display: if is_hosted_collection(coll): hosted_colls_out.append(coll) if verbose: debug += "<br />7) --- calculate the hosted_colls_out ---" debug += "<br />hosted_colls_out : %s" % hosted_colls_out debug += "<br />" # second, let us decide on collection splitting: if split_colls == 0: # type A - no sons are wanted colls_out = colls_out_for_display else: # type B - sons (first-level descendants) are wanted for coll in colls_out_for_display: coll_sons = get_coll_sons(coll) if coll_sons == []: colls_out.append(coll) else: for coll_son in coll_sons: if not is_hosted_collection(coll_son): colls_out.append(coll_son) #else: # colls_out = colls_out + coll_sons # remove duplicates: #colls_out_nondups=filter(lambda x, colls_out=colls_out: colls_out[x-1] not in colls_out[x:], range(1, len(colls_out)+1)) #colls_out = map(lambda x, colls_out=colls_out:colls_out[x-1], colls_out_nondups) #colls_out = list(set(colls_out)) #remove duplicates while preserving the order set_out = set() colls_out = [coll for coll in colls_out if coll not in set_out and not set_out.add(coll)] if verbose: debug += "<br />8) --- calculate the colls_out; remove duplicates ---" debug += "<br />colls_out : %s" % colls_out debug += "<br />" # remove the hosted collections from the collections to be searched if hosted_colls_out: for coll in hosted_colls_out: try: colls_out.remove(coll) except ValueError: # in case coll was not found in colls_out pass if verbose: debug += "<br />9) --- remove the hosted_colls from the colls_out ---" debug += "<br />colls_out : %s" % colls_out return (cc, colls_out_for_display, colls_out, hosted_colls_out, debug) def get_synonym_terms(term, kbr_name, match_type, use_memoise=False): """ Return list of synonyms for TERM by looking in KBR_NAME in MATCH_TYPE style. @param term: search-time term or index-time term @type term: str @param kbr_name: knowledge base name @type kbr_name: str @param match_type: specifies how the term matches against the KBR before doing the lookup. Could be `exact' (default), 'leading_to_comma', `leading_to_number'. @type match_type: str @param use_memoise: can we memoise while doing lookups? @type use_memoise: bool @return: list of term synonyms @rtype: list of strings """ dterms = {} ## exact match is default: term_for_lookup = term term_remainder = '' ## but maybe match different term: if match_type == CFG_BIBINDEX_SYNONYM_MATCH_TYPE['leading_to_comma']: mmm = re.match(r'^(.*?)(\s*,.*)$', term) if mmm: term_for_lookup = mmm.group(1) term_remainder = mmm.group(2) elif match_type == CFG_BIBINDEX_SYNONYM_MATCH_TYPE['leading_to_number']: mmm = re.match(r'^(.*?)(\s*\d.*)$', term) if mmm: term_for_lookup = mmm.group(1) term_remainder = mmm.group(2) ## FIXME: workaround: escaping SQL wild-card signs, since KBR's ## exact search is doing LIKE query, so would match everything: term_for_lookup = term_for_lookup.replace('%', '\\%') ## OK, now find synonyms: for kbr_values in get_kbr_values(kbr_name, searchkey=term_for_lookup, searchtype='e', use_memoise=use_memoise): for kbr_value in kbr_values: dterms[kbr_value + term_remainder] = 1 ## return list of term synonyms: return dterms.keys() def wash_output_format(ouput_format, verbose=False, req=None): """Wash output format FORMAT. Currently only prevents input like 'of=9' for backwards-compatible format that prints certain fields only. (for this task, 'of=tm' is preferred)""" if str(ouput_format[0:3]).isdigit() and len(ouput_format) != 6: # asked to print MARC tags, but not enough digits, # so let's switch back to HTML brief default return 'hb' elif format in CFG_WEBSEARCH_BLACKLISTED_FORMATS: if verbose: write_warning("Selected format is not available through perform_request_search", req=req) # Returning an empty list seems dangerous because you wouldn't know # right away that the list is not supposed to be empty. return 'hb' else: return ouput_format def wash_pattern(p): """Wash pattern passed by URL. Check for sanity of the wildcard by removing wildcards if they are appended to extremely short words (1-3 letters). TODO: instead of this approximative treatment, it will be much better to introduce a temporal limit, e.g. to kill a query if it does not finish in 10 seconds.""" # strip accents: # p = strip_accents(p) # FIXME: when available, strip accents all the time # add leading/trailing whitespace for the two following wildcard-sanity checking regexps: p = " " + p + " " # replace spaces within quotes by __SPACE__ temporarily: p = re_pattern_single_quotes.sub(lambda x: "'"+x.group(1).replace(' ', '__SPACE__')+"'", p) p = re_pattern_double_quotes.sub(lambda x: "\""+x.group(1).replace(' ', '__SPACE__')+"\"", p) p = re_pattern_regexp_quotes.sub(lambda x: "/"+x.group(1).replace(' ', '__SPACE__')+"/", p) # get rid of unquoted wildcards after spaces: p = re_pattern_wildcards_after_spaces.sub("\\1", p) # get rid of extremely short words (1-3 letters with wildcards): #p = re_pattern_short_words.sub("\\1", p) # replace back __SPACE__ by spaces: p = re_pattern_space.sub(" ", p) # replace special terms: p = re_pattern_today.sub(time.strftime("%Y-%m-%d", time.localtime()), p) # remove unnecessary whitespace: p = p.strip() # remove potentially wrong UTF-8 characters: p = wash_for_utf8(p) return p def wash_field(f): """Wash field passed by URL.""" if f: # get rid of unnecessary whitespace and make it lowercase # (e.g. Author -> author) to better suit iPhone etc input # mode: f = f.strip().lower() # wash legacy 'f' field names, e.g. replace 'wau' or `au' by # 'author', if applicable: if CFG_WEBSEARCH_FIELDS_CONVERT: f = CFG_WEBSEARCH_FIELDS_CONVERT.get(f, f) return f def wash_dates(d1="", d1y=0, d1m=0, d1d=0, d2="", d2y=0, d2m=0, d2d=0): """ Take user-submitted date arguments D1 (full datetime string) or (D1Y, D1M, D1Y) year, month, day tuple and D2 or (D2Y, D2M, D2Y) and return (YYY1-M1-D2 H1:M1:S2, YYY2-M2-D2 H2:M2:S2) datetime strings in the YYYY-MM-DD HH:MM:SS format suitable for time restricted searching. Note that when both D1 and (D1Y, D1M, D1D) parameters are present, the precedence goes to D1. Ditto for D2*. Note that when (D1Y, D1M, D1D) are taken into account, some values may be missing and are completed e.g. to 01 or 12 according to whether it is the starting or the ending date. """ datetext1, datetext2 = "", "" # sanity checking: if d1 == "" and d1y == 0 and d1m == 0 and d1d == 0 and d2 == "" and d2y == 0 and d2m == 0 and d2d == 0: return ("", "") # nothing selected, so return empty values # wash first (starting) date: if d1: # full datetime string takes precedence: datetext1 = d1 else: # okay, first date passed as (year,month,day): if d1y: datetext1 += "%04d" % d1y else: datetext1 += "0000" if d1m: datetext1 += "-%02d" % d1m else: datetext1 += "-01" if d1d: datetext1 += "-%02d" % d1d else: datetext1 += "-01" datetext1 += " 00:00:00" # wash second (ending) date: if d2: # full datetime string takes precedence: datetext2 = d2 else: # okay, second date passed as (year,month,day): if d2y: datetext2 += "%04d" % d2y else: datetext2 += "9999" if d2m: datetext2 += "-%02d" % d2m else: datetext2 += "-12" if d2d: datetext2 += "-%02d" % d2d else: datetext2 += "-31" # NOTE: perhaps we should add max(datenumber) in # given month, but for our quering it's not # needed, 31 will always do datetext2 += " 00:00:00" # okay, return constructed YYYY-MM-DD HH:MM:SS datetexts: return (datetext1, datetext2) def is_hosted_collection(coll): """Check if the given collection is a hosted one; i.e. its dbquery starts with hostedcollection: Returns True if it is, False if it's not or if the result is empty or if the query failed""" res = run_sql("SELECT dbquery FROM collection WHERE name=%s", (coll, )) if not res[0][0]: return False try: return res[0][0].startswith("hostedcollection:") except IndexError: return False def get_colID(c): "Return collection ID for collection name C. Return None if no match found." colID = None res = run_sql("SELECT id FROM collection WHERE name=%s", (c,), 1) if res: colID = res[0][0] return colID def get_coll_normalised_name(c): """Returns normalised collection name (case sensitive) for collection name C (case insensitive). Returns None if no match found.""" res = run_sql("SELECT name FROM collection WHERE name=%s", (c,)) if res: return res[0][0] else: return None def get_coll_ancestors(coll): "Returns a list of ancestors for collection 'coll'." coll_ancestors = [] coll_ancestor = coll while 1: res = run_sql("""SELECT c.name FROM collection AS c LEFT JOIN collection_collection AS cc ON c.id=cc.id_dad LEFT JOIN collection AS ccc ON ccc.id=cc.id_son WHERE ccc.name=%s ORDER BY cc.id_dad ASC LIMIT 1""", (coll_ancestor,)) if res: coll_name = res[0][0] coll_ancestors.append(coll_name) coll_ancestor = coll_name else: break # ancestors found, return reversed list: coll_ancestors.reverse() return coll_ancestors def get_coll_sons(coll, coll_type='r', public_only=1): """Return a list of sons (first-level descendants) of type 'coll_type' for collection 'coll'. If coll_type = '*', both regular and virtual collections will be returned. If public_only, then return only non-restricted son collections. """ coll_sons = [] if coll_type == '*': coll_type_query = " IN ('r', 'v')" query_params = (coll, ) else: coll_type_query = "=%s" query_params = (coll_type, coll) query = "SELECT c.name FROM collection AS c "\ "LEFT JOIN collection_collection AS cc ON c.id=cc.id_son "\ "LEFT JOIN collection AS ccc ON ccc.id=cc.id_dad "\ "WHERE cc.type%s AND ccc.name=%%s" % coll_type_query query += " ORDER BY cc.score DESC" res = run_sql(query, query_params) for name in res: if not public_only or not collection_restricted_p(name[0]): coll_sons.append(name[0]) return coll_sons class CollectionAllChildrenDataCacher(DataCacher): """Cache for all children of a collection (regular & virtual, public & private)""" def __init__(self): def cache_filler(): def get_all_children(coll, coll_type='r', public_only=1, d_internal_coll_sons=None): """Return a list of all children of type 'coll_type' for collection 'coll'. If public_only, then return only non-restricted child collections. If coll_type='*', then return both regular and virtual collections. d_internal_coll_sons is an internal dictionary used in recursion for minimizing the number of database calls and should not be used outside this scope. """ if not d_internal_coll_sons: d_internal_coll_sons = {} children = [] if coll not in d_internal_coll_sons: d_internal_coll_sons[coll] = get_coll_sons(coll, coll_type, public_only) for child in d_internal_coll_sons[coll]: children.append(child) children.extend(get_all_children(child, coll_type, public_only, d_internal_coll_sons)[0]) return children, d_internal_coll_sons ret = {} d_internal_coll_sons = None collections = collection_reclist_cache.cache.keys() for collection in collections: ret[collection], d_internal_coll_sons = get_all_children(collection, '*', public_only=0, d_internal_coll_sons=d_internal_coll_sons) return ret def timestamp_verifier(): return max(get_table_update_time('collection'), get_table_update_time('collection_collection')) DataCacher.__init__(self, cache_filler, timestamp_verifier) try: if not collection_allchildren_cache.is_ok_p: raise Exception except Exception: collection_allchildren_cache = CollectionAllChildrenDataCacher() def get_collection_allchildren(coll, recreate_cache_if_needed=True): """Returns the list of all children of a collection.""" if recreate_cache_if_needed: collection_allchildren_cache.recreate_cache_if_needed() if coll not in collection_allchildren_cache.cache: return [] # collection does not exist; return empty list return collection_allchildren_cache.cache[coll] def get_coll_real_descendants(coll, coll_type='_', get_hosted_colls=True): """Return a list of all descendants of collection 'coll' that are defined by a 'dbquery'. IOW, we need to decompose compound collections like "A & B" into "A" and "B" provided that "A & B" has no associated database query defined. """ coll_sons = [] res = run_sql("""SELECT c.name,c.dbquery FROM collection AS c LEFT JOIN collection_collection AS cc ON c.id=cc.id_son LEFT JOIN collection AS ccc ON ccc.id=cc.id_dad WHERE ccc.name=%s AND cc.type LIKE %s ORDER BY cc.score DESC""", (coll, coll_type,)) for name, dbquery in res: if dbquery: # this is 'real' collection, so return it: if get_hosted_colls: coll_sons.append(name) else: if not dbquery.startswith("hostedcollection:"): coll_sons.append(name) else: # this is 'composed' collection, so recurse: coll_sons.extend(get_coll_real_descendants(name)) return coll_sons def browse_pattern(req, colls, p, f, rg, ln=CFG_SITE_LANG): """Browse either biliographic phrases or words indexes, and display it.""" # load the right message language _ = gettext_set_language(ln) ## is p enclosed in quotes? (coming from exact search) if p.startswith('"') and p.endswith('"'): p = p[1:-1] ## okay, "real browse" follows: ## FIXME: the maths in the get_nearest_terms_in_bibxxx is just a test if not f and p.find(":") > 0: # does 'p' contain ':'? f, p = p.split(":", 1) ## do we search in words indexes? if not f: return browse_in_bibwords(req, p, f) coll_hitset = intbitset() for coll_name in colls: coll_hitset |= get_collection_reclist(coll_name) index_id = get_index_id_from_field(f) if index_id != 0: browsed_phrases_in_colls = get_nearest_terms_in_idxphrase_with_collection(p, index_id, rg/2, rg/2, coll_hitset) else: browsed_phrases = get_nearest_terms_in_bibxxx(p, f, (rg+1)/2+1, (rg-1)/2+1) while not browsed_phrases: # try again and again with shorter and shorter pattern: try: p = p[:-1] browsed_phrases = get_nearest_terms_in_bibxxx(p, f, (rg+1)/2+1, (rg-1)/2+1) except: register_exception(req=req, alert_admin=True) # probably there are no hits at all: req.write(_("No values found.")) return ## try to check hits in these particular collection selection: browsed_phrases_in_colls = [] if 0: for phrase in browsed_phrases: phrase_hitset = intbitset() phrase_hitsets = search_pattern("", phrase, f, 'e') for coll in colls: phrase_hitset.union_update(phrase_hitsets[coll]) if len(phrase_hitset) > 0: # okay, this phrase has some hits in colls, so add it: browsed_phrases_in_colls.append([phrase, len(phrase_hitset)]) ## were there hits in collections? if browsed_phrases_in_colls == []: if browsed_phrases != []: #write_warning(req, """<p>No match close to <em>%s</em> found in given collections. #Please try different term.<p>Displaying matches in any collection...""" % p_orig) ## try to get nbhits for these phrases in any collection: for phrase in browsed_phrases: nbhits = get_nbhits_in_bibxxx(phrase, f, coll_hitset) if nbhits > 0: browsed_phrases_in_colls.append([phrase, nbhits]) ## display results now: out = websearch_templates.tmpl_browse_pattern( f=f, fn=get_field_i18nname(get_field_name(f) or f, ln, False), ln=ln, browsed_phrases_in_colls=browsed_phrases_in_colls, colls=colls, rg=rg, ) req.write(out) return def browse_in_bibwords(req, p, f, ln=CFG_SITE_LANG): """Browse inside words indexes.""" if not p: return _ = gettext_set_language(ln) urlargd = {} urlargd.update(req.argd) urlargd['action'] = 'search' nearest_box = create_nearest_terms_box(urlargd, p, f, 'w', ln=ln, intro_text_p=0) req.write(websearch_templates.tmpl_search_in_bibwords( p = p, f = f, ln = ln, nearest_box = nearest_box )) return def search_pattern(req=None, p=None, f=None, m=None, ap=0, of="id", verbose=0, ln=CFG_SITE_LANG, display_nearest_terms_box=True, wl=0): """Search for complex pattern 'p' within field 'f' according to matching type 'm'. Return hitset of recIDs. The function uses multi-stage searching algorithm in case of no exact match found. See the Search Internals document for detailed description. The 'ap' argument governs whether an alternative patterns are to be used in case there is no direct hit for (p,f,m). For example, whether to replace non-alphanumeric characters by spaces if it would give some hits. See the Search Internals document for detailed description. (ap=0 forbits the alternative pattern usage, ap=1 permits it.) 'ap' is also internally used for allowing hidden tag search (for requests coming from webcoll, for example). In this case ap=-9 The 'of' argument governs whether to print or not some information to the user in case of no match found. (Usually it prints the information in case of HTML formats, otherwise it's silent). The 'verbose' argument controls the level of debugging information to be printed (0=least, 9=most). All the parameters are assumed to have been previously washed. This function is suitable as a mid-level API. """ _ = gettext_set_language(ln) hitset_empty = intbitset() # sanity check: if not p: hitset_full = intbitset(trailing_bits=1) hitset_full.discard(0) # no pattern, so return all universe return hitset_full # search stage 1: break up arguments into basic search units: if verbose and of.startswith("h"): t1 = os.times()[4] basic_search_units = create_basic_search_units(req, p, f, m, of) if verbose and of.startswith("h"): t2 = os.times()[4] write_warning("Search stage 1: basic search units are: %s" % cgi.escape(repr(basic_search_units)), req=req) write_warning("Search stage 1: execution took %.2f seconds." % (t2 - t1), req=req) # search stage 2: do search for each search unit and verify hit presence: if verbose and of.startswith("h"): t1 = os.times()[4] basic_search_units_hitsets = [] #prepare hiddenfield-related.. myhiddens = CFG_BIBFORMAT_HIDDEN_TAGS can_see_hidden = False if req: user_info = collect_user_info(req) can_see_hidden = user_info.get('precached_canseehiddenmarctags', False) if not req and ap == -9: # special request, coming from webcoll can_see_hidden = True if can_see_hidden: myhiddens = [] if CFG_INSPIRE_SITE and of.startswith('h'): # fulltext/caption search warnings for INSPIRE: fields_to_be_searched = [f for dummy_o, p, f, m in basic_search_units] for idx_unit in xrange(len(basic_search_units)): bsu_o, bsu_p, bsu_f, bsu_m = basic_search_units[idx_unit] if bsu_f and len(bsu_f) < 2: if of.startswith("h"): write_warning(_("There is no index %s. Searching for %s in all fields." % (cgi.escape(repr(bsu_f)), cgi.escape(repr(bsu_p)))), req=req) bsu_f = '' bsu_m = 'w' if of.startswith("h") and verbose: write_warning(_('Instead searching %s.' % str([bsu_o, bsu_p, bsu_f, bsu_m])), req=req) try: basic_search_unit_hitset = search_unit(bsu_p, bsu_f, bsu_m, wl) except InvenioWebSearchWildcardLimitError, excp: basic_search_unit_hitset = excp.res if of.startswith("h"): write_warning(_("Search term too generic, displaying only partial results..."), req=req) except InvenioWebSearchReferstoLimitError, excp: basic_search_unit_hitset = excp.res if of.startswith("h"): write_warning(_("Search term after reference operator too generic, displaying only partial results..."), req=req) except InvenioWebSearchCitedbyLimitError, excp: basic_search_unit_hitset = excp.res if of.startswith("h"): write_warning(_("Search term after citedby operator too generic, displaying only partial results..."), req=req) # FIXME: print warning if we use native full-text indexing if bsu_f == 'fulltext' and bsu_m != 'w' and of.startswith('h') and not CFG_SOLR_URL: write_warning(_("No phrase index available for fulltext yet, looking for word combination..."), req=req) #check that the user is allowed to search with this tag #if he/she tries it if bsu_f and len(bsu_f) > 1 and bsu_f[0].isdigit() and bsu_f[1].isdigit(): for htag in myhiddens: ltag = len(htag) samelenfield = bsu_f[0:ltag] if samelenfield == htag: #user searches by a hidden tag #we won't show you anything.. basic_search_unit_hitset = intbitset() if verbose >= 9 and of.startswith("h"): write_warning("Pattern %s hitlist omitted since \ it queries in a hidden tag %s" % (cgi.escape(repr(bsu_p)), repr(myhiddens)), req=req) display_nearest_terms_box = False #..and stop spying, too. if verbose >= 9 and of.startswith("h"): write_warning("Search stage 1: pattern %s gave hitlist %s" % (cgi.escape(bsu_p), basic_search_unit_hitset), req=req) if len(basic_search_unit_hitset) > 0 or \ ap<1 or \ bsu_o in ("|", "-") or \ ((idx_unit+1)<len(basic_search_units) and basic_search_units[idx_unit+1][0]=="|"): # stage 2-1: this basic search unit is retained, since # either the hitset is non-empty, or the approximate # pattern treatment is switched off, or the search unit # was joined by an OR operator to preceding/following # units so we do not require that it exists basic_search_units_hitsets.append(basic_search_unit_hitset) else: # stage 2-2: no hits found for this search unit, try to replace non-alphanumeric chars inside pattern: if re.search(r'[^a-zA-Z0-9\s\:]', bsu_p) and bsu_f != 'refersto' and bsu_f != 'citedby': if bsu_p.startswith('"') and bsu_p.endswith('"'): # is it ACC query? bsu_pn = re.sub(r'[^a-zA-Z0-9\s\:]+', "*", bsu_p) elif bsu_f == 'journal' and len(bsu_p.split(',')) == 3 and '-' in bsu_p.split(',')[-1]: jrn, vol, page = bsu_p.split(',') bsu_pn = "%s,%s,%s" % (jrn, vol, page.split('-')[0]) else: # it is WRD query bsu_pn = re.sub(r'[^a-zA-Z0-9\s\:]+', " ", bsu_p) if verbose and of.startswith('h') and req: write_warning("Trying (%s,%s,%s)" % (cgi.escape(bsu_pn), cgi.escape(bsu_f), cgi.escape(bsu_m)), req=req) basic_search_unit_hitset = search_pattern(req=None, p=bsu_pn, f=bsu_f, m=bsu_m, of="id", ln=ln, wl=wl) if len(basic_search_unit_hitset) > 0: # we retain the new unit instead if of.startswith('h'): write_warning(_("No exact match found for %(x_query1)s, using %(x_query2)s instead...") % {'x_query1': "<em>" + cgi.escape(bsu_p) + "</em>", 'x_query2': "<em>" + cgi.escape(bsu_pn) + "</em>"}, req=req) basic_search_units[idx_unit][1] = bsu_pn basic_search_units_hitsets.append(basic_search_unit_hitset) else: # stage 2-3: no hits found either, propose nearest indexed terms: if of.startswith('h') and display_nearest_terms_box: if req: if bsu_f == "recid": req.status = apache.HTTP_NOT_FOUND write_warning(_("Requested record does not seem to exist."), req=req) else: write_warning(create_nearest_terms_box(req.argd, bsu_p, bsu_f, bsu_m, ln=ln), req=req) return hitset_empty else: # stage 2-3: no hits found either, propose nearest indexed terms: if of.startswith('h') and display_nearest_terms_box: if req: if bsu_f == "recid": req.status = apache.HTTP_NOT_FOUND write_warning(_("Requested record does not seem to exist."), req=req) else: write_warning(create_nearest_terms_box(req.argd, bsu_p, bsu_f, bsu_m, ln=ln), req=req) return hitset_empty if verbose and of.startswith("h"): t2 = os.times()[4] for idx_unit in range(0, len(basic_search_units)): write_warning("Search stage 2: basic search unit %s gave %d hits." % (basic_search_units[idx_unit][1:], len(basic_search_units_hitsets[idx_unit])), req=req) write_warning("Search stage 2: execution took %.2f seconds." % (t2 - t1), req=req) # search stage 3: apply boolean query for each search unit: if verbose and of.startswith("h"): t1 = os.times()[4] # let the initial set be the complete universe: hitset_in_any_collection = intbitset(trailing_bits=1) hitset_in_any_collection.discard(0) for idx_unit in xrange(len(basic_search_units)): this_unit_operation = basic_search_units[idx_unit][0] this_unit_hitset = basic_search_units_hitsets[idx_unit] if this_unit_operation == '+': hitset_in_any_collection.intersection_update(this_unit_hitset) elif this_unit_operation == '-': hitset_in_any_collection.difference_update(this_unit_hitset) elif this_unit_operation == '|': hitset_in_any_collection.union_update(this_unit_hitset) else: if of.startswith("h"): write_warning("Invalid set operation %s." % cgi.escape(this_unit_operation), "Error", req=req) if len(hitset_in_any_collection) == 0: # no hits found, propose alternative boolean query: if of.startswith('h') and display_nearest_terms_box: nearestterms = [] for idx_unit in range(0, len(basic_search_units)): bsu_o, bsu_p, bsu_f, bsu_m = basic_search_units[idx_unit] if bsu_p.startswith("%") and bsu_p.endswith("%"): bsu_p = "'" + bsu_p[1:-1] + "'" bsu_nbhits = len(basic_search_units_hitsets[idx_unit]) # create a similar query, but with the basic search unit only argd = {} argd.update(req.argd) argd['p'] = bsu_p argd['f'] = bsu_f nearestterms.append((bsu_p, bsu_nbhits, argd)) text = websearch_templates.tmpl_search_no_boolean_hits( ln=ln, nearestterms=nearestterms) write_warning(text, req=req) if verbose and of.startswith("h"): t2 = os.times()[4] write_warning("Search stage 3: boolean query gave %d hits." % len(hitset_in_any_collection), req=req) write_warning("Search stage 3: execution took %.2f seconds." % (t2 - t1), req=req) return hitset_in_any_collection def search_pattern_parenthesised(req=None, p=None, f=None, m=None, ap=0, of="id", verbose=0, ln=CFG_SITE_LANG, display_nearest_terms_box=True, wl=0): """Search for complex pattern 'p' containing parenthesis within field 'f' according to matching type 'm'. Return hitset of recIDs. For more details on the parameters see 'search_pattern' """ _ = gettext_set_language(ln) spires_syntax_converter = SpiresToInvenioSyntaxConverter() spires_syntax_query = False # if the pattern uses SPIRES search syntax, convert it to Invenio syntax if spires_syntax_converter.is_applicable(p): spires_syntax_query = True p = spires_syntax_converter.convert_query(p) # sanity check: do not call parenthesised parser for search terms # like U(1) but still call it for searches like ('U(1)' | 'U(2)'): if not re_pattern_parens.search(re_pattern_parens_quotes.sub('_', p)): return search_pattern(req, p, f, m, ap, of, verbose, ln, display_nearest_terms_box=display_nearest_terms_box, wl=wl) # Try searching with parentheses try: parser = SearchQueryParenthesisedParser() # get a hitset with all recids result_hitset = intbitset(trailing_bits=1) # parse the query. The result is list of [op1, expr1, op2, expr2, ..., opN, exprN] parsing_result = parser.parse_query(p) if verbose and of.startswith("h"): write_warning("Search stage 1: search_pattern_parenthesised() searched %s." % repr(p), req=req) write_warning("Search stage 1: search_pattern_parenthesised() returned %s." % repr(parsing_result), req=req) # go through every pattern # calculate hitset for it # combine pattern's hitset with the result using the corresponding operator for index in xrange(0, len(parsing_result)-1, 2): current_operator = parsing_result[index] current_pattern = parsing_result[index+1] if CFG_INSPIRE_SITE and spires_syntax_query: # setting ap=0 to turn off approximate matching for 0 results. # Doesn't work well in combinations. # FIXME: The right fix involves collecting statuses for each # hitset, then showing a nearest terms box exactly once, # outside this loop. ap = 0 display_nearest_terms_box = False # obtain a hitset for the current pattern current_hitset = search_pattern(req, current_pattern, f, m, ap, of, verbose, ln, display_nearest_terms_box=display_nearest_terms_box, wl=wl) # combine the current hitset with resulting hitset using the current operator if current_operator == '+': result_hitset = result_hitset & current_hitset elif current_operator == '-': result_hitset = result_hitset - current_hitset elif current_operator == '|': result_hitset = result_hitset | current_hitset else: assert False, "Unknown operator in search_pattern_parenthesised()" return result_hitset # If searching with parenteses fails, perform search ignoring parentheses except SyntaxError: write_warning(_("Search syntax misunderstood. Ignoring all parentheses in the query. If this doesn't help, please check your search and try again."), req=req) # remove the parentheses in the query. Current implementation removes all the parentheses, # but it could be improved to romove only these that are not inside quotes p = p.replace('(', ' ') p = p.replace(')', ' ') return search_pattern(req, p, f, m, ap, of, verbose, ln, display_nearest_terms_box=display_nearest_terms_box, wl=wl) def search_unit(p, f=None, m=None, wl=0, ignore_synonyms=None): """Search for basic search unit defined by pattern 'p' and field 'f' and matching type 'm'. Return hitset of recIDs. All the parameters are assumed to have been previously washed. 'p' is assumed to be already a ``basic search unit'' so that it is searched as such and is not broken up in any way. Only wildcard and span queries are being detected inside 'p'. If CFG_WEBSEARCH_SYNONYM_KBRS is set and we are searching in one of the indexes that has defined runtime synonym knowledge base, then look up there and automatically enrich search results with results for synonyms. In case the wildcard limit (wl) is greater than 0 and this limit is reached an InvenioWebSearchWildcardLimitError will be raised. In case you want to call this function with no limit for the wildcard queries, wl should be 0. Parameter 'ignore_synonyms' is a list of terms for which we should not try to further find a synonym. This function is suitable as a low-level API. """ ## create empty output results set: hitset = intbitset() if not p: # sanity checking return hitset tokenizer = get_field_tokenizer_type(f) hitset_cjk = intbitset() if tokenizer == "BibIndexCJKTokenizer": if is_there_any_CJK_character_in_text(p): cjk_tok = BibIndexCJKTokenizer() chars = cjk_tok.tokenize_for_words(p) for char in chars: hitset_cjk |= search_unit_in_bibwords(char, f, wl) ## eventually look up runtime synonyms: hitset_synonyms = intbitset() if CFG_WEBSEARCH_SYNONYM_KBRS.has_key(f or 'anyfield'): if ignore_synonyms is None: ignore_synonyms = [] ignore_synonyms.append(p) for p_synonym in get_synonym_terms(p, CFG_WEBSEARCH_SYNONYM_KBRS[f or 'anyfield'][0], CFG_WEBSEARCH_SYNONYM_KBRS[f or 'anyfield'][1]): if p_synonym.lower() != p.lower() and \ not p_synonym in ignore_synonyms: hitset_synonyms |= search_unit(p_synonym, f, m, wl, ignore_synonyms) ## look up hits: if f == 'fulltext' and get_idx_indexer('fulltext') == 'SOLR' and CFG_SOLR_URL: # redirect to Solr try: return search_unit_in_solr(p, f, m) except: # There were troubles with getting full-text search # results from Solr. Let us alert the admin of these # problems and let us simply return empty results to the # end user. register_exception() return hitset elif f == 'fulltext' and get_idx_indexer('fulltext') == 'XAPIAN' and CFG_XAPIAN_ENABLED: # redirect to Xapian try: return search_unit_in_xapian(p, f, m) except: # There were troubles with getting full-text search # results from Xapian. Let us alert the admin of these # problems and let us simply return empty results to the # end user. register_exception() return hitset if f == 'datecreated': hitset = search_unit_in_bibrec(p, p, 'c') elif f == 'datemodified': hitset = search_unit_in_bibrec(p, p, 'm') elif f == 'earliestdate': hitset = search_unit_in_bibrec(p, p, 'e') elif f == 'refersto': # we are doing search by the citation count hitset = search_unit_refersto(p) elif f == 'referstoexcludingselfcites': # we are doing search by the citation count hitset = search_unit_refersto_excluding_selfcites(p) elif f == 'cataloguer': # we are doing search by the cataloguer nickname hitset = search_unit_in_record_history(p) elif f == 'rawref': from invenio.refextract_api import search_from_reference field, pattern = search_from_reference(p) return search_unit(pattern, field) elif f == 'citedby': # we are doing search by the citation count hitset = search_unit_citedby(p) elif f == 'citedbyexcludingselfcites': # we are doing search by the citation count hitset = search_unit_citedby_excluding_selfcites(p) elif m == 'a' or m == 'r' or f == 'subject' or (f == 'journal' and m == 'e'): # we are doing either phrase search or regexp search if f == 'fulltext': # FIXME: workaround for not having phrase index yet return search_pattern(None, p, f, 'w') index_id = get_index_id_from_field(f) if index_id != 0: if m == 'a' and index_id in get_idxpair_field_ids(): #for exact match on the admin configured fields we are searching in the pair tables hitset = search_unit_in_idxpairs(p, f, m, wl) else: hitset = search_unit_in_idxphrases(p, f, m, wl) else: hitset = search_unit_in_bibxxx(p, f, m, wl) # if not hitset and m == 'a' and (p[0] != '%' and p[-1] != '%'): # #if we have no results by doing exact matching, do partial matching # #for removing the distinction between simple and double quotes # hitset = search_unit_in_bibxxx('%' + p + '%', f, m, wl) elif p.startswith("cited:"): # we are doing search by the citation count hitset = search_unit_by_times_cited(p[6:]) elif p.startswith("citedexcludingselfcites:"): # we are doing search by the citation count hitset = search_unit_by_times_cited(p[24:], exclude_selfcites=True) else: # we are doing bibwords search by default hitset = search_unit_in_bibwords(p, f, wl=wl) ## merge synonym results and return total: hitset |= hitset_synonyms hitset |= hitset_cjk return hitset def get_idxpair_field_ids(): """Returns the list of ids for the fields that idxPAIRS should be used on""" index_dict = dict(run_sql("SELECT name, id FROM idxINDEX")) return [index_dict[field] for field in index_dict if field in CFG_WEBSEARCH_IDXPAIRS_FIELDS] def search_unit_in_bibwords(word, f, decompress=zlib.decompress, wl=0): """Searches for 'word' inside bibwordsX table for field 'f' and returns hitset of recIDs.""" hitset = intbitset() # will hold output result set set_used = 0 # not-yet-used flag, to be able to circumvent set operations limit_reached = 0 # flag for knowing if the query limit has been reached # if no field is specified, search in the global index. f = f or 'anyfield' index_id = get_index_id_from_field(f) if index_id: bibwordsX = "idxWORD%02dF" % index_id stemming_language = get_index_stemming_language(index_id) else: return intbitset() # word index f does not exist unicode_520 = (is_index_using_unicode_520(index_id) and "COLLATE 'utf8_unicode_520_ci'" or "") # wash 'word' argument and run query: if f.endswith('count') and word.endswith('+'): # field count query of the form N+ so transform N+ to N->99999: word = word[:-1] + '->99999' word = word.replace('*', '%') # we now use '*' as the truncation character words = word.split("->", 1) # check for span query if len(words) == 2: word0 = re_word.sub('', words[0]) word1 = re_word.sub('', words[1]) if stemming_language: word0 = lower_index_term(word0) word1 = lower_index_term(word1) # We remove trailing truncation character before stemming if word0.endswith('%'): word0 = stem(word0[:-1], stemming_language) + '%' else: word0 = stem(word0, stemming_language) if word1.endswith('%'): word1 = stem(word1[:-1], stemming_language) + '%' else: word1 = stem(word1, stemming_language) word0_washed = wash_index_term(word0) word1_washed = wash_index_term(word1) if f.endswith('count'): # field count query; convert to integers in order # to have numerical behaviour for 'BETWEEN n1 AND n2' query try: word0_washed = int(word0_washed) word1_washed = int(word1_washed) except ValueError: pass try: res = run_sql_with_limit("SELECT term,hitlist FROM %s WHERE term BETWEEN %%s AND %%s %s" % (bibwordsX, unicode_520), (word0_washed, word1_washed), wildcard_limit=wl) except InvenioDbQueryWildcardLimitError, excp: res = excp.res limit_reached = 1 # set the limit reached flag to true else: if f == 'journal': pass # FIXME: quick hack for the journal index else: word = re_word.sub('', word) if stemming_language: word = lower_index_term(word) # We remove trailing truncation character before stemming if word.endswith('%'): word = stem(word[:-1], stemming_language) + '%' else: word = stem(word, stemming_language) if word.find('%') >= 0: # do we have wildcard in the word? if f == 'journal': # FIXME: quick hack for the journal index # FIXME: we can run a sanity check here for all indexes res = () else: try: res = run_sql_with_limit("SELECT term,hitlist FROM %s WHERE term LIKE %%s %s" % (bibwordsX, unicode_520), (wash_index_term(word),), wildcard_limit = wl) except InvenioDbQueryWildcardLimitError, excp: res = excp.res limit_reached = 1 # set the limit reached flag to true else: washedword = '' if f == 'journal': washedword = wash_index_term(word, 255) else: washedword = wash_index_term(word) res = run_sql("SELECT term,hitlist FROM %s WHERE term=%%s" % bibwordsX, (washedword,)) # fill the result set: for word, hitlist in res: hitset_bibwrd = intbitset(hitlist) # add the results: if set_used: hitset.union_update(hitset_bibwrd) else: hitset = hitset_bibwrd set_used = 1 #check to see if the query limit was reached if limit_reached: #raise an exception, so we can print a nice message to the user raise InvenioWebSearchWildcardLimitError(hitset) # okay, return result set: return hitset def search_unit_in_idxpairs(p, f, search_type, wl=0): """Searches for pair 'p' inside idxPAIR table for field 'f' and returns hitset of recIDs found.""" limit_reached = 0 # flag for knowing if the query limit has been reached do_exact_search = True # flag to know when it makes sense to try to do exact matching result_set = intbitset() #determine the idxPAIR table to read from index_id = get_index_id_from_field(f) if not index_id: return intbitset() unicode_520 = (is_index_using_unicode_520(index_id) and "COLLATE 'utf8_unicode_520_ci'" or "") stemming_language = get_index_stemming_language(index_id) pairs_tokenizer = BibIndexDefaultTokenizer(stemming_language) idxpair_table_washed = wash_table_column_name("idxPAIR%02dF" % index_id) if p.startswith("%") and p.endswith("%"): p = p[1:-1] original_pattern = p p = string.replace(p, '*', '%') # we now use '*' as the truncation character queries_releated_vars = [] # contains tuples of (query_addons, query_params, use_query_limit) #is it a span query? ps = p.split("->", 1) if len(ps) == 2 and not (ps[0].endswith(' ') or ps[1].startswith(' ')): #so we are dealing with a span query pairs_left = pairs_tokenizer.tokenize_for_pairs(ps[0]) pairs_right = pairs_tokenizer.tokenize_for_pairs(ps[1]) if not pairs_left or not pairs_right: # we are not actually dealing with pairs but with words return search_unit_in_bibwords(original_pattern, f, wl=wl) elif len(pairs_left) != len(pairs_right): # it is kind of hard to know what the user actually wanted # we have to do: foo bar baz -> qux xyz, so let's swith to phrase return search_unit_in_idxphrases(original_pattern, f, search_type, wl) elif len(pairs_left) > 1 and \ len(pairs_right) > 1 and \ pairs_left[:-1] != pairs_right[:-1]: # again we have something like: foo bar baz -> abc xyz qux # so we'd better switch to phrase return search_unit_in_idxphrases(original_pattern, f, search_type, wl) else: # finally, we can treat the search using idxPairs # at this step we have either: foo bar -> abc xyz # or foo bar abc -> foo bar xyz queries_releated_vars = [("BETWEEN %s AND %s", (pairs_left[-1], pairs_right[-1]), True)] for pair in pairs_left[:-1]:# which should be equal with pairs_right[:-1] queries_releated_vars.append(("= %s", (pair, ), False)) do_exact_search = False # no exact search for span queries elif p.find('%') > -1: #tokenizing p will remove the '%', so we have to make sure it stays replacement = 'xxxxxxxxxx' #hopefuly this will not clash with anything in the future p = string.replace(p, '%', replacement) pairs = pairs_tokenizer.tokenize_for_pairs(p) if not pairs: # we are not actually dealing with pairs but with words return search_unit_in_bibwords(original_pattern, f, wl=wl) queries_releated_vars = [] for pair in pairs: if string.find(pair, replacement) > -1: pair = string.replace(pair, replacement, '%') #we replace back the % sign queries_releated_vars.append(("LIKE %s", (pair, ), True)) else: queries_releated_vars.append(("= %s", (pair, ), False)) do_exact_search = False else: #normal query pairs = pairs_tokenizer.tokenize_for_pairs(p) if not pairs: # we are not actually dealing with pairs but with words return search_unit_in_bibwords(original_pattern, f, wl=wl) queries_releated_vars = [] for pair in pairs: queries_releated_vars.append(("= %s", (pair, ), False)) first_results = 1 # flag to know if it's the first set of results or not for query_var in queries_releated_vars: query_addons = query_var[0] query_params = query_var[1] use_query_limit = query_var[2] if use_query_limit: try: res = run_sql_with_limit("SELECT term, hitlist FROM %s WHERE term %s %s" % (idxpair_table_washed, query_addons, unicode_520), query_params, wildcard_limit=wl) #kwalitee:disable=sql except InvenioDbQueryWildcardLimitError, excp: res = excp.res limit_reached = 1 # set the limit reached flag to true else: res = run_sql("SELECT term, hitlist FROM %s WHERE term %s %s" % (idxpair_table_washed, query_addons, unicode_520), query_params) #kwalitee:disable=sql if not res: return intbitset() for pair, hitlist in res: hitset_idxpairs = intbitset(hitlist) if first_results: result_set = hitset_idxpairs first_results = 0 else: result_set.intersection_update(hitset_idxpairs) #check to see if the query limit was reached if limit_reached: #raise an exception, so we can print a nice message to the user raise InvenioWebSearchWildcardLimitError(result_set) # check if we need to eliminate the false positives if CFG_WEBSEARCH_IDXPAIRS_EXACT_SEARCH and do_exact_search: # we need to eliminate the false positives idxphrase_table_washed = wash_table_column_name("idxPHRASE%02dR" % index_id) not_exact_search = intbitset() for recid in result_set: res = run_sql("SELECT termlist FROM %s WHERE id_bibrec %s" %(idxphrase_table_washed, '=%s'), (recid, )) #kwalitee:disable=sql if res: termlist = deserialize_via_marshal(res[0][0]) if not [term for term in termlist if term.lower().find(p.lower()) > -1]: not_exact_search.add(recid) else: not_exact_search.add(recid) # remove the recs that are false positives from the final result result_set.difference_update(not_exact_search) return result_set def search_unit_in_idxphrases(p, f, search_type, wl=0): """Searches for phrase 'p' inside idxPHRASE*F table for field 'f' and returns hitset of recIDs found. The search type is defined by 'type' (e.g. equals to 'r' for a regexp search).""" # call word search method in some cases: if f.endswith('count'): return search_unit_in_bibwords(p, f, wl=wl) hitset = intbitset() # will hold output result set set_used = 0 # not-yet-used flag, to be able to circumvent set operations limit_reached = 0 # flag for knowing if the query limit has been reached use_query_limit = False # flag for knowing if to limit the query results or not # deduce in which idxPHRASE table we will search: index_id = get_index_id_from_field(f or "anyfield") if index_id: idxphraseX = "idxPHRASE%02dF" % index_id else: return intbitset() # phrase index f does not exist unicode_520 = (is_index_using_unicode_520(index_id) and "COLLATE 'utf8_unicode_520_ci'" or "") # detect query type (exact phrase, partial phrase, regexp): if search_type == 'r': query_addons = "REGEXP %s" query_params = (p,) use_query_limit = True else: p = p.replace('*', '%') # we now use '*' as the truncation character ps = p.split("->", 1) # check for span query: if len(ps) == 2 and not (ps[0].endswith(' ') or ps[1].startswith(' ')): query_addons = "BETWEEN %s AND %s" query_params = (ps[0], ps[1]) use_query_limit = True else: if p.find('%') > -1: query_addons = "LIKE %s" query_params = (p,) use_query_limit = True else: query_addons = "= %s" query_params = (p,) # special washing for fuzzy author index: if f in ('author', 'firstauthor', 'exactauthor', 'exactfirstauthor', 'authorityauthor'): query_params_washed = () for query_param in query_params: query_params_washed += (wash_author_name(query_param),) query_params = query_params_washed # perform search: if use_query_limit: try: res = run_sql_with_limit("SELECT term,hitlist FROM %s WHERE term %s %s" % (idxphraseX, query_addons, unicode_520), query_params, wildcard_limit=wl) except InvenioDbQueryWildcardLimitError, excp: res = excp.res limit_reached = 1 # set the limit reached flag to true else: res = run_sql("SELECT term,hitlist FROM %s WHERE term %s %s" % (idxphraseX, query_addons, unicode_520), query_params) # fill the result set: for dummy_word, hitlist in res: hitset_bibphrase = intbitset(hitlist) # add the results: if set_used: hitset.union_update(hitset_bibphrase) else: hitset = hitset_bibphrase set_used = 1 #check to see if the query limit was reached if limit_reached: #raise an exception, so we can print a nice message to the user raise InvenioWebSearchWildcardLimitError(hitset) # okay, return result set: return hitset def search_unit_in_bibxxx(p, f, type, wl=0): """Searches for pattern 'p' inside bibxxx tables for field 'f' and returns hitset of recIDs found. The search type is defined by 'type' (e.g. equals to 'r' for a regexp search).""" # call word search method in some cases: if f == 'journal' or f.endswith('count'): return search_unit_in_bibwords(p, f, wl=wl) limit_reached = 0 # flag for knowing if the query limit has been reached use_query_limit = False # flag for knowing if to limit the query results or not query_addons = "" # will hold additional SQL code for the query query_params = () # will hold parameters for the query (their number may vary depending on TYPE argument) # wash arguments: f = string.replace(f, '*', '%') # replace truncation char '*' in field definition if type == 'r': query_addons = "REGEXP %s" query_params = (p,) use_query_limit = True else: p = string.replace(p, '*', '%') # we now use '*' as the truncation character ps = string.split(p, "->", 1) # check for span query: if len(ps) == 2 and not (ps[0].endswith(' ') or ps[1].startswith(' ')): query_addons = "BETWEEN %s AND %s" query_params = (ps[0], ps[1]) use_query_limit = True else: if string.find(p, '%') > -1: query_addons = "LIKE %s" query_params = (p,) use_query_limit = True else: query_addons = "= %s" query_params = (p,) # construct 'tl' which defines the tag list (MARC tags) to search in: tl = [] if len(f) >= 2 and str(f[0]).isdigit() and str(f[1]).isdigit(): tl.append(f) # 'f' seems to be okay as it starts by two digits else: # deduce desired MARC tags on the basis of chosen 'f' tl = get_field_tags(f) if not tl: # f index does not exist, nevermind pass # okay, start search: l = [] # will hold list of recID that matched for t in tl: # deduce into which bibxxx table we will search: digit1, digit2 = int(t[0]), int(t[1]) bx = "bib%d%dx" % (digit1, digit2) bibx = "bibrec_bib%d%dx" % (digit1, digit2) # construct and run query: if t == "001": if query_addons.find('BETWEEN') > -1 or query_addons.find('=') > -1: # verify that the params are integers (to avoid returning record 123 when searching for 123foo) try: query_params = tuple(int(param) for param in query_params) except ValueError: return intbitset() if use_query_limit: try: res = run_sql_with_limit("SELECT id FROM bibrec WHERE id %s" % query_addons, query_params, wildcard_limit=wl) except InvenioDbQueryWildcardLimitError, excp: res = excp.res limit_reached = 1 # set the limit reached flag to true else: res = run_sql("SELECT id FROM bibrec WHERE id %s" % query_addons, query_params) else: query = "SELECT bibx.id_bibrec FROM %s AS bx LEFT JOIN %s AS bibx ON bx.id=bibx.id_bibxxx WHERE bx.value %s" % \ (bx, bibx, query_addons) if len(t) != 6 or t[-1:]=='%': # wildcard query, or only the beginning of field 't' # is defined, so add wildcard character: query += " AND bx.tag LIKE %s" query_params_and_tag = query_params + (t + '%',) else: # exact query for 't': query += " AND bx.tag=%s" query_params_and_tag = query_params + (t,) if use_query_limit: try: res = run_sql_with_limit(query, query_params_and_tag, wildcard_limit=wl) except InvenioDbQueryWildcardLimitError, excp: res = excp.res limit_reached = 1 # set the limit reached flag to true else: res = run_sql(query, query_params_and_tag) # fill the result set: for id_bibrec in res: if id_bibrec[0]: l.append(id_bibrec[0]) # check no of hits found: nb_hits = len(l) # okay, return result set: hitset = intbitset(l) #check to see if the query limit was reached if limit_reached: #raise an exception, so we can print a nice message to the user raise InvenioWebSearchWildcardLimitError(hitset) return hitset def search_unit_in_solr(p, f=None, m=None): """ Query a Solr index and return an intbitset corresponding to the result. Parameters (p,f,m) are usual search unit ones. """ if m and (m == 'a' or m == 'r'): # phrase/regexp query if p.startswith('%') and p.endswith('%'): p = p[1:-1] # fix for partial phrase p = '"' + p + '"' return solr_get_bitset(f, p) def search_unit_in_xapian(p, f=None, m=None): """ Query a Xapian index and return an intbitset corresponding to the result. Parameters (p,f,m) are usual search unit ones. """ if m and (m == 'a' or m == 'r'): # phrase/regexp query if p.startswith('%') and p.endswith('%'): p = p[1:-1] # fix for partial phrase p = '"' + p + '"' return xapian_get_bitset(f, p) def search_unit_in_bibrec(datetext1, datetext2, search_type='c'): """ Return hitset of recIDs found that were either created or modified (according to 'type' arg being 'c' or 'm') from datetext1 until datetext2, inclusive. Does not pay attention to pattern, collection, anything. Useful to intersect later on with the 'real' query. """ hitset = intbitset() if search_type and search_type.startswith("m"): search_type = "modification_date" elif search_type and search_type.startswith("e"): search_type = "earliest_date" else: search_type = "creation_date" # by default we are searching for creation dates parts = datetext1.split('->') if len(parts) > 1 and datetext1 == datetext2: datetext1 = parts[0] datetext2 = parts[1] if datetext1 == datetext2: res = run_sql("SELECT id FROM bibrec WHERE %s LIKE %%s" % (search_type,), (datetext1 + '%',)) else: res = run_sql("SELECT id FROM bibrec WHERE %s>=%%s AND %s<=%%s" % (search_type, search_type), (datetext1, datetext2)) for row in res: hitset += row[0] return hitset def search_unit_by_times_cited(p, exclude_selfcites=False): """ Return histset of recIDs found that are cited P times. Usually P looks like '10->23'. """ numstr = '"'+p+'"' return get_records_with_num_cites(numstr, exclude_selfcites=exclude_selfcites) def search_unit_refersto(query): """ Search for records satisfying the query (e.g. author:ellis) and return list of records referred to by these records. """ if query: ahitset = search_pattern(p=query) res = get_refersto_hitset(ahitset, input_limit=CFG_WEBSEARCH_MAX_RECORDS_REFERSTO) if len(ahitset) >= CFG_WEBSEARCH_MAX_RECORDS_REFERSTO: raise InvenioWebSearchReferstoLimitError(res) return res else: return intbitset([]) def search_unit_refersto_excluding_selfcites(query): """ Search for records satisfying the query (e.g. author:ellis) and return list of records referred to by these records. """ if query: ahitset = search_pattern(p=query) citers = intbitset() citations = get_cited_by_list(ahitset, input_limit=CFG_WEBSEARCH_MAX_RECORDS_REFERSTO) selfcitations = get_self_cited_by_list(ahitset, input_limit=CFG_WEBSEARCH_MAX_RECORDS_REFERSTO) for cites, selfcites in zip(citations, selfcitations): # cites is in the form [(citee, citers), ...] citers += cites[1] - selfcites[1] if len(ahitset) >= CFG_WEBSEARCH_MAX_RECORDS_REFERSTO: raise InvenioWebSearchReferstoLimitError(citers) return citers else: return intbitset([]) def search_unit_in_record_history(query): """ Return hitset of recIDs that were modified by the given cataloguer """ if query: try: cataloguer_name, modification_date = query.split(":") except ValueError: cataloguer_name = query modification_date = "" if modification_date: spires_syntax_converter = SpiresToInvenioSyntaxConverter() modification_date = spires_syntax_converter.convert_date(modification_date) parts = modification_date.split('->', 1) if len(parts) > 1: start_date, end_date = parts res = run_sql("SELECT id_bibrec FROM hstRECORD WHERE job_person=%s AND job_date>=%s AND job_date<=%s", (cataloguer_name, start_date, end_date)) else: res = run_sql("SELECT id_bibrec FROM hstRECORD WHERE job_person=%s AND job_date LIKE %s", (cataloguer_name, modification_date + '%',)) return intbitset(res) else: sql = "SELECT id_bibrec FROM hstRECORD WHERE job_person=%s" res = intbitset(run_sql(sql, (cataloguer_name,))) return res else: return intbitset([]) def search_unit_citedby(query): """ Search for records satisfying the query (e.g. author:ellis) and return list of records cited by these records. """ if query: ahitset = search_pattern(p=query) if ahitset: res = get_citedby_hitset(ahitset, input_limit=CFG_WEBSEARCH_MAX_RECORDS_CITEDBY) if len(ahitset) >= CFG_WEBSEARCH_MAX_RECORDS_CITEDBY: raise InvenioWebSearchCitedbyLimitError(res) return res else: return intbitset([]) else: return intbitset([]) def search_unit_citedby_excluding_selfcites(query): """ Search for records satisfying the query (e.g. author:ellis) and return list of records referred to by these records. """ if query: ahitset = search_pattern(p=query) citees = intbitset() references = get_refers_to_list(ahitset, input_limit=CFG_WEBSEARCH_MAX_RECORDS_CITEDBY) selfreferences = get_self_refers_to_list(ahitset, input_limit=CFG_WEBSEARCH_MAX_RECORDS_CITEDBY) for refs, selfrefs in zip(references, selfreferences): # refs is in the form [(citer, citees), ...] citees += refs[1] - selfrefs[1] if len(ahitset) >= CFG_WEBSEARCH_MAX_RECORDS_CITEDBY: raise InvenioWebSearchCitedbyLimitError(citees) return citees else: return intbitset([]) def intersect_results_with_collrecs(req, hitset_in_any_collection, colls, of="hb", verbose=0, ln=CFG_SITE_LANG, display_nearest_terms_box=True): """Return dict of hitsets given by intersection of hitset with the collection universes.""" _ = gettext_set_language(ln) # search stage 4: intersect with the collection universe if verbose and of.startswith("h"): t1 = os.times()[4] results = {} # all final results results_nbhits = 0 # calculate the list of recids (restricted or not) that the user has rights to access and we should display (only those) records_that_can_be_displayed = intbitset() if not req or isinstance(req, cStringIO.OutputType): # called from CLI user_info = {} for coll in colls: results[coll] = hitset_in_any_collection & get_collection_reclist(coll) results_nbhits += len(results[coll]) records_that_can_be_displayed = hitset_in_any_collection permitted_restricted_collections = [] else: user_info = collect_user_info(req) policy = CFG_WEBSEARCH_VIEWRESTRCOLL_POLICY.strip().upper() # let's get the restricted collections the user has rights to view if user_info['guest'] == '1': permitted_restricted_collections = [] ## For guest users that are actually authorized to some restricted ## collection (by virtue of the IP address in a FireRole rule) ## we explicitly build the list of permitted_restricted_collections for coll in colls: if collection_restricted_p(coll) and (acc_authorize_action(user_info, 'viewrestrcoll', collection=coll)[0] == 0): permitted_restricted_collections.append(coll) else: permitted_restricted_collections = user_info.get('precached_permitted_restricted_collections', []) if verbose and of.startswith("h"): write_warning("Search stage 4: Your permitted collections: %s" % (str(permitted_restricted_collections),), req=req) # let's build the list of the both public and restricted # child collections of the collection from which the user # started his/her search. This list of children colls will be # used in the warning proposing a search in that collections try: current_coll = req.argd['cc'] # current_coll: coll from which user started his/her search except (AttributeError, KeyError): current_coll = CFG_SITE_NAME current_coll_children = get_collection_allchildren(current_coll) # real & virtual # add all restricted collections, that the user has access to, and are under the current collection # do not use set here, in order to maintain a specific order: # children of 'cc' (real, virtual, restricted), rest of 'c' that are not cc's children colls_to_be_displayed = [coll for coll in current_coll_children if coll in colls or coll in permitted_restricted_collections] colls_to_be_displayed.extend([coll for coll in colls if coll not in colls_to_be_displayed]) if verbose and of.startswith("h"): write_warning("Search stage 4: Collections to display: %s" % (str(colls_to_be_displayed),), req=req) if policy == 'ANY':# the user needs to have access to at least one collection that restricts the records #we need this to be able to remove records that are both in a public and restricted collection permitted_recids = intbitset() notpermitted_recids = intbitset() for collection in restricted_collection_cache.cache: if collection in permitted_restricted_collections: permitted_recids |= get_collection_reclist(collection) else: notpermitted_recids |= get_collection_reclist(collection) records_that_can_be_displayed = hitset_in_any_collection - (notpermitted_recids - permitted_recids) else:# the user needs to have access to all collections that restrict a records notpermitted_recids = intbitset() for collection in restricted_collection_cache.cache: if collection not in permitted_restricted_collections: notpermitted_recids |= get_collection_reclist(collection) records_that_can_be_displayed = hitset_in_any_collection - notpermitted_recids for coll in colls_to_be_displayed: results[coll] = results.get(coll, intbitset()) | (records_that_can_be_displayed & get_collection_reclist(coll)) results_nbhits += len(results[coll]) if verbose and of.startswith("h"): write_warning("Search stage 4: Final results (%d): %s " % (results_nbhits, str(results),), req=req) if results_nbhits == 0: # no hits found, try to search in Home and restricted and/or hidden collections: results = {} results_in_Home = records_that_can_be_displayed & get_collection_reclist(CFG_SITE_NAME) results_in_restricted_collections = intbitset() results_in_hidden_collections = intbitset() for coll in permitted_restricted_collections: if not get_coll_ancestors(coll): # hidden collection results_in_hidden_collections.union_update(records_that_can_be_displayed & get_collection_reclist(coll)) else: results_in_restricted_collections.union_update(records_that_can_be_displayed & get_collection_reclist(coll)) # in this way, we do not count twice, records that are both in Home collection and in a restricted collection total_results = len(results_in_Home.union(results_in_restricted_collections)) if total_results > 0: # some hits found in Home and/or restricted collections, so propose this search: if of.startswith("h") and display_nearest_terms_box: url = websearch_templates.build_search_url(req.argd, cc=CFG_SITE_NAME, c=[]) len_colls_to_display = len(colls_to_be_displayed) # trim the list of collections to first two, since it might get very large write_warning(_("No match found in collection %(x_collection)s. Other collections gave %(x_url_open)s%(x_nb_hits)d hits%(x_url_close)s.") % {'x_collection': '<em>' + string.join([get_coll_i18nname(coll, ln, False) for coll in colls_to_be_displayed[:2]], ', ') + (len_colls_to_display > 2 and ' et al' or '') + '</em>', 'x_url_open': '<a class="nearestterms" href="%s">' % (url), 'x_nb_hits': total_results, 'x_url_close': '</a>'}, req=req) # display the hole list of collections in a comment if len_colls_to_display > 2: write_warning("<!--No match found in collection <em>%(x_collection)s</em>.-->" % {'x_collection': string.join([get_coll_i18nname(coll, ln, False) for coll in colls_to_be_displayed], ', ')}, req=req) else: # no hits found, either user is looking for a document and he/she has not rights # or user is looking for a hidden document: if of.startswith("h") and display_nearest_terms_box: if len(results_in_hidden_collections) > 0: write_warning(_("No public collection matched your query. " "If you were looking for a hidden document, please type " "the correct URL for this record."), req=req) else: write_warning(_("No public collection matched your query. " "If you were looking for a non-public document, please choose " "the desired restricted collection first."), req=req) if verbose and of.startswith("h"): t2 = os.times()[4] write_warning("Search stage 4: intersecting with collection universe gave %d hits." % results_nbhits, req=req) write_warning("Search stage 4: execution took %.2f seconds." % (t2 - t1), req=req) return results def intersect_results_with_hitset(req, results, hitset, ap=0, aptext="", of="hb"): """Return intersection of search 'results' (a dict of hitsets with collection as key) with the 'hitset', i.e. apply 'hitset' intersection to each collection within search 'results'. If the final set is to be empty, and 'ap' (approximate pattern) is true, and then print the `warningtext' and return the original 'results' set unchanged. If 'ap' is false, then return empty results set. """ if ap: results_ap = copy.deepcopy(results) else: results_ap = {} # will return empty dict in case of no hits found nb_total = 0 final_results = {} for coll in results.keys(): final_results[coll] = results[coll].intersection(hitset) nb_total += len(final_results[coll]) if nb_total == 0: if of.startswith("h"): write_warning(aptext, req=req) final_results = results_ap return final_results def create_similarly_named_authors_link_box(author_name, ln=CFG_SITE_LANG): """Return a box similar to ``Not satisfied...'' one by proposing author searches for similar names. Namely, take AUTHOR_NAME and the first initial of the firstame (after comma) and look into author index whether authors with e.g. middle names exist. Useful mainly for CERN Library that sometimes contains name forms like Ellis-N, Ellis-Nick, Ellis-Nicolas all denoting the same person. The box isn't proposed if no similarly named authors are found to exist. """ # return nothing if not configured: if CFG_WEBSEARCH_CREATE_SIMILARLY_NAMED_AUTHORS_LINK_BOX == 0: return "" # return empty box if there is no initial: if re.match(r'[^ ,]+, [^ ]', author_name) is None: return "" # firstly find name comma initial: author_name_to_search = re.sub(r'^([^ ,]+, +[^ ,]).*$', '\\1', author_name) # secondly search for similar name forms: similar_author_names = {} for name in author_name_to_search, strip_accents(author_name_to_search): for tag in get_field_tags("author"): # deduce into which bibxxx table we will search: digit1, digit2 = int(tag[0]), int(tag[1]) bx = "bib%d%dx" % (digit1, digit2) if len(tag) != 6 or tag[-1:] == '%': # only the beginning of field 't' is defined, so add wildcard character: res = run_sql("""SELECT bx.value FROM %s AS bx WHERE bx.value LIKE %%s AND bx.tag LIKE %%s""" % bx, (name + "%", tag + "%")) else: res = run_sql("""SELECT bx.value FROM %s AS bx WHERE bx.value LIKE %%s AND bx.tag=%%s""" % bx, (name + "%", tag)) for row in res: similar_author_names[row[0]] = 1 # remove the original name and sort the list: try: del similar_author_names[author_name] except KeyError: pass # thirdly print the box: out = "" if similar_author_names: out_authors = similar_author_names.keys() out_authors.sort() tmp_authors = [] for out_author in out_authors: nbhits = get_nbhits_in_bibxxx(out_author, "author") if nbhits: tmp_authors.append((out_author, nbhits)) out += websearch_templates.tmpl_similar_author_names( authors=tmp_authors, ln=ln) return out def create_nearest_terms_box(urlargd, p, f, t='w', n=5, ln=CFG_SITE_LANG, intro_text_p=True): """Return text box containing list of 'n' nearest terms above/below 'p' for the field 'f' for matching type 't' (words/phrases) in language 'ln'. Propose new searches according to `urlargs' with the new words. If `intro_text_p' is true, then display the introductory message, otherwise print only the nearest terms in the box content. """ # load the right message language _ = gettext_set_language(ln) if not CFG_WEBSEARCH_DISPLAY_NEAREST_TERMS: return _("Your search did not match any records. Please try again.") nearest_terms = [] if not p: # sanity check p = "." if p.startswith('%') and p.endswith('%'): p = p[1:-1] # fix for partial phrase index_id = get_index_id_from_field(f) if f == 'fulltext': if CFG_SOLR_URL: return _("No match found, please enter different search terms.") else: # FIXME: workaround for not having native phrase index yet t = 'w' # special indexes: if f == 'refersto' or f == 'referstoexcludingselfcites': return _("There are no records referring to %s.") % cgi.escape(p) if f == 'cataloguer': return _("There are no records modified by %s.") % cgi.escape(p) if f == 'citedby' or f == 'citedbyexcludingselfcites': return _("There are no records cited by %s.") % cgi.escape(p) # look for nearest terms: if t == 'w': nearest_terms = get_nearest_terms_in_bibwords(p, f, n, n) if not nearest_terms: return _("No word index is available for %s.") % \ ('<em>' + cgi.escape(get_field_i18nname(get_field_name(f) or f, ln, False)) + '</em>') else: nearest_terms = [] if index_id: nearest_terms = get_nearest_terms_in_idxphrase(p, index_id, n, n) if f in ('datecreated', 'datemodified', 'earliestdate'): nearest_terms = get_nearest_terms_in_bibrec(p, f, n, n) if not nearest_terms: nearest_terms = get_nearest_terms_in_bibxxx(p, f, n, n) if not nearest_terms: return _("No phrase index is available for %s.") % \ ('<em>' + cgi.escape(get_field_i18nname(get_field_name(f) or f, ln, False)) + '</em>') terminfo = [] for term in nearest_terms: if t == 'w': hits = get_nbhits_in_bibwords(term, f) else: if index_id: hits = get_nbhits_in_idxphrases(term, f) elif f in ('datecreated', 'datemodified', 'earliestdate'): hits = get_nbhits_in_bibrec(term, f) else: hits = get_nbhits_in_bibxxx(term, f) argd = {} argd.update(urlargd) # check which fields contained the requested parameter, and replace it. for px, dummy_fx in ('p', 'f'), ('p1', 'f1'), ('p2', 'f2'), ('p3', 'f3'): if px in argd: argd_px = argd[px] if t == 'w': # p was stripped of accents, to do the same: argd_px = strip_accents(argd_px) #argd[px] = string.replace(argd_px, p, term, 1) #we need something similar, but case insensitive pattern_index = string.find(argd_px.lower(), p.lower()) if pattern_index > -1: argd[px] = argd_px[:pattern_index] + term + argd_px[pattern_index+len(p):] break #this is doing exactly the same as: #argd[px] = re.sub('(?i)' + re.escape(p), term, argd_px, 1) #but is ~4x faster (2us vs. 8.25us) terminfo.append((term, hits, argd)) intro = "" if intro_text_p: # add full leading introductory text if f: intro = _("Search term %(x_term)s inside index %(x_index)s did not match any record. Nearest terms in any collection are:") % \ {'x_term': "<em>" + cgi.escape(p.startswith("%") and p.endswith("%") and p[1:-1] or p) + "</em>", 'x_index': "<em>" + cgi.escape(get_field_i18nname(get_field_name(f) or f, ln, False)) + "</em>"} else: intro = _("Search term %s did not match any record. Nearest terms in any collection are:") % \ ("<em>" + cgi.escape(p.startswith("%") and p.endswith("%") and p[1:-1] or p) + "</em>") return websearch_templates.tmpl_nearest_term_box(p=p, ln=ln, f=f, terminfo=terminfo, intro=intro) def get_nearest_terms_in_bibwords(p, f, n_below, n_above): """Return list of +n -n nearest terms to word `p' in index for field `f'.""" nearest_words = [] # will hold the (sorted) list of nearest words to return # deduce into which bibwordsX table we will search: bibwordsX = "idxWORD%02dF" % get_index_id_from_field("anyfield") if f: index_id = get_index_id_from_field(f) if index_id: bibwordsX = "idxWORD%02dF" % index_id else: return nearest_words # firstly try to get `n' closest words above `p': res = run_sql("SELECT term FROM %s WHERE term<%%s ORDER BY term DESC LIMIT %%s" % bibwordsX, (p, n_above)) for row in res: nearest_words.append(row[0]) nearest_words.reverse() # secondly insert given word `p': nearest_words.append(p) # finally try to get `n' closest words below `p': res = run_sql("SELECT term FROM %s WHERE term>%%s ORDER BY term ASC LIMIT %%s" % bibwordsX, (p, n_below)) for row in res: nearest_words.append(row[0]) return nearest_words def get_nearest_terms_in_idxphrase(p, index_id, n_below, n_above): """Browse (-n_above, +n_below) closest bibliographic phrases for the given pattern p in the given field idxPHRASE table, regardless of collection. Return list of [phrase1, phrase2, ... , phrase_n].""" if CFG_INSPIRE_SITE and index_id in (3, 15): # FIXME: workaround due to new fuzzy index return [p] idxphraseX = "idxPHRASE%02dF" % index_id res_above = run_sql("SELECT term FROM %s WHERE term<%%s ORDER BY term DESC LIMIT %%s" % idxphraseX, (p, n_above)) res_above = [x[0] for x in res_above] res_above.reverse() res_below = run_sql("SELECT term FROM %s WHERE term>=%%s ORDER BY term ASC LIMIT %%s" % idxphraseX, (p, n_below)) res_below = [x[0] for x in res_below] return res_above + res_below def get_nearest_terms_in_idxphrase_with_collection(p, index_id, n_below, n_above, collection): """Browse (-n_above, +n_below) closest bibliographic phrases for the given pattern p in the given field idxPHRASE table, considering the collection (intbitset). Return list of [(phrase1, hitset), (phrase2, hitset), ... , (phrase_n, hitset)].""" idxphraseX = "idxPHRASE%02dF" % index_id res_above = run_sql("SELECT term,hitlist FROM %s WHERE term<%%s ORDER BY term DESC LIMIT %%s" % idxphraseX, (p, n_above * 3)) res_above = [(term, intbitset(hitlist) & collection) for term, hitlist in res_above] res_above = [(term, len(hitlist)) for term, hitlist in res_above if hitlist] res_below = run_sql("SELECT term,hitlist FROM %s WHERE term>=%%s ORDER BY term ASC LIMIT %%s" % idxphraseX, (p, n_below * 3)) res_below = [(term, intbitset(hitlist) & collection) for term, hitlist in res_below] res_below = [(term, len(hitlist)) for term, hitlist in res_below if hitlist] res_above.reverse() return res_above[-n_above:] + res_below[:n_below] def get_nearest_terms_in_bibxxx(p, f, n_below, n_above): """Browse (-n_above, +n_below) closest bibliographic phrases for the given pattern p in the given field f, regardless of collection. Return list of [phrase1, phrase2, ... , phrase_n].""" ## determine browse field: if not f and string.find(p, ":") > 0: # does 'p' contain ':'? f, p = string.split(p, ":", 1) # FIXME: quick hack for the journal index if f == 'journal': return get_nearest_terms_in_idxphrase(p, f, n_below, n_above) ## We are going to take max(n_below, n_above) as the number of ## values to ferch from bibXXx. This is needed to work around ## MySQL UTF-8 sorting troubles in 4.0.x. Proper solution is to ## use MySQL 4.1.x or our own idxPHRASE in the future. index_id = get_index_id_from_field(f) if index_id: return get_nearest_terms_in_idxphrase(p, index_id, n_below, n_above) n_fetch = 2*max(n_below, n_above) ## construct 'tl' which defines the tag list (MARC tags) to search in: tl = [] if str(f[0]).isdigit() and str(f[1]).isdigit(): tl.append(f) # 'f' seems to be okay as it starts by two digits else: # deduce desired MARC tags on the basis of chosen 'f' tl = get_field_tags(f) ## start browsing to fetch list of hits: browsed_phrases = {} # will hold {phrase1: 1, phrase2: 1, ..., phraseN: 1} dict of browsed phrases (to make them unique) # always add self to the results set: browsed_phrases[p.startswith("%") and p.endswith("%") and p[1:-1] or p] = 1 for t in tl: # deduce into which bibxxx table we will search: digit1, digit2 = int(t[0]), int(t[1]) bx = "bib%d%dx" % (digit1, digit2) # firstly try to get `n' closest phrases above `p': if len(t) != 6 or t[-1:] == '%': # only the beginning of field 't' is defined, so add wildcard character: res = run_sql("""SELECT bx.value FROM %s AS bx WHERE bx.value<%%s AND bx.tag LIKE %%s ORDER BY bx.value DESC LIMIT %%s""" % bx, (p, t + "%", n_fetch)) else: res = run_sql("""SELECT bx.value FROM %s AS bx WHERE bx.value<%%s AND bx.tag=%%s ORDER BY bx.value DESC LIMIT %%s""" % bx, (p, t, n_fetch)) for row in res: browsed_phrases[row[0]] = 1 # secondly try to get `n' closest phrases equal to or below `p': if len(t) != 6 or t[-1:]=='%': # only the beginning of field 't' is defined, so add wildcard character: res = run_sql("""SELECT bx.value FROM %s AS bx WHERE bx.value>=%%s AND bx.tag LIKE %%s ORDER BY bx.value ASC LIMIT %%s""" % bx, (p, t + "%", n_fetch)) else: res = run_sql("""SELECT bx.value FROM %s AS bx WHERE bx.value>=%%s AND bx.tag=%%s ORDER BY bx.value ASC LIMIT %%s""" % bx, (p, t, n_fetch)) for row in res: browsed_phrases[row[0]] = 1 # select first n words only: (this is needed as we were searching # in many different tables and so aren't sure we have more than n # words right; this of course won't be needed when we shall have # one ACC table only for given field): phrases_out = browsed_phrases.keys() phrases_out.sort(lambda x, y: cmp(string.lower(strip_accents(x)), string.lower(strip_accents(y)))) # find position of self: try: idx_p = phrases_out.index(p) except ValueError: idx_p = len(phrases_out)/2 # return n_above and n_below: return phrases_out[max(0, idx_p-n_above):idx_p+n_below] def get_nearest_terms_in_bibrec(p, f, n_below, n_above): """Return list of nearest terms and counts from bibrec table. p is usually a date, and f either datecreated or datemodified or earliestdate. Note: below/above count is very approximative, not really respected. """ col = 'creation_date' if f == 'datemodified': col = 'modification_date' elif f == 'earliestdate': col = 'earliest_date' res_above = run_sql("""SELECT DATE_FORMAT(%s,'%%%%Y-%%%%m-%%%%d %%%%H:%%%%i:%%%%s') FROM bibrec WHERE %s < %%s ORDER BY %s DESC LIMIT %%s""" % (col, col, col), (p, n_above)) res_below = run_sql("""SELECT DATE_FORMAT(%s,'%%%%Y-%%%%m-%%%%d %%%%H:%%%%i:%%%%s') FROM bibrec WHERE %s > %%s ORDER BY %s ASC LIMIT %%s""" % (col, col, col), (p, n_below)) out = set([]) for row in res_above: out.add(row[0]) for row in res_below: out.add(row[0]) out_list = list(out) out_list.sort() return list(out_list) def get_nbhits_in_bibrec(term, f): """Return number of hits in bibrec table. term is usually a date, and f is either 'datecreated' or 'datemodified' or 'earliestdate'.""" col = 'creation_date' if f == 'datemodified': col = 'modification_date' elif f == 'earliestdate': col = 'earliest_date' res = run_sql("SELECT COUNT(*) FROM bibrec WHERE %s LIKE %%s" % (col,), (term + '%',)) return res[0][0] def get_nbhits_in_bibwords(word, f): """Return number of hits for word 'word' inside words index for field 'f'.""" out = 0 # deduce into which bibwordsX table we will search: bibwordsX = "idxWORD%02dF" % get_index_id_from_field("anyfield") if f: index_id = get_index_id_from_field(f) if index_id: bibwordsX = "idxWORD%02dF" % index_id else: return 0 if word: res = run_sql("SELECT hitlist FROM %s WHERE term=%%s" % bibwordsX, (word,)) for hitlist in res: out += len(intbitset(hitlist[0])) return out def get_nbhits_in_idxphrases(word, f): """Return number of hits for word 'word' inside phrase index for field 'f'.""" out = 0 # deduce into which bibwordsX table we will search: idxphraseX = "idxPHRASE%02dF" % get_index_id_from_field("anyfield") if f: index_id = get_index_id_from_field(f) if index_id: idxphraseX = "idxPHRASE%02dF" % index_id else: return 0 if word: res = run_sql("SELECT hitlist FROM %s WHERE term=%%s" % idxphraseX, (word,)) for hitlist in res: out += len(intbitset(hitlist[0])) return out def get_nbhits_in_bibxxx(p, f, in_hitset=None): """Return number of hits for word 'word' inside words index for field 'f'.""" ## determine browse field: if not f and string.find(p, ":") > 0: # does 'p' contain ':'? f, p = string.split(p, ":", 1) # FIXME: quick hack for the journal index if f == 'journal': return get_nbhits_in_idxphrases(p, f) ## construct 'tl' which defines the tag list (MARC tags) to search in: tl = [] if str(f[0]).isdigit() and str(f[1]).isdigit(): tl.append(f) # 'f' seems to be okay as it starts by two digits else: # deduce desired MARC tags on the basis of chosen 'f' tl = get_field_tags(f) # start searching: recIDs = {} # will hold dict of {recID1: 1, recID2: 1, ..., } (unique recIDs, therefore) for t in tl: # deduce into which bibxxx table we will search: digit1, digit2 = int(t[0]), int(t[1]) bx = "bib%d%dx" % (digit1, digit2) bibx = "bibrec_bib%d%dx" % (digit1, digit2) if len(t) != 6 or t[-1:]=='%': # only the beginning of field 't' is defined, so add wildcard character: res = run_sql("""SELECT bibx.id_bibrec FROM %s AS bibx, %s AS bx WHERE bx.value=%%s AND bx.tag LIKE %%s AND bibx.id_bibxxx=bx.id""" % (bibx, bx), (p, t + "%")) else: res = run_sql("""SELECT bibx.id_bibrec FROM %s AS bibx, %s AS bx WHERE bx.value=%%s AND bx.tag=%%s AND bibx.id_bibxxx=bx.id""" % (bibx, bx), (p, t)) for row in res: recIDs[row[0]] = 1 if in_hitset is None: nbhits = len(recIDs) else: nbhits = len(intbitset(recIDs.keys()).intersection(in_hitset)) return nbhits def get_mysql_recid_from_aleph_sysno(sysno): """Returns DB's recID for ALEPH sysno passed in the argument (e.g. "002379334CER"). Returns None in case of failure.""" out = None res = run_sql("""SELECT bb.id_bibrec FROM bibrec_bib97x AS bb, bib97x AS b WHERE b.value=%s AND b.tag='970__a' AND bb.id_bibxxx=b.id""", (sysno,)) if res: out = res[0][0] return out def guess_primary_collection_of_a_record(recID): """Return primary collection name a record recid belongs to, by testing 980 identifier. May lead to bad guesses when a collection is defined dynamically via dbquery. In that case, return 'CFG_SITE_NAME'.""" out = CFG_SITE_NAME dbcollids = get_fieldvalues(recID, "980__a") for dbcollid in dbcollids: variants = ("collection:" + dbcollid, 'collection:"' + dbcollid + '"', "980__a:" + dbcollid, '980__a:"' + dbcollid + '"', '980:' + dbcollid , '980:"' + dbcollid + '"') res = run_sql("SELECT name FROM collection WHERE dbquery IN (%s,%s,%s,%s,%s,%s)", variants) if res: out = res[0][0] break if CFG_CERN_SITE: recID = int(recID) # dirty hack for ATLAS collections at CERN: if out in ('ATLAS Communications', 'ATLAS Internal Notes'): for alternative_collection in ('ATLAS Communications Physics', 'ATLAS Communications General', 'ATLAS Internal Notes Physics', 'ATLAS Internal Notes General',): if recID in get_collection_reclist(alternative_collection): return alternative_collection # dirty hack for FP FP_collections = {'DO': ['Current Price Enquiries', 'Archived Price Enquiries'], 'IT': ['Current Invitation for Tenders', 'Archived Invitation for Tenders'], 'MS': ['Current Market Surveys', 'Archived Market Surveys']} fp_coll_ids = [coll for coll in dbcollids if coll in FP_collections] for coll in fp_coll_ids: for coll_name in FP_collections[coll]: if recID in get_collection_reclist(coll_name): return coll_name return out _re_collection_url = re.compile('/collection/(.+)') def guess_collection_of_a_record(recID, referer=None, recreate_cache_if_needed=True): """Return collection name a record recid belongs to, by first testing the referer URL if provided and otherwise returning the primary collection.""" if referer: dummy, hostname, path, dummy, query, dummy = urlparse.urlparse(referer) #requests can come from different invenio installations, with different collections if CFG_SITE_URL.find(hostname) < 0: return guess_primary_collection_of_a_record(recID) g = _re_collection_url.match(path) if g: name = urllib.unquote_plus(g.group(1)) #check if this collection actually exist (also normalize the name if case-insensitive) name = get_coll_normalised_name(name) if name and recID in get_collection_reclist(name): return name elif path.startswith('/search'): if recreate_cache_if_needed: collection_reclist_cache.recreate_cache_if_needed() query = cgi.parse_qs(query) for name in query.get('cc', []) + query.get('c', []): name = get_coll_normalised_name(name) if name and recID in get_collection_reclist(name, recreate_cache_if_needed=False): return name return guess_primary_collection_of_a_record(recID) def is_record_in_any_collection(recID, recreate_cache_if_needed=True): """Return True if the record belongs to at least one collection. This is a good, although not perfect, indicator to guess if webcoll has already run after this record has been entered into the system. """ if recreate_cache_if_needed: collection_reclist_cache.recreate_cache_if_needed() for name in collection_reclist_cache.cache.keys(): if recID in get_collection_reclist(name, recreate_cache_if_needed=False): return True return False def get_all_collections_of_a_record(recID, recreate_cache_if_needed=True): """Return all the collection names a record belongs to. Note this function is O(n_collections).""" ret = [] if recreate_cache_if_needed: collection_reclist_cache.recreate_cache_if_needed() for name in collection_reclist_cache.cache.keys(): if recID in get_collection_reclist(name, recreate_cache_if_needed=False): ret.append(name) return ret def get_tag_name(tag_value, prolog="", epilog=""): """Return tag name from the known tag value, by looking up the 'tag' table. Return empty string in case of failure. Example: input='100__%', output=first author'.""" out = "" res = run_sql("SELECT name FROM tag WHERE value=%s", (tag_value,)) if res: out = prolog + res[0][0] + epilog return out def get_fieldcodes(): """Returns a list of field codes that may have been passed as 'search options' in URL. Example: output=['subject','division'].""" out = [] res = run_sql("SELECT DISTINCT(code) FROM field") for row in res: out.append(row[0]) return out def get_field_name(code): """Return the corresponding field_name given the field code. e.g. reportnumber -> report number.""" res = run_sql("SELECT name FROM field WHERE code=%s", (code, )) if res: return res[0][0] else: return "" def get_fieldvalues_alephseq_like(recID, tags_in, can_see_hidden=False): """Return buffer of ALEPH sequential-like textual format with fields found in the list TAGS_IN for record RECID. If can_see_hidden is True, just print everything. Otherwise hide fields from CFG_BIBFORMAT_HIDDEN_TAGS. """ out = "" if type(tags_in) is not list: tags_in = [tags_in] if len(tags_in) == 1 and len(tags_in[0]) == 6: ## case A: one concrete subfield asked, so print its value if found ## (use with care: can mislead if field has multiple occurrences) out += string.join(get_fieldvalues(recID, tags_in[0]), "\n") else: ## case B: print our "text MARC" format; works safely all the time # find out which tags to output: dict_of_tags_out = {} if not tags_in: for i in range(0, 10): for j in range(0, 10): dict_of_tags_out["%d%d%%" % (i, j)] = 1 else: for tag in tags_in: tag = tag.strip() if len(tag) == 0: for i in range(0, 10): for j in range(0, 10): dict_of_tags_out["%d%d%%" % (i, j)] = 1 elif len(tag) == 1: for j in range(0, 10): dict_of_tags_out["%s%d%%" % (tag, j)] = 1 elif len(tag) < 5: dict_of_tags_out["%s%%" % tag] = 1 elif tag >= 6: dict_of_tags_out[tag[0:5]] = 1 tags_out = dict_of_tags_out.keys() tags_out.sort() # search all bibXXx tables as needed: for tag in tags_out: digits = tag[0:2] try: intdigits = int(digits) if intdigits < 0 or intdigits > 99: raise ValueError except ValueError: # invalid tag value asked for continue if tag.startswith("001") or tag.startswith("00%"): if out: out += "\n" out += "%09d %s %d" % (recID, "001__", recID) bx = "bib%sx" % digits bibx = "bibrec_bib%sx" % digits query = "SELECT b.tag,b.value,bb.field_number FROM %s AS b, %s AS bb "\ "WHERE bb.id_bibrec=%%s AND b.id=bb.id_bibxxx AND b.tag LIKE %%s "\ "ORDER BY bb.field_number, b.tag ASC" % (bx, bibx) res = run_sql(query, (recID, str(tag)+'%')) # go through fields: field_number_old = -999 field_old = "" for row in res: field, value, field_number = row[0], row[1], row[2] ind1, ind2 = field[3], field[4] printme = True #check the stuff in hiddenfields if not can_see_hidden: for htag in CFG_BIBFORMAT_HIDDEN_TAGS: ltag = len(htag) samelenfield = field[0:ltag] if samelenfield == htag: printme = False if ind1 == "_": ind1 = "" if ind2 == "_": ind2 = "" # print field tag if printme: if field_number != field_number_old or field[:-1] != field_old[:-1]: if out: out += "\n" out += "%09d %s " % (recID, field[:5]) field_number_old = field_number field_old = field # print subfield value if field[0:2] == "00" and field[-1:] == "_": out += value else: out += "$$%s%s" % (field[-1:], value) return out def get_merged_recid(recID): """ Return the record ID of the record with which the given record has been merged. @param recID: deleted record recID @type recID: int @return: merged record recID @rtype: int or None """ merged_recid = None for val in get_fieldvalues(recID, "970__d"): try: merged_recid = int(val) break except ValueError: pass return merged_recid def record_empty(recID): """ Is this record empty, e.g. has only 001, waiting for integration? @param recID: the record identifier. @type recID: int @return: 1 if the record is empty, 0 otherwise. @rtype: int """ return bibrecord.record_empty(get_record(recID)) def record_public_p(recID, recreate_cache_if_needed=True): """Return 1 if the record is public, i.e. if it can be found in the Home collection. Return 0 otherwise. """ return recID in get_collection_reclist(CFG_SITE_NAME, recreate_cache_if_needed=recreate_cache_if_needed) def get_creation_date(recID, fmt="%Y-%m-%d"): "Returns the creation date of the record 'recID'." out = "" res = run_sql("SELECT DATE_FORMAT(creation_date,%s) FROM bibrec WHERE id=%s", (fmt, recID), 1) if res: out = res[0][0] return out def get_modification_date(recID, fmt="%Y-%m-%d"): "Returns the date of last modification for the record 'recID'." out = "" res = run_sql("SELECT DATE_FORMAT(modification_date,%s) FROM bibrec WHERE id=%s", (fmt, recID), 1) if res: out = res[0][0] return out def get_earliest_date(recID, fmt="%Y-%m-%d"): "Returns the earliest date for the record 'recID'." out = "" res = run_sql("SELECT DATE_FORMAT(earliest_date,%s) FROM bibrec WHERE id=%s", (fmt, recID), 1) if res: out = res[0][0] return out def print_search_info(p, f, sf, so, sp, rm, of, ot, collection=CFG_SITE_NAME, nb_found=-1, jrec=1, rg=CFG_WEBSEARCH_DEF_RECORDS_IN_GROUPS, aas=0, ln=CFG_SITE_LANG, p1="", p2="", p3="", f1="", f2="", f3="", m1="", m2="", m3="", op1="", op2="", sc=1, pl_in_url="", d1y=0, d1m=0, d1d=0, d2y=0, d2m=0, d2d=0, dt="", cpu_time=-1, middle_only=0, em=""): """Prints stripe with the information on 'collection' and 'nb_found' results and CPU time. Also, prints navigation links (beg/next/prev/end) inside the results set. If middle_only is set to 1, it will only print the middle box information (beg/netx/prev/end/etc) links. This is suitable for displaying navigation links at the bottom of the search results page.""" if em != '' and EM_REPOSITORY["search_info"] not in em: return "" # sanity check: if jrec < 1: jrec = 1 if jrec > nb_found: jrec = max(nb_found-rg+1, 1) return websearch_templates.tmpl_print_search_info( ln = ln, collection = collection, aas = aas, collection_name = get_coll_i18nname(collection, ln, False), collection_id = get_colID(collection), middle_only = middle_only, rg = rg, nb_found = nb_found, sf = sf, so = so, rm = rm, of = of, ot = ot, p = p, f = f, p1 = p1, p2 = p2, p3 = p3, f1 = f1, f2 = f2, f3 = f3, m1 = m1, m2 = m2, m3 = m3, op1 = op1, op2 = op2, pl_in_url = pl_in_url, d1y = d1y, d1m = d1m, d1d = d1d, d2y = d2y, d2m = d2m, d2d = d2d, dt = dt, jrec = jrec, sc = sc, sp = sp, all_fieldcodes = get_fieldcodes(), cpu_time = cpu_time, ) def print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, collection=CFG_SITE_NAME, nb_found=-1, jrec=1, rg=CFG_WEBSEARCH_DEF_RECORDS_IN_GROUPS, aas=0, ln=CFG_SITE_LANG, p1="", p2="", p3="", f1="", f2="", f3="", m1="", m2="", m3="", op1="", op2="", sc=1, pl_in_url="", d1y=0, d1m=0, d1d=0, d2y=0, d2m=0, d2d=0, dt="", cpu_time=-1, middle_only=0, em=""): """Prints stripe with the information on 'collection' and 'nb_found' results and CPU time. Also, prints navigation links (beg/next/prev/end) inside the results set. If middle_only is set to 1, it will only print the middle box information (beg/netx/prev/end/etc) links. This is suitable for displaying navigation links at the bottom of the search results page.""" if em != '' and EM_REPOSITORY["search_info"] not in em: return "" # sanity check: if jrec < 1: jrec = 1 if jrec > nb_found: jrec = max(nb_found-rg+1, 1) return websearch_templates.tmpl_print_hosted_search_info( ln = ln, collection = collection, aas = aas, collection_name = get_coll_i18nname(collection, ln, False), collection_id = get_colID(collection), middle_only = middle_only, rg = rg, nb_found = nb_found, sf = sf, so = so, rm = rm, of = of, ot = ot, p = p, f = f, p1 = p1, p2 = p2, p3 = p3, f1 = f1, f2 = f2, f3 = f3, m1 = m1, m2 = m2, m3 = m3, op1 = op1, op2 = op2, pl_in_url = pl_in_url, d1y = d1y, d1m = d1m, d1d = d1d, d2y = d2y, d2m = d2m, d2d = d2d, dt = dt, jrec = jrec, sc = sc, sp = sp, all_fieldcodes = get_fieldcodes(), cpu_time = cpu_time, ) def print_results_overview(colls, results_final_nb_total, results_final_nb, cpu_time, ln=CFG_SITE_LANG, ec=[], hosted_colls_potential_results_p=False, em=""): """Prints results overview box with links to particular collections below.""" if em != "" and EM_REPOSITORY["overview"] not in em: return "" new_colls = [] for coll in colls: new_colls.append({ 'id': get_colID(coll), 'code': coll, 'name': get_coll_i18nname(coll, ln, False), }) return websearch_templates.tmpl_print_results_overview( ln = ln, results_final_nb_total = results_final_nb_total, results_final_nb = results_final_nb, cpu_time = cpu_time, colls = new_colls, ec = ec, hosted_colls_potential_results_p = hosted_colls_potential_results_p, ) def print_hosted_results(url_and_engine, ln=CFG_SITE_LANG, of=None, req=None, no_records_found=False, search_timed_out=False, limit=CFG_EXTERNAL_COLLECTION_MAXRESULTS, em = ""): """Prints the full results of a hosted collection""" if of.startswith("h"): if no_records_found: return "<br />No results found." if search_timed_out: return "<br />The search engine did not respond in time." return websearch_templates.tmpl_print_hosted_results( url_and_engine=url_and_engine, ln=ln, of=of, req=req, limit=limit, display_body = em == "" or EM_REPOSITORY["body"] in em, display_add_to_basket = em == "" or EM_REPOSITORY["basket"] in em) class BibSortDataCacher(DataCacher): """ Cache holding all structures created by bibsort ( _data, data_dict). """ def __init__(self, method_name): self.method_name = method_name self.method_id = 0 res = run_sql("""SELECT id from bsrMETHOD where name = %s""", (self.method_name,)) if res and res[0]: self.method_id = res[0][0] else: self.method_id = 0 def cache_filler(): method_id = self.method_id alldicts = {} if self.method_id == 0: return {} try: res_data = run_sql("""SELECT data_dict_ordered from bsrMETHODDATA \ where id_bsrMETHOD = %s""", (method_id,)) res_buckets = run_sql("""SELECT bucket_no, bucket_data from bsrMETHODDATABUCKET\ where id_bsrMETHOD = %s""", (method_id,)) except Exception: # database problems, return empty cache return {} try: data_dict_ordered = deserialize_via_marshal(res_data[0][0]) except IndexError: data_dict_ordered = {} alldicts['data_dict_ordered'] = data_dict_ordered # recid: weight if not res_buckets: alldicts['bucket_data'] = {} return alldicts for row in res_buckets: bucket_no = row[0] try: bucket_data = intbitset(row[1]) except IndexError: bucket_data = intbitset([]) alldicts.setdefault('bucket_data', {})[bucket_no] = bucket_data return alldicts def timestamp_verifier(): method_id = self.method_id res = run_sql("""SELECT last_updated from bsrMETHODDATA where id_bsrMETHOD = %s""", (method_id,)) try: update_time_methoddata = str(res[0][0]) except IndexError: update_time_methoddata = '1970-01-01 00:00:00' res = run_sql("""SELECT max(last_updated) from bsrMETHODDATABUCKET where id_bsrMETHOD = %s""", (method_id,)) try: update_time_buckets = str(res[0][0]) except IndexError: update_time_buckets = '1970-01-01 00:00:00' return max(update_time_methoddata, update_time_buckets) DataCacher.__init__(self, cache_filler, timestamp_verifier) def get_sorting_methods(): res = run_sql("""SELECT m.name, m.definition FROM bsrMETHOD m, bsrMETHODDATA md WHERE m.id = md.id_bsrMETHOD""") return dict(res) SORTING_METHODS = get_sorting_methods() CACHE_SORTED_DATA = {} for sorting_method in SORTING_METHODS: CACHE_SORTED_DATA[sorting_method] = None def get_tags_from_sort_fields(sort_fields): """Given a list of sort_fields, return the tags associated with it and also the name of the field that has no tags associated, to be able to display a message to the user.""" tags = [] if not sort_fields: return [], '' for sort_field in sort_fields: if sort_field and (len(sort_field) > 1 and str(sort_field[0:2]).isdigit()): # sort_field starts by two digits, so this is probably a MARC tag already tags.append(sort_field) else: # let us check the 'field' table field_tags = get_field_tags(sort_field) if field_tags: tags.extend(field_tags) else: return [], sort_field return tags, '' def rank_records(req, rank_method_code, rank_limit_relevance, hitset_global, pattern=None, verbose=0, sort_order='d', of='hb', ln=CFG_SITE_LANG, rg=None, jrec=None, field='', sorting_methods=SORTING_METHODS): """Initial entry point for ranking records, acts like a dispatcher. (i) rank_method_code is in bsrMETHOD, bibsort buckets can be used; (ii)rank_method_code is not in bsrMETHOD, use bibrank; """ # Special case: sorting by citations is fast because we store the # ranking dictionary in memory, so we do not use bibsort buckets. if CFG_BIBSORT_ENABLED and sorting_methods and rank_method_code != 'citation': for sort_method in sorting_methods: definition = sorting_methods[sort_method] if definition.startswith('RNK') and \ definition.replace('RNK:', '').strip().lower() == rank_method_code.lower(): solution_recs, solution_scores = \ sort_records_bibsort(req, hitset_global, sort_method, '', sort_order, verbose, of, ln, rg, jrec, 'r') comment = '' if verbose > 0: comment = 'find_citations retlist %s' % [[solution_recs[i], solution_scores[i]] for i in range(len(solution_recs))] return solution_recs, solution_scores, '(', ')', comment if rank_method_code.lower() == 'citation': related_to = [] else: related_to = pattern solution_recs, solution_scores, prefix, suffix, comment = \ rank_records_bibrank(rank_method_code=rank_method_code, rank_limit_relevance=rank_limit_relevance, hitset=hitset_global, related_to=related_to, verbose=verbose, field=field, rg=rg, jrec=jrec) # Solution recs can be None, in case of error or other cases # which should be all be changed to return an empty list. if solution_recs and sort_order == 'd': solution_recs.reverse() solution_scores.reverse() return solution_recs, solution_scores, prefix, suffix, comment def sort_records_latest(recIDs, jrec, rg, sort_order): if sort_order == 'd': recIDs.reverse() return slice_records(recIDs, jrec, rg) def sort_records(req, recIDs, sort_field='', sort_order='d', sort_pattern='', verbose=0, of='hb', ln=CFG_SITE_LANG, rg=None, jrec=None, sorting_methods=SORTING_METHODS): """Initial entry point for sorting records, acts like a dispatcher. (i) sort_field is in the bsrMETHOD, and thus, the BibSort has sorted the data for this field, so we can use the cache; (ii)sort_field is not in bsrMETHOD, and thus, the cache does not contain any information regarding this sorting method""" _ = gettext_set_language(ln) #bibsort does not handle sort_pattern for now, use bibxxx if sort_pattern: return sort_records_bibxxx(req, recIDs, None, sort_field, sort_order, sort_pattern, verbose, of, ln, rg, jrec) #ignore the use of buckets, use old fashion sorting use_sorting_buckets = CFG_BIBSORT_ENABLED and sorting_methods if not sort_field: if use_sorting_buckets: return sort_records_bibsort(req, recIDs, 'latest first', sort_field, sort_order, verbose, of, ln, rg, jrec) else: return sort_records_latest(recIDs, jrec, rg, sort_order) sort_fields = sort_field.split(",") if len(sort_fields) == 1: # we have only one sorting_field, check if it is treated by BibSort for sort_method in sorting_methods: definition = sorting_methods[sort_method] if use_sorting_buckets and \ ((definition.startswith('FIELD') and definition.replace('FIELD:', '').strip().lower() == sort_fields[0].lower()) or sort_method == sort_fields[0]): #use BibSort return sort_records_bibsort(req, recIDs, sort_method, sort_field, sort_order, verbose, of, ln, rg, jrec) #deduce sorting MARC tag out of the 'sort_field' argument: tags, error_field = get_tags_from_sort_fields(sort_fields) if error_field: if use_sorting_buckets: return sort_records_bibsort(req, recIDs, 'latest first', sort_field, sort_order, verbose, of, ln, rg, jrec) else: if of.startswith('h'): write_warning(_("Sorry, %s does not seem to be a valid sort option. The records will not be sorted.") % cgi.escape(error_field), "Error", req=req) return slice_records(recIDs, jrec, rg) elif tags: for sort_method in sorting_methods: definition = sorting_methods[sort_method] if definition.startswith('MARC') \ and definition.replace('MARC:', '').strip().split(',') == tags \ and use_sorting_buckets: #this list of tags have a designated method in BibSort, so use it return sort_records_bibsort(req, recIDs, sort_method, sort_field, sort_order, verbose, of, ln, rg, jrec) #we do not have this sort_field in BibSort tables -> do the old fashion sorting return sort_records_bibxxx(req, recIDs, tags, sort_field, sort_order, sort_pattern, verbose, of, ln, rg, jrec) else: return slice_records(recIDs, jrec, rg) def sort_records_bibsort(req, recIDs, sort_method, sort_field='', sort_order='d', verbose=0, of='hb', ln=CFG_SITE_LANG, rg=None, jrec=1, sort_or_rank='s', sorting_methods=SORTING_METHODS): """This function orders the recIDs list, based on a sorting method(sort_field) using the BibSortDataCacher for speed""" _ = gettext_set_language(ln) if not jrec: jrec = 1 #sanity check if sort_method not in sorting_methods: if sort_or_rank == 'r': return rank_records_bibrank(rank_method_code=sort_method, rank_limit_relevance=0, hitset=recIDs, verbose=verbose) else: return sort_records_bibxxx(req, recIDs, None, sort_field, sort_order, '', verbose, of, ln, rg, jrec) if verbose >= 3 and of.startswith('h'): write_warning("Sorting (using BibSort cache) by method %s (definition %s)." % (cgi.escape(repr(sort_method)), cgi.escape(repr(sorting_methods[sort_method]))), req=req) #we should return sorted records up to irec_max(exclusive) dummy, irec_max = get_interval_for_records_to_sort(len(recIDs), jrec, rg) solution = intbitset() input_recids = intbitset(recIDs) if CACHE_SORTED_DATA[sort_method] is None: CACHE_SORTED_DATA[sort_method] = BibSortDataCacher(sort_method) CACHE_SORTED_DATA[sort_method].recreate_cache_if_needed() sort_cache = CACHE_SORTED_DATA[sort_method].cache bucket_numbers = sort_cache['bucket_data'].keys() #check if all buckets have been constructed if len(bucket_numbers) != CFG_BIBSORT_BUCKETS: if verbose > 3 and of.startswith('h'): write_warning("Not all buckets have been constructed.. switching to old fashion sorting.", req=req) if sort_or_rank == 'r': return rank_records_bibrank(rank_method_code=sort_method, rank_limit_relevance=0, hitset=recIDs, verbose=verbose) else: return sort_records_bibxxx(req, recIDs, None, sort_field, sort_order, '', verbose, of, ln, rg, jrec) if sort_order == 'd': bucket_numbers.reverse() for bucket_no in bucket_numbers: solution.union_update(input_recids & sort_cache['bucket_data'][bucket_no]) if len(solution) >= irec_max: break dict_solution = {} missing_records = intbitset() for recid in solution: try: dict_solution[recid] = sort_cache['data_dict_ordered'][recid] except KeyError: #recid is in buckets, but not in the bsrMETHODDATA, #maybe because the value has been deleted, but the change has not yet been propagated to the buckets missing_records.add(recid) #check if there are recids that are not in any bucket -> to be added at the end/top, ordered by insertion date if len(solution) < irec_max: #some records have not been yet inserted in the bibsort structures #or, some records have no value for the sort_method missing_records += input_recids - solution #the records need to be sorted in reverse order for the print record function #the return statement should be equivalent with the following statements #(these are clearer, but less efficient, since they revert the same list twice) #sorted_solution = (missing_records + sorted(dict_solution, key=dict_solution.__getitem__, reverse=sort_order=='d'))[:irec_max] #sorted_solution.reverse() #return sorted_solution reverse = sort_order == 'd' if sort_method.strip().lower().startswith('latest') and reverse: # If we want to sort the records on their insertion date, add the missing records at the top solution = sorted(dict_solution, key=dict_solution.__getitem__, reverse=True) + sorted(missing_records, reverse=True) else: solution = sorted(missing_records) + sorted(dict_solution, key=dict_solution.__getitem__, reverse=reverse) # Only keep records, we are going to display index_min = jrec - 1 if rg: index_max = index_min + rg solution = solution[index_min:index_max] else: solution = solution[index_min:] if sort_or_rank == 'r': # We need the recids, with their ranking score return solution, [dict_solution.get(record, 0) for record in solution] else: return solution def slice_records(recIDs, jrec, rg): if not jrec: jrec = 1 if rg: recIDs = recIDs[jrec-1:jrec-1+rg] else: recIDs = recIDs[jrec-1:] return recIDs def sort_records_bibxxx(req, recIDs, tags, sort_field='', sort_order='d', sort_pattern='', verbose=0, of='hb', ln=CFG_SITE_LANG, rg=None, jrec=None): """OLD FASHION SORTING WITH NO CACHE, for sort fields that are not run in BibSort Sort records in 'recIDs' list according sort field 'sort_field' in order 'sort_order'. If more than one instance of 'sort_field' is found for a given record, try to choose that that is given by 'sort pattern', for example "sort by report number that starts by CERN-PS". Note that 'sort_field' can be field code like 'author' or MARC tag like '100__a' directly.""" _ = gettext_set_language(ln) ## check arguments: if not sort_field: return slice_records(recIDs, jrec, rg) if len(recIDs) > CFG_WEBSEARCH_NB_RECORDS_TO_SORT: if of.startswith('h'): write_warning(_("Sorry, sorting is allowed on sets of up to %d records only. Using default sort order.") % CFG_WEBSEARCH_NB_RECORDS_TO_SORT, "Warning", req=req) return slice_records(recIDs, jrec, rg) recIDs_dict = {} recIDs_out = [] if not tags: # tags have not been camputed yet sort_fields = sort_field.split(',') tags, error_field = get_tags_from_sort_fields(sort_fields) if error_field: if of.startswith('h'): write_warning(_("Sorry, %s does not seem to be a valid sort option. The records will not be sorted.") % cgi.escape(error_field), "Error", req=req) return slice_records(recIDs, jrec, rg) if verbose >= 3 and of.startswith('h'): write_warning("Sorting by tags %s." % cgi.escape(repr(tags)), req=req) if sort_pattern: write_warning("Sorting preferentially by %s." % cgi.escape(sort_pattern), req=req) ## check if we have sorting tag defined: if tags: # fetch the necessary field values: for recID in recIDs: val = "" # will hold value for recID according to which sort vals = [] # will hold all values found in sorting tag for recID for tag in tags: if CFG_CERN_SITE and tag == '773__c': # CERN hack: journal sorting # 773__c contains page numbers, e.g. 3-13, and we want to sort by 3, and numerically: vals.extend(["%050s" % x.split("-", 1)[0] for x in get_fieldvalues(recID, tag)]) else: vals.extend(get_fieldvalues(recID, tag)) if sort_pattern: # try to pick that tag value that corresponds to sort pattern bingo = 0 for v in vals: if v.lower().startswith(sort_pattern.lower()): # bingo! bingo = 1 val = v break if not bingo: # sort_pattern not present, so add other vals after spaces val = sort_pattern + " " + ''.join(vals) else: # no sort pattern defined, so join them all together val = ''.join(vals) # sort values regardless of accents and case val = translate_to_ascii(val).pop().lower() if val in recIDs_dict: recIDs_dict[val].append(recID) else: recIDs_dict[val] = [recID] # create output array: for k in sorted(recIDs_dict.keys()): recIDs_out.extend(recIDs_dict[k]) # ascending or descending? if sort_order == 'd': recIDs_out.reverse() recIDs = recIDs_out # return only up to the maximum that we need return slice_records(recIDs, jrec, rg) def get_interval_for_records_to_sort(nb_found, jrec=None, rg=None): """calculates in which interval should the sorted records be a value of 'rg=-9999' means to print all records: to be used with care.""" if not jrec: jrec = 1 if not rg: #return all return jrec-1, nb_found if rg == -9999: # print all records rg = nb_found else: rg = abs(rg) if jrec < 1: # sanity checks jrec = 1 if jrec > nb_found: jrec = max(nb_found-rg+1, 1) # will sort records from irec_min to irec_max excluded irec_min = jrec - 1 irec_max = irec_min + rg if irec_min < 0: irec_min = 0 if irec_max > nb_found: irec_max = nb_found return irec_min, irec_max def print_records(req, recIDs, jrec=1, rg=CFG_WEBSEARCH_DEF_RECORDS_IN_GROUPS, format='hb', ot='', ln=CFG_SITE_LANG, relevances=[], relevances_prologue="(", relevances_epilogue="%%)", decompress=zlib.decompress, search_pattern='', print_records_prologue_p=True, print_records_epilogue_p=True, verbose=0, tab='', sf='', so='d', sp='', rm='', em='', nb_found=-1): """ Prints list of records 'recIDs' formatted according to 'format' in groups of 'rg' starting from 'jrec'. Assumes that the input list 'recIDs' is sorted in reverse order, so it counts records from tail to head. A value of 'rg=-9999' means to print all records: to be used with care. Print also list of RELEVANCES for each record (if defined), in between RELEVANCE_PROLOGUE and RELEVANCE_EPILOGUE. Print prologue and/or epilogue specific to 'format' if 'print_records_prologue_p' and/or print_records_epilogue_p' are True. 'sf' is sort field and 'rm' is ranking method that are passed here only for proper linking purposes: e.g. when a certain ranking method or a certain sort field was selected, keep it selected in any dynamic search links that may be printed. """ if em != "" and EM_REPOSITORY["body"] not in em: return # load the right message language _ = gettext_set_language(ln) # sanity checking: if req is None: return # get user_info (for formatting based on user) if isinstance(req, cStringIO.OutputType): user_info = {} else: user_info = collect_user_info(req) if nb_found == -1: nb_found = len(recIDs) if nb_found: if not rg or rg == -9999: # print all records rg = nb_found else: rg = abs(rg) if jrec < 1: # sanity checks jrec = 1 if jrec > nb_found: jrec = max(nb_found-rg+1, 1) # will print records from irec_max to irec_min excluded: irec_max = nb_found - jrec irec_min = nb_found - jrec - rg if irec_min < 0: irec_min = -1 if irec_max >= nb_found: irec_max = nb_found - 1 #req.write("%s:%d-%d" % (recIDs, irec_min, irec_max)) if format.startswith('x'): # print header if needed if print_records_prologue_p: print_records_prologue(req, format) if ot: # asked to print some filtered fields only, so call print_record() on the fly: for recid in recIDs: x = print_record(recid, format, ot=ot, ln=ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm) req.write(x) if x: req.write('\n') else: format_records(recIDs, format, ln=ln, search_pattern=search_pattern, record_separator="\n", user_info=user_info, req=req) # print footer if needed if print_records_epilogue_p: print_records_epilogue(req, format) elif format.startswith('t') or str(format[0:3]).isdigit(): # we are doing plain text output: for recid in recIDs: x = print_record(recid, format, ot, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm) req.write(x) if x: req.write('\n') elif format.startswith('recjson'): # we are doing recjson output: req.write('[') for idx, recid in enumerate(recIDs): if idx > 0: req.write(',') req.write(print_record(recid, format, ot, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm)) req.write(']') elif format == 'excel': create_excel(recIDs=recIDs, req=req, ot=ot, user_info=user_info) else: # we are doing HTML output: if format == 'hp' or format.startswith("hb_") or format.startswith("hd_"): # portfolio and on-the-fly formats: for recid in recIDs: req.write(print_record(recid, format, ot=ot, ln=ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm)) elif format.startswith("hb"): # HTML brief format: display_add_to_basket = True if user_info: if user_info['email'] == 'guest': if CFG_ACCESS_CONTROL_LEVEL_ACCOUNTS > 4: display_add_to_basket = False else: if not user_info['precached_usebaskets']: display_add_to_basket = False if em != "" and EM_REPOSITORY["basket"] not in em: display_add_to_basket = False req.write(websearch_templates.tmpl_record_format_htmlbrief_header(ln=ln)) for irec, recid in enumerate(recIDs): row_number = jrec+irec if relevances and relevances[irec]: relevance = relevances[irec] else: relevance = '' record = print_record(recid, format, ot=ot, ln=ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm) req.write(websearch_templates.tmpl_record_format_htmlbrief_body( ln=ln, recid=recid, row_number=row_number, relevance=relevance, record=record, relevances_prologue=relevances_prologue, relevances_epilogue=relevances_epilogue, display_add_to_basket=display_add_to_basket )) req.write(websearch_templates.tmpl_record_format_htmlbrief_footer( ln=ln, display_add_to_basket=display_add_to_basket)) elif format.startswith("hd"): # HTML detailed format: for recid in recIDs: if record_exists(recid) == -1: write_warning(_("The record has been deleted."), req=req) merged_recid = get_merged_recid(recid) if merged_recid: write_warning(_("The record %d replaces it." % merged_recid), req=req) continue unordered_tabs = get_detailed_page_tabs(get_colID(guess_primary_collection_of_a_record(recid)), recid, ln=ln) ordered_tabs_id = [(tab_id, values['order']) for (tab_id, values) in unordered_tabs.iteritems()] ordered_tabs_id.sort(lambda x, y: cmp(x[1], y[1])) link_ln = '' if ln != CFG_SITE_LANG: link_ln = '?ln=%s' % ln recid_to_display = recid # Record ID used to build the URL. if CFG_WEBSEARCH_USE_ALEPH_SYSNOS: try: recid_to_display = get_fieldvalues(recid, CFG_BIBUPLOAD_EXTERNAL_SYSNO_TAG)[0] except IndexError: # No external sysno is available, keep using # internal recid. pass tabs = [(unordered_tabs[tab_id]['label'], '%s/%s/%s/%s%s' % (CFG_BASE_URL, CFG_SITE_RECORD, recid_to_display, tab_id, link_ln), tab_id == tab, unordered_tabs[tab_id]['enabled']) for (tab_id, dummy_order) in ordered_tabs_id if unordered_tabs[tab_id]['visible'] is True] tabs_counts = get_detailed_page_tabs_counts(recid) citedbynum = tabs_counts['Citations'] references = tabs_counts['References'] discussions = tabs_counts['Discussions'] # load content if tab == 'usage': req.write(webstyle_templates.detailed_record_container_top(recid, tabs, ln, citationnum=citedbynum, referencenum=references, discussionnum=discussions)) r = calculate_reading_similarity_list(recid, "downloads") downloadsimilarity = None downloadhistory = None #if r: # downloadsimilarity = r if CFG_BIBRANK_SHOW_DOWNLOAD_GRAPHS: downloadhistory = create_download_history_graph_and_box(recid, ln) r = calculate_reading_similarity_list(recid, "pageviews") viewsimilarity = None if r: viewsimilarity = r content = websearch_templates.tmpl_detailed_record_statistics(recid, ln, downloadsimilarity=downloadsimilarity, downloadhistory=downloadhistory, viewsimilarity=viewsimilarity) req.write(content) req.write(webstyle_templates.detailed_record_container_bottom(recid, tabs, ln)) elif tab == 'citations': req.write(webstyle_templates.detailed_record_container_top(recid, tabs, ln, citationnum=citedbynum, referencenum=references, discussionnum=discussions)) req.write(websearch_templates.tmpl_detailed_record_citations_prologue(recid, ln)) # Citing citinglist = calculate_cited_by_list(recid) req.write(websearch_templates.tmpl_detailed_record_citations_citing_list(recid, ln, citinglist, sf=sf, so=so, sp=sp, rm=rm)) # Self-cited selfcited = get_self_cited_by(recid) selfcited = rank_by_citations(get_self_cited_by(recid), verbose=verbose) selfcited = reversed(selfcited[0]) # recid is already used, let's use recordid selfcited = [recordid for recordid, dummy in selfcited] req.write(websearch_templates.tmpl_detailed_record_citations_self_cited(recid, ln, selfcited=selfcited, citinglist=citinglist)) # Co-cited s = calculate_co_cited_with_list(recid) cociting = None if s: cociting = s req.write(websearch_templates.tmpl_detailed_record_citations_co_citing(recid, ln, cociting=cociting)) # Citation history, if needed citationhistory = None if citinglist: citationhistory = create_citation_history_graph_and_box(recid, ln) #debug if verbose > 3: write_warning("Citation graph debug: " + str(len(citationhistory)), req=req) req.write(websearch_templates.tmpl_detailed_record_citations_citation_history(ln, citationhistory)) # Citation log entries = get_citers_log(recid) if verbose > 3: write_warning("Citation log debug: %s" % len(entries), req=req) req.write(websearch_templates.tmpl_detailed_record_citations_citation_log(ln, entries)) req.write(websearch_templates.tmpl_detailed_record_citations_epilogue(recid, ln)) req.write(webstyle_templates.detailed_record_container_bottom(recid, tabs, ln)) elif tab == 'references': req.write(webstyle_templates.detailed_record_container_top(recid, tabs, ln, citationnum=citedbynum, referencenum=references, discussionnum=discussions)) req.write(format_record(recid, 'HDREF', ln=ln, user_info=user_info, verbose=verbose, force_2nd_pass=True)) req.write(webstyle_templates.detailed_record_container_bottom(recid, tabs, ln)) elif tab == 'keywords': from invenio.bibclassify_webinterface import main_page main_page(req, recid, tabs, ln, webstyle_templates, websearch_templates) elif tab == 'plots': req.write(webstyle_templates.detailed_record_container_top(recid, tabs, ln)) content = websearch_templates.tmpl_record_plots(recID=recid, ln=ln) req.write(content) req.write(webstyle_templates.detailed_record_container_bottom(recid, tabs, ln)) elif tab == 'data': req.write(webstyle_templates.detailed_record_container_top(recid, tabs, ln, include_jquery=True, include_mathjax=True)) from invenio import hepdatautils from invenio import hepdatadisplayutils data = hepdatautils.retrieve_data_for_record(recid) if data: content = websearch_templates.tmpl_record_hepdata(data, recid, True) else: content = websearch_templates.tmpl_record_no_hepdata() req.write(content) req.write(webstyle_templates.detailed_record_container_bottom(recid, tabs, ln)) else: # Metadata tab req.write(webstyle_templates.detailed_record_container_top( recid, tabs, ln, show_short_rec_p=False, citationnum=citedbynum, referencenum=references, discussionnum=discussions)) creationdate = None modificationdate = None earliestdate = None if record_exists(recid) == 1: creationdate = get_creation_date(recid) modificationdate = get_modification_date(recid) earliestdate = get_earliest_date(recid) content = print_record(recid, format, ot, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm) content = websearch_templates.tmpl_detailed_record_metadata( recID=recid, ln=ln, format=format, creationdate=creationdate, modificationdate=modificationdate, earliestdate=earliestdate, content=content) # display of the next-hit/previous-hit/back-to-search links # on the detailed record pages content += websearch_templates.tmpl_display_back_to_search(req, recid, ln) req.write(content) req.write(webstyle_templates.detailed_record_container_bottom(recid, tabs, ln, creationdate=creationdate, modificationdate=modificationdate, earliestdate=earliestdate, show_short_rec_p=False)) if len(tabs) > 0: # Add the mini box at bottom of the page if CFG_WEBCOMMENT_ALLOW_REVIEWS: from invenio.webcomment import get_mini_reviews reviews = get_mini_reviews(recid=recid, ln=ln) else: reviews = '' actions = format_record(recid, 'HDACT', ln=ln, user_info=user_info, verbose=verbose) files = format_record(recid, 'HDFILE', ln=ln, user_info=user_info, verbose=verbose) req.write(webstyle_templates.detailed_record_mini_panel(recid, ln, format, files=files, reviews=reviews, actions=actions)) else: # Other formats for recid in recIDs: req.write(print_record(recid, format, ot, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm)) else: write_warning(_("Use different search terms."), req=req) def print_records_prologue(req, format, cc=None): """ Print the appropriate prologue for list of records in the given format. """ prologue = "" # no prologue needed for HTML or Text formats if format.startswith('xm'): prologue = websearch_templates.tmpl_xml_marc_prologue() elif format.startswith('xn'): prologue = websearch_templates.tmpl_xml_nlm_prologue() elif format.startswith('xw'): prologue = websearch_templates.tmpl_xml_refworks_prologue() elif format.startswith('xr'): prologue = websearch_templates.tmpl_xml_rss_prologue(cc=cc) elif format.startswith('xe8x'): prologue = websearch_templates.tmpl_xml_endnote_8x_prologue() elif format.startswith('xe'): prologue = websearch_templates.tmpl_xml_endnote_prologue() elif format.startswith('xo'): prologue = websearch_templates.tmpl_xml_mods_prologue() elif format.startswith('xp'): prologue = websearch_templates.tmpl_xml_podcast_prologue(cc=cc) elif format.startswith('x'): prologue = websearch_templates.tmpl_xml_default_prologue() req.write(prologue) def print_records_epilogue(req, format): """ Print the appropriate epilogue for list of records in the given format. """ epilogue = "" # no epilogue needed for HTML or Text formats if format.startswith('xm'): epilogue = websearch_templates.tmpl_xml_marc_epilogue() elif format.startswith('xn'): epilogue = websearch_templates.tmpl_xml_nlm_epilogue() elif format.startswith('xw'): epilogue = websearch_templates.tmpl_xml_refworks_epilogue() elif format.startswith('xr'): epilogue = websearch_templates.tmpl_xml_rss_epilogue() elif format.startswith('xe8x'): epilogue = websearch_templates.tmpl_xml_endnote_8x_epilogue() elif format.startswith('xe'): epilogue = websearch_templates.tmpl_xml_endnote_epilogue() elif format.startswith('xo'): epilogue = websearch_templates.tmpl_xml_mods_epilogue() elif format.startswith('xp'): epilogue = websearch_templates.tmpl_xml_podcast_epilogue() elif format.startswith('x'): epilogue = websearch_templates.tmpl_xml_default_epilogue() req.write(epilogue) def get_record(recid): """Directly the record object corresponding to the recid.""" if CFG_BIBUPLOAD_SERIALIZE_RECORD_STRUCTURE: value = run_sql("SELECT value FROM bibfmt WHERE id_bibrec=%s AND FORMAT='recstruct'", (recid, )) if value: try: val = value[0][0] except IndexError: ### In case it does not exist, let's build it! pass else: return deserialize_via_marshal(val) return create_record(print_record(recid, 'xm'))[0] def print_record(recID, format='hb', ot='', ln=CFG_SITE_LANG, decompress=zlib.decompress, search_pattern=None, user_info=None, verbose=0, sf='', so='d', sp='', rm=''): """ Prints record 'recID' formatted according to 'format'. 'sf' is sort field and 'rm' is ranking method that are passed here only for proper linking purposes: e.g. when a certain ranking method or a certain sort field was selected, keep it selected in any dynamic search links that may be printed. """ if format == 'recstruct': return get_record(recID) #check from user information if the user has the right to see hidden fields/tags in the #records as well can_see_hidden = False if user_info: can_see_hidden = user_info.get('precached_canseehiddenmarctags', False) if format == 'recjson': import json from invenio.bibfield import get_record as get_recjson from invenio.bibfield_utils import SmartDict recjson = get_recjson(recID) record = SmartDict() keys = ot or recjson.keys() for key in keys: if key == 'bibdocs': continue if not can_see_hidden and key in CFG_BIBFORMAT_HIDDEN_RECJSON_FIELDS: continue try: record[key] = recjson.get(key) except IndexError: pass # skipkeys is True to skip e.g. the bibdocs key, which is a non # primitive object. return json.dumps(dict(record), skipkeys=True) _ = gettext_set_language(ln) # The 'attribute this paper' link is shown only if the session states it should and # the record is included in the collections to which bibauthorid is limited. if user_info: display_claim_this_paper = (user_info.get("precached_viewclaimlink", False) and (not BIBAUTHORID_LIMIT_TO_COLLECTIONS or recID in intbitset.union(*[get_collection_reclist(x) for x in BIBAUTHORID_LIMIT_TO_COLLECTIONS]))) else: display_claim_this_paper = False can_edit_record = False if check_user_can_edit_record(user_info, recID): can_edit_record = True out = "" # sanity check: record_exist_p = record_exists(recID) if record_exist_p == 0: # doesn't exist return out # We must still check some special formats, but these # should disappear when BibFormat improves. if not (format.lower().startswith('t') or format.lower().startswith('hm') or str(format[0:3]).isdigit() or ot): # Unspecified format is hd if format == '': format = 'hd' if record_exist_p == -1 and get_output_format_content_type(format) == 'text/html': # HTML output displays a default value for deleted records. # Other format have to deal with it. out += _("The record has been deleted.") # was record deleted-but-merged ? merged_recid = get_merged_recid(recID) if merged_recid: out += ' ' + _("The record %d replaces it." % merged_recid) else: out += call_bibformat(recID, format, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose) # at the end of HTML brief mode, print the "Detailed record" functionality: if format.lower().startswith('hb') and \ format.lower() != 'hb_p': out += websearch_templates.tmpl_print_record_brief_links(ln=ln, recID=recID, sf=sf, so=so, sp=sp, rm=rm, display_claim_link=display_claim_this_paper, display_edit_link=can_edit_record) return out if format == "marcxml" or format == "oai_dc": out += " <record>\n" out += " <header>\n" for oai_id in get_fieldvalues(recID, CFG_OAI_ID_FIELD): out += " <identifier>%s</identifier>\n" % oai_id out += " <datestamp>%s</datestamp>\n" % get_modification_date(recID) out += " </header>\n" out += " <metadata>\n" if format.startswith("xm") or format == "marcxml": # look for detailed format existence: query = "SELECT value FROM bibfmt WHERE id_bibrec=%s AND format=%s" res = run_sql(query, (recID, format), 1) if res and record_exist_p == 1 and not ot: # record 'recID' is formatted in 'format', and we are not # asking for field-filtered output; so print it: out += "%s" % decompress(res[0][0]) elif ot: # field-filtered output was asked for; print only some fields record = get_record(recID) if not can_see_hidden: for tag in CFG_BIBFORMAT_HIDDEN_TAGS: record.pop(tag, None) ot = list(set(ot) - set(CFG_BIBFORMAT_HIDDEN_TAGS)) out += record_xml_output(record, ot) else: # record 'recID' is not formatted in 'format' or we ask # for field-filtered output -- they are not in "bibfmt" # table; so fetch all the data from "bibXXx" tables: if format == "marcxml": out += """ <record xmlns="http://www.loc.gov/MARC21/slim">\n""" out += " <controlfield tag=\"001\">%d</controlfield>\n" % int(recID) elif format.startswith("xm"): out += """ <record>\n""" out += " <controlfield tag=\"001\">%d</controlfield>\n" % int(recID) if record_exist_p == -1: # deleted record, so display only OAI ID and 980: oai_ids = get_fieldvalues(recID, CFG_OAI_ID_FIELD) if oai_ids: out += "<datafield tag=\"%s\" ind1=\"%s\" ind2=\"%s\"><subfield code=\"%s\">%s</subfield></datafield>\n" % \ (CFG_OAI_ID_FIELD[0:3], CFG_OAI_ID_FIELD[3:4], CFG_OAI_ID_FIELD[4:5], CFG_OAI_ID_FIELD[5:6], oai_ids[0]) out += "<datafield tag=\"980\" ind1=\"\" ind2=\"\"><subfield code=\"c\">DELETED</subfield></datafield>\n" else: # controlfields query = "SELECT b.tag,b.value,bb.field_number FROM bib00x AS b, bibrec_bib00x AS bb "\ "WHERE bb.id_bibrec=%s AND b.id=bb.id_bibxxx AND b.tag LIKE '00%%' "\ "ORDER BY bb.field_number, b.tag ASC" res = run_sql(query, (recID, )) for row in res: field, value = row[0], row[1] value = encode_for_xml(value) out += """ <controlfield tag="%s">%s</controlfield>\n""" % \ (encode_for_xml(field[0:3]), value) # datafields i = 1 # Do not process bib00x and bibrec_bib00x, as # they are controlfields. So start at bib01x and # bibrec_bib00x (and set i = 0 at the end of # first loop) for digit1 in range(0, 10): for digit2 in range(i, 10): bx = "bib%d%dx" % (digit1, digit2) bibx = "bibrec_bib%d%dx" % (digit1, digit2) query = "SELECT b.tag,b.value,bb.field_number FROM %s AS b, %s AS bb "\ "WHERE bb.id_bibrec=%%s AND b.id=bb.id_bibxxx AND b.tag LIKE %%s"\ "ORDER BY bb.field_number, b.tag ASC" % (bx, bibx) res = run_sql(query, (recID, str(digit1)+str(digit2)+'%')) field_number_old = -999 field_old = "" for row in res: field, value, field_number = row[0], row[1], row[2] ind1, ind2 = field[3], field[4] if ind1 == "_" or ind1 == "": ind1 = " " if ind2 == "_" or ind2 == "": ind2 = " " # print field tag, unless hidden printme = True if not can_see_hidden: for htag in CFG_BIBFORMAT_HIDDEN_TAGS: ltag = len(htag) samelenfield = field[0:ltag] if samelenfield == htag: printme = False if printme: if field_number != field_number_old or field[:-1] != field_old[:-1]: if field_number_old != -999: out += """ </datafield>\n""" out += """ <datafield tag="%s" ind1="%s" ind2="%s">\n""" % \ (encode_for_xml(field[0:3]), encode_for_xml(ind1), encode_for_xml(ind2)) field_number_old = field_number field_old = field # print subfield value value = encode_for_xml(value) out += """ <subfield code="%s">%s</subfield>\n""" % \ (encode_for_xml(field[-1:]), value) # all fields/subfields printed in this run, so close the tag: if field_number_old != -999: out += """ </datafield>\n""" i = 0 # Next loop should start looking at bib%0 and bibrec_bib00x # we are at the end of printing the record: out += " </record>\n" elif format == "xd" or format == "oai_dc": # XML Dublin Core format, possibly OAI -- select only some bibXXx fields: out += """ <dc xmlns="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://purl.org/dc/elements/1.1/ http://www.openarchives.org/OAI/1.1/dc.xsd">\n""" if record_exist_p == -1: out += "" else: for f in get_fieldvalues(recID, "041__a"): out += " <language>%s</language>\n" % f for f in get_fieldvalues(recID, "100__a"): out += " <creator>%s</creator>\n" % encode_for_xml(f) for f in get_fieldvalues(recID, "700__a"): out += " <creator>%s</creator>\n" % encode_for_xml(f) for f in get_fieldvalues(recID, "245__a"): out += " <title>%s</title>\n" % encode_for_xml(f) for f in get_fieldvalues(recID, "65017a"): out += " <subject>%s</subject>\n" % encode_for_xml(f) for f in get_fieldvalues(recID, "8564_u"): if f.split('.') == 'png': continue out += " <identifier>%s</identifier>\n" % encode_for_xml(f) for f in get_fieldvalues(recID, "520__a"): out += " <description>%s</description>\n" % encode_for_xml(f) out += " <date>%s</date>\n" % get_creation_date(recID) out += " </dc>\n" elif len(format) == 6 and str(format[0:3]).isdigit(): # user has asked to print some fields only if format == "001": out += "<!--%s-begin-->%s<!--%s-end-->\n" % (format, recID, format) else: vals = get_fieldvalues(recID, format) for val in vals: out += "<!--%s-begin-->%s<!--%s-end-->\n" % (format, val, format) elif format.startswith('t'): ## user directly asked for some tags to be displayed only if record_exist_p == -1: out += get_fieldvalues_alephseq_like(recID, ["001", CFG_OAI_ID_FIELD, "980"], can_see_hidden) else: out += get_fieldvalues_alephseq_like(recID, ot, can_see_hidden) elif format == "hm": if record_exist_p == -1: out += "\n<pre style=\"margin: 1em 0px;\">" + cgi.escape(get_fieldvalues_alephseq_like(recID, ["001", CFG_OAI_ID_FIELD, "980"], can_see_hidden)) + "</pre>" else: out += "\n<pre style=\"margin: 1em 0px;\">" + cgi.escape(get_fieldvalues_alephseq_like(recID, ot, can_see_hidden)) + "</pre>" elif format.startswith("h") and ot: ## user directly asked for some tags to be displayed only if record_exist_p == -1: out += "\n<pre>" + get_fieldvalues_alephseq_like(recID, ["001", CFG_OAI_ID_FIELD, "980"], can_see_hidden) + "</pre>" else: out += "\n<pre>" + get_fieldvalues_alephseq_like(recID, ot, can_see_hidden) + "</pre>" elif format == "hd": # HTML detailed format if record_exist_p == -1: out += _("The record has been deleted.") else: # look for detailed format existence: query = "SELECT value FROM bibfmt WHERE id_bibrec=%s AND format=%s" res = run_sql(query, (recID, format), 1) if res: # record 'recID' is formatted in 'format', so print it out += "%s" % decompress(res[0][0]) else: # record 'recID' is not formatted in 'format', so try to call BibFormat on the fly or use default format: out_record_in_format = call_bibformat(recID, format, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose) if out_record_in_format: out += out_record_in_format else: out += websearch_templates.tmpl_print_record_detailed( ln = ln, recID = recID, ) elif format.startswith("hb_") or format.startswith("hd_"): # underscore means that HTML brief/detailed formats should be called on-the-fly; suitable for testing formats if record_exist_p == -1: out += _("The record has been deleted.") else: out += call_bibformat(recID, format, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose) elif format.startswith("hx"): # BibTeX format, called on the fly: if record_exist_p == -1: out += _("The record has been deleted.") else: out += call_bibformat(recID, format, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose) elif format.startswith("hs"): # for citation/download similarity navigation links: if record_exist_p == -1: out += _("The record has been deleted.") else: out += '<a href="%s">' % websearch_templates.build_search_url(recid=recID, ln=ln) # firstly, title: titles = get_fieldvalues(recID, "245__a") if titles: for title in titles: out += "<strong>%s</strong>" % title else: # usual title not found, try conference title: titles = get_fieldvalues(recID, "111__a") if titles: for title in titles: out += "<strong>%s</strong>" % title else: # just print record ID: out += "<strong>%s %d</strong>" % (get_field_i18nname("record ID", ln, False), recID) out += "</a>" # secondly, authors: authors = get_fieldvalues(recID, "100__a") + get_fieldvalues(recID, "700__a") if authors: out += " - %s" % authors[0] if len(authors) > 1: out += " <em>et al</em>" # thirdly publication info: publinfos = get_fieldvalues(recID, "773__s") if not publinfos: publinfos = get_fieldvalues(recID, "909C4s") if not publinfos: publinfos = get_fieldvalues(recID, "037__a") if not publinfos: publinfos = get_fieldvalues(recID, "088__a") if publinfos: out += " - %s" % publinfos[0] else: # fourthly publication year (if not publication info): years = get_fieldvalues(recID, "773__y") if not years: years = get_fieldvalues(recID, "909C4y") if not years: years = get_fieldvalues(recID, "260__c") if years: out += " (%s)" % years[0] else: # HTML brief format by default if record_exist_p == -1: out += _("The record has been deleted.") else: query = "SELECT value FROM bibfmt WHERE id_bibrec=%s AND format=%s" res = run_sql(query, (recID, format)) if res: # record 'recID' is formatted in 'format', so print it out += "%s" % decompress(res[0][0]) else: # record 'recID' is not formatted in 'format', so try to call BibFormat on the fly: or use default format: if CFG_WEBSEARCH_CALL_BIBFORMAT: out_record_in_format = call_bibformat(recID, format, ln, search_pattern=search_pattern, user_info=user_info, verbose=verbose) if out_record_in_format: out += out_record_in_format else: out += websearch_templates.tmpl_print_record_brief( ln = ln, recID = recID, ) else: out += websearch_templates.tmpl_print_record_brief( ln = ln, recID = recID, ) # at the end of HTML brief mode, print the "Detailed record" functionality: if format == 'hp' or format.startswith("hb_") or format.startswith("hd_"): pass # do nothing for portfolio and on-the-fly formats else: out += websearch_templates.tmpl_print_record_brief_links(ln=ln, recID=recID, sf=sf, so=so, sp=sp, rm=rm, display_claim_link=display_claim_this_paper, display_edit_link=can_edit_record) # print record closing tags, if needed: if format == "marcxml" or format == "oai_dc": out += " </metadata>\n" out += " </record>\n" return out def call_bibformat(recID, format="HD", ln=CFG_SITE_LANG, search_pattern=None, user_info=None, verbose=0): """ Calls BibFormat and returns formatted record. BibFormat will decide by itself if old or new BibFormat must be used. """ from invenio.bibformat_utils import get_pdf_snippets keywords = [] if search_pattern is not None: for unit in create_basic_search_units(None, str(search_pattern), None): bsu_o, bsu_p, bsu_f, bsu_m = unit[0], unit[1], unit[2], unit[3] if (bsu_o != '-' and bsu_f in [None, 'fulltext']): if bsu_m == 'a' and bsu_p.startswith('%') and bsu_p.endswith('%'): # remove leading and training `%' representing partial phrase search keywords.append(bsu_p[1:-1]) else: keywords.append(bsu_p) out = format_record(recID, of=format, ln=ln, search_pattern=keywords, user_info=user_info, verbose=verbose) if CFG_WEBSEARCH_FULLTEXT_SNIPPETS and user_info and \ 'fulltext' in user_info['uri'].lower(): # check snippets only if URL contains fulltext # FIXME: make it work for CLI too, via new function arg if keywords: snippets = '' try: snippets = get_pdf_snippets(recID, keywords, user_info) except: register_exception() if snippets: out += snippets return out def log_query(hostname, query_args, uid=-1): """ Log query into the query and user_query tables. Return id_query or None in case of problems. """ id_query = None if uid >= 0: # log the query only if uid is reasonable res = run_sql("SELECT id FROM query WHERE urlargs=%s", (query_args,), 1) try: id_query = res[0][0] except IndexError: id_query = run_sql("INSERT INTO query (type, urlargs) VALUES ('r', %s)", (query_args,)) if id_query: run_sql("INSERT INTO user_query (id_user, id_query, hostname, date) VALUES (%s, %s, %s, %s)", (uid, id_query, hostname, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()))) return id_query def log_query_info(action, p, f, colls, nb_records_found_total=-1): """Write some info to the log file for later analysis.""" try: log = open(CFG_LOGDIR + "/search.log", "a") log.write(time.strftime("%Y%m%d%H%M%S#", time.localtime())) log.write(action+"#") log.write(p+"#") log.write(f+"#") for coll in colls[:-1]: log.write("%s," % coll) log.write("%s#" % colls[-1]) log.write("%d" % nb_records_found_total) log.write("\n") log.close() except: pass return def clean_dictionary(dictionary, list_of_items): """Returns a copy of the dictionary with all the items in the list_of_items as empty strings""" out_dictionary = dictionary.copy() out_dictionary.update((item, '') for item in list_of_items) return out_dictionary ### CALLABLES def perform_request_search(req=None, cc=CFG_SITE_NAME, c=None, p="", f="", rg=None, sf="", so="a", sp="", rm="", of="id", ot="", aas=0, p1="", f1="", m1="", op1="", p2="", f2="", m2="", op2="", p3="", f3="", m3="", sc=0, jrec=0, recid=-1, recidb=-1, sysno="", id=-1, idb=-1, sysnb="", action="", d1="", d1y=0, d1m=0, d1d=0, d2="", d2y=0, d2m=0, d2d=0, dt="", verbose=0, ap=0, ln=CFG_SITE_LANG, ec=None, tab="", wl=0, em=""): """Perform search or browse request, without checking for authentication. Return list of recIDs found, if of=id. Otherwise create web page. The arguments are as follows: req - mod_python Request class instance. cc - current collection (e.g. "ATLAS"). The collection the user started to search/browse from. c - collection list (e.g. ["Theses", "Books"]). The collections user may have selected/deselected when starting to search from 'cc'. p - pattern to search for (e.g. "ellis and muon or kaon"). f - field to search within (e.g. "author"). rg - records in groups of (e.g. "10"). Defines how many hits per collection in the search results page are displayed. (Note that `rg' is ignored in case of `of=id'.) sf - sort field (e.g. "title"). so - sort order ("a"=ascending, "d"=descending). sp - sort pattern (e.g. "CERN-") -- in case there are more values in a sort field, this argument tells which one to prefer rm - ranking method (e.g. "jif"). Defines whether results should be ranked by some known ranking method. of - output format (e.g. "hb"). Usually starting "h" means HTML output (and "hb" for HTML brief, "hd" for HTML detailed), "x" means XML output, "t" means plain text output, "id" means no output at all but to return list of recIDs found, "intbitset" means to return an intbitset representation of the recIDs found (no sorting or ranking will be performed). (Suitable for high-level API.) ot - output only these MARC tags (e.g. "100,700,909C0b"). Useful if only some fields are to be shown in the output, e.g. for library to control some fields. em - output only part of the page. aas - advanced search ("0" means no, "1" means yes). Whether search was called from within the advanced search interface. p1 - first pattern to search for in the advanced search interface. Much like 'p'. f1 - first field to search within in the advanced search interface. Much like 'f'. m1 - first matching type in the advanced search interface. ("a" all of the words, "o" any of the words, "e" exact phrase, "p" partial phrase, "r" regular expression). op1 - first operator, to join the first and the second unit in the advanced search interface. ("a" add, "o" or, "n" not). p2 - second pattern to search for in the advanced search interface. Much like 'p'. f2 - second field to search within in the advanced search interface. Much like 'f'. m2 - second matching type in the advanced search interface. ("a" all of the words, "o" any of the words, "e" exact phrase, "p" partial phrase, "r" regular expression). op2 - second operator, to join the second and the third unit in the advanced search interface. ("a" add, "o" or, "n" not). p3 - third pattern to search for in the advanced search interface. Much like 'p'. f3 - third field to search within in the advanced search interface. Much like 'f'. m3 - third matching type in the advanced search interface. ("a" all of the words, "o" any of the words, "e" exact phrase, "p" partial phrase, "r" regular expression). sc - split by collection ("0" no, "1" yes). Governs whether we want to present the results in a single huge list, or splitted by collection. jrec - jump to record (e.g. "234"). Used for navigation inside the search results. (Note that `jrec' is ignored in case of `of=id'.) recid - display record ID (e.g. "20000"). Do not search/browse but go straight away to the Detailed record page for the given recID. recidb - display record ID bis (e.g. "20010"). If greater than 'recid', then display records from recid to recidb. Useful for example for dumping records from the database for reformatting. sysno - display old system SYS number (e.g. ""). If you migrate to Invenio from another system, and store your old SYS call numbers, you can use them instead of recid if you wish so. id - the same as recid, in case recid is not set. For backwards compatibility. idb - the same as recid, in case recidb is not set. For backwards compatibility. sysnb - the same as sysno, in case sysno is not set. For backwards compatibility. action - action to do. "SEARCH" for searching, "Browse" for browsing. Default is to search. d1 - first datetime in full YYYY-mm-dd HH:MM:DD format (e.g. "1998-08-23 12:34:56"). Useful for search limits on creation/modification date (see 'dt' argument below). Note that 'd1' takes precedence over d1y, d1m, d1d if these are defined. d1y - first date's year (e.g. "1998"). Useful for search limits on creation/modification date. d1m - first date's month (e.g. "08"). Useful for search limits on creation/modification date. d1d - first date's day (e.g. "23"). Useful for search limits on creation/modification date. d2 - second datetime in full YYYY-mm-dd HH:MM:DD format (e.g. "1998-09-02 12:34:56"). Useful for search limits on creation/modification date (see 'dt' argument below). Note that 'd2' takes precedence over d2y, d2m, d2d if these are defined. d2y - second date's year (e.g. "1998"). Useful for search limits on creation/modification date. d2m - second date's month (e.g. "09"). Useful for search limits on creation/modification date. d2d - second date's day (e.g. "02"). Useful for search limits on creation/modification date. dt - first and second date's type (e.g. "c"). Specifies whether to search in creation dates ("c") or in modification dates ("m"). When dt is not set and d1* and d2* are set, the default is "c". verbose - verbose level (0=min, 9=max). Useful to print some internal information on the searching process in case something goes wrong. ap - alternative patterns (0=no, 1=yes). In case no exact match is found, the search engine can try alternative patterns e.g. to replace non-alphanumeric characters by a boolean query. ap defines if this is wanted. ln - language of the search interface (e.g. "en"). Useful for internationalization. ec - list of external search engines to search as well (e.g. "SPIRES HEP"). wl - wildcard limit (ex: 100) the wildcard queries will be limited at 100 results """ kwargs = prs_wash_arguments(req=req, cc=cc, c=c, p=p, f=f, rg=rg, sf=sf, so=so, sp=sp, rm=rm, of=of, ot=ot, aas=aas, p1=p1, f1=f1, m1=m1, op1=op1, p2=p2, f2=f2, m2=m2, op2=op2, p3=p3, f3=f3, m3=m3, sc=sc, jrec=jrec, recid=recid, recidb=recidb, sysno=sysno, id=id, idb=idb, sysnb=sysnb, action=action, d1=d1, d1y=d1y, d1m=d1m, d1d=d1d, d2=d2, d2y=d2y, d2m=d2m, d2d=d2d, dt=dt, verbose=verbose, ap=ap, ln=ln, ec=ec, tab=tab, wl=wl, em=em) return prs_perform_search(kwargs=kwargs, **kwargs) def prs_perform_search(kwargs=None, **dummy): """Internal call which does the search, it is calling standard Invenio; Unless you know what you are doing, don't use this call as an API """ # separately because we can call it independently out = prs_wash_arguments_colls(kwargs=kwargs, **kwargs) if not out: return out if ('Jobs' in kwargs['colls_to_display'] or 'Jobs' in kwargs['colls_to_search']) and kwargs['req']: if kwargs['recid'] and kwargs['recid'] > 0: return redirect_to_url(kwargs['req'], 'https://inspirehep.net/jobs/{0}'.format(kwargs['recid']), apache.HTTP_MOVED_PERMANENTLY) else: return redirect_to_url(kwargs['req'], 'https://inspirehep.net/jobs', apache.HTTP_MOVED_PERMANENTLY) if ('Conferences' in kwargs['colls_to_display'] or 'Conferences' in kwargs['colls_to_search']) and kwargs['req']: if kwargs['recid'] and kwargs['recid'] > 0: return redirect_to_url(kwargs['req'], 'https://inspirehep.net/conferences/{0}'.format(kwargs['recid']), apache.HTTP_MOVED_PERMANENTLY) else: return redirect_to_url(kwargs['req'], 'https://inspirehep.net/conferences', apache.HTTP_MOVED_PERMANENTLY) return prs_search(kwargs=kwargs, **kwargs) def prs_wash_arguments_colls(kwargs=None, of=None, req=None, cc=None, c=None, sc=None, verbose=None, aas=None, ln=None, em="", **dummy): """ Check and wash collection list argument before we start searching. If there are troubles, e.g. a collection is not defined, print warning to the browser. @return: True if collection list is OK, and various False values (empty string, empty list) if there was an error. """ # raise an exception when trying to print out html from the cli if of.startswith("h"): assert req # for every search engine request asking for an HTML output, we # first regenerate cache of collection and field I18N names if # needed; so that later we won't bother checking timestamps for # I18N names at all: if of.startswith("h"): collection_i18nname_cache.recreate_cache_if_needed() field_i18nname_cache.recreate_cache_if_needed() try: (cc, colls_to_display, colls_to_search, hosted_colls, wash_colls_debug) = wash_colls(cc, c, sc, verbose) # which colls to search and to display? kwargs['colls_to_display'] = colls_to_display kwargs['colls_to_search'] = colls_to_search kwargs['hosted_colls'] = hosted_colls kwargs['wash_colls_debug'] = wash_colls_debug except InvenioWebSearchUnknownCollectionError, exc: colname = exc.colname if of.startswith("h"): page_start(req, of, cc, aas, ln, getUid(req), websearch_templates.tmpl_collection_not_found_page_title(colname, ln)) req.write(websearch_templates.tmpl_collection_not_found_page_body(colname, ln)) page_end(req, of, ln, em) return '' elif of == "id": return [] elif of == "intbitset": return intbitset() elif of == "recjson": return [] elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) page_end(req, of, ln, em) return '' else: page_end(req, of, ln, em) return '' return True def prs_wash_arguments(req=None, cc=CFG_SITE_NAME, c=None, p="", f="", rg=CFG_WEBSEARCH_DEF_RECORDS_IN_GROUPS, sf="", so="d", sp="", rm="", of="id", ot="", aas=0, p1="", f1="", m1="", op1="", p2="", f2="", m2="", op2="", p3="", f3="", m3="", sc=0, jrec=0, recid=-1, recidb=-1, sysno="", id=-1, idb=-1, sysnb="", action="", d1="", d1y=0, d1m=0, d1d=0, d2="", d2y=0, d2m=0, d2d=0, dt="", verbose=0, ap=0, ln=CFG_SITE_LANG, ec=None, tab="", uid=None, wl=0, em="", **dummy): """ Sets the (default) values and checks others for the PRS call """ # wash output format: of = wash_output_format(of, verbose=verbose, req=req) # wash all arguments requiring special care p = wash_pattern(p) f = wash_field(f) p1 = wash_pattern(p1) f1 = wash_field(f1) p2 = wash_pattern(p2) f2 = wash_field(f2) p3 = wash_pattern(p3) f3 = wash_field(f3) (d1y, d1m, d1d, d2y, d2m, d2d) = map(int, (d1y, d1m, d1d, d2y, d2m, d2d)) datetext1, datetext2 = wash_dates(d1, d1y, d1m, d1d, d2, d2y, d2m, d2d) # wash ranking method: if not is_method_valid(None, rm): rm = "" # backwards compatibility: id, idb, sysnb -> recid, recidb, sysno (if applicable) if sysnb != "" and sysno == "": sysno = sysnb if id > 0 and recid == -1: recid = id if idb > 0 and recidb == -1: recidb = idb # TODO deduce passed search limiting criterias (if applicable) pl, pl_in_url = "", "" # no limits by default if action != "browse" and req and not isinstance(req, (cStringIO.OutputType, dict)) \ and getattr(req, 'args', None): # we do not want to add options while browsing or while calling via command-line fieldargs = cgi.parse_qs(req.args) for fieldcode in get_fieldcodes(): if fieldcode in fieldargs: for val in fieldargs[fieldcode]: pl += "+%s:\"%s\" " % (fieldcode, val) pl_in_url += "&amp;%s=%s" % (urllib.quote(fieldcode), urllib.quote(val)) # deduce recid from sysno argument (if applicable): if sysno: # ALEPH SYS number was passed, so deduce DB recID for the record: recid = get_mysql_recid_from_aleph_sysno(sysno) if recid is None: recid = 0 # use recid 0 to indicate that this sysno does not exist # deduce collection we are in (if applicable): if recid > 0: referer = None if req: referer = req.headers_in.get('Referer') cc = guess_collection_of_a_record(recid, referer) # deduce user id (if applicable): if uid is None: try: uid = getUid(req) except: uid = 0 _ = gettext_set_language(ln) kwargs = {'req': req, 'cc': cc, 'c': c, 'p': p, 'f': f, 'rg': rg, 'sf': sf, 'so': so, 'sp': sp, 'rm': rm, 'of': of, 'ot': ot, 'aas': aas, 'p1': p1, 'f1': f1, 'm1': m1, 'op1': op1, 'p2': p2, 'f2': f2, 'm2': m2, 'op2': op2, 'p3': p3, 'f3': f3, 'm3': m3, 'sc': sc, 'jrec': jrec, 'recid': recid, 'recidb': recidb, 'sysno': sysno, 'id': id, 'idb': idb, 'sysnb': sysnb, 'action': action, 'd1': d1, 'd1y': d1y, 'd1m': d1m, 'd1d': d1d, 'd2': d2, 'd2y': d2y, 'd2m': d2m, 'd2d': d2d, 'dt': dt, 'verbose': verbose, 'ap': ap, 'ln': ln, 'ec': ec, 'tab': tab, 'wl': wl, 'em': em, 'datetext1': datetext1, 'datetext2': datetext2, 'uid': uid, 'pl': pl, 'pl_in_url': pl_in_url, '_': _, 'selected_external_collections_infos': None, } kwargs.update(**dummy) return kwargs def prs_search(kwargs=None, recid=0, req=None, cc=None, p=None, p1=None, p2=None, p3=None, f=None, ec=None, verbose=None, ln=None, selected_external_collections_infos=None, action=None, rm=None, of=None, em=None, **dummy): """ This function write various bits into the req object as the search proceeds (so that pieces of a page are rendered even before the search ended) """ ## 0 - start output if recid >= 0: # recid can be 0 if deduced from sysno and if such sysno does not exist output = prs_detailed_record(kwargs=kwargs, **kwargs) if output is not None: return output elif action == "browse": ## 2 - browse needed of = 'hb' output = prs_browse(kwargs=kwargs, **kwargs) if output is not None: return output elif rm and p.startswith("recid:"): ## 3-ter - similarity search (or old-style citation search) needed output = prs_search_similar_records(kwargs=kwargs, **kwargs) if output is not None: return output elif p.startswith("cocitedwith:"): #WAS EXPERIMENTAL ## 3-terter - cited by search needed output = prs_search_cocitedwith(kwargs=kwargs, **kwargs) if output is not None: return output else: ## 3 - common search needed output = prs_search_common(kwargs=kwargs, **kwargs) if output is not None: return output # External searches if of.startswith("h"): if not of in ['hcs', 'hcs2']: perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) return page_end(req, of, ln, em) def prs_detailed_record(kwargs=None, req=None, of=None, cc=None, aas=None, ln=None, uid=None, recid=None, recidb=None, p=None, verbose=None, tab=None, sf=None, so=None, sp=None, rm=None, ot=None, _=None, em=None, **dummy): """Formats and prints one record""" ## 1 - detailed record display title, description, keywords = \ websearch_templates.tmpl_record_page_header_content(req, recid, ln) if req is not None and not req.header_only: page_start(req, of, cc, aas, ln, uid, title, description, keywords, recid, tab, em) # Default format is hb but we are in detailed -> change 'of' if of == "hb": of = "hd" if record_exists(recid): if recidb <= recid: # sanity check recidb = recid + 1 if of in ["id", "intbitset"]: result = [recidx for recidx in range(recid, recidb) if record_exists(recidx)] if of == "intbitset": return intbitset(result) else: return result else: print_records(req, range(recid, recidb), -1, -9999, of, ot, ln, search_pattern=p, verbose=verbose, tab=tab, sf=sf, so=so, sp=sp, rm=rm, em=em, nb_found=len(range(recid, recidb))) if req and of.startswith("h"): # register detailed record page view event client_ip_address = str(req.remote_ip) register_page_view_event(recid, uid, client_ip_address) else: # record does not exist if of == "id": return [] elif of == "intbitset": return intbitset() elif of == "recjson": return [] elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) elif of.startswith("h"): if req.header_only: raise apache.SERVER_RETURN(apache.HTTP_NOT_FOUND) else: req.status = apache.HTTP_NOT_FOUND write_warning(_("Requested record does not seem to exist."), req=req) def prs_browse(kwargs=None, req=None, of=None, cc=None, aas=None, ln=None, uid=None, _=None, p=None, p1=None, p2=None, p3=None, colls_to_display=None, f=None, rg=None, sf=None, so=None, sp=None, rm=None, ot=None, f1=None, m1=None, op1=None, f2=None, m2=None, op2=None, f3=None, m3=None, sc=None, pl=None, d1y=None, d1m=None, d1d=None, d2y=None, d2m=None, d2d=None, dt=None, jrec=None, ec=None, action=None, colls_to_search=None, verbose=None, em=None, **dummy): page_start(req, of, cc, aas, ln, uid, _("Browse"), p=create_page_title_search_pattern_info(p, p1, p2, p3), em=em) req.write(create_search_box(cc, colls_to_display, p, f, rg, sf, so, sp, rm, of, ot, aas, ln, p1, f1, m1, op1, p2, f2, m2, op2, p3, f3, m3, sc, pl, d1y, d1m, d1d, d2y, d2m, d2d, dt, jrec, ec, action, em )) write_warning(create_exact_author_browse_help_link(p, p1, p2, p3, f, f1, f2, f3, rm, cc, ln, jrec, rg, aas, action), req=req) try: if aas == 1 or (p1 or p2 or p3): browse_pattern(req, colls_to_search, p1, f1, rg, ln) browse_pattern(req, colls_to_search, p2, f2, rg, ln) browse_pattern(req, colls_to_search, p3, f3, rg, ln) else: browse_pattern(req, colls_to_search, p, f, rg, ln) except KeyboardInterrupt: # This happens usually from the command line # The error handling we want is different raise except: register_exception(req=req, alert_admin=True) if of.startswith("h"): req.write(create_error_box(req, verbose=verbose, ln=ln)) elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) return page_end(req, of, ln, em) def prs_search_similar_records(kwargs=None, req=None, of=None, cc=None, pl_in_url=None, ln=None, uid=None, _=None, p=None, p1=None, p2=None, p3=None, colls_to_display=None, f=None, rg=None, sf=None, so=None, sp=None, rm=None, ot=None, aas=None, f1=None, m1=None, op1=None, f2=None, m2=None, op2=None, f3=None, m3=None, sc=None, pl=None, d1y=None, d1m=None, d1d=None, d2y=None, d2m=None, d2d=None, dt=None, jrec=None, ec=None, action=None, em=None, verbose=None, **dummy): if req and not req.header_only: page_start(req, of, cc, aas, ln, uid, _("Search Results"), p=create_page_title_search_pattern_info(p, p1, p2, p3), em=em) if of.startswith("h"): req.write(create_search_box(cc, colls_to_display, p, f, rg, sf, so, sp, rm, of, ot, aas, ln, p1, f1, m1, op1, p2, f2, m2, op2, p3, f3, m3, sc, pl, d1y, d1m, d1d, d2y, d2m, d2d, dt, jrec, ec, action, em )) recid = p[6:] if record_exists(recid) != 1: # record does not exist if of.startswith("h"): if req.header_only: raise apache.SERVER_RETURN(apache.HTTP_NOT_FOUND) else: req.status = apache.HTTP_NOT_FOUND write_warning(_("Requested record does not seem to exist."), req=req) if of == "id": return [] if of == "intbitset": return intbitset() elif of == "recjson": return [] elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) else: # record well exists, so find similar ones to it t1 = os.times()[4] (results_similar_recIDs, results_similar_relevances, results_similar_relevances_prologue, results_similar_relevances_epilogue, results_similar_comments) = \ rank_records_bibrank(rank_method_code=rm, rank_limit_relevance=0, hitset=get_collection_reclist(cc), related_to=[p], verbose=verbose, field=f, rg=rg, jrec=jrec) if results_similar_recIDs: t2 = os.times()[4] cpu_time = t2 - t1 if of.startswith("h"): req.write(print_search_info(p, f, sf, so, sp, rm, of, ot, cc, len(results_similar_recIDs), jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, em=em)) write_warning(results_similar_comments, req=req) print_records(req, results_similar_recIDs, jrec, rg, of, ot, ln, results_similar_relevances, results_similar_relevances_prologue, results_similar_relevances_epilogue, search_pattern=p, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm, em=em, nb_found=len(results_similar_recIDs)) elif of == "id": return results_similar_recIDs elif of == "intbitset": return intbitset(results_similar_recIDs) elif of.startswith("x"): print_records(req, results_similar_recIDs, jrec, rg, of, ot, ln, results_similar_relevances, results_similar_relevances_prologue, results_similar_relevances_epilogue, search_pattern=p, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm, em=em, nb_found=len(results_similar_recIDs)) else: # rank_records failed and returned some error message to display: if of.startswith("h"): write_warning(results_similar_relevances_prologue, req=req) write_warning(results_similar_relevances_epilogue, req=req) write_warning(results_similar_comments, req=req) if of == "id": return [] elif of == "intbitset": return intbitset() elif of == "recjson": return [] elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) def prs_search_cocitedwith(kwargs=None, req=None, of=None, cc=None, pl_in_url=None, ln=None, uid=None, _=None, p=None, p1=None, p2=None, p3=None, colls_to_display=None, f=None, rg=None, sf=None, so=None, sp=None, rm=None, ot=None, aas=None, f1=None, m1=None, op1=None, f2=None, m2=None, op2=None, f3=None, m3=None, sc=None, pl=None, d1y=None, d1m=None, d1d=None, d2y=None, d2m=None, d2d=None, dt=None, jrec=None, ec=None, action=None, verbose=None, em=None, **dummy): page_start(req, of, cc, aas, ln, uid, _("Search Results"), p=create_page_title_search_pattern_info(p, p1, p2, p3), em=em) if of.startswith("h"): req.write(create_search_box(cc, colls_to_display, p, f, rg, sf, so, sp, rm, of, ot, aas, ln, p1, f1, m1, op1, p2, f2, m2, op2, p3, f3, m3, sc, pl, d1y, d1m, d1d, d2y, d2m, d2d, dt, jrec, ec, action, em )) recID = p[12:] if record_exists(recID) != 1: # record does not exist if of.startswith("h"): req.status = apache.HTTP_NOT_FOUND write_warning(_("Requested record does not seem to exist."), req=req) if of == "id": return [] elif of == "intbitset": return intbitset() elif of == "recjson": return [] elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) else: # record well exists, so find co-cited ones: t1 = os.times()[4] results_cocited_recIDs = [x[0] for x in calculate_co_cited_with_list(int(recID))] if results_cocited_recIDs: t2 = os.times()[4] cpu_time = t2 - t1 if of.startswith("h"): req.write(print_search_info(p, f, sf, so, sp, rm, of, ot, CFG_SITE_NAME, len(results_cocited_recIDs), jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, em=em)) print_records(req, results_cocited_recIDs, jrec, rg, of, ot, ln, search_pattern=p, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm, em=em, nb_found=len(results_cocited_recIDs)) elif of == "id": return results_cocited_recIDs elif of == "intbitset": return intbitset(results_cocited_recIDs) elif of.startswith("x"): print_records(req, results_cocited_recIDs, jrec, rg, of, ot, ln, search_pattern=p, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm, em=em, nb_found=len(results_cocited_recIDs)) else: # cited rank_records failed and returned some error message to display: if of.startswith("h"): write_warning("nothing found", req=req) if of == "id": return [] elif of == "intbitset": return intbitset() elif of == "recjson": return [] elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) def prs_search_hosted_collections(kwargs=None, req=None, of=None, ln=None, _=None, p=None, p1=None, p2=None, p3=None, hosted_colls=None, f=None, colls_to_search=None, hosted_colls_actual_or_potential_results_p=None, verbose=None, **dummy): hosted_colls_results = hosted_colls_timeouts = hosted_colls_true_results = None # search into the hosted collections only if the output format is html or xml if hosted_colls and (of.startswith("h") or of.startswith("x")) and not p.startswith("recid:"): # hosted_colls_results : the hosted collections' searches that did not timeout # hosted_colls_timeouts : the hosted collections' searches that timed out and will be searched later on again (hosted_colls_results, hosted_colls_timeouts) = calculate_hosted_collections_results(req, [p, p1, p2, p3], f, hosted_colls, verbose, ln, CFG_HOSTED_COLLECTION_TIMEOUT_ANTE_SEARCH) # successful searches if hosted_colls_results: hosted_colls_true_results = [] for result in hosted_colls_results: # if the number of results is None or 0 (or False) then just do nothing if result[1] is None or result[1] is False: # these are the searches the returned no or zero results if verbose: write_warning("Hosted collections (perform_search_request): %s returned no results" % result[0][1].name, req=req) else: # these are the searches that actually returned results on time hosted_colls_true_results.append(result) if verbose: write_warning("Hosted collections (perform_search_request): %s returned %s results in %s seconds" % (result[0][1].name, result[1], result[2]), req=req) else: if verbose: write_warning("Hosted collections (perform_search_request): there were no hosted collections results to be printed at this time", req=req) if hosted_colls_timeouts: if verbose: for timeout in hosted_colls_timeouts: write_warning("Hosted collections (perform_search_request): %s timed out and will be searched again later" % timeout[0][1].name, req=req) # we need to know for later use if there were any hosted collections to be searched even if they weren't in the end elif hosted_colls and ((not (of.startswith("h") or of.startswith("x"))) or p.startswith("recid:")): (hosted_colls_results, hosted_colls_timeouts) = (None, None) else: if verbose: write_warning("Hosted collections (perform_search_request): there were no hosted collections to be searched", req=req) ## let's define some useful boolean variables: # True means there are actual or potential hosted collections results to be printed kwargs['hosted_colls_actual_or_potential_results_p'] = not (not hosted_colls or not ((hosted_colls_results and hosted_colls_true_results) or hosted_colls_timeouts)) # True means there are hosted collections timeouts to take care of later # (useful for more accurate printing of results later) kwargs['hosted_colls_potential_results_p'] = not (not hosted_colls or not hosted_colls_timeouts) # True means we only have hosted collections to deal with kwargs['only_hosted_colls_actual_or_potential_results_p'] = not colls_to_search and hosted_colls_actual_or_potential_results_p kwargs['hosted_colls_results'] = hosted_colls_results kwargs['hosted_colls_timeouts'] = hosted_colls_timeouts kwargs['hosted_colls_true_results'] = hosted_colls_true_results def prs_advanced_search(results_in_any_collection, kwargs=None, req=None, of=None, cc=None, ln=None, _=None, p=None, p1=None, p2=None, p3=None, f=None, f1=None, m1=None, op1=None, f2=None, m2=None, op2=None, f3=None, m3=None, ap=None, ec=None, selected_external_collections_infos=None, verbose=None, wl=None, em=None, **dummy): len_results_p1 = 0 len_results_p2 = 0 len_results_p3 = 0 try: results_in_any_collection.union_update(search_pattern_parenthesised(req, p1, f1, m1, ap=ap, of=of, verbose=verbose, ln=ln, wl=wl)) len_results_p1 = len(results_in_any_collection) if len_results_p1 == 0: if of.startswith("h"): perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) return page_end(req, of, ln, em) if p2: results_tmp = search_pattern_parenthesised(req, p2, f2, m2, ap=ap, of=of, verbose=verbose, ln=ln, wl=wl) len_results_p2 = len(results_tmp) if op1 == "a": # add results_in_any_collection.intersection_update(results_tmp) elif op1 == "o": # or results_in_any_collection.union_update(results_tmp) elif op1 == "n": # not results_in_any_collection.difference_update(results_tmp) else: if of.startswith("h"): write_warning("Invalid set operation %s." % cgi.escape(op1), "Error", req=req) if len(results_in_any_collection) == 0: if of.startswith("h"): if len_results_p2: #each individual query returned results, but the boolean operation did not nearestterms = [] nearest_search_args = req.argd.copy() if p1: nearestterms.append((p1, len_results_p1, clean_dictionary(nearest_search_args, ['p2', 'f2', 'm2', 'p3', 'f3', 'm3']))) nearestterms.append((p2, len_results_p2, clean_dictionary(nearest_search_args, ['p1', 'f1', 'm1', 'p3', 'f3', 'm3']))) write_warning(websearch_templates.tmpl_search_no_boolean_hits(ln=ln, nearestterms=nearestterms), req=req) perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) if p3: results_tmp = search_pattern_parenthesised(req, p3, f3, m3, ap=ap, of=of, verbose=verbose, ln=ln, wl=wl) len_results_p3 = len(results_tmp) if op2 == "a": # add results_in_any_collection.intersection_update(results_tmp) elif op2 == "o": # or results_in_any_collection.union_update(results_tmp) elif op2 == "n": # not results_in_any_collection.difference_update(results_tmp) else: if of.startswith("h"): write_warning("Invalid set operation %s." % cgi.escape(op2), "Error", req=req) if len(results_in_any_collection) == 0 and len_results_p3 and of.startswith("h"): #each individual query returned results but the boolean operation did not nearestterms = [] nearest_search_args = req.argd.copy() if p1: nearestterms.append((p1, len_results_p1, clean_dictionary(nearest_search_args, ['p2', 'f2', 'm2', 'p3', 'f3', 'm3']))) if p2: nearestterms.append((p2, len_results_p2, clean_dictionary(nearest_search_args, ['p1', 'f1', 'm1', 'p3', 'f3', 'm3']))) nearestterms.append((p3, len_results_p3, clean_dictionary(nearest_search_args, ['p1', 'f1', 'm1', 'p2', 'f2', 'm2']))) write_warning(websearch_templates.tmpl_search_no_boolean_hits(ln=ln, nearestterms=nearestterms), req=req) except KeyboardInterrupt: # This happens usually from the command line # The error handling we want is different raise except: register_exception(req=req, alert_admin=True) if of.startswith("h"): req.write(create_error_box(req, verbose=verbose, ln=ln)) perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) return page_end(req, of, ln, em) def prs_simple_search(results_in_any_collection, kwargs=None, req=None, of=None, cc=None, ln=None, p=None, f=None, p1=None, p2=None, p3=None, ec=None, verbose=None, selected_external_collections_infos=None, only_hosted_colls_actual_or_potential_results_p=None, query_representation_in_cache=None, ap=None, hosted_colls_actual_or_potential_results_p=None, wl=None, em=None, **dummy): if query_representation_in_cache in search_results_cache.cache: # query is not in the cache already, so reuse it: results_in_any_collection.union_update(search_results_cache.cache[query_representation_in_cache]) if verbose and of.startswith("h"): write_warning("Search stage 0: query found in cache, reusing cached results.", req=req) else: try: # added the display_nearest_terms_box parameter to avoid printing out the "Nearest terms in any collection" # recommendations when there are results only in the hosted collections. Also added the if clause to avoid # searching in case we know we only have actual or potential hosted collections results if not only_hosted_colls_actual_or_potential_results_p: results_in_any_collection.union_update(search_pattern_parenthesised(req, p, f, ap=ap, of=of, verbose=verbose, ln=ln, display_nearest_terms_box=not hosted_colls_actual_or_potential_results_p, wl=wl)) except: register_exception(req=req, alert_admin=True) if of.startswith("h"): req.write(create_error_box(req, verbose=verbose, ln=ln)) perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) return page_end(req, of, ln, em) def prs_intersect_results_with_collrecs(results_final, results_in_any_collection, kwargs=None, colls_to_search=None, req=None, of=None, ln=None, cc=None, p=None, p1=None, p2=None, p3=None, f=None, ec=None, verbose=None, selected_external_collections_infos=None, em=None, **dummy): display_nearest_terms_box=not kwargs['hosted_colls_actual_or_potential_results_p'] try: # added the display_nearest_terms_box parameter to avoid printing out the "Nearest terms in any collection" # recommendations when there results only in the hosted collections. Also added the if clause to avoid # searching in case we know since the last stage that we have no results in any collection if len(results_in_any_collection) != 0: results_final.update(intersect_results_with_collrecs(req, results_in_any_collection, colls_to_search, of, verbose, ln, display_nearest_terms_box=display_nearest_terms_box)) except: register_exception(req=req, alert_admin=True) if of.startswith("h"): req.write(create_error_box(req, verbose=verbose, ln=ln)) perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) return page_end(req, of, ln, em) def prs_store_results_in_cache(query_representation_in_cache, results_in_any_collection, req=None, verbose=None, of=None, **dummy): if CFG_WEBSEARCH_SEARCH_CACHE_SIZE and query_representation_in_cache not in search_results_cache.cache: if len(search_results_cache.cache) > CFG_WEBSEARCH_SEARCH_CACHE_SIZE: search_results_cache.clear() search_results_cache.cache[query_representation_in_cache] = results_in_any_collection if verbose and of.startswith("h"): write_warning(req, "Search stage 3: storing query results in cache.", req=req) def prs_apply_search_limits(results_final, kwargs=None, req=None, of=None, cc=None, ln=None, _=None, p=None, p1=None, p2=None, p3=None, f=None, pl=None, ap=None, dt=None, ec=None, selected_external_collections_infos=None, hosted_colls_actual_or_potential_results_p=None, datetext1=None, datetext2=None, verbose=None, wl=None, em=None, **dummy): if datetext1 != "" and results_final != {}: if verbose and of.startswith("h"): write_warning("Search stage 5: applying time etc limits, from %s until %s..." % (datetext1, datetext2), req=req) try: results_final = intersect_results_with_hitset(req, results_final, search_unit_in_bibrec(datetext1, datetext2, dt), ap, aptext= _("No match within your time limits, " "discarding this condition..."), of=of) except: register_exception(req=req, alert_admin=True) if of.startswith("h"): req.write(create_error_box(req, verbose=verbose, ln=ln)) perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) return page_end(req, of, ln, em) if results_final == {} and not hosted_colls_actual_or_potential_results_p: if of.startswith("h"): perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) #if of.startswith("x"): # # Print empty, but valid XML # print_records_prologue(req, of) # print_records_epilogue(req, of) return page_end(req, of, ln, em) if pl and results_final != {}: pl = wash_pattern(pl) if verbose and of.startswith("h"): write_warning("Search stage 5: applying search pattern limit %s..." % cgi.escape(pl), req=req) try: results_final = intersect_results_with_hitset(req, results_final, search_pattern_parenthesised(req, pl, ap=0, ln=ln, wl=wl), ap, aptext=_("No match within your search limits, " "discarding this condition..."), of=of) except: register_exception(req=req, alert_admin=True) if of.startswith("h"): req.write(create_error_box(req, verbose=verbose, ln=ln)) perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) return page_end(req, of, ln, em) if results_final == {} and not hosted_colls_actual_or_potential_results_p: if of.startswith("h"): perform_external_collection_search_with_em(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, selected_external_collections_infos, em=em) if of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) return page_end(req, of, ln, em) def prs_split_into_collections(kwargs=None, results_final=None, colls_to_search=None, hosted_colls_results=None, cpu_time=0, results_final_nb_total=None, hosted_colls_actual_or_potential_results_p=None, hosted_colls_true_results=None, hosted_colls_timeouts=None, **dummy): results_final_nb_total = 0 results_final_nb = {} # will hold number of records found in each collection # (in simple dict to display overview more easily) for coll in results_final.keys(): results_final_nb[coll] = len(results_final[coll]) #results_final_nb_total += results_final_nb[coll] # Now let us calculate results_final_nb_total more precisely, # in order to get the total number of "distinct" hits across # searched collections; this is useful because a record might # have been attributed to more than one primary collection; so # we have to avoid counting it multiple times. The price to # pay for this accuracy of results_final_nb_total is somewhat # increased CPU time. if len(results_final.keys()) == 1: # only one collection; no need to union them results_final_for_all_selected_colls = results_final.values()[0] results_final_nb_total = results_final_nb.values()[0] else: # okay, some work ahead to union hits across collections: results_final_for_all_selected_colls = intbitset() for coll in results_final.keys(): results_final_for_all_selected_colls.union_update(results_final[coll]) results_final_nb_total = len(results_final_for_all_selected_colls) #if hosted_colls and (of.startswith("h") or of.startswith("x")): if hosted_colls_actual_or_potential_results_p: if hosted_colls_results: for result in hosted_colls_true_results: colls_to_search.append(result[0][1].name) results_final_nb[result[0][1].name] = result[1] results_final_nb_total += result[1] cpu_time += result[2] if hosted_colls_timeouts: for timeout in hosted_colls_timeouts: colls_to_search.append(timeout[1].name) # use -963 as a special number to identify the collections that timed out results_final_nb[timeout[1].name] = -963 kwargs['results_final_nb'] = results_final_nb kwargs['results_final_nb_total'] = results_final_nb_total kwargs['results_final_for_all_selected_colls'] = results_final_for_all_selected_colls kwargs['cpu_time'] = cpu_time #rca TODO: check where the cpu_time is used, this line was missing return (results_final_nb, results_final_nb_total, results_final_for_all_selected_colls) def prs_summarize_records(kwargs=None, req=None, p=None, f=None, aas=None, p1=None, p2=None, p3=None, f1=None, f2=None, f3=None, op1=None, op2=None, ln=None, results_final_for_all_selected_colls=None, of='hcs', **dummy): # feed the current search to be summarized: from invenio.search_engine_summarizer import summarize_records search_p = p search_f = f if not p and (aas == 1 or p1 or p2 or p3): op_d = {'n': ' and not ', 'a': ' and ', 'o': ' or ', '': ''} triples = ziplist([f1, f2, f3], [p1, p2, p3], [op1, op2, '']) triples_len = len(triples) for i in range(triples_len): fi, pi, oi = triples[i] # e.g.: if i < triples_len-1 and not triples[i+1][1]: # if p2 empty triples[i+1][0] = '' # f2 must be too oi = '' # and o1 if ' ' in pi: pi = '"'+pi+'"' if fi: fi = fi + ':' search_p += fi + pi + op_d[oi] search_f = '' summarize_records(results_final_for_all_selected_colls, of, ln, search_p, search_f, req) def prs_print_records(kwargs=None, results_final=None, req=None, of=None, cc=None, pl_in_url=None, ln=None, _=None, p=None, p1=None, p2=None, p3=None, f=None, rg=None, sf=None, so=None, sp=None, rm=None, ot=None, aas=None, f1=None, m1=None, op1=None, f2=None, m2=None, op2=None, f3=None, m3=None, sc=None, d1y=None, d1m=None, d1d=None, d2y=None, d2m=None, d2d=None, dt=None, jrec=None, colls_to_search=None, hosted_colls_actual_or_potential_results_p=None, hosted_colls_results=None, hosted_colls_true_results=None, hosted_colls_timeouts=None, results_final_nb=None, cpu_time=None, verbose=None, em=None, **dummy): if len(colls_to_search) > 1: cpu_time = -1 # we do not want to have search time printed on each collection print_records_prologue(req, of, cc=cc) results_final_colls = [] wlqh_results_overlimit = 0 for coll in colls_to_search: if coll in results_final and len(results_final[coll]): if of.startswith("h"): req.write(print_search_info(p, f, sf, so, sp, rm, of, ot, coll, results_final_nb[coll], jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, em=em)) results_final_recIDs = list(results_final[coll]) results_final_nb_found = len(results_final_recIDs) results_final_relevances = [] results_final_relevances_prologue = "" results_final_relevances_epilogue = "" if rm: # do we have to rank? results_final_recIDs_ranked, results_final_relevances, results_final_relevances_prologue, results_final_relevances_epilogue, results_final_comments = \ rank_records(req, rm, 0, results_final[coll], string.split(p) + string.split(p1) + string.split(p2) + string.split(p3), verbose, so, of, ln, rg, jrec, kwargs['f']) if of.startswith("h"): write_warning(results_final_comments, req=req) if results_final_recIDs_ranked: results_final_recIDs = slice_records(results_final_recIDs_ranked, jrec, rg) results_final_relevances = slice_records(results_final_relevances, jrec, rg) else: # rank_records failed and returned some error message to display: write_warning(results_final_relevances_prologue, req=req) write_warning(results_final_relevances_epilogue, req=req) else: results_final_recIDs = sort_records(req, results_final_recIDs, sf, so, sp, verbose, of, ln, rg, jrec) if len(results_final_recIDs) < CFG_WEBSEARCH_PREV_NEXT_HIT_LIMIT: results_final_colls.append(results_final_recIDs) else: wlqh_results_overlimit = 1 print_records(req, results_final_recIDs, jrec, rg, of, ot, ln, results_final_relevances, results_final_relevances_prologue, results_final_relevances_epilogue, search_pattern=p, print_records_prologue_p=False, print_records_epilogue_p=False, verbose=verbose, sf=sf, so=so, sp=sp, rm=rm, em=em, nb_found=results_final_nb_found) if of.startswith("h"): req.write(print_search_info(p, f, sf, so, sp, rm, of, ot, coll, results_final_nb[coll], jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, 1, em=em)) if req and not isinstance(req, cStringIO.OutputType): # store the last search results page session_param_set(req, 'websearch-last-query', req.unparsed_uri) if wlqh_results_overlimit: results_final_colls = None # store list of results if user wants to display hits # in a single list, or store list of collections of records # if user displays hits split by collections: session_param_set(req, 'websearch-last-query-hits', results_final_colls) #if hosted_colls and (of.startswith("h") or of.startswith("x")): if hosted_colls_actual_or_potential_results_p: if hosted_colls_results: # TODO: add a verbose message here for result in hosted_colls_true_results: if of.startswith("h"): req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, result[0][1].name, results_final_nb[result[0][1].name], jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, em=em)) req.write(print_hosted_results(url_and_engine=result[0], ln=ln, of=of, req=req, limit=rg, em=em)) if of.startswith("h"): req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, result[0][1].name, results_final_nb[result[0][1].name], jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, 1)) if hosted_colls_timeouts: # TODO: add a verbose message here # TODO: check if verbose messages still work when dealing with (re)calculations of timeouts (hosted_colls_timeouts_results, hosted_colls_timeouts_timeouts) = do_calculate_hosted_collections_results(req, ln, None, verbose, None, hosted_colls_timeouts, CFG_HOSTED_COLLECTION_TIMEOUT_POST_SEARCH) if hosted_colls_timeouts_results: for result in hosted_colls_timeouts_results: if result[1] is None or result[1] is False: ## these are the searches the returned no or zero results ## also print a nearest terms box, in case this is the only ## collection being searched and it returns no results? if of.startswith("h"): req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, result[0][1].name, -963, jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time)) req.write(print_hosted_results(url_and_engine=result[0], ln=ln, of=of, req=req, no_records_found=True, limit=rg, em=em)) req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, result[0][1].name, -963, jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, 1)) else: # these are the searches that actually returned results on time if of.startswith("h"): req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, result[0][1].name, result[1], jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time)) req.write(print_hosted_results(url_and_engine=result[0], ln=ln, of=of, req=req, limit=rg, em=em)) if of.startswith("h"): req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, result[0][1].name, result[1], jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, 1)) if hosted_colls_timeouts_timeouts: for timeout in hosted_colls_timeouts_timeouts: if of.startswith("h"): req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, timeout[1].name, -963, jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time)) req.write(print_hosted_results(url_and_engine=timeout[0], ln=ln, of=of, req=req, search_timed_out=True, limit=rg, em=em)) req.write(print_hosted_search_info(p, f, sf, so, sp, rm, of, ot, timeout[1].name, -963, jrec, rg, aas, ln, p1, p2, p3, f1, f2, f3, m1, m2, m3, op1, op2, sc, pl_in_url, d1y, d1m, d1d, d2y, d2m, d2d, dt, cpu_time, 1)) print_records_epilogue(req, of) if f == "author" and of.startswith("h"): req.write(create_similarly_named_authors_link_box(p, ln)) def prs_log_query(kwargs=None, req=None, uid=None, of=None, ln=None, p=None, f=None, colls_to_search=None, results_final_nb_total=None, em=None, **dummy): # log query: try: id_query = log_query(req.remote_host, req.args, uid) if of.startswith("h") and id_query and (em == '' or EM_REPOSITORY["alert"] in em): if not of in ['hcs', 'hcs2']: # display alert/RSS teaser for non-summary formats: user_info = collect_user_info(req) display_email_alert_part = True if user_info: if user_info['email'] == 'guest': if CFG_ACCESS_CONTROL_LEVEL_ACCOUNTS > 4: display_email_alert_part = False else: if not user_info['precached_usealerts']: display_email_alert_part = False req.write(websearch_templates.tmpl_alert_rss_teaser_box_for_query(id_query, ln=ln, display_email_alert_part=display_email_alert_part)) except: # do not log query if req is None (used by CLI interface) pass log_query_info("ss", p, f, colls_to_search, results_final_nb_total) try: loaded_websearch_services is not None except Exception: loaded_websearch_services = get_search_services() def prs_search_common(kwargs=None, req=None, of=None, cc=None, ln=None, uid=None, _=None, p=None, p1=None, p2=None, p3=None, colls_to_display=None, f=None, rg=None, sf=None, so=None, sp=None, rm=None, ot=None, aas=None, f1=None, m1=None, op1=None, f2=None, m2=None, op2=None, f3=None, m3=None, sc=None, pl=None, d1y=None, d1m=None, d1d=None, d2y=None, d2m=None, d2d=None, dt=None, jrec=None, ec=None, action=None, colls_to_search=None, wash_colls_debug=None, verbose=None, wl=None, em=None, **dummy): query_representation_in_cache = repr((p, f, colls_to_search, wl)) page_start(req, of, cc, aas, ln, uid, p=create_page_title_search_pattern_info(p, p1, p2, p3), em=em) if of.startswith("h") and verbose and wash_colls_debug: write_warning("wash_colls debugging info : %s" % wash_colls_debug, req=req) prs_search_hosted_collections(kwargs=kwargs, **kwargs) if of.startswith("h"): req.write(create_search_box(cc, colls_to_display, p, f, rg, sf, so, sp, rm, of, ot, aas, ln, p1, f1, m1, op1, p2, f2, m2, op2, p3, f3, m3, sc, pl, d1y, d1m, d1d, d2y, d2m, d2d, dt, jrec, ec, action, em )) # WebSearch services if jrec <= 1 and \ (em == "" and True or (EM_REPOSITORY["search_services"] in em)): user_info = collect_user_info(req) # display only on first search page, and only if wanted # when 'em' param set. if p: search_units = create_basic_search_units(req, p, f) else: search_units = [] search_service_answers = [search_service.answer(req, user_info, of, cc, colls_to_search, p, f, search_units, ln) \ for search_service in loaded_websearch_services] search_service_answers.sort(reverse=True) nb_answers = 0 best_relevance = None for answer_relevance, answer_html in search_service_answers: nb_answers += 1 if best_relevance is None: best_relevance = answer_relevance if best_relevance <= CFG_WEBSEARCH_SERVICE_MIN_RELEVANCE_TO_DISPLAY: # The answer is not relevant enough if verbose > 8: write_warning("Service relevance too low (%i). Answer would be: %s" % (answer_relevance, answer_html), req=req) break if nb_answers > CFG_WEBSEARCH_SERVICE_MAX_NB_SERVICE_DISPLAY: # We have reached the max number of service to display if verbose > 8: write_warning("Max number of services (%i) reached." % CFG_WEBSEARCH_SERVICE_MAX_NB_SERVICE_DISPLAY, req=req) break if best_relevance - answer_relevance > CFG_WEBSEARCH_SERVICE_MAX_RELEVANCE_DIFFERENCE: # The service gave an answer that is way less good than previous ones. if verbose > 8: write_warning("Service relevance too low (%i) compared to best one (%i). Answer would be: %s" % (answer_relevance, best_relevance, answer_html), req=req) break req.write('<div class="searchservicebox">') req.write(answer_html) if verbose > 8: write_warning("Service relevance: %i" % answer_relevance, req=req) req.write('</div>') if answer_relevance == CFG_WEBSEARCH_SERVICE_MAX_SERVICE_ANSWER_RELEVANCE: # The service assumes it has given the definitive answer if verbose > 8: write_warning("There cannot be a better answer. Leaving", req=req) break t1 = os.times()[4] results_in_any_collection = intbitset() if aas == 1 or (p1 or p2 or p3): ## 3A - advanced search output = prs_advanced_search(results_in_any_collection, kwargs=kwargs, **kwargs) if output is not None: return output else: ## 3B - simple search output = prs_simple_search(results_in_any_collection, kwargs=kwargs, **kwargs) if output is not None: return output if len(results_in_any_collection) == 0 and not kwargs['hosted_colls_actual_or_potential_results_p']: if of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) if of == 'recjson': req.write('[]\n') return None # store this search query results into search results cache if needed: prs_store_results_in_cache(query_representation_in_cache, results_in_any_collection, **kwargs) # search stage 4 and 5: intersection with collection universe and sorting/limiting try: output = prs_intersect_with_colls_and_apply_search_limits(results_in_any_collection, kwargs=kwargs, **kwargs) if output is not None: return output except KeyboardInterrupt: # This happens usually from the command line # The error handling we want is different raise except: # no results to display return None t2 = os.times()[4] cpu_time = t2 - t1 kwargs['cpu_time'] = cpu_time ## search stage 6: display results: return prs_display_results(kwargs=kwargs, **kwargs) def prs_intersect_with_colls_and_apply_search_limits(results_in_any_collection, kwargs=None, req=None, of=None, verbose=None, **dummy): # search stage 4: intersection with collection universe: if verbose and of.startswith("h"): write_warning("Search stage 4: Starting with %s hits." % str(results_in_any_collection), req=req) results_final = {} output = prs_intersect_results_with_collrecs(results_final, results_in_any_collection, kwargs, **kwargs) if output is not None: return output # another external search if we still don't have something if results_final == {} and not kwargs['hosted_colls_actual_or_potential_results_p']: if of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) kwargs['results_final'] = results_final raise Exception # search stage 5: apply search option limits and restrictions: if verbose and of.startswith("h"): write_warning("Search stage 5: Starting with %s hits." % str(results_final), req=req) output = prs_apply_search_limits(results_final, kwargs=kwargs, **kwargs) kwargs['results_final'] = results_final if output is not None: return output def prs_display_results(kwargs=None, results_final=None, req=None, of=None, sf=None, so=None, sp=None, verbose=None, p=None, p1=None, p2=None, p3=None, cc=None, ln=None, _=None, ec=None, colls_to_search=None, rm=None, cpu_time=None, f=None, em=None, jrec=0, rg=None, **dummy ): ## search stage 6: display results: # split result set into collections (results_final_nb, results_final_nb_total, results_final_for_all_selected_colls) = prs_split_into_collections(kwargs=kwargs, **kwargs) # we continue past this point only if there is a hosted collection that has timed out and might offer potential results if results_final_nb_total == 0 and not kwargs['hosted_colls_potential_results_p']: if of.startswith("h"): write_warning("No match found, please enter different search terms.", req=req) elif of.startswith("x"): # Print empty, but valid XML print_records_prologue(req, of) print_records_epilogue(req, of) else: # yes, some hits found: good! # collection list may have changed due to not-exact-match-found policy so check it out: for coll in results_final.keys(): if coll not in colls_to_search: colls_to_search.append(coll) # print results overview: if of == "intbitset": #return the result as an intbitset return results_final_for_all_selected_colls elif of == "id": # we have been asked to return list of recIDs recIDs = list(results_final_for_all_selected_colls) if rm: # do we have to rank? results_final_for_all_colls_rank_records_output = rank_records(req, rm, 0, results_final_for_all_selected_colls, p.split() + p1.split() + p2.split() + p3.split(), verbose, so, of, ln, kwargs['rg'], kwargs['jrec'], kwargs['f']) if results_final_for_all_colls_rank_records_output[0]: recIDs = results_final_for_all_colls_rank_records_output[0] elif sf or (CFG_BIBSORT_ENABLED and SORTING_METHODS): # do we have to sort? recIDs = sort_records(req, recIDs, sf, so, sp, verbose, of, ln) if rg: return recIDs[jrec:jrec+rg] else: return recIDs[jrec:] elif of.startswith("h"): if of not in ['hcs', 'hcs2', 'hcv', 'htcv', 'tlcv']: # added the hosted_colls_potential_results_p parameter to help print out the overview more accurately req.write(print_results_overview(colls_to_search, results_final_nb_total, results_final_nb, cpu_time, ln, ec, hosted_colls_potential_results_p=kwargs['hosted_colls_potential_results_p'], em=em)) kwargs['selected_external_collections_infos'] = print_external_results_overview(req, cc, [p, p1, p2, p3], f, ec, verbose, ln, print_overview=em == "" or EM_REPOSITORY["overview"] in em) # print number of hits found for XML outputs: if of.startswith("x") or of == 'mobb': req.write("<!-- Search-Engine-Total-Number-Of-Results: %s -->\n" % kwargs['results_final_nb_total']) # print records: if of in ['hcs', 'hcs2']: prs_summarize_records(kwargs=kwargs, **kwargs) elif of in ['hcv', 'htcv', 'tlcv'] and CFG_INSPIRE_SITE: from invenio.search_engine_cvifier import cvify_records if CFG_BIBSORT_ENABLED: results_final_for_all_selected_colls = sort_records( req, results_final_for_all_selected_colls, sort_field=sf, sort_order='a', of=of, ln=ln) cvify_records(results_final_for_all_selected_colls, of, req, so) else: prs_print_records(kwargs=kwargs, **kwargs) prs_log_query(kwargs=kwargs, **kwargs) # this is a copy of the prs_display_results with output parts removed, needed for external modules def prs_rank_results(kwargs=None, results_final=None, req=None, colls_to_search=None, sf=None, so=None, sp=None, of=None, rm=None, p=None, p1=None, p2=None, p3=None, verbose=None, **dummy ): ## search stage 6: display results: # split result set into collections dummy_results_final_nb, dummy_results_final_nb_total, results_final_for_all_selected_colls = prs_split_into_collections(kwargs=kwargs, **kwargs) # yes, some hits found: good! # collection list may have changed due to not-exact-match-found policy so check it out: for coll in results_final.keys(): if coll not in colls_to_search: colls_to_search.append(coll) # we have been asked to return list of recIDs recIDs = list(results_final_for_all_selected_colls) if rm: # do we have to rank? results_final_for_all_colls_rank_records_output = rank_records(req, rm, 0, results_final_for_all_selected_colls, p.split() + p1.split() + p2.split() + p3.split(), verbose, so, of, field=kwargs['f']) if results_final_for_all_colls_rank_records_output[0]: recIDs = results_final_for_all_colls_rank_records_output[0] elif sf or (CFG_BIBSORT_ENABLED and SORTING_METHODS): # do we have to sort? recIDs = sort_records(req, recIDs, sf, so, sp, verbose, of) return recIDs def perform_request_cache(req, action="show"): """Manipulates the search engine cache.""" req.content_type = "text/html" req.send_http_header() req.write("<html>") out = "" out += "<h1>Search Cache</h1>" # clear cache if requested: if action == "clear": search_results_cache.clear() req.write(out) # show collection reclist cache: out = "<h3>Collection reclist cache</h3>" out += "- collection table last updated: %s" % get_table_update_time('collection') out += "<br />- reclist cache timestamp: %s" % collection_reclist_cache.timestamp out += "<br />- reclist cache contents:" out += "<blockquote>" for coll in collection_reclist_cache.cache.keys(): if collection_reclist_cache.cache[coll]: out += "%s (%d)<br />" % (coll, len(collection_reclist_cache.cache[coll])) out += "</blockquote>" req.write(out) # show search results cache: out = "<h3>Search Cache</h3>" out += "- search cache usage: %d queries cached (max. ~%d)" % \ (len(search_results_cache.cache), CFG_WEBSEARCH_SEARCH_CACHE_SIZE) if len(search_results_cache.cache): out += "<br />- search cache contents:" out += "<blockquote>" for query, hitset in search_results_cache.cache.items(): out += "<br />%s ... %s" % (query, hitset) out += """<p><a href="%s/search/cache?action=clear">clear search results cache</a>""" % CFG_SITE_URL out += "</blockquote>" req.write(out) # show field i18nname cache: out = "<h3>Field I18N names cache</h3>" out += "- fieldname table last updated: %s" % get_table_update_time('fieldname') out += "<br />- i18nname cache timestamp: %s" % field_i18nname_cache.timestamp out += "<br />- i18nname cache contents:" out += "<blockquote>" for field in field_i18nname_cache.cache.keys(): for ln in field_i18nname_cache.cache[field].keys(): out += "%s, %s = %s<br />" % (field, ln, field_i18nname_cache.cache[field][ln]) out += "</blockquote>" req.write(out) # show collection i18nname cache: out = "<h3>Collection I18N names cache</h3>" out += "- collectionname table last updated: %s" % get_table_update_time('collectionname') out += "<br />- i18nname cache timestamp: %s" % collection_i18nname_cache.timestamp out += "<br />- i18nname cache contents:" out += "<blockquote>" for coll in collection_i18nname_cache.cache.keys(): for ln in collection_i18nname_cache.cache[coll].keys(): out += "%s, %s = %s<br />" % (coll, ln, collection_i18nname_cache.cache[coll][ln]) out += "</blockquote>" req.write(out) req.write("</html>") return "\n" def perform_request_log(req, date=""): """Display search log information for given date.""" req.content_type = "text/html" req.send_http_header() req.write("<html>") req.write("<h1>Search Log</h1>") if date: # case A: display stats for a day yyyymmdd = string.atoi(date) req.write("<p><big><strong>Date: %d</strong></big><p>" % yyyymmdd) req.write("""<table border="1">""") req.write("<tr><td><strong>%s</strong></td><td><strong>%s</strong></td><td><strong>%s</strong></td><td><strong>%s</strong></td><td><strong>%s</strong></td><td><strong>%s</strong></td></tr>" % ("No.", "Time", "Pattern", "Field", "Collection", "Number of Hits")) # read file: p = os.popen("grep ^%d %s/search.log" % (yyyymmdd, CFG_LOGDIR), 'r') lines = p.readlines() p.close() # process lines: i = 0 for line in lines: try: datetime, dummy_aas, p, f, c, nbhits = line.split("#") i += 1 req.write("<tr><td align=\"right\">#%d</td><td>%s:%s:%s</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>" % (i, datetime[8:10], datetime[10:12], datetime[12:], p, f, c, nbhits)) except: pass # ignore eventual wrong log lines req.write("</table>") else: # case B: display summary stats per day yyyymm01 = int(time.strftime("%Y%m01", time.localtime())) yyyymmdd = int(time.strftime("%Y%m%d", time.localtime())) req.write("""<table border="1">""") req.write("<tr><td><strong>%s</strong></td><td><strong>%s</strong></tr>" % ("Day", "Number of Queries")) for day in range(yyyymm01, yyyymmdd + 1): p = os.popen("grep -c ^%d %s/search.log" % (day, CFG_LOGDIR), 'r') for line in p.readlines(): req.write("""<tr><td>%s</td><td align="right"><a href="%s/search/log?date=%d">%s</a></td></tr>""" % (day, CFG_SITE_URL, day, line)) p.close() req.write("</table>") req.write("</html>") return "\n" def get_all_field_values(tag): """ Return all existing values stored for a given tag. @param tag: the full tag, e.g. 909C0b @type tag: string @return: the list of values @rtype: list of strings """ table = 'bib%02dx' % int(tag[:2]) return [row[0] for row in run_sql("SELECT DISTINCT(value) FROM %s WHERE tag=%%s" % table, (tag, ))] def get_most_popular_field_values(recids, tags, exclude_values=None, count_repetitive_values=True, split_by=0): """ Analyze RECIDS and look for TAGS and return most popular values and the frequency with which they occur sorted according to descending frequency. If a value is found in EXCLUDE_VALUES, then do not count it. If COUNT_REPETITIVE_VALUES is True, then we count every occurrence of value in the tags. If False, then we count the value only once regardless of the number of times it may appear in a record. (But, if the same value occurs in another record, we count it, of course.) @return: list of tuples containing tag and its frequency Example: >>> get_most_popular_field_values(range(11,20), '980__a') [('PREPRINT', 10), ('THESIS', 7), ...] >>> get_most_popular_field_values(range(11,20), ('100__a', '700__a')) [('Ellis, J', 10), ('Ellis, N', 7), ...] >>> get_most_popular_field_values(range(11,20), ('100__a', '700__a'), ('Ellis, J')) [('Ellis, N', 7), ...] """ def _get_most_popular_field_values_helper_sorter(val1, val2): """Compare VAL1 and VAL2 according to, firstly, frequency, then secondly, alphabetically.""" compared_via_frequencies = cmp(valuefreqdict[val2], valuefreqdict[val1]) if compared_via_frequencies == 0: return cmp(val1.lower(), val2.lower()) else: return compared_via_frequencies valuefreqdict = {} ## sanity check: if not exclude_values: exclude_values = [] if isinstance(tags, str): tags = (tags,) ## find values to count: vals_to_count = [] displaytmp = {} if count_repetitive_values: # counting technique A: can look up many records at once: (very fast) for tag in tags: vals_to_count.extend(get_fieldvalues(recids, tag, sort=False, split_by=split_by)) else: # counting technique B: must count record-by-record: (slow) for recid in recids: vals_in_rec = [] for tag in tags: for val in get_fieldvalues(recid, tag, False): vals_in_rec.append(val) # do not count repetitive values within this record # (even across various tags, so need to unify again): dtmp = {} for val in vals_in_rec: dtmp[val.lower()] = 1 displaytmp[val.lower()] = val vals_in_rec = dtmp.keys() vals_to_count.extend(vals_in_rec) ## are we to exclude some of found values? for val in vals_to_count: if val not in exclude_values: if val in valuefreqdict: valuefreqdict[val] += 1 else: valuefreqdict[val] = 1 ## sort by descending frequency of values: if not CFG_NUMPY_IMPORTABLE: ## original version out = [] vals = valuefreqdict.keys() vals.sort(_get_most_popular_field_values_helper_sorter) for val in vals: tmpdisplv = '' if val in displaytmp: tmpdisplv = displaytmp[val] else: tmpdisplv = val out.append((tmpdisplv, valuefreqdict[val])) return out else: f = [] # frequencies n = [] # original names ln = [] # lowercased names ## build lists within one iteration for (val, freq) in valuefreqdict.iteritems(): f.append(-1 * freq) if val in displaytmp: n.append(displaytmp[val]) else: n.append(val) ln.append(val.lower()) ## sort by frequency (desc) and then by lowercased name. return [(n[i], -1 * f[i]) for i in numpy.lexsort([ln, f])] def profile(p="", f="", c=CFG_SITE_NAME): """Profile search time.""" import profile as pyprofile import pstats pyprofile.run("perform_request_search(p='%s',f='%s', c='%s')" % (p, f, c), "perform_request_search_profile") p = pstats.Stats("perform_request_search_profile") p.strip_dirs().sort_stats("cumulative").print_stats() return 0 def perform_external_collection_search_with_em(req, current_collection, pattern_list, field, external_collection, verbosity_level=0, lang=CFG_SITE_LANG, selected_external_collections_infos=None, em=""): perform_external_collection_search(req, current_collection, pattern_list, field, external_collection, verbosity_level, lang, selected_external_collections_infos, print_overview=em == "" or EM_REPOSITORY["overview"] in em, print_search_info=em == "" or EM_REPOSITORY["search_info"] in em, print_see_also_box=em == "" or EM_REPOSITORY["see_also_box"] in em, print_body=em == "" or EM_REPOSITORY["body"] in em) def check_user_can_edit_record(req, recid): """ Check if user has authorization to modify a collection the recid belongs to """ record_collections = get_all_collections_of_a_record(recid) if not record_collections: # Check if user has access to all collections auth_code, auth_message = acc_authorize_action(req, 'runbibedit', collection='') if auth_code == 0: return True else: for collection in record_collections: auth_code, auth_message = acc_authorize_action(req, 'runbibedit', collection=collection) if auth_code == 0: return True return False
gpl-2.0
numenta/nupic.research
packages/dendrites/tests/unit/dendritric_layer_test.py
3
36012
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2020, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import unittest import torch from nupic.research.frameworks.dendrites import ( AbsoluteMaxGatingDendriticLayer, AbsoluteMaxGatingDendriticLayer2d, BiasingDendriticLayer, DendriteSegments, GatingDendriticLayer, GatingDendriticLayer2d, ) from nupic.research.frameworks.pytorch.model_utils import count_nonzero_params class DendriteSegmentsTests(unittest.TestCase): def test_forward(self): """Validate shape of forward output.""" dendrite_segments = DendriteSegments( num_units=10, num_segments=20, dim_context=15, sparsity=0.7, bias=True ) dendrite_segments.rezero_weights() batch_size = 8 context = torch.rand(batch_size, dendrite_segments.dim_context) out = dendrite_segments(context) self.assertEqual(out.shape, (8, 10, 20)) def test_sparsity(self): """ Validate that sparsity is enforced per unit per segement. """ sparsity = 9 / 15 dendrite_segments = DendriteSegments( num_units=10, num_segments=20, dim_context=15, sparsity=sparsity, bias=True ) weights = dendrite_segments.weights.data weights[:] = 1 dendrite_segments.rezero_weights() for unit in range(dendrite_segments.num_units): for segment in range(dendrite_segments.num_segments): w = weights[unit, segment, :] num_off = (weights[unit, segment, :] == 0).sum().item() actual_sparsity = num_off / w.numel() self.assertEqual( sparsity, actual_sparsity, f"Sparsity {actual_sparsity} != {sparsity}" f"for unit {unit} and segment {segment}", ) def test_equivalent_forward(self): """ Validate output with respect to an equivalent operation: applying the dendrite segments one-by-one for each unit. """ dendrite_segments = DendriteSegments( num_units=10, num_segments=20, dim_context=15, sparsity=0.7, bias=True ) batch_size = 8 context = torch.rand(batch_size, dendrite_segments.dim_context) out = dendrite_segments(context) # shape batch_size x num_units x num_segments weights = dendrite_segments.weights biases = dendrite_segments.biases for unit in range(dendrite_segments.num_units): unit_weight = weights[unit, ...] unit_bias = biases[unit, ...] expected_out = torch.nn.functional.linear(context, unit_weight, unit_bias) actual_out = out[:, unit, :] same_out = torch.allclose(actual_out, expected_out, atol=1e-7) self.assertTrue( same_out, f"Didn't observe the expected output for unit {unit}: " f"actual_out - expected_out = {actual_out - expected_out}", ) class BiasingDendriticLayerTests(unittest.TestCase): def test_forward_output_shape(self): """Validate shape of forward output.""" # Dendritic weights as a bias. linear = torch.nn.Linear(10, 10) dendrite_layer = BiasingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=True, ) dendrite_layer.rezero_weights() batch_size = 8 input_dim = dendrite_layer.module.weight.shape[1] context_dim = dendrite_layer.segments.weights.shape[2] x = torch.rand(batch_size, input_dim) context = torch.rand(batch_size, context_dim) out = dendrite_layer(x, context) self.assertEqual(out.shape, (8, 10)) def test_forward_output_values(self): """ Test all parts of the forward pass of a biasing dendritic layer from end to end. """ # Dendritic weights as a bias. linear = torch.nn.Linear(4, 4, bias=False) dendrite_layer = BiasingDendriticLayer( module=linear, num_segments=3, dim_context=4, module_sparsity=0.7, dendrite_sparsity=0.7, dendrite_bias=False, ) dendrite_layer.rezero_weights() linear.weight.data[:] = torch.tensor( [ [-0.04, 0.00, 0.00, 0.00], [0.00, 0.00, 0.00, -0.26], [0.00, 0.00, 0.00, -0.13], [0.00, 0.00, 0.00, 0.41], ], requires_grad=True, ) dendrite_layer.segments.weights.data[:] = torch.tensor( [ [ [-0.26, 0.00, 0.00, 0.00], [0.09, 0.00, 0.00, 0.00], [-0.34, 0.00, 0.00, 0.00], ], [ [0.00, 0.00, 0.00, 0.36], [0.00, 0.00, 0.00, -0.32], [0.00, 0.00, 0.00, 0.41], ], [ [0.00, 0.00, 0.00, 0.18], [0.00, 0.00, 0.38, 0.00], [0.00, 0.00, 0.23, 0.00], ], [ [0.00, 0.00, 0.00, 0.23], [-0.30, 0.00, 0.00, 0.00], [0.00, 0.00, -0.24, 0.00], ], ], requires_grad=True, ) # Pseudo input: batch_size=2, input_dim=4 x = torch.tensor([[0.79, 0.36, 0.47, 0.30], [0.55, 0.64, 0.50, 0.50]]) # Pseudo input: batch_size=2, context_dim=4 context = torch.tensor([[0.84, 0.63, 0.67, 0.42], [0.30, 0.07, 0.52, 0.15]]) # Expected dendrite activations: dendrite_layer.segments(context) # This will be the shape batch_size x num_units x num_segments expected_dendrite_activations = torch.tensor( [ [ [-0.2184, 0.0756, -0.2856], [0.1512, -0.1344, 0.1722], [0.0756, 0.2546, 0.1541], [0.0966, -0.2520, -0.1608], ], [ [-0.0780, 0.0270, -0.1020], [0.0540, -0.0480, 0.0615], [0.0270, 0.1976, 0.1196], [0.0345, -0.0900, -0.1248], ], ] ) # Validate dendrite activations. actual_dendrite_activations = dendrite_layer.segments(context) self.assertTrue( expected_dendrite_activations.allclose(actual_dendrite_activations) ) # Validate the biasing term: max per batch per unit biasing_dendrites = torch.tensor( [[0.0756, 0.1722, 0.2546, 0.0966], [0.0270, 0.0615, 0.1976, 0.0345]] ) all_matches = ( expected_dendrite_activations.max(dim=2).values == biasing_dendrites ).all() self.assertTrue(all_matches) # Validate output of dendritic layer. expected_out = linear(x) + biasing_dendrites actual_out = dendrite_layer(x, context) self.assertTrue(expected_out.allclose(actual_out)) def test_apply_biasing_dendrites(self): """ Validate the apply_dendrites function of a biasing dendritic layer. The max of the dendrite_activations should be taken per batch per unit. """ # Dendritic weights as a bias. linear = torch.nn.Linear(10, 10) dendrite_layer = BiasingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=True, ) # pseudo output: batch_size=2, out_features=3 y = torch.tensor([[0.1, -0.1, 0.5], [0.2, 0.3, -0.2]]) # pseudo dendrite_activations: batch_size=2, num_units=3, num_segments=3 dendrite_activations = torch.tensor( [ [[0.43, 1.64, 1.49], [-0.79, 0.53, 1.08], [0.02, 0.04, 0.57]], [[1.79, -0.48, -0.38], [-0.15, 0.76, -1.13], [1.04, -0.58, -0.31]], ] ) # Expected max activation per batch per unit. max_activation = torch.tensor([[1.64, 1.08, 0.57], [1.79, 0.76, 1.04]]) # Expected output: dendrites applied as bias expected_output = y + max_activation actual_output = dendrite_layer.apply_dendrites(y, dendrite_activations) all_matches = (expected_output == actual_output).all() self.assertTrue(all_matches) def test_sparsity(self): """ Ensure both the linear weights and segment weights are rezeroed properly. """ linear_sparsity = 70 / 100 dendrite_sparsity = 13 / 15 linear = torch.nn.Linear(10, 10) dendrite_layer = BiasingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=linear_sparsity, dendrite_sparsity=dendrite_sparsity, dendrite_bias=True, ) linear_weights = linear.weight.data dendrite_weights = dendrite_layer.segments.weights.data linear_weights[:] = 1 dendrite_weights[:] = 1 dendrite_layer.rezero_weights() num_off = (dendrite_weights == 0).sum().item() actual_dendrite_sparsity = num_off / dendrite_weights.numel() self.assertEqual(dendrite_sparsity, actual_dendrite_sparsity) num_off = (linear_weights == 0).sum().item() actual_linear_sparsity = num_off / linear_weights.numel() self.assertEqual(linear_sparsity, actual_linear_sparsity) def test_gating_forward(self): """Validate shape of forward output.""" # Gating dendritic weights. linear = torch.nn.Linear(10, 10) dendrite_layer = GatingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=True, ) dendrite_layer.rezero_weights() batch_size = 8 input_dim = dendrite_layer.module.weight.shape[1] context_dim = dendrite_layer.segments.weights.shape[2] x = torch.rand(batch_size, input_dim) context = torch.rand(batch_size, context_dim) out = dendrite_layer(x, context) self.assertEqual(out.shape, (8, 10)) def test_apply_gating_dendrites(self): """ Validate the apply_dendrites function of a gating dendrite layer. The max of the dendrite_activations should be taken per batch per unit. """ # Dendrite weights as a bias. linear = torch.nn.Linear(10, 10) dendrite_layer = GatingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=True, ) # pseudo output: batch_size=2, out_features=3 y = torch.tensor([[0.73, 0.72, 0.62], [0.26, 0.24, 0.65]]) # pseudo dendrite_activations: batch_size=2, num_units=3, num_segments=2 dendrite_activations = torch.tensor( [ [[-1.15, -0.49], [0.87, -0.58], [-0.36, -0.93]], [[-0.08, -1.00], [-0.71, 0.08], [0.15, 0.40]], ] ) # Expected max activation per batch per unit. max_activation = torch.tensor([[-0.49, 0.87, -0.36], [-0.08, 0.08, 0.40]]) # Expected output: dendrites applied as gate expected_output = y * torch.sigmoid(max_activation) actual_output = dendrite_layer.apply_dendrites(y, dendrite_activations) all_matches = (expected_output == actual_output).all() self.assertTrue(all_matches) class AbsoluteMaxGatingDendriticLayerTests(unittest.TestCase): def test_forward_output_shape(self): """Validate shape of forward output.""" linear = torch.nn.Linear(10, 10) dendrite_layer = AbsoluteMaxGatingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9 ) dendrite_layer.rezero_weights() batch_size = 8 input_dim = dendrite_layer.module.weight.shape[1] context_dim = dendrite_layer.segments.weights.shape[2] x = torch.rand(batch_size, input_dim) context = torch.rand(batch_size, context_dim) out = dendrite_layer(x, context) self.assertEqual(out.shape, (8, 10)) def test_segment_sparsity(self): """Test sparsity of dendritic segments.""" linear = torch.nn.Linear(10, 11) dendrite_layer = AbsoluteMaxGatingDendriticLayer( module=linear, num_segments=10, dim_context=100, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) params, nonzero_params = count_nonzero_params(dendrite_layer.segments) self.assertAlmostEqual(0.1, nonzero_params / params) self.assertEqual(1100, nonzero_params) def test_apply_gating_dendrites(self): """ Validate the outputs of the absolute max gating layer against hand-computed outputs. """ linear = torch.nn.Linear(10, 10) dendrite_layer = AbsoluteMaxGatingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # pseudo output: batch_size=2, out_features=3 y = torch.tensor([[0.1, -0.1, 0.5], [0.2, 0.3, -0.2]]) # pseudo dendrite_activations: batch_size=2, num_units=3, num_segments=3 dendrite_activations = torch.tensor( [ [[0.43, -1.64, 1.49], [-0.79, 0.53, 1.08], [0.02, 0.04, -0.57]], [[1.79, -0.48, -0.38], [-0.15, 0.76, -1.13], [1.04, -0.58, -0.31]], ] ) # Expected absolute max activation per batch per unit absolute_max_activations = torch.tensor([ [-1.64, 1.08, -0.57], [1.79, -1.13, 1.04] ]) # Expected output: dendrites applied as bias expected_output = y * torch.sigmoid(absolute_max_activations) actual_output = dendrite_layer.apply_dendrites(y, dendrite_activations) all_matches = (expected_output == actual_output).all() self.assertTrue(all_matches) def test_gradients(self): """ Validate gradient values to ensure they are flowing through the absolute max operation. Note that this test doesn't actually consider the values of gradients, apart from whether they are zero or non-zero. """ linear = torch.nn.Linear(10, 10) dendrite_layer = AbsoluteMaxGatingDendriticLayer( module=linear, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # pseudo output: batch_size=2, out_features=3 y = torch.tensor([[0.1, -0.1, 0.5], [0.2, 0.3, -0.2]]) # pseudo dendrite_activations: batch_size=2, num_units=3, num_segments=3 dendrite_activations = torch.tensor( [ [[0.43, -1.64, 1.49], [-0.79, 0.53, 1.08], [0.02, 0.04, -0.57]], [[1.79, -0.48, -0.38], [-0.15, 0.76, -1.13], [1.04, -0.58, -0.31]], ], requires_grad=True ) output = dendrite_layer.apply_dendrites(y, dendrite_activations) output.sum().backward() # Expected gradient mask expected_grad_mask = torch.tensor( [ [[0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0]], [[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0]], ] ) actual_grad_mask = 1.0 * (dendrite_activations.grad != 0.0) all_matches = (expected_grad_mask == actual_grad_mask).all() self.assertTrue(all_matches) class GatingDendriticLayer2dTests(unittest.TestCase): def test_forward(self): """ Validate the output values of the output tensor returned by `forward`. """ # Initialize convolutional layer conv_layer = torch.nn.Conv2d( in_channels=2, out_channels=3, kernel_size=2, stride=1, bias=True ) # Initialize dendrite layer dendrite_layer = GatingDendriticLayer2d( module=conv_layer, num_segments=3, dim_context=4, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # Set weights and biases of convolutional layer conv_layer.weight.data[:] = torch.tensor( [ [ [[0.0000, 0.3105], [-0.1523, 0.0000]], [[0.0000, 0.0083], [-0.2167, 0.0483]] ], [ [[0.1621, 0.0000], [-0.3283, 0.0101]], [[-0.1045, 0.0261], [0.0000, 0.0000]] ], [ [[0.0000, -0.0968], [0.0499, 0.0000]], [[0.0850, 0.0000], [0.2646, -0.3485]] ] ], requires_grad=True ) conv_layer.bias.data[:] = torch.tensor( [-0.2027, -0.1821, 0.2152], requires_grad=True ) # Dendrite weights: num_channels=3, num_segments=3, dim_context=4 dendrite_layer.segments.weights.data[:] = torch.tensor([ [ [-0.4933, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.3805, 0.0000], [0.0000, 0.0000, 0.0000, -0.1641] ], [ [0.0000, 0.0000, 0.0000, 0.3555], [0.0000, 0.0000, 0.0000, 0.1892], [0.0000, 0.0000, -0.4274, 0.0000] ], [ [0.0000, 0.0000, 0.0000, 0.0957], [0.0000, 0.0000, -0.0689, 0.0000], [0.0000, 0.0000, 0.0000, -0.3192] ] ]) # Input to dendrite layer: batch_size=2, num_channels=2, width=3, height=3 x = torch.tensor([ [ [ [0.1553, 0.3405, 0.2367], [0.7661, 0.1383, 0.6675], [0.6464, 0.1559, 0.9777] ], [ [0.4114, 0.6362, 0.7020], [0.2617, 0.2275, 0.4238], [0.6374, 0.8270, 0.7528] ] ], [ [ [0.8331, 0.7792, 0.4369], [0.7947, 0.2609, 0.1992], [0.1527, 0.3006, 0.5496] ], [ [0.6811, 0.6871, 0.0148], [0.6084, 0.8351, 0.5382], [0.7421, 0.8639, 0.7444] ] ] ]) # Context input to dendrite layer: batch_size=2, dim_context=4 context_vectors = torch.tensor([ [1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0] ]) # Expected max dendrite activations (pre-sigmoid): # [[0.3805 zero zero] # [ zero zero zero]] # Expected output of convolutional layer: # # batch item 1 (each row corresponds to an output channel) # [[[-0.2541 -0.1733] [-0.3545 -0.1585]] # [[-0.4334 -0.2137] [-0.2900 -0.2137]] # [[ 0.2454 0.1658] [ 0.1368 0.1342]]] # # batch item 2 # [[[-0.1676 -0.2616] [-0.2571 -0.3334]] # [[-0.3586 -0.2108] [-0.1422 -0.3062]] # [[ 0.1073 0.2777] [ 0.1446 0.2511]]] # Overall expected output of dendrite layer: # # batch item 1 (each row corresponds to an output channel) # [[[-0.1509338 -0.10293911] [-0.21057076 -0.094148]] # [[-0.2167 -0.10685 ] [-0.145 -0.10685 ]] # [[ 0.1227 0.0829 ] [ 0.0684 0.0671 ]]] # # batch item 2 # [[[-0.0838 -0.1308] [-0.1285 -0.1667]] # [[-0.1793 -0.1054] [-0.0711 -0.1531]] # [[ 0.0536 0.1389] [ 0.0723 0.1256]]] expected_output = torch.tensor([ [ [[-0.1509338, -0.10293911], [-0.21057076, -0.094148]], [[-0.2167, -0.10685], [-0.145, -0.10685]], [[0.1227, 0.0829], [0.0684, 0.0671]] ], [ [[-0.0838, -0.1308], [-0.1285, -0.1667]], [[-0.1793, -0.1054], [-0.0711, -0.1531]], [[0.0536, 0.1389], [0.0723, 0.1256]] ] ]) actual_output = dendrite_layer(x, context_vectors) self.assertTrue(torch.allclose(expected_output, actual_output, atol=1e-4)) def test_apply_gating_dendrites(self): conv_layer = torch.nn.Conv2d( in_channels=1, out_channels=3, kernel_size=3, stride=1, bias=True ) dendrite_layer = GatingDendriticLayer2d( module=conv_layer, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # pseudo output: batch_size=2, num_channels=3, height=2, width=2 y = torch.tensor([ [ [[0.3, 0.4], [-0.2, 0.1]], [[-0.3, 0.5], [-0.1, 0.1]], [[0.0, 0.1], [0.3, 0.2]] ], [ [[0.1, -0.2], [-0.2, 0.1]], [[0.0, 0.1], [-0.4, -0.1]], [[-0.3, 0.0], [0.2, 0.4]] ], ]) # pseudo dendrite_activations: batch_size=2, num_channels=3, num_segments=3 dendrite_activations = torch.tensor( [ [[0.4, 0.9, -0.1], [-0.8, 0.7, 0.0], [0.6, -0.6, -0.7]], [[0.2, 0.8, 0.8], [-0.1, -0.4, -0.5], [0.0, 0.0, 0.0]], ] ) # Expected max dendrite activations: # [[0.9 0.7 0.6] # [0.8 -0.1 0.0]] # Expected output based on `dendrite_activations` expected_output = torch.tensor([ [ [[0.2133, 0.2844], [-0.1422, 0.0711]], [[-0.2005, 0.3341], [-0.0668, 0.0668]], [[0.0, 0.0646], [0.1937, 0.1291]] ], [ [[0.0690, -0.1380], [-0.1380, 0.0690]], [[0.0, 0.0475], [-0.1900, -0.0475]], [[-0.15, 0.0], [0.1, 0.2]] ], ]) actual_output = dendrite_layer.apply_dendrites(y, dendrite_activations) all_matches = torch.allclose(expected_output, actual_output, atol=1e-4) self.assertTrue(all_matches) def test_gradients(self): """ Ensure dendrite gradients are flowing through the layer `GatingDendriticLayer2d`. Note that this test doesn't actually consider the values of gradients, apart from whether they are zero or non-zero. """ conv_layer = torch.nn.Conv2d( in_channels=2, out_channels=3, kernel_size=2, stride=1, bias=True ) dendrite_layer = GatingDendriticLayer2d( module=conv_layer, num_segments=3, dim_context=4, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # Dendrite weights: num_channels=3, num_segments=3, dim_context=4 dendrite_layer.segments.weights.data[:] = torch.tensor([ [ [-0.4933, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.3805, 0.0000], [0.0000, 0.0000, 0.0000, -0.1641] ], [ [0.0000, 0.0000, 0.0000, 0.3555], [0.0000, 0.0000, 0.0000, 0.1892], [0.0000, 0.0000, -0.4274, 0.0000] ], [ [0.0000, 0.0000, 0.0000, 0.0957], [0.0000, 0.0000, -0.0689, 0.0000], [0.0000, 0.0000, 0.0000, -0.3192] ] ]) # Input to dendrite layer: batch_size=1, num_channels=2, width=3, height=3 x = torch.randn((1, 2, 3, 3)) # Context input to dendrite layer: batch_size=1, dim_context=4 context_vectors = torch.tensor([[1.0, 0.0, 1.0, 0.0]]) # Expected dendrite activations: # # batch item 1 (each row corresponds to an output channel) # [[-0.4933 0.3805 zero] # [ zero zero -0.4274] # [ zero -0.0689 zero]] # Expected dendrite gradient mask # # batch item 1 # [[0 1 0] # [1 0 0] # [1 0 0]] output = dendrite_layer(x, context_vectors) output.sum().backward() # Expected gradient mask expected_grad_mask = torch.tensor([ [[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]] ]) actual_grad_mask = 1.0 * (dendrite_layer.segments.weights.grad != 0.0) all_matches = (expected_grad_mask == actual_grad_mask).all() self.assertTrue(all_matches) class AbsoluteMaxGatingDendriticLayer2dTests(unittest.TestCase): def test_forward(self): """ Validate the output values of the output tensor returned by `forward`. """ # Initialize convolutional layer conv_layer = torch.nn.Conv2d( in_channels=2, out_channels=3, kernel_size=2, stride=1, bias=True ) # Initialize dendrite layer dendrite_layer = AbsoluteMaxGatingDendriticLayer2d( module=conv_layer, num_segments=3, dim_context=4, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # Set weights and biases of convolutional layer conv_layer.weight.data[:] = torch.tensor( [ [ [[0.0000, 0.3105], [-0.1523, 0.0000]], [[0.0000, 0.0083], [-0.2167, 0.0483]] ], [ [[0.1621, 0.0000], [-0.3283, 0.0101]], [[-0.1045, 0.0261], [0.0000, 0.0000]] ], [ [[0.0000, -0.0968], [0.0499, 0.0000]], [[0.0850, 0.0000], [0.2646, -0.3485]] ] ], requires_grad=True ) conv_layer.bias.data[:] = torch.tensor( [-0.2027, -0.1821, 0.2152], requires_grad=True ) # Dendrite weights: num_channels=3, num_segments=3, dim_context=4 dendrite_layer.segments.weights.data[:] = torch.tensor([ [ [-0.4933, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.3805, 0.0000], [0.0000, 0.0000, 0.0000, -0.1641] ], [ [0.0000, 0.0000, 0.0000, 0.3555], [0.0000, 0.0000, 0.0000, 0.1892], [0.0000, 0.0000, -0.4274, 0.0000] ], [ [0.0000, 0.0000, 0.0000, 0.0957], [0.0000, 0.0000, -0.0689, 0.0000], [0.0000, 0.0000, 0.0000, -0.3192] ] ]) # Input to dendrite layer: batch_size=2, num_channels=2, width=3, height=3 x = torch.tensor([ [ [ [0.1553, 0.3405, 0.2367], [0.7661, 0.1383, 0.6675], [0.6464, 0.1559, 0.9777] ], [ [0.4114, 0.6362, 0.7020], [0.2617, 0.2275, 0.4238], [0.6374, 0.8270, 0.7528] ] ], [ [ [0.8331, 0.7792, 0.4369], [0.7947, 0.2609, 0.1992], [0.1527, 0.3006, 0.5496] ], [ [0.6811, 0.6871, 0.0148], [0.6084, 0.8351, 0.5382], [0.7421, 0.8639, 0.7444] ] ] ]) # Context input to dendrite layer: batch_size=2, dim_context=4 context_vectors = torch.tensor([ [1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0] ]) # Expected absolute max dendrite activations (pre-sigmoid): # [[-0.4933 -0.4274 -0.0689] # [ zero zero zero]] # Expected output of convolutional layer: # # batch item 1 (each row corresponds to an output channel) # [[[-0.2541 -0.1733] [-0.3545 -0.1585]] # [[-0.4334 -0.2137] [-0.2900 -0.2137]] # [[ 0.2454 0.1658] [ 0.1368 0.1342]]] # # batch item 2 # [[[-0.1676 -0.2616] [-0.2571 -0.3334]] # [[-0.3586 -0.2108] [-0.1422 -0.3062]] # [[ 0.1073 0.2777] [ 0.1446 0.2511]]] # Overall expected output of dendrite layer: # # batch item 1 (each row corresponds to an output channel) # [[[-0.0963335 -0.06570089] [-0.13439679 -0.06008996]] # [[-0.17108351 -0.08435751] [-0.11447673 -0.08435751]] # [[ 0.11847466 0.08004522] [ 0.06604455 0.06478932]]] # # batch item 2 # [[[-0.0838 -0.1308] [-0.1285 -0.1667]] # [[-0.1793 -0.1054] [-0.0711 -0.1531]] # [[ 0.0536 0.1389] [ 0.0723 0.1256]]] expected_output = torch.tensor([ [ [[-0.0963335, -0.06570089], [-0.13439679, -0.06008996]], [[-0.17108351, -0.08435751], [-0.11447673, -0.08435751]], [[0.11847466, 0.08004522], [0.06604455, 0.06478932]] ], [ [[-0.0838, -0.1308], [-0.1285, -0.1667]], [[-0.1793, -0.1054], [-0.0711, -0.1531]], [[0.0536, 0.1389], [0.0723, 0.1256]] ] ]) actual_output = dendrite_layer(x, context_vectors) self.assertTrue(torch.allclose(expected_output, actual_output, atol=1e-4)) def test_apply_gating_dendrites(self): conv_layer = torch.nn.Conv2d( in_channels=1, out_channels=3, kernel_size=3, stride=1, bias=True ) dendrite_layer = AbsoluteMaxGatingDendriticLayer2d( module=conv_layer, num_segments=20, dim_context=15, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # pseudo output: batch_size=2, num_channels=3, height=2, width=2 y = torch.tensor([ [ [[0.3, 0.4], [-0.2, 0.1]], [[-0.3, 0.5], [-0.1, 0.1]], [[0.0, 0.1], [0.3, 0.2]] ], [ [[0.1, -0.2], [-0.2, 0.1]], [[0.0, 0.1], [-0.4, -0.1]], [[-0.3, 0.0], [0.2, 0.4]] ], ]) # pseudo dendrite_activations: batch_size=2, num_channels=3, num_segments=3 dendrite_activations = torch.tensor( [ [[0.4, 0.9, -0.1], [-0.8, 0.7, 0.0], [0.6, -0.6, -0.7]], [[0.2, 0.8, 0.8], [-0.1, -0.4, 0.5], [0.0, 0.0, 0.0]], ] ) # Expected absolute max dendrite activations (pre-sigmoid): # [[0.9 -0.8 -0.7] # [0.8 0.5 0.0]] # Expected output based on `dendrite_activations` expected_output = torch.tensor([ [ [[0.2133, 0.2844], [-0.1422, 0.0711]], [[-0.093, 0.155], [-0.031, 0.031]], [[0.0, 0.0332], [0.0995, 0.0664]] ], [ [[0.069, -0.138], [-0.138, 0.069]], [[0.0, 0.0622], [-0.249, -0.0622]], [[-0.15, 0.0], [0.1, 0.2]] ], ]) actual_output = dendrite_layer.apply_dendrites(y, dendrite_activations) all_matches = torch.allclose(expected_output, actual_output, atol=1e-4) self.assertTrue(all_matches) def test_gradients(self): """ Ensure dendrite gradients are flowing through the layer `AbsoluteMaxGatingDendriticLayer2d`. Note that this test doesn't actually consider the values of gradients, apart from whether they are zero or non-zero. """ conv_layer = torch.nn.Conv2d( in_channels=2, out_channels=3, kernel_size=2, stride=1, bias=True ) dendrite_layer = AbsoluteMaxGatingDendriticLayer2d( module=conv_layer, num_segments=3, dim_context=4, module_sparsity=0.7, dendrite_sparsity=0.9, dendrite_bias=False, ) # Dendrite weights: num_channels=3, num_segments=3, dim_context=4 dendrite_layer.segments.weights.data[:] = torch.tensor([ [ [-0.4933, 0.0000, 0.0000, 0.0000], [0.0000, 0.0000, 0.3805, 0.0000], [0.0000, 0.0000, 0.0000, -0.1641] ], [ [0.0000, 0.0000, 0.0000, 0.3555], [0.0000, 0.0000, 0.0000, 0.1892], [0.0000, 0.0000, -0.4274, 0.0000] ], [ [0.0000, 0.0000, 0.0000, 0.0957], [0.0000, 0.0000, -0.0689, 0.0000], [0.0000, 0.0000, 0.0000, -0.3192] ] ]) # Input to dendrite layer: batch_size=1, num_channels=2, width=3, height=3 x = torch.randn((1, 2, 3, 3)) # Context input to dendrite layer: batch_size=1, dim_context=4 context_vectors = torch.tensor([[1.0, 0.0, 1.0, 0.0]]) # Expected dendrite activations: # # batch item 1 (each row corresponds to an output channel) # [[-0.4933 0.3805 zero] # [ zero zero -0.4274] # [ zero -0.0689 zero]] # Expected dendrite gradient mask # # batch item 1 # [[1 0 0] # [0 0 1] # [0 1 0]] output = dendrite_layer(x, context_vectors) output.sum().backward() # Expected gradient mask expected_grad_mask = torch.tensor([ [[1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0]], [[0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0]] ]) actual_grad_mask = 1.0 * (dendrite_layer.segments.weights.grad != 0.0) all_matches = (expected_grad_mask == actual_grad_mask).all() self.assertTrue(all_matches) if __name__ == "__main__": unittest.main(verbosity=2)
agpl-3.0
KenLauLab/pCreode
pcreode/pcreode.py
1
23408
# p-Creode algorithm maps cell developmental trajectories # Copyright (C) 2017 Charles A Herring # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. import matplotlib.pyplot as _plt import pandas as _pd import igraph as _igraph import numpy as np from sklearn.decomposition import PCA as _PCA from sklearn.metrics import pairwise_distances as _pairwise_distances from sklearn import preprocessing as _preprocessing import os as _os from igraph import * from .functions import * import matplotlib from IPython.display import display, Image ################################################# class PCA( object): def __init__( self, data): """ Container class for single cell data :param data: DataFrame of cells with X proteins representing expression """ if not ( isinstance( data, _pd.DataFrame)): raise TypeError( 'data must be of pandas DataFrame') self._data = data.values self._protein_list = data.columns self._cell_count = data.shape[0] self._protein_count = data.shape[1] #print( 'Cell count = {0}, Gene/protein count = {1}'.format( data.shape[0],data.shape[1])) def get_pca( self): #gets a PCA of the data the object was initialized with """ Principal component analysis of data """ pca = _PCA() self.pca = pca.fit_transform( self._data) self.pca_explained_var = pca.explained_variance_ratio_ * 100 #output a percent of the variance explained within the object defined here return def pca_plot_explained_var( self, figsize=(6,6), xlim=(0,25)): """ Plot the variance explained by different principal components :param figsize: size of plot to return """ if self.pca_explained_var is None: raise RuntimeError('Please run get_pca() before plotting') fig = _plt.figure( figsize=figsize) ax = fig.add_subplot(111) ax.set_xlabel( 'PC#') ax.set_ylabel( 'Explained Var') ax.set_xlim( xlim) ax.plot( range( len( self.pca_explained_var)), self.pca_explained_var, '-o') # return def pca_set_components( self, n_components): """ Set principal component analysis to desired set of components :param n_components: Number of components to keep for further analysis :return: All data points with selected PCA components """ if self.pca_explained_var is None: raise RuntimeError('Please run get_pca() before selecting components') return( self.pca[:,:n_components]) ################################################# class Density( object): def __init__( self, preprocessed_data, metric='euclidean'): """ Container class for generating density file used to downsample data :param preprocessed_data: numpy array of preprocessed data :param metic: distance metric used by sklearn """ if not ( isinstance( preprocessed_data, np.ndarray)): raise TypeError( 'preprocessed_data must be numpy array') if ( ~np.in1d( metric, ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'])): raise TypeError( 'metric must be one of the following cityblock, cosine, euclidean, l1, l2, or manhattan') self._data = preprocessed_data self._n_pts = preprocessed_data.shape[0] self._n_components = preprocessed_data.shape[1] self._metric = metric def nearest_neighbor_hist( self, n_rand_pts=5000, n_bins=200, figsize=(8,6), metric='euclidean', mute=False): """ Plots a histogram of distance to nearest neighbor for select number of random points and returns a best guess for the radius used for density calculations :param n_rand_pts: Number of random pts to use to generate histogram :patam n_bins: Number of bins used to generate histogram :param figsize: size of plot to return :param mute: boolean operator to suppress print statements :return: Histograom of distances to nearest neighbors """ # Save sys.stdout to return print output if muted old_stdout = sys.stdout # Mute print statements if True if( mute==True): sys.stdout = open( os.devnull, 'w') if ( n_rand_pts>self._n_pts): n_rand_pts=self._n_pts r_inds = np.random.choice( range( self._n_pts), size=n_rand_pts) dists = _pairwise_distances( self._data[r_inds,:], self._data, metric=self._metric) dists_sort = np.sort( dists, axis=1) # plotting configurations fig = _plt.figure( figsize=figsize) ax = fig.add_subplot(111) ax.set_xlabel( 'Distance to Nearest Neighbor') ax.set_ylabel( 'Number of Datapoints') ax.hist( dists_sort[:,1], bins=n_bins) # plot line for best guess starting radius in downsampling best_guess = np.median( np.sort( dists_sort[:,1])[-20:]) ax.axvline( best_guess, color='r') print( "best guess starting radius = {}".format( best_guess)) # return to normal treatment of print statements sys.stdout = old_stdout return( best_guess) def radius_best_guess( self, n_rand_pts=5000, metric='euclidean'): """ Returns a best guess for the radius based on a select number of random points :param n_rand_pts: Number of random pts to use to generate histogram :return: float numeric for best guess of radius """ if ( n_rand_pts>self._n_pts): n_rand_pts=self._n_pts r_inds = np.random.choice( range( self._n_pts), size=n_rand_pts) dists = _pairwise_distances( self._data[r_inds,:], self._data, metric=self._metric) dists_sort = np.sort( dists, axis=1) # plotting configurations best_guess = np.median( np.sort( dists_sort[:,1])[-20:]) return( best_guess) def get_density( self, radius, chunk_size=5000, mute=False): """ Calculates the density of each datapoint :param radius: Radius around each datapoints used for density calculations :param chunk_size: Number of cells to consider during each iteration due to memory restrictions :param mute: boolean operator to suppress print statements :return: Calculated densities for all datapoints """ # Save sys.stdout to return print output if muted old_stdout = sys.stdout # Mute print statements if True if( mute==True): sys.stdout = open( os.devnull, 'w') # Due to memory restrictions density assignments have to be preformed in chunks all_chunks = get_chunks( range( self._n_pts), chunk_size) # create array to hold all densities density = np.empty((self._n_pts), dtype=int) # create a nested array of indices for each cell within rad neighbors = np.empty((self._n_pts), dtype=object) for chunk in all_chunks: chunk_dist = _pairwise_distances( self._data[chunk,:], self._data, n_jobs=1, metric=self._metric) print( "calculating densities for datapoints: {0} -> {1}".format( chunk[0], chunk[-1])) for chunk_ind, ind in enumerate( chunk): neighbors[ind] = np.setdiff1d( np.ravel( np.argwhere( chunk_dist[chunk_ind]<=radius).ravel()), ind) density[ind] = len( neighbors[ind]) print( "****Always check density overlay for radius fit****") self.density = density self.neighbors = neighbors # return to normal treatment of print statements sys.stdout = old_stdout return( density) def density_hist( self, n_bins=200, figsize=(8,6)): """ Plots a histogram of datapoints' density :patam n_bins: Number of bins used to generate histogram :param figsize: size of plot to return :return: Histograom of densities """ if self.density is None: raise RuntimeError('Please run get_density() before plotting') # plotting configurations fig = _plt.figure( figsize=figsize) ax = fig.add_subplot(111) ax.set_xlabel( 'Density') ax.set_ylabel( 'Number of Datapoints') ax.hist( self.density, bins=n_bins) return ################################################# class Analysis( object): def __init__( self, file_path, graph_id, data, density, noise, metric='euclidean'): """ Container class for analyzing pCreode results :param file_path: path to directory where graph files are stored :param graph_id: graph ID to plot in given directory :param data: data used to produce pCreode graphs :param density: data point densities used to create p-Creode graph :param metic: distance metric used by sklearn, in this case to average the node values """ if not ( _os.path.exists( file_path)): raise TypeError( 'please supply a valid file path directory') if ( ~np.in1d( metric, ['cityblock', 'cosine', 'euclidean', 'l1', 'l2', 'manhattan'])): raise TypeError( 'metric must be one of the following cityblock, cosine, euclidean, l1, l2, or manhattan') self._file_path = file_path self._graph_id = graph_id self._data = data self._density = density self._noise = noise # cells data are above the noise threshold self.good_cells = data[density>noise] self.good_cells_inds = np.arange( len( data))[density>noise] # node_data_indices are the node indices from the data set used to run pCreode self.node_data_indices = np.genfromtxt( file_path + 'ind_{}.csv'.format( self._graph_id), delimiter=',').astype( int) self.num_nodes = len( self.node_data_indices) # node_graph_indices refers to the node indices within the graph self.node_graph_indices = np.arange( self.num_nodes) # read adjacency matrix for graph adj = pd.read_csv( self._file_path + 'adj_{}.txt'.format(self._graph_id), sep=" ", header=None) # get distance between nodes in graph self.dist = pairwise_distances( self._data[self.node_data_indices,:], self._data[self.node_data_indices,:], n_jobs=1, metric='l2') # calculate weighted adjacency matric w_adj = np.multiply( adj.values, self.dist) # create graph to plots self.graph = _igraph.Graph.Weighted_Adjacency( w_adj.tolist(), mode=ADJ_UNDIRECTED) self.graph.vs["label"] = range( 0, self.num_nodes+1) def plot_save_graph( self, seed, overlay, file_out, upper_range=3, node_label_size=0): """ Plots a p-Creode graph with given overlay :param seed: random interger to be used to seed graph plot :param overlay: characteristic to overlay on graph, likely from preprocessed data set :param file_out: name to give saved graph in file_path provided :param upper_range: upper range from which to normalize overlay to, this will vary with analyte :param node_label_size: size of node labels, when set to zero (default) no label will be plotted :return: A plot of selected p-Creode graph with given overlay and saves a png in file_path with file_out name """ # normalize densities to use for nodes sizes in graph plot norm_dens = preprocessing.MinMaxScaler( feature_range=(8,30)) dens = norm_dens.fit_transform( self._density.astype( float).reshape(-1, 1))[self.node_data_indices] # normalize overlay to use for node overlays norm_ana = preprocessing.MinMaxScaler( feature_range=(0, upper_range)) norm_ana.fit( overlay[self._density>self._noise].values.astype( np.float).reshape(-1, 1)) old_ana = norm_ana.transform( overlay[self._density>self._noise].values.astype( np.float).reshape(-1, 1)) # bin the data points to each node so that an average of closest surrounding nodes is used for overlay bin_dist = pairwise_distances( self.good_cells, self._data[self.node_data_indices]) bin_assignments = np.argmin( bin_dist, axis=1) new_ana = overlay.values[self.node_data_indices] for ii in range( self.num_nodes): new_ana[ii] = np.mean( old_ana[bin_assignments==ii]) norm_1 = np.array( new_ana, dtype=float) cl_vals_1 = [[]]*self.num_nodes # colors to use for overlay get_cl = _plt.get_cmap('RdYlBu_r') for jj in range( self.num_nodes): cl_vals_1[jj] = get_cl( norm_1[jj]) self.graph.vs["color"] = [cl_vals_1[kk] for kk in range( self.num_nodes)] random.seed( seed) layout = self.graph.layout_kamada_kawai( maxiter=2000) plot( self.graph, self._file_path + '{0}.png'.format(file_out), layout=layout, bbox=(1200,1200), vertex_size=dens, edge_width=2, vertex_label_size=node_label_size) display( Image( filename=self._file_path + file_out + '.png', embed=True, unconfined=True, width=600,height=600)) return def get_single_trajectory_indices( self, start_id, stop_id): """ Returns the node indices from the data set used to create the graph when supplied with graph indices from the plot_save_graph :param indices_of_interest: indices of interest plotted with the plot_save_graph function :return: list of indices from data set used to create the graph """ path_ids = np.ravel( self.graph.get_shortest_paths( start_id, stop_id)[0]) return( self.node_data_indices[path_ids]) def plot_analyte_dynamics( self, overlay, root_id): """ Returns bar plots of analyte dynamics over all trajectories when supplied with a root node :param overlay: characteristic to overlay on graph, likely from preprocessed data set :param root_id: graph node index for a root node (graph index is not the same as the data indexing) :return: bar plot of analyte dynamics for each trajectory, starting from a common root node """ # get all end-state nodes, including root if also an end-state node (degree==1) all_end_id = self.node_graph_indices[np.transpose( self.graph.degree())==1] # get end-states that arn't the root node end_ids = all_end_id[all_end_id!=root_id] # return all trajectories from root node to all other end-states traj = np.ravel( self.graph.get_shortest_paths( root_id, end_ids)) old_ana = overlay[self._density>self._noise].values.astype( np.float) # bin the data points to each node so that an average of closest surrounding nodes is used for overlay bin_dist = pairwise_distances( self.good_cells, self._data[self.node_data_indices]) bin_assignments = np.argmin( bin_dist, axis=1) new_ana = overlay.values[self.node_data_indices] new_std = np.zeros_like( new_ana) for ii in range( self.num_nodes): new_ana[ii] = np.mean( old_ana[bin_assignments==ii]) # get standard error for error bars new_std[ii] = np.std( old_ana[bin_assignments==ii]) / float( np.sqrt( len(old_ana[bin_assignments==ii]))) # get branch points branch_id = self.node_graph_indices[np.transpose( self.graph.degree())>=3] num_traj = len( traj) # get longest length of trajectories to set x-axis scale xlim = max([len(a) for a in traj]) _plt.figure(1, figsize=(12,num_traj*4.0)) for ii in range( num_traj): _plt.subplot(num_traj,1,ii+1) _plt.bar( range( len( new_ana[traj[ii]])), new_ana[traj[ii]], width=1.0, color='green', yerr=new_std[traj[ii]]) _plt.ylim(0,max(new_ana)+max(new_std)) _plt.xlim(0,xlim) # plot where trajectory ends _plt.axvline( x=len( new_ana[traj[ii]]), color='black', linewidth=2.5, linestyle='--') # plot branch points if they exist, likely always will br_ck = np.in1d( branch_id, traj[ii]) if( any( br_ck)): vl = branch_id[br_ck] for kk in vl: vl2 = np.argwhere( traj[ii]==kk) _plt.axvline( x=vl2, color='red', linewidth=2.5, linestyle='--') _plt.title('Trajectory {}'.format(ii+1), fontsize=14, loc='right') _plt.xlabel('p-Creode Trajectory', fontsize=12) _plt.ylabel('Expression', fontsize=12) return def get_complete_analyte_gene_trajectories( self, overlay_data, root_id, file_out): """ Returns csv files for dynamics of all analytes for each trajectory when supplied with a root node :param overlay_data: data set containing all analytes, must be a pandas dataframe :param root_id: graph node index for a root node (graph index is not the same as the data indexing) :param file_out: name to give saved graph in file_path provided :return: csv files for analyte dynamics stored in file_path with graph files, as well as a file for cluster IDs """ if not ( isinstance( overlay_data, _pd.DataFrame)): raise TypeError( 'data must be of pandas DataFrame') # get all end-state nodes, including root if also an end-state node (degree==1) all_end_id = self.node_graph_indices[np.transpose( self.graph.degree())==1] # get end-states that arn't the root node end_ids = all_end_id[all_end_id!=root_id] # return all trajectories from root node to all other end-states traj = np.ravel( self.graph.get_shortest_paths( root_id, end_ids)) # lazy work around for when ravel is not needed with non-branching trajectories if( len( end_ids)==1): traj = [traj] num_traj = len( end_ids) num_ana = overlay_data.shape[1] old_ana = overlay_data.values[self._density>self._noise] # bin the data points to each node so that an average of closest surrounding nodes is used for overlay bin_dist = pairwise_distances( self.good_cells, self._data[self.node_data_indices]) bin_assignments = np.argmin( bin_dist, axis=1) new_ana = old_ana #print( len( bin_assignments), len( self.good_cells_inds)) np.savetxt( self._file_path + "{}_clust_ids.csv".format( file_out), np.vstack( (self.good_cells_inds, bin_assignments)), delimiter=',') for hh in range( num_ana): for ii in range( self.num_nodes): itr_ana = old_ana[bin_assignments==ii,hh] # if no cells are binned to that node if( itr_ana.size==0): continue new_ana[ii,hh] = np.mean( itr_ana) for cc in range( num_traj): traj_ana = pd.DataFrame( new_ana[traj[cc]].T, index=overlay_data.columns, columns=traj[cc]) traj_ana.to_csv( self._file_path + '{0}_traj{1}_analytes.csv'.format( file_out, cc+1)) return def plot_save_qual_graph( self, seed, overlay, file_out): """ Plots a p-Creode graph with given overlay :param seed: random interger to be used to seed graph plot :param overlay: numpy string of qualitative characteristic to overlay on graph :param file_out: name to give saved graph in file_path provided :return: A plot of selected p-Creode graph with qualitative overlay and saves a png in file_path with file_out name """ if not ( isinstance( overlay, np.ndarray)): raise TypeError( 'overlay variable must be numpy array') if not ( overlay.dtype.char == 'U'): raise TypeError( 'All elements in overlay variable must be in a string dtype') # get list of colors to be used for labeling colors = np.array( []) cl_names = np.array( []) for name, hex in matplotlib.colors.cnames.items(): #items instead of iteritems colors = np.append( colors, hex) cl_names = np.append( cl_names, name) # normalize densities to use for nodes sizes in graph plot norm_dens = preprocessing.MinMaxScaler( feature_range=(8,30)) dens = norm_dens.fit_transform( self._density.astype( float).reshape(-1, 1))[self.node_data_indices] # bin the data points to each node so that an average of closest surrounding nodes is used for overlay bin_dist = pairwise_distances( self.good_cells, self._data[self.node_data_indices]) bin_assignments = np.argmin( bin_dist, axis=1) new_ana = overlay[self.node_data_indices] for ii in range( self.num_nodes): u_over = np.unique( overlay[np.where( bin_assignments==ii)]) uniqs = np.unique( overlay[np.where( bin_assignments==ii)], return_counts=True)[1] # skip nodes with no cells assigned to it if( uniqs.size==0): continue new_ana[ii] = u_over[np.argmax( uniqs)] ids_ana = np.zeros(self.num_nodes, dtype=int) zz = 0 for ii in np.unique( overlay): ids_ana[new_ana==ii] = zz zz = zz + 1 self.graph.vs["color"] = [colors[kk] for kk in ids_ana] random.seed( seed) layout = self.graph.layout_kamada_kawai( maxiter=2000) plot( self.graph, self._file_path + '{0}.png'.format(file_out), layout=layout, bbox=(1200,1200), vertex_size=dens, edge_width=2, vertex_label_size=0) display( Image( filename=self._file_path + file_out + '.png', embed=True, unconfined=True, width=600,height=600)) x = np.linspace( 0, 100, len( np.unique( overlay))) y = [0]*len( x) label = np.unique( overlay) cls = cl_names[:len(x)] fig, ax = _plt.subplots( 1, figsize=(15,2)) ax.scatter(x, y, s=1000, c=cls, label=label) for i, txt in enumerate( label): ax.annotate(txt, (x[i]-1.0,y[i]+0.075)) _plt.axis( 'off') _plt.show() return
gpl-2.0
MicrosoftGenomics/PySnpTools
pysnptools/standardizer/beta.py
1
2775
import numpy as np import scipy as sp import logging import warnings from pysnptools.standardizer import Standardizer class Beta(Standardizer): ''' A :class:`.Standardizer` to beta standardize SNP data. See :class:`.Standardizer` for more information about standardization. **Constructor:** :Parameters: * **a** (*float*) -- The *a* parameter of the beta distribution * **b** (*float*) -- The *b* parameter of the beta distribution >>> from pysnptools.standardizer import Beta >>> from pysnptools.snpreader import Bed >>> snpdata1 = Bed('../../tests/datasets/all_chr.maf0.001.N300',count_A1=False).read().standardize(Beta(1,25)) >>> print('{0:.6f}'.format(snpdata1.val[0,0])) 0.680802 ''' def __init__(self,a,b): super(Beta, self).__init__() self.a = a self.b = b def __repr__(self): return "{0}(a={1},b={2})".format(self.__class__.__name__,self.a,self.b) def standardize(self, snpdata, block_size=None, return_trained=False, force_python_only=False): #!!!later why is the 2nd argument called 'snpdata' here, but 'snps' in unit.py? if block_size is not None: warnings.warn("block_size is deprecated (and not needed, since standardization is in-place", DeprecationWarning) if hasattr(snpdata,"val"): val = snpdata.val else: warnings.warn("standardizing an nparray instead of a SnpData is deprecated", DeprecationWarning) val = snpdata stats = self._standardize_unit_and_beta(val, is_beta=True, a=self.a, b=self.b, apply_in_place=True, use_stats=False,stats=None,force_python_only=force_python_only) if return_trained: from pysnptools.standardizer import BetaTrained assert hasattr(snpdata,"val"), "return_trained=True must be used with SnpData" return snpdata, BetaTrained(self.a,self.b,snpdata.sid,stats) else: return snpdata def _merge_trained(self, trained_list): from pysnptools.standardizer import BetaTrained sid = np.concatenate([trained.sid for trained in trained_list]) stats = np.concatenate([trained.stats for trained in trained_list]) a_set = set([trained.a for trained in trained_list]) b_set = set([trained.b for trained in trained_list]) assert len(a_set) <= 1,"Expect all BetaTrained's to have the same 'a'" assert len(b_set) <= 1,"Expect all BetaTrained's to have the same 'b'" a = list(a_set)[0] if a_set else None b = list(b_set)[0] if b_set else None return BetaTrained(a, b, sid, stats) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) import doctest doctest.testmod()
apache-2.0
nelson-liu/scikit-learn
examples/linear_model/plot_theilsen.py
98
3846
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <florian.wilhelm@gmail.com> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] colors = {'OLS': 'turquoise', 'Theil-Sen': 'gold', 'RANSAC': 'lightgreen'} lw = 2 ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.scatter(x, y, color='indigo', marker='x', s=40) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, color=colors[name], linewidth=lw, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.title("Corrupt y") ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.scatter(x, y, color='indigo', marker='x', s=40) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, color=colors[name], linewidth=lw, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.title("Corrupt x") plt.show()
bsd-3-clause
mavrix93/LightCurvesClassifier
lcc/stars_processing/tools/visualization.py
1
15010
import numpy as np import os import warnings from sklearn import decomposition import pandas as pd from lcc.utils.helpers import check_depth from matplotlib import pyplot as plt def plotProbabSpace(star_filter, plot_ranges=None, opt="show", path=".", file_name="params_space.png", N=400, title="Params space", x_lab="", y_lab="", searched_coords=None, contamination_coords=None, OVERLAY=0.6): """ Plot params space Parameters ---------- star_filter : StarsFilter object Trained stars filter object plot_ranges : tuple, list List of ranges. For example: [(1,10), (20,50)] - for 2D plot opt : str Option whether save/show/return title : str Title of the plot path : str Path to the output file location file_name : str Name of the file OVERLAY : float Percentage overlay of borders despite of data ranges Returns ------- None """ contamination_coords = contamination_coords if contamination_coords is not None else [] searched_coords = searched_coords if searched_coords is not None else [] if not len(searched_coords) and not len(contamination_coords) and hasattr(star_filter, "searched_coords") and hasattr( star_filter, "others_coords"): searched_coords = star_filter.searched_coords.values contamination_coords = star_filter.others_coords.values dim = len(star_filter.searched_coords.columns) if isinstance(searched_coords, pd.DataFrame) and isinstance(contamination_coords, pd.DataFrame): searched_coords = searched_coords.values.tolist() contamination_coords = contamination_coords.values.tolist() if not plot_ranges: plot_ranges = [] trained_coo = np.array( star_filter.searched_coords.values.tolist() + star_filter.others_coords.values.tolist()).T for i in range(dim): rang = [np.min(trained_coo[i]), np.max(trained_coo[i])] overl = abs(rang[0] - rang[1]) * OVERLAY plot_ranges.append([rang[0] - overl, rang[1] + overl]) if dim == 1: if not x_lab and not y_lab: x_lab = star_filter.descriptors[0].LABEL y_lab = "Probability" plt_data = plot1DProbabSpace( star_filter, plot_ranges, N, searched_coords=searched_coords, contaminatiom_coords=contamination_coords) elif dim == 2: if not x_lab and not y_lab: if len(star_filter.descriptors) == 2: x_lab = star_filter.descriptors[0].LABEL y_lab = star_filter.descriptors[1].LABEL else: labels = [] for desc in star_filter.descriptors: if hasattr(desc.LABEL, "__iter__"): labels += desc.LABEL else: labels.append(desc.LABEL) if len(labels) == 2: x_lab = labels[0] y_lab = labels[1] else: x_lab = ", ".join(labels) y_lab = "" plt_data = plot2DProbabSpace(star_filter, plot_ranges, N, searched_coords=searched_coords, contaminatiom_coords=contamination_coords) else: plt_data = plotNDProbabSpace(star_filter, plot_ranges, N, searched_coords=searched_coords, contaminatiom_coords=contamination_coords ) # return np.array([[], [], []]) plt.xlabel(str(x_lab)) plt.ylabel(str(y_lab)) plt.title(str(title)) if opt == "show": plt.show() elif opt == "save": plt.savefig(os.path.join(path, file_name)) elif opt == "return": return plt_data def plotNDProbabSpace(star_filter, plot_ranges, N, searched_coords=[], contaminatiom_coords=[]): """ Plot N dim probability space Parameters ---------- star_filter : StarsFilter object Trained stars filter plot_ranges : iterable Ranges (max/min) for all axis N : int Number of points per axis searched_coords : list, iterable List of coordinates of searched objects contaminatiom_coords : list, iterable List of coordinates of contamination objects Returns ------- tuple x, y, Z """ OVERLAY = 0.4 ns = len(searched_coords) if not isinstance(searched_coords, list): try: searched_coords = searched_coords.tolist() contaminatiom_coords = contaminatiom_coords.tolist() except: pass coords = searched_coords + contaminatiom_coords if not coords: try: coords = star_filter.searched_coords.values.tolist() + star_filter.others_coords.values.tolist() except: try: coords = star_filter.searched_coords.tolist() + star_filter.others_coords.tolist() except: coords = star_filter.searched_coords + star_filter.others_coords pca = decomposition.PCA(n_components=2) pca.fit(coords) red_coords = pca.transform(coords) xmax, ymax = np.max(red_coords, axis=0).tolist() xmin, ymin = np.min(red_coords, axis=0).tolist() xwidth = xmax - xmin ywidth = ymax - ymin x = np.linspace(xmin - xwidth*OVERLAY, xmax + xwidth*OVERLAY, N) y = np.linspace(ymin - ywidth*OVERLAY, ymax + ywidth*OVERLAY, N) X, Y = np.meshgrid(x, y) to_transf = np.c_[X.ravel(), Y.ravel()] back_transf_data = pca.inverse_transform(to_transf) z = np.array(star_filter.evaluateCoordinates(back_transf_data)) Z = z.reshape(X.shape) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.pcolor(X, Y, Z) plt.colorbar() if coords: s = np.array(red_coords[:ns]).T c = np.array(red_coords[ns:]).T plt.plot(s[0], s[1], "m*", label="Searched objects", markersize=17) plt.plot( c[0], c[1], "k*", label="Contamination objects", markersize=17) plt.legend() return x, y, Z, pca def plot2DProbabSpace(star_filter, plot_ranges, N, searched_coords=[], contaminatiom_coords=[]): """ Plot probability space Parameters ---------- star_filter : StarsFilter object Trained stars filter plot_ranges : iterable Ranges (max/min) for all axis N : int Number of points per axis searched_coords : list, iterable List of coordinates of searched objects contaminatiom_coords : list, iterable List of coordinates of contamination objects Returns ------- tuple x, y, Z """ if check_depth(plot_ranges, 1, ifnotraise=False): plot_ranges = [plot_ranges, plot_ranges] x = np.linspace(plot_ranges[0][0], plot_ranges[0][1], N) y = np.linspace(plot_ranges[1][0], plot_ranges[1][1], N) X, Y = np.meshgrid(x, y) z = np.array(star_filter.evaluateCoordinates(np.c_[X.ravel(), Y.ravel()])) Z = z.reshape(X.shape) plt.xlim(plot_ranges[0][0], plot_ranges[0][1]) plt.ylim(plot_ranges[1][0], plot_ranges[1][1]) plt.pcolor(X, Y, Z) plt.colorbar() if len(searched_coords) or len(contaminatiom_coords): s = np.array(searched_coords).T c = np.array(contaminatiom_coords).T plt.plot(s[0], s[1], "m*", label="Searched objects", markersize=17) plt.plot( c[0], c[1], "k*", label="Contamination objects", markersize=17) plt.legend() return x, y, Z def plot1DProbabSpace(star_filter, plot_ranges, N, searched_coords=[], contaminatiom_coords=[]): """ Plot probability space Parameters ---------- star_filter : StarsFilter object Trained stars filter plot_ranges : iterable Ranges (max/min) for all axis N : int Number of points per axis searched_coords : list, iterable List of coordinates of searched objects contaminatiom_coords : list, iterable List of coordinates of contamination objects Returns ------- tuple x, y """ if check_depth(plot_ranges, 2, ifnotraise=False): plot_ranges = plot_ranges[0] x = np.linspace(plot_ranges[0], plot_ranges[1]) y = star_filter.evaluateCoordinates([[y] for y in x]) plt.plot(x, y, linewidth=3) if len(searched_coords) or len(contaminatiom_coords): s = [qq[0] for qq in searched_coords] c = [qq[0] for qq in contaminatiom_coords] s_weights = np.ones_like(s) / len(s) c_weights = np.ones_like(c) / len(c) plt.hist(s, bins=x, histtype='bar', weights=s_weights, label="Searched objects") plt.hist(c, bins=x, histtype='bar', weights=c_weights, label="Contamination objects") plt.legend() return x, np.array(y) def plotHist(searched_coo, cont_coo, labels=[], bins=None, save_path=None, file_name="hist.png"): """ Plot histogram Parameters ---------- searched_coo : iterable Coordinates of searched objects to plot the histogram cont_coo : iterable Coordinates of contamination objects to plot the histogram labels : list, tuple of str Labels for axis save_path : str, NoneType Path to the folder where plots are saved if not None, else plots are showed immediately bins : int, NoneType Number of bins for histogram file_name : str Name of the plot file Returns ------- None """ x = np.array(searched_coo).T y = np.array(cont_coo).T if len(x) != len(y): raise Exception( "Dimension of both searched and contamination sample have to be the same.\nGot: %i, %i" % (len(x), len(y))) if len(x) != len(labels): warnings.warn( "Dimension of the dimension of train sample and labels have to be the same.\nGot: %i, %i" % (len(x), len(labels))) labels = ["" for _ in x] for x_param, y_param, lab in zip(x, y, labels): plt.clf() if not bins: x_bins = 1 + 3.32 * np.log10(len(x_param)) y_bins = 1 + 3.32 * np.log10(len(y_param)) else: x_bins = bins y_bins = bins x_weights = np.ones_like(x_param) / len(x_param) y_weights = np.ones_like(y_param) / len(y_param) plt.hist(x_param, bins=int(x_bins), weights=x_weights, histtype='bar', color="crimson", label="Searched objects") plt.hist(y_param, bins=int(y_bins), weights=y_weights, label="Others") plt.title("Distribution of the parameters coordinates") plt.xlabel(lab) plt.ylabel("Normalized counts") plt.legend() if save_path: plt.savefig(os.path.join( save_path, file_name + "_hist_%s.png" % (lab.replace(" ", "_")))) else: plt.show() def plotUnsupProbabSpace(coords, decider, opt="show", N=100): if len(coords) and len(coords[0]) == 2: return plot2DUnsupProbabSpace(coords, decider, opt, N) elif len(coords) and len(coords[0]) == 1: return plot1DUnsupProbabSpace(coords, decider, opt, N) else: return plotNDUnsupProbabSpace(coords, decider, opt, N) def plot2DUnsupProbabSpace(coords, decider, opt="show", N=50): OVERLAY = 0.2 x_min, x_max = coords[:, 0].min(), coords[:, 0].max() y_min, y_max = coords[:, 1].min(), coords[:, 1].max() xo = (x_max - x_min) * OVERLAY yo = (y_max - y_min) * OVERLAY x, y = np.linspace( x_min - xo, x_max + xo, N), np.linspace(y_min - yo, y_max + yo, N) xx, yy = np.meshgrid(x, y) # Obtain labels for each point in mesh. Use last trained model. Z = decider.evaluate(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) # Plot the centroids as a white X centroids = decider.classifier.cluster_centers_ if opt == "show": plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(coords[:, 0], coords[:, 1], 'k.', markersize=2) plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show() return x, y, Z, centroids def plot1DUnsupProbabSpace(coords, decider, opt, N): OVERLAY = 0.2 x_min, x_max = coords[:, 0].min(), coords[:, 0].max() xo = (x_max - x_min) * OVERLAY x = np.linspace(x_min - xo, x_max + xo, N) y = decider.evaluate([[xx] for xx in x]) centroids = decider.classifier.cluster_centers_ return x, y, centroids def plotNDUnsupProbabSpace(coords, decider, opt="show", N=8): """ """ OVERLAY = 0.2 if not isinstance(coords, list): coords = list(coords) pca = decomposition.PCA(n_components=2) pca.fit(coords) red_coords = pca.transform(coords) xmax, ymax = np.max(red_coords, axis=0).tolist() xmin, ymin = np.min(red_coords, axis=0).tolist() xwidth = xmax-xmin ywidth = ymax - ymin x = np.linspace(xmin - xwidth*OVERLAY, xmax + ywidth*OVERLAY, N) y = np.linspace(ymin - ywidth*OVERLAY, ymax + ywidth*OVERLAY, N) X, Y = np.meshgrid(x, y) to_transf = np.c_[X.ravel(), Y.ravel()] back_transf_data = pca.inverse_transform(to_transf) z = np.array(decider.evaluate(back_transf_data)) Z = z.reshape(X.shape) # Plot the centroids as a white X centroids = pca.transform(decider.classifier.cluster_centers_) plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.pcolor(X, Y, Z) plt.colorbar() if opt == "show": plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xmin, xmax, ymin, ymax), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(red_coords[:, 0], red_coords[:, 1], 'k.', markersize=2) plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('') plt.xlim(xmin, xmax) plt.ylim(ymin, ymax) plt.xticks(()) plt.yticks(()) plt.show() return x, y, Z, centroids, red_coords
mit
loli/semisupervisedforests
sklearn/linear_model/coordinate_descent.py
4
72570
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Gael Varoquaux <gael.varoquaux@inria.fr> # # License: BSD 3 clause import sys import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy import sparse from .base import LinearModel, _pre_fit from ..base import RegressorMixin from .base import center_data, sparse_center_data from ..utils import check_array, check_X_y from ..utils.validation import check_random_state from ..cross_validation import _check_cv as check_cv from ..externals.joblib import Parallel, delayed from ..externals import six from ..externals.six.moves import xrange from ..utils.extmath import safe_sparse_dot from ..utils.validation import check_is_fitted from ..utils import ConvergenceWarning from . import cd_fast ############################################################################### # Paths functions def _alpha_grid(X, y, Xy=None, l1_ratio=1.0, fit_intercept=True, eps=1e-3, n_alphas=100, normalize=False, copy_X=True): """ Compute the grid of alpha values for elastic net parameter search Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication y : ndarray, shape = (n_samples,) Target values Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. l1_ratio : float The elastic net mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path fit_intercept : bool Fit or not an intercept normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. """ n_samples = len(y) sparse_center = False if Xy is None: X_sparse = sparse.isspmatrix(X) sparse_center = X_sparse and (fit_intercept or normalize) X = check_array(X, 'csc', copy=(copy_X and fit_intercept and not X_sparse)) if not X_sparse: # X can be touched inplace thanks to the above line X, y, _, _, _ = center_data(X, y, fit_intercept, normalize, copy=False) Xy = safe_sparse_dot(X.T, y, dense_output=True) if sparse_center: # Workaround to find alpha_max for sparse matrices. # since we should not destroy the sparsity of such matrices. _, _, X_mean, _, X_std = sparse_center_data(X, y, fit_intercept, normalize) mean_dot = X_mean * np.sum(y) if Xy.ndim == 1: Xy = Xy[:, np.newaxis] if sparse_center: if fit_intercept: Xy -= mean_dot[:, np.newaxis] if normalize: Xy /= X_std[:, np.newaxis] alpha_max = (np.sqrt(np.sum(Xy ** 2, axis=1)).max() / (n_samples * l1_ratio)) alphas = np.logspace(np.log10(alpha_max * eps), np.log10(alpha_max), num=n_alphas)[::-1] return alphas def lasso_path(X, y, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute Lasso path with coordinate descent The Lasso optimization function varies for mono and multi-outputs. For mono-output tasks it is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape = (n_samples,), or (n_samples, n_outputs) Target values eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. positive : bool, default False If set to True, forces coefficients to be positive. return_n_iter : bool whether to return the number of iterations or not. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. Notes ----- See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path Examples --------- Comparing lasso_path and lars_path with interpolation: >>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=[5., 1., .5]) >>> print(coef_path) [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]] >>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], ... coef_path_lars[:, ::-1]) >>> print(coef_path_continuous([5., 1., .5])) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]] See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode """ return enet_path(X, y, l1_ratio=1., eps=eps, n_alphas=n_alphas, alphas=alphas, precompute=precompute, Xy=Xy, copy_X=copy_X, coef_init=coef_init, verbose=verbose, positive=positive, **params) def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, **params): """Compute elastic net path with coordinate descent The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray, shape = (n_samples,) or (n_samples, n_outputs) Target values l1_ratio : float, optional float between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso eps : float Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3`` n_alphas : int, optional Number of alphas along the regularization path alphas : ndarray, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, optional Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. coef_init : array, shape (n_features, ) | None The initial values of the coefficients. verbose : bool or integer Amount of verbosity. params : kwargs keyword arguments passed to the coordinate descent solver. return_n_iter : bool whether to return the number of iterations or not. positive : bool, default False If set to True, forces coefficients to be positive. Returns ------- alphas : array, shape (n_alphas,) The alphas along the path where models are computed. coefs : array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array, shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like, shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). Notes ----- See examples/plot_lasso_coordinate_descent_path.py for an example. See also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV """ X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_mean' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_mean'] / params['X_std'] else: X_sparse_scaling = np.zeros(n_features) # X should be normalized and fit already. X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') models = [] if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=np.float64) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=np.float64) if coef_init is None: coef_ = np.asfortranarray(np.zeros(coefs.shape[:-1])) else: coef_ = np.asfortranarray(coef_init) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like") coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if dual_gap_ > eps_: warnings.warn('Objective did not converge.' + ' You might want' + ' to increase the number of iterations', ConvergenceWarning) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps ############################################################################### # ElasticNet model class ElasticNet(LinearModel, RegressorMixin): """Linear regression with combined L1 and L2 priors as regularizer. Minimizes the objective function:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 where:: alpha = a + b and l1_ratio = a / (a + b) The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. Specifically, l1_ratio = 1 is the lasso penalty. Currently, l1_ratio <= 0.01 is not reliable, unless you supply your own sequence of alpha. Parameters ---------- alpha : float Constant that multiplies the penalty terms. Defaults to 1.0 See the notes for the exact mathematical meaning of this parameter. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` with the Lasso object is not advised and you should prefer the LinearRegression object. l1_ratio : float The ElasticNet mixing parameter, with ``0 <= l1_ratio <= 1``. For ``l1_ratio = 0`` the penalty is an L2 penalty. ``For l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2. fit_intercept : bool Whether the intercept should be estimated or not. If ``False``, the data is assumed to be already centered. normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape = (n_targets,) independent term in decision function. n_iter_ : array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Notes ----- To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- SGDRegressor: implements elastic net regression with incremental training. SGDClassifier: implements logistic regression with elastic net penalty (``SGDClassifier(loss="log", penalty="elasticnet")``). """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): self.alpha = alpha self.l1_ratio = l1_ratio self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.positive = positive self.intercept_ = 0.0 self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit model with coordinate descent. Parameters ----------- X : ndarray or scipy.sparse matrix, (n_samples, n_features) Data y : ndarray, shape = (n_samples,) or (n_samples, n_targets) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ if self.alpha == 0: warnings.warn("With alpha=0, this algorithm does not converge " "well. You are advised to use the LinearRegression " "estimator", stacklevel=2) if self.precompute == 'auto': warnings.warn("Setting precompute to 'auto', was found to be " "slower even when n_samples > n_features. Hence " "it will be removed in 0.18.", DeprecationWarning, stacklevel=2) X, y = check_X_y(X, y, accept_sparse='csc', dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept, multi_output=True) X, y, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X, y, None, self.precompute, self.normalize, self.fit_intercept, copy=True) if y.ndim == 1: y = y[:, np.newaxis] if Xy is not None and Xy.ndim == 1: Xy = Xy[:, np.newaxis] n_samples, n_features = X.shape n_targets = y.shape[1] if self.selection not in ['cyclic', 'random']: raise ValueError("selection should be either random or cyclic.") if not self.warm_start or self.coef_ is None: coef_ = np.zeros((n_targets, n_features), dtype=np.float64, order='F') else: coef_ = self.coef_ if coef_.ndim == 1: coef_ = coef_[np.newaxis, :] dual_gaps_ = np.zeros(n_targets, dtype=np.float64) self.n_iter_ = [] for k in xrange(n_targets): if Xy is not None: this_Xy = Xy[:, k] else: this_Xy = None _, this_coef, this_dual_gap, this_iter = \ self.path(X, y[:, k], l1_ratio=self.l1_ratio, eps=None, n_alphas=None, alphas=[self.alpha], precompute=precompute, Xy=this_Xy, fit_intercept=False, normalize=False, copy_X=True, verbose=False, tol=self.tol, positive=self.positive, X_mean=X_mean, X_std=X_std, return_n_iter=True, coef_init=coef_[k], max_iter=self.max_iter, random_state=self.random_state, selection=self.selection) coef_[k] = this_coef[:, 0] dual_gaps_[k] = this_dual_gap[0] self.n_iter_.append(this_iter[0]) if n_targets == 1: self.n_iter_ = self.n_iter_[0] self.coef_, self.dual_gap_ = map(np.squeeze, [coef_, dual_gaps_]) self._set_intercept(X_mean, y_mean, X_std) # return self for chaining fit and predict calls return self @property def sparse_coef_(self): """ sparse representation of the fitted coef """ return sparse.csr_matrix(self.coef_) def decision_function(self, X): """Decision function of the linear model Parameters ---------- X : numpy array or scipy.sparse matrix of shape (n_samples, n_features) Returns ------- T : array, shape = (n_samples,) The predicted decision function """ check_is_fitted(self, 'n_iter_') if sparse.isspmatrix(X): return np.ravel(safe_sparse_dot(self.coef_, X.T, dense_output=True) + self.intercept_) else: return super(ElasticNet, self).decision_function(X) ############################################################################### # Lasso model class Lasso(ElasticNet): """Linear Model trained with L1 prior as regularizer (aka the Lasso) The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Technically the Lasso model is optimizing the same objective function as the Elastic Net with ``l1_ratio=1.0`` (no L2 penalty). Parameters ---------- alpha : float, optional Constant that multiplies the L1 term. Defaults to 1.0. ``alpha = 0`` is equivalent to an ordinary least square, solved by the :class:`LinearRegression` object. For numerical reasons, using ``alpha = 0`` is with the Lasso object is not advised and you should prefer the LinearRegression object. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. For sparse input this option is always ``True`` to preserve sparsity. WARNING : The ``'auto'`` option is deprecated and will be removed in 0.18. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) sparse_coef_ : scipy.sparse matrix, shape = (n_features, 1) | \ (n_targets, n_features) ``sparse_coef_`` is a readonly property derived from ``coef_`` intercept_ : float | array, shape = (n_targets,) independent term in decision function. n_iter_ : int | array-like, shape (n_targets,) number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.Lasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) Lasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [ 0.85 0. ] >>> print(clf.intercept_) 0.15 See also -------- lars_path lasso_path LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, positive=False, random_state=None, selection='cyclic'): super(Lasso, self).__init__( alpha=alpha, l1_ratio=1.0, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, copy_X=copy_X, max_iter=max_iter, tol=tol, warm_start=warm_start, positive=positive, random_state=random_state, selection=selection) ############################################################################### # Functions for CV with paths functions def _path_residuals(X, y, train, test, path, path_params, alphas=None, l1_ratio=1, X_order=None, dtype=None): """Returns the MSE for the models computed by 'path' Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values train : list of indices The indices of the train set test : list of indices The indices of the test set path : callable function returning a list of models on the path. See enet_path for an example of signature path_params : dictionary Parameters passed to the path function alphas : array-like, optional Array of float that is used for cross-validation. If not provided, computed using 'path' l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 X_order : {'F', 'C', or None}, optional The order of the arrays expected by the path function to avoid memory copies dtype : a numpy dtype or None The dtype of the arrays expected by the path function to avoid memory copies """ X_train = X[train] y_train = y[train] X_test = X[test] y_test = y[test] fit_intercept = path_params['fit_intercept'] normalize = path_params['normalize'] if y.ndim == 1: precompute = path_params['precompute'] else: # No Gram variant of multi-task exists right now. # Fall back to default enet_multitask precompute = False X_train, y_train, X_mean, y_mean, X_std, precompute, Xy = \ _pre_fit(X_train, y_train, None, precompute, normalize, fit_intercept, copy=False) path_params = path_params.copy() path_params['Xy'] = Xy path_params['X_mean'] = X_mean path_params['X_std'] = X_std path_params['precompute'] = precompute path_params['copy_X'] = False path_params['alphas'] = alphas if 'l1_ratio' in path_params: path_params['l1_ratio'] = l1_ratio # Do the ordering and type casting here, as if it is done in the path, # X is copied and a reference is kept here X_train = check_array(X_train, 'csc', dtype=dtype, order=X_order) alphas, coefs, _ = path(X_train, y_train, **path_params) del X_train, y_train if y.ndim == 1: # Doing this so that it becomes coherent with multioutput. coefs = coefs[np.newaxis, :, :] y_mean = np.atleast_1d(y_mean) y_test = y_test[:, np.newaxis] if normalize: nonzeros = np.flatnonzero(X_std) coefs[:, nonzeros] /= X_std[nonzeros][:, np.newaxis] intercepts = y_mean[:, np.newaxis] - np.dot(X_mean, coefs) if sparse.issparse(X_test): n_order, n_features, n_alphas = coefs.shape # Work around for sparse matices since coefs is a 3-D numpy array. coefs_feature_major = np.rollaxis(coefs, 1) feature_2d = np.reshape(coefs_feature_major, (n_features, -1)) X_test_coefs = safe_sparse_dot(X_test, feature_2d) X_test_coefs = X_test_coefs.reshape(X_test.shape[0], n_order, -1) else: X_test_coefs = safe_sparse_dot(X_test, coefs) residues = X_test_coefs - y_test[:, :, np.newaxis] residues += intercepts this_mses = ((residues ** 2).mean(axis=0)).mean(axis=0) return this_mses class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)): """Base class for iterative model fitting along a regularization path""" @abstractmethod def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.copy_X = copy_X self.cv = cv self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit linear model with coordinate descent Fit is on grid of alphas and best alpha estimated by cross-validation. Parameters ---------- X : {array-like}, shape (n_samples, n_features) Training data. Pass directly as float64, Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values """ y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if isinstance(self, ElasticNetCV) or isinstance(self, LassoCV): if model_str == 'ElasticNet': model = ElasticNet() else: model = Lasso() if y.ndim > 1: raise ValueError("For multi-task outputs, use " "MultiTask%sCV" % (model_str)) else: if sparse.isspmatrix(X): raise TypeError("X should be dense but a sparse matrix was" "passed") elif y.ndim == 1: raise ValueError("For mono-task outputs, use " "%sCV" % (model_str)) if model_str == 'ElasticNet': model = MultiTaskElasticNet() else: model = MultiTaskLasso() if self.selection not in ["random", "cyclic"]: raise ValueError("selection should be either random or cyclic.") # This makes sure that there is no duplication in memory. # Dealing right with copy_X is important in the following: # Multiple functions touch X and subsamples of X and can induce a # lot of duplication of memory copy_X = self.copy_X and self.fit_intercept if isinstance(X, np.ndarray) or sparse.isspmatrix(X): # Keep a reference to X reference_to_old_X = X # Let us not impose fortran ordering or float64 so far: it is # not useful for the cross-validation loop and will be done # by the model fitting itself X = check_array(X, 'csc', copy=False) if sparse.isspmatrix(X): if not np.may_share_memory(reference_to_old_X.data, X.data): # X is a sparse matrix and has been copied copy_X = False elif not np.may_share_memory(reference_to_old_X, X): # X has been copied copy_X = False del reference_to_old_X else: X = check_array(X, 'csc', dtype=np.float64, order='F', copy=copy_X) copy_X = False if X.shape[0] != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (X.shape[0], y.shape[0])) # All LinearModelCV parameters except 'cv' are acceptable path_params = self.get_params() if 'l1_ratio' in path_params: l1_ratios = np.atleast_1d(path_params['l1_ratio']) # For the first path, we need to set l1_ratio path_params['l1_ratio'] = l1_ratios[0] else: l1_ratios = [1, ] path_params.pop('cv', None) path_params.pop('n_jobs', None) alphas = self.alphas n_l1_ratio = len(l1_ratios) if alphas is None: alphas = [] for l1_ratio in l1_ratios: alphas.append(_alpha_grid( X, y, l1_ratio=l1_ratio, fit_intercept=self.fit_intercept, eps=self.eps, n_alphas=self.n_alphas, normalize=self.normalize, copy_X=self.copy_X)) else: # Making sure alphas is properly ordered. alphas = np.tile(np.sort(alphas)[::-1], (n_l1_ratio, 1)) # We want n_alphas to be the number of alphas used for each l1_ratio. n_alphas = len(alphas[0]) path_params.update({'n_alphas': n_alphas}) path_params['copy_X'] = copy_X # We are not computing in parallel, we can modify X # inplace in the folds if not (self.n_jobs == 1 or self.n_jobs is None): path_params['copy_X'] = False # init cross-validation generator cv = check_cv(self.cv, X) # Compute path for all folds and compute MSE to get the best alpha folds = list(cv) best_mse = np.inf # We do a double for loop folded in one, in order to be able to # iterate in parallel on l1_ratio and folds jobs = (delayed(_path_residuals)(X, y, train, test, self.path, path_params, alphas=this_alphas, l1_ratio=this_l1_ratio, X_order='F', dtype=np.float64) for this_l1_ratio, this_alphas in zip(l1_ratios, alphas) for train, test in folds) mse_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend="threading")(jobs) mse_paths = np.reshape(mse_paths, (n_l1_ratio, len(folds), -1)) mean_mse = np.mean(mse_paths, axis=1) self.mse_path_ = np.squeeze(np.rollaxis(mse_paths, 2, 1)) for l1_ratio, l1_alphas, mse_alphas in zip(l1_ratios, alphas, mean_mse): i_best_alpha = np.argmin(mse_alphas) this_best_mse = mse_alphas[i_best_alpha] if this_best_mse < best_mse: best_alpha = l1_alphas[i_best_alpha] best_l1_ratio = l1_ratio best_mse = this_best_mse self.l1_ratio_ = best_l1_ratio self.alpha_ = best_alpha if self.alphas is None: self.alphas_ = np.asarray(alphas) if n_l1_ratio == 1: self.alphas_ = self.alphas_[0] # Remove duplicate alphas in case alphas is provided. else: self.alphas_ = np.asarray(alphas[0]) # Refit the model with the parameters selected common_params = dict((name, value) for name, value in self.get_params().items() if name in model.get_params()) model.set_params(**common_params) model.alpha = best_alpha model.l1_ratio = best_l1_ratio model.copy_X = copy_X model.precompute = False model.fit(X, y) if not hasattr(self, 'l1_ratio'): del self.l1_ratio_ self.coef_ = model.coef_ self.intercept_ = model.intercept_ self.dual_gap_ = model.dual_gap_ self.n_iter_ = model.n_iter_ return self class LassoCV(LinearModelCV, RegressorMixin): """Lasso linear model with iterative fitting along a regularization path The best model is selected by cross-validation. The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1 Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path alphas : numpy array, optional List of alphas where to compute the models. If ``None`` alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional If positive, restrict regression coefficients to be positive selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean, default True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation coef_ : array, shape = (n_features,) | (n_targets, n_features) parameter vector (w in the cost function formula) intercept_ : float | array, shape = (n_targets,) independent term in decision function. mse_path_ : array, shape = (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape = (n_alphas,) The grid of alphas used for fitting dual_gap_ : ndarray, shape () The dual gap at the end of the optimization for the optimal alpha (``alpha_``). n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. See also -------- lars_path lasso_path LassoLars Lasso LassoLarsCV """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, positive=False, random_state=None, selection='cyclic'): super(LassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, precompute=precompute, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, positive=positive, random_state=random_state, selection=selection) class ElasticNetCV(LinearModelCV, RegressorMixin): """Elastic Net model with iterative fitting along a regularization path The best model is selected by cross-validation. Parameters ---------- l1_ratio : float, optional float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7, .9, .95, .99, 1]`` eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, optional Number of alphas along the regularization path, used for each l1_ratio. alphas : numpy array, optional List of alphas where to compute the models. If None alphas are set automatically precompute : True | False | 'auto' | array-like Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. positive : bool, optional When set to ``True``, forces the coefficients to be positive. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation coef_ : array, shape = (n_features,) | (n_targets, n_features) Parameter vector (w in the cost function formula), intercept_ : float | array, shape = (n_targets, n_features) Independent term in the decision function. mse_path_ : array, shape = (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha. alphas_ : numpy array, shape = (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Notes ----- See examples/linear_model/lasso_path_with_crossvalidation.py for an example. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to:: a * L1 + b * L2 for:: alpha = a + b and l1_ratio = a / (a + b). See also -------- enet_path ElasticNet """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, positive=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.precompute = precompute self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.positive = positive self.random_state = random_state self.selection = selection ############################################################################### # Multi Task ElasticNet and Lasso models (with joint feature selection) class MultiTaskElasticNet(Lasso): """Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 l1_ratio : float The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape = (n_tasks,) Independent term in decision function. coef_ : array, shape = (n_tasks, n_features) Parameter vector (W in the cost function formula). If a 1D y is \ passed in at fit (non multi-task usage), ``coef_`` is then a 1D array n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNet(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNet(alpha=0.1, copy_X=True, fit_intercept=True, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.45663524 0.45612256] [ 0.45663524 0.45612256]] >>> print(clf.intercept_) [ 0.0872422 0.0872422] See also -------- ElasticNet, MultiTaskLasso Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.random_state = random_state self.selection = selection def fit(self, X, y): """Fit MultiTaskLasso model with coordinate descent Parameters ----------- X : ndarray, shape = (n_samples, n_features) Data y : ndarray, shape = (n_samples, n_tasks) Target Notes ----- Coordinate descent is an algorithm that considers each column of data at a time hence it will automatically convert the X input as a Fortran-contiguous numpy array if necessary. To avoid memory re-allocation it is advised to allocate the initial data in memory directly using that format. """ # X and y must be of type float64 X = check_array(X, dtype=np.float64, order='F', copy=self.copy_X and self.fit_intercept) y = np.asarray(y, dtype=np.float64) if hasattr(self, 'l1_ratio'): model_str = 'ElasticNet' else: model_str = 'Lasso' if y.ndim == 1: raise ValueError("For mono-task outputs, use %s" % model_str) n_samples, n_features = X.shape _, n_tasks = y.shape if n_samples != y.shape[0]: raise ValueError("X and y have inconsistent dimensions (%d != %d)" % (n_samples, y.shape[0])) X, y, X_mean, y_mean, X_std = center_data( X, y, self.fit_intercept, self.normalize, copy=False) if not self.warm_start or self.coef_ is None: self.coef_ = np.zeros((n_tasks, n_features), dtype=np.float64, order='F') l1_reg = self.alpha * self.l1_ratio * n_samples l2_reg = self.alpha * (1.0 - self.l1_ratio) * n_samples self.coef_ = np.asfortranarray(self.coef_) # coef contiguous in memory if self.selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (self.selection == 'random') self.coef_, self.dual_gap_, self.eps_, self.n_iter_ = \ cd_fast.enet_coordinate_descent_multi_task( self.coef_, l1_reg, l2_reg, X, y, self.max_iter, self.tol, check_random_state(self.random_state), random) self._set_intercept(X_mean, y_mean, X_std) if self.dual_gap_ > self.eps_: warnings.warn('Objective did not converge, you might want' ' to increase the number of iterations') # return self for chaining fit and predict calls return self class MultiTaskLasso(MultiTaskElasticNet): """Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer The optimization objective for Lasso is:: (1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of earch row. Parameters ---------- alpha : float, optional Constant that multiplies the L1/L2 term. Defaults to 1.0 fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. warm_start : bool, optional When set to ``True``, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4 random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- coef_ : array, shape = (n_tasks, n_features) parameter vector (W in the cost function formula) intercept_ : array, shape = (n_tasks,) independent term in decision function. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskLasso(alpha=0.1) >>> clf.fit([[0,0], [1, 1], [2, 2]], [[0, 0], [1, 1], [2, 2]]) MultiTaskLasso(alpha=0.1, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) >>> print(clf.coef_) [[ 0.89393398 0. ] [ 0.89393398 0. ]] >>> print(clf.intercept_) [ 0.10606602 0.10606602] See also -------- Lasso, MultiTaskElasticNet Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=1000, tol=1e-4, warm_start=False, random_state=None, selection='cyclic'): self.alpha = alpha self.coef_ = None self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.copy_X = copy_X self.tol = tol self.warm_start = warm_start self.l1_ratio = 1.0 self.random_state = random_state self.selection = selection class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 ElasticNet with built-in cross-validation. The optimization objective for MultiTaskElasticNet is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically. n_alphas : int, optional Number of alphas along the regularization path l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 0 the penalty is an L1/L2 penalty. For l1_ratio = 1 it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio l1_ratio_ : float best l1_ratio obtained by cross-validation. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV() >>> clf.fit([[0,0], [1, 1], [2, 2]], ... [[0, 0], [1, 1], [2, 2]]) ... #doctest: +NORMALIZE_WHITESPACE MultiTaskElasticNetCV(alphas=None, copy_X=True, cv=None, eps=0.001, fit_intercept=True, l1_ratio=0.5, max_iter=1000, n_alphas=100, n_jobs=1, normalize=False, random_state=None, selection='cyclic', tol=0.0001, verbose=0) >>> print(clf.coef_) [[ 0.52875032 0.46958558] [ 0.52875032 0.46958558]] >>> print(clf.intercept_) [ 0.00166409 0.00166409] See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(enet_path) def __init__(self, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, cv=None, copy_X=True, verbose=0, n_jobs=1, random_state=None, selection='cyclic'): self.l1_ratio = l1_ratio self.eps = eps self.n_alphas = n_alphas self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.max_iter = max_iter self.tol = tol self.cv = cv self.copy_X = copy_X self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state self.selection = selection class MultiTaskLassoCV(LinearModelCV, RegressorMixin): """Multi-task L1/L2 Lasso with built-in cross-validation. The optimization objective for MultiTaskLasso is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * ||W||_21 Where:: ||W||_21 = \sum_i \sqrt{\sum_j w_{ij}^2} i.e. the sum of norm of each row. Parameters ---------- eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. alphas : array-like, optional List of alphas where to compute the models. If not provided, set automaticlly. n_alphas : int, optional Number of alphas along the regularization path fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional, default False If ``True``, the regressors X will be normalized before regression. copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten. max_iter : int, optional The maximum number of iterations. tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 3). Specific cross-validation objects can be passed, see the :mod:`sklearn.cross_validation` module for the list of possible objects. verbose : bool or integer Amount of verbosity. n_jobs : integer, optional Number of CPUs to use during the cross validation. If ``-1``, use all the CPUs. Note that this is used only if multiple values for l1_ratio are given. selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4. random_state : int, RandomState instance, or None (default) The seed of the pseudo random number generator that selects a random feature to update. Useful only when selection is set to 'random'. Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function. coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). alpha_ : float The amount of penalization chosen by cross validation mse_path_ : array, shape (n_alphas, n_folds) mean square error for the test set on each fold, varying alpha alphas_ : numpy array, shape (n_alphas,) The grid of alphas used for fitting. n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha. See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskElasticNetCV Notes ----- The algorithm used to fit the model is coordinate descent. To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array. """ path = staticmethod(lasso_path) def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=1e-4, copy_X=True, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic'): super(MultiTaskLassoCV, self).__init__( eps=eps, n_alphas=n_alphas, alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, max_iter=max_iter, tol=tol, copy_X=copy_X, cv=cv, verbose=verbose, n_jobs=n_jobs, random_state=random_state, selection=selection)
bsd-3-clause
loli/semisupervisedforests
sklearn/feature_selection/tests/test_rfe.py
6
6754
""" Testing Recursive feature elimination """ import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from nose.tools import assert_equal, assert_true from scipy import sparse from sklearn.feature_selection.rfe import RFE, RFECV from sklearn.datasets import load_iris, make_friedman1 from sklearn.metrics import zero_one_loss from sklearn.svm import SVC, SVR from sklearn.utils import check_random_state from sklearn.utils.testing import ignore_warnings from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer class MockClassifier(object): """ Dummy classifier to test recursive feature ellimination """ def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) self.coef_ = np.ones(X.shape[1], dtype=np.float64) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=True): return {'foo_param': self.foo_param} def set_params(self, **params): return self def test_rfe_set_params(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) y_pred = rfe.fit(X, y).predict(X) clf = SVC() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1, estimator_params={'kernel': 'linear'}) y_pred2 = rfe.fit(X, y).predict(X) assert_array_equal(y_pred, y_pred2) def test_rfe(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] X_sparse = sparse.csr_matrix(X) y = iris.target # dense model clf = SVC(kernel="linear") rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) # sparse model clf_sparse = SVC(kernel="linear") rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1) rfe_sparse.fit(X_sparse, y) X_r_sparse = rfe_sparse.transform(X_sparse) assert_equal(X_r.shape, iris.data.shape) assert_array_almost_equal(X_r[:10], iris.data[:10]) assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data)) assert_equal(rfe.score(X, y), clf.score(iris.data, iris.target)) assert_array_almost_equal(X_r, X_r_sparse.toarray()) def test_rfe_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = iris.target # dense model clf = MockClassifier() rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1) rfe.fit(X, y) X_r = rfe.transform(X) clf.fit(X_r, y) assert_equal(len(rfe.ranking_), X.shape[1]) assert_equal(X_r.shape, iris.data.shape) def test_rfecv(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) # All the noisy variable were filtered out assert_array_equal(X_r, iris.data) # same in sparse rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) # Test using a customized loss function scoring = make_scorer(zero_one_loss, greater_is_better=False) rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scoring) ignore_warnings(rfecv.fit)(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test using a scorer scorer = get_scorer('accuracy') rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=scorer) rfecv.fit(X, y) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) # Test fix on grid_scores def test_scorer(estimator, X, y): return 1.0 rfecv = RFECV(estimator=SVC(kernel="linear"), step=1, cv=5, scoring=test_scorer) rfecv.fit(X, y) assert_array_equal(rfecv.grid_scores_, np.ones(len(rfecv.grid_scores_))) # Same as the first two tests, but with step=2 rfecv = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) rfecv.fit(X, y) assert_equal(len(rfecv.grid_scores_), 6) assert_equal(len(rfecv.ranking_), X.shape[1]) X_r = rfecv.transform(X) assert_array_equal(X_r, iris.data) rfecv_sparse = RFECV(estimator=SVC(kernel="linear"), step=2, cv=5) X_sparse = sparse.csr_matrix(X) rfecv_sparse.fit(X_sparse, y) X_r_sparse = rfecv_sparse.transform(X_sparse) assert_array_equal(X_r_sparse.toarray(), iris.data) def test_rfecv_mockclassifier(): generator = check_random_state(0) iris = load_iris() X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))] y = list(iris.target) # regression test: list should be supported # Test using the score function rfecv = RFECV(estimator=MockClassifier(), step=1, cv=5) rfecv.fit(X, y) # non-regression test for missing worst feature: assert_equal(len(rfecv.grid_scores_), X.shape[1]) assert_equal(len(rfecv.ranking_), X.shape[1]) def test_rfe_min_step(): n_features = 10 X, y = make_friedman1(n_samples=50, n_features=n_features, random_state=0) n_samples, n_features = X.shape estimator = SVR(kernel="linear") # Test when floor(step * n_features) <= 0 selector = RFE(estimator, step=0.01) sel = selector.fit(X,y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is between (0,1) and floor(step * n_features) > 0 selector = RFE(estimator, step=0.20) sel = selector.fit(X,y) assert_equal(sel.support_.sum(), n_features // 2) # Test when step is an integer selector = RFE(estimator, step=5) sel = selector.fit(X,y) assert_equal(sel.support_.sum(), n_features // 2)
bsd-3-clause
Edu-Glez/Bank_sentiment_analysis
env/lib/python3.6/site-packages/numpy/lib/tests/test_function_base.py
19
122857
from __future__ import division, absolute_import, print_function import operator import warnings import sys import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_raises, assert_allclose, assert_array_max_ulp, assert_warns, assert_raises_regex, dec, suppress_warnings ) from numpy.testing.utils import HAS_REFCOUNT import numpy.lib.function_base as nfb from numpy.random import rand from numpy.lib import ( add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov, delete, diff, digitize, extract, flipud, gradient, hamming, hanning, histogram, histogramdd, i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90, select, setxor1d, sinc, split, trapz, trim_zeros, unwrap, unique, vectorize ) from numpy.compat import long def get_mat(n): data = np.arange(n) data = np.add.outer(data, data) return data class TestRot90(TestCase): def test_basic(self): self.assertRaises(ValueError, rot90, np.ones(4)) assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(0,1,2)) assert_raises(ValueError, rot90, np.ones((2,2)), axes=(0,2)) assert_raises(ValueError, rot90, np.ones((2,2)), axes=(1,1)) assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(-2,1)) a = [[0, 1, 2], [3, 4, 5]] b1 = [[2, 5], [1, 4], [0, 3]] b2 = [[5, 4, 3], [2, 1, 0]] b3 = [[3, 0], [4, 1], [5, 2]] b4 = [[0, 1, 2], [3, 4, 5]] for k in range(-3, 13, 4): assert_equal(rot90(a, k=k), b1) for k in range(-2, 13, 4): assert_equal(rot90(a, k=k), b2) for k in range(-1, 13, 4): assert_equal(rot90(a, k=k), b3) for k in range(0, 13, 4): assert_equal(rot90(a, k=k), b4) assert_equal(rot90(rot90(a, axes=(0,1)), axes=(1,0)), a) assert_equal(rot90(a, k=1, axes=(1,0)), rot90(a, k=-1, axes=(0,1))) def test_axes(self): a = np.ones((50, 40, 3)) assert_equal(rot90(a).shape, (40, 50, 3)) assert_equal(rot90(a, axes=(0,2)), rot90(a, axes=(0,-1))) assert_equal(rot90(a, axes=(1,2)), rot90(a, axes=(-2,-1))) def test_rotation_axes(self): a = np.arange(8).reshape((2,2,2)) a_rot90_01 = [[[2, 3], [6, 7]], [[0, 1], [4, 5]]] a_rot90_12 = [[[1, 3], [0, 2]], [[5, 7], [4, 6]]] a_rot90_20 = [[[4, 0], [6, 2]], [[5, 1], [7, 3]]] a_rot90_10 = [[[4, 5], [0, 1]], [[6, 7], [2, 3]]] assert_equal(rot90(a, axes=(0, 1)), a_rot90_01) assert_equal(rot90(a, axes=(1, 0)), a_rot90_10) assert_equal(rot90(a, axes=(1, 2)), a_rot90_12) for k in range(1,5): assert_equal(rot90(a, k=k, axes=(2, 0)), rot90(a_rot90_20, k=k-1, axes=(2, 0))) class TestFlip(TestCase): def test_axes(self): self.assertRaises(ValueError, np.flip, np.ones(4), axis=1) self.assertRaises(ValueError, np.flip, np.ones((4, 4)), axis=2) self.assertRaises(ValueError, np.flip, np.ones((4, 4)), axis=-3) def test_basic_lr(self): a = get_mat(4) b = a[:, ::-1] assert_equal(np.flip(a, 1), b) a = [[0, 1, 2], [3, 4, 5]] b = [[2, 1, 0], [5, 4, 3]] assert_equal(np.flip(a, 1), b) def test_basic_ud(self): a = get_mat(4) b = a[::-1, :] assert_equal(np.flip(a, 0), b) a = [[0, 1, 2], [3, 4, 5]] b = [[3, 4, 5], [0, 1, 2]] assert_equal(np.flip(a, 0), b) def test_3d_swap_axis0(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) b = np.array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) assert_equal(np.flip(a, 0), b) def test_3d_swap_axis1(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) b = np.array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) assert_equal(np.flip(a, 1), b) def test_3d_swap_axis2(self): a = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) b = np.array([[[1, 0], [3, 2]], [[5, 4], [7, 6]]]) assert_equal(np.flip(a, 2), b) def test_4d(self): a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) for i in range(a.ndim): assert_equal(np.flip(a, i), np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) class TestAny(TestCase): def test_basic(self): y1 = [0, 0, 1, 0] y2 = [0, 0, 0, 0] y3 = [1, 0, 1, 0] assert_(np.any(y1)) assert_(np.any(y3)) assert_(not np.any(y2)) def test_nd(self): y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] assert_(np.any(y1)) assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0]) assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1]) class TestAll(TestCase): def test_basic(self): y1 = [0, 1, 1, 0] y2 = [0, 0, 0, 0] y3 = [1, 1, 1, 1] assert_(not np.all(y1)) assert_(np.all(y3)) assert_(not np.all(y2)) assert_(np.all(~np.array(y2))) def test_nd(self): y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] assert_(not np.all(y1)) assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1]) assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1]) class TestCopy(TestCase): def test_basic(self): a = np.array([[1, 2], [3, 4]]) a_copy = np.copy(a) assert_array_equal(a, a_copy) a_copy[0, 0] = 10 assert_equal(a[0, 0], 1) assert_equal(a_copy[0, 0], 10) def test_order(self): # It turns out that people rely on np.copy() preserving order by # default; changing this broke scikit-learn: # https://github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 a = np.array([[1, 2], [3, 4]]) assert_(a.flags.c_contiguous) assert_(not a.flags.f_contiguous) a_fort = np.array([[1, 2], [3, 4]], order="F") assert_(not a_fort.flags.c_contiguous) assert_(a_fort.flags.f_contiguous) a_copy = np.copy(a) assert_(a_copy.flags.c_contiguous) assert_(not a_copy.flags.f_contiguous) a_fort_copy = np.copy(a_fort) assert_(not a_fort_copy.flags.c_contiguous) assert_(a_fort_copy.flags.f_contiguous) class TestAverage(TestCase): def test_basic(self): y1 = np.array([1, 2, 3]) assert_(average(y1, axis=0) == 2.) y2 = np.array([1., 2., 3.]) assert_(average(y2, axis=0) == 2.) y3 = [0., 0., 0.] assert_(average(y3, axis=0) == 0.) y4 = np.ones((4, 4)) y4[0, 1] = 0 y4[1, 0] = 2 assert_almost_equal(y4.mean(0), average(y4, 0)) assert_almost_equal(y4.mean(1), average(y4, 1)) y5 = rand(5, 5) assert_almost_equal(y5.mean(0), average(y5, 0)) assert_almost_equal(y5.mean(1), average(y5, 1)) y6 = np.matrix(rand(5, 5)) assert_array_equal(y6.mean(0), average(y6, 0)) def test_weights(self): y = np.arange(10) w = np.arange(10) actual = average(y, weights=w) desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum() assert_almost_equal(actual, desired) y1 = np.array([[1, 2, 3], [4, 5, 6]]) w0 = [1, 2] actual = average(y1, weights=w0, axis=0) desired = np.array([3., 4., 5.]) assert_almost_equal(actual, desired) w1 = [0, 0, 1] actual = average(y1, weights=w1, axis=1) desired = np.array([3., 6.]) assert_almost_equal(actual, desired) # This should raise an error. Can we test for that ? # assert_equal(average(y1, weights=w1), 9./2.) # 2D Case w2 = [[0, 0, 1], [0, 0, 2]] desired = np.array([3., 6.]) assert_array_equal(average(y1, weights=w2, axis=1), desired) assert_equal(average(y1, weights=w2), 5.) y3 = rand(5).astype(np.float32) w3 = rand(5).astype(np.float64) assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3)) def test_returned(self): y = np.array([[1, 2, 3], [4, 5, 6]]) # No weights avg, scl = average(y, returned=True) assert_equal(scl, 6.) avg, scl = average(y, 0, returned=True) assert_array_equal(scl, np.array([2., 2., 2.])) avg, scl = average(y, 1, returned=True) assert_array_equal(scl, np.array([3., 3.])) # With weights w0 = [1, 2] avg, scl = average(y, weights=w0, axis=0, returned=True) assert_array_equal(scl, np.array([3., 3., 3.])) w1 = [1, 2, 3] avg, scl = average(y, weights=w1, axis=1, returned=True) assert_array_equal(scl, np.array([6., 6.])) w2 = [[0, 0, 1], [1, 2, 3]] avg, scl = average(y, weights=w2, axis=1, returned=True) assert_array_equal(scl, np.array([1., 6.])) def test_subclasses(self): class subclass(np.ndarray): pass a = np.array([[1,2],[3,4]]).view(subclass) w = np.array([[1,2],[3,4]]).view(subclass) with suppress_warnings() as sup: # Note that the warning is spurious, because the test checks # for weights while a is ignored. sup.filter(FutureWarning, "np.average currently does not preserve") assert_equal(type(np.average(a, weights=w)), subclass) # also test matrices a = np.matrix([[1,2],[3,4]]) w = np.matrix([[1,2],[3,4]]) r = np.average(a, axis=0, weights=w) assert_equal(type(r), np.matrix) assert_equal(r, [[2.5, 10.0/3]]) def test_upcasting(self): types = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), ('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] for at, wt, rt in types: a = np.array([[1,2],[3,4]], dtype=at) w = np.array([[1,2],[3,4]], dtype=wt) assert_equal(np.average(a, weights=w).dtype, np.dtype(rt)) class TestSelect(TestCase): choices = [np.array([1, 2, 3]), np.array([4, 5, 6]), np.array([7, 8, 9])] conditions = [np.array([False, False, False]), np.array([False, True, False]), np.array([False, False, True])] def _select(self, cond, values, default=0): output = [] for m in range(len(cond)): output += [V[m] for V, C in zip(values, cond) if C[m]] or [default] return output def test_basic(self): choices = self.choices conditions = self.conditions assert_array_equal(select(conditions, choices, default=15), self._select(conditions, choices, default=15)) assert_equal(len(choices), 3) assert_equal(len(conditions), 3) def test_broadcasting(self): conditions = [np.array(True), np.array([False, True, False])] choices = [1, np.arange(12).reshape(4, 3)] assert_array_equal(select(conditions, choices), np.ones((4, 3))) # default can broadcast too: assert_equal(select([True], [0], default=[0]).shape, (1,)) def test_return_dtype(self): assert_equal(select(self.conditions, self.choices, 1j).dtype, np.complex_) # But the conditions need to be stronger then the scalar default # if it is scalar. choices = [choice.astype(np.int8) for choice in self.choices] assert_equal(select(self.conditions, choices).dtype, np.int8) d = np.array([1, 2, 3, np.nan, 5, 7]) m = np.isnan(d) assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0]) def test_deprecated_empty(self): with warnings.catch_warnings(record=True): warnings.simplefilter("always") assert_equal(select([], [], 3j), 3j) with warnings.catch_warnings(): warnings.simplefilter("always") assert_warns(DeprecationWarning, select, [], []) warnings.simplefilter("error") assert_raises(DeprecationWarning, select, [], []) def test_non_bool_deprecation(self): choices = self.choices conditions = self.conditions[:] with warnings.catch_warnings(): warnings.filterwarnings("always") conditions[0] = conditions[0].astype(np.int_) assert_warns(DeprecationWarning, select, conditions, choices) conditions[0] = conditions[0].astype(np.uint8) assert_warns(DeprecationWarning, select, conditions, choices) warnings.filterwarnings("error") assert_raises(DeprecationWarning, select, conditions, choices) def test_many_arguments(self): # This used to be limited by NPY_MAXARGS == 32 conditions = [np.array([False])] * 100 choices = [np.array([1])] * 100 select(conditions, choices) class TestInsert(TestCase): def test_basic(self): a = [1, 2, 3] assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) b = np.array([0, 1], dtype=np.float64) assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) assert_equal(insert(b, [], []), b) # Bools will be treated differently in the future: # assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', FutureWarning) assert_equal( insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3]) assert_(w[0].category is FutureWarning) def test_multidim(self): a = [[1, 1, 1]] r = [[2, 2, 2], [1, 1, 1]] assert_equal(insert(a, 0, [1]), [1, 1, 1, 1]) assert_equal(insert(a, 0, [2, 2, 2], axis=0), r) assert_equal(insert(a, 0, 2, axis=0), r) assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]]) a = np.array([[1, 1], [2, 2], [3, 3]]) b = np.arange(1, 4).repeat(3).reshape(3, 3) c = np.concatenate( (a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T, a[:, 1:2]), axis=1) assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b) assert_equal(insert(a, [1], [1, 2, 3], axis=1), c) # scalars behave differently, in this case exactly opposite: assert_equal(insert(a, 1, [1, 2, 3], axis=1), b) assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c) a = np.arange(4).reshape(2, 2) assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a) assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a) # negative axis value a = np.arange(24).reshape((2, 3, 4)) assert_equal(insert(a, 1, a[:,:, 3], axis=-1), insert(a, 1, a[:,:, 3], axis=2)) assert_equal(insert(a, 1, a[:, 2,:], axis=-2), insert(a, 1, a[:, 2,:], axis=1)) # invalid axis value assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=3) assert_raises(IndexError, insert, a, 1, a[:, 2, :], axis=-4) # negative axis value a = np.arange(24).reshape((2, 3, 4)) assert_equal(insert(a, 1, a[:, :, 3], axis=-1), insert(a, 1, a[:, :, 3], axis=2)) assert_equal(insert(a, 1, a[:, 2, :], axis=-2), insert(a, 1, a[:, 2, :], axis=1)) def test_0d(self): # This is an error in the future a = np.array(1) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', DeprecationWarning) assert_equal(insert(a, [], 2, axis=0), np.array(2)) assert_(w[0].category is DeprecationWarning) def test_subclass(self): class SubClass(np.ndarray): pass a = np.arange(10).view(SubClass) assert_(isinstance(np.insert(a, 0, [0]), SubClass)) assert_(isinstance(np.insert(a, [], []), SubClass)) assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass)) assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass)) assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass)) # This is an error in the future: a = np.array(1).view(SubClass) assert_(isinstance(np.insert(a, 0, [0]), SubClass)) def test_index_array_copied(self): x = np.array([1, 1, 1]) np.insert([0, 1, 2], x, [3, 4, 5]) assert_equal(x, np.array([1, 1, 1])) def test_structured_array(self): a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=[('foo', 'i'), ('bar', 'a1')]) val = (4, 'd') b = np.insert(a, 0, val) assert_array_equal(b[0], np.array(val, dtype=b.dtype)) val = [(4, 'd')] * 2 b = np.insert(a, [0, 2], val) assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype)) class TestAmax(TestCase): def test_basic(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.amax(a), 10.0) b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]] assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) class TestAmin(TestCase): def test_basic(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.amin(a), -5.0) b = [[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]] assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0]) assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0]) class TestPtp(TestCase): def test_basic(self): a = np.array([3, 4, 5, 10, -3, -5, 6.0]) assert_equal(a.ptp(axis=0), 15.0) b = np.array([[3, 6.0, 9.0], [4, 10.0, 5.0], [8, 3.0, 2.0]]) assert_equal(b.ptp(axis=0), [5.0, 7.0, 7.0]) assert_equal(b.ptp(axis=-1), [6.0, 6.0, 6.0]) class TestCumsum(TestCase): def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) assert_array_equal(np.cumsum(a, axis=0), tgt) tgt = np.array( [[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) assert_array_equal(np.cumsum(a2, axis=0), tgt) tgt = np.array( [[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) assert_array_equal(np.cumsum(a2, axis=1), tgt) class TestProd(TestCase): def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, np.prod, a) self.assertRaises(ArithmeticError, np.prod, a2, 1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype)) class TestCumprod(TestCase): def test_basic(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: self.assertRaises(ArithmeticError, np.cumprod, a) self.assertRaises(ArithmeticError, np.cumprod, a2, 1) self.assertRaises(ArithmeticError, np.cumprod, a) else: assert_array_equal(np.cumprod(a, axis=-1), np.array([1, 2, 20, 220, 1320, 6600, 26400], ctype)) assert_array_equal(np.cumprod(a2, axis=0), np.array([[1, 2, 3, 4], [5, 12, 21, 36], [50, 36, 84, 180]], ctype)) assert_array_equal(np.cumprod(a2, axis=-1), np.array([[1, 2, 6, 24], [5, 30, 210, 1890], [10, 30, 120, 600]], ctype)) class TestDiff(TestCase): def test_basic(self): x = [1, 4, 6, 7, 12] out = np.array([3, 2, 1, 5]) out2 = np.array([-1, -1, 4]) out3 = np.array([0, 5]) assert_array_equal(diff(x), out) assert_array_equal(diff(x, n=2), out2) assert_array_equal(diff(x, n=3), out3) def test_nd(self): x = 20 * rand(10, 20, 30) out1 = x[:, :, 1:] - x[:, :, :-1] out2 = out1[:, :, 1:] - out1[:, :, :-1] out3 = x[1:, :, :] - x[:-1, :, :] out4 = out3[1:, :, :] - out3[:-1, :, :] assert_array_equal(diff(x), out1) assert_array_equal(diff(x, n=2), out2) assert_array_equal(diff(x, axis=0), out3) assert_array_equal(diff(x, n=2, axis=0), out4) class TestDelete(TestCase): def setUp(self): self.a = np.arange(5) self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) def _check_inverse_of_slicing(self, indices): a_del = delete(self.a, indices) nd_a_del = delete(self.nd_a, indices, axis=1) msg = 'Delete failed for obj: %r' % indices # NOTE: The cast should be removed after warning phase for bools if not isinstance(indices, (slice, int, long, np.integer)): indices = np.asarray(indices, dtype=np.intp) indices = indices[(indices >= 0) & (indices < 5)] assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, err_msg=msg) xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0]) assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg) def test_slices(self): lims = [-6, -2, 0, 1, 2, 4, 5] steps = [-3, -1, 1, 3] for start in lims: for stop in lims: for step in steps: s = slice(start, stop, step) self._check_inverse_of_slicing(s) def test_fancy(self): # Deprecation/FutureWarning tests should be kept after change. self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]])) with warnings.catch_warnings(): warnings.filterwarnings('error', category=DeprecationWarning) assert_raises(DeprecationWarning, delete, self.a, [100]) assert_raises(DeprecationWarning, delete, self.a, [-100]) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', category=FutureWarning) self._check_inverse_of_slicing([0, -1, 2, 2]) obj = np.array([True, False, False], dtype=bool) self._check_inverse_of_slicing(obj) assert_(w[0].category is FutureWarning) assert_(w[1].category is FutureWarning) def test_single(self): self._check_inverse_of_slicing(0) self._check_inverse_of_slicing(-4) def test_0d(self): a = np.array(1) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', DeprecationWarning) assert_equal(delete(a, [], axis=0), a) assert_(w[0].category is DeprecationWarning) def test_subclass(self): class SubClass(np.ndarray): pass a = self.a.view(SubClass) assert_(isinstance(delete(a, 0), SubClass)) assert_(isinstance(delete(a, []), SubClass)) assert_(isinstance(delete(a, [0, 1]), SubClass)) assert_(isinstance(delete(a, slice(1, 2)), SubClass)) assert_(isinstance(delete(a, slice(1, -2)), SubClass)) def test_array_order_preserve(self): # See gh-7113 k = np.arange(10).reshape(2, 5, order='F') m = delete(k, slice(60, None), axis=1) # 'k' is Fortran ordered, and 'm' should have the # same ordering as 'k' and NOT become C ordered assert_equal(m.flags.c_contiguous, k.flags.c_contiguous) assert_equal(m.flags.f_contiguous, k.flags.f_contiguous) class TestGradient(TestCase): def test_basic(self): v = [[1, 1], [3, 4]] x = np.array(v) dx = [np.array([[2., 3.], [2., 3.]]), np.array([[0., 0.], [1., 1.]])] assert_array_equal(gradient(x), dx) assert_array_equal(gradient(v), dx) def test_badargs(self): # for 2D array, gradient can take 0, 1, or 2 extra args x = np.array([[1, 1], [3, 4]]) assert_raises(SyntaxError, gradient, x, np.array([1., 1.]), np.array([1., 1.]), np.array([1., 1.])) # disallow arrays as distances, see gh-6847 assert_raises(ValueError, gradient, np.arange(5), np.ones(5)) def test_masked(self): # Make sure that gradient supports subclasses like masked arrays x = np.ma.array([[1, 1], [3, 4]], mask=[[False, False], [False, False]]) out = gradient(x)[0] assert_equal(type(out), type(x)) # And make sure that the output and input don't have aliased mask # arrays assert_(x.mask is not out.mask) # Also check that edge_order=2 doesn't alter the original mask x2 = np.ma.arange(5) x2[2] = np.ma.masked np.gradient(x2, edge_order=2) assert_array_equal(x2.mask, [False, False, True, False, False]) def test_datetime64(self): # Make sure gradient() can handle special types like datetime64 x = np.array( ['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', '1910-10-12', '1910-12-12', '1912-12-12'], dtype='datetime64[D]') dx = np.array( [-5, -3, 0, 31, 61, 396, 731], dtype='timedelta64[D]') assert_array_equal(gradient(x), dx) assert_(dx.dtype == np.dtype('timedelta64[D]')) def test_timedelta64(self): # Make sure gradient() can handle special types like timedelta64 x = np.array( [-5, -3, 10, 12, 61, 321, 300], dtype='timedelta64[D]') dx = np.array( [2, 7, 7, 25, 154, 119, -21], dtype='timedelta64[D]') assert_array_equal(gradient(x), dx) assert_(dx.dtype == np.dtype('timedelta64[D]')) def test_second_order_accurate(self): # Testing that the relative numerical error is less that 3% for # this example problem. This corresponds to second order # accurate finite differences for all interior and boundary # points. x = np.linspace(0, 1, 10) dx = x[1] - x[0] y = 2 * x ** 3 + 4 * x ** 2 + 2 * x analytical = 6 * x ** 2 + 8 * x + 2 num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1) assert_(np.all(num_error < 0.03) == True) def test_specific_axes(self): # Testing that gradient can work on a given axis only v = [[1, 1], [3, 4]] x = np.array(v) dx = [np.array([[2., 3.], [2., 3.]]), np.array([[0., 0.], [1., 1.]])] assert_array_equal(gradient(x, axis=0), dx[0]) assert_array_equal(gradient(x, axis=1), dx[1]) assert_array_equal(gradient(x, axis=-1), dx[1]) assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]]) # test axis=None which means all axes assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]]) # and is the same as no axis keyword given assert_almost_equal(gradient(x, axis=None), gradient(x)) # test vararg order assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), [dx[1]/2.0, dx[0]/3.0]) # test maximal number of varargs assert_raises(SyntaxError, gradient, x, 1, 2, axis=1) assert_raises(ValueError, gradient, x, axis=3) assert_raises(ValueError, gradient, x, axis=-3) assert_raises(TypeError, gradient, x, axis=[1,]) class TestAngle(TestCase): def test_basic(self): x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2, 1, 1j, -1, -1j, 1 - 3j, -1 + 3j] y = angle(x) yo = [ np.arctan(3.0 / 1.0), np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0, -np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)] z = angle(x, deg=1) zo = np.array(yo) * 180 / np.pi assert_array_almost_equal(y, yo, 11) assert_array_almost_equal(z, zo, 11) class TestTrimZeros(TestCase): """ Only testing for integer splits. """ def test_basic(self): a = np.array([0, 0, 1, 2, 3, 4, 0]) res = trim_zeros(a) assert_array_equal(res, np.array([1, 2, 3, 4])) def test_leading_skip(self): a = np.array([0, 0, 1, 0, 2, 3, 4, 0]) res = trim_zeros(a) assert_array_equal(res, np.array([1, 0, 2, 3, 4])) def test_trailing_skip(self): a = np.array([0, 0, 1, 0, 2, 3, 0, 4, 0]) res = trim_zeros(a) assert_array_equal(res, np.array([1, 0, 2, 3, 0, 4])) class TestExtins(TestCase): def test_basic(self): a = np.array([1, 3, 2, 1, 2, 3, 3]) b = extract(a > 1, a) assert_array_equal(b, [3, 2, 2, 3, 3]) def test_place(self): # Make sure that non-np.ndarray objects # raise an error instead of doing nothing assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) a = np.array([1, 4, 3, 2, 5, 8, 7]) place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) place(a, np.zeros(7), []) assert_array_equal(a, np.arange(1, 8)) place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) assert_raises_regex(ValueError, "Cannot insert from an empty array", lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) # See Issue #6974 a = np.array(['12', '34']) place(a, [0, 1], '9') assert_array_equal(a, ['12', '9']) def test_both(self): a = rand(10) mask = a > 0.5 ac = a.copy() c = extract(mask, a) place(a, mask, 0) place(a, mask, c) assert_array_equal(a, ac) class TestVectorize(TestCase): def test_simple(self): def addsubtract(a, b): if a > b: return a - b else: return a + b f = vectorize(addsubtract) r = f([0, 3, 6, 9], [1, 3, 5, 7]) assert_array_equal(r, [1, 6, 1, 2]) def test_scalar(self): def addsubtract(a, b): if a > b: return a - b else: return a + b f = vectorize(addsubtract) r = f([0, 3, 6, 9], 5) assert_array_equal(r, [5, 8, 1, 4]) def test_large(self): x = np.linspace(-3, 2, 10000) f = vectorize(lambda x: x) y = f(x) assert_array_equal(y, x) def test_ufunc(self): import math f = vectorize(math.cos) args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi]) r1 = f(args) r2 = np.cos(args) assert_array_almost_equal(r1, r2) def test_keywords(self): def foo(a, b=1): return a + b f = vectorize(foo) args = np.array([1, 2, 3]) r1 = f(args) r2 = np.array([2, 3, 4]) assert_array_equal(r1, r2) r1 = f(args, 2) r2 = np.array([3, 4, 5]) assert_array_equal(r1, r2) def test_keywords_no_func_code(self): # This needs to test a function that has keywords but # no func_code attribute, since otherwise vectorize will # inspect the func_code. import random try: vectorize(random.randrange) # Should succeed except: raise AssertionError() def test_keywords2_ticket_2100(self): # Test kwarg support: enhancement ticket 2100 def foo(a, b=1): return a + b f = vectorize(foo) args = np.array([1, 2, 3]) r1 = f(a=args) r2 = np.array([2, 3, 4]) assert_array_equal(r1, r2) r1 = f(b=1, a=args) assert_array_equal(r1, r2) r1 = f(args, b=2) r2 = np.array([3, 4, 5]) assert_array_equal(r1, r2) def test_keywords3_ticket_2100(self): # Test excluded with mixed positional and kwargs: ticket 2100 def mypolyval(x, p): _p = list(p) res = _p.pop(0) while _p: res = res * x + _p.pop(0) return res vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) ans = [3, 6] assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) def test_keywords4_ticket_2100(self): # Test vectorizing function with no positional args. @vectorize def f(**kw): res = 1.0 for _k in kw: res *= kw[_k] return res assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) def test_keywords5_ticket_2100(self): # Test vectorizing function with no kwargs args. @vectorize def f(*v): return np.prod(v) assert_array_equal(f([1, 2], [3, 4]), [3, 8]) def test_coverage1_ticket_2100(self): def foo(): return 1 f = vectorize(foo) assert_array_equal(f(), 1) def test_assigning_docstring(self): def foo(x): """Original documentation""" return x f = vectorize(foo) assert_equal(f.__doc__, foo.__doc__) doc = "Provided documentation" f = vectorize(foo, doc=doc) assert_equal(f.__doc__, doc) def test_UnboundMethod_ticket_1156(self): # Regression test for issue 1156 class Foo: b = 2 def bar(self, a): return a ** self.b assert_array_equal(vectorize(Foo().bar)(np.arange(9)), np.arange(9) ** 2) assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), np.arange(9) ** 2) def test_execution_order_ticket_1487(self): # Regression test for dependence on execution order: issue 1487 f1 = vectorize(lambda x: x) res1a = f1(np.arange(3)) res1b = f1(np.arange(0.1, 3)) f2 = vectorize(lambda x: x) res2b = f2(np.arange(0.1, 3)) res2a = f2(np.arange(3)) assert_equal(res1a, res2a) assert_equal(res1b, res2b) def test_string_ticket_1892(self): # Test vectorization over strings: issue 1892. f = np.vectorize(lambda x: x) s = '0123456789' * 10 assert_equal(s, f(s)) def test_cache(self): # Ensure that vectorized func called exactly once per argument. _calls = [0] @vectorize def f(x): _calls[0] += 1 return x ** 2 f.cache = True x = np.arange(5) assert_array_equal(f(x), x * x) assert_equal(_calls[0], len(x)) def test_otypes(self): f = np.vectorize(lambda x: x) f.otypes = 'i' x = np.arange(5) assert_array_equal(f(x), x) def test_parse_gufunc_signature(self): assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()])) assert_equal(nfb._parse_gufunc_signature('(x,y)->()'), ([('x', 'y')], [()])) assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'), ([('x',), ('y',)], [()])) assert_equal(nfb._parse_gufunc_signature('(x)->(y)'), ([('x',)], [('y',)])) assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'), ([('x',)], [('y',), ()])) assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'), ([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) with assert_raises(ValueError): nfb._parse_gufunc_signature('(x)(y)->()') with assert_raises(ValueError): nfb._parse_gufunc_signature('(x),(y)->') with assert_raises(ValueError): nfb._parse_gufunc_signature('((x))->(x)') def test_signature_simple(self): def addsubtract(a, b): if a > b: return a - b else: return a + b f = vectorize(addsubtract, signature='(),()->()') r = f([0, 3, 6, 9], [1, 3, 5, 7]) assert_array_equal(r, [1, 6, 1, 2]) def test_signature_mean_last(self): def mean(a): return a.mean() f = vectorize(mean, signature='(n)->()') r = f([[1, 3], [2, 4]]) assert_array_equal(r, [2, 3]) def test_signature_center(self): def center(a): return a - a.mean() f = vectorize(center, signature='(n)->(n)') r = f([[1, 3], [2, 4]]) assert_array_equal(r, [[-1, 1], [-1, 1]]) def test_signature_two_outputs(self): f = vectorize(lambda x: (x, x), signature='()->(),()') r = f([1, 2, 3]) assert_(isinstance(r, tuple) and len(r) == 2) assert_array_equal(r[0], [1, 2, 3]) assert_array_equal(r[1], [1, 2, 3]) def test_signature_outer(self): f = vectorize(np.outer, signature='(a),(b)->(a,b)') r = f([1, 2], [1, 2, 3]) assert_array_equal(r, [[1, 2, 3], [2, 4, 6]]) r = f([[[1, 2]]], [1, 2, 3]) assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]]) r = f([[1, 0], [2, 0]], [1, 2, 3]) assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], [[2, 4, 6], [0, 0, 0]]]) r = f([1, 2], [[1, 2, 3], [0, 0, 0]]) assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], [[0, 0, 0], [0, 0, 0]]]) def test_signature_computed_size(self): f = vectorize(lambda x: x[:-1], signature='(n)->(m)') r = f([1, 2, 3]) assert_array_equal(r, [1, 2]) r = f([[1, 2, 3], [2, 3, 4]]) assert_array_equal(r, [[1, 2], [2, 3]]) def test_signature_excluded(self): def foo(a, b=1): return a + b f = vectorize(foo, signature='()->()', excluded={'b'}) assert_array_equal(f([1, 2, 3]), [2, 3, 4]) assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3]) def test_signature_otypes(self): f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64']) r = f([1, 2, 3]) assert_equal(r.dtype, np.dtype('float64')) assert_array_equal(r, [1, 2, 3]) def test_signature_invalid_inputs(self): f = vectorize(operator.add, signature='(n),(n)->(n)') with assert_raises_regex(TypeError, 'wrong number of positional'): f([1, 2]) with assert_raises_regex( ValueError, 'does not have enough dimensions'): f(1, 2) with assert_raises_regex( ValueError, 'inconsistent size for core dimension'): f([1, 2], [1, 2, 3]) f = vectorize(operator.add, signature='()->()') with assert_raises_regex(TypeError, 'wrong number of positional'): f(1, 2) def test_signature_invalid_outputs(self): f = vectorize(lambda x: x[:-1], signature='(n)->(n)') with assert_raises_regex( ValueError, 'inconsistent size for core dimension'): f([1, 2, 3]) f = vectorize(lambda x: x, signature='()->(),()') with assert_raises_regex(ValueError, 'wrong number of outputs'): f(1) f = vectorize(lambda x: (x, x), signature='()->()') with assert_raises_regex(ValueError, 'wrong number of outputs'): f([1, 2]) def test_size_zero_output(self): # see issue 5868 f = np.vectorize(lambda x: x) x = np.zeros([0, 5], dtype=int) with assert_raises_regex(ValueError, 'otypes'): f(x) f.otypes = 'i' assert_array_equal(f(x), x) f = np.vectorize(lambda x: x, signature='()->()') with assert_raises_regex(ValueError, 'otypes'): f(x) f = np.vectorize(lambda x: x, signature='()->()', otypes='i') assert_array_equal(f(x), x) f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i') assert_array_equal(f(x), x) f = np.vectorize(lambda x: x, signature='(n)->(n)') assert_array_equal(f(x.T), x.T) f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i') with assert_raises_regex(ValueError, 'new output dimensions'): f(x) class TestDigitize(TestCase): def test_forward(self): x = np.arange(-6, 5) bins = np.arange(-5, 5) assert_array_equal(digitize(x, bins), np.arange(11)) def test_reverse(self): x = np.arange(5, -6, -1) bins = np.arange(5, -5, -1) assert_array_equal(digitize(x, bins), np.arange(11)) def test_random(self): x = rand(10) bin = np.linspace(x.min(), x.max(), 10) assert_(np.all(digitize(x, bin) != 0)) def test_right_basic(self): x = [1, 5, 4, 10, 8, 11, 0] bins = [1, 5, 10] default_answer = [1, 2, 1, 3, 2, 3, 0] assert_array_equal(digitize(x, bins), default_answer) right_answer = [0, 1, 1, 2, 2, 3, 0] assert_array_equal(digitize(x, bins, True), right_answer) def test_right_open(self): x = np.arange(-6, 5) bins = np.arange(-6, 4) assert_array_equal(digitize(x, bins, True), np.arange(11)) def test_right_open_reverse(self): x = np.arange(5, -6, -1) bins = np.arange(4, -6, -1) assert_array_equal(digitize(x, bins, True), np.arange(11)) def test_right_open_random(self): x = rand(10) bins = np.linspace(x.min(), x.max(), 10) assert_(np.all(digitize(x, bins, True) != 10)) def test_monotonic(self): x = [-1, 0, 1, 2] bins = [0, 0, 1] assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) bins = [1, 1, 0] assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) bins = [1, 1, 1, 1] assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) bins = [0, 0, 1, 0] assert_raises(ValueError, digitize, x, bins) bins = [1, 1, 0, 1] assert_raises(ValueError, digitize, x, bins) def test_casting_error(self): x = [1, 2, 3 + 1.j] bins = [1, 2, 3] assert_raises(TypeError, digitize, x, bins) x, bins = bins, x assert_raises(TypeError, digitize, x, bins) def test_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) assert_(not isinstance(digitize(b, a, False), A)) assert_(not isinstance(digitize(b, a, True), A)) class TestUnwrap(TestCase): def test_simple(self): # check that unwrap removes jumps greather that 2*pi assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) # check that unwrap maintans continuity assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) class TestFilterwindows(TestCase): def test_hanning(self): # check symmetry w = hanning(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.500, 4) def test_hamming(self): # check symmetry w = hamming(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) def test_bartlett(self): # check symmetry w = bartlett(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) def test_blackman(self): # check symmetry w = blackman(10) assert_array_almost_equal(w, flipud(w), 7) # check known value assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) class TestTrapz(TestCase): def test_simple(self): x = np.arange(-10, 10, .1) r = trapz(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1) # check integral of normal equals 1 assert_almost_equal(r, 1, 7) def test_ndim(self): x = np.linspace(0, 1, 3) y = np.linspace(0, 2, 8) z = np.linspace(0, 3, 13) wx = np.ones_like(x) * (x[1] - x[0]) wx[0] /= 2 wx[-1] /= 2 wy = np.ones_like(y) * (y[1] - y[0]) wy[0] /= 2 wy[-1] /= 2 wz = np.ones_like(z) * (z[1] - z[0]) wz[0] /= 2 wz[-1] /= 2 q = x[:, None, None] + y[None,:, None] + z[None, None,:] qx = (q * wx[:, None, None]).sum(axis=0) qy = (q * wy[None, :, None]).sum(axis=1) qz = (q * wz[None, None, :]).sum(axis=2) # n-d `x` r = trapz(q, x=x[:, None, None], axis=0) assert_almost_equal(r, qx) r = trapz(q, x=y[None,:, None], axis=1) assert_almost_equal(r, qy) r = trapz(q, x=z[None, None,:], axis=2) assert_almost_equal(r, qz) # 1-d `x` r = trapz(q, x=x, axis=0) assert_almost_equal(r, qx) r = trapz(q, x=y, axis=1) assert_almost_equal(r, qy) r = trapz(q, x=z, axis=2) assert_almost_equal(r, qz) def test_masked(self): # Testing that masked arrays behave as if the function is 0 where # masked x = np.arange(5) y = x * x mask = x == 2 ym = np.ma.array(y, mask=mask) r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) assert_almost_equal(trapz(ym, x), r) xm = np.ma.array(x, mask=mask) assert_almost_equal(trapz(ym, xm), r) xm = np.ma.array(x, mask=mask) assert_almost_equal(trapz(y, xm), r) def test_matrix(self): # Test to make sure matrices give the same answer as ndarrays x = np.linspace(0, 5) y = x * x r = trapz(y, x) mx = np.matrix(x) my = np.matrix(y) mr = trapz(my, mx) assert_almost_equal(mr, r) class TestSinc(TestCase): def test_simple(self): assert_(sinc(0) == 1) w = sinc(np.linspace(-1, 1, 100)) # check symmetry assert_array_almost_equal(w, flipud(w), 7) def test_array_like(self): x = [0, 0.5] y1 = sinc(np.array(x)) y2 = sinc(list(x)) y3 = sinc(tuple(x)) assert_array_equal(y1, y2) assert_array_equal(y1, y3) class TestHistogram(TestCase): def setUp(self): pass def tearDown(self): pass def test_simple(self): n = 100 v = rand(n) (a, b) = histogram(v) # check if the sum of the bins equals the number of samples assert_equal(np.sum(a, axis=0), n) # check that the bin counts are evenly spaced when the data is from # a linear function (a, b) = histogram(np.linspace(0, 10, 100)) assert_array_equal(a, 10) def test_one_bin(self): # Ticket 632 hist, edges = histogram([1, 2, 3, 4], [1, 2]) assert_array_equal(hist, [2, ]) assert_array_equal(edges, [1, 2]) assert_raises(ValueError, histogram, [1, 2], bins=0) h, e = histogram([1, 2], bins=1) assert_equal(h, np.array([2])) assert_allclose(e, np.array([1., 2.])) def test_normed(self): # Check that the integral of the density equals 1. n = 100 v = rand(n) a, b = histogram(v, normed=True) area = np.sum(a * diff(b)) assert_almost_equal(area, 1) # Check with non-constant bin widths (buggy but backwards # compatible) v = np.arange(10) bins = [0, 1, 5, 9, 10] a, b = histogram(v, bins, normed=True) area = np.sum(a * diff(b)) assert_almost_equal(area, 1) def test_density(self): # Check that the integral of the density equals 1. n = 100 v = rand(n) a, b = histogram(v, density=True) area = np.sum(a * diff(b)) assert_almost_equal(area, 1) # Check with non-constant bin widths v = np.arange(10) bins = [0, 1, 3, 6, 10] a, b = histogram(v, bins, density=True) assert_array_equal(a, .1) assert_equal(np.sum(a * diff(b)), 1) # Variale bin widths are especially useful to deal with # infinities. v = np.arange(10) bins = [0, 1, 3, 6, np.inf] a, b = histogram(v, bins, density=True) assert_array_equal(a, [.1, .1, .1, 0.]) # Taken from a bug report from N. Becker on the numpy-discussion # mailing list Aug. 6, 2010. counts, dmy = np.histogram( [1, 2, 3, 4], [0.5, 1.5, np.inf], density=True) assert_equal(counts, [.25, 0]) def test_outliers(self): # Check that outliers are not tallied a = np.arange(10) + .5 # Lower outliers h, b = histogram(a, range=[0, 9]) assert_equal(h.sum(), 9) # Upper outliers h, b = histogram(a, range=[1, 10]) assert_equal(h.sum(), 9) # Normalization h, b = histogram(a, range=[1, 9], normed=True) assert_almost_equal((h * diff(b)).sum(), 1, decimal=15) # Weights w = np.arange(10) + .5 h, b = histogram(a, range=[1, 9], weights=w, normed=True) assert_equal((h * diff(b)).sum(), 1) h, b = histogram(a, bins=8, range=[1, 9], weights=w) assert_equal(h, w[1:-1]) def test_type(self): # Check the type of the returned histogram a = np.arange(10) + .5 h, b = histogram(a) assert_(np.issubdtype(h.dtype, int)) h, b = histogram(a, normed=True) assert_(np.issubdtype(h.dtype, float)) h, b = histogram(a, weights=np.ones(10, int)) assert_(np.issubdtype(h.dtype, int)) h, b = histogram(a, weights=np.ones(10, float)) assert_(np.issubdtype(h.dtype, float)) def test_f32_rounding(self): # gh-4799, check that the rounding of the edges works with float32 x = np.array([276.318359, -69.593948, 21.329449], dtype=np.float32) y = np.array([5005.689453, 4481.327637, 6010.369629], dtype=np.float32) counts_hist, xedges, yedges = np.histogram2d(x, y, bins=100) assert_equal(counts_hist.sum(), 3.) def test_weights(self): v = rand(100) w = np.ones(100) * 5 a, b = histogram(v) na, nb = histogram(v, normed=True) wa, wb = histogram(v, weights=w) nwa, nwb = histogram(v, weights=w, normed=True) assert_array_almost_equal(a * 5, wa) assert_array_almost_equal(na, nwa) # Check weights are properly applied. v = np.linspace(0, 10, 10) w = np.concatenate((np.zeros(5), np.ones(5))) wa, wb = histogram(v, bins=np.arange(11), weights=w) assert_array_almost_equal(wa, w) # Check with integer weights wa, wb = histogram([1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1]) assert_array_equal(wa, [4, 5, 0, 1]) wa, wb = histogram( [1, 2, 2, 4], bins=4, weights=[4, 3, 2, 1], normed=True) assert_array_almost_equal(wa, np.array([4, 5, 0, 1]) / 10. / 3. * 4) # Check weights with non-uniform bin widths a, b = histogram( np.arange(9), [0, 1, 3, 6, 10], weights=[2, 1, 1, 1, 1, 1, 1, 1, 1], density=True) assert_almost_equal(a, [.2, .1, .1, .075]) def test_exotic_weights(self): # Test the use of weights that are not integer or floats, but e.g. # complex numbers or object types. # Complex weights values = np.array([1.3, 2.5, 2.3]) weights = np.array([1, -1, 2]) + 1j * np.array([2, 1, 2]) # Check with custom bins wa, wb = histogram(values, bins=[0, 2, 3], weights=weights) assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3])) # Check with even bins wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights) assert_array_almost_equal(wa, np.array([1, 1]) + 1j * np.array([2, 3])) # Decimal weights from decimal import Decimal values = np.array([1.3, 2.5, 2.3]) weights = np.array([Decimal(1), Decimal(2), Decimal(3)]) # Check with custom bins wa, wb = histogram(values, bins=[0, 2, 3], weights=weights) assert_array_almost_equal(wa, [Decimal(1), Decimal(5)]) # Check with even bins wa, wb = histogram(values, bins=2, range=[1, 3], weights=weights) assert_array_almost_equal(wa, [Decimal(1), Decimal(5)]) def test_no_side_effects(self): # This is a regression test that ensures that values passed to # ``histogram`` are unchanged. values = np.array([1.3, 2.5, 2.3]) np.histogram(values, range=[-10, 10], bins=100) assert_array_almost_equal(values, [1.3, 2.5, 2.3]) def test_empty(self): a, b = histogram([], bins=([0, 1])) assert_array_equal(a, np.array([0])) assert_array_equal(b, np.array([0, 1])) def test_error_binnum_type (self): # Tests if right Error is raised if bins argument is float vals = np.linspace(0.0, 1.0, num=100) histogram(vals, 5) assert_raises(TypeError, histogram, vals, 2.4) def test_finite_range(self): # Normal ranges should be fine vals = np.linspace(0.0, 1.0, num=100) histogram(vals, range=[0.25,0.75]) assert_raises(ValueError, histogram, vals, range=[np.nan,0.75]) assert_raises(ValueError, histogram, vals, range=[0.25,np.inf]) def test_bin_edge_cases(self): # Ensure that floating-point computations correctly place edge cases. arr = np.array([337, 404, 739, 806, 1007, 1811, 2012]) hist, edges = np.histogram(arr, bins=8296, range=(2, 2280)) mask = hist > 0 left_edges = edges[:-1][mask] right_edges = edges[1:][mask] for x, left, right in zip(arr, left_edges, right_edges): self.assertGreaterEqual(x, left) self.assertLess(x, right) def test_last_bin_inclusive_range(self): arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.]) hist, edges = np.histogram(arr, bins=30, range=(-0.5, 5)) self.assertEqual(hist[-1], 1) class TestHistogramOptimBinNums(TestCase): """ Provide test coverage when using provided estimators for optimal number of bins """ def test_empty(self): estimator_list = ['fd', 'scott', 'rice', 'sturges', 'doane', 'sqrt', 'auto'] # check it can deal with empty data for estimator in estimator_list: a, b = histogram([], bins=estimator) assert_array_equal(a, np.array([0])) assert_array_equal(b, np.array([0, 1])) def test_simple(self): """ Straightforward testing with a mixture of linspace data (for consistency). All test values have been precomputed and the values shouldn't change """ # Some basic sanity checking, with some fixed data. # Checking for the correct number of bins basic_test = {50: {'fd': 4, 'scott': 4, 'rice': 8, 'sturges': 7, 'doane': 8, 'sqrt': 8, 'auto': 7}, 500: {'fd': 8, 'scott': 8, 'rice': 16, 'sturges': 10, 'doane': 12, 'sqrt': 23, 'auto': 10}, 5000: {'fd': 17, 'scott': 17, 'rice': 35, 'sturges': 14, 'doane': 17, 'sqrt': 71, 'auto': 17}} for testlen, expectedResults in basic_test.items(): # Create some sort of non uniform data to test with # (2 peak uniform mixture) x1 = np.linspace(-10, -1, testlen // 5 * 2) x2 = np.linspace(1, 10, testlen // 5 * 3) x = np.concatenate((x1, x2)) for estimator, numbins in expectedResults.items(): a, b = np.histogram(x, estimator) assert_equal(len(a), numbins, err_msg="For the {0} estimator " "with datasize of {1}".format(estimator, testlen)) def test_small(self): """ Smaller datasets have the potential to cause issues with the data adaptive methods, especially the FD method. All bin numbers have been precalculated. """ small_dat = {1: {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1, 'doane': 1, 'sqrt': 1}, 2: {'fd': 2, 'scott': 1, 'rice': 3, 'sturges': 2, 'doane': 1, 'sqrt': 2}, 3: {'fd': 2, 'scott': 2, 'rice': 3, 'sturges': 3, 'doane': 3, 'sqrt': 2}} for testlen, expectedResults in small_dat.items(): testdat = np.arange(testlen) for estimator, expbins in expectedResults.items(): a, b = np.histogram(testdat, estimator) assert_equal(len(a), expbins, err_msg="For the {0} estimator " "with datasize of {1}".format(estimator, testlen)) def test_incorrect_methods(self): """ Check a Value Error is thrown when an unknown string is passed in """ check_list = ['mad', 'freeman', 'histograms', 'IQR'] for estimator in check_list: assert_raises(ValueError, histogram, [1, 2, 3], estimator) def test_novariance(self): """ Check that methods handle no variance in data Primarily for Scott and FD as the SD and IQR are both 0 in this case """ novar_dataset = np.ones(100) novar_resultdict = {'fd': 1, 'scott': 1, 'rice': 1, 'sturges': 1, 'doane': 1, 'sqrt': 1, 'auto': 1} for estimator, numbins in novar_resultdict.items(): a, b = np.histogram(novar_dataset, estimator) assert_equal(len(a), numbins, err_msg="{0} estimator, " "No Variance test".format(estimator)) def test_outlier(self): """ Check the FD, Scott and Doane with outliers. The FD estimates a smaller binwidth since it's less affected by outliers. Since the range is so (artificially) large, this means more bins, most of which will be empty, but the data of interest usually is unaffected. The Scott estimator is more affected and returns fewer bins, despite most of the variance being in one area of the data. The Doane estimator lies somewhere between the other two. """ xcenter = np.linspace(-10, 10, 50) outlier_dataset = np.hstack((np.linspace(-110, -100, 5), xcenter)) outlier_resultdict = {'fd': 21, 'scott': 5, 'doane': 11} for estimator, numbins in outlier_resultdict.items(): a, b = np.histogram(outlier_dataset, estimator) assert_equal(len(a), numbins) def test_simple_range(self): """ Straightforward testing with a mixture of linspace data (for consistency). Adding in a 3rd mixture that will then be completely ignored. All test values have been precomputed and the shouldn't change. """ # some basic sanity checking, with some fixed data. Checking for the correct number of bins basic_test = {50: {'fd': 8, 'scott': 8, 'rice': 15, 'sturges': 14, 'auto': 14}, 500: {'fd': 15, 'scott': 16, 'rice': 32, 'sturges': 20, 'auto': 20}, 5000: {'fd': 33, 'scott': 33, 'rice': 69, 'sturges': 27, 'auto': 33}} for testlen, expectedResults in basic_test.items(): # create some sort of non uniform data to test with (3 peak uniform mixture) x1 = np.linspace(-10, -1, testlen // 5 * 2) x2 = np.linspace(1, 10, testlen // 5 * 3) x3 = np.linspace(-100, -50, testlen) x = np.hstack((x1, x2, x3)) for estimator, numbins in expectedResults.items(): a, b = np.histogram(x, estimator, range = (-20, 20)) msg = "For the {0} estimator with datasize of {1}".format(estimator, testlen) assert_equal(len(a), numbins, err_msg=msg) def test_simple_weighted(self): """ Check that weighted data raises a TypeError """ estimator_list = ['fd', 'scott', 'rice', 'sturges', 'auto'] for estimator in estimator_list: assert_raises(TypeError, histogram, [1, 2, 3], estimator, weights=[1, 2, 3]) class TestHistogramdd(TestCase): def test_simple(self): x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]]) H, edges = histogramdd(x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]]) answer = np.array([[[0, 1, 0], [0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1], [0, 0, 1]]]) assert_array_equal(H, answer) # Check normalization ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]] H, edges = histogramdd(x, bins=ed, normed=True) assert_(np.all(H == answer / 12.)) # Check that H has the correct shape. H, edges = histogramdd(x, (2, 3, 4), range=[[-1, 1], [0, 3], [0, 4]], normed=True) answer = np.array([[[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]], [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 0]]]) assert_array_almost_equal(H, answer / 6., 4) # Check that a sequence of arrays is accepted and H has the correct # shape. z = [np.squeeze(y) for y in split(x, 3, axis=1)] H, edges = histogramdd( z, bins=(4, 3, 2), range=[[-2, 2], [0, 3], [0, 2]]) answer = np.array([[[0, 0], [0, 0], [0, 0]], [[0, 1], [0, 0], [1, 0]], [[0, 1], [0, 0], [0, 0]], [[0, 0], [0, 0], [0, 0]]]) assert_array_equal(H, answer) Z = np.zeros((5, 5, 5)) Z[list(range(5)), list(range(5)), list(range(5))] = 1. H, edges = histogramdd([np.arange(5), np.arange(5), np.arange(5)], 5) assert_array_equal(H, Z) def test_shape_3d(self): # All possible permutations for bins of different lengths in 3D. bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4), (4, 5, 6)) r = rand(10, 3) for b in bins: H, edges = histogramdd(r, b) assert_(H.shape == b) def test_shape_4d(self): # All possible permutations for bins of different lengths in 4D. bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4), (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6), (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7), (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5), (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5), (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4)) r = rand(10, 4) for b in bins: H, edges = histogramdd(r, b) assert_(H.shape == b) def test_weights(self): v = rand(100, 2) hist, edges = histogramdd(v) n_hist, edges = histogramdd(v, normed=True) w_hist, edges = histogramdd(v, weights=np.ones(100)) assert_array_equal(w_hist, hist) w_hist, edges = histogramdd(v, weights=np.ones(100) * 2, normed=True) assert_array_equal(w_hist, n_hist) w_hist, edges = histogramdd(v, weights=np.ones(100, int) * 2) assert_array_equal(w_hist, 2 * hist) def test_identical_samples(self): x = np.zeros((10, 2), int) hist, edges = histogramdd(x, bins=2) assert_array_equal(edges[0], np.array([-0.5, 0., 0.5])) def test_empty(self): a, b = histogramdd([[], []], bins=([0, 1], [0, 1])) assert_array_max_ulp(a, np.array([[0.]])) a, b = np.histogramdd([[], [], []], bins=2) assert_array_max_ulp(a, np.zeros((2, 2, 2))) def test_bins_errors(self): # There are two ways to specify bins. Check for the right errors # when mixing those. x = np.arange(8).reshape(2, 4) assert_raises(ValueError, np.histogramdd, x, bins=[-1, 2, 4, 5]) assert_raises(ValueError, np.histogramdd, x, bins=[1, 0.99, 1, 1]) assert_raises( ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 2, 3]]) assert_raises( ValueError, np.histogramdd, x, bins=[1, 1, 1, [1, 2, 3, -3]]) assert_(np.histogramdd(x, bins=[1, 1, 1, [1, 2, 3, 4]])) def test_inf_edges(self): # Test using +/-inf bin edges works. See #1788. with np.errstate(invalid='ignore'): x = np.arange(6).reshape(3, 2) expected = np.array([[1, 0], [0, 1], [0, 1]]) h, e = np.histogramdd(x, bins=[3, [-np.inf, 2, 10]]) assert_allclose(h, expected) h, e = np.histogramdd(x, bins=[3, np.array([-1, 2, np.inf])]) assert_allclose(h, expected) h, e = np.histogramdd(x, bins=[3, [-np.inf, 3, np.inf]]) assert_allclose(h, expected) def test_rightmost_binedge(self): # Test event very close to rightmost binedge. See Github issue #4266 x = [0.9999999995] bins = [[0., 0.5, 1.0]] hist, _ = histogramdd(x, bins=bins) assert_(hist[0] == 0.0) assert_(hist[1] == 1.) x = [1.0] bins = [[0., 0.5, 1.0]] hist, _ = histogramdd(x, bins=bins) assert_(hist[0] == 0.0) assert_(hist[1] == 1.) x = [1.0000000001] bins = [[0., 0.5, 1.0]] hist, _ = histogramdd(x, bins=bins) assert_(hist[0] == 0.0) assert_(hist[1] == 1.) x = [1.0001] bins = [[0., 0.5, 1.0]] hist, _ = histogramdd(x, bins=bins) assert_(hist[0] == 0.0) assert_(hist[1] == 0.0) def test_finite_range(self): vals = np.random.random((100, 3)) histogramdd(vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, 0.5]]) assert_raises(ValueError, histogramdd, vals, range=[[0.0, 1.0], [0.25, 0.75], [0.25, np.inf]]) assert_raises(ValueError, histogramdd, vals, range=[[0.0, 1.0], [np.nan, 0.75], [0.25, 0.5]]) class TestUnique(TestCase): def test_simple(self): x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) class TestCheckFinite(TestCase): def test_simple(self): a = [1, 2, 3] b = [1, 2, np.inf] c = [1, 2, np.nan] np.lib.asarray_chkfinite(a) assert_raises(ValueError, np.lib.asarray_chkfinite, b) assert_raises(ValueError, np.lib.asarray_chkfinite, c) def test_dtype_order(self): # Regression test for missing dtype and order arguments a = [1, 2, 3] a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64) assert_(a.dtype == np.float64) class TestCorrCoef(TestCase): A = np.array( [[0.15391142, 0.18045767, 0.14197213], [0.70461506, 0.96474128, 0.27906989], [0.9297531, 0.32296769, 0.19267156]]) B = np.array( [[0.10377691, 0.5417086, 0.49807457], [0.82872117, 0.77801674, 0.39226705], [0.9314666, 0.66800209, 0.03538394]]) res1 = np.array( [[1., 0.9379533, -0.04931983], [0.9379533, 1., 0.30007991], [-0.04931983, 0.30007991, 1.]]) res2 = np.array( [[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], [0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], [-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], [0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], [0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], [0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) def test_non_array(self): assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), [[1., -1.], [-1., 1.]]) def test_simple(self): tgt1 = corrcoef(self.A) assert_almost_equal(tgt1, self.res1) assert_(np.all(np.abs(tgt1) <= 1.0)) tgt2 = corrcoef(self.A, self.B) assert_almost_equal(tgt2, self.res2) assert_(np.all(np.abs(tgt2) <= 1.0)) def test_ddof(self): # ddof raises DeprecationWarning with suppress_warnings() as sup: warnings.simplefilter("always") assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1) sup.filter(DeprecationWarning) # ddof has no or negligible effect on the function assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) assert_almost_equal(corrcoef(self.A, ddof=3), self.res1) assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2) def test_bias(self): # bias raises DeprecationWarning with suppress_warnings() as sup: warnings.simplefilter("always") assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0) assert_warns(DeprecationWarning, corrcoef, self.A, bias=0) sup.filter(DeprecationWarning) # bias has no or negligible effect on the function assert_almost_equal(corrcoef(self.A, bias=1), self.res1) def test_complex(self): x = np.array([[1, 2, 3], [1j, 2j, 3j]]) res = corrcoef(x) tgt = np.array([[1., -1.j], [1.j, 1.]]) assert_allclose(res, tgt) assert_(np.all(np.abs(res) <= 1.0)) def test_xy(self): x = np.array([[1, 2, 3]]) y = np.array([[1j, 2j, 3j]]) assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) def test_empty(self): with warnings.catch_warnings(record=True): warnings.simplefilter('always', RuntimeWarning) assert_array_equal(corrcoef(np.array([])), np.nan) assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)) assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), np.array([[np.nan, np.nan], [np.nan, np.nan]])) def test_extreme(self): x = [[1e-100, 1e100], [1e100, 1e-100]] with np.errstate(all='raise'): c = corrcoef(x) assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) assert_(np.all(np.abs(c) <= 1.0)) class TestCov(TestCase): x1 = np.array([[0, 2], [1, 1], [2, 0]]).T res1 = np.array([[1., -1.], [-1., 1.]]) x2 = np.array([0.0, 1.0, 2.0], ndmin=2) frequencies = np.array([1, 4, 1]) x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T res2 = np.array([[0.4, -0.4], [-0.4, 0.4]]) unit_frequencies = np.ones(3, dtype=np.integer) weights = np.array([1.0, 4.0, 1.0]) res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]]) unit_weights = np.ones(3) x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964]) def test_basic(self): assert_allclose(cov(self.x1), self.res1) def test_complex(self): x = np.array([[1, 2, 3], [1j, 2j, 3j]]) assert_allclose(cov(x), np.array([[1., -1.j], [1.j, 1.]])) def test_xy(self): x = np.array([[1, 2, 3]]) y = np.array([[1j, 2j, 3j]]) assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) def test_empty(self): with warnings.catch_warnings(record=True): warnings.simplefilter('always', RuntimeWarning) assert_array_equal(cov(np.array([])), np.nan) assert_array_equal(cov(np.array([]).reshape(0, 2)), np.array([]).reshape(0, 0)) assert_array_equal(cov(np.array([]).reshape(2, 0)), np.array([[np.nan, np.nan], [np.nan, np.nan]])) def test_wrong_ddof(self): with warnings.catch_warnings(record=True): warnings.simplefilter('always', RuntimeWarning) assert_array_equal(cov(self.x1, ddof=5), np.array([[np.inf, -np.inf], [-np.inf, np.inf]])) def test_1D_rowvar(self): assert_allclose(cov(self.x3), cov(self.x3, rowvar=0)) y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501]) assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=0)) def test_1D_variance(self): assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1)) def test_fweights(self): assert_allclose(cov(self.x2, fweights=self.frequencies), cov(self.x2_repeats)) assert_allclose(cov(self.x1, fweights=self.frequencies), self.res2) assert_allclose(cov(self.x1, fweights=self.unit_frequencies), self.res1) nonint = self.frequencies + 0.5 assert_raises(TypeError, cov, self.x1, fweights=nonint) f = np.ones((2, 3), dtype=np.integer) assert_raises(RuntimeError, cov, self.x1, fweights=f) f = np.ones(2, dtype=np.integer) assert_raises(RuntimeError, cov, self.x1, fweights=f) f = -1 * np.ones(3, dtype=np.integer) assert_raises(ValueError, cov, self.x1, fweights=f) def test_aweights(self): assert_allclose(cov(self.x1, aweights=self.weights), self.res3) assert_allclose(cov(self.x1, aweights=3.0 * self.weights), cov(self.x1, aweights=self.weights)) assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1) w = np.ones((2, 3)) assert_raises(RuntimeError, cov, self.x1, aweights=w) w = np.ones(2) assert_raises(RuntimeError, cov, self.x1, aweights=w) w = -1.0 * np.ones(3) assert_raises(ValueError, cov, self.x1, aweights=w) def test_unit_fweights_and_aweights(self): assert_allclose(cov(self.x2, fweights=self.frequencies, aweights=self.unit_weights), cov(self.x2_repeats)) assert_allclose(cov(self.x1, fweights=self.frequencies, aweights=self.unit_weights), self.res2) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=self.unit_weights), self.res1) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=self.weights), self.res3) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=3.0 * self.weights), cov(self.x1, aweights=self.weights)) assert_allclose(cov(self.x1, fweights=self.unit_frequencies, aweights=self.unit_weights), self.res1) class Test_I0(TestCase): def test_simple(self): assert_almost_equal( i0(0.5), np.array(1.0634833707413234)) A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549]) assert_almost_equal( i0(A), np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049])) B = np.array([[0.827002, 0.99959078], [0.89694769, 0.39298162], [0.37954418, 0.05206293], [0.36465447, 0.72446427], [0.48164949, 0.50324519]]) assert_almost_equal( i0(B), np.array([[1.17843223, 1.26583466], [1.21147086, 1.03898290], [1.03633899, 1.00067775], [1.03352052, 1.13557954], [1.05884290, 1.06432317]])) class TestKaiser(TestCase): def test_simple(self): assert_(np.isfinite(kaiser(1, 1.0))) assert_almost_equal(kaiser(0, 1.0), np.array([])) assert_almost_equal(kaiser(2, 1.0), np.array([0.78984831, 0.78984831])) assert_almost_equal(kaiser(5, 1.0), np.array([0.78984831, 0.94503323, 1., 0.94503323, 0.78984831])) assert_almost_equal(kaiser(5, 1.56789), np.array([0.58285404, 0.88409679, 1., 0.88409679, 0.58285404])) def test_int_beta(self): kaiser(3, 4) class TestMsort(TestCase): def test_simple(self): A = np.array([[0.44567325, 0.79115165, 0.54900530], [0.36844147, 0.37325583, 0.96098397], [0.64864341, 0.52929049, 0.39172155]]) assert_almost_equal( msort(A), np.array([[0.36844147, 0.37325583, 0.39172155], [0.44567325, 0.52929049, 0.54900530], [0.64864341, 0.79115165, 0.96098397]])) class TestMeshgrid(TestCase): def test_simple(self): [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) assert_array_equal(X, np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]])) assert_array_equal(Y, np.array([[4, 4, 4], [5, 5, 5], [6, 6, 6], [7, 7, 7]])) def test_single_input(self): [X] = meshgrid([1, 2, 3, 4]) assert_array_equal(X, np.array([1, 2, 3, 4])) def test_no_input(self): args = [] assert_array_equal([], meshgrid(*args)) def test_indexing(self): x = [1, 2, 3] y = [4, 5, 6, 7] [X, Y] = meshgrid(x, y, indexing='ij') assert_array_equal(X, np.array([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]])) assert_array_equal(Y, np.array([[4, 5, 6, 7], [4, 5, 6, 7], [4, 5, 6, 7]])) # Test expected shapes: z = [8, 9] assert_(meshgrid(x, y)[0].shape == (4, 3)) assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') def test_sparse(self): [X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) assert_array_equal(X, np.array([[1, 2, 3]])) assert_array_equal(Y, np.array([[4], [5], [6], [7]])) def test_invalid_arguments(self): # Test that meshgrid complains about invalid arguments # Regression test for issue #4755: # https://github.com/numpy/numpy/issues/4755 assert_raises(TypeError, meshgrid, [1, 2, 3], [4, 5, 6, 7], indices='ij') class TestPiecewise(TestCase): def test_simple(self): # Condition is single bool list x = piecewise([0, 0], [True, False], [1]) assert_array_equal(x, [1, 0]) # List of conditions: single bool list x = piecewise([0, 0], [[True, False]], [1]) assert_array_equal(x, [1, 0]) # Conditions is single bool array x = piecewise([0, 0], np.array([True, False]), [1]) assert_array_equal(x, [1, 0]) # Condition is single int array x = piecewise([0, 0], np.array([1, 0]), [1]) assert_array_equal(x, [1, 0]) # List of conditions: int array x = piecewise([0, 0], [np.array([1, 0])], [1]) assert_array_equal(x, [1, 0]) x = piecewise([0, 0], [[False, True]], [lambda x:-1]) assert_array_equal(x, [0, -1]) def test_two_conditions(self): x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) assert_array_equal(x, [3, 4]) def test_scalar_domains_three_conditions(self): x = piecewise(3, [True, False, False], [4, 2, 0]) assert_equal(x, 4) def test_default(self): # No value specified for x[1], should be 0 x = piecewise([1, 2], [True, False], [2]) assert_array_equal(x, [2, 0]) # Should set x[1] to 3 x = piecewise([1, 2], [True, False], [2, 3]) assert_array_equal(x, [2, 3]) def test_0d(self): x = np.array(3) y = piecewise(x, x > 3, [4, 0]) assert_(y.ndim == 0) assert_(y == 0) x = 5 y = piecewise(x, [[True], [False]], [1, 0]) assert_(y.ndim == 0) assert_(y == 1) # With 3 ranges (It was failing, before) y = piecewise(x, [False, False, True], [1, 2, 3]) assert_array_equal(y, 3) def test_0d_comparison(self): x = 3 y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed. assert_equal(y, 4) # With 3 ranges (It was failing, before) x = 4 y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3]) assert_array_equal(y, 2) def test_multidimensional_extrafunc(self): x = np.array([[-2.5, -1.5, -0.5], [0.5, 1.5, 2.5]]) y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3]) assert_array_equal(y, np.array([[-1., -1., -1.], [3., 3., 1.]])) class TestBincount(TestCase): def test_simple(self): y = np.bincount(np.arange(4)) assert_array_equal(y, np.ones(4)) def test_simple2(self): y = np.bincount(np.array([1, 5, 2, 4, 1])) assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) def test_simple_weight(self): x = np.arange(4) w = np.array([0.2, 0.3, 0.5, 0.1]) y = np.bincount(x, w) assert_array_equal(y, w) def test_simple_weight2(self): x = np.array([1, 2, 4, 5, 2]) w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) y = np.bincount(x, w) assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) def test_with_minlength(self): x = np.array([0, 1, 0, 1, 1]) y = np.bincount(x, minlength=3) assert_array_equal(y, np.array([2, 3, 0])) def test_with_minlength_smaller_than_maxvalue(self): x = np.array([0, 1, 1, 2, 2, 3, 3]) y = np.bincount(x, minlength=2) assert_array_equal(y, np.array([1, 2, 2, 2])) def test_with_minlength_and_weights(self): x = np.array([1, 2, 4, 5, 2]) w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) y = np.bincount(x, w, 8) assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) def test_empty(self): x = np.array([], dtype=int) y = np.bincount(x) assert_array_equal(x, y) def test_empty_with_minlength(self): x = np.array([], dtype=int) y = np.bincount(x, minlength=5) assert_array_equal(y, np.zeros(5, dtype=int)) def test_with_incorrect_minlength(self): x = np.array([], dtype=int) assert_raises_regex(TypeError, "'str' object cannot be interpreted", lambda: np.bincount(x, minlength="foobar")) assert_raises_regex(ValueError, "must be positive", lambda: np.bincount(x, minlength=-1)) assert_raises_regex(ValueError, "must be positive", lambda: np.bincount(x, minlength=0)) x = np.arange(5) assert_raises_regex(TypeError, "'str' object cannot be interpreted", lambda: np.bincount(x, minlength="foobar")) assert_raises_regex(ValueError, "minlength must be positive", lambda: np.bincount(x, minlength=-1)) assert_raises_regex(ValueError, "minlength must be positive", lambda: np.bincount(x, minlength=0)) @dec.skipif(not HAS_REFCOUNT, "python has no sys.getrefcount") def test_dtype_reference_leaks(self): # gh-6805 intp_refcount = sys.getrefcount(np.dtype(np.intp)) double_refcount = sys.getrefcount(np.dtype(np.double)) for j in range(10): np.bincount([1, 2, 3]) assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) for j in range(10): np.bincount([1, 2, 3], [4, 5, 6]) assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) class TestInterp(TestCase): def test_exceptions(self): assert_raises(ValueError, interp, 0, [], []) assert_raises(ValueError, interp, 0, [0], [1, 2]) assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0) assert_raises(ValueError, interp, 0, [], [], period=360) assert_raises(ValueError, interp, 0, [0], [1, 2], period=360) def test_basic(self): x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) x0 = np.linspace(0, 1, 50) assert_almost_equal(np.interp(x0, x, y), x0) def test_right_left_behavior(self): # Needs range of sizes to test different code paths. # size ==1 is special cased, 1 < size < 5 is linear search, and # size >= 5 goes through local search and possibly binary search. for size in range(1, 10): xp = np.arange(size, dtype=np.double) yp = np.ones(size, dtype=np.double) incpts = np.array([-1, 0, size - 1, size], dtype=np.double) decpts = incpts[::-1] incres = interp(incpts, xp, yp) decres = interp(decpts, xp, yp) inctgt = np.array([1, 1, 1, 1], dtype=np.float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, left=0) decres = interp(decpts, xp, yp, left=0) inctgt = np.array([0, 1, 1, 1], dtype=np.float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, right=2) decres = interp(decpts, xp, yp, right=2) inctgt = np.array([1, 1, 1, 2], dtype=np.float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) incres = interp(incpts, xp, yp, left=0, right=2) decres = interp(decpts, xp, yp, left=0, right=2) inctgt = np.array([0, 1, 1, 2], dtype=np.float) dectgt = inctgt[::-1] assert_equal(incres, inctgt) assert_equal(decres, dectgt) def test_scalar_interpolation_point(self): x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) x0 = 0 assert_almost_equal(np.interp(x0, x, y), x0) x0 = .3 assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.float32(.3) assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.float64(.3) assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.nan assert_almost_equal(np.interp(x0, x, y), x0) def test_complex_interp(self): # test complex interpolation x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5))*1.0j x0 = 0.3 y0 = x0 + (1+x0)*1.0j assert_almost_equal(np.interp(x0, x, y), y0) # test complex left and right x0 = -1 left = 2 + 3.0j assert_almost_equal(np.interp(x0, x, y, left=left), left) x0 = 2.0 right = 2 + 3.0j assert_almost_equal(np.interp(x0, x, y, right=right), right) # test complex periodic x = [-180, -170, -185, 185, -10, -5, 0, 365] xp = [190, -190, 350, -350] fp = [5+1.0j, 10+2j, 3+3j, 4+4j] y = [7.5+1.5j, 5.+1.0j, 8.75+1.75j, 6.25+1.25j, 3.+3j, 3.25+3.25j, 3.5+3.5j, 3.75+3.75j] assert_almost_equal(np.interp(x, xp, fp, period=360), y) def test_zero_dimensional_interpolation_point(self): x = np.linspace(0, 1, 5) y = np.linspace(0, 1, 5) x0 = np.array(.3) assert_almost_equal(np.interp(x0, x, y), x0) x0 = np.array(.3, dtype=object) assert_almost_equal(np.interp(x0, x, y), .3) def test_if_len_x_is_small(self): xp = np.arange(0, 10, 0.0001) fp = np.sin(xp) assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) def test_period(self): x = [-180, -170, -185, 185, -10, -5, 0, 365] xp = [190, -190, 350, -350] fp = [5, 10, 3, 4] y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75] assert_almost_equal(np.interp(x, xp, fp, period=360), y) x = np.array(x, order='F').reshape(2, -1) y = np.array(y, order='C').reshape(2, -1) assert_almost_equal(np.interp(x, xp, fp, period=360), y) def compare_results(res, desired): for i in range(len(desired)): assert_array_equal(res[i], desired[i]) class TestPercentile(TestCase): def test_basic(self): x = np.arange(8) * 0.5 assert_equal(np.percentile(x, 0), 0.) assert_equal(np.percentile(x, 100), 3.5) assert_equal(np.percentile(x, 50), 1.75) x[1] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(x, 0), np.nan) assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan) assert_(w[0].category is RuntimeWarning) def test_api(self): d = np.ones(5) np.percentile(d, 5, None, None, False) np.percentile(d, 5, None, None, False, 'linear') o = np.ones((1,)) np.percentile(d, 5, None, o, False, 'linear') def test_2D(self): x = np.array([[1, 1, 1], [1, 1, 1], [4, 4, 3], [1, 1, 1], [1, 1, 1]]) assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) def test_linear(self): # Test defaults assert_equal(np.percentile(range(10), 50), 4.5) # explicitly specify interpolation_method 'linear' (the default) assert_equal(np.percentile(range(10), 50, interpolation='linear'), 4.5) def test_lower_higher(self): # interpolation_method 'lower'/'higher' assert_equal(np.percentile(range(10), 50, interpolation='lower'), 4) assert_equal(np.percentile(range(10), 50, interpolation='higher'), 5) def test_midpoint(self): assert_equal(np.percentile(range(10), 51, interpolation='midpoint'), 4.5) assert_equal(np.percentile(range(11), 51, interpolation='midpoint'), 5.5) assert_equal(np.percentile(range(11), 50, interpolation='midpoint'), 5) def test_nearest(self): assert_equal(np.percentile(range(10), 51, interpolation='nearest'), 5) assert_equal(np.percentile(range(10), 49, interpolation='nearest'), 4) def test_sequence(self): x = np.arange(8) * 0.5 assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) def test_axis(self): x = np.arange(12).reshape(3, 4) assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) # ensure qth axis is always first as with np.array(old_percentile(..)) x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) assert_equal(np.percentile(x, (25, 50)).shape, (2,)) assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) assert_equal( np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) assert_equal(np.percentile(x, (25, 50), interpolation="higher").shape, (2,)) assert_equal(np.percentile(x, (25, 50, 75), interpolation="higher").shape, (3,)) assert_equal(np.percentile(x, (25, 50), axis=0, interpolation="higher").shape, (2, 4, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=1, interpolation="higher").shape, (2, 3, 5, 6)) assert_equal(np.percentile(x, (25, 50), axis=2, interpolation="higher").shape, (2, 3, 4, 6)) assert_equal(np.percentile(x, (25, 50), axis=3, interpolation="higher").shape, (2, 3, 4, 5)) assert_equal(np.percentile(x, (25, 50, 75), axis=1, interpolation="higher").shape, (3, 3, 5, 6)) def test_scalar_q(self): # test for no empty dimensions for compatiblity with old percentile x = np.arange(12).reshape(3, 4) assert_equal(np.percentile(x, 50), 5.5) self.assertTrue(np.isscalar(np.percentile(x, 50))) r0 = np.array([4., 5., 6., 7.]) assert_equal(np.percentile(x, 50, axis=0), r0) assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) r1 = np.array([1.5, 5.5, 9.5]) assert_almost_equal(np.percentile(x, 50, axis=1), r1) assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) out = np.empty(1) assert_equal(np.percentile(x, 50, out=out), 5.5) assert_equal(out, 5.5) out = np.empty(4) assert_equal(np.percentile(x, 50, axis=0, out=out), r0) assert_equal(out, r0) out = np.empty(3) assert_equal(np.percentile(x, 50, axis=1, out=out), r1) assert_equal(out, r1) # test for no empty dimensions for compatiblity with old percentile x = np.arange(12).reshape(3, 4) assert_equal(np.percentile(x, 50, interpolation='lower'), 5.) self.assertTrue(np.isscalar(np.percentile(x, 50))) r0 = np.array([4., 5., 6., 7.]) c0 = np.percentile(x, 50, interpolation='lower', axis=0) assert_equal(c0, r0) assert_equal(c0.shape, r0.shape) r1 = np.array([1., 5., 9.]) c1 = np.percentile(x, 50, interpolation='lower', axis=1) assert_almost_equal(c1, r1) assert_equal(c1.shape, r1.shape) out = np.empty((), dtype=x.dtype) c = np.percentile(x, 50, interpolation='lower', out=out) assert_equal(c, 5) assert_equal(out, 5) out = np.empty(4, dtype=x.dtype) c = np.percentile(x, 50, interpolation='lower', axis=0, out=out) assert_equal(c, r0) assert_equal(out, r0) out = np.empty(3, dtype=x.dtype) c = np.percentile(x, 50, interpolation='lower', axis=1, out=out) assert_equal(c, r1) assert_equal(out, r1) def test_exception(self): assert_raises(ValueError, np.percentile, [1, 2], 56, interpolation='foobar') assert_raises(ValueError, np.percentile, [1], 101) assert_raises(ValueError, np.percentile, [1], -1) assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) def test_percentile_list(self): assert_equal(np.percentile([1, 2, 3], 0), 1) def test_percentile_out(self): x = np.array([1, 2, 3]) y = np.zeros((3,)) p = (1, 2, 3) np.percentile(x, p, out=y) assert_equal(y, np.percentile(x, p)) x = np.array([[1, 2, 3], [4, 5, 6]]) y = np.zeros((3, 3)) np.percentile(x, p, axis=0, out=y) assert_equal(y, np.percentile(x, p, axis=0)) y = np.zeros((3, 2)) np.percentile(x, p, axis=1, out=y) assert_equal(y, np.percentile(x, p, axis=1)) x = np.arange(12).reshape(3, 4) # q.dim > 1, float r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) out = np.empty((2, 4)) assert_equal(np.percentile(x, (25, 50), axis=0, out=out), r0) assert_equal(out, r0) r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) out = np.empty((2, 3)) assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) assert_equal(out, r1) # q.dim > 1, int r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) out = np.empty((2, 4), dtype=x.dtype) c = np.percentile(x, (25, 50), interpolation='lower', axis=0, out=out) assert_equal(c, r0) assert_equal(out, r0) r1 = np.array([[0, 4, 8], [1, 5, 9]]) out = np.empty((2, 3), dtype=x.dtype) c = np.percentile(x, (25, 50), interpolation='lower', axis=1, out=out) assert_equal(c, r1) assert_equal(out, r1) def test_percentile_empty_dim(self): # empty dims are preserved d = np.arange(11 * 2).reshape(11, 1, 2, 1) assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) assert_array_equal(np.percentile(d, 50, axis=2, interpolation='midpoint').shape, (11, 1, 1)) assert_array_equal(np.percentile(d, 50, axis=-2, interpolation='midpoint').shape, (11, 1, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, (2, 1, 2, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, (2, 11, 2, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, (2, 11, 1, 1)) assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, (2, 11, 1, 2)) def test_percentile_no_overwrite(self): a = np.array([2, 3, 4, 1]) np.percentile(a, [50], overwrite_input=False) assert_equal(a, np.array([2, 3, 4, 1])) a = np.array([2, 3, 4, 1]) np.percentile(a, [50]) assert_equal(a, np.array([2, 3, 4, 1])) def test_no_p_overwrite(self): p = np.linspace(0., 100., num=5) np.percentile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, np.linspace(0., 100., num=5)) p = np.linspace(0., 100., num=5).tolist() np.percentile(np.arange(100.), p, interpolation="midpoint") assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) def test_percentile_overwrite(self): a = np.array([2, 3, 4, 1]) b = np.percentile(a, [50], overwrite_input=True) assert_equal(b, np.array([2.5])) b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) assert_equal(b, np.array([2.5])) def test_extended_axis(self): o = np.random.normal(size=(71, 23)) x = np.dstack([o] * 10) assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) x = np.rollaxis(x, -1, 0) assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) x = x.swapaxes(0, 1).copy() assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) x = x.swapaxes(0, 1).copy() assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), np.percentile(x, [25, 60], axis=None)) assert_equal(np.percentile(x, [25, 60], axis=(0,)), np.percentile(x, [25, 60], axis=0)) d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) np.random.shuffle(d.ravel()) assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], np.percentile(d[:,:,:, 0].flatten(), 25)) assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], np.percentile(d[:,:, 1,:].flatten(), [10, 90])) assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], np.percentile(d[:,:, 2,:].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], np.percentile(d[2,:,:,:].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], np.percentile(d[2, 1,:,:].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], np.percentile(d[2,:,:, 1].flatten(), 25)) assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], np.percentile(d[2,:, 2,:].flatten(), 25)) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(IndexError, np.percentile, d, axis=-5, q=25) assert_raises(IndexError, np.percentile, d, axis=(0, -5), q=25) assert_raises(IndexError, np.percentile, d, axis=4, q=25) assert_raises(IndexError, np.percentile, d, axis=(0, 4), q=25) assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) def test_keepdims(self): d = np.ones((3, 5, 7, 11)) assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11)) assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1)) assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, (3, 1, 7, 11)) assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1)) assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), keepdims=True).shape, (2, 1, 1, 7, 1)) assert_equal(np.percentile(d, [1, 7], axis=(0, 3), keepdims=True).shape, (2, 1, 5, 7, 1)) def test_out(self): o = np.zeros((4,)) d = np.ones((3, 4)) assert_equal(np.percentile(d, 0, 0, out=o), o) assert_equal(np.percentile(d, 0, 0, interpolation='nearest', out=o), o) o = np.zeros((3,)) assert_equal(np.percentile(d, 1, 1, out=o), o) assert_equal(np.percentile(d, 1, 1, interpolation='nearest', out=o), o) o = np.zeros(()) assert_equal(np.percentile(d, 2, out=o), o) assert_equal(np.percentile(d, 2, interpolation='nearest', out=o), o) def test_out_nan(self): with warnings.catch_warnings(record=True): warnings.filterwarnings('always', '', RuntimeWarning) o = np.zeros((4,)) d = np.ones((3, 4)) d[2, 1] = np.nan assert_equal(np.percentile(d, 0, 0, out=o), o) assert_equal( np.percentile(d, 0, 0, interpolation='nearest', out=o), o) o = np.zeros((3,)) assert_equal(np.percentile(d, 1, 1, out=o), o) assert_equal( np.percentile(d, 1, 1, interpolation='nearest', out=o), o) o = np.zeros(()) assert_equal(np.percentile(d, 1, out=o), o) assert_equal( np.percentile(d, 1, interpolation='nearest', out=o), o) def test_nan_behavior(self): a = np.arange(24, dtype=float) a[2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, 0.3), np.nan) assert_equal(np.percentile(a, 0.3, axis=0), np.nan) assert_equal(np.percentile(a, [0.3, 0.6], axis=0), np.array([np.nan] * 2)) assert_(w[0].category is RuntimeWarning) assert_(w[1].category is RuntimeWarning) assert_(w[2].category is RuntimeWarning) a = np.arange(24, dtype=float).reshape(2, 3, 4) a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, 0.3), np.nan) assert_equal(np.percentile(a, 0.3).ndim, 0) assert_(w[0].category is RuntimeWarning) # axis0 zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) b[2, 3] = np.nan b[1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, 0.3, 0), b) # axis0 not zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 0) b[:, 2, 3] = np.nan b[:, 1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, [0.3, 0.6], 0), b) # axis1 zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) b[1, 3] = np.nan b[1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, 0.3, 1), b) # axis1 not zerod b = np.percentile( np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) b[:, 1, 3] = np.nan b[:, 1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, [0.3, 0.6], 1), b) # axis02 zerod b = np.percentile( np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) b[1] = np.nan b[2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, 0.3, (0, 2)), b) # axis02 not zerod b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], (0, 2)) b[:, 1] = np.nan b[:, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) # axis02 not zerod with nearest interpolation b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], (0, 2), interpolation='nearest') b[:, 1] = np.nan b[:, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.percentile( a, [0.3, 0.6], (0, 2), interpolation='nearest'), b) class TestMedian(TestCase): def test_basic(self): a0 = np.array(1) a1 = np.arange(2) a2 = np.arange(6).reshape(2, 3) assert_equal(np.median(a0), 1) assert_allclose(np.median(a1), 0.5) assert_allclose(np.median(a2), 2.5) assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) assert_equal(np.median(a2, axis=1), [1, 4]) assert_allclose(np.median(a2, axis=None), 2.5) a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) a = np.array([0.0463301, 0.0444502, 0.141249]) assert_equal(a[0], np.median(a)) a = np.array([0.0444502, 0.141249, 0.0463301]) assert_equal(a[-1], np.median(a)) # check array scalar result assert_equal(np.median(a).ndim, 0) a[1] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a).ndim, 0) assert_(w[0].category is RuntimeWarning) def test_axis_keyword(self): a3 = np.array([[2, 3], [0, 1], [6, 7], [4, 5]]) for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: orig = a.copy() np.median(a, axis=None) for ax in range(a.ndim): np.median(a, axis=ax) assert_array_equal(a, orig) assert_allclose(np.median(a3, axis=0), [3, 4]) assert_allclose(np.median(a3.T, axis=1), [3, 4]) assert_allclose(np.median(a3), 3.5) assert_allclose(np.median(a3, axis=None), 3.5) assert_allclose(np.median(a3.T), 3.5) def test_overwrite_keyword(self): a3 = np.array([[2, 3], [0, 1], [6, 7], [4, 5]]) a0 = np.array(1) a1 = np.arange(2) a2 = np.arange(6).reshape(2, 3) assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0), [1.5, 2.5, 3.5]) assert_allclose( np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) assert_allclose( np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) assert_allclose( np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1), [3, 4]) a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) np.random.shuffle(a4.ravel()) assert_allclose(np.median(a4, axis=None), np.median(a4.copy(), axis=None, overwrite_input=True)) assert_allclose(np.median(a4, axis=0), np.median(a4.copy(), axis=0, overwrite_input=True)) assert_allclose(np.median(a4, axis=1), np.median(a4.copy(), axis=1, overwrite_input=True)) assert_allclose(np.median(a4, axis=2), np.median(a4.copy(), axis=2, overwrite_input=True)) def test_array_like(self): x = [1, 2, 3] assert_almost_equal(np.median(x), 2) x2 = [x] assert_almost_equal(np.median(x2), 2) assert_allclose(np.median(x2, axis=0), x) def test_subclass(self): # gh-3846 class MySubClass(np.ndarray): def __new__(cls, input_array, info=None): obj = np.asarray(input_array).view(cls) obj.info = info return obj def mean(self, axis=None, dtype=None, out=None): return -7 a = MySubClass([1, 2, 3]) assert_equal(np.median(a), -7) def test_out(self): o = np.zeros((4,)) d = np.ones((3, 4)) assert_equal(np.median(d, 0, out=o), o) o = np.zeros((3,)) assert_equal(np.median(d, 1, out=o), o) o = np.zeros(()) assert_equal(np.median(d, out=o), o) def test_out_nan(self): with warnings.catch_warnings(record=True): warnings.filterwarnings('always', '', RuntimeWarning) o = np.zeros((4,)) d = np.ones((3, 4)) d[2, 1] = np.nan assert_equal(np.median(d, 0, out=o), o) o = np.zeros((3,)) assert_equal(np.median(d, 1, out=o), o) o = np.zeros(()) assert_equal(np.median(d, out=o), o) def test_nan_behavior(self): a = np.arange(24, dtype=float) a[2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_equal(np.median(a, axis=0), np.nan) assert_(w[0].category is RuntimeWarning) assert_(w[1].category is RuntimeWarning) a = np.arange(24, dtype=float).reshape(2, 3, 4) a[1, 2, 3] = np.nan a[1, 1, 2] = np.nan # no axis with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_equal(np.median(a).ndim, 0) assert_(w[0].category is RuntimeWarning) # axis0 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) b[2, 3] = np.nan b[1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a, 0), b) assert_equal(len(w), 1) # axis1 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) b[1, 3] = np.nan b[1, 2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a, 1), b) assert_equal(len(w), 1) # axis02 b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) b[1] = np.nan b[2] = np.nan with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a, (0, 2)), b) assert_equal(len(w), 1) def test_empty(self): # empty arrays a = np.array([], dtype=float) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_(w[0].category is RuntimeWarning) # multiple dimensions a = np.array([], dtype=float, ndmin=3) # no axis with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a), np.nan) assert_(w[0].category is RuntimeWarning) # axis 0 and 1 b = np.array([], dtype=float, ndmin=2) assert_equal(np.median(a, axis=0), b) assert_equal(np.median(a, axis=1), b) # axis 2 b = np.array(np.nan, dtype=float, ndmin=2) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_equal(np.median(a, axis=2), b) assert_(w[0].category is RuntimeWarning) def test_object(self): o = np.arange(7.) assert_(type(np.median(o.astype(object))), float) o[2] = np.nan assert_(type(np.median(o.astype(object))), float) def test_extended_axis(self): o = np.random.normal(size=(71, 23)) x = np.dstack([o] * 10) assert_equal(np.median(x, axis=(0, 1)), np.median(o)) x = np.rollaxis(x, -1, 0) assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) x = x.swapaxes(0, 1).copy() assert_equal(np.median(x, axis=(0, -1)), np.median(o)) assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) np.random.shuffle(d.ravel()) assert_equal(np.median(d, axis=(0, 1, 2))[0], np.median(d[:,:,:, 0].flatten())) assert_equal(np.median(d, axis=(0, 1, 3))[1], np.median(d[:,:, 1,:].flatten())) assert_equal(np.median(d, axis=(3, 1, -4))[2], np.median(d[:,:, 2,:].flatten())) assert_equal(np.median(d, axis=(3, 1, 2))[2], np.median(d[2,:,:,:].flatten())) assert_equal(np.median(d, axis=(3, 2))[2, 1], np.median(d[2, 1,:,:].flatten())) assert_equal(np.median(d, axis=(1, -2))[2, 1], np.median(d[2,:,:, 1].flatten())) assert_equal(np.median(d, axis=(1, 3))[2, 2], np.median(d[2,:, 2,:].flatten())) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(IndexError, np.median, d, axis=-5) assert_raises(IndexError, np.median, d, axis=(0, -5)) assert_raises(IndexError, np.median, d, axis=4) assert_raises(IndexError, np.median, d, axis=(0, 4)) assert_raises(ValueError, np.median, d, axis=(1, 1)) def test_keepdims(self): d = np.ones((3, 5, 7, 11)) assert_equal(np.median(d, axis=None, keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, (1, 1, 7, 11)) assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, (1, 5, 7, 1)) assert_equal(np.median(d, axis=(1,), keepdims=True).shape, (3, 1, 7, 11)) assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, (1, 1, 1, 1)) assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, (1, 1, 7, 1)) class TestAdd_newdoc_ufunc(TestCase): def test_ufunc_arg(self): assert_raises(TypeError, add_newdoc_ufunc, 2, "blah") assert_raises(ValueError, add_newdoc_ufunc, np.add, "blah") def test_string_arg(self): assert_raises(TypeError, add_newdoc_ufunc, np.add, 3) class TestAdd_newdoc(TestCase): @dec.skipif(sys.flags.optimize == 2) def test_add_doc(self): # test np.add_newdoc tgt = "Current flat index into the array." self.assertEqual(np.core.flatiter.index.__doc__[:len(tgt)], tgt) self.assertTrue(len(np.core.ufunc.identity.__doc__) > 300) self.assertTrue(len(np.lib.index_tricks.mgrid.__doc__) > 300) if __name__ == "__main__": run_module_suite()
apache-2.0
h2oai/h2o-3
h2o-bindings/bin/custom/python/gen_svd.py
2
6425
rest_api_version = 99 supervised_learning = False def class_extensions(): def init_for_pipeline(self): """ Returns H2OSVD object which implements fit and transform method to be used in sklearn.Pipeline properly. All parameters defined in self.__params, should be input parameters in H2OSVD.__init__ method. :returns: H2OSVD object :examples: >>> from h2o.transforms.preprocessing import H2OScaler >>> from h2o.estimators import H2ORandomForestEstimator >>> from h2o.estimators import H2OSingularValueDecompositionEstimator >>> from sklearn.pipeline import Pipeline >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> pipe = Pipeline([("standardize", H2OScaler()), ... ("svd", H2OSingularValueDecompositionEstimator(nv=3).init_for_pipeline()), ... ("rf", H2ORandomForestEstimator(seed=42,ntrees=50))]) >>> pipe.fit(arrests[1:], arrests[0]) """ import inspect from h2o.transforms.decomposition import H2OSVD # check which parameters can be passed to H2OSVD init var_names = list(dict(inspect.getmembers(H2OSVD.__init__.__code__))['co_varnames']) parameters = {k: v for k, v in self._parms.items() if k in var_names} return H2OSVD(**parameters) extensions = dict( __class__=class_extensions, ) examples = dict( nv=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(nv=4, ... transform="standardize", ... max_iterations=2000) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, transform=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(nv=4, ... transform="standardize", ... max_iterations=2000) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, max_iterations=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(nv=4, ... transform="standardize", ... max_iterations=2000) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, export_checkpoints_dir=""" >>> import tempfile >>> from os import listdir >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> checkpoints_dir = tempfile.mkdtemp() >>> fit_h2o = H2OSingularValueDecompositionEstimator(export_checkpoints_dir=checkpoints_dir, ... seed=-5) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> len(listdir(checkpoints_dir)) """, ignore_const_cols=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(ignore_const_cols=False, ... nv=4) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, keep_u=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(keep_u=False) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, max_runtime_secs=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(nv=4, ... transform="standardize", ... max_runtime_secs=25) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, score_each_iteration=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(nv=4, ... score_each_iteration=True) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, seed=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(nv=4, seed=-3) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, svd_method=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(svd_method="power") >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, training_frame=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator() >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, u_name=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(u_name="fit_h2o") >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o.u_name >>> fit_h2o """, use_all_factor_levels=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> fit_h2o = H2OSingularValueDecompositionEstimator(use_all_factor_levels=False) >>> fit_h2o.train(x=list(range(4)), training_frame=arrests) >>> fit_h2o """, validation_frame=""" >>> arrests = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/pca_test/USArrests.csv") >>> train, valid = arrests.split_frame(ratios=[.8]) >>> fit_h2o = H2OSingularValueDecompositionEstimator() >>> fit_h2o.train(x=list(range(4)), ... training_frame=train, ... validation_frame=valid) >>> fit_h2o """ )
apache-2.0
loli/semisupervisedforests
sklearn/mixture/tests/test_gmm.py
3
13417
import unittest from nose.tools import assert_true import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_raises) from scipy import stats from sklearn import mixture from sklearn.datasets.samples_generator import make_spd_matrix rng = np.random.RandomState(0) def test_sample_gaussian(): """ Test sample generation from mixture.sample_gaussian where covariance is diagonal, spherical and full """ n_features, n_samples = 2, 300 axis = 1 mu = rng.randint(10) * rng.rand(n_features) cv = (rng.rand(n_features) + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='diag', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(samples.var(axis), cv, atol=1.5)) # the same for spherical covariances cv = (rng.rand() + 1.0) ** 2 samples = mixture.sample_gaussian( mu, cv, covariance_type='spherical', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.5)) assert_true(np.allclose( samples.var(axis), np.repeat(cv, n_features), atol=1.5)) # and for full covariances A = rng.randn(n_features, n_features) cv = np.dot(A.T, A) + np.eye(n_features) samples = mixture.sample_gaussian( mu, cv, covariance_type='full', n_samples=n_samples) assert_true(np.allclose(samples.mean(axis), mu, atol=1.3)) assert_true(np.allclose(np.cov(samples), cv, atol=2.5)) # Numerical stability check: in SciPy 0.12.0 at least, eigh may return # tiny negative values in its second return value. from sklearn.mixture import sample_gaussian x = sample_gaussian([0, 0], [[4, 3], [1, .1]], covariance_type='full', random_state=42) print(x) assert_true(np.isfinite(x).all()) def _naive_lmvnpdf_diag(X, mu, cv): # slow and naive implementation of lmvnpdf ref = np.empty((len(X), len(mu))) stds = np.sqrt(cv) for i, (m, std) in enumerate(zip(mu, stds)): ref[:, i] = np.log(stats.norm.pdf(X, m, std)).sum(axis=1) return ref def test_lmvnpdf_diag(): """ test a slow and naive implementation of lmvnpdf and compare it to the vectorized version (mixture.lmvnpdf) to test for correctness """ n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) ref = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, cv, 'diag') assert_array_almost_equal(lpr, ref) def test_lmvnpdf_spherical(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) spherecv = rng.rand(n_components, 1) ** 2 + 1 X = rng.randint(10) * rng.rand(n_samples, n_features) cv = np.tile(spherecv, (n_features, 1)) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, spherecv, 'spherical') assert_array_almost_equal(lpr, reference) def test_lmvnpdf_full(): n_features, n_components, n_samples = 2, 3, 10 mu = rng.randint(10) * rng.rand(n_components, n_features) cv = (rng.rand(n_components, n_features) + 1.0) ** 2 X = rng.randint(10) * rng.rand(n_samples, n_features) fullcv = np.array([np.diag(x) for x in cv]) reference = _naive_lmvnpdf_diag(X, mu, cv) lpr = mixture.log_multivariate_normal_density(X, mu, fullcv, 'full') assert_array_almost_equal(lpr, reference) def test_GMM_attributes(): n_components, n_features = 10, 4 covariance_type = 'diag' g = mixture.GMM(n_components, covariance_type, random_state=rng) weights = rng.rand(n_components) weights = weights / weights.sum() means = rng.randint(-20, 20, (n_components, n_features)) assert_true(g.n_components == n_components) assert_true(g.covariance_type == covariance_type) g.weights_ = weights assert_array_almost_equal(g.weights_, weights) g.means_ = means assert_array_almost_equal(g.means_, means) covars = (0.1 + 2 * rng.rand(n_components, n_features)) ** 2 g.covars_ = covars assert_array_almost_equal(g.covars_, covars) assert_raises(ValueError, g._set_covars, []) assert_raises(ValueError, g._set_covars, np.zeros((n_components - 2, n_features))) assert_raises(ValueError, mixture.GMM, n_components=20, covariance_type='badcovariance_type') class GMMTester(): do_test_eval = True def _setUp(self): self.n_components = 10 self.n_features = 4 self.weights = rng.rand(self.n_components) self.weights = self.weights / self.weights.sum() self.means = rng.randint(-20, 20, (self.n_components, self.n_features)) self.threshold = -0.5 self.I = np.eye(self.n_features) self.covars = { 'spherical': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'tied': (make_spd_matrix(self.n_features, random_state=0) + 5 * self.I), 'diag': (0.1 + 2 * rng.rand(self.n_components, self.n_features)) ** 2, 'full': np.array([make_spd_matrix(self.n_features, random_state=0) + 5 * self.I for x in range(self.n_components)])} def test_eval(self): if not self.do_test_eval: return # DPGMM does not support setting the means and # covariances before fitting There is no way of fixing this # due to the variational parameters being more expressive than # covariance matrices g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = self.covars[self.covariance_type] g.weights_ = self.weights gaussidx = np.repeat(np.arange(self.n_components), 5) n_samples = len(gaussidx) X = rng.randn(n_samples, self.n_features) + g.means_[gaussidx] ll, responsibilities = g.score_samples(X) self.assertEqual(len(ll), n_samples) self.assertEqual(responsibilities.shape, (n_samples, self.n_components)) assert_array_almost_equal(responsibilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(responsibilities.argmax(axis=1), gaussidx) def test_sample(self, n=100): g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng) # Make sure the means are far apart so responsibilities.argmax() # picks the actual component used to generate the observations. g.means_ = 20 * self.means g.covars_ = np.maximum(self.covars[self.covariance_type], 0.1) g.weights_ = self.weights samples = g.sample(n) self.assertEqual(samples.shape, (n, self.n_features)) def test_train(self, params='wmc'): g = mixture.GMM(n_components=self.n_components, covariance_type=self.covariance_type) g.weights_ = self.weights g.means_ = self.means g.covars_ = 20 * self.covars[self.covariance_type] # Create a training set by sampling from the predefined distribution. X = g.sample(n_samples=100) g = self.model(n_components=self.n_components, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-1, n_iter=1, init_params=params) g.fit(X) # Do one training iteration at a time so we can keep track of # the log likelihood to make sure that it increases after each # iteration. trainll = [] for _ in range(5): g.params = params g.init_params = '' g.fit(X) trainll.append(self.score(g, X)) g.n_iter = 10 g.init_params = '' g.params = params g.fit(X) # finish fitting # Note that the log likelihood will sometimes decrease by a # very small amount after it has more or less converged due to # the addition of min_covar to the covariance (to prevent # underflow). This is why the threshold is set to -0.5 # instead of 0. delta_min = np.diff(trainll).min() self.assertTrue( delta_min > self.threshold, "The min nll increase is %f which is lower than the admissible" " threshold of %f, for model %s. The likelihoods are %s." % (delta_min, self.threshold, self.covariance_type, trainll)) def test_train_degenerate(self, params='wmc'): """ Train on degenerate data with 0 in some dimensions """ # Create a training set by sampling from the predefined distribution. X = rng.randn(100, self.n_features) X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-3, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) self.assertTrue(np.sum(np.abs(trainll / 100 / X.shape[1])) < 5) def test_train_1d(self, params='wmc'): """ Train on 1-D data """ # Create a training set by sampling from the predefined distribution. X = rng.randn(100, 1) #X.T[1:] = 0 g = self.model(n_components=2, covariance_type=self.covariance_type, random_state=rng, min_covar=1e-7, n_iter=5, init_params=params) g.fit(X) trainll = g.score(X) if isinstance(g, mixture.DPGMM): self.assertTrue(np.sum(np.abs(trainll / 100)) < 5) else: self.assertTrue(np.sum(np.abs(trainll / 100)) < 2) def score(self, g, X): return g.score(X).sum() class TestGMMWithSphericalCovars(unittest.TestCase, GMMTester): covariance_type = 'spherical' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithDiagonalCovars(unittest.TestCase, GMMTester): covariance_type = 'diag' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithTiedCovars(unittest.TestCase, GMMTester): covariance_type = 'tied' model = mixture.GMM setUp = GMMTester._setUp class TestGMMWithFullCovars(unittest.TestCase, GMMTester): covariance_type = 'full' model = mixture.GMM setUp = GMMTester._setUp def test_multiple_init(): """Test that multiple inits does not much worse than a single one""" X = rng.randn(30, 5) X[:10] += 2 g = mixture.GMM(n_components=2, covariance_type='spherical', random_state=rng, min_covar=1e-7, n_iter=5) train1 = g.fit(X).score(X).sum() g.n_init = 5 train2 = g.fit(X).score(X).sum() assert_true(train2 >= train1 - 1.e-2) def test_n_parameters(): """Test that the right number of parameters is estimated""" n_samples, n_dim, n_components = 7, 5, 2 X = rng.randn(n_samples, n_dim) n_params = {'spherical': 13, 'diag': 21, 'tied': 26, 'full': 41} for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_true(g._n_parameters() == n_params[cv_type]) def test_1d_1component(): """ Test all of the covariance_types return the same BIC score for 1-dimensional, 1 component fits. """ n_samples, n_dim, n_components = 100, 1, 1 X = rng.randn(n_samples, n_dim) g_full = mixture.GMM(n_components=n_components, covariance_type='full', random_state=rng, min_covar=1e-7, n_iter=1) g_full.fit(X) g_full_bic = g_full.bic(X) for cv_type in ['tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7, n_iter=1) g.fit(X) assert_array_almost_equal(g.bic(X), g_full_bic) def test_aic(): """ Test the aic and bic criteria""" n_samples, n_dim, n_components = 50, 3, 2 X = rng.randn(n_samples, n_dim) SGH = 0.5 * (X.var() + np.log(2 * np.pi)) # standard gaussian entropy for cv_type in ['full', 'tied', 'diag', 'spherical']: g = mixture.GMM(n_components=n_components, covariance_type=cv_type, random_state=rng, min_covar=1e-7) g.fit(X) aic = 2 * n_samples * SGH * n_dim + 2 * g._n_parameters() bic = (2 * n_samples * SGH * n_dim + np.log(n_samples) * g._n_parameters()) bound = n_dim * 3. / np.sqrt(n_samples) assert_true(np.abs(g.aic(X) - aic) / n_samples < bound) assert_true(np.abs(g.bic(X) - bic) / n_samples < bound) if __name__ == '__main__': import nose nose.runmodule()
bsd-3-clause
sxjscience/tvm
python/tvm/relay/frontend/__init__.py
2
1369
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Frontends for constructing Relay programs. Contains the model importers currently defined for Relay. """ from __future__ import absolute_import from .mxnet import from_mxnet from .mxnet_qnn_op_utils import quantize_conv_bias_mkldnn_from_var from .keras import from_keras from .onnx import from_onnx from .tflite import from_tflite from .coreml import from_coreml from .caffe2 import from_caffe2 from .tensorflow import from_tensorflow from .darknet import from_darknet from .pytorch import from_pytorch from .caffe import from_caffe from .change_datatype import ChangeDatatype
apache-2.0
loli/semisupervisedforests
sklearn/cluster/setup.py
31
1248
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import os from os.path import join import numpy from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration cblas_libs, blas_info = get_blas_info() libraries = [] if os.name == 'posix': cblas_libs.append('m') libraries.append('m') config = Configuration('cluster', parent_package, top_path) config.add_extension('_hierarchical', sources=['_hierarchical.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension( '_k_means', libraries=cblas_libs, sources=['_k_means.c'], include_dirs=[join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])], extra_compile_args=blas_info.pop('extra_compile_args', []), **blas_info ) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
loli/semisupervisedforests
examples/text/document_clustering.py
31
8036
""" ======================================= Clustering text documents using k-means ======================================= This is an example showing how the scikit-learn can be used to cluster documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features instead of standard numpy arrays. Two feature extraction methods can be used in this example: - TfidfVectorizer uses a in-memory vocabulary (a python dict) to map the most frequent words to features indices and hence compute a word occurrence frequency (sparse) matrix. The word frequencies are then reweighted using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus. - HashingVectorizer hashes word occurrences to a fixed dimensional space, possibly with collisions. The word count vectors are then normalized to each have l2-norm equal to one (projected to the euclidean unit-ball) which seems to be important for k-means to work in high dimensional space. HashingVectorizer does not provide IDF weighting as this is a stateless model (the fit method does nothing). When IDF weighting is needed it can be added by pipelining its output to a TfidfTransformer instance. Two algorithms are demoed: ordinary k-means and its more scalable cousin minibatch k-means. It can be noted that k-means (and minibatch k-means) are very sensitive to feature scaling and that in this case the IDF weighting helps improve the quality of the clustering by quite a lot as measured against the "ground truth" provided by the class label assignments of the 20 newsgroups dataset. This improvement is not visible in the Silhouette Coefficient which is small for both as this measure seem to suffer from the phenomenon called "Concentration of Measure" or "Curse of Dimensionality" for high dimensional datasets such as text data. Other measures such as V-measure and Adjusted Rand Index are information theoretic based evaluation scores: as they are only based on cluster assignments rather than distances, hence not affected by the curse of dimensionality. Note: as k-means is optimizing a non-convex objective function, it will likely end up in a local optimum. Several runs with independent random init might be necessary to get a good convergence. """ # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # Lars Buitinck <L.J.Buitinck@uva.nl> # License: BSD 3 clause from __future__ import print_function from sklearn.datasets import fetch_20newsgroups from sklearn.decomposition import TruncatedSVD from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import Normalizer from sklearn import metrics from sklearn.cluster import KMeans, MiniBatchKMeans import logging from optparse import OptionParser import sys from time import time import numpy as np # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--lsa", dest="n_components", type="int", help="Preprocess documents with latent semantic analysis.") op.add_option("--no-minibatch", action="store_false", dest="minibatch", default=True, help="Use ordinary k-means algorithm (in batch mode).") op.add_option("--no-idf", action="store_false", dest="use_idf", default=True, help="Disable Inverse Document Frequency feature weighting.") op.add_option("--use-hashing", action="store_true", default=False, help="Use a hashing feature vectorizer") op.add_option("--n-features", type=int, default=10000, help="Maximum number of features (dimensions)" " to extract from text.") op.add_option("--verbose", action="store_true", dest="verbose", default=False, help="Print progress reports inside k-means algorithm.") print(__doc__) op.print_help() (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) ############################################################################### # Load some categories from the training set categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] # Uncomment the following to do the analysis on all the categories #categories = None print("Loading 20 newsgroups dataset for categories:") print(categories) dataset = fetch_20newsgroups(subset='all', categories=categories, shuffle=True, random_state=42) print("%d documents" % len(dataset.data)) print("%d categories" % len(dataset.target_names)) print() labels = dataset.target true_k = np.unique(labels).shape[0] print("Extracting features from the training dataset using a sparse vectorizer") t0 = time() if opts.use_hashing: if opts.use_idf: # Perform an IDF normalization on the output of HashingVectorizer hasher = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=True, norm=None, binary=False) vectorizer = make_pipeline(hasher, TfidfTransformer()) else: vectorizer = HashingVectorizer(n_features=opts.n_features, stop_words='english', non_negative=False, norm='l2', binary=False) else: vectorizer = TfidfVectorizer(max_df=0.5, max_features=opts.n_features, min_df=2, stop_words='english', use_idf=opts.use_idf) X = vectorizer.fit_transform(dataset.data) print("done in %fs" % (time() - t0)) print("n_samples: %d, n_features: %d" % X.shape) print() if opts.n_components: print("Performing dimensionality reduction using LSA") t0 = time() # Vectorizer results are normalized, which makes KMeans behave as # spherical k-means for better results. Since LSA/SVD results are # not normalized, we have to redo the normalization. svd = TruncatedSVD(opts.n_components) lsa = make_pipeline(svd, Normalizer(copy=False)) X = lsa.fit_transform(X) print("done in %fs" % (time() - t0)) explained_variance = svd.explained_variance_ratio_.sum() print("Explained variance of the SVD step: {}%".format( int(explained_variance * 100))) print() ############################################################################### # Do the actual clustering if opts.minibatch: km = MiniBatchKMeans(n_clusters=true_k, init='k-means++', n_init=1, init_size=1000, batch_size=1000, verbose=opts.verbose) else: km = KMeans(n_clusters=true_k, init='k-means++', max_iter=100, n_init=1, verbose=opts.verbose) print("Clustering sparse data with %s" % km) t0 = time() km.fit(X) print("done in %0.3fs" % (time() - t0)) print() print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels, km.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(labels, km.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(labels, km.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(labels, km.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, km.labels_, sample_size=1000)) print() if not (opts.n_components or opts.use_hashing): print("Top terms per cluster:") order_centroids = km.cluster_centers_.argsort()[:, ::-1] terms = vectorizer.get_feature_names() for i in range(true_k): print("Cluster %d:" % i, end='') for ind in order_centroids[i, :10]: print(' %s' % terms[ind], end='') print()
bsd-3-clause
MostafaGazar/tensorflow
tensorflow/contrib/learn/python/learn/estimators/base.py
7
19731
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import json import os import types import numpy as np import six from six import string_types from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io.data_feeder import setup_train_data_feeder from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging def _write_with_backup(filename, content): if gfile.Exists(filename): gfile.Rename(filename, filename + '.old', overwrite=True) with gfile.Open(filename, 'w') as f: f.write(content) def _copy_dir(dir_in, dir_out): gfile.MakeDirs(dir_out) for name in gfile.ListDirectory(dir_in): name_in = os.path.join(dir_in, name) name_out = os.path.join(dir_out, name) if gfile.IsDirectory(name_in): gfile.MakeDirs(name_out) _copy_dir(name_in, name_out) else: gfile.Copy(name_in, name_out, overwrite=True) class DeprecatedMixin(object): """This is mixin for deprecated TensorFlowYYY classes.""" def __init__(self, *args, **kwargs): this_class = type(self).__name__ alternative_class = this_class[len('TensorFlow'):] logging.warning( '%s class is deprecated. Please consider using %s as an alternative.', this_class, alternative_class) # Handle deprecated arguments. self.__deprecated_n_classes = kwargs.get('n_classes', 0) if self.__deprecated_n_classes < 1 and 'n_classes' in kwargs: kwargs.pop('n_classes') self.batch_size = kwargs.pop('batch_size', 32) self.steps = kwargs.pop('steps', 200) if 'optimizer' in kwargs or 'learning_rate' in kwargs: self.learning_rate = kwargs.pop('learning_rate', 0.1) self.optimizer = kwargs.pop('optimizer', 'Adagrad') if isinstance(self.learning_rate, types.FunctionType): raise ValueError('Function-like learning_rate are not supported ' 'consider using custom Estimator.') else: learning_rate = self.learning_rate if isinstance(self.optimizer, types.FunctionType): optimizer = self.optimizer(learning_rate) elif isinstance(self.optimizer, six.string_types): optimizer = layers.OPTIMIZER_CLS_NAMES[self.optimizer](learning_rate) else: optimizer = self.optimizer kwargs['optimizer'] = optimizer if 'class_weight' in kwargs: raise ValueError('Sorry we switched interface for providing class ' 'weights. Please use weight column instead which ' 'provides more granular control (per example).') if 'clip_gradients' in kwargs: logging.warning('clip_gradients argument in %s is now converted to ' 'gradient_clip_norm.' % this_class) kwargs['gradient_clip_norm'] = kwargs.pop('clip_gradients') else: kwargs['gradient_clip_norm'] = 5.0 if 'continue_training' in kwargs: logging.warning('continue_training argument in %s is now ignored.' % this_class) kwargs.pop('continue_training') if 'verbose' in kwargs: logging.warning('verbose argument in %s is now ignored.' % this_class) kwargs.pop('verbose') super(DeprecatedMixin, self).__init__(*args, **kwargs) def fit(self, x, y, steps=None, batch_size=None, monitors=None, logdir=None): if logdir is not None: self._model_dir = logdir return super(DeprecatedMixin, self).fit( x=x, y=y, steps=steps or self.steps, batch_size=batch_size or self.batch_size, monitors=monitors) def predict(self, x=None, input_fn=None, batch_size=None, outputs=None, axis=1): """Predict class or regression for `x`.""" if x is not None: predict_data_feeder = setup_train_data_feeder( x, None, n_classes=None, batch_size=batch_size or self.batch_size, shuffle=False, epochs=1) result_iter = super(DeprecatedMixin, self)._infer_model( input_fn=predict_data_feeder.input_builder, feed_fn=predict_data_feeder.get_feed_dict_fn(), outputs=outputs, as_iterable=True) else: result_iter = super(DeprecatedMixin, self)._infer_model( input_fn=input_fn, outputs=outputs, as_iterable=True) result = np.array(list(result_iter)) if self.__deprecated_n_classes > 1 and axis is not None: return np.argmax(result, axis) return result def predict_proba(self, x=None, input_fn=None, batch_size=None, outputs=None): return self.predict(x=x, input_fn=input_fn, batch_size=batch_size, outputs=outputs, axis=None) def save(self, path): """Saves checkpoints and graph to given path. Args: path: Folder to save model to. """ # Copy model dir into new path. _copy_dir(self.model_dir, path) class TensorFlowEstimator(estimator.Estimator, DeprecatedMixin): """Base class for all TensorFlow estimators.""" def __init__(self, model_fn, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, class_weight=None, continue_training=False, config=None, verbose=1): """Initializes a TensorFlowEstimator instance. Args: model_fn: Model function, that takes input `x`, `y` tensors and outputs prediction and loss tensors. n_classes: Number of classes in the target. batch_size: Mini batch size. steps: Number of steps to run over data. optimizer: Optimizer name (or class), for example "SGD", "Adam", "Adagrad". learning_rate: If this is constant float value, no decay function is used. Instead, a customized decay function can be passed that accepts global_step as parameter and returns a Tensor. e.g. exponential decay function: ````python def exp_decay(global_step): return tf.train.exponential_decay( learning_rate=0.1, global_step, decay_steps=2, decay_rate=0.001) ```` clip_gradients: Clip norm of the gradients to this value to stop gradient explosion. class_weight: None or list of n_classes floats. Weight associated with classes for loss computation. If not given, all classes are supposed to have weight one. continue_training: when continue_training is True, once initialized model will be continually trained on every call of fit. config: RunConfig object that controls the configurations of the session, e.g. num_cores, gpu_memory_fraction, etc. verbose: Controls the verbosity, possible values: * 0: the algorithm and debug information is muted. * 1: trainer prints the progress. * 2: log device placement is printed. """ self.class_weight = class_weight self.learning_rate = learning_rate self.clip_gradients = clip_gradients if isinstance(optimizer, six.string_types): if optimizer not in layers.OPTIMIZER_CLS_NAMES: raise ValueError( 'Optimizer name should be one of [%s], you provided %s.' % (', '.join(layers.OPTIMIZER_CLS_NAMES), optimizer)) self.optimizer = optimizer super(TensorFlowEstimator, self).__init__( model_fn=self._get_model_fn(model_fn), config=config) self.n_classes = n_classes self.batch_size = batch_size self.steps = steps self.verbose = verbose self.continue_training = continue_training self._data_feeder = None def fit(self, x, y, steps=None, monitors=None, logdir=None): """Neural network model from provided `model_fn` and training data. Note: called first time constructs the graph and initializers variables. Subsequently, it will continue training the same model. This logic follows partial_fit() interface in scikit-learn. To restart learning, create new estimator. Args: x: matrix or tensor of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of targets. The training target values (class labels in classification, real numbers in regression). steps: int, number of steps to train. If None or 0, train for `self.steps`. monitors: List of `BaseMonitor` objects to print training progress and invoke early stopping. logdir: the directory to save the log file that can be used for optional visualization. Returns: Returns self. """ if logdir is not None: self._model_dir = logdir self._data_feeder = setup_train_data_feeder( x, y, n_classes=self.n_classes, batch_size=self.batch_size) self._train_model(input_fn=self._data_feeder.input_builder, feed_fn=self._data_feeder.get_feed_dict_fn(), steps=steps or self.steps, monitors=monitors) return self def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None): """Evaluates given model with provided evaluation data. See superclass Estimator for more details. Args: x: features. y: targets. input_fn: Input function. feed_fn: Function creating a feed dict every time it is called. batch_size: minibatch size to use on the input. steps: Number of steps for which to evaluate model. metrics: Dict of metric ops to run. If None, the default metrics are used. name: Name of the evaluation. Returns: Returns `dict` with evaluation results. """ feed_fn = None if x is not None: eval_data_feeder = setup_train_data_feeder( x, y, n_classes=self.n_classes, batch_size=self.batch_size, epochs=1) input_fn, feed_fn = (eval_data_feeder.input_builder, eval_data_feeder.get_feed_dict_fn()) return self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps or self.steps, name=name) def partial_fit(self, x, y): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: matrix or tensor of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. y: vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of targets. The training target values (class label in classification, real numbers in regression). Returns: Returns self. """ return self.fit(x, y) def _predict(self, x, axis=-1, batch_size=None): if self._graph is None: raise NotFittedError() # Use the batch size for fitting if the user did not specify one. if batch_size is None: batch_size = self.batch_size predict_data_feeder = setup_train_data_feeder( x, None, n_classes=None, batch_size=batch_size, shuffle=False, epochs=1) preds = np.array(list(self._infer_model( input_fn=predict_data_feeder.input_builder, feed_fn=predict_data_feeder.get_feed_dict_fn(), as_iterable=True))) if self.n_classes > 1 and axis != -1: preds = preds.argmax(axis=axis) return preds def predict(self, x, axis=1, batch_size=None): """Predict class or regression for `x`. For a classification model, the predicted class for each sample in `x` is returned. For a regression model, the predicted value based on `x` is returned. Args: x: array-like matrix, [n_samples, n_features...] or iterator. axis: Which axis to argmax for classification. By default axis 1 (next after batch) is used. Use 2 for sequence predictions. batch_size: If test set is too big, use batch size to split it into mini batches. By default the batch_size member variable is used. Returns: y: array of shape [n_samples]. The predicted classes or predicted value. """ return self._predict(x, axis=axis, batch_size=batch_size) def predict_proba(self, x, batch_size=None): """Predict class probability of the input samples `x`. Args: x: array-like matrix, [n_samples, n_features...] or iterator. batch_size: If test set is too big, use batch size to split it into mini batches. By default the batch_size member variable is used. Returns: y: array of shape [n_samples, n_classes]. The predicted probabilities for each class. """ return self._predict(x, batch_size=batch_size) def get_tensor(self, name): """Returns tensor by name. Args: name: string, name of the tensor. Returns: Tensor. """ if self._graph is None: raise NotFittedError return self._graph.get_tensor_by_name(name) def save(self, path): """Saves checkpoints and graph to given path. Args: path: Folder to save model to. """ if self._graph is None: raise NotFittedError # Copy model dir into new path. _copy_dir(self.model_dir, path) # Save model definition. all_params = self.get_params() params = {} for key, value in all_params.items(): if not callable(value) and value is not None: params[key] = value params['class_name'] = type(self).__name__ model_def = json.dumps( params, default=lambda o: o.__dict__ if hasattr(o, '__dict__') else None) _write_with_backup(os.path.join(path, 'model.def'), model_def) def _restore(self, path): """Restores this estimator from given path. Note: will rebuild the graph and initialize all parameters, and will ignore provided model. Args: path: Path to checkpoints and other information. """ raise NotImplementedError @classmethod def restore(cls, path, config=None): # pylint: disable=unused-argument """Restores model from give path. Args: path: Path to the checkpoints and other model information. config: RunConfig object that controls the configurations of the session, e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be reconfigured. Returns: Estimator, object of the subclass of TensorFlowEstimator. Raises: ValueError: if `path` does not contain a model definition. """ model_def_filename = os.path.join(path, 'model.def') if not os.path.exists(model_def_filename): raise ValueError("Restore folder doesn't contain model definition.") # list of parameters that are allowed to be reconfigured reconfigurable_params = ['_config'] _config = config # pylint: disable=unused-variable,invalid-name with gfile.Open(model_def_filename) as fmodel: model_def = json.loads(fmodel.read()) # TensorFlow binding requires parameters to be strings not unicode. # Only issue in Python2. for key, value in model_def.items(): if isinstance(value, string_types) and not isinstance(value, str): model_def[key] = str(value) if key in reconfigurable_params: new_value = locals()[key] if new_value is not None: model_def[key] = new_value class_name = model_def.pop('class_name') if class_name == 'TensorFlowEstimator': custom_estimator = TensorFlowEstimator(model_fn=None, **model_def) # pylint: disable=protected-access custom_estimator._restore(path) return custom_estimator # To avoid cyclical dependencies, import inside the function instead of # the beginning of the file. # pylint: disable=g-import-not-at-top from tensorflow.contrib.learn.python.learn import estimators # Estimator must be one of the defined estimators in the __init__ file. result = getattr(estimators, class_name)(**model_def) # pylint: disable=protected-access result._restore(path) return result def _get_model_fn(self, model_fn): """Backward compatibility way of adding class weight and IS_TRAINING. TODO(ipolosukhin): Remove this function after new layers are available. Specifically: * dropout and batch norm should work via update ops. * class weights should be retrieved from weights column or hparams. Args: model_fn: Core model function. Returns: Model function. """ def _model_fn(features, targets, mode): """Model function.""" ops.get_default_graph().add_to_collection('IS_TRAINING', mode == 'train') if self.class_weight is not None: constant_op.constant(self.class_weight, name='class_weight') predictions, loss = model_fn(features, targets) if isinstance(self.learning_rate, types.FunctionType): learning_rate = self.learning_rate(contrib_framework.get_global_step()) else: learning_rate = self.learning_rate if isinstance(self.optimizer, types.FunctionType): optimizer = self.optimizer(learning_rate) else: optimizer = self.optimizer train_op = layers.optimize_loss( loss, contrib_framework.get_global_step(), learning_rate=learning_rate, optimizer=optimizer, clip_gradients=self.clip_gradients) return predictions, loss, train_op return _model_fn class TensorFlowBaseTransformer(TensorFlowEstimator, _sklearn.TransformerMixin): """TensorFlow Base Transformer class.""" def transform(self, x): """Transform `x` using trained transformer.""" return(super(TensorFlowBaseTransformer, self).predict( x, axis=1, batch_size=None)) def fit_transform(self, x, y=None, monitors=None, logdir=None): """Fit transformer and transform `x` using trained transformer.""" return self.fit(x, y, monitors=monitors, logdir=logdir).transform(x)
apache-2.0
janezhango/BigDataMachineLearning
py/testdir_single_jvm/test_GLM2_hastie.py
2
3613
## Dataset created from this: # # from sklearn.datasets import make_hastie_10_2 # import numpy as np # i = 1000000 # f = 10 # (X,y) = make_hastie_10_2(n_samples=i,random_state=None) # y.shape = (i,1) # Y = np.hstack((X,y)) # np.savetxt('./1mx' + str(f) + '_hastie_10_2.data', Y, delimiter=',', fmt='%.2f'); import unittest, time, sys, copy sys.path.extend(['.','..','py']) import h2o, h2o_cmd, h2o_glm, h2o_util, h2o_hosts, h2o_import as h2i def glm_doit(self, csvFilename, bucket, csvPathname, timeoutSecs=30): print "\nStarting GLM of", csvFilename parseResult = h2i.import_parse(bucket=bucket, path=csvPathname, hex_key=csvFilename + ".hex", schema='put', timeoutSecs=30) y = 10 # Took n_folds out, because GLM doesn't include n_folds time and it's slow # wanted to compare GLM time to my measured time # hastie has two values 1,-1. need to specify case kwargs = {'response': y, 'alpha': 0, 'family': 'binomial'} # ToInt2.html?src_key=Twitter2DB.hex&column_index=2 # ToEnum2.html?src_key=Twitter2DB.hex&column_index=2 start = time.time() # change the 1/-1 to enums h2o.nodes[0].to_enum(src_key=parseResult['destination_key'], column_index=y+1) glm = h2o_cmd.runGLM(parseResult=parseResult, timeoutSecs=timeoutSecs, **kwargs) print "GLM in", (time.time() - start), "secs (python)" h2o_glm.simpleCheckGLM(self, glm, "C8", **kwargs) # compare this glm to the first one. since the files are replications, the results # should be similar? validation = glm['glm_model']['submodels'][0]['validation'] if self.validation1: h2o_glm.compareToFirstGlm(self, 'auc', validation, self.validation1) else: self.validation1 = copy.deepcopy(validation) class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): global localhost localhost = h2o.decide_if_localhost() if (localhost): h2o.build_cloud(1) else: h2o_hosts.build_cloud_with_hosts(1) global SYNDATASETS_DIR SYNDATASETS_DIR = h2o.make_syn_dir() @classmethod def tearDownClass(cls): h2o.tear_down_cloud() validation1 = {} def test_GLM2_hastie(self): h2o.beta_features = True # gunzip it and cat it to create 2x and 4x replications in SYNDATASETS_DIR # FIX! eventually we'll compare the 1x, 2x and 4x results like we do # in other tests. (catdata?) bucket = 'home-0xdiag-datasets' csvFilename = "1mx10_hastie_10_2.data.gz" csvPathname = 'standard' + '/' + csvFilename glm_doit(self, csvFilename, bucket, csvPathname, timeoutSecs=75) fullPathname = h2i.find_folder_and_filename(bucket, csvPathname, returnFullPath=True) filename1x = "hastie_1x.data" pathname1x = SYNDATASETS_DIR + '/' + filename1x h2o_util.file_gunzip(fullPathname, pathname1x) filename2x = "hastie_2x.data" pathname2x = SYNDATASETS_DIR + '/' + filename2x h2o_util.file_cat(pathname1x,pathname1x,pathname2x) glm_doit(self,filename2x, None, pathname2x, timeoutSecs=75) filename4x = "hastie_4x.data" pathname4x = SYNDATASETS_DIR + '/' + filename4x h2o_util.file_cat(pathname2x,pathname2x,pathname4x) print "Iterating 3 times on this last one for perf compare" for i in range(3): print "\nTrial #", i, "of", filename4x glm_doit(self, filename4x, None, pathname4x, timeoutSecs=150) if __name__ == '__main__': h2o.unit_main()
apache-2.0
ellisk42/TikZ
noTraceBaseline.py
1
14657
from DSL import * from graphicsSearch import serializeLine from dispatch import dispatch import time import random import numpy as np import cPickle as pickle import torch from torch import nn from torch.nn import functional as F from torch.autograd import Variable import torch.optim as optimization import torch.cuda as cuda from torch.nn.utils.rnn import pack_padded_sequence GPU = cuda.is_available() def variable(x, volatile=False): if isinstance(x,list): x = np.array(x) if isinstance(x,(np.ndarray,np.generic)): x = torch.from_numpy(x) if GPU: x = x.cuda() return Variable(x, volatile=volatile) LEXICON = ["START","END", "circle", "rectangle", "line","arrow = True","arrow = False","solid = True","solid = False", "for", "reflect","x","y", "}", "if", "i","j","k","None"] + map(str,range(-5,20)) symbolToIndex = dict(zip(LEXICON,range(len(LEXICON)))) @dispatch(Loop) def serializeProgram(l): return serializeLine(l) + ([] if l.boundary == None else ["if"] + serializeProgram(l.boundary) + ["}"]) + \ serializeProgram(l.body) + ["}"] @dispatch(Reflection) def serializeProgram(l): return serializeLine(l) + serializeProgram(l.body) + ["}"] @dispatch(Primitive) def serializeProgram(l): return serializeLine(l) @dispatch(Block) def serializeProgram(l): return [ c for x in l.items for c in serializeProgram(x) ] def parseOutput(l): def get(l): n = l[0] del l[0] return n def parseLinear(l): b = int(get(l)) x = get(l) m = int(get(l)) if x == 'None': x = None return LinearExpression(m,x,b) def parseBody(l): items = [] while True: if l == []: return Block(items) if l[0] == "}": get(l) return Block(items) items.append(parseAtomic(l)) def parseAtomic(l): k = get(l) if k == 'circle': x = parseLinear(l) y = parseLinear(l) return Primitive(k,x,y) if k == 'rectangle': x1 = parseLinear(l) y1 = parseLinear(l) x2 = parseLinear(l) y2 = parseLinear(l) return Primitive(k,x1,y1,x2,y2) if k == 'line': x1 = parseLinear(l) y1 = parseLinear(l) x2 = parseLinear(l) y2 = parseLinear(l) a = get(l) s = get(l) return Primitive(k,x1,y1,x2,y2, "arrow = True" == a, "solid = True" == s) if k == 'for': v = get(l) b = parseLinear(l) if l[0] == "if": get(l) boundary = parseBody(l) else: boundary = None body = parseBody(l) return Loop(v = v, bound = b, boundary = boundary, body = body) if k == 'reflect': a = get(l) c = int(get(l)) body = parseBody(l) return Reflection(body = body, axis = a, coordinate = c) raise Exception('parsing line '+k) return parseBody(l) class CaptionEncoder(nn.Module): def __init__(self): super(CaptionEncoder, self).__init__() (squareFilters,rectangularFilters,numberOfFilters,kernelSizes,poolSizes,poolStrides) = (20,2,[10], [9,9], [8,4], [4,4]) self.squareFilters = nn.Conv2d(1, squareFilters, kernelSizes[0], padding = kernelSizes[0]/2) self.verticalFilters = nn.Conv2d(1, rectangularFilters, (kernelSizes[0]/2 - 1,kernelSizes[0]*2 - 1), padding = (kernelSizes[0]/4 - 1,kernelSizes[0] - 1)) self.horizontalFilters = nn.Conv2d(1, rectangularFilters, (kernelSizes[0]*2 - 1,kernelSizes[0]/2 - 1), padding = (kernelSizes[0] - 1,kernelSizes[0]/4 - 1)) self.laterStages = nn.Sequential(nn.ReLU(), nn.MaxPool2d(poolSizes[0],poolStrides[0],padding = poolSizes[0]/2 - 1), nn.Conv2d(squareFilters + 2*rectangularFilters, numberOfFilters[0], kernelSizes[1], padding = kernelSizes[1]/2), nn.ReLU(), nn.MaxPool2d(poolSizes[1],poolStrides[1],padding = poolSizes[1]/2 - 1)) def forward(self,x): c1 = self.squareFilters(x) c2 = self.verticalFilters(x) c3 = self.horizontalFilters(x) c0 = torch.cat((c1,c2,c3),dim = 1) output = self.laterStages(c0) return output #return output.view(output.size(0),-1) class CaptionDecoder(nn.Module): def __init__(self): super(CaptionDecoder, self).__init__() IMAGEFEATURESIZE = 2560 EMBEDDINGSIZE = 64 INPUTSIZE = IMAGEFEATURESIZE + EMBEDDINGSIZE HIDDEN = 1024 LAYERS = 2 # self.embedding : list of N indices (BxW) -> (B,W,EMBEDDINGSIZE) self.embedding = nn.Embedding(len(LEXICON),EMBEDDINGSIZE) # The embedding is combined with the image features at each time step self.rnn = nn.LSTM(INPUTSIZE, HIDDEN, LAYERS, batch_first = True) self.tokenPrediction = nn.Linear(HIDDEN,len(LEXICON)) def forward(self, features, captions, lengths): # flatten the convolution output features = features.view(features.size(0),-1) e = self.embedding(captions) # e: BxLx embeddingSize #print "e = ",e.size() #expandedFeatures: BxTx2560 expandedFeatures = features.unsqueeze(1).expand(features.size(0),e.size(1),features.size(1)) #recurrentInputs: bxtxINPUTSIZE recurrentInputs = torch.cat((expandedFeatures,e),2) #print "recurrentInputs = ",recurrentInputs.size() packed = pack_padded_sequence(recurrentInputs, lengths, batch_first = True) hidden,_ = self.rnn(packed) outputs = self.tokenPrediction(hidden[0]) #print "outputs = ",outputs.size() return outputs def sample(self, features): result = ["START"] # (1,1,F) features = features.view(-1).unsqueeze(0).unsqueeze(0) #features: 1x1x2560 states = None while True: e = self.embedding(variable([symbolToIndex[result[-1]]]).view((1,-1))) recurrentInput = torch.cat((features,e),2) output, states = self.rnn(recurrentInput,states) distribution = self.tokenPrediction(output).view(-1) distribution = F.log_softmax(distribution).data.exp() draw = torch.multinomial(distribution,1)[0] c = LEXICON[draw] if len(result) > 20 or c == "END": return result[1:] else: result.append(c) def buildCaptions(self,tokens): '''returns inputs, sizes, targets''' #tokens = [ [self.symbolToIndex["START"]] + [ self.symbolToIndex[s] for s in serializeProgram(p) ] + [self.symbolToIndex["END"]] # for p in programs ] # The full token sequences are START, ..., END # Training input sequences are START, ... # Target output sequences are ..., END # the sizes are actually one smaller therefore # Make sure that the token sequences are decreasing in size previousLength = None for t in tokens: assert previousLength == None or len(t) <= previousLength previousLength = len(t) sizes = map(lambda t: len(t) - 1,tokens) maximumSize = max(sizes) tokens = [ np.concatenate((p, np.zeros(maximumSize + 1 - len(p),dtype = np.int))) for p in tokens ] tokens = np.array(tokens) return variable(tokens[:,:-1]),sizes,variable(tokens[:,1:]) class NoTrace(nn.Module): def __init__(self): super(NoTrace, self).__init__() self.encoder = CaptionEncoder() self.decoder = CaptionDecoder() def sampleMany(self, sequence, duration): image = variable(np.array([ sequence.draw() ], dtype = np.float32), volatile = True).unsqueeze(1) startTime = time() imageFeatures = self.encoder(image) #imageFeatures: 1x10x16x16 programs = [] while time() < startTime + duration: nextSequence = self.decoder.sample(imageFeatures) try: p = parseOutput(nextSequence) print "Sampled",p programs.append({"time": time() - startTime, "program": p, "spec": p.convertToSequence()}) except: continue return programs def loss(self,examples): # IMPORTANT: Sort the examples by their size. recurrent network stuff needs this examples.sort(key = lambda e: len(e.tokens), reverse = True) x = variable(np.array([ e.sequence.draw() for e in examples], dtype = np.float32)) x = x.unsqueeze(1) # insert the channel imageFeatures = self.encoder(x) inputs, sizes, T = self.decoder.buildCaptions([ e.tokens for e in examples ]) outputDistributions = self.decoder(imageFeatures, inputs, sizes) T = pack_padded_sequence(T, sizes, batch_first = True)[0] return F.cross_entropy(outputDistributions, T) def load(self,path): if os.path.isfile(path): if not GPU: stuff = torch.load(path,map_location = lambda s,l: s) else: stuff = torch.load(path) self.load_state_dict(stuff) print "Loaded checkpoint",path else: print "Could not find checkpoint",path def dump(self,path): torch.save(self.state_dict(),path) print "Dumped checkpoint",path class TrainingExample(): def __init__(self,p): try: self.tokens = np.array([symbolToIndex["START"]] + [ symbolToIndex[s] for s in serializeProgram(p) ] + [symbolToIndex["END"]]) except KeyError: print "Key error in tokenization",serializeProgram(p) assert False self.sequence = p.convertToSequence() #self.program = p if str(parseOutput(serializeProgram(p))) != str(p): print "Serialization failure for program",p print serializeProgram(p) print parseOutput(serializeProgram(p)) assert False def loadTrainingData(n): print "About to load the examples" alternatives = ['/scratch/ellisk/randomlyGeneratedPrograms.p', 'randomlyGeneratedPrograms.p'] for alternative in alternatives: if os.path.exists(alternative): trainingDataPath = alternative print "Loading training data from",trainingDataPath break with open(trainingDataPath,'rb') as handle: X = pickle.load(handle) print "Keeping %d/%d examples"%(n,len(X)) pruned = [] for x in X: x = pickle.loads(x) if x.items != []: pruned.append(TrainingExample(x)) if len(pruned) >= n: break print "Pruned down to %d examples"%(len(pruned)) return pruned if __name__ == "__main__": import sys model = NoTrace() if GPU: print "Using the GPU" model = model.float().cuda() else: print "Using the CPU" model = model.float() model.load("checkpoints/noTrace.torch") if 'test' in sys.argv: from groundTruthParses import * import os target = getGroundTruthParse('drawings/expert-%s.png'%(sys.argv[2])) results = model.sampleMany(target, 60*60) results.sort(key = lambda z: (z["spec"] - target, z["program"].totalCost(), z["time"])) if len(results) > 0: z = results[0] print "Best program:" print z["program"].pretty() #showImage(np.concatenate((1 - target.draw(),s.draw()),axis = 1)) saveMatrixAsImage(255*np.concatenate((1 - target.draw(),z["spec"].draw()),axis = 0), "noTraceOutputs/%s.png"%(sys.argv[2])) with open("noTraceOutputs/%s.p"%(sys.argv[2]),'wb') as handle: pickle.dump(z,handle) os.exit(0) if 'statistics' in sys.argv: from groundTruthParses import * import os results = [] gt = [] for n in xrange(100): gt = gt + [getGroundTruthParse('drawings/expert-%s.png'%(n))] f = "noTraceOutputs/%d.p"%n try: with open(f,"rb") as handle: result = pickle.load(handle) results.append(result) except: results.append(None) times = [ r["time"] if r else float('inf') for r in results ] medianTime = sorted(times)[len(times)/2] print "Median time",medianTime successful = sum(r is not None and (r["spec"] - g) == 0 for r,g in zip(results,gt) ) print "# times that we got a program which was consistent with the data",successful os.exit(0) #print "# Learnable parameters:",sum([ parameter.view(-1).shape[0] for parameter in model.parameters() ]) N = 1*(10**7) B = 64 X = loadTrainingData(N) optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) E = 0 while True: E += 1 print "epic",E # scrambled the data X = list(np.random.permutation(X)) start = 0 batchesPerLoop = N/B batchIndex = 0 while start < N: batch = X[start:start + B] model.zero_grad() L = model.loss(batch) if batchIndex%50 == 0: print "Batch [%d/%d], LOSS = %s"%(batchIndex,batchesPerLoop,L.data[0]) model.dump("checkpoints/noTrace.torch") L.backward() optimizer.step() start += B batchIndex += 1
gpl-3.0
narahari92/spark
python/pyspark/ml/clustering.py
15
41736
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pyspark import since, keyword_only from pyspark.ml.util import * from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaWrapper from pyspark.ml.param.shared import * from pyspark.ml.common import inherit_doc __all__ = ['BisectingKMeans', 'BisectingKMeansModel', 'BisectingKMeansSummary', 'KMeans', 'KMeansModel', 'GaussianMixture', 'GaussianMixtureModel', 'GaussianMixtureSummary', 'LDA', 'LDAModel', 'LocalLDAModel', 'DistributedLDAModel'] class ClusteringSummary(JavaWrapper): """ .. note:: Experimental Clustering results for a given model. .. versionadded:: 2.1.0 """ @property @since("2.1.0") def predictionCol(self): """ Name for column of predicted clusters in `predictions`. """ return self._call_java("predictionCol") @property @since("2.1.0") def predictions(self): """ DataFrame produced by the model's `transform` method. """ return self._call_java("predictions") @property @since("2.1.0") def featuresCol(self): """ Name for column of features in `predictions`. """ return self._call_java("featuresCol") @property @since("2.1.0") def k(self): """ The number of clusters the model was trained with. """ return self._call_java("k") @property @since("2.1.0") def cluster(self): """ DataFrame of predicted cluster centers for each training data point. """ return self._call_java("cluster") @property @since("2.1.0") def clusterSizes(self): """ Size of (number of data points in) each cluster. """ return self._call_java("clusterSizes") class GaussianMixtureModel(JavaModel, JavaMLWritable, JavaMLReadable): """ Model fitted by GaussianMixture. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def weights(self): """ Weight for each Gaussian distribution in the mixture. This is a multinomial probability distribution over the k Gaussians, where weights[i] is the weight for Gaussian i, and weights sum to 1. """ return self._call_java("weights") @property @since("2.0.0") def gaussiansDF(self): """ Retrieve Gaussian distributions as a DataFrame. Each row represents a Gaussian Distribution. The DataFrame has two columns: mean (Vector) and cov (Matrix). """ return self._call_java("gaussiansDF") @property @since("2.1.0") def hasSummary(self): """ Indicates whether a training summary exists for this model instance. """ return self._call_java("hasSummary") @property @since("2.1.0") def summary(self): """ Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists. """ if self.hasSummary: return GaussianMixtureSummary(self._call_java("summary")) else: raise RuntimeError("No training summary available for this %s" % self.__class__.__name__) @inherit_doc class GaussianMixture(JavaEstimator, HasFeaturesCol, HasPredictionCol, HasMaxIter, HasTol, HasSeed, HasProbabilityCol, JavaMLWritable, JavaMLReadable): """ GaussianMixture clustering. This class performs expectation maximization for multivariate Gaussian Mixture Models (GMMs). A GMM represents a composite distribution of independent Gaussian distributions with associated "mixing" weights specifying each's contribution to the composite. Given a set of sample points, this class will maximize the log-likelihood for a mixture of k Gaussians, iterating until the log-likelihood changes by less than convergenceTol, or until it has reached the max number of iterations. While this process is generally guaranteed to converge, it is not guaranteed to find a global optimum. .. note:: For high-dimensional data (with many features), this algorithm may perform poorly. This is due to high-dimensional data (a) making it difficult to cluster at all (based on statistical/theoretical arguments) and (b) numerical issues with Gaussian distributions. >>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.dense([-0.1, -0.05 ]),), ... (Vectors.dense([-0.01, -0.1]),), ... (Vectors.dense([0.9, 0.8]),), ... (Vectors.dense([0.75, 0.935]),), ... (Vectors.dense([-0.83, -0.68]),), ... (Vectors.dense([-0.91, -0.76]),)] >>> df = spark.createDataFrame(data, ["features"]) >>> gm = GaussianMixture(k=3, tol=0.0001, ... maxIter=10, seed=10) >>> model = gm.fit(df) >>> model.hasSummary True >>> summary = model.summary >>> summary.k 3 >>> summary.clusterSizes [2, 2, 2] >>> summary.logLikelihood 8.14636... >>> weights = model.weights >>> len(weights) 3 >>> model.gaussiansDF.select("mean").head() Row(mean=DenseVector([0.825, 0.8675])) >>> model.gaussiansDF.select("cov").head() Row(cov=DenseMatrix(2, 2, [0.0056, -0.0051, -0.0051, 0.0046], False)) >>> transformed = model.transform(df).select("features", "prediction") >>> rows = transformed.collect() >>> rows[4].prediction == rows[5].prediction True >>> rows[2].prediction == rows[3].prediction True >>> gmm_path = temp_path + "/gmm" >>> gm.save(gmm_path) >>> gm2 = GaussianMixture.load(gmm_path) >>> gm2.getK() 3 >>> model_path = temp_path + "/gmm_model" >>> model.save(model_path) >>> model2 = GaussianMixtureModel.load(model_path) >>> model2.hasSummary False >>> model2.weights == model.weights True >>> model2.gaussiansDF.select("mean").head() Row(mean=DenseVector([0.825, 0.8675])) >>> model2.gaussiansDF.select("cov").head() Row(cov=DenseMatrix(2, 2, [0.0056, -0.0051, -0.0051, 0.0046], False)) .. versionadded:: 2.0.0 """ k = Param(Params._dummy(), "k", "Number of independent Gaussians in the mixture model. " + "Must be > 1.", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, featuresCol="features", predictionCol="prediction", k=2, probabilityCol="probability", tol=0.01, maxIter=100, seed=None): """ __init__(self, featuresCol="features", predictionCol="prediction", k=2, \ probabilityCol="probability", tol=0.01, maxIter=100, seed=None) """ super(GaussianMixture, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.clustering.GaussianMixture", self.uid) self._setDefault(k=2, tol=0.01, maxIter=100) kwargs = self._input_kwargs self.setParams(**kwargs) def _create_model(self, java_model): return GaussianMixtureModel(java_model) @keyword_only @since("2.0.0") def setParams(self, featuresCol="features", predictionCol="prediction", k=2, probabilityCol="probability", tol=0.01, maxIter=100, seed=None): """ setParams(self, featuresCol="features", predictionCol="prediction", k=2, \ probabilityCol="probability", tol=0.01, maxIter=100, seed=None) Sets params for GaussianMixture. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.0.0") def setK(self, value): """ Sets the value of :py:attr:`k`. """ return self._set(k=value) @since("2.0.0") def getK(self): """ Gets the value of `k` """ return self.getOrDefault(self.k) class GaussianMixtureSummary(ClusteringSummary): """ .. note:: Experimental Gaussian mixture clustering results for a given model. .. versionadded:: 2.1.0 """ @property @since("2.1.0") def probabilityCol(self): """ Name for column of predicted probability of each cluster in `predictions`. """ return self._call_java("probabilityCol") @property @since("2.1.0") def probability(self): """ DataFrame of probabilities of each cluster for each training data point. """ return self._call_java("probability") @property @since("2.2.0") def logLikelihood(self): """ Total log-likelihood for this model on the given data. """ return self._call_java("logLikelihood") class KMeansSummary(ClusteringSummary): """ .. note:: Experimental Summary of KMeans. .. versionadded:: 2.1.0 """ pass class KMeansModel(JavaModel, JavaMLWritable, JavaMLReadable): """ Model fitted by KMeans. .. versionadded:: 1.5.0 """ @since("1.5.0") def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays.""" return [c.toArray() for c in self._call_java("clusterCenters")] @since("2.0.0") def computeCost(self, dataset): """ Return the K-means cost (sum of squared distances of points to their nearest center) for this model on the given data. """ return self._call_java("computeCost", dataset) @property @since("2.1.0") def hasSummary(self): """ Indicates whether a training summary exists for this model instance. """ return self._call_java("hasSummary") @property @since("2.1.0") def summary(self): """ Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists. """ if self.hasSummary: return KMeansSummary(self._call_java("summary")) else: raise RuntimeError("No training summary available for this %s" % self.__class__.__name__) @inherit_doc class KMeans(JavaEstimator, HasFeaturesCol, HasPredictionCol, HasMaxIter, HasTol, HasSeed, JavaMLWritable, JavaMLReadable): """ K-means clustering with a k-means++ like initialization mode (the k-means|| algorithm by Bahmani et al). >>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),), ... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)] >>> df = spark.createDataFrame(data, ["features"]) >>> kmeans = KMeans(k=2, seed=1) >>> model = kmeans.fit(df) >>> centers = model.clusterCenters() >>> len(centers) 2 >>> model.computeCost(df) 2.000... >>> transformed = model.transform(df).select("features", "prediction") >>> rows = transformed.collect() >>> rows[0].prediction == rows[1].prediction True >>> rows[2].prediction == rows[3].prediction True >>> model.hasSummary True >>> summary = model.summary >>> summary.k 2 >>> summary.clusterSizes [2, 2] >>> kmeans_path = temp_path + "/kmeans" >>> kmeans.save(kmeans_path) >>> kmeans2 = KMeans.load(kmeans_path) >>> kmeans2.getK() 2 >>> model_path = temp_path + "/kmeans_model" >>> model.save(model_path) >>> model2 = KMeansModel.load(model_path) >>> model2.hasSummary False >>> model.clusterCenters()[0] == model2.clusterCenters()[0] array([ True, True], dtype=bool) >>> model.clusterCenters()[1] == model2.clusterCenters()[1] array([ True, True], dtype=bool) .. versionadded:: 1.5.0 """ k = Param(Params._dummy(), "k", "The number of clusters to create. Must be > 1.", typeConverter=TypeConverters.toInt) initMode = Param(Params._dummy(), "initMode", "The initialization algorithm. This can be either \"random\" to " + "choose random points as initial cluster centers, or \"k-means||\" " + "to use a parallel variant of k-means++", typeConverter=TypeConverters.toString) initSteps = Param(Params._dummy(), "initSteps", "The number of steps for k-means|| " + "initialization mode. Must be > 0.", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, featuresCol="features", predictionCol="prediction", k=2, initMode="k-means||", initSteps=2, tol=1e-4, maxIter=20, seed=None): """ __init__(self, featuresCol="features", predictionCol="prediction", k=2, \ initMode="k-means||", initSteps=2, tol=1e-4, maxIter=20, seed=None) """ super(KMeans, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.clustering.KMeans", self.uid) self._setDefault(k=2, initMode="k-means||", initSteps=2, tol=1e-4, maxIter=20) kwargs = self._input_kwargs self.setParams(**kwargs) def _create_model(self, java_model): return KMeansModel(java_model) @keyword_only @since("1.5.0") def setParams(self, featuresCol="features", predictionCol="prediction", k=2, initMode="k-means||", initSteps=2, tol=1e-4, maxIter=20, seed=None): """ setParams(self, featuresCol="features", predictionCol="prediction", k=2, \ initMode="k-means||", initSteps=2, tol=1e-4, maxIter=20, seed=None) Sets params for KMeans. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.5.0") def setK(self, value): """ Sets the value of :py:attr:`k`. """ return self._set(k=value) @since("1.5.0") def getK(self): """ Gets the value of `k` """ return self.getOrDefault(self.k) @since("1.5.0") def setInitMode(self, value): """ Sets the value of :py:attr:`initMode`. """ return self._set(initMode=value) @since("1.5.0") def getInitMode(self): """ Gets the value of `initMode` """ return self.getOrDefault(self.initMode) @since("1.5.0") def setInitSteps(self, value): """ Sets the value of :py:attr:`initSteps`. """ return self._set(initSteps=value) @since("1.5.0") def getInitSteps(self): """ Gets the value of `initSteps` """ return self.getOrDefault(self.initSteps) class BisectingKMeansModel(JavaModel, JavaMLWritable, JavaMLReadable): """ Model fitted by BisectingKMeans. .. versionadded:: 2.0.0 """ @since("2.0.0") def clusterCenters(self): """Get the cluster centers, represented as a list of NumPy arrays.""" return [c.toArray() for c in self._call_java("clusterCenters")] @since("2.0.0") def computeCost(self, dataset): """ Computes the sum of squared distances between the input points and their corresponding cluster centers. """ return self._call_java("computeCost", dataset) @property @since("2.1.0") def hasSummary(self): """ Indicates whether a training summary exists for this model instance. """ return self._call_java("hasSummary") @property @since("2.1.0") def summary(self): """ Gets summary (e.g. cluster assignments, cluster sizes) of the model trained on the training set. An exception is thrown if no summary exists. """ if self.hasSummary: return BisectingKMeansSummary(self._call_java("summary")) else: raise RuntimeError("No training summary available for this %s" % self.__class__.__name__) @inherit_doc class BisectingKMeans(JavaEstimator, HasFeaturesCol, HasPredictionCol, HasMaxIter, HasSeed, JavaMLWritable, JavaMLReadable): """ A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques" by Steinbach, Karypis, and Kumar, with modification to fit Spark. The algorithm starts from a single cluster that contains all points. Iteratively it finds divisible clusters on the bottom level and bisects each of them using k-means, until there are `k` leaf clusters in total or no leaf clusters are divisible. The bisecting steps of clusters on the same level are grouped together to increase parallelism. If bisecting all divisible clusters on the bottom level would result more than `k` leaf clusters, larger clusters get higher priority. >>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.dense([0.0, 0.0]),), (Vectors.dense([1.0, 1.0]),), ... (Vectors.dense([9.0, 8.0]),), (Vectors.dense([8.0, 9.0]),)] >>> df = spark.createDataFrame(data, ["features"]) >>> bkm = BisectingKMeans(k=2, minDivisibleClusterSize=1.0) >>> model = bkm.fit(df) >>> centers = model.clusterCenters() >>> len(centers) 2 >>> model.computeCost(df) 2.000... >>> model.hasSummary True >>> summary = model.summary >>> summary.k 2 >>> summary.clusterSizes [2, 2] >>> transformed = model.transform(df).select("features", "prediction") >>> rows = transformed.collect() >>> rows[0].prediction == rows[1].prediction True >>> rows[2].prediction == rows[3].prediction True >>> bkm_path = temp_path + "/bkm" >>> bkm.save(bkm_path) >>> bkm2 = BisectingKMeans.load(bkm_path) >>> bkm2.getK() 2 >>> model_path = temp_path + "/bkm_model" >>> model.save(model_path) >>> model2 = BisectingKMeansModel.load(model_path) >>> model2.hasSummary False >>> model.clusterCenters()[0] == model2.clusterCenters()[0] array([ True, True], dtype=bool) >>> model.clusterCenters()[1] == model2.clusterCenters()[1] array([ True, True], dtype=bool) .. versionadded:: 2.0.0 """ k = Param(Params._dummy(), "k", "The desired number of leaf clusters. Must be > 1.", typeConverter=TypeConverters.toInt) minDivisibleClusterSize = Param(Params._dummy(), "minDivisibleClusterSize", "The minimum number of points (if >= 1.0) or the minimum " + "proportion of points (if < 1.0) of a divisible cluster.", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, featuresCol="features", predictionCol="prediction", maxIter=20, seed=None, k=4, minDivisibleClusterSize=1.0): """ __init__(self, featuresCol="features", predictionCol="prediction", maxIter=20, \ seed=None, k=4, minDivisibleClusterSize=1.0) """ super(BisectingKMeans, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.clustering.BisectingKMeans", self.uid) self._setDefault(maxIter=20, k=4, minDivisibleClusterSize=1.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.0.0") def setParams(self, featuresCol="features", predictionCol="prediction", maxIter=20, seed=None, k=4, minDivisibleClusterSize=1.0): """ setParams(self, featuresCol="features", predictionCol="prediction", maxIter=20, \ seed=None, k=4, minDivisibleClusterSize=1.0) Sets params for BisectingKMeans. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.0.0") def setK(self, value): """ Sets the value of :py:attr:`k`. """ return self._set(k=value) @since("2.0.0") def getK(self): """ Gets the value of `k` or its default value. """ return self.getOrDefault(self.k) @since("2.0.0") def setMinDivisibleClusterSize(self, value): """ Sets the value of :py:attr:`minDivisibleClusterSize`. """ return self._set(minDivisibleClusterSize=value) @since("2.0.0") def getMinDivisibleClusterSize(self): """ Gets the value of `minDivisibleClusterSize` or its default value. """ return self.getOrDefault(self.minDivisibleClusterSize) def _create_model(self, java_model): return BisectingKMeansModel(java_model) class BisectingKMeansSummary(ClusteringSummary): """ .. note:: Experimental Bisecting KMeans clustering results for a given model. .. versionadded:: 2.1.0 """ pass @inherit_doc class LDAModel(JavaModel): """ Latent Dirichlet Allocation (LDA) model. This abstraction permits for different underlying representations, including local and distributed data structures. .. versionadded:: 2.0.0 """ @since("2.0.0") def isDistributed(self): """ Indicates whether this instance is of type DistributedLDAModel """ return self._call_java("isDistributed") @since("2.0.0") def vocabSize(self): """Vocabulary size (number of terms or words in the vocabulary)""" return self._call_java("vocabSize") @since("2.0.0") def topicsMatrix(self): """ Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics. WARNING: If this model is actually a :py:class:`DistributedLDAModel` instance produced by the Expectation-Maximization ("em") `optimizer`, then this method could involve collecting a large amount of data to the driver (on the order of vocabSize x k). """ return self._call_java("topicsMatrix") @since("2.0.0") def logLikelihood(self, dataset): """ Calculates a lower bound on the log likelihood of the entire corpus. See Equation (16) in the Online LDA paper (Hoffman et al., 2010). WARNING: If this model is an instance of :py:class:`DistributedLDAModel` (produced when :py:attr:`optimizer` is set to "em"), this involves collecting a large :py:func:`topicsMatrix` to the driver. This implementation may be changed in the future. """ return self._call_java("logLikelihood", dataset) @since("2.0.0") def logPerplexity(self, dataset): """ Calculate an upper bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA paper (Hoffman et al., 2010). WARNING: If this model is an instance of :py:class:`DistributedLDAModel` (produced when :py:attr:`optimizer` is set to "em"), this involves collecting a large :py:func:`topicsMatrix` to the driver. This implementation may be changed in the future. """ return self._call_java("logPerplexity", dataset) @since("2.0.0") def describeTopics(self, maxTermsPerTopic=10): """ Return the topics described by their top-weighted terms. """ return self._call_java("describeTopics", maxTermsPerTopic) @since("2.0.0") def estimatedDocConcentration(self): """ Value for :py:attr:`LDA.docConcentration` estimated from data. If Online LDA was used and :py:attr:`LDA.optimizeDocConcentration` was set to false, then this returns the fixed (given) value for the :py:attr:`LDA.docConcentration` parameter. """ return self._call_java("estimatedDocConcentration") @inherit_doc class DistributedLDAModel(LDAModel, JavaMLReadable, JavaMLWritable): """ Distributed model fitted by :py:class:`LDA`. This type of model is currently only produced by Expectation-Maximization (EM). This model stores the inferred topics, the full training dataset, and the topic distribution for each training document. .. versionadded:: 2.0.0 """ @since("2.0.0") def toLocal(self): """ Convert this distributed model to a local representation. This discards info about the training dataset. WARNING: This involves collecting a large :py:func:`topicsMatrix` to the driver. """ model = LocalLDAModel(self._call_java("toLocal")) # SPARK-10931: Temporary fix to be removed once LDAModel defines Params model._create_params_from_java() model._transfer_params_from_java() return model @since("2.0.0") def trainingLogLikelihood(self): """ Log likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, Dirichlet hyperparameters) Notes: - This excludes the prior; for that, use :py:func:`logPrior`. - Even with :py:func:`logPrior`, this is NOT the same as the data log likelihood given the hyperparameters. - This is computed from the topic distributions computed during training. If you call :py:func:`logLikelihood` on the same training dataset, the topic distributions will be computed again, possibly giving different results. """ return self._call_java("trainingLogLikelihood") @since("2.0.0") def logPrior(self): """ Log probability of the current parameter estimate: log P(topics, topic distributions for docs | alpha, eta) """ return self._call_java("logPrior") @since("2.0.0") def getCheckpointFiles(self): """ If using checkpointing and :py:attr:`LDA.keepLastCheckpoint` is set to true, then there may be saved checkpoint files. This method is provided so that users can manage those files. .. note:: Removing the checkpoints can cause failures if a partition is lost and is needed by certain :py:class:`DistributedLDAModel` methods. Reference counting will clean up the checkpoints when this model and derivative data go out of scope. :return List of checkpoint files from training """ return self._call_java("getCheckpointFiles") @inherit_doc class LocalLDAModel(LDAModel, JavaMLReadable, JavaMLWritable): """ Local (non-distributed) model fitted by :py:class:`LDA`. This model stores the inferred topics only; it does not store info about the training dataset. .. versionadded:: 2.0.0 """ pass @inherit_doc class LDA(JavaEstimator, HasFeaturesCol, HasMaxIter, HasSeed, HasCheckpointInterval, JavaMLReadable, JavaMLWritable): """ Latent Dirichlet Allocation (LDA), a topic model designed for text documents. Terminology: - "term" = "word": an el - "token": instance of a term appearing in a document - "topic": multinomial distribution over terms representing some concept - "document": one piece of text, corresponding to one row in the input data Original LDA paper (journal version): Blei, Ng, and Jordan. "Latent Dirichlet Allocation." JMLR, 2003. Input data (featuresCol): LDA is given a collection of documents as input data, via the featuresCol parameter. Each document is specified as a :py:class:`Vector` of length vocabSize, where each entry is the count for the corresponding term (word) in the document. Feature transformers such as :py:class:`pyspark.ml.feature.Tokenizer` and :py:class:`pyspark.ml.feature.CountVectorizer` can be useful for converting text to word count vectors. >>> from pyspark.ml.linalg import Vectors, SparseVector >>> from pyspark.ml.clustering import LDA >>> df = spark.createDataFrame([[1, Vectors.dense([0.0, 1.0])], ... [2, SparseVector(2, {0: 1.0})],], ["id", "features"]) >>> lda = LDA(k=2, seed=1, optimizer="em") >>> model = lda.fit(df) >>> model.isDistributed() True >>> localModel = model.toLocal() >>> localModel.isDistributed() False >>> model.vocabSize() 2 >>> model.describeTopics().show() +-----+-----------+--------------------+ |topic|termIndices| termWeights| +-----+-----------+--------------------+ | 0| [1, 0]|[0.50401530077160...| | 1| [0, 1]|[0.50401530077160...| +-----+-----------+--------------------+ ... >>> model.topicsMatrix() DenseMatrix(2, 2, [0.496, 0.504, 0.504, 0.496], 0) >>> lda_path = temp_path + "/lda" >>> lda.save(lda_path) >>> sameLDA = LDA.load(lda_path) >>> distributed_model_path = temp_path + "/lda_distributed_model" >>> model.save(distributed_model_path) >>> sameModel = DistributedLDAModel.load(distributed_model_path) >>> local_model_path = temp_path + "/lda_local_model" >>> localModel.save(local_model_path) >>> sameLocalModel = LocalLDAModel.load(local_model_path) .. versionadded:: 2.0.0 """ k = Param(Params._dummy(), "k", "The number of topics (clusters) to infer. Must be > 1.", typeConverter=TypeConverters.toInt) optimizer = Param(Params._dummy(), "optimizer", "Optimizer or inference algorithm used to estimate the LDA model. " "Supported: online, em", typeConverter=TypeConverters.toString) learningOffset = Param(Params._dummy(), "learningOffset", "A (positive) learning parameter that downweights early iterations." " Larger values make early iterations count less", typeConverter=TypeConverters.toFloat) learningDecay = Param(Params._dummy(), "learningDecay", "Learning rate, set as an" "exponential decay rate. This should be between (0.5, 1.0] to " "guarantee asymptotic convergence.", typeConverter=TypeConverters.toFloat) subsamplingRate = Param(Params._dummy(), "subsamplingRate", "Fraction of the corpus to be sampled and used in each iteration " "of mini-batch gradient descent, in range (0, 1].", typeConverter=TypeConverters.toFloat) optimizeDocConcentration = Param(Params._dummy(), "optimizeDocConcentration", "Indicates whether the docConcentration (Dirichlet parameter " "for document-topic distribution) will be optimized during " "training.", typeConverter=TypeConverters.toBoolean) docConcentration = Param(Params._dummy(), "docConcentration", "Concentration parameter (commonly named \"alpha\") for the " "prior placed on documents' distributions over topics (\"theta\").", typeConverter=TypeConverters.toListFloat) topicConcentration = Param(Params._dummy(), "topicConcentration", "Concentration parameter (commonly named \"beta\" or \"eta\") for " "the prior placed on topic' distributions over terms.", typeConverter=TypeConverters.toFloat) topicDistributionCol = Param(Params._dummy(), "topicDistributionCol", "Output column with estimates of the topic mixture distribution " "for each document (often called \"theta\" in the literature). " "Returns a vector of zeros for an empty document.", typeConverter=TypeConverters.toString) keepLastCheckpoint = Param(Params._dummy(), "keepLastCheckpoint", "(For EM optimizer) If using checkpointing, this indicates whether" " to keep the last checkpoint. If false, then the checkpoint will be" " deleted. Deleting the checkpoint can cause failures if a data" " partition is lost, so set this bit with care.", TypeConverters.toBoolean) @keyword_only def __init__(self, featuresCol="features", maxIter=20, seed=None, checkpointInterval=10, k=10, optimizer="online", learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, optimizeDocConcentration=True, docConcentration=None, topicConcentration=None, topicDistributionCol="topicDistribution", keepLastCheckpoint=True): """ __init__(self, featuresCol="features", maxIter=20, seed=None, checkpointInterval=10,\ k=10, optimizer="online", learningOffset=1024.0, learningDecay=0.51,\ subsamplingRate=0.05, optimizeDocConcentration=True,\ docConcentration=None, topicConcentration=None,\ topicDistributionCol="topicDistribution", keepLastCheckpoint=True): """ super(LDA, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.clustering.LDA", self.uid) self._setDefault(maxIter=20, checkpointInterval=10, k=10, optimizer="online", learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, optimizeDocConcentration=True, topicDistributionCol="topicDistribution", keepLastCheckpoint=True) kwargs = self._input_kwargs self.setParams(**kwargs) def _create_model(self, java_model): if self.getOptimizer() == "em": return DistributedLDAModel(java_model) else: return LocalLDAModel(java_model) @keyword_only @since("2.0.0") def setParams(self, featuresCol="features", maxIter=20, seed=None, checkpointInterval=10, k=10, optimizer="online", learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05, optimizeDocConcentration=True, docConcentration=None, topicConcentration=None, topicDistributionCol="topicDistribution", keepLastCheckpoint=True): """ setParams(self, featuresCol="features", maxIter=20, seed=None, checkpointInterval=10,\ k=10, optimizer="online", learningOffset=1024.0, learningDecay=0.51,\ subsamplingRate=0.05, optimizeDocConcentration=True,\ docConcentration=None, topicConcentration=None,\ topicDistributionCol="topicDistribution", keepLastCheckpoint=True): Sets params for LDA. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.0.0") def setK(self, value): """ Sets the value of :py:attr:`k`. >>> algo = LDA().setK(10) >>> algo.getK() 10 """ return self._set(k=value) @since("2.0.0") def getK(self): """ Gets the value of :py:attr:`k` or its default value. """ return self.getOrDefault(self.k) @since("2.0.0") def setOptimizer(self, value): """ Sets the value of :py:attr:`optimizer`. Currenlty only support 'em' and 'online'. >>> algo = LDA().setOptimizer("em") >>> algo.getOptimizer() 'em' """ return self._set(optimizer=value) @since("2.0.0") def getOptimizer(self): """ Gets the value of :py:attr:`optimizer` or its default value. """ return self.getOrDefault(self.optimizer) @since("2.0.0") def setLearningOffset(self, value): """ Sets the value of :py:attr:`learningOffset`. >>> algo = LDA().setLearningOffset(100) >>> algo.getLearningOffset() 100.0 """ return self._set(learningOffset=value) @since("2.0.0") def getLearningOffset(self): """ Gets the value of :py:attr:`learningOffset` or its default value. """ return self.getOrDefault(self.learningOffset) @since("2.0.0") def setLearningDecay(self, value): """ Sets the value of :py:attr:`learningDecay`. >>> algo = LDA().setLearningDecay(0.1) >>> algo.getLearningDecay() 0.1... """ return self._set(learningDecay=value) @since("2.0.0") def getLearningDecay(self): """ Gets the value of :py:attr:`learningDecay` or its default value. """ return self.getOrDefault(self.learningDecay) @since("2.0.0") def setSubsamplingRate(self, value): """ Sets the value of :py:attr:`subsamplingRate`. >>> algo = LDA().setSubsamplingRate(0.1) >>> algo.getSubsamplingRate() 0.1... """ return self._set(subsamplingRate=value) @since("2.0.0") def getSubsamplingRate(self): """ Gets the value of :py:attr:`subsamplingRate` or its default value. """ return self.getOrDefault(self.subsamplingRate) @since("2.0.0") def setOptimizeDocConcentration(self, value): """ Sets the value of :py:attr:`optimizeDocConcentration`. >>> algo = LDA().setOptimizeDocConcentration(True) >>> algo.getOptimizeDocConcentration() True """ return self._set(optimizeDocConcentration=value) @since("2.0.0") def getOptimizeDocConcentration(self): """ Gets the value of :py:attr:`optimizeDocConcentration` or its default value. """ return self.getOrDefault(self.optimizeDocConcentration) @since("2.0.0") def setDocConcentration(self, value): """ Sets the value of :py:attr:`docConcentration`. >>> algo = LDA().setDocConcentration([0.1, 0.2]) >>> algo.getDocConcentration() [0.1..., 0.2...] """ return self._set(docConcentration=value) @since("2.0.0") def getDocConcentration(self): """ Gets the value of :py:attr:`docConcentration` or its default value. """ return self.getOrDefault(self.docConcentration) @since("2.0.0") def setTopicConcentration(self, value): """ Sets the value of :py:attr:`topicConcentration`. >>> algo = LDA().setTopicConcentration(0.5) >>> algo.getTopicConcentration() 0.5... """ return self._set(topicConcentration=value) @since("2.0.0") def getTopicConcentration(self): """ Gets the value of :py:attr:`topicConcentration` or its default value. """ return self.getOrDefault(self.topicConcentration) @since("2.0.0") def setTopicDistributionCol(self, value): """ Sets the value of :py:attr:`topicDistributionCol`. >>> algo = LDA().setTopicDistributionCol("topicDistributionCol") >>> algo.getTopicDistributionCol() 'topicDistributionCol' """ return self._set(topicDistributionCol=value) @since("2.0.0") def getTopicDistributionCol(self): """ Gets the value of :py:attr:`topicDistributionCol` or its default value. """ return self.getOrDefault(self.topicDistributionCol) @since("2.0.0") def setKeepLastCheckpoint(self, value): """ Sets the value of :py:attr:`keepLastCheckpoint`. >>> algo = LDA().setKeepLastCheckpoint(False) >>> algo.getKeepLastCheckpoint() False """ return self._set(keepLastCheckpoint=value) @since("2.0.0") def getKeepLastCheckpoint(self): """ Gets the value of :py:attr:`keepLastCheckpoint` or its default value. """ return self.getOrDefault(self.keepLastCheckpoint) if __name__ == "__main__": import doctest import pyspark.ml.clustering from pyspark.sql import SparkSession globs = pyspark.ml.clustering.__dict__.copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder\ .master("local[2]")\ .appName("ml.clustering tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark import tempfile temp_path = tempfile.mkdtemp() globs['temp_path'] = temp_path try: (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() finally: from shutil import rmtree try: rmtree(temp_path) except OSError: pass if failure_count: exit(-1)
apache-2.0
espg/scikit-learn
examples/linear_model/plot_ols.py
13
2048
# -*- coding: utf-8 -*- """ ========================================================= Linear Regression Example ========================================================= The example below uses only the first feature of the `diabetes` dataset, in order to illustrate the data points within the two-dimensional plot. The straight line can be seen in the plot, showing how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset, and the responses predicted by the linear approximation. The coefficients, residual sum of squares and the coefficient of determination are also calculated. """ # Code source: Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True) # Use only one feature diabetes_X = diabetes_X[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes_y[:-20] diabetes_y_test = diabetes_y[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients print("Coefficients: \n", regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # The coefficient of determination: 1 is perfect prediction print("Coefficient of determination: %.2f" % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color="black") plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()
bsd-3-clause
espg/scikit-learn
examples/linear_model/plot_logistic_path.py
12
2159
""" ============================================== Regularization path of L1- Logistic Regression ============================================== Train l1-penalized logistic regression models on a binary classification problem derived from the Iris dataset. The models are ordered from strongest regularized to least regularized. The 4 coefficients of the models are collected and plotted as a "regularization path": on the left-hand side of the figure (strong regularizers), all the coefficients are exactly 0. When regularization gets progressively looser, coefficients can get non-zero values one after the other. Here we choose the liblinear solver because it can efficiently optimize for the Logistic Regression loss with a non-smooth, sparsity inducing l1 penalty. Also note that we set a low value for the tolerance to make sure that the model has converged before collecting the coefficients. We also use warm_start=True which means that the coefficients of the models are reused to initialize the next model fit to speed-up the computation of the full-path. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause # %% # Load data # --------- from sklearn import datasets iris = datasets.load_iris() X = iris.data y = iris.target X = X[y != 2] y = y[y != 2] X /= X.max() # Normalize X to speed-up convergence # %% # Compute regularization path # --------------------------- import numpy as np from sklearn import linear_model from sklearn.svm import l1_min_c cs = l1_min_c(X, y, loss="log") * np.logspace(0, 7, 16) clf = linear_model.LogisticRegression( penalty="l1", solver="liblinear", tol=1e-6, max_iter=int(1e6), warm_start=True, intercept_scaling=10000.0, ) coefs_ = [] for c in cs: clf.set_params(C=c) clf.fit(X, y) coefs_.append(clf.coef_.ravel().copy()) coefs_ = np.array(coefs_) # %% # Plot regularization path # ------------------------ import matplotlib.pyplot as plt plt.plot(np.log10(cs), coefs_, marker="o") ymin, ymax = plt.ylim() plt.xlabel("log(C)") plt.ylabel("Coefficients") plt.title("Logistic Regression Path") plt.axis("tight") plt.show()
bsd-3-clause
espg/scikit-learn
sklearn/svm/tests/test_svm.py
8
47550
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import warnings import re import numpy as np import pytest from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_allclose from scipy import sparse from sklearn import svm, linear_model, datasets, metrics, base from sklearn.svm import LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils._testing import ignore_warnings from sklearn.utils.validation import _num_samples from sklearn.utils import shuffle from sklearn.exceptions import ConvergenceWarning from sklearn.exceptions import NotFittedError, UndefinedMetricWarning from sklearn.multiclass import OneVsRestClassifier # mypy error: Module 'sklearn.svm' has no attribute '_libsvm' from sklearn.svm import _libsvm # type: ignore # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel="linear").fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.0]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ("linear", "rbf"): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert np.mean(clf.predict(iris.data) == iris.target) > 0.9 assert hasattr(clf, "coef_") == (k == "linear") assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API # We unpack the values to create a dictionary with some of the return values # from Libsvm's fit. ( libsvm_support, libsvm_support_vectors, libsvm_n_class_SV, libsvm_sv_coef, libsvm_intercept, libsvm_probA, libsvm_probB, # libsvm_fit_status and libsvm_n_iter won't be used below. libsvm_fit_status, libsvm_n_iter, ) = _libsvm.fit(iris.data, iris.target.astype(np.float64)) model_params = { "support": libsvm_support, "SV": libsvm_support_vectors, "nSV": libsvm_n_class_SV, "sv_coef": libsvm_sv_coef, "intercept": libsvm_intercept, "probA": libsvm_probA, "probB": libsvm_probB, } pred = _libsvm.predict(iris.data, **model_params) assert np.mean(pred == iris.target) > 0.95 # We unpack the values to create a dictionary with some of the return values # from Libsvm's fit. ( libsvm_support, libsvm_support_vectors, libsvm_n_class_SV, libsvm_sv_coef, libsvm_intercept, libsvm_probA, libsvm_probB, # libsvm_fit_status and libsvm_n_iter won't be used below. libsvm_fit_status, libsvm_n_iter, ) = _libsvm.fit(iris.data, iris.target.astype(np.float64), kernel="linear") model_params = { "support": libsvm_support, "SV": libsvm_support_vectors, "nSV": libsvm_n_class_SV, "sv_coef": libsvm_sv_coef, "intercept": libsvm_intercept, "probA": libsvm_probA, "probB": libsvm_probB, } pred = _libsvm.predict(iris.data, **model_params, kernel="linear") assert np.mean(pred == iris.target) > 0.95 pred = _libsvm.cross_validation( iris.data, iris.target.astype(np.float64), 5, kernel="linear", random_seed=0 ) assert np.mean(pred == iris.target) > 0.95 # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deterministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = _libsvm.cross_validation( iris.data, iris.target.astype(np.float64), 5, kernel="linear", random_seed=0 ) assert_array_equal(pred, pred2) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel="precomputed") # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) with pytest.raises(ValueError): clf.predict(KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel def kfunc(x, y): return np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(np.array(X), Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel="precomputed") clf2 = svm.SVC(kernel="linear") K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), 0.99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), 0.99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), 0.99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in ( svm.NuSVR(kernel="linear", nu=0.4, C=1.0), svm.NuSVR(kernel="linear", nu=0.4, C=10.0), svm.SVR(kernel="linear", C=10.0), svm.LinearSVR(C=10.0), svm.LinearSVR(C=10.0), ): clf.fit(diabetes.data, diabetes.target) assert clf.score(diabetes.data, diabetes.target) > 0.02 # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel="linear", C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert_allclose(np.linalg.norm(lsvr.coef_), np.linalg.norm(svr.coef_), 1, 0.0001) assert_almost_equal(score1, score2, 2) def test_linearsvr_fit_sampleweight(): # check correct result when sample_weight is 1 # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() n_samples = len(diabetes.target) unit_weight = np.ones(n_samples) lsvr = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit( diabetes.data, diabetes.target, sample_weight=unit_weight ) score1 = lsvr.score(diabetes.data, diabetes.target) lsvr_no_weight = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit( diabetes.data, diabetes.target ) score2 = lsvr_no_weight.score(diabetes.data, diabetes.target) assert_allclose( np.linalg.norm(lsvr.coef_), np.linalg.norm(lsvr_no_weight.coef_), 1, 0.0001 ) assert_almost_equal(score1, score2, 2) # check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where # X = X1 repeated n1 times, X2 repeated n2 times and so forth random_state = check_random_state(0) random_weight = random_state.randint(0, 10, n_samples) lsvr_unflat = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit( diabetes.data, diabetes.target, sample_weight=random_weight ) score3 = lsvr_unflat.score( diabetes.data, diabetes.target, sample_weight=random_weight ) X_flat = np.repeat(diabetes.data, random_weight, axis=0) y_flat = np.repeat(diabetes.target, random_weight, axis=0) lsvr_flat = svm.LinearSVR(C=1e3, tol=1e-12, max_iter=10000).fit(X_flat, y_flat) score4 = lsvr_flat.score(X_flat, y_flat) assert_almost_equal(score3, score4, 2) def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) with pytest.raises(ValueError): clf.predict(X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_equal(pred, [1, -1, -1]) assert pred.dtype == np.dtype("intp") assert_array_almost_equal(clf.intercept_, [-1.218], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.750, 0.750, 0.750, 0.750]], decimal=3) with pytest.raises(AttributeError): (lambda: clf.coef_)() def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert np.mean(y_pred_test == 1) > 0.9 y_pred_outliers = clf.predict(X_outliers) assert np.mean(y_pred_outliers == -1) > 0.9 dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_oneclass_score_samples(): X_train = [[1, 1], [1, 2], [2, 1]] clf = svm.OneClassSVM(gamma=1).fit(X_train) assert_array_equal( clf.score_samples([[2.0, 2.0]]), clf.decision_function([[2.0, 2.0]]) + clf.offset_, ) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel="linear", C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, 0.25]]) assert_array_equal(clf.predict([[-0.1, -0.1]]), [1]) clf._dual_coef_ = np.array([[0.0, 1.0]]) assert_array_equal(clf.predict([[-0.1, -0.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in ( svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0), ): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal(np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9 assert_almost_equal( clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8 ) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel="linear", C=0.1, decision_function_shape="ovo").fit( iris.data, iris.target ) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(int)] ) expected = np.array([-1.0, -0.66, -1.0, 0.66, 1.0, 1.0]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel="rbf", gamma=1, decision_function_shape="ovo") clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) @pytest.mark.parametrize("SVM", (svm.SVC, svm.NuSVC)) def test_decision_function_shape(SVM): # check that decision_function_shape='ovr' or 'ovo' gives # correct shape and is consistent with predict clf = SVM(kernel="linear", decision_function_shape="ovr").fit( iris.data, iris.target ) dec = clf.decision_function(iris.data) assert dec.shape == (len(iris.data), 3) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = SVM(kernel="linear", decision_function_shape="ovr").fit(X_train, y_train) dec = clf.decision_function(X_test) assert dec.shape == (len(X_test), 5) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = SVM(kernel="linear", decision_function_shape="ovo").fit(X_train, y_train) dec = clf.decision_function(X_train) assert dec.shape == (len(X_train), 10) def test_svr_predict(): # Test SVR's decision_function # Sanity check, test that predict implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel="linear", C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) # rbf kernel reg = svm.SVR(kernel="rbf", gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.predict(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification( n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2 ) for clf in ( linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC(), ): clf.set_params(class_weight={0: 0.1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert f1_score(y_[100:], y_pred) > 0.3 @pytest.mark.parametrize("estimator", [svm.SVC(C=1e-2), svm.NuSVC()]) def test_svm_classifier_sided_sample_weight(estimator): # fit a linear SVM and check that giving more weight to opposed samples # in the space will flip the decision toward these samples. X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]] estimator.set_params(kernel="linear") # check that with unit weights, a sample is supposed to be predicted on # the boundary sample_weight = [1] * 6 estimator.fit(X, Y, sample_weight=sample_weight) y_pred = estimator.decision_function([[-1.0, 1.0]]) assert y_pred == pytest.approx(0) # give more weights to opposed samples sample_weight = [10.0, 0.1, 0.1, 0.1, 0.1, 10] estimator.fit(X, Y, sample_weight=sample_weight) y_pred = estimator.decision_function([[-1.0, 1.0]]) assert y_pred < 0 sample_weight = [1.0, 0.1, 10.0, 10.0, 0.1, 0.1] estimator.fit(X, Y, sample_weight=sample_weight) y_pred = estimator.decision_function([[-1.0, 1.0]]) assert y_pred > 0 @pytest.mark.parametrize("estimator", [svm.SVR(C=1e-2), svm.NuSVR(C=1e-2)]) def test_svm_regressor_sided_sample_weight(estimator): # similar test to test_svm_classifier_sided_sample_weight but for # SVM regressors X = [[-2, 0], [-1, -1], [0, -2], [0, 2], [1, 1], [2, 0]] estimator.set_params(kernel="linear") # check that with unit weights, a sample is supposed to be predicted on # the boundary sample_weight = [1] * 6 estimator.fit(X, Y, sample_weight=sample_weight) y_pred = estimator.predict([[-1.0, 1.0]]) assert y_pred == pytest.approx(1.5) # give more weights to opposed samples sample_weight = [10.0, 0.1, 0.1, 0.1, 0.1, 10] estimator.fit(X, Y, sample_weight=sample_weight) y_pred = estimator.predict([[-1.0, 1.0]]) assert y_pred < 1.5 sample_weight = [1.0, 0.1, 10.0, 10.0, 0.1, 0.1] estimator.fit(X, Y, sample_weight=sample_weight) y_pred = estimator.predict([[-1.0, 1.0]]) assert y_pred > 1.5 def test_svm_equivalence_sample_weight_C(): # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_allclose(dual_coef_no_weight, clf.dual_coef_) @pytest.mark.parametrize( "Estimator, err_msg", [ (svm.SVC, "Invalid input - all samples have zero or negative weights."), (svm.NuSVC, "(negative dimensions are not allowed|nu is infeasible)"), (svm.SVR, "Invalid input - all samples have zero or negative weights."), (svm.NuSVR, "Invalid input - all samples have zero or negative weights."), (svm.OneClassSVM, "Invalid input - all samples have zero or negative weights."), ], ids=["SVC", "NuSVC", "SVR", "NuSVR", "OneClassSVM"], ) @pytest.mark.parametrize( "sample_weight", [[0] * len(Y), [-0.3] * len(Y)], ids=["weights-are-zero", "weights-are-negative"], ) def test_negative_sample_weights_mask_all_samples(Estimator, err_msg, sample_weight): est = Estimator(kernel="linear") with pytest.raises(ValueError, match=err_msg): est.fit(X, Y, sample_weight=sample_weight) @pytest.mark.parametrize( "Classifier, err_msg", [ ( svm.SVC, "Invalid input - all samples with positive weights have the same label", ), (svm.NuSVC, "specified nu is infeasible"), ], ids=["SVC", "NuSVC"], ) @pytest.mark.parametrize( "sample_weight", [[0, -0.5, 0, 1, 1, 1], [1, 1, 1, 0, -0.1, -0.3]], ids=["mask-label-1", "mask-label-2"], ) def test_negative_weights_svc_leave_just_one_label(Classifier, err_msg, sample_weight): clf = Classifier(kernel="linear") with pytest.raises(ValueError, match=err_msg): clf.fit(X, Y, sample_weight=sample_weight) @pytest.mark.parametrize( "Classifier, model", [ (svm.SVC, {"when-left": [0.3998, 0.4], "when-right": [0.4, 0.3999]}), (svm.NuSVC, {"when-left": [0.3333, 0.3333], "when-right": [0.3333, 0.3333]}), ], ids=["SVC", "NuSVC"], ) @pytest.mark.parametrize( "sample_weight, mask_side", [([1, -0.5, 1, 1, 1, 1], "when-left"), ([1, 1, 1, 0, 1, 1], "when-right")], ids=["partial-mask-label-1", "partial-mask-label-2"], ) def test_negative_weights_svc_leave_two_labels( Classifier, model, sample_weight, mask_side ): clf = Classifier(kernel="linear") clf.fit(X, Y, sample_weight=sample_weight) assert_allclose(clf.coef_, [model[mask_side]], rtol=1e-3) @pytest.mark.parametrize( "Estimator", [svm.SVC, svm.NuSVC, svm.NuSVR], ids=["SVC", "NuSVC", "NuSVR"] ) @pytest.mark.parametrize( "sample_weight", [[1, -0.5, 1, 1, 1, 1], [1, 1, 1, 0, 1, 1]], ids=["partial-mask-label-1", "partial-mask-label-2"], ) def test_negative_weight_equal_coeffs(Estimator, sample_weight): # model generates equal coefficients est = Estimator(kernel="linear") est.fit(X, Y, sample_weight=sample_weight) coef = np.abs(est.coef_).ravel() assert coef[0] == pytest.approx(coef[1], rel=1e-3) @ignore_warnings(category=UndefinedMetricWarning) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: # class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight("balanced", classes=classes, y=y[unbalanced]) assert np.argmax(class_weights) == 2 for clf in ( svm.SVC(kernel="linear"), svm.LinearSVC(random_state=0), LogisticRegression(), ): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight="balanced") y_pred_balanced = clf.fit( X[unbalanced], y[unbalanced], ).predict(X) assert metrics.f1_score(y, y_pred, average="macro") <= metrics.f1_score( y, y_pred_balanced, average="macro" ) def test_bad_input(): # Test dimensions for labels Y2 = Y[:-1] # wrong dimensions for labels with pytest.raises(ValueError): svm.SVC().fit(X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert not Xf.flags["C_CONTIGUOUS"] yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert not yf.flags["F_CONTIGUOUS"] assert not yf.flags["C_CONTIGUOUS"] clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel="precomputed") with pytest.raises(ValueError): clf.fit(X, Y) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) with pytest.raises(ValueError): clf.predict(sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) with pytest.raises(ValueError): clf.predict(X) clf = svm.SVC() clf.fit(X, Y) with pytest.raises(ValueError): clf.predict(Xt) def test_svc_nonfinite_params(): # Check SVC throws ValueError when dealing with non-finite parameter values rng = np.random.RandomState(0) n_samples = 10 fmax = np.finfo(np.float64).max X = fmax * rng.uniform(size=(n_samples, 2)) y = rng.randint(0, 2, size=n_samples) clf = svm.SVC() msg = "The dual coefficients or intercepts are not finite" with pytest.raises(ValueError, match=msg): clf.fit(X, y) def test_unicode_kernel(): # Test that a unicode kernel name does not cause a TypeError clf = svm.SVC(kernel="linear", probability=True) clf.fit(X, Y) clf.predict_proba(T) _libsvm.cross_validation( iris.data, iris.target.astype(np.float64), 5, kernel="linear", random_seed=0 ) def test_sparse_precomputed(): clf = svm.SVC(kernel="precomputed") sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) with pytest.raises(TypeError, match="Sparse precomputed"): clf.fit(sparse_gram, [0, 1]) def test_sparse_fit_support_vectors_empty(): # Regression test for #14893 X_train = sparse.csr_matrix( [[0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]] ) y_train = np.array([0.04, 0.04, 0.10, 0.16]) model = svm.SVR(kernel="linear") model.fit(X_train, y_train) assert not model.support_vectors_.data.size assert not model.dual_coef_.data.size @pytest.mark.parametrize("loss", ["hinge", "squared_hinge"]) @pytest.mark.parametrize("penalty", ["l1", "l2"]) @pytest.mark.parametrize("dual", [True, False]) def test_linearsvc_parameters(loss, penalty, dual): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations X, y = make_classification(n_samples=5, n_features=5, random_state=0) clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual, random_state=0) if ( (loss, penalty) == ("hinge", "l1") or (loss, penalty, dual) == ("hinge", "l2", False) or (penalty, dual) == ("l1", True) ): with pytest.raises( ValueError, match="Unsupported set of arguments.*penalty='%s.*loss='%s.*dual=%s" % (penalty, loss, dual), ): clf.fit(X, y) else: clf.fit(X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert clf.fit_intercept assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC( penalty="l1", loss="squared_hinge", dual=False, random_state=0 ).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty="l2", dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty="l2", loss="hinge", dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class="crammer_singer", random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert (ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > 0.9 # classifiers shouldn't be the same assert (ovr_clf.coef_ != cs_clf.coef_).all() # test decision function assert_array_equal( cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1), ) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_linearsvc_fit_sampleweight(): # check correct result when sample_weight is 1 n_samples = len(X) unit_weight = np.ones(n_samples) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf_unitweight = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit( X, Y, sample_weight=unit_weight ) # check if same as sample_weight=None assert_array_equal(clf_unitweight.predict(T), clf.predict(T)) assert_allclose(clf.coef_, clf_unitweight.coef_, 1, 0.0001) # check that fit(X) = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where # X = X1 repeated n1 times, X2 repeated n2 times and so forth random_state = check_random_state(0) random_weight = random_state.randint(0, 10, n_samples) lsvc_unflat = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit( X, Y, sample_weight=random_weight ) pred1 = lsvc_unflat.predict(T) X_flat = np.repeat(X, random_weight, axis=0) y_flat = np.repeat(Y, random_weight, axis=0) lsvc_flat = svm.LinearSVC(random_state=0, tol=1e-12, max_iter=1000).fit( X_flat, y_flat ) pred2 = lsvc_flat.predict(T) assert_array_equal(pred1, pred2) assert_allclose(lsvc_unflat.coef_, lsvc_flat.coef_, 1, 0.0001) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = ( svm.LinearSVC( fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0, ) .fit(X, y) .score(X, y) ) assert acc > 0.9 def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert set(clf.classes_) == set(iris.target_names) assert np.mean(clf.predict(iris.data) == target) > 0.8 dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier( fit_intercept=True, penalty="l1", loss="squared_hinge", dual=False, C=4, tol=1e-7, random_state=0, ) assert clf.intercept_scaling == 1, clf.intercept_scaling assert clf.fit_intercept # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert intercept1 < -1 # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel="linear").fit(iris.data, iris.target), svm.NuSVC(kernel="linear").fit(iris.data, iris.target), svm.SVR(kernel="linear").fit(iris.data, iris.target), svm.NuSVR(kernel="linear").fit(iris.data, iris.target), svm.OneClassSVM(kernel="linear").fit(iris.data), ] for clf in svms: with pytest.raises(AttributeError): clf.__setattr__("coef_", np.arange(3)) with pytest.raises((RuntimeError, ValueError)): clf.coef_.__setitem__((0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC( kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape="ovr", ) # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC( kernel="linear", probability=True, random_state=0, decision_function_shape="ovr" ) svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal( svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4, ) assert_array_almost_equal( svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data), ) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) with pytest.raises(ValueError): svc.fit(X, Y) def test_libsvm_convergence_warnings(): a = svm.SVC( kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=2 ) warning_msg = ( r"Solver terminated early \(max_iter=2\). Consider pre-processing " r"your data with StandardScaler or MinMaxScaler." ) with pytest.warns(ConvergenceWarning, match=warning_msg): a.fit(np.array(X), Y) assert np.all(a.n_iter_ == 2) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() with pytest.raises(Exception, match=r".*\bSVC\b.*\bnot\b.*\bfitted\b"): clf.predict(X) clf = svm.NuSVR() with pytest.raises(Exception, match=r".*\bNuSVR\b.*\bnot\b.*\bfitted\b"): clf.predict(X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svm_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(random_state=0, max_iter=2) warning_msg = "Liblinear failed to converge, increase the number of iterations." with pytest.warns(ConvergenceWarning, match=warning_msg): lsvc.fit(X, Y) # Check that we have an n_iter_ attribute with int type as opposed to a # numpy array or an np.int32 so as to match the docstring. assert isinstance(lsvc.n_iter_, int) assert lsvc.n_iter_ == 2 lsvr = svm.LinearSVR(random_state=0, max_iter=2) with pytest.warns(ConvergenceWarning, match=warning_msg): lsvr.fit(iris.data, iris.target) assert isinstance(lsvr.n_iter_, int) assert lsvr.n_iter_ == 2 def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel="linear"), svm.NuSVR(kernel="linear"), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal( svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_ ) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert lsvc.intercept_ == 0.0 def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert hasattr(G, "predict_proba") G.fit(iris.data, iris.target) assert hasattr(G, "predict_proba") G = svm.SVC(probability=False) assert not hasattr(G, "predict_proba") G.fit(iris.data, iris.target) assert not hasattr(G, "predict_proba") # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert hasattr(G, "predict_proba") msg = "predict_proba is not available when fitted with probability=False" with pytest.raises(NotFittedError, match=msg): G.predict_proba(iris.data) def test_decision_function_shape_two_class(): for n_classes in [2, 3]: X, y = make_blobs(centers=n_classes, random_state=0) for estimator in [svm.SVC, svm.NuSVC]: clf = OneVsRestClassifier(estimator(decision_function_shape="ovr")).fit( X, y ) assert len(clf.predict(X)) == len(y) def test_ovr_decision_function(): # One point from each quadrant represents one class X_train = np.array([[1, 1], [-1, 1], [-1, -1], [1, -1]]) y_train = [0, 1, 2, 3] # First point is closer to the decision boundaries than the second point base_points = np.array([[5, 5], [10, 10]]) # For all the quadrants (classes) X_test = np.vstack( ( base_points * [1, 1], # Q1 base_points * [-1, 1], # Q2 base_points * [-1, -1], # Q3 base_points * [1, -1], # Q4 ) ) y_test = [0] * 2 + [1] * 2 + [2] * 2 + [3] * 2 clf = svm.SVC(kernel="linear", decision_function_shape="ovr") clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # Test if the prediction is the same as y assert_array_equal(y_pred, y_test) deci_val = clf.decision_function(X_test) # Assert that the predicted class has the maximum value assert_array_equal(np.argmax(deci_val, axis=1), y_pred) # Get decision value at test points for the predicted class pred_class_deci_val = deci_val[range(8), y_pred].reshape((4, 2)) # Assert pred_class_deci_val > 0 here assert np.min(pred_class_deci_val) > 0.0 # Test if the first point has lower decision value on every quadrant # compared to the second point assert np.all(pred_class_deci_val[:, 0] < pred_class_deci_val[:, 1]) @pytest.mark.parametrize("SVCClass", [svm.SVC, svm.NuSVC]) def test_svc_invalid_break_ties_param(SVCClass): X, y = make_blobs(random_state=42) svm = SVCClass( kernel="linear", decision_function_shape="ovo", break_ties=True, random_state=42 ).fit(X, y) with pytest.raises(ValueError, match="break_ties must be False"): svm.predict(y) @pytest.mark.parametrize("SVCClass", [svm.SVC, svm.NuSVC]) def test_svc_ovr_tie_breaking(SVCClass): """Test if predict breaks ties in OVR mode. Related issue: https://github.com/scikit-learn/scikit-learn/issues/8277 """ X, y = make_blobs(random_state=0, n_samples=20, n_features=2) xs = np.linspace(X[:, 0].min(), X[:, 0].max(), 100) ys = np.linspace(X[:, 1].min(), X[:, 1].max(), 100) xx, yy = np.meshgrid(xs, ys) common_params = dict( kernel="rbf", gamma=1e6, random_state=42, decision_function_shape="ovr" ) svm = SVCClass( break_ties=False, **common_params, ).fit(X, y) pred = svm.predict(np.c_[xx.ravel(), yy.ravel()]) dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()]) assert not np.all(pred == np.argmax(dv, axis=1)) svm = SVCClass( break_ties=True, **common_params, ).fit(X, y) pred = svm.predict(np.c_[xx.ravel(), yy.ravel()]) dv = svm.decision_function(np.c_[xx.ravel(), yy.ravel()]) assert np.all(pred == np.argmax(dv, axis=1)) def test_gamma_scale(): X, y = [[0.0], [1.0]], [0, 1] clf = svm.SVC() clf.fit(X, y) assert_almost_equal(clf._gamma, 4) @pytest.mark.parametrize( "SVM, params", [ (LinearSVC, {"penalty": "l1", "loss": "squared_hinge", "dual": False}), (LinearSVC, {"penalty": "l2", "loss": "squared_hinge", "dual": True}), (LinearSVC, {"penalty": "l2", "loss": "squared_hinge", "dual": False}), (LinearSVC, {"penalty": "l2", "loss": "hinge", "dual": True}), (LinearSVR, {"loss": "epsilon_insensitive", "dual": True}), (LinearSVR, {"loss": "squared_epsilon_insensitive", "dual": True}), (LinearSVR, {"loss": "squared_epsilon_insensitive", "dual": True}), ], ) def test_linearsvm_liblinear_sample_weight(SVM, params): X = np.array( [ [1, 3], [1, 3], [1, 3], [1, 3], [2, 1], [2, 1], [2, 1], [2, 1], [3, 3], [3, 3], [3, 3], [3, 3], [4, 1], [4, 1], [4, 1], [4, 1], ], dtype=np.dtype("float"), ) y = np.array( [1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2], dtype=np.dtype("int") ) X2 = np.vstack([X, X]) y2 = np.hstack([y, 3 - y]) sample_weight = np.ones(shape=len(y) * 2) sample_weight[len(y) :] = 0 X2, y2, sample_weight = shuffle(X2, y2, sample_weight, random_state=0) base_estimator = SVM(random_state=42) base_estimator.set_params(**params) base_estimator.set_params(tol=1e-12, max_iter=1000) est_no_weight = base.clone(base_estimator).fit(X, y) est_with_weight = base.clone(base_estimator).fit( X2, y2, sample_weight=sample_weight ) for method in ("predict", "decision_function"): if hasattr(base_estimator, method): X_est_no_weight = getattr(est_no_weight, method)(X) X_est_with_weight = getattr(est_with_weight, method)(X) assert_allclose(X_est_no_weight, X_est_with_weight) @pytest.mark.parametrize("Klass", (OneClassSVM, SVR, NuSVR)) def test_n_support(Klass): # Make n_support is correct for oneclass and SVR (used to be # non-initialized) # this is a non regression test for issue #14774 X = np.array([[0], [0.44], [0.45], [0.46], [1]]) y = np.arange(X.shape[0]) est = Klass() assert not hasattr(est, "n_support_") est.fit(X, y) assert est.n_support_[0] == est.support_vectors_.shape[0] assert est.n_support_.size == 1 @pytest.mark.parametrize("Estimator", [svm.SVC, svm.SVR]) def test_custom_kernel_not_array_input(Estimator): """Test using a custom kernel that is not fed with array-like for floats""" data = ["A A", "A", "B", "B B", "A B"] X = np.array([[2, 0], [1, 0], [0, 1], [0, 2], [1, 1]]) # count encoding y = np.array([1, 1, 2, 2, 1]) def string_kernel(X1, X2): assert isinstance(X1[0], str) n_samples1 = _num_samples(X1) n_samples2 = _num_samples(X2) K = np.zeros((n_samples1, n_samples2)) for ii in range(n_samples1): for jj in range(ii, n_samples2): K[ii, jj] = X1[ii].count("A") * X2[jj].count("A") K[ii, jj] += X1[ii].count("B") * X2[jj].count("B") K[jj, ii] = K[ii, jj] return K K = string_kernel(data, data) assert_array_equal(np.dot(X, X.T), K) svc1 = Estimator(kernel=string_kernel).fit(data, y) svc2 = Estimator(kernel="linear").fit(X, y) svc3 = Estimator(kernel="precomputed").fit(K, y) assert svc1.score(data, y) == svc3.score(K, y) assert svc1.score(data, y) == svc2.score(X, y) if hasattr(svc1, "decision_function"): # classifier assert_allclose(svc1.decision_function(data), svc2.decision_function(X)) assert_allclose(svc1.decision_function(data), svc3.decision_function(K)) assert_array_equal(svc1.predict(data), svc2.predict(X)) assert_array_equal(svc1.predict(data), svc3.predict(K)) else: # regressor assert_allclose(svc1.predict(data), svc2.predict(X)) assert_allclose(svc1.predict(data), svc3.predict(K)) def test_svc_raises_error_internal_representation(): """Check that SVC raises error when internal representation is altered. Non-regression test for #18891 and https://nvd.nist.gov/vuln/detail/CVE-2020-28975 """ clf = svm.SVC(kernel="linear").fit(X, Y) clf._n_support[0] = 1000000 msg = "The internal representation of SVC was altered" with pytest.raises(ValueError, match=msg): clf.predict(X) @pytest.mark.parametrize( "estimator, expected_n_iter_type", [ (svm.SVC, np.ndarray), (svm.NuSVC, np.ndarray), (svm.SVR, int), (svm.NuSVR, int), (svm.OneClassSVM, int), ], ) @pytest.mark.parametrize( "dataset", [ make_classification(n_classes=2, n_informative=2, random_state=0), make_classification(n_classes=3, n_informative=3, random_state=0), make_classification(n_classes=4, n_informative=4, random_state=0), ], ) def test_n_iter_libsvm(estimator, expected_n_iter_type, dataset): # Check that the type of n_iter_ is correct for the classes that inherit # from BaseSVC. # Note that for SVC, and NuSVC this is an ndarray; while for SVR, NuSVR, and # OneClassSVM, it is an int. # For SVC and NuSVC also check the shape of n_iter_. X, y = dataset n_iter = estimator(kernel="linear").fit(X, y).n_iter_ assert type(n_iter) == expected_n_iter_type if estimator in [svm.SVC, svm.NuSVC]: n_classes = len(np.unique(y)) assert n_iter.shape == (n_classes * (n_classes - 1) // 2,) # TODO(1.4): Remove @pytest.mark.parametrize("Klass", [SVR, NuSVR, OneClassSVM]) def test_svm_class_weights_deprecation(Klass): clf = Klass() with warnings.catch_warnings(): warnings.simplefilter("error", FutureWarning) clf.fit(X, Y) msg = ( "Attribute `class_weight_` was deprecated in version 1.2 and will be removed" " in 1.4" ) with pytest.warns(FutureWarning, match=re.escape(msg)): getattr(clf, "class_weight_")
bsd-3-clause
theflofly/tensorflow
tensorflow/contrib/learn/python/learn/datasets/base.py
39
8304
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base utilities for loading datasets (deprecated). This module and all its submodules are deprecated. See [contrib/learn/README.md](https://www.tensorflow.org/code/tensorflow/contrib/learn/README.md) for migration instructions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os from os import path import random import time import numpy as np from six.moves import urllib from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated Dataset = collections.namedtuple('Dataset', ['data', 'target']) Datasets = collections.namedtuple('Datasets', ['train', 'validation', 'test']) @deprecated(None, 'Use tf.data instead.') def load_csv_with_header(filename, target_dtype, features_dtype, target_column=-1): """Load dataset from CSV file with a header row.""" with gfile.Open(filename) as csv_file: data_file = csv.reader(csv_file) header = next(data_file) n_samples = int(header[0]) n_features = int(header[1]) data = np.zeros((n_samples, n_features), dtype=features_dtype) target = np.zeros((n_samples,), dtype=target_dtype) for i, row in enumerate(data_file): target[i] = np.asarray(row.pop(target_column), dtype=target_dtype) data[i] = np.asarray(row, dtype=features_dtype) return Dataset(data=data, target=target) @deprecated(None, 'Use tf.data instead.') def load_csv_without_header(filename, target_dtype, features_dtype, target_column=-1): """Load dataset from CSV file without a header row.""" with gfile.Open(filename) as csv_file: data_file = csv.reader(csv_file) data, target = [], [] for row in data_file: target.append(row.pop(target_column)) data.append(np.asarray(row, dtype=features_dtype)) target = np.array(target, dtype=target_dtype) data = np.array(data) return Dataset(data=data, target=target) @deprecated(None, 'Use tf.data instead.') def shrink_csv(filename, ratio): """Create a smaller dataset of only 1/ratio of original data.""" filename_small = filename.replace('.', '_small.') with gfile.Open(filename_small, 'w') as csv_file_small: writer = csv.writer(csv_file_small) with gfile.Open(filename) as csv_file: reader = csv.reader(csv_file) i = 0 for row in reader: if i % ratio == 0: writer.writerow(row) i += 1 @deprecated(None, 'Use scikits.learn.datasets.') def load_iris(data_path=None): """Load Iris dataset. Args: data_path: string, path to iris dataset (optional) Returns: Dataset object containing data in-memory. """ if data_path is None: module_path = path.dirname(__file__) data_path = path.join(module_path, 'data', 'iris.csv') return load_csv_with_header( data_path, target_dtype=np.int, features_dtype=np.float) @deprecated(None, 'Use scikits.learn.datasets.') def load_boston(data_path=None): """Load Boston housing dataset. Args: data_path: string, path to boston dataset (optional) Returns: Dataset object containing data in-memory. """ if data_path is None: module_path = path.dirname(__file__) data_path = path.join(module_path, 'data', 'boston_house_prices.csv') return load_csv_with_header( data_path, target_dtype=np.float, features_dtype=np.float) @deprecated(None, 'Use the retry module or similar alternatives.') def retry(initial_delay, max_delay, factor=2.0, jitter=0.25, is_retriable=None): """Simple decorator for wrapping retriable functions. Args: initial_delay: the initial delay. max_delay: the maximum delay allowed (actual max is max_delay * (1 + jitter). factor: each subsequent retry, the delay is multiplied by this value. (must be >= 1). jitter: to avoid lockstep, the returned delay is multiplied by a random number between (1-jitter) and (1+jitter). To add a 20% jitter, set jitter = 0.2. Must be < 1. is_retriable: (optional) a function that takes an Exception as an argument and returns true if retry should be applied. Returns: A function that wraps another function to automatically retry it. """ return _internal_retry( initial_delay=initial_delay, max_delay=max_delay, factor=factor, jitter=jitter, is_retriable=is_retriable) def _internal_retry(initial_delay, max_delay, factor=2.0, jitter=0.25, is_retriable=None): """Simple decorator for wrapping retriable functions, for internal use only. Args: initial_delay: the initial delay. max_delay: the maximum delay allowed (actual max is max_delay * (1 + jitter). factor: each subsequent retry, the delay is multiplied by this value. (must be >= 1). jitter: to avoid lockstep, the returned delay is multiplied by a random number between (1-jitter) and (1+jitter). To add a 20% jitter, set jitter = 0.2. Must be < 1. is_retriable: (optional) a function that takes an Exception as an argument and returns true if retry should be applied. Returns: A function that wraps another function to automatically retry it. """ if factor < 1: raise ValueError('factor must be >= 1; was %f' % (factor,)) if jitter >= 1: raise ValueError('jitter must be < 1; was %f' % (jitter,)) # Generator to compute the individual delays def delays(): delay = initial_delay while delay <= max_delay: yield delay * random.uniform(1 - jitter, 1 + jitter) delay *= factor def wrap(fn): """Wrapper function factory invoked by decorator magic.""" def wrapped_fn(*args, **kwargs): """The actual wrapper function that applies the retry logic.""" for delay in delays(): try: return fn(*args, **kwargs) except Exception as e: # pylint: disable=broad-except if is_retriable is None: continue if is_retriable(e): time.sleep(delay) else: raise return fn(*args, **kwargs) return wrapped_fn return wrap _RETRIABLE_ERRNOS = { 110, # Connection timed out [socket.py] } def _is_retriable(e): return isinstance(e, IOError) and e.errno in _RETRIABLE_ERRNOS @deprecated(None, 'Please use urllib or similar directly.') @_internal_retry(initial_delay=1.0, max_delay=16.0, is_retriable=_is_retriable) def urlretrieve_with_retry(url, filename=None): return urllib.request.urlretrieve(url, filename) @deprecated(None, 'Please write your own downloading logic.') def maybe_download(filename, work_directory, source_url): """Download the data from source url, unless it's already here. Args: filename: string, name of the file in the directory. work_directory: string, path to working directory. source_url: url to download from if file doesn't exist. Returns: Path to resulting file. """ if not gfile.Exists(work_directory): gfile.MakeDirs(work_directory) filepath = os.path.join(work_directory, filename) if not gfile.Exists(filepath): temp_file_name, _ = urlretrieve_with_retry(source_url) gfile.Copy(temp_file_name, filepath) with gfile.GFile(filepath) as f: size = f.size() print('Successfully downloaded', filename, size, 'bytes.') return filepath
apache-2.0
navigator8972/vae_dyn
encode_test.py
1
3216
''' A script to test the completion of image sequences ''' import tensorflow as tf import sys import os import cPickle from model_vaedyn import VAEDYN import numpy as np from train_vaedyn import next_batch import dataset import utils sample_mode = True if len(sys.argv) == 1: #if no model folder is specified with open(os.path.join('save-vaedyn', 'config.pkl')) as f: saved_args = cPickle.load(f) else: #use the specified model with open(os.path.join(sys.argv[1], 'config.pkl')) as f: saved_args = cPickle.load(f) model = VAEDYN(saved_args, sample_mode) saver = tf.train.Saver(tf.global_variables()) # saver = tf.train.Saver() sess = tf.InteractiveSession() if len(sys.argv) == 1: #if no model folder is specified ckpt = tf.train.get_checkpoint_state('save-vaedyn') model_checkpoint_path = ckpt.model_checkpoint_path elif len(sys.argv) == 2: ckpt = tf.train.get_checkpoint_state(sys.argv[1]) model_checkpoint_path = ckpt.model_checkpoint_path elif len(sys.argv) == 3: model_checkpoint_path = os.path.join(sys.argv[1], sys.argv[2]) print "loading model: ",model_checkpoint_path saver.restore(sess, model_checkpoint_path) #prepare seed to have stable shuffle np.random.seed(1234) tf.set_random_seed(1234) #prepare dataset print 'Constructing dataset...' image_seq_data = utils.extract_image_sequences(fname='bin/extracted_data_image_seq.pkl', only_digits=False) print image_seq_data.shape image_seq_dataset = dataset.construct_datasets(image_seq_data) #encode a sequence of images tol_len = 20 seeding_len = 14 seq_samples = image_seq_dataset.test._data compl_samples = seq_samples.copy() for idx, seq_sample in enumerate(seq_samples): print 'Processing test sample {0}...'.format(idx) seq_sample_formatted = np.array([seq_sample]) prior_mus, prior_sigmas, enc_mus, enc_sigmas, final_state_c, final_state_h = model.encode(sess,saved_args, seq=seq_sample_formatted[0, :seeding_len, :]) #synthesis conditioned on the encoding sample_data,mus = model.sample(sess,saved_args, num=tol_len-seeding_len, start=[seq_sample_formatted[0, seeding_len-1, :], (final_state_c, final_state_h)]) # compl_data = np.concatenate([seq_sample_formatted[:, :seeding_len, :], sample_data], axis=1) compl_samples[idx, seeding_len:tol_len, :] = sample_data compl_diff = compl_samples[:, seeding_len:tol_len, :] - seq_samples[:, seeding_len:tol_len, :] #errors squre_errors = np.sum(np.sum((compl_diff)**2, axis=2), axis=1) / float((tol_len-seeding_len)) crossentropy_diff = seq_samples[:, seeding_len:tol_len, :] * np.log(1e-5 + compl_samples[:, seeding_len:tol_len, :]) \ + (1-seq_samples[:, seeding_len:tol_len, :]) * np.log(1e-5 + 1 - compl_samples[:, seeding_len:tol_len, :] ) crossentropy_errors = np.sum(np.sum(-crossentropy_diff, axis=2), axis=1) / float((tol_len-seeding_len)) mean_square_errors = np.mean(squre_errors) std_square_errors = np.std(squre_errors) mean_ce_errors = np.mean(crossentropy_errors) std_ce_errors = np.std(crossentropy_errors) print 'Square Error Mean: ', mean_square_errors, '; Std: ', std_square_errors print 'Cross Entropy Error Mean: ', mean_ce_errors, '; Std: ', std_ce_errors
bsd-3-clause
espg/scikit-learn
sklearn/linear_model/_quantile.py
9
11170
# Authors: David Dale <dale.david@mail.ru> # Christian Lorentzen <lorentzen.ch@gmail.com> # License: BSD 3 clause import warnings from numbers import Real import numpy as np from scipy import sparse from scipy.optimize import linprog from ..base import BaseEstimator, RegressorMixin from ._base import LinearModel from ..exceptions import ConvergenceWarning from ..utils import _safe_indexing from ..utils.validation import _check_sample_weight from ..utils.fixes import sp_version, parse_version from ..utils._param_validation import Hidden, Interval, StrOptions class QuantileRegressor(LinearModel, RegressorMixin, BaseEstimator): """Linear regression model that predicts conditional quantiles. The linear :class:`QuantileRegressor` optimizes the pinball loss for a desired `quantile` and is robust to outliers. This model uses an L1 regularization like :class:`~sklearn.linear_model.Lasso`. Read more in the :ref:`User Guide <quantile_regression>`. .. versionadded:: 1.0 Parameters ---------- quantile : float, default=0.5 The quantile that the model tries to predict. It must be strictly between 0 and 1. If 0.5 (default), the model predicts the 50% quantile, i.e. the median. alpha : float, default=1.0 Regularization constant that multiplies the L1 penalty term. fit_intercept : bool, default=True Whether or not to fit the intercept. solver : {'highs-ds', 'highs-ipm', 'highs', 'interior-point', \ 'revised simplex'}, default='interior-point' Method used by :func:`scipy.optimize.linprog` to solve the linear programming formulation. From `scipy>=1.6.0`, it is recommended to use the highs methods because they are the fastest ones. Solvers "highs-ds", "highs-ipm" and "highs" support sparse input data and, in fact, always convert to sparse csc. From `scipy>=1.11.0`, "interior-point" is not available anymore. .. versionchanged:: 1.4 The default of `solver` will change to `"highs"` in version 1.4. solver_options : dict, default=None Additional parameters passed to :func:`scipy.optimize.linprog` as options. If `None` and if `solver='interior-point'`, then `{"lstsq": True}` is passed to :func:`scipy.optimize.linprog` for the sake of stability. Attributes ---------- coef_ : array of shape (n_features,) Estimated coefficients for the features. intercept_ : float The intercept of the model, aka bias term. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 n_iter_ : int The actual number of iterations performed by the solver. See Also -------- Lasso : The Lasso is a linear model that estimates sparse coefficients with l1 regularization. HuberRegressor : Linear regression model that is robust to outliers. Examples -------- >>> from sklearn.linear_model import QuantileRegressor >>> import numpy as np >>> n_samples, n_features = 10, 2 >>> rng = np.random.RandomState(0) >>> y = rng.randn(n_samples) >>> X = rng.randn(n_samples, n_features) >>> # the two following lines are optional in practice >>> from sklearn.utils.fixes import sp_version, parse_version >>> solver = "highs" if sp_version >= parse_version("1.6.0") else "interior-point" >>> reg = QuantileRegressor(quantile=0.8, solver=solver).fit(X, y) >>> np.mean(y <= reg.predict(X)) 0.8 """ _parameter_constraints: dict = { "quantile": [Interval(Real, 0, 1, closed="neither")], "alpha": [Interval(Real, 0, None, closed="left")], "fit_intercept": ["boolean"], "solver": [ StrOptions( { "highs-ds", "highs-ipm", "highs", "interior-point", "revised simplex", } ), Hidden(StrOptions({"warn"})), ], "solver_options": [dict, None], } def __init__( self, *, quantile=0.5, alpha=1.0, fit_intercept=True, solver="warn", solver_options=None, ): self.quantile = quantile self.alpha = alpha self.fit_intercept = fit_intercept self.solver = solver self.solver_options = solver_options def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Returns self. """ self._validate_params() X, y = self._validate_data( X, y, accept_sparse=["csc", "csr", "coo"], y_numeric=True, multi_output=False, ) sample_weight = _check_sample_weight(sample_weight, X) n_features = X.shape[1] n_params = n_features if self.fit_intercept: n_params += 1 # Note that centering y and X with _preprocess_data does not work # for quantile regression. # The objective is defined as 1/n * sum(pinball loss) + alpha * L1. # So we rescale the penalty term, which is equivalent. alpha = np.sum(sample_weight) * self.alpha if self.solver == "warn": warnings.warn( "The default solver will change from 'interior-point' to 'highs' in " "version 1.4. Set `solver='highs'` or to the desired solver to silence " "this warning.", FutureWarning, ) solver = "interior-point" elif self.solver in ( "highs-ds", "highs-ipm", "highs", ) and sp_version < parse_version("1.6.0"): raise ValueError( f"Solver {self.solver} is only available " f"with scipy>=1.6.0, got {sp_version}" ) else: solver = self.solver if solver == "interior-point" and sp_version >= parse_version("1.11.0"): raise ValueError( f"Solver {solver} is not anymore available in SciPy >= 1.11.0." ) if sparse.issparse(X) and solver not in ["highs", "highs-ds", "highs-ipm"]: raise ValueError( f"Solver {self.solver} does not support sparse X. " "Use solver 'highs' for example." ) # make default solver more stable if self.solver_options is None and solver == "interior-point": solver_options = {"lstsq": True} else: solver_options = self.solver_options # After rescaling alpha, the minimization problem is # min sum(pinball loss) + alpha * L1 # Use linear programming formulation of quantile regression # min_x c x # A_eq x = b_eq # 0 <= x # x = (s0, s, t0, t, u, v) = slack variables >= 0 # intercept = s0 - t0 # coef = s - t # c = (0, alpha * 1_p, 0, alpha * 1_p, quantile * 1_n, (1-quantile) * 1_n) # residual = y - X@coef - intercept = u - v # A_eq = (1_n, X, -1_n, -X, diag(1_n), -diag(1_n)) # b_eq = y # p = n_features # n = n_samples # 1_n = vector of length n with entries equal one # see https://stats.stackexchange.com/questions/384909/ # # Filtering out zero sample weights from the beginning makes life # easier for the linprog solver. indices = np.nonzero(sample_weight)[0] n_indices = len(indices) # use n_mask instead of n_samples if n_indices < len(sample_weight): sample_weight = sample_weight[indices] X = _safe_indexing(X, indices) y = _safe_indexing(y, indices) c = np.concatenate( [ np.full(2 * n_params, fill_value=alpha), sample_weight * self.quantile, sample_weight * (1 - self.quantile), ] ) if self.fit_intercept: # do not penalize the intercept c[0] = 0 c[n_params] = 0 if solver in ["highs", "highs-ds", "highs-ipm"]: # Note that highs methods always use a sparse CSC memory layout internally, # even for optimization problems parametrized using dense numpy arrays. # Therefore, we work with CSC matrices as early as possible to limit # unnecessary repeated memory copies. eye = sparse.eye(n_indices, dtype=X.dtype, format="csc") if self.fit_intercept: ones = sparse.csc_matrix(np.ones(shape=(n_indices, 1), dtype=X.dtype)) A_eq = sparse.hstack([ones, X, -ones, -X, eye, -eye], format="csc") else: A_eq = sparse.hstack([X, -X, eye, -eye], format="csc") else: eye = np.eye(n_indices) if self.fit_intercept: ones = np.ones((n_indices, 1)) A_eq = np.concatenate([ones, X, -ones, -X, eye, -eye], axis=1) else: A_eq = np.concatenate([X, -X, eye, -eye], axis=1) b_eq = y result = linprog( c=c, A_eq=A_eq, b_eq=b_eq, method=solver, options=solver_options, ) solution = result.x if not result.success: failure = { 1: "Iteration limit reached.", 2: "Problem appears to be infeasible.", 3: "Problem appears to be unbounded.", 4: "Numerical difficulties encountered.", } warnings.warn( "Linear programming for QuantileRegressor did not succeed.\n" f"Status is {result.status}: " + failure.setdefault(result.status, "unknown reason") + "\n" + "Result message of linprog:\n" + result.message, ConvergenceWarning, ) # positive slack - negative slack # solution is an array with (params_pos, params_neg, u, v) params = solution[:n_params] - solution[n_params : 2 * n_params] self.n_iter_ = result.nit if self.fit_intercept: self.coef_ = params[1:] self.intercept_ = params[0] else: self.coef_ = params self.intercept_ = 0.0 return self
bsd-3-clause
bzero/statsmodels
statsmodels/tsa/tests/test_adfuller_lag.py
32
1882
# -*- coding: utf-8 -*- """Test for autolag of adfuller, unitroot_adf Created on Wed May 30 21:39:46 2012 Author: Josef Perktold """ from statsmodels.compat.python import iteritems import numpy as np from numpy.testing import assert_equal, assert_almost_equal import statsmodels.tsa.stattools as tsast from statsmodels.datasets import macrodata def test_adf_autolag(): #see issue #246 #this is mostly a unit test d2 = macrodata.load().data for k_trend, tr in enumerate(['nc', 'c', 'ct', 'ctt']): #[None:'nc', 0:'c', 1:'ct', 2:'ctt'] x = np.log(d2['realgdp']) xd = np.diff(x) #check exog adf3 = tsast.adfuller(x, maxlag=None, autolag='aic', regression=tr, store=True, regresults=True) st2 = adf3[-1] assert_equal(len(st2.autolag_results), 15 + 1) #+1 for lagged level for l, res in sorted(iteritems(st2.autolag_results))[:5]: lag = l-k_trend #assert correct design matrices in _autolag assert_equal(res.model.exog[-10:,k_trend], x[-11:-1]) assert_equal(res.model.exog[-1,k_trend+1:], xd[-lag:-1][::-1]) #min-ic lag of dfgls in Stata is also 2, or 9 for maic with notrend assert_equal(st2.usedlag, 2) #same result with lag fixed at usedlag of autolag adf2 = tsast.adfuller(x, maxlag=2, autolag=None, regression=tr) assert_almost_equal(adf3[:2], adf2[:2], decimal=12) tr = 'c' #check maxlag with autolag adf3 = tsast.adfuller(x, maxlag=5, autolag='aic', regression=tr, store=True, regresults=True) assert_equal(len(adf3[-1].autolag_results), 5 + 1) adf3 = tsast.adfuller(x, maxlag=0, autolag='aic', regression=tr, store=True, regresults=True) assert_equal(len(adf3[-1].autolag_results), 0 + 1)
bsd-3-clause
nelson-liu/scikit-learn
sklearn/model_selection/tests/test_search.py
3
47092
"""Test the search module""" from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from sklearn.externals.joblib._compat import PY3_OR_LATER from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.fixes import in1d from sklearn.utils.fixes import sp_version from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.model_selection import KFold from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import StratifiedShuffleSplit from sklearn.model_selection import LeaveOneGroupOut from sklearn.model_selection import LeavePGroupsOut from sklearn.model_selection import GroupKFold from sklearn.model_selection import GroupShuffleSplit from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ParameterGrid from sklearn.model_selection import ParameterSampler from sklearn.model_selection._validation import FitFailedWarning from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.model_selection.tests.common import OneTimeSplitter # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the parameter search algorithms""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict predict_log_proba = predict decision_function = predict transform = predict inverse_transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) assert_array_equal(grid_search.cv_results_["param_foo_param"].data, [1, 2, 3]) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = search_no_scoring.score(X, y) score_accuracy = search_accuracy.score(X, y) score_no_score_auc = search_no_score_method_auc.score(X, y) score_auc = search_auc.score(X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_grid_search_groups(): # Check if ValueError (when groups is None) propagates to GridSearchCV # And also check if groups is correctly passed to the cv object rng = np.random.RandomState(0) X, y = make_classification(n_samples=15, n_classes=2, random_state=0) groups = rng.randint(0, 3, 15) clf = LinearSVC(random_state=0) grid = {'C': [1]} group_cvs = [LeaveOneGroupOut(), LeavePGroupsOut(2), GroupKFold(), GroupShuffleSplit()] for cv in group_cvs: gs = GridSearchCV(clf, grid, cv=cv) assert_raise_message(ValueError, "The groups parameter should not be None", gs.fit, X, y) gs.fit(X, y, groups=groups) non_group_cvs = [StratifiedKFold(), StratifiedShuffleSplit()] for cv in non_group_cvs: gs = GridSearchCV(clf, grid, cv=cv) # Should not raise an error gs.fit(X, y) def test_trivial_cv_results_attr(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_no_refit(): # Test that GSCV can be used for model selection alone without refitting clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(not hasattr(grid_search, "best_estimator_") and hasattr(grid_search, "best_index_") and hasattr(grid_search, "best_params_")) # Make sure the predict/transform etc fns raise meaningfull error msg for fn_name in ('predict', 'predict_proba', 'predict_log_proba', 'transform', 'inverse_transform'): assert_raise_message(NotFittedError, ('refit=False. %s is available only after ' 'refitting on the best parameters' % fn_name), getattr(grid_search, fn_name), X) def test_grid_search_error(): # Test that grid search will capture errors on data with different length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_when_param_grid_includes_range(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = None if PY3_OR_LATER: grid_search = GridSearchCV(clf, {'foo_param': range(1, 4)}) else: grid_search = GridSearchCV(clf, {'foo_param': xrange(1, 4)}) grid_search.fit(X, y) assert_equal(grid_search.best_estimator_.foo_param, 2) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a non-empty sequence.", GridSearchCV, clf, param_dict) param_dict = {"C": "1,2,3"} clf = SVC() assert_raise_message( ValueError, "Parameter values for parameter (C) need to be a sequence" "(but not a string) or np.ndarray.", GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) @ignore_warnings def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n_splits=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "cv_results_")) @ignore_warnings def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "cv_results_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) # test that repeated calls yield identical parameters param_distributions = {"C": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=3, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) if sp_version >= (0, 16): param_distributions = {"C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) assert_equal([x for x in sampler], [x for x in sampler]) def check_cv_results_array_types(cv_results, param_keys, score_keys): # Check if the search `cv_results`'s array are of correct types assert_true(all(isinstance(cv_results[param], np.ma.MaskedArray) for param in param_keys)) assert_true(all(cv_results[key].dtype == object for key in param_keys)) assert_false(any(isinstance(cv_results[key], np.ma.MaskedArray) for key in score_keys)) assert_true(all(cv_results[key].dtype == np.float64 for key in score_keys if not key.startswith('rank'))) assert_true(cv_results['rank_test_score'].dtype == np.int32) def check_cv_results_keys(cv_results, param_keys, score_keys, n_cand): # Test the search.cv_results_ contains all the required results assert_array_equal(sorted(cv_results.keys()), sorted(param_keys + score_keys + ('params',))) assert_true(all(cv_results[key].shape == (n_cand,) for key in param_keys + score_keys)) def check_cv_results_grid_scores_consistency(search): # TODO Remove in 0.20 cv_results = search.cv_results_ res_scores = np.vstack(list([cv_results["split%d_test_score" % i] for i in range(search.n_splits_)])).T res_means = cv_results["mean_test_score"] res_params = cv_results["params"] n_cand = len(res_params) grid_scores = assert_warns(DeprecationWarning, getattr, search, 'grid_scores_') assert_equal(len(grid_scores), n_cand) # Check consistency of the structure of grid_scores for i in range(n_cand): assert_equal(grid_scores[i].parameters, res_params[i]) assert_array_equal(grid_scores[i].cv_validation_scores, res_scores[i, :]) assert_array_equal(grid_scores[i].mean_validation_score, res_means[i]) def test_grid_search_cv_results(): X, y = make_classification(n_samples=50, n_features=4, random_state=42) n_splits = 3 n_grid_points = 6 params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]), dict(kernel=['poly', ], degree=[1, 2])] grid_search = GridSearchCV(SVC(), cv=n_splits, iid=False, param_grid=params) grid_search.fit(X, y) grid_search_iid = GridSearchCV(SVC(), cv=n_splits, iid=True, param_grid=params) grid_search_iid.fit(X, y) param_keys = ('param_C', 'param_degree', 'param_gamma', 'param_kernel') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_candidates = n_grid_points for search, iid in zip((grid_search, grid_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check if score and timing are reasonable assert_true(all(cv_results['rank_test_score'] >= 1)) assert_true(all(cv_results[k] >= 0) for k in score_keys if k is not 'rank_test_score') assert_true(all(cv_results[k] <= 1) for k in score_keys if 'time' not in k and k is not 'rank_test_score') # Check cv_results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_candidates) # Check masking cv_results = grid_search.cv_results_ n_candidates = len(grid_search.cv_results_['params']) assert_true(all((cv_results['param_C'].mask[i] and cv_results['param_gamma'].mask[i] and not cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'linear')) assert_true(all((not cv_results['param_C'].mask[i] and not cv_results['param_gamma'].mask[i] and cv_results['param_degree'].mask[i]) for i in range(n_candidates) if cv_results['param_kernel'][i] == 'rbf')) check_cv_results_grid_scores_consistency(search) def test_random_search_cv_results(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # scipy.stats dists now supports `seed` but we still support scipy 0.12 # which doesn't support the seed. Hence the assertions in the test for # random_search alone should not depend on randomization. n_splits = 3 n_search_iter = 30 params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) random_search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=False, param_distributions=params) random_search.fit(X, y) random_search_iid = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_splits, iid=True, param_distributions=params) random_search_iid.fit(X, y) param_keys = ('param_C', 'param_gamma') score_keys = ('mean_test_score', 'mean_train_score', 'rank_test_score', 'split0_test_score', 'split1_test_score', 'split2_test_score', 'split0_train_score', 'split1_train_score', 'split2_train_score', 'std_test_score', 'std_train_score', 'mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time') n_cand = n_search_iter for search, iid in zip((random_search, random_search_iid), (False, True)): assert_equal(iid, search.iid) cv_results = search.cv_results_ # Check results structure check_cv_results_array_types(cv_results, param_keys, score_keys) check_cv_results_keys(cv_results, param_keys, score_keys, n_cand) # For random_search, all the param array vals should be unmasked assert_false(any(cv_results['param_C'].mask) or any(cv_results['param_gamma'].mask)) check_cv_results_grid_scores_consistency(search) def test_search_iid_param(): # Test the IID parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv) for search in (grid_search, random_search): search.fit(X, y) assert_true(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s_i][0] for s_i in range(search.n_splits_))) train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s_i][0] for s_i in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] # Test the first candidate assert_equal(search.cv_results_['param_C'][0], 1) assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) assert_array_almost_equal(train_cv_scores, [1, 1]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average and weighted std expected_test_mean = 1 * 1. / 4. + 1. / 3. * 3. / 4. expected_test_std = np.sqrt(1. / 4 * (expected_test_mean - 1) ** 2 + 3. / 4 * (expected_test_mean - 1. / 3.) ** 2) assert_almost_equal(test_mean, expected_test_mean) assert_almost_equal(test_std, expected_test_std) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) # once with iid=False grid_search = GridSearchCV(SVC(), param_grid={'C': [1, 10]}, cv=cv, iid=False) random_search = RandomizedSearchCV(SVC(), n_iter=2, param_distributions={'C': [1, 10]}, cv=cv, iid=False) for search in (grid_search, random_search): search.fit(X, y) assert_false(search.iid) test_cv_scores = np.array(list(search.cv_results_['split%d_test_score' % s][0] for s in range(search.n_splits_))) test_mean = search.cv_results_['mean_test_score'][0] test_std = search.cv_results_['std_test_score'][0] train_cv_scores = np.array(list(search.cv_results_['split%d_train_' 'score' % s][0] for s in range(search.n_splits_))) train_mean = search.cv_results_['mean_train_score'][0] train_std = search.cv_results_['std_train_score'][0] assert_equal(search.cv_results_['param_C'][0], 1) # scores are the same as above assert_array_almost_equal(test_cv_scores, [1, 1. / 3.]) # Unweighted mean/std is used assert_almost_equal(test_mean, np.mean(test_cv_scores)) assert_almost_equal(test_std, np.std(test_cv_scores)) # For the train scores, we do not take a weighted mean irrespective of # i.i.d. or not assert_almost_equal(train_mean, 1) assert_almost_equal(train_std, 0) def test_search_cv_results_rank_tie_breaking(): X, y = make_blobs(n_samples=50, random_state=42) # The two C values are close enough to give similar models # which would result in a tie of their mean cv-scores param_grid = {'C': [1, 1.001, 0.001]} grid_search = GridSearchCV(SVC(), param_grid=param_grid) random_search = RandomizedSearchCV(SVC(), n_iter=3, param_distributions=param_grid) for search in (grid_search, random_search): search.fit(X, y) cv_results = search.cv_results_ # Check tie breaking strategy - # Check that there is a tie in the mean scores between # candidates 1 and 2 alone assert_almost_equal(cv_results['mean_test_score'][0], cv_results['mean_test_score'][1]) assert_almost_equal(cv_results['mean_train_score'][0], cv_results['mean_train_score'][1]) try: assert_almost_equal(cv_results['mean_test_score'][1], cv_results['mean_test_score'][2]) except AssertionError: pass try: assert_almost_equal(cv_results['mean_train_score'][1], cv_results['mean_train_score'][2]) except AssertionError: pass # 'min' rank should be assigned to the tied candidates assert_almost_equal(search.cv_results_['rank_test_score'], [1, 1, 3]) def test_search_cv_results_none_param(): X, y = [[1], [2], [3], [4], [5]], [0, 0, 0, 0, 1] estimators = (DecisionTreeRegressor(), DecisionTreeClassifier()) est_parameters = {"random_state": [0, None]} cv = KFold(random_state=0) for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv).fit(X, y) assert_array_equal(grid_search.cv_results_['param_random_state'], [0, None]) @ignore_warnings() def test_search_cv_timing(): svc = LinearSVC(random_state=0) X = [[1, ], [2, ], [3, ], [4, ]] y = [0, 1, 1, 0] gs = GridSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0) rs = RandomizedSearchCV(svc, {'C': [0, 1]}, cv=2, error_score=0, n_iter=2) for search in (gs, rs): search.fit(X, y) for key in ['mean_fit_time', 'std_fit_time']: # NOTE The precision of time.time in windows is not high # enough for the fit/score times to be non-zero for trivial X and y assert_true(np.all(search.cv_results_[key] >= 0)) assert_true(np.all(search.cv_results_[key] < 1)) for key in ['mean_score_time', 'std_score_time']: assert_true(search.cv_results_[key][1] >= 0) assert_true(search.cv_results_[key][0] == 0.0) assert_true(np.all(search.cv_results_[key] < 1)) def test_grid_search_correct_score_results(): # test that correct scores are used n_splits = 3 clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score, cv=n_splits) cv_results = grid_search.fit(X, y).cv_results_ # Test scorer names result_keys = list(cv_results.keys()) expected_keys = (("mean_test_score", "rank_test_score") + tuple("split%d_test_score" % cv_i for cv_i in range(n_splits))) assert_true(all(in1d(expected_keys, result_keys))) cv = StratifiedKFold(n_splits=n_splits) n_splits = grid_search.n_splits_ for candidate_i, C in enumerate(Cs): clf.set_params(C=C) cv_scores = np.array( list(grid_search.cv_results_['split%d_test_score' % s][candidate_i] for s in range(n_splits))) for i, (train, test) in enumerate(cv.split(X, y)): clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, cv_scores[i]) def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) grid_search_pickled = pickle.loads(pickle.dumps(grid_search)) assert_array_almost_equal(grid_search.predict(X), grid_search_pickled.predict(X)) random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) random_search_pickled = pickle.loads(pickle.dumps(random_search)) assert_array_almost_equal(random_search.predict(X), random_search_pickled.predict(X)) def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) res_params = grid_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, grid_search.cv_results_['split%d_test_score' % i][cand_i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) res_params = random_search.cv_results_['params'] for cand_i in range(len(res_params)): est.set_params(**res_params[cand_i]) for i, (train, test) in enumerate(cv.split(X, y)): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal( correct_score, random_search.cv_results_['split%d_test_score' % i][cand_i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. def get_cand_scores(i): return np.array(list(gs.cv_results_['split%d_test_score' % s][i] for s in range(gs.n_splits_))) assert all((np.all(get_cand_scores(cand_i) == 0.0) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER)) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) n_candidates = len(gs.cv_results_['params']) assert all(np.all(np.isnan(get_cand_scores(cand_i))) for cand_i in range(n_candidates) if gs.cv_results_['param_parameter'][cand_i] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7) def test_stochastic_gradient_loss_param(): # Make sure the predict_proba works when loss is specified # as one of the parameters in the param_grid. param_grid = { 'loss': ['log'], } X = np.arange(24).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) # When the estimator is not fitted, `predict_proba` is not available as the # loss is 'hinge'. assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) clf.predict_proba(X) clf.predict_log_proba(X) # Make sure `predict_proba` is not available when setting loss=['hinge'] # in param_grid param_grid = { 'loss': ['hinge'], } clf = GridSearchCV(estimator=SGDClassifier(loss='hinge'), param_grid=param_grid) assert_false(hasattr(clf, "predict_proba")) clf.fit(X, y) assert_false(hasattr(clf, "predict_proba")) def test_search_train_scores_set_to_false(): X = np.arange(6).reshape(6, -1) y = [0, 0, 0, 1, 1, 1] clf = LinearSVC(random_state=0) gs = GridSearchCV(clf, param_grid={'C': [0.1, 0.2]}, return_train_score=False) gs.fit(X, y) def test_grid_search_cv_splits_consistency(): # Check if a one time iterable is accepted as a cv parameter. n_samples = 100 n_splits = 5 X, y = make_classification(n_samples=n_samples, random_state=0) gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples)) gs.fit(X, y) gs2 = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.2, 0.3]}, cv=KFold(n_splits=n_splits)) gs2.fit(X, y) def _pop_time_keys(cv_results): for key in ('mean_fit_time', 'std_fit_time', 'mean_score_time', 'std_score_time'): cv_results.pop(key) return cv_results # OneTimeSplitter is a non-re-entrant cv where split can be called only # once if ``cv.split`` is called once per param setting in GridSearchCV.fit # the 2nd and 3rd parameter will not be evaluated as no train/test indices # will be generated for the 2nd and subsequent cv.split calls. # This is a check to make sure cv.split is not called once per param # setting. np.testing.assert_equal(_pop_time_keys(gs.cv_results_), _pop_time_keys(gs2.cv_results_)) # Check consistency of folds across the parameters gs = GridSearchCV(LinearSVC(random_state=0), param_grid={'C': [0.1, 0.1, 0.2, 0.2]}, cv=KFold(n_splits=n_splits, shuffle=True)) gs.fit(X, y) # As the first two param settings (C=0.1) and the next two param # settings (C=0.2) are same, the test and train scores must also be # same as long as the same train/test indices are generated for all # the cv splits, for both param setting for score_type in ('train', 'test'): per_param_scores = {} for param_i in range(4): per_param_scores[param_i] = list( gs.cv_results_['split%d_%s_score' % (s, score_type)][param_i] for s in range(5)) assert_array_almost_equal(per_param_scores[0], per_param_scores[1]) assert_array_almost_equal(per_param_scores[2], per_param_scores[3])
bsd-3-clause
nelson-liu/scikit-learn
sklearn/manifold/tests/test_mds.py
94
1873
import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.manifold import mds from sklearn.utils.testing import assert_raises def test_smacof(): # test metric smacof using the data of "Modern Multidimensional Scaling", # Borg & Groenen, p 154 sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.451, .252], [.016, -.238], [-.200, .524]]) X, _ = mds.smacof(sim, init=Z, n_components=2, max_iter=1, n_init=1) X_true = np.array([[-1.415, -2.471], [1.633, 1.107], [.249, -.067], [-.468, 1.431]]) assert_array_almost_equal(X, X_true, decimal=3) def test_smacof_error(): # Not symmetric similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # Not squared similarity matrix: sim = np.array([[0, 5, 9, 4], [5, 0, 2, 2], [4, 2, 1, 0]]) assert_raises(ValueError, mds.smacof, sim) # init not None and not correct format: sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) Z = np.array([[-.266, -.539], [.016, -.238], [-.200, .524]]) assert_raises(ValueError, mds.smacof, sim, init=Z, n_init=1) def test_MDS(): sim = np.array([[0, 5, 3, 4], [5, 0, 2, 2], [3, 2, 0, 1], [4, 2, 1, 0]]) mds_clf = mds.MDS(metric=False, n_jobs=3, dissimilarity="precomputed") mds_clf.fit(sim)
bsd-3-clause
h2oai/h2o-3
h2o-py/tests/testdir_sklearn/pyunit_sklearn_regression_pipeline.py
2
6383
from __future__ import print_function import importlib, inspect, os, sys import numpy as np from sklearn.datasets import make_regression from sklearn.decomposition import PCA from sklearn.metrics import r2_score from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler import h2o from h2o.sklearn import H2OGradientBoostingEstimator, H2OGradientBoostingRegressor, H2OScaler, H2OPCA from h2o.sklearn.wrapper import H2OConnectionMonitorMixin sys.path.insert(1, os.path.join("..","..")) from tests import pyunit_utils, Namespace as ns """ This test suite creates sklearn pipelines using either a mix of sklearn+H2O components, or only H2O components. Then, it feeds them with H2O frames (more efficient and ensures compatibility with old API.) or with numpy arrays to provide the simplest approach for users wanting to use H2O like any sklearn estimator. """ seed = 2019 init_connection_args = dict(strict_version_check=False, show_progress=True) scores = {} def _get_data(format='numpy'): X, y = make_regression(n_samples=1000, n_features=10, n_informative=5, random_state=seed) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=seed) data = ns(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test) if format == 'h2o': for k, v in data.__dict__.items(): setattr(data, k, h2o.H2OFrame(v)) return data def test_h2o_only_pipeline_with_h2o_frames(): pipeline = Pipeline([ ('standardize', H2OScaler()), ('pca', H2OPCA(k=2, seed=seed)), ('estimator', H2OGradientBoostingRegressor(seed=seed)) ]) data = _get_data(format='h2o') assert isinstance(data.X_train, h2o.H2OFrame) pipeline.fit(data.X_train, data.y_train) preds = pipeline.predict(data.X_test) assert isinstance(preds, h2o.H2OFrame) assert preds.dim == [len(data.X_test), 1] # to get it working, we need to score a fresh H2OFrame data = _get_data(format='h2o') score = pipeline.score(data.X_test, data.y_test) assert isinstance(score, float) skl_score = r2_score(data.y_test.as_data_frame().values, preds.as_data_frame().values) assert abs(score - skl_score) < 1e-6, "score={}, skl_score={}".format(score, skl_score) scores['h2o_only_pipeline_with_h2o_frame'] = score def test_h2o_only_pipeline_with_numpy_arrays(): # Note that in normal situations (release build), init_connection_args can be omitted # otherwise, it should be set to the first H2O element in the pipeline. # Also note that in this specific case mixing numpy inputs with a fully H2O pipeline, # the last estimator requires the `data_conversion=True` param in order to return numpy arrays in predictions. pipeline = Pipeline([ ('standardize', H2OScaler(init_connection_args=init_connection_args)), ('pca', H2OPCA(k=2, seed=seed)), ('estimator', H2OGradientBoostingRegressor(seed=seed, data_conversion=True)) ]) data = _get_data(format='numpy') assert isinstance(data.X_train, np.ndarray) pipeline.fit(data.X_train, data.y_train) preds = pipeline.predict(data.X_test) assert isinstance(preds, np.ndarray) assert preds.shape == (len(data.X_test),) score = pipeline.score(data.X_test, data.y_test) assert isinstance(score, float) skl_score = r2_score(data.y_test, preds) assert abs(score - skl_score) < 1e-6 scores['h2o_only_pipeline_with_numpy_arrays'] = score def test_mixed_pipeline_with_numpy_arrays(): # Note that in normal situations (release build), init_connection_args can be omitted # otherwise, it should be set to the first H2O element in the pipeline pipeline = Pipeline([ ('standardize', StandardScaler()), ('pca', PCA(n_components=2, random_state=seed)), ('estimator', H2OGradientBoostingRegressor(seed=seed, init_connection_args=init_connection_args)) ]) data = _get_data(format='numpy') assert isinstance(data.X_train, np.ndarray) pipeline.fit(data.X_train, data.y_train) preds = pipeline.predict(data.X_test) assert isinstance(preds, np.ndarray) assert preds.shape == (len(data.X_test),) score = pipeline.score(data.X_test, data.y_test) assert isinstance(score, float) skl_score = r2_score(data.y_test, preds) assert abs(score - skl_score) < 1e-6 scores['mixed_pipeline_with_numpy_arrays'] = score def test_generic_estimator_with_distribution_param(): # Note that in normal situations (release build), init_connection_args can be omitted # otherwise, it should be set to the first H2O element in the pipeline pipeline = Pipeline([ ('standardize', StandardScaler()), ('pca', PCA(n_components=2, random_state=seed)), ('estimator', H2OGradientBoostingEstimator(distribution='gaussian', seed=seed, init_connection_args=init_connection_args)) ]) data = _get_data(format='numpy') assert isinstance(data.X_train, np.ndarray) pipeline.fit(data.X_train, data.y_train) preds = pipeline.predict(data.X_test) assert isinstance(preds, np.ndarray) assert preds.shape == (len(data.X_test),) score = pipeline.score(data.X_test, data.y_test) assert isinstance(score, float) skl_score = r2_score(data.y_test, preds) assert abs(score - skl_score) < 1e-6 scores['generic_estimator_with_distribution_param'] = score def _assert_test_scores_equivalent(lk, rk): if lk in scores and rk in scores: assert abs(scores[lk] - abs(scores[rk])) < 1e-6, \ "expected equivalent scores but got {lk}={lscore} and {rk}={rscore}" \ .format(lk=lk, rk=rk, lscore=scores[lk], rscore=scores[rk]) elif lk not in scores: print("no scores for {}".format(lk)) else: print("no scores for {}".format(rk)) def test_scores_are_equivalent(): _assert_test_scores_equivalent('h2o_only_pipeline_with_h2o_frame', 'h2o_only_pipeline_with_numpy_arrays') _assert_test_scores_equivalent('mixed_pipeline_with_numpy_arrays', 'generic_estimator_with_distribution_param') pyunit_utils.run_tests([ test_h2o_only_pipeline_with_h2o_frames, test_h2o_only_pipeline_with_numpy_arrays, test_mixed_pipeline_with_numpy_arrays, test_generic_estimator_with_distribution_param, test_scores_are_equivalent, ])
apache-2.0
espg/scikit-learn
sklearn/preprocessing/_function_transformer.py
4
12151
import warnings import numpy as np from ..base import BaseEstimator, TransformerMixin from ..utils.metaestimators import available_if from ..utils.validation import ( _allclose_dense_sparse, _check_feature_names_in, check_array, ) from ..utils._param_validation import StrOptions def _identity(X): """The identity function.""" return X class FunctionTransformer(TransformerMixin, BaseEstimator): """Constructs a transformer from an arbitrary callable. A FunctionTransformer forwards its X (and optionally y) arguments to a user-defined function or function object and returns the result of this function. This is useful for stateless transformations such as taking the log of frequencies, doing custom scaling, etc. Note: If a lambda is used as the function, then the resulting transformer will not be pickleable. .. versionadded:: 0.17 Read more in the :ref:`User Guide <function_transformer>`. Parameters ---------- func : callable, default=None The callable to use for the transformation. This will be passed the same arguments as transform, with args and kwargs forwarded. If func is None, then func will be the identity function. inverse_func : callable, default=None The callable to use for the inverse transformation. This will be passed the same arguments as inverse transform, with args and kwargs forwarded. If inverse_func is None, then inverse_func will be the identity function. validate : bool, default=False Indicate that the input X array should be checked before calling ``func``. The possibilities are: - If False, there is no input validation. - If True, then X will be converted to a 2-dimensional NumPy array or sparse matrix. If the conversion is not possible an exception is raised. .. versionchanged:: 0.22 The default of ``validate`` changed from True to False. accept_sparse : bool, default=False Indicate that func accepts a sparse matrix as input. If validate is False, this has no effect. Otherwise, if accept_sparse is false, sparse matrix inputs will cause an exception to be raised. check_inverse : bool, default=True Whether to check that or ``func`` followed by ``inverse_func`` leads to the original inputs. It can be used for a sanity check, raising a warning when the condition is not fulfilled. .. versionadded:: 0.20 feature_names_out : callable, 'one-to-one' or None, default=None Determines the list of feature names that will be returned by the `get_feature_names_out` method. If it is 'one-to-one', then the output feature names will be equal to the input feature names. If it is a callable, then it must take two positional arguments: this `FunctionTransformer` (`self`) and an array-like of input feature names (`input_features`). It must return an array-like of output feature names. The `get_feature_names_out` method is only defined if `feature_names_out` is not None. See ``get_feature_names_out`` for more details. .. versionadded:: 1.1 kw_args : dict, default=None Dictionary of additional keyword arguments to pass to func. .. versionadded:: 0.18 inv_kw_args : dict, default=None Dictionary of additional keyword arguments to pass to inverse_func. .. versionadded:: 0.18 Attributes ---------- n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- MaxAbsScaler : Scale each feature by its maximum absolute value. StandardScaler : Standardize features by removing the mean and scaling to unit variance. LabelBinarizer : Binarize labels in a one-vs-all fashion. MultiLabelBinarizer : Transform between iterable of iterables and a multilabel format. Examples -------- >>> import numpy as np >>> from sklearn.preprocessing import FunctionTransformer >>> transformer = FunctionTransformer(np.log1p) >>> X = np.array([[0, 1], [2, 3]]) >>> transformer.transform(X) array([[0. , 0.6931...], [1.0986..., 1.3862...]]) """ _parameter_constraints: dict = { "func": [callable, None], "inverse_func": [callable, None], "validate": ["boolean"], "accept_sparse": ["boolean"], "check_inverse": ["boolean"], "feature_names_out": [callable, StrOptions({"one-to-one"}), None], "kw_args": [dict, None], "inv_kw_args": [dict, None], } def __init__( self, func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, feature_names_out=None, kw_args=None, inv_kw_args=None, ): self.func = func self.inverse_func = inverse_func self.validate = validate self.accept_sparse = accept_sparse self.check_inverse = check_inverse self.feature_names_out = feature_names_out self.kw_args = kw_args self.inv_kw_args = inv_kw_args def _check_input(self, X, *, reset): if self.validate: return self._validate_data(X, accept_sparse=self.accept_sparse, reset=reset) elif reset: # Set feature_names_in_ and n_features_in_ even if validate=False # We run this only when reset==True to store the attributes but not # validate them, because validate=False self._check_n_features(X, reset=reset) self._check_feature_names(X, reset=reset) return X def _check_inverse_transform(self, X): """Check that func and inverse_func are the inverse.""" idx_selected = slice(None, None, max(1, X.shape[0] // 100)) X_round_trip = self.inverse_transform(self.transform(X[idx_selected])) if not np.issubdtype(X.dtype, np.number): raise ValueError( "'check_inverse' is only supported when all the elements in `X` is" " numerical." ) if not _allclose_dense_sparse(X[idx_selected], X_round_trip): warnings.warn( "The provided functions are not strictly" " inverse of each other. If you are sure you" " want to proceed regardless, set" " 'check_inverse=False'.", UserWarning, ) def fit(self, X, y=None): """Fit transformer by checking X. If ``validate`` is ``True``, ``X`` will be checked. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object FunctionTransformer class instance. """ self._validate_params() X = self._check_input(X, reset=True) if self.check_inverse and not (self.func is None or self.inverse_func is None): self._check_inverse_transform(X) return self def transform(self, X): """Transform X using the forward function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ X = self._check_input(X, reset=False) return self._transform(X, func=self.func, kw_args=self.kw_args) def inverse_transform(self, X): """Transform X using the inverse function. Parameters ---------- X : array-like, shape (n_samples, n_features) Input array. Returns ------- X_out : array-like, shape (n_samples, n_features) Transformed input. """ if self.validate: X = check_array(X, accept_sparse=self.accept_sparse) return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args) @available_if(lambda self: self.feature_names_out is not None) def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. This method is only defined if `feature_names_out` is not None. Parameters ---------- input_features : array-like of str or None, default=None Input feature names. - If `input_features` is None, then `feature_names_in_` is used as the input feature names. If `feature_names_in_` is not defined, then names are generated: `[x0, x1, ..., x(n_features_in_ - 1)]`. - If `input_features` is array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. - If `feature_names_out` is 'one-to-one', the input feature names are returned (see `input_features` above). This requires `feature_names_in_` and/or `n_features_in_` to be defined, which is done automatically if `validate=True`. Alternatively, you can set them in `func`. - If `feature_names_out` is a callable, then it is called with two arguments, `self` and `input_features`, and its return value is returned by this method. """ if hasattr(self, "n_features_in_") or input_features is not None: input_features = _check_feature_names_in(self, input_features) if self.feature_names_out == "one-to-one": names_out = input_features elif callable(self.feature_names_out): names_out = self.feature_names_out(self, input_features) else: raise ValueError( f"feature_names_out={self.feature_names_out!r} is invalid. " 'It must either be "one-to-one" or a callable with two ' "arguments: the function transformer and an array-like of " "input feature names. The callable must return an array-like " "of output feature names." ) return np.asarray(names_out, dtype=object) def _transform(self, X, func=None, kw_args=None): if func is None: func = _identity return func(X, **(kw_args if kw_args else {})) def __sklearn_is_fitted__(self): """Return True since FunctionTransfomer is stateless.""" return True def _more_tags(self): return {"no_validation": not self.validate, "stateless": True} def set_output(self, *, transform=None): """Set output container. See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` for an example on how to use the API. Parameters ---------- transform : {"default", "pandas"}, default=None Configure output of `transform` and `fit_transform`. - `"default"`: Default output format of a transformer - `"pandas"`: DataFrame output - `None`: Transform configuration is unchanged Returns ------- self : estimator instance Estimator instance. """ if hasattr(super(), "set_output"): return super().set_output(transform=transform) if transform == "pandas" and self.feature_names_out is None: warnings.warn( 'With transform="pandas", `func` should return a DataFrame to follow' " the set_output API." ) return self
bsd-3-clause
gheinrich/DIGITS-GAN
digits/dataset/images/generic/test_views.py
1
9272
# Copyright (c) 2015-2016, NVIDIA CORPORATION. All rights reserved. from __future__ import absolute_import import json import os import tempfile from bs4 import BeautifulSoup from .test_lmdb_creator import create_lmdbs from digits import test_utils import digits.test_views # May be too short on a slow system TIMEOUT_DATASET = 45 ################################################################################ # Base classes (they don't start with "Test" so nose won't run them) ################################################################################ class BaseViewsTest(digits.test_views.BaseViewsTest): """ Provides some functions """ @classmethod def dataset_exists(cls, job_id): return cls.job_exists(job_id, 'datasets') @classmethod def dataset_status(cls, job_id): return cls.job_status(job_id, 'datasets') @classmethod def abort_dataset(cls, job_id): return cls.abort_job(job_id, job_type='datasets') @classmethod def dataset_wait_completion(cls, job_id, **kwargs): kwargs['job_type'] = 'datasets' if 'timeout' not in kwargs: kwargs['timeout'] = TIMEOUT_DATASET return cls.job_wait_completion(job_id, **kwargs) @classmethod def delete_dataset(cls, job_id): return cls.delete_job(job_id, job_type='datasets') class BaseViewsTestWithImageset(BaseViewsTest): """ Provides some LMDBs and some functions """ @classmethod def setUpClass(cls): super(BaseViewsTestWithImageset, cls).setUpClass() if not hasattr(BaseViewsTestWithImageset, 'imageset_folder'): # Create folder and LMDBs for all test classes BaseViewsTestWithImageset.imageset_folder = tempfile.mkdtemp() BaseViewsTestWithImageset.test_image = create_lmdbs(BaseViewsTestWithImageset.imageset_folder) BaseViewsTestWithImageset.val_db_path = os.path.join( BaseViewsTestWithImageset.imageset_folder, 'val_images') cls.created_datasets = [] @classmethod def tearDownClass(cls): # delete any created datasets for job_id in cls.created_datasets: cls.delete_dataset(job_id) super(BaseViewsTestWithImageset, cls).tearDownClass() @classmethod def create_dataset(cls, **kwargs): """ Create a dataset Returns the job_id Raises RuntimeError if job fails to create Keyword arguments: **kwargs -- data to be sent with POST request """ data = { 'dataset_name': 'test_dataset', 'group_name': 'test_group', 'method': 'prebuilt', 'prebuilt_train_images': os.path.join(cls.imageset_folder, 'train_images'), 'prebuilt_train_labels': os.path.join(cls.imageset_folder, 'train_labels'), 'prebuilt_val_images': os.path.join(cls.imageset_folder, 'val_images'), 'prebuilt_val_labels': os.path.join(cls.imageset_folder, 'val_labels'), 'prebuilt_mean_file': os.path.join(cls.imageset_folder, 'train_mean.binaryproto'), } data.update(kwargs) request_json = data.pop('json', False) url = '/datasets/images/generic' if request_json: url += '.json' rv = cls.app.post(url, data=data) if request_json: if rv.status_code != 200: print json.loads(rv.data) raise RuntimeError('Model creation failed with %s' % rv.status_code) return json.loads(rv.data)['id'] # expect a redirect if not 300 <= rv.status_code <= 310: s = BeautifulSoup(rv.data, 'html.parser') div = s.select('div.alert-danger') if div: print div[0] else: print rv.data raise RuntimeError('Failed to create dataset - status %s' % rv.status_code) job_id = cls.job_id_from_response(rv) assert cls.dataset_exists(job_id), 'dataset not found after successful creation' cls.created_datasets.append(job_id) return job_id class BaseViewsTestWithDataset(BaseViewsTestWithImageset): """ Provides a dataset and some functions """ @classmethod def setUpClass(cls): super(BaseViewsTestWithDataset, cls).setUpClass() cls.dataset_id = cls.create_dataset(json=True) assert cls.dataset_wait_completion(cls.dataset_id) == 'Done', 'create failed' ################################################################################ # Test classes ################################################################################ class TestViews(BaseViewsTest, test_utils.DatasetMixin): """ Tests which don't require an imageset or a dataset """ def test_page_dataset_new(self): rv = self.app.get('/datasets/images/generic/new') assert rv.status_code == 200, 'page load failed with %s' % rv.status_code assert 'New Image Dataset' in rv.data, 'unexpected page format' def test_nonexistent_dataset(self): assert not self.dataset_exists('foo'), "dataset shouldn't exist" class TestCreation(BaseViewsTestWithImageset, test_utils.DatasetMixin): """ Dataset creation tests """ def test_bad_path(self): try: self.create_dataset( prebuilt_train_images='/not-a-directory' ) except RuntimeError: return raise AssertionError('Should have failed') def test_create_json(self): job_id = self.create_dataset(json=True) self.abort_dataset(job_id) def test_create_delete(self): job_id = self.create_dataset() assert self.delete_dataset(job_id) == 200, 'delete failed' assert not self.dataset_exists(job_id), 'dataset exists after delete' def test_create_abort_delete(self): job_id = self.create_dataset() assert self.abort_dataset(job_id) == 200, 'abort failed' assert self.delete_dataset(job_id) == 200, 'delete failed' assert not self.dataset_exists(job_id), 'dataset exists after delete' def test_create_wait_delete(self): job_id = self.create_dataset() assert self.dataset_wait_completion(job_id) == 'Done', 'create failed' assert self.delete_dataset(job_id) == 200, 'delete failed' assert not self.dataset_exists(job_id), 'dataset exists after delete' def test_no_force_same_shape(self): job_id = self.create_dataset(force_same_shape=0) assert self.dataset_wait_completion(job_id) == 'Done', 'create failed' def test_clone(self): options_1 = { 'resize_channels': '1', } job1_id = self.create_dataset(**options_1) assert self.dataset_wait_completion(job1_id) == 'Done', 'first job failed' rv = self.app.get('/datasets/%s.json' % job1_id) assert rv.status_code == 200, 'json load failed with %s' % rv.status_code content1 = json.loads(rv.data) # Clone job1 as job2 options_2 = { 'clone': job1_id, } job2_id = self.create_dataset(**options_2) assert self.dataset_wait_completion(job2_id) == 'Done', 'second job failed' rv = self.app.get('/datasets/%s.json' % job2_id) assert rv.status_code == 200, 'json load failed with %s' % rv.status_code content2 = json.loads(rv.data) # These will be different content1.pop('id') content2.pop('id') content1.pop('directory') content2.pop('directory') assert (content1 == content2), 'job content does not match' job1 = digits.webapp.scheduler.get_job(job1_id) job2 = digits.webapp.scheduler.get_job(job2_id) assert (job1.form_data == job2.form_data), 'form content does not match' class TestCreated(BaseViewsTestWithDataset, test_utils.DatasetMixin): """ Tests on a dataset that has already been created """ def test_index_json(self): rv = self.app.get('/index.json') assert rv.status_code == 200, 'page load failed with %s' % rv.status_code content = json.loads(rv.data) found = False for d in content['datasets']: if d['id'] == self.dataset_id: found = True break assert found, 'dataset not found in list' def test_dataset_json(self): rv = self.app.get('/datasets/%s.json' % self.dataset_id) assert rv.status_code == 200, 'page load failed with %s' % rv.status_code content = json.loads(rv.data) assert content['id'] == self.dataset_id, 'expected different job_id' def test_edit_name(self): status = self.edit_job( self.dataset_id, name='new name' ) assert status == 200, 'failed with %s' % status rv = self.app.get('/datasets/summary?job_id=%s' % self.dataset_id) assert rv.status_code == 200 assert 'new name' in rv.data def test_edit_notes(self): status = self.edit_job( self.dataset_id, notes='new notes' ) assert status == 200, 'failed with %s' % status
bsd-3-clause
espg/scikit-learn
sklearn/impute/tests/test_impute.py
7
54036
import pytest import warnings import numpy as np from scipy import sparse from scipy.stats import kstest import io from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import assert_allclose_dense_sparse from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal # make IterativeImputer available from sklearn.experimental import enable_iterative_imputer # noqa from sklearn.datasets import load_diabetes from sklearn.impute import MissingIndicator from sklearn.impute import SimpleImputer, IterativeImputer from sklearn.dummy import DummyRegressor from sklearn.linear_model import BayesianRidge, ARDRegression, RidgeCV from sklearn.pipeline import Pipeline from sklearn.pipeline import make_union from sklearn.model_selection import GridSearchCV from sklearn import tree from sklearn.random_projection import _sparse_random_matrix from sklearn.exceptions import ConvergenceWarning from sklearn.impute._base import _most_frequent def _assert_array_equal_and_same_dtype(x, y): assert_array_equal(x, y) assert x.dtype == y.dtype def _assert_allclose_and_same_dtype(x, y): assert_allclose(x, y) assert x.dtype == y.dtype def _check_statistics(X, X_true, strategy, statistics, missing_values): """Utility function for testing imputation for a given strategy. Test with dense and sparse arrays Check that: - the statistics (mean, median, mode) are correct - the missing values are imputed correctly""" err_msg = "Parameters: strategy = %s, missing_values = %s, sparse = {0}" % ( strategy, missing_values, ) assert_ae = assert_array_equal if X.dtype.kind == "f" or X_true.dtype.kind == "f": assert_ae = assert_array_almost_equal # Normal matrix imputer = SimpleImputer(missing_values=missing_values, strategy=strategy) X_trans = imputer.fit(X).transform(X.copy()) assert_ae(imputer.statistics_, statistics, err_msg=err_msg.format(False)) assert_ae(X_trans, X_true, err_msg=err_msg.format(False)) # Sparse matrix imputer = SimpleImputer(missing_values=missing_values, strategy=strategy) imputer.fit(sparse.csc_matrix(X)) X_trans = imputer.transform(sparse.csc_matrix(X.copy())) if sparse.issparse(X_trans): X_trans = X_trans.toarray() assert_ae(imputer.statistics_, statistics, err_msg=err_msg.format(True)) assert_ae(X_trans, X_true, err_msg=err_msg.format(True)) @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent", "constant"]) def test_imputation_shape(strategy): # Verify the shapes of the imputed matrix for different strategies. X = np.random.randn(10, 2) X[::2] = np.nan imputer = SimpleImputer(strategy=strategy) X_imputed = imputer.fit_transform(sparse.csr_matrix(X)) assert X_imputed.shape == (10, 2) X_imputed = imputer.fit_transform(X) assert X_imputed.shape == (10, 2) iterative_imputer = IterativeImputer(initial_strategy=strategy) X_imputed = iterative_imputer.fit_transform(X) assert X_imputed.shape == (10, 2) @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"]) def test_imputation_deletion_warning(strategy): X = np.ones((3, 5)) X[:, 0] = np.nan imputer = SimpleImputer(strategy=strategy, verbose=1) # TODO: Remove in 1.3 with pytest.warns(FutureWarning, match="The 'verbose' parameter"): imputer.fit(X) with pytest.warns(UserWarning, match="Skipping"): imputer.transform(X) @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"]) def test_imputation_deletion_warning_feature_names(strategy): pd = pytest.importorskip("pandas") missing_values = np.nan feature_names = np.array(["a", "b", "c", "d"], dtype=object) X = pd.DataFrame( [ [missing_values, missing_values, 1, missing_values], [4, missing_values, 2, 10], ], columns=feature_names, ) imputer = SimpleImputer(strategy=strategy, verbose=1) # TODO: Remove in 1.3 with pytest.warns(FutureWarning, match="The 'verbose' parameter"): imputer.fit(X) # check SimpleImputer returning feature name attribute correctly assert_array_equal(imputer.feature_names_in_, feature_names) # ensure that skipped feature warning includes feature name with pytest.warns( UserWarning, match=r"Skipping features without any observed values: \['b'\]" ): imputer.transform(X) @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent", "constant"]) def test_imputation_error_sparse_0(strategy): # check that error are raised when missing_values = 0 and input is sparse X = np.ones((3, 5)) X[0] = 0 X = sparse.csc_matrix(X) imputer = SimpleImputer(strategy=strategy, missing_values=0) with pytest.raises(ValueError, match="Provide a dense array"): imputer.fit(X) imputer.fit(X.toarray()) with pytest.raises(ValueError, match="Provide a dense array"): imputer.transform(X) def safe_median(arr, *args, **kwargs): # np.median([]) raises a TypeError for numpy >= 1.10.1 length = arr.size if hasattr(arr, "size") else len(arr) return np.nan if length == 0 else np.median(arr, *args, **kwargs) def safe_mean(arr, *args, **kwargs): # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1 length = arr.size if hasattr(arr, "size") else len(arr) return np.nan if length == 0 else np.mean(arr, *args, **kwargs) def test_imputation_mean_median(): # Test imputation using the mean and median strategies, when # missing_values != 0. rng = np.random.RandomState(0) dim = 10 dec = 10 shape = (dim * dim, dim + dec) zeros = np.zeros(shape[0]) values = np.arange(1, shape[0] + 1) values[4::2] = -values[4::2] tests = [ ("mean", np.nan, lambda z, v, p: safe_mean(np.hstack((z, v)))), ("median", np.nan, lambda z, v, p: safe_median(np.hstack((z, v)))), ] for strategy, test_missing_values, true_value_fun in tests: X = np.empty(shape) X_true = np.empty(shape) true_statistics = np.empty(shape[1]) # Create a matrix X with columns # - with only zeros, # - with only missing values # - with zeros, missing values and values # And a matrix X_true containing all true values for j in range(shape[1]): nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1) nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0) nb_values = shape[0] - nb_zeros - nb_missing_values z = zeros[:nb_zeros] p = np.repeat(test_missing_values, nb_missing_values) v = values[rng.permutation(len(values))[:nb_values]] true_statistics[j] = true_value_fun(z, v, p) # Create the columns X[:, j] = np.hstack((v, z, p)) if 0 == test_missing_values: # XXX unreached code as of v0.22 X_true[:, j] = np.hstack( (v, np.repeat(true_statistics[j], nb_missing_values + nb_zeros)) ) else: X_true[:, j] = np.hstack( (v, z, np.repeat(true_statistics[j], nb_missing_values)) ) # Shuffle them the same way np.random.RandomState(j).shuffle(X[:, j]) np.random.RandomState(j).shuffle(X_true[:, j]) # Mean doesn't support columns containing NaNs, median does if strategy == "median": cols_to_keep = ~np.isnan(X_true).any(axis=0) else: cols_to_keep = ~np.isnan(X_true).all(axis=0) X_true = X_true[:, cols_to_keep] _check_statistics(X, X_true, strategy, true_statistics, test_missing_values) def test_imputation_median_special_cases(): # Test median imputation with sparse boundary cases X = np.array( [ [0, np.nan, np.nan], # odd: implicit zero [5, np.nan, np.nan], # odd: explicit nonzero [0, 0, np.nan], # even: average two zeros [-5, 0, np.nan], # even: avg zero and neg [0, 5, np.nan], # even: avg zero and pos [4, 5, np.nan], # even: avg nonzeros [-4, -5, np.nan], # even: avg negatives [-1, 2, np.nan], # even: crossing neg and pos ] ).transpose() X_imputed_median = np.array( [ [0, 0, 0], [5, 5, 5], [0, 0, 0], [-5, 0, -2.5], [0, 5, 2.5], [4, 5, 4.5], [-4, -5, -4.5], [-1, 2, 0.5], ] ).transpose() statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, 0.5] _check_statistics(X, X_imputed_median, "median", statistics_median, np.nan) @pytest.mark.parametrize("strategy", ["mean", "median"]) @pytest.mark.parametrize("dtype", [None, object, str]) def test_imputation_mean_median_error_invalid_type(strategy, dtype): X = np.array([["a", "b", 3], [4, "e", 6], ["g", "h", 9]], dtype=dtype) msg = "non-numeric data:\ncould not convert string to float: '" with pytest.raises(ValueError, match=msg): imputer = SimpleImputer(strategy=strategy) imputer.fit_transform(X) @pytest.mark.parametrize("strategy", ["mean", "median"]) @pytest.mark.parametrize("type", ["list", "dataframe"]) def test_imputation_mean_median_error_invalid_type_list_pandas(strategy, type): X = [["a", "b", 3], [4, "e", 6], ["g", "h", 9]] if type == "dataframe": pd = pytest.importorskip("pandas") X = pd.DataFrame(X) msg = "non-numeric data:\ncould not convert string to float: '" with pytest.raises(ValueError, match=msg): imputer = SimpleImputer(strategy=strategy) imputer.fit_transform(X) @pytest.mark.parametrize("strategy", ["constant", "most_frequent"]) @pytest.mark.parametrize("dtype", [str, np.dtype("U"), np.dtype("S")]) def test_imputation_const_mostf_error_invalid_types(strategy, dtype): # Test imputation on non-numeric data using "most_frequent" and "constant" # strategy X = np.array( [ [np.nan, np.nan, "a", "f"], [np.nan, "c", np.nan, "d"], [np.nan, "b", "d", np.nan], [np.nan, "c", "d", "h"], ], dtype=dtype, ) err_msg = "SimpleImputer does not support data" with pytest.raises(ValueError, match=err_msg): imputer = SimpleImputer(strategy=strategy) imputer.fit(X).transform(X) def test_imputation_most_frequent(): # Test imputation using the most-frequent strategy. X = np.array( [ [-1, -1, 0, 5], [-1, 2, -1, 3], [-1, 1, 3, -1], [-1, 2, 3, 7], ] ) X_true = np.array( [ [2, 0, 5], [2, 3, 3], [1, 3, 3], [2, 3, 7], ] ) # scipy.stats.mode, used in SimpleImputer, doesn't return the first most # frequent as promised in the doc but the lowest most frequent. When this # test will fail after an update of scipy, SimpleImputer will need to be # updated to be consistent with the new (correct) behaviour _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1) @pytest.mark.parametrize("marker", [None, np.nan, "NAN", "", 0]) def test_imputation_most_frequent_objects(marker): # Test imputation using the most-frequent strategy. X = np.array( [ [marker, marker, "a", "f"], [marker, "c", marker, "d"], [marker, "b", "d", marker], [marker, "c", "d", "h"], ], dtype=object, ) X_true = np.array( [ ["c", "a", "f"], ["c", "d", "d"], ["b", "d", "d"], ["c", "d", "h"], ], dtype=object, ) imputer = SimpleImputer(missing_values=marker, strategy="most_frequent") X_trans = imputer.fit(X).transform(X) assert_array_equal(X_trans, X_true) @pytest.mark.parametrize("dtype", [object, "category"]) def test_imputation_most_frequent_pandas(dtype): # Test imputation using the most frequent strategy on pandas df pd = pytest.importorskip("pandas") f = io.StringIO("Cat1,Cat2,Cat3,Cat4\n,i,x,\na,,y,\na,j,,\nb,j,x,") df = pd.read_csv(f, dtype=dtype) X_true = np.array( [["a", "i", "x"], ["a", "j", "y"], ["a", "j", "x"], ["b", "j", "x"]], dtype=object, ) imputer = SimpleImputer(strategy="most_frequent") X_trans = imputer.fit_transform(df) assert_array_equal(X_trans, X_true) @pytest.mark.parametrize("X_data, missing_value", [(1, 0), (1.0, np.nan)]) def test_imputation_constant_error_invalid_type(X_data, missing_value): # Verify that exceptions are raised on invalid fill_value type X = np.full((3, 5), X_data, dtype=float) X[0, 0] = missing_value with pytest.raises(ValueError, match="imputing numerical"): imputer = SimpleImputer( missing_values=missing_value, strategy="constant", fill_value="x" ) imputer.fit_transform(X) def test_imputation_constant_integer(): # Test imputation using the constant strategy on integers X = np.array([[-1, 2, 3, -1], [4, -1, 5, -1], [6, 7, -1, -1], [8, 9, 0, -1]]) X_true = np.array([[0, 2, 3, 0], [4, 0, 5, 0], [6, 7, 0, 0], [8, 9, 0, 0]]) imputer = SimpleImputer(missing_values=-1, strategy="constant", fill_value=0) X_trans = imputer.fit_transform(X) assert_array_equal(X_trans, X_true) @pytest.mark.parametrize("array_constructor", [sparse.csr_matrix, np.asarray]) def test_imputation_constant_float(array_constructor): # Test imputation using the constant strategy on floats X = np.array( [ [np.nan, 1.1, 0, np.nan], [1.2, np.nan, 1.3, np.nan], [0, 0, np.nan, np.nan], [1.4, 1.5, 0, np.nan], ] ) X_true = np.array( [[-1, 1.1, 0, -1], [1.2, -1, 1.3, -1], [0, 0, -1, -1], [1.4, 1.5, 0, -1]] ) X = array_constructor(X) X_true = array_constructor(X_true) imputer = SimpleImputer(strategy="constant", fill_value=-1) X_trans = imputer.fit_transform(X) assert_allclose_dense_sparse(X_trans, X_true) @pytest.mark.parametrize("marker", [None, np.nan, "NAN", "", 0]) def test_imputation_constant_object(marker): # Test imputation using the constant strategy on objects X = np.array( [ [marker, "a", "b", marker], ["c", marker, "d", marker], ["e", "f", marker, marker], ["g", "h", "i", marker], ], dtype=object, ) X_true = np.array( [ ["missing", "a", "b", "missing"], ["c", "missing", "d", "missing"], ["e", "f", "missing", "missing"], ["g", "h", "i", "missing"], ], dtype=object, ) imputer = SimpleImputer( missing_values=marker, strategy="constant", fill_value="missing" ) X_trans = imputer.fit_transform(X) assert_array_equal(X_trans, X_true) @pytest.mark.parametrize("dtype", [object, "category"]) def test_imputation_constant_pandas(dtype): # Test imputation using the constant strategy on pandas df pd = pytest.importorskip("pandas") f = io.StringIO("Cat1,Cat2,Cat3,Cat4\n,i,x,\na,,y,\na,j,,\nb,j,x,") df = pd.read_csv(f, dtype=dtype) X_true = np.array( [ ["missing_value", "i", "x", "missing_value"], ["a", "missing_value", "y", "missing_value"], ["a", "j", "missing_value", "missing_value"], ["b", "j", "x", "missing_value"], ], dtype=object, ) imputer = SimpleImputer(strategy="constant") X_trans = imputer.fit_transform(df) assert_array_equal(X_trans, X_true) @pytest.mark.parametrize("X", [[[1], [2]], [[1], [np.nan]]]) def test_iterative_imputer_one_feature(X): # check we exit early when there is a single feature imputer = IterativeImputer().fit(X) assert imputer.n_iter_ == 0 imputer = IterativeImputer() imputer.fit([[1], [2]]) assert imputer.n_iter_ == 0 imputer.fit([[1], [np.nan]]) assert imputer.n_iter_ == 0 def test_imputation_pipeline_grid_search(): # Test imputation within a pipeline + gridsearch. X = _sparse_random_matrix(100, 100, density=0.10) missing_values = X.data[0] pipeline = Pipeline( [ ("imputer", SimpleImputer(missing_values=missing_values)), ("tree", tree.DecisionTreeRegressor(random_state=0)), ] ) parameters = {"imputer__strategy": ["mean", "median", "most_frequent"]} Y = _sparse_random_matrix(100, 1, density=0.10).toarray() gs = GridSearchCV(pipeline, parameters) gs.fit(X, Y) def test_imputation_copy(): # Test imputation with copy X_orig = _sparse_random_matrix(5, 5, density=0.75, random_state=0) # copy=True, dense => copy X = X_orig.copy().toarray() imputer = SimpleImputer(missing_values=0, strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert not np.all(X == Xt) # copy=True, sparse csr => copy X = X_orig.copy() imputer = SimpleImputer(missing_values=X.data[0], strategy="mean", copy=True) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert not np.all(X.data == Xt.data) # copy=False, dense => no copy X = X_orig.copy().toarray() imputer = SimpleImputer(missing_values=0, strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt[0, 0] = -1 assert_array_almost_equal(X, Xt) # copy=False, sparse csc => no copy X = X_orig.copy().tocsc() imputer = SimpleImputer(missing_values=X.data[0], strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert_array_almost_equal(X.data, Xt.data) # copy=False, sparse csr => copy X = X_orig.copy() imputer = SimpleImputer(missing_values=X.data[0], strategy="mean", copy=False) Xt = imputer.fit(X).transform(X) Xt.data[0] = -1 assert not np.all(X.data == Xt.data) # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is # made, even if copy=False. def test_iterative_imputer_zero_iters(): rng = np.random.RandomState(0) n = 100 d = 10 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() missing_flag = X == 0 X[missing_flag] = np.nan imputer = IterativeImputer(max_iter=0) X_imputed = imputer.fit_transform(X) # with max_iter=0, only initial imputation is performed assert_allclose(X_imputed, imputer.initial_imputer_.transform(X)) # repeat but force n_iter_ to 0 imputer = IterativeImputer(max_iter=5).fit(X) # transformed should not be equal to initial imputation assert not np.all(imputer.transform(X) == imputer.initial_imputer_.transform(X)) imputer.n_iter_ = 0 # now they should be equal as only initial imputation is done assert_allclose(imputer.transform(X), imputer.initial_imputer_.transform(X)) def test_iterative_imputer_verbose(): rng = np.random.RandomState(0) n = 100 d = 3 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() imputer = IterativeImputer(missing_values=0, max_iter=1, verbose=1) imputer.fit(X) imputer.transform(X) imputer = IterativeImputer(missing_values=0, max_iter=1, verbose=2) imputer.fit(X) imputer.transform(X) def test_iterative_imputer_all_missing(): n = 100 d = 3 X = np.zeros((n, d)) imputer = IterativeImputer(missing_values=0, max_iter=1) X_imputed = imputer.fit_transform(X) assert_allclose(X_imputed, imputer.initial_imputer_.transform(X)) @pytest.mark.parametrize( "imputation_order", ["random", "roman", "ascending", "descending", "arabic"] ) def test_iterative_imputer_imputation_order(imputation_order): rng = np.random.RandomState(0) n = 100 d = 10 max_iter = 2 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() X[:, 0] = 1 # this column should not be discarded by IterativeImputer imputer = IterativeImputer( missing_values=0, max_iter=max_iter, n_nearest_features=5, sample_posterior=False, skip_complete=True, min_value=0, max_value=1, verbose=1, imputation_order=imputation_order, random_state=rng, ) imputer.fit_transform(X) ordered_idx = [i.feat_idx for i in imputer.imputation_sequence_] assert len(ordered_idx) // imputer.n_iter_ == imputer.n_features_with_missing_ if imputation_order == "roman": assert np.all(ordered_idx[: d - 1] == np.arange(1, d)) elif imputation_order == "arabic": assert np.all(ordered_idx[: d - 1] == np.arange(d - 1, 0, -1)) elif imputation_order == "random": ordered_idx_round_1 = ordered_idx[: d - 1] ordered_idx_round_2 = ordered_idx[d - 1 :] assert ordered_idx_round_1 != ordered_idx_round_2 elif "ending" in imputation_order: assert len(ordered_idx) == max_iter * (d - 1) @pytest.mark.parametrize( "estimator", [None, DummyRegressor(), BayesianRidge(), ARDRegression(), RidgeCV()] ) def test_iterative_imputer_estimators(estimator): rng = np.random.RandomState(0) n = 100 d = 10 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() imputer = IterativeImputer( missing_values=0, max_iter=1, estimator=estimator, random_state=rng ) imputer.fit_transform(X) # check that types are correct for estimators hashes = [] for triplet in imputer.imputation_sequence_: expected_type = ( type(estimator) if estimator is not None else type(BayesianRidge()) ) assert isinstance(triplet.estimator, expected_type) hashes.append(id(triplet.estimator)) # check that each estimator is unique assert len(set(hashes)) == len(hashes) def test_iterative_imputer_clip(): rng = np.random.RandomState(0) n = 100 d = 10 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() imputer = IterativeImputer( missing_values=0, max_iter=1, min_value=0.1, max_value=0.2, random_state=rng ) Xt = imputer.fit_transform(X) assert_allclose(np.min(Xt[X == 0]), 0.1) assert_allclose(np.max(Xt[X == 0]), 0.2) assert_allclose(Xt[X != 0], X[X != 0]) def test_iterative_imputer_clip_truncnorm(): rng = np.random.RandomState(0) n = 100 d = 10 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray() X[:, 0] = 1 imputer = IterativeImputer( missing_values=0, max_iter=2, n_nearest_features=5, sample_posterior=True, min_value=0.1, max_value=0.2, verbose=1, imputation_order="random", random_state=rng, ) Xt = imputer.fit_transform(X) assert_allclose(np.min(Xt[X == 0]), 0.1) assert_allclose(np.max(Xt[X == 0]), 0.2) assert_allclose(Xt[X != 0], X[X != 0]) def test_iterative_imputer_truncated_normal_posterior(): # test that the values that are imputed using `sample_posterior=True` # with boundaries (`min_value` and `max_value` are not None) are drawn # from a distribution that looks gaussian via the Kolmogorov Smirnov test. # note that starting from the wrong random seed will make this test fail # because random sampling doesn't occur at all when the imputation # is outside of the (min_value, max_value) range rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) X[0][0] = np.nan imputer = IterativeImputer( min_value=0, max_value=0.5, sample_posterior=True, random_state=rng ) imputer.fit_transform(X) # generate multiple imputations for the single missing value imputations = np.array([imputer.transform(X)[0][0] for _ in range(100)]) assert all(imputations >= 0) assert all(imputations <= 0.5) mu, sigma = imputations.mean(), imputations.std() ks_statistic, p_value = kstest((imputations - mu) / sigma, "norm") if sigma == 0: sigma += 1e-12 ks_statistic, p_value = kstest((imputations - mu) / sigma, "norm") # we want to fail to reject null hypothesis # null hypothesis: distributions are the same assert ks_statistic < 0.2 or p_value > 0.1, "The posterior does appear to be normal" @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"]) def test_iterative_imputer_missing_at_transform(strategy): rng = np.random.RandomState(0) n = 100 d = 10 X_train = rng.randint(low=0, high=3, size=(n, d)) X_test = rng.randint(low=0, high=3, size=(n, d)) X_train[:, 0] = 1 # definitely no missing values in 0th column X_test[0, 0] = 0 # definitely missing value in 0th column imputer = IterativeImputer( missing_values=0, max_iter=1, initial_strategy=strategy, random_state=rng ).fit(X_train) initial_imputer = SimpleImputer(missing_values=0, strategy=strategy).fit(X_train) # if there were no missing values at time of fit, then imputer will # only use the initial imputer for that feature at transform assert_allclose( imputer.transform(X_test)[:, 0], initial_imputer.transform(X_test)[:, 0] ) def test_iterative_imputer_transform_stochasticity(): rng1 = np.random.RandomState(0) rng2 = np.random.RandomState(1) n = 100 d = 10 X = _sparse_random_matrix(n, d, density=0.10, random_state=rng1).toarray() # when sample_posterior=True, two transforms shouldn't be equal imputer = IterativeImputer( missing_values=0, max_iter=1, sample_posterior=True, random_state=rng1 ) imputer.fit(X) X_fitted_1 = imputer.transform(X) X_fitted_2 = imputer.transform(X) # sufficient to assert that the means are not the same assert np.mean(X_fitted_1) != pytest.approx(np.mean(X_fitted_2)) # when sample_posterior=False, and n_nearest_features=None # and imputation_order is not random # the two transforms should be identical even if rng are different imputer1 = IterativeImputer( missing_values=0, max_iter=1, sample_posterior=False, n_nearest_features=None, imputation_order="ascending", random_state=rng1, ) imputer2 = IterativeImputer( missing_values=0, max_iter=1, sample_posterior=False, n_nearest_features=None, imputation_order="ascending", random_state=rng2, ) imputer1.fit(X) imputer2.fit(X) X_fitted_1a = imputer1.transform(X) X_fitted_1b = imputer1.transform(X) X_fitted_2 = imputer2.transform(X) assert_allclose(X_fitted_1a, X_fitted_1b) assert_allclose(X_fitted_1a, X_fitted_2) def test_iterative_imputer_no_missing(): rng = np.random.RandomState(0) X = rng.rand(100, 100) X[:, 0] = np.nan m1 = IterativeImputer(max_iter=10, random_state=rng) m2 = IterativeImputer(max_iter=10, random_state=rng) pred1 = m1.fit(X).transform(X) pred2 = m2.fit_transform(X) # should exclude the first column entirely assert_allclose(X[:, 1:], pred1) # fit and fit_transform should both be identical assert_allclose(pred1, pred2) def test_iterative_imputer_rank_one(): rng = np.random.RandomState(0) d = 50 A = rng.rand(d, 1) B = rng.rand(1, d) X = np.dot(A, B) nan_mask = rng.rand(d, d) < 0.5 X_missing = X.copy() X_missing[nan_mask] = np.nan imputer = IterativeImputer(max_iter=5, verbose=1, random_state=rng) X_filled = imputer.fit_transform(X_missing) assert_allclose(X_filled, X, atol=0.02) @pytest.mark.parametrize("rank", [3, 5]) def test_iterative_imputer_transform_recovery(rank): rng = np.random.RandomState(0) n = 70 d = 70 A = rng.rand(n, rank) B = rng.rand(rank, d) X_filled = np.dot(A, B) nan_mask = rng.rand(n, d) < 0.5 X_missing = X_filled.copy() X_missing[nan_mask] = np.nan # split up data in half n = n // 2 X_train = X_missing[:n] X_test_filled = X_filled[n:] X_test = X_missing[n:] imputer = IterativeImputer( max_iter=5, imputation_order="descending", verbose=1, random_state=rng ).fit(X_train) X_test_est = imputer.transform(X_test) assert_allclose(X_test_filled, X_test_est, atol=0.1) def test_iterative_imputer_additive_matrix(): rng = np.random.RandomState(0) n = 100 d = 10 A = rng.randn(n, d) B = rng.randn(n, d) X_filled = np.zeros(A.shape) for i in range(d): for j in range(d): X_filled[:, (i + j) % d] += (A[:, i] + B[:, j]) / 2 # a quarter is randomly missing nan_mask = rng.rand(n, d) < 0.25 X_missing = X_filled.copy() X_missing[nan_mask] = np.nan # split up data n = n // 2 X_train = X_missing[:n] X_test_filled = X_filled[n:] X_test = X_missing[n:] imputer = IterativeImputer(max_iter=10, verbose=1, random_state=rng).fit(X_train) X_test_est = imputer.transform(X_test) assert_allclose(X_test_filled, X_test_est, rtol=1e-3, atol=0.01) def test_iterative_imputer_early_stopping(): rng = np.random.RandomState(0) n = 50 d = 5 A = rng.rand(n, 1) B = rng.rand(1, d) X = np.dot(A, B) nan_mask = rng.rand(n, d) < 0.5 X_missing = X.copy() X_missing[nan_mask] = np.nan imputer = IterativeImputer( max_iter=100, tol=1e-2, sample_posterior=False, verbose=1, random_state=rng ) X_filled_100 = imputer.fit_transform(X_missing) assert len(imputer.imputation_sequence_) == d * imputer.n_iter_ imputer = IterativeImputer( max_iter=imputer.n_iter_, sample_posterior=False, verbose=1, random_state=rng ) X_filled_early = imputer.fit_transform(X_missing) assert_allclose(X_filled_100, X_filled_early, atol=1e-7) imputer = IterativeImputer( max_iter=100, tol=0, sample_posterior=False, verbose=1, random_state=rng ) imputer.fit(X_missing) assert imputer.n_iter_ == imputer.max_iter def test_iterative_imputer_catch_warning(): # check that we catch a RuntimeWarning due to a division by zero when a # feature is constant in the dataset X, y = load_diabetes(return_X_y=True) n_samples, n_features = X.shape # simulate that a feature only contain one category during fit X[:, 3] = 1 # add some missing values rng = np.random.RandomState(0) missing_rate = 0.15 for feat in range(n_features): sample_idx = rng.choice( np.arange(n_samples), size=int(n_samples * missing_rate), replace=False ) X[sample_idx, feat] = np.nan imputer = IterativeImputer(n_nearest_features=5, sample_posterior=True) with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) X_fill = imputer.fit_transform(X, y) assert not np.any(np.isnan(X_fill)) @pytest.mark.parametrize( "min_value, max_value, correct_output", [ (0, 100, np.array([[0] * 3, [100] * 3])), (None, None, np.array([[-np.inf] * 3, [np.inf] * 3])), (-np.inf, np.inf, np.array([[-np.inf] * 3, [np.inf] * 3])), ([-5, 5, 10], [100, 200, 300], np.array([[-5, 5, 10], [100, 200, 300]])), ( [-5, -np.inf, 10], [100, 200, np.inf], np.array([[-5, -np.inf, 10], [100, 200, np.inf]]), ), ], ids=["scalars", "None-default", "inf", "lists", "lists-with-inf"], ) def test_iterative_imputer_min_max_array_like(min_value, max_value, correct_output): # check that passing scalar or array-like # for min_value and max_value in IterativeImputer works X = np.random.RandomState(0).randn(10, 3) imputer = IterativeImputer(min_value=min_value, max_value=max_value) imputer.fit(X) assert isinstance(imputer._min_value, np.ndarray) and isinstance( imputer._max_value, np.ndarray ) assert (imputer._min_value.shape[0] == X.shape[1]) and ( imputer._max_value.shape[0] == X.shape[1] ) assert_allclose(correct_output[0, :], imputer._min_value) assert_allclose(correct_output[1, :], imputer._max_value) @pytest.mark.parametrize( "min_value, max_value, err_msg", [ (100, 0, "min_value >= max_value."), (np.inf, -np.inf, "min_value >= max_value."), ([-5, 5], [100, 200, 0], "_value' should be of shape"), ], ) def test_iterative_imputer_catch_min_max_error(min_value, max_value, err_msg): # check that passing scalar or array-like # for min_value and max_value in IterativeImputer works X = np.random.random((10, 3)) imputer = IterativeImputer(min_value=min_value, max_value=max_value) with pytest.raises(ValueError, match=err_msg): imputer.fit(X) @pytest.mark.parametrize( "min_max_1, min_max_2", [([None, None], [-np.inf, np.inf]), ([-10, 10], [[-10] * 4, [10] * 4])], ids=["None-vs-inf", "Scalar-vs-vector"], ) def test_iterative_imputer_min_max_array_like_imputation(min_max_1, min_max_2): # Test that None/inf and scalar/vector give the same imputation X_train = np.array( [ [np.nan, 2, 2, 1], [10, np.nan, np.nan, 7], [3, 1, np.nan, 1], [np.nan, 4, 2, np.nan], ] ) X_test = np.array( [[np.nan, 2, np.nan, 5], [2, 4, np.nan, np.nan], [np.nan, 1, 10, 1]] ) imputer1 = IterativeImputer( min_value=min_max_1[0], max_value=min_max_1[1], random_state=0 ) imputer2 = IterativeImputer( min_value=min_max_2[0], max_value=min_max_2[1], random_state=0 ) X_test_imputed1 = imputer1.fit(X_train).transform(X_test) X_test_imputed2 = imputer2.fit(X_train).transform(X_test) assert_allclose(X_test_imputed1[:, 0], X_test_imputed2[:, 0]) @pytest.mark.parametrize("skip_complete", [True, False]) def test_iterative_imputer_skip_non_missing(skip_complete): # check the imputing strategy when missing data are present in the # testing set only. # taken from: https://github.com/scikit-learn/scikit-learn/issues/14383 rng = np.random.RandomState(0) X_train = np.array([[5, 2, 2, 1], [10, 1, 2, 7], [3, 1, 1, 1], [8, 4, 2, 2]]) X_test = np.array([[np.nan, 2, 4, 5], [np.nan, 4, 1, 2], [np.nan, 1, 10, 1]]) imputer = IterativeImputer( initial_strategy="mean", skip_complete=skip_complete, random_state=rng ) X_test_est = imputer.fit(X_train).transform(X_test) if skip_complete: # impute with the initial strategy: 'mean' assert_allclose(X_test_est[:, 0], np.mean(X_train[:, 0])) else: assert_allclose(X_test_est[:, 0], [11, 7, 12], rtol=1e-4) @pytest.mark.parametrize("rs_imputer", [None, 1, np.random.RandomState(seed=1)]) @pytest.mark.parametrize("rs_estimator", [None, 1, np.random.RandomState(seed=1)]) def test_iterative_imputer_dont_set_random_state(rs_imputer, rs_estimator): class ZeroEstimator: def __init__(self, random_state): self.random_state = random_state def fit(self, *args, **kgards): return self def predict(self, X): return np.zeros(X.shape[0]) estimator = ZeroEstimator(random_state=rs_estimator) imputer = IterativeImputer(random_state=rs_imputer) X_train = np.zeros((10, 3)) imputer.fit(X_train) assert estimator.random_state == rs_estimator @pytest.mark.parametrize( "X_fit, X_trans, params, msg_err", [ ( np.array([[-1, 1], [1, 2]]), np.array([[-1, 1], [1, -1]]), {"features": "missing-only", "sparse": "auto"}, "have missing values in transform but have no missing values in fit", ), ( np.array([["a", "b"], ["c", "a"]], dtype=str), np.array([["a", "b"], ["c", "a"]], dtype=str), {}, "MissingIndicator does not support data with dtype", ), ], ) def test_missing_indicator_error(X_fit, X_trans, params, msg_err): indicator = MissingIndicator(missing_values=-1) indicator.set_params(**params) with pytest.raises(ValueError, match=msg_err): indicator.fit(X_fit).transform(X_trans) @pytest.mark.parametrize( "missing_values, dtype, arr_type", [ (np.nan, np.float64, np.array), (0, np.int32, np.array), (-1, np.int32, np.array), (np.nan, np.float64, sparse.csc_matrix), (-1, np.int32, sparse.csc_matrix), (np.nan, np.float64, sparse.csr_matrix), (-1, np.int32, sparse.csr_matrix), (np.nan, np.float64, sparse.coo_matrix), (-1, np.int32, sparse.coo_matrix), (np.nan, np.float64, sparse.lil_matrix), (-1, np.int32, sparse.lil_matrix), (np.nan, np.float64, sparse.bsr_matrix), (-1, np.int32, sparse.bsr_matrix), ], ) @pytest.mark.parametrize( "param_features, n_features, features_indices", [("missing-only", 3, np.array([0, 1, 2])), ("all", 3, np.array([0, 1, 2]))], ) def test_missing_indicator_new( missing_values, arr_type, dtype, param_features, n_features, features_indices ): X_fit = np.array([[missing_values, missing_values, 1], [4, 2, missing_values]]) X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]]) X_fit_expected = np.array([[1, 1, 0], [0, 0, 1]]) X_trans_expected = np.array([[1, 1, 0], [0, 0, 0]]) # convert the input to the right array format and right dtype X_fit = arr_type(X_fit).astype(dtype) X_trans = arr_type(X_trans).astype(dtype) X_fit_expected = X_fit_expected.astype(dtype) X_trans_expected = X_trans_expected.astype(dtype) indicator = MissingIndicator( missing_values=missing_values, features=param_features, sparse=False ) X_fit_mask = indicator.fit_transform(X_fit) X_trans_mask = indicator.transform(X_trans) assert X_fit_mask.shape[1] == n_features assert X_trans_mask.shape[1] == n_features assert_array_equal(indicator.features_, features_indices) assert_allclose(X_fit_mask, X_fit_expected[:, features_indices]) assert_allclose(X_trans_mask, X_trans_expected[:, features_indices]) assert X_fit_mask.dtype == bool assert X_trans_mask.dtype == bool assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) indicator.set_params(sparse=True) X_fit_mask_sparse = indicator.fit_transform(X_fit) X_trans_mask_sparse = indicator.transform(X_trans) assert X_fit_mask_sparse.dtype == bool assert X_trans_mask_sparse.dtype == bool assert X_fit_mask_sparse.format == "csc" assert X_trans_mask_sparse.format == "csc" assert_allclose(X_fit_mask_sparse.toarray(), X_fit_mask) assert_allclose(X_trans_mask_sparse.toarray(), X_trans_mask) @pytest.mark.parametrize( "arr_type", [ sparse.csc_matrix, sparse.csr_matrix, sparse.coo_matrix, sparse.lil_matrix, sparse.bsr_matrix, ], ) def test_missing_indicator_raise_on_sparse_with_missing_0(arr_type): # test for sparse input and missing_value == 0 missing_values = 0 X_fit = np.array([[missing_values, missing_values, 1], [4, missing_values, 2]]) X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]]) # convert the input to the right array format X_fit_sparse = arr_type(X_fit) X_trans_sparse = arr_type(X_trans) indicator = MissingIndicator(missing_values=missing_values) with pytest.raises(ValueError, match="Sparse input with missing_values=0"): indicator.fit_transform(X_fit_sparse) indicator.fit_transform(X_fit) with pytest.raises(ValueError, match="Sparse input with missing_values=0"): indicator.transform(X_trans_sparse) @pytest.mark.parametrize("param_sparse", [True, False, "auto"]) @pytest.mark.parametrize( "missing_values, arr_type", [ (np.nan, np.array), (0, np.array), (np.nan, sparse.csc_matrix), (np.nan, sparse.csr_matrix), (np.nan, sparse.coo_matrix), (np.nan, sparse.lil_matrix), ], ) def test_missing_indicator_sparse_param(arr_type, missing_values, param_sparse): # check the format of the output with different sparse parameter X_fit = np.array([[missing_values, missing_values, 1], [4, missing_values, 2]]) X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]]) X_fit = arr_type(X_fit).astype(np.float64) X_trans = arr_type(X_trans).astype(np.float64) indicator = MissingIndicator(missing_values=missing_values, sparse=param_sparse) X_fit_mask = indicator.fit_transform(X_fit) X_trans_mask = indicator.transform(X_trans) if param_sparse is True: assert X_fit_mask.format == "csc" assert X_trans_mask.format == "csc" elif param_sparse == "auto" and missing_values == 0: assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) elif param_sparse is False: assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) else: if sparse.issparse(X_fit): assert X_fit_mask.format == "csc" assert X_trans_mask.format == "csc" else: assert isinstance(X_fit_mask, np.ndarray) assert isinstance(X_trans_mask, np.ndarray) def test_missing_indicator_string(): X = np.array([["a", "b", "c"], ["b", "c", "a"]], dtype=object) indicator = MissingIndicator(missing_values="a", features="all") X_trans = indicator.fit_transform(X) assert_array_equal(X_trans, np.array([[True, False, False], [False, False, True]])) @pytest.mark.parametrize( "X, missing_values, X_trans_exp", [ ( np.array([["a", "b"], ["b", "a"]], dtype=object), "a", np.array([["b", "b", True, False], ["b", "b", False, True]], dtype=object), ), ( np.array([[np.nan, 1.0], [1.0, np.nan]]), np.nan, np.array([[1.0, 1.0, True, False], [1.0, 1.0, False, True]]), ), ( np.array([[np.nan, "b"], ["b", np.nan]], dtype=object), np.nan, np.array([["b", "b", True, False], ["b", "b", False, True]], dtype=object), ), ( np.array([[None, "b"], ["b", None]], dtype=object), None, np.array([["b", "b", True, False], ["b", "b", False, True]], dtype=object), ), ], ) def test_missing_indicator_with_imputer(X, missing_values, X_trans_exp): trans = make_union( SimpleImputer(missing_values=missing_values, strategy="most_frequent"), MissingIndicator(missing_values=missing_values), ) X_trans = trans.fit_transform(X) assert_array_equal(X_trans, X_trans_exp) @pytest.mark.parametrize("imputer_constructor", [SimpleImputer, IterativeImputer]) @pytest.mark.parametrize( "imputer_missing_values, missing_value, err_msg", [ ("NaN", np.nan, "Input X contains NaN"), ("-1", -1, "types are expected to be both numerical."), ], ) def test_inconsistent_dtype_X_missing_values( imputer_constructor, imputer_missing_values, missing_value, err_msg ): # regression test for issue #11390. Comparison between incoherent dtype # for X and missing_values was not raising a proper error. rng = np.random.RandomState(42) X = rng.randn(10, 10) X[0, 0] = missing_value imputer = imputer_constructor(missing_values=imputer_missing_values) with pytest.raises(ValueError, match=err_msg): imputer.fit_transform(X) def test_missing_indicator_no_missing(): # check that all features are dropped if there are no missing values when # features='missing-only' (#13491) X = np.array([[1, 1], [1, 1]]) mi = MissingIndicator(features="missing-only", missing_values=-1) Xt = mi.fit_transform(X) assert Xt.shape[1] == 0 def test_missing_indicator_sparse_no_explicit_zeros(): # Check that non missing values don't become explicit zeros in the mask # generated by missing indicator when X is sparse. (#13491) X = sparse.csr_matrix([[0, 1, 2], [1, 2, 0], [2, 0, 1]]) mi = MissingIndicator(features="all", missing_values=1) Xt = mi.fit_transform(X) assert Xt.getnnz() == Xt.sum() @pytest.mark.parametrize("imputer_constructor", [SimpleImputer, IterativeImputer]) def test_imputer_without_indicator(imputer_constructor): X = np.array([[1, 1], [1, 1]]) imputer = imputer_constructor() imputer.fit(X) assert imputer.indicator_ is None @pytest.mark.parametrize( "arr_type", [ sparse.csc_matrix, sparse.csr_matrix, sparse.coo_matrix, sparse.lil_matrix, sparse.bsr_matrix, ], ) def test_simple_imputation_add_indicator_sparse_matrix(arr_type): X_sparse = arr_type([[np.nan, 1, 5], [2, np.nan, 1], [6, 3, np.nan], [1, 2, 9]]) X_true = np.array( [ [3.0, 1.0, 5.0, 1.0, 0.0, 0.0], [2.0, 2.0, 1.0, 0.0, 1.0, 0.0], [6.0, 3.0, 5.0, 0.0, 0.0, 1.0], [1.0, 2.0, 9.0, 0.0, 0.0, 0.0], ] ) imputer = SimpleImputer(missing_values=np.nan, add_indicator=True) X_trans = imputer.fit_transform(X_sparse) assert sparse.issparse(X_trans) assert X_trans.shape == X_true.shape assert_allclose(X_trans.toarray(), X_true) @pytest.mark.parametrize( "strategy, expected", [("most_frequent", "b"), ("constant", "missing_value")] ) def test_simple_imputation_string_list(strategy, expected): X = [["a", "b"], ["c", np.nan]] X_true = np.array([["a", "b"], ["c", expected]], dtype=object) imputer = SimpleImputer(strategy=strategy) X_trans = imputer.fit_transform(X) assert_array_equal(X_trans, X_true) @pytest.mark.parametrize( "order, idx_order", [("ascending", [3, 4, 2, 0, 1]), ("descending", [1, 0, 2, 4, 3])], ) def test_imputation_order(order, idx_order): # regression test for #15393 rng = np.random.RandomState(42) X = rng.rand(100, 5) X[:50, 1] = np.nan X[:30, 0] = np.nan X[:20, 2] = np.nan X[:10, 4] = np.nan with pytest.warns(ConvergenceWarning): trs = IterativeImputer(max_iter=1, imputation_order=order, random_state=0).fit( X ) idx = [x.feat_idx for x in trs.imputation_sequence_] assert idx == idx_order @pytest.mark.parametrize("missing_value", [-1, np.nan]) def test_simple_imputation_inverse_transform(missing_value): # Test inverse_transform feature for np.nan X_1 = np.array( [ [9, missing_value, 3, -1], [4, -1, 5, 4], [6, 7, missing_value, -1], [8, 9, 0, missing_value], ] ) X_2 = np.array( [ [5, 4, 2, 1], [2, 1, missing_value, 3], [9, missing_value, 7, 1], [6, 4, 2, missing_value], ] ) X_3 = np.array( [ [1, missing_value, 5, 9], [missing_value, 4, missing_value, missing_value], [2, missing_value, 7, missing_value], [missing_value, 3, missing_value, 8], ] ) X_4 = np.array( [ [1, 1, 1, 3], [missing_value, 2, missing_value, 1], [2, 3, 3, 4], [missing_value, 4, missing_value, 2], ] ) imputer = SimpleImputer( missing_values=missing_value, strategy="mean", add_indicator=True ) X_1_trans = imputer.fit_transform(X_1) X_1_inv_trans = imputer.inverse_transform(X_1_trans) X_2_trans = imputer.transform(X_2) # test on new data X_2_inv_trans = imputer.inverse_transform(X_2_trans) assert_array_equal(X_1_inv_trans, X_1) assert_array_equal(X_2_inv_trans, X_2) for X in [X_3, X_4]: X_trans = imputer.fit_transform(X) X_inv_trans = imputer.inverse_transform(X_trans) assert_array_equal(X_inv_trans, X) @pytest.mark.parametrize("missing_value", [-1, np.nan]) def test_simple_imputation_inverse_transform_exceptions(missing_value): X_1 = np.array( [ [9, missing_value, 3, -1], [4, -1, 5, 4], [6, 7, missing_value, -1], [8, 9, 0, missing_value], ] ) imputer = SimpleImputer(missing_values=missing_value, strategy="mean") X_1_trans = imputer.fit_transform(X_1) with pytest.raises( ValueError, match=f"Got 'add_indicator={imputer.add_indicator}'" ): imputer.inverse_transform(X_1_trans) @pytest.mark.parametrize( "expected,array,dtype,extra_value,n_repeat", [ # array of object dtype ("extra_value", ["a", "b", "c"], object, "extra_value", 2), ( "most_frequent_value", ["most_frequent_value", "most_frequent_value", "value"], object, "extra_value", 1, ), ("a", ["min_value", "min_valuevalue"], object, "a", 2), ("min_value", ["min_value", "min_value", "value"], object, "z", 2), # array of numeric dtype (10, [1, 2, 3], int, 10, 2), (1, [1, 1, 2], int, 10, 1), (10, [20, 20, 1], int, 10, 2), (1, [1, 1, 20], int, 10, 2), ], ) def test_most_frequent(expected, array, dtype, extra_value, n_repeat): assert expected == _most_frequent( np.array(array, dtype=dtype), extra_value, n_repeat ) def test_simple_impute_pd_na(): pd = pytest.importorskip("pandas") # Impute pandas array of string types. df = pd.DataFrame({"feature": pd.Series(["abc", None, "de"], dtype="string")}) imputer = SimpleImputer(missing_values=pd.NA, strategy="constant", fill_value="na") _assert_array_equal_and_same_dtype( imputer.fit_transform(df), np.array([["abc"], ["na"], ["de"]], dtype=object) ) # Impute pandas array of string types without any missing values. df = pd.DataFrame({"feature": pd.Series(["abc", "de", "fgh"], dtype="string")}) imputer = SimpleImputer(fill_value="ok", strategy="constant") _assert_array_equal_and_same_dtype( imputer.fit_transform(df), np.array([["abc"], ["de"], ["fgh"]], dtype=object) ) # Impute pandas array of integer types. df = pd.DataFrame({"feature": pd.Series([1, None, 3], dtype="Int64")}) imputer = SimpleImputer(missing_values=pd.NA, strategy="constant", fill_value=-1) _assert_allclose_and_same_dtype( imputer.fit_transform(df), np.array([[1], [-1], [3]], dtype="float64") ) # Use `np.nan` also works. imputer = SimpleImputer(missing_values=np.nan, strategy="constant", fill_value=-1) _assert_allclose_and_same_dtype( imputer.fit_transform(df), np.array([[1], [-1], [3]], dtype="float64") ) # Impute pandas array of integer types with 'median' strategy. df = pd.DataFrame({"feature": pd.Series([1, None, 2, 3], dtype="Int64")}) imputer = SimpleImputer(missing_values=pd.NA, strategy="median") _assert_allclose_and_same_dtype( imputer.fit_transform(df), np.array([[1], [2], [2], [3]], dtype="float64") ) # Impute pandas array of integer types with 'mean' strategy. df = pd.DataFrame({"feature": pd.Series([1, None, 2], dtype="Int64")}) imputer = SimpleImputer(missing_values=pd.NA, strategy="mean") _assert_allclose_and_same_dtype( imputer.fit_transform(df), np.array([[1], [1.5], [2]], dtype="float64") ) # Impute pandas array of float types. df = pd.DataFrame({"feature": pd.Series([1.0, None, 3.0], dtype="float64")}) imputer = SimpleImputer(missing_values=pd.NA, strategy="constant", fill_value=-2.0) _assert_allclose_and_same_dtype( imputer.fit_transform(df), np.array([[1.0], [-2.0], [3.0]], dtype="float64") ) # Impute pandas array of float types with 'median' strategy. df = pd.DataFrame({"feature": pd.Series([1.0, None, 2.0, 3.0], dtype="float64")}) imputer = SimpleImputer(missing_values=pd.NA, strategy="median") _assert_allclose_and_same_dtype( imputer.fit_transform(df), np.array([[1.0], [2.0], [2.0], [3.0]], dtype="float64"), ) def test_missing_indicator_feature_names_out(): """Check that missing indicator return the feature names with a prefix.""" pd = pytest.importorskip("pandas") missing_values = np.nan X = pd.DataFrame( [ [missing_values, missing_values, 1, missing_values], [4, missing_values, 2, 10], ], columns=["a", "b", "c", "d"], ) indicator = MissingIndicator(missing_values=missing_values).fit(X) feature_names = indicator.get_feature_names_out() expected_names = ["missingindicator_a", "missingindicator_b", "missingindicator_d"] assert_array_equal(expected_names, feature_names) def test_imputer_lists_fit_transform(): """Check transform uses object dtype when fitted on an object dtype. Non-regression test for #19572. """ X = [["a", "b"], ["c", "b"], ["a", "a"]] imp_frequent = SimpleImputer(strategy="most_frequent").fit(X) X_trans = imp_frequent.transform([[np.nan, np.nan]]) assert X_trans.dtype == object assert_array_equal(X_trans, [["a", "b"]]) @pytest.mark.parametrize("dtype_test", [np.float32, np.float64]) def test_imputer_transform_preserves_numeric_dtype(dtype_test): """Check transform preserves numeric dtype independent of fit dtype.""" X = np.asarray( [[1.2, 3.4, np.nan], [np.nan, 1.2, 1.3], [4.2, 2, 1]], dtype=np.float64 ) imp = SimpleImputer().fit(X) X_test = np.asarray([[np.nan, np.nan, np.nan]], dtype=dtype_test) X_trans = imp.transform(X_test) assert X_trans.dtype == dtype_test
bsd-3-clause
espg/scikit-learn
sklearn/datasets/tests/test_samples_generator.py
12
23250
import re from collections import defaultdict from functools import partial import numpy as np import pytest import scipy.sparse as sp from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.datasets import make_classification from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_hastie_10_2 from sklearn.datasets import make_regression from sklearn.datasets import make_blobs from sklearn.datasets import make_friedman1 from sklearn.datasets import make_friedman2 from sklearn.datasets import make_friedman3 from sklearn.datasets import make_low_rank_matrix from sklearn.datasets import make_moons from sklearn.datasets import make_circles from sklearn.datasets import make_sparse_coded_signal from sklearn.datasets import make_sparse_uncorrelated from sklearn.datasets import make_spd_matrix from sklearn.datasets import make_swiss_roll from sklearn.datasets import make_s_curve from sklearn.datasets import make_biclusters from sklearn.datasets import make_checkerboard from sklearn.utils.validation import assert_all_finite def test_make_classification(): weights = [0.1, 0.25] X, y = make_classification( n_samples=100, n_features=20, n_informative=5, n_redundant=1, n_repeated=1, n_classes=3, n_clusters_per_class=1, hypercube=False, shift=None, scale=None, weights=weights, random_state=0, ) assert weights == [0.1, 0.25] assert X.shape == (100, 20), "X shape mismatch" assert y.shape == (100,), "y shape mismatch" assert np.unique(y).shape == (3,), "Unexpected number of classes" assert sum(y == 0) == 10, "Unexpected number of samples in class #0" assert sum(y == 1) == 25, "Unexpected number of samples in class #1" assert sum(y == 2) == 65, "Unexpected number of samples in class #2" # Test for n_features > 30 X, y = make_classification( n_samples=2000, n_features=31, n_informative=31, n_redundant=0, n_repeated=0, hypercube=True, scale=0.5, random_state=0, ) assert X.shape == (2000, 31), "X shape mismatch" assert y.shape == (2000,), "y shape mismatch" assert ( np.unique(X.view([("", X.dtype)] * X.shape[1])) .view(X.dtype) .reshape(-1, X.shape[1]) .shape[0] == 2000 ), "Unexpected number of unique rows" def test_make_classification_informative_features(): """Test the construction of informative features in make_classification Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and fully-specified `weights`. """ # Create very separate clusters; check that vertices are unique and # correspond to classes class_sep = 1e6 make = partial( make_classification, class_sep=class_sep, n_redundant=0, n_repeated=0, flip_y=0, shift=0, scale=1, shuffle=False, ) for n_informative, weights, n_clusters_per_class in [ (2, [1], 1), (2, [1 / 3] * 3, 1), (2, [1 / 4] * 4, 1), (2, [1 / 2] * 2, 2), (2, [3 / 4, 1 / 4], 2), (10, [1 / 3] * 3, 10), (int(64), [1], 1), ]: n_classes = len(weights) n_clusters = n_classes * n_clusters_per_class n_samples = n_clusters * 50 for hypercube in (False, True): X, y = make( n_samples=n_samples, n_classes=n_classes, weights=weights, n_features=n_informative, n_informative=n_informative, n_clusters_per_class=n_clusters_per_class, hypercube=hypercube, random_state=0, ) assert X.shape == (n_samples, n_informative) assert y.shape == (n_samples,) # Cluster by sign, viewed as strings to allow uniquing signs = np.sign(X) signs = signs.view(dtype="|S{0}".format(signs.strides[0])) unique_signs, cluster_index = np.unique(signs, return_inverse=True) assert ( len(unique_signs) == n_clusters ), "Wrong number of clusters, or not in distinct quadrants" clusters_by_class = defaultdict(set) for cluster, cls in zip(cluster_index, y): clusters_by_class[cls].add(cluster) for clusters in clusters_by_class.values(): assert ( len(clusters) == n_clusters_per_class ), "Wrong number of clusters per class" assert len(clusters_by_class) == n_classes, "Wrong number of classes" assert_array_almost_equal( np.bincount(y) / len(y) // weights, [1] * n_classes, err_msg="Wrong number of samples per class", ) # Ensure on vertices of hypercube for cluster in range(len(unique_signs)): centroid = X[cluster_index == cluster].mean(axis=0) if hypercube: assert_array_almost_equal( np.abs(centroid) / class_sep, np.ones(n_informative), decimal=5, err_msg="Clusters are not centered on hypercube vertices", ) else: with pytest.raises(AssertionError): assert_array_almost_equal( np.abs(centroid) / class_sep, np.ones(n_informative), decimal=5, err_msg=( "Clusters should not be centered on hypercube vertices" ), ) with pytest.raises(ValueError): make(n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1) with pytest.raises(ValueError): make(n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2) @pytest.mark.parametrize( "weights, err_type, err_msg", [ ([], ValueError, "Weights specified but incompatible with number of classes."), ( [0.25, 0.75, 0.1], ValueError, "Weights specified but incompatible with number of classes.", ), ( np.array([]), ValueError, "Weights specified but incompatible with number of classes.", ), ( np.array([0.25, 0.75, 0.1]), ValueError, "Weights specified but incompatible with number of classes.", ), ( np.random.random(3), ValueError, "Weights specified but incompatible with number of classes.", ), ], ) def test_make_classification_weights_type(weights, err_type, err_msg): with pytest.raises(err_type, match=err_msg): make_classification(weights=weights) @pytest.mark.parametrize("kwargs", [{}, {"n_classes": 3, "n_informative": 3}]) def test_make_classification_weights_array_or_list_ok(kwargs): X1, y1 = make_classification(weights=[0.1, 0.9], random_state=0, **kwargs) X2, y2 = make_classification(weights=np.array([0.1, 0.9]), random_state=0, **kwargs) assert_almost_equal(X1, X2) assert_almost_equal(y1, y2) def test_make_multilabel_classification_return_sequences(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification( n_samples=100, n_features=20, n_classes=3, random_state=0, return_indicator=False, allow_unlabeled=allow_unlabeled, ) assert X.shape == (100, 20), "X shape mismatch" if not allow_unlabeled: assert max([max(y) for y in Y]) == 2 assert min([len(y) for y in Y]) == min_length assert max([len(y) for y in Y]) <= 3 def test_make_multilabel_classification_return_indicator(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, ) assert X.shape == (25, 20), "X shape mismatch" assert Y.shape == (25, 3), "Y shape mismatch" assert np.all(np.sum(Y, axis=0) > min_length) # Also test return_distributions and return_indicator with True X2, Y2, p_c, p_w_c = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, allow_unlabeled=allow_unlabeled, return_distributions=True, ) assert_array_almost_equal(X, X2) assert_array_equal(Y, Y2) assert p_c.shape == (3,) assert_almost_equal(p_c.sum(), 1) assert p_w_c.shape == (20, 3) assert_almost_equal(p_w_c.sum(axis=0), [1] * 3) def test_make_multilabel_classification_return_indicator_sparse(): for allow_unlabeled, min_length in zip((True, False), (0, 1)): X, Y = make_multilabel_classification( n_samples=25, n_features=20, n_classes=3, random_state=0, return_indicator="sparse", allow_unlabeled=allow_unlabeled, ) assert X.shape == (25, 20), "X shape mismatch" assert Y.shape == (25, 3), "Y shape mismatch" assert sp.issparse(Y) @pytest.mark.parametrize( "params, err_msg", [ ({"n_classes": 0}, "'n_classes' should be an integer"), ({"length": 0}, "'length' should be an integer"), ], ) def test_make_multilabel_classification_valid_arguments(params, err_msg): with pytest.raises(ValueError, match=err_msg): make_multilabel_classification(**params) def test_make_hastie_10_2(): X, y = make_hastie_10_2(n_samples=100, random_state=0) assert X.shape == (100, 10), "X shape mismatch" assert y.shape == (100,), "y shape mismatch" assert np.unique(y).shape == (2,), "Unexpected number of classes" def test_make_regression(): X, y, c = make_regression( n_samples=100, n_features=10, n_informative=3, effective_rank=5, coef=True, bias=0.0, noise=1.0, random_state=0, ) assert X.shape == (100, 10), "X shape mismatch" assert y.shape == (100,), "y shape mismatch" assert c.shape == (10,), "coef shape mismatch" assert sum(c != 0.0) == 3, "Unexpected number of informative features" # Test that y ~= np.dot(X, c) + bias + N(0, 1.0). assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) # Test with small number of features. X, y = make_regression(n_samples=100, n_features=1) # n_informative=3 assert X.shape == (100, 1) def test_make_regression_multitarget(): X, y, c = make_regression( n_samples=100, n_features=10, n_informative=3, n_targets=3, coef=True, noise=1.0, random_state=0, ) assert X.shape == (100, 10), "X shape mismatch" assert y.shape == (100, 3), "y shape mismatch" assert c.shape == (10, 3), "coef shape mismatch" assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features") # Test that y ~= np.dot(X, c) + bias + N(0, 1.0) assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1) def test_make_blobs(): cluster_stds = np.array([0.05, 0.2, 0.4]) cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) X, y = make_blobs( random_state=0, n_samples=50, n_features=2, centers=cluster_centers, cluster_std=cluster_stds, ) assert X.shape == (50, 2), "X shape mismatch" assert y.shape == (50,), "y shape mismatch" assert np.unique(y).shape == (3,), "Unexpected number of blobs" for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") def test_make_blobs_n_samples_list(): n_samples = [50, 30, 20] X, y = make_blobs(n_samples=n_samples, n_features=2, random_state=0) assert X.shape == (sum(n_samples), 2), "X shape mismatch" assert all( np.bincount(y, minlength=len(n_samples)) == n_samples ), "Incorrect number of samples per blob" def test_make_blobs_n_samples_list_with_centers(): n_samples = [20, 20, 20] centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) cluster_stds = np.array([0.05, 0.2, 0.4]) X, y = make_blobs( n_samples=n_samples, centers=centers, cluster_std=cluster_stds, random_state=0 ) assert X.shape == (sum(n_samples), 2), "X shape mismatch" assert all( np.bincount(y, minlength=len(n_samples)) == n_samples ), "Incorrect number of samples per blob" for i, (ctr, std) in enumerate(zip(centers, cluster_stds)): assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std") @pytest.mark.parametrize( "n_samples", [[5, 3, 0], np.array([5, 3, 0]), tuple([5, 3, 0])] ) def test_make_blobs_n_samples_centers_none(n_samples): centers = None X, y = make_blobs(n_samples=n_samples, centers=centers, random_state=0) assert X.shape == (sum(n_samples), 2), "X shape mismatch" assert all( np.bincount(y, minlength=len(n_samples)) == n_samples ), "Incorrect number of samples per blob" def test_make_blobs_return_centers(): n_samples = [10, 20] n_features = 3 X, y, centers = make_blobs( n_samples=n_samples, n_features=n_features, return_centers=True, random_state=0 ) assert centers.shape == (len(n_samples), n_features) def test_make_blobs_error(): n_samples = [20, 20, 20] centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) cluster_stds = np.array([0.05, 0.2, 0.4]) wrong_centers_msg = re.escape( "Length of `n_samples` not consistent with number of centers. " f"Got n_samples = {n_samples} and centers = {centers[:-1]}" ) with pytest.raises(ValueError, match=wrong_centers_msg): make_blobs(n_samples, centers=centers[:-1]) wrong_std_msg = re.escape( "Length of `clusters_std` not consistent with number of centers. " f"Got centers = {centers} and cluster_std = {cluster_stds[:-1]}" ) with pytest.raises(ValueError, match=wrong_std_msg): make_blobs(n_samples, centers=centers, cluster_std=cluster_stds[:-1]) wrong_type_msg = "Parameter `centers` must be array-like. Got {!r} instead".format( 3 ) with pytest.raises(ValueError, match=wrong_type_msg): make_blobs(n_samples, centers=3) def test_make_friedman1(): X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0) assert X.shape == (5, 10), "X shape mismatch" assert y.shape == (5,), "y shape mismatch" assert_array_almost_equal( y, 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 + 10 * X[:, 3] + 5 * X[:, 4], ) def test_make_friedman2(): X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0) assert X.shape == (5, 4), "X shape mismatch" assert y.shape == (5,), "y shape mismatch" assert_array_almost_equal( y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 ) def test_make_friedman3(): X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0) assert X.shape == (5, 4), "X shape mismatch" assert y.shape == (5,), "y shape mismatch" assert_array_almost_equal( y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) ) def test_make_low_rank_matrix(): X = make_low_rank_matrix( n_samples=50, n_features=25, effective_rank=5, tail_strength=0.01, random_state=0, ) assert X.shape == (50, 25), "X shape mismatch" from numpy.linalg import svd u, s, v = svd(X) assert sum(s) - 5 < 0.1, "X rank is not approximately 5" def test_make_sparse_coded_signal(): Y, D, X = make_sparse_coded_signal( n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0, data_transposed=False, ) assert Y.shape == (5, 10), "Y shape mismatch" assert D.shape == (8, 10), "D shape mismatch" assert X.shape == (5, 8), "X shape mismatch" for row in X: assert len(np.flatnonzero(row)) == 3, "Non-zero coefs mismatch" assert_allclose(Y, X @ D) assert_allclose(np.sqrt((D**2).sum(axis=1)), np.ones(D.shape[0])) def test_make_sparse_coded_signal_transposed(): Y, D, X = make_sparse_coded_signal( n_samples=5, n_components=8, n_features=10, n_nonzero_coefs=3, random_state=0, data_transposed=True, ) assert Y.shape == (10, 5), "Y shape mismatch" assert D.shape == (10, 8), "D shape mismatch" assert X.shape == (8, 5), "X shape mismatch" for col in X.T: assert len(np.flatnonzero(col)) == 3, "Non-zero coefs mismatch" assert_allclose(Y, D @ X) assert_allclose(np.sqrt((D**2).sum(axis=0)), np.ones(D.shape[1])) # TODO(1.3): remove def test_make_sparse_code_signal_warning(): """Check the message for future deprecation.""" warn_msg = "The default value of data_transposed will change from True to False" with pytest.warns(FutureWarning, match=warn_msg): make_sparse_coded_signal( n_samples=1, n_components=1, n_features=1, n_nonzero_coefs=1, random_state=0 ) def test_make_sparse_uncorrelated(): X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0) assert X.shape == (5, 10), "X shape mismatch" assert y.shape == (5,), "y shape mismatch" def test_make_spd_matrix(): X = make_spd_matrix(n_dim=5, random_state=0) assert X.shape == (5, 5), "X shape mismatch" assert_array_almost_equal(X, X.T) from numpy.linalg import eig eigenvalues, _ = eig(X) assert_array_equal( eigenvalues > 0, np.array([True] * 5), "X is not positive-definite" ) @pytest.mark.parametrize("hole", [False, True]) def test_make_swiss_roll(hole): X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0, hole=hole) assert X.shape == (5, 3) assert t.shape == (5,) assert_array_almost_equal(X[:, 0], t * np.cos(t)) assert_array_almost_equal(X[:, 2], t * np.sin(t)) def test_make_s_curve(): X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0) assert X.shape == (5, 3), "X shape mismatch" assert t.shape == (5,), "t shape mismatch" assert_array_almost_equal(X[:, 0], np.sin(t)) assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1)) def test_make_biclusters(): X, rows, cols = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0 ) assert X.shape == (100, 100), "X shape mismatch" assert rows.shape == (4, 100), "rows shape mismatch" assert cols.shape == ( 4, 100, ), "columns shape mismatch" assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X2, _, _ = make_biclusters( shape=(100, 100), n_clusters=4, shuffle=True, random_state=0 ) assert_array_almost_equal(X, X2) def test_make_checkerboard(): X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0 ) assert X.shape == (100, 100), "X shape mismatch" assert rows.shape == (100, 100), "rows shape mismatch" assert cols.shape == ( 100, 100, ), "columns shape mismatch" X, rows, cols = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0 ) assert_all_finite(X) assert_all_finite(rows) assert_all_finite(cols) X1, _, _ = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0 ) X2, _, _ = make_checkerboard( shape=(100, 100), n_clusters=2, shuffle=True, random_state=0 ) assert_array_almost_equal(X1, X2) def test_make_moons(): X, y = make_moons(3, shuffle=False) for x, label in zip(X, y): center = [0.0, 0.0] if label == 0 else [1.0, 0.5] dist_sqr = ((x - center) ** 2).sum() assert_almost_equal( dist_sqr, 1.0, err_msg="Point is not on expected unit circle" ) def test_make_moons_unbalanced(): X, y = make_moons(n_samples=(7, 5)) assert ( np.sum(y == 0) == 7 and np.sum(y == 1) == 5 ), "Number of samples in a moon is wrong" assert X.shape == (12, 2), "X shape mismatch" assert y.shape == (12,), "y shape mismatch" with pytest.raises( ValueError, match=r"`n_samples` can be either an int " r"or a two-element tuple.", ): make_moons(n_samples=[1, 2, 3]) with pytest.raises( ValueError, match=r"`n_samples` can be either an int " r"or a two-element tuple.", ): make_moons(n_samples=(10,)) def test_make_circles(): factor = 0.3 for n_samples, n_outer, n_inner in [(7, 3, 4), (8, 4, 4)]: # Testing odd and even case, because in the past make_circles always # created an even number of samples. X, y = make_circles(n_samples, shuffle=False, noise=None, factor=factor) assert X.shape == (n_samples, 2), "X shape mismatch" assert y.shape == (n_samples,), "y shape mismatch" center = [0.0, 0.0] for x, label in zip(X, y): dist_sqr = ((x - center) ** 2).sum() dist_exp = 1.0 if label == 0 else factor**2 dist_exp = 1.0 if label == 0 else factor**2 assert_almost_equal( dist_sqr, dist_exp, err_msg="Point is not on expected circle" ) assert X[y == 0].shape == ( n_outer, 2, ), "Samples not correctly distributed across circles." assert X[y == 1].shape == ( n_inner, 2, ), "Samples not correctly distributed across circles." with pytest.raises(ValueError): make_circles(factor=-0.01) with pytest.raises(ValueError): make_circles(factor=1.0) def test_make_circles_unbalanced(): X, y = make_circles(n_samples=(2, 8)) assert np.sum(y == 0) == 2, "Number of samples in inner circle is wrong" assert np.sum(y == 1) == 8, "Number of samples in outer circle is wrong" assert X.shape == (10, 2), "X shape mismatch" assert y.shape == (10,), "y shape mismatch" with pytest.raises( ValueError, match=r"`n_samples` can be either an int " r"or a two-element tuple.", ): make_circles(n_samples=[1, 2, 3]) with pytest.raises( ValueError, match=r"`n_samples` can be either an int " r"or a two-element tuple.", ): make_circles(n_samples=(10,))
bsd-3-clause
fboers/jumegX
decompose/icasso.py
1
70425
# Authors: Lukas Breuer <l.breuer@fz-juelich.de> """ ---------------------------------------------------------------------- --- jumeg.decompose.fourier_ica -------------------------------------- ---------------------------------------------------------------------- author : Lukas Breuer email : l.breuer@fz-juelich.de last update: 09.11.2016 version : 1.2 ---------------------------------------------------------------------- This simple implementation of ICASSO is based on the following publication: ---------------------------------------------------------------------- J. Himberg, A. Hyvaerinen, and F. Esposito. 'Validating the independent components of neuroimaging time-series via clustering and visualization', Neuroimage, 22:3(1214-1222), 2004. Should you use this code, we kindly request you to cite the aforementioned publication. <http://research.ics.aalto.fi/ica/icasso/about+download.shtml DOWNLOAD ICASSO from here> ---------------------------------------------------------------------- Overview ---------------------------------------------------------------------- Perform ICASSO estimation. ICASSO is based on running ICA multiple times with slightly different conditions and clustering the obtained components. Note, here FourierICA is applied 1. Runs ICA with given parameters M times on data X. 2. Clusters the estimates and computes other statistics. 3. Returns (and visualizes) the best estimates. ---------------------------------------------------------------------- How to use ICASSO? ---------------------------------------------------------------------- from jumeg.decompose import icasso icasso_obj = = JuMEG_icasso() W, A, quality, fourier_ica_obj = icasso_obj.fit(fn_raw, stim_name='STI 013', event_id=1, tmin_stim=-0.5, tmax_stim=0.5, flow=4.0, fhigh=34.0) --> for further comments we refer directly to the functions or to fourier_ica_test.py ---------------------------------------------------------------------- """ # ------------------------------------------ # import necessary modules # ------------------------------------------ import numpy as np ######################################################## # # # JuMEG_icasso class # # # ######################################################## class JuMEG_icasso(object): def __init__(self, ica_method='fourierica', average=False, nrep=50, fn_inv=None, src_loc_method='dSPM', snr=1.0, morph2fsaverage=True, stim_name=None, event_id=1, flow=4.0, fhigh=34.0, tmin_win=0.0, tmax_win=1.0, pca_dim=None, dim_reduction='MDL', conv_eps=1e-9, max_iter=2000, tICA=False, lrate=1.0, cost_function=None, decim_epochs=False): """ Generate ICASSO object. Parameters ---------- ica_method: string which ICA method should be used default: ica_method='FourierICA' average: should ICA be performed on data averaged above subjects? default: average=False nrep: number of repetitions ICA should be performed default: nrep=50 fn_inv: file name of inverse operator. If given FourierICA is applied on data transformed to source space src_loc_method: method used for source localization. Only of interest if 'fn_inv' is set default: src_loc_method='dSPM' snr: signal-to-noise ratio for performing source localization default: snr=1.0 morph2fsaverage: should data be morphed to the 'fsaverage' brain? default: morph2fsaverage=True stim_name: string which contains the name of the stimulus channel. Only necessary if ICA should be applied to evoked data. event_id: integer of list of integer containing the event IDs which should be used to generate epochs default: event_id=1 flow: lower frequency border for estimating the optimal de-mixing matrix using FourierICA default: flow=4.0 fhigh: upper frequency border for estimating the optimal de-mixing matrix using FourierICA default: fhigh=34.0 Note: here default flow and fhigh are choosen to contain: - theta (4-7Hz) - low (7.5-9.5Hz) and high alpha (10-12Hz), - low (13-23Hz) and high beta (24-34Hz) tmin_win: time of interest prior to stimulus onset. Important for generating epochs to apply FourierICA default=0.0 tmax_win: time of interest after stimulus onset. Important for generating epochs to apply FourierICA default=1.0 dim_reduction: {'', 'AIC', 'BIC', 'GAP', 'MDL', 'MIBS', 'explVar'} Method for dimension selection. For further information about the methods please check the script 'dimension_selection.py'. pca_dim: Integer. The number of components used for PCA decomposition. conv_eps: iteration stops when weight changes are smaller then this number default: conv_eps = 1e-9 max_iter: integer containing the maximal number of iterations to be performed in ICA estimation default: max_iter=2000 tICA: bool if temporal ICA should be applied (and not) FourierICA default: tICA=False lrate: float containg the learning rate which should be used in the applied ICA algorithm default: lrate=1.0 cost_function: string containg the cost-function to use in the appled ICA algorithm. For further information look in fourier_ica.py default: cost_funtion=None decim_epochs: integer. If set the number of epochs used to estimate the optimal demixing matrix is decimated to the given number. default: decim_epochs=False Returns ------- object: ICASSO object """ self._ica_method = ica_method self.average = average self._nrep = nrep self.fn_inv = fn_inv self.src_loc_method = src_loc_method self.snr = snr self.morph2fsaverage = morph2fsaverage self.whitenMat = [] # whitening matrix self.dewhitenMat = [] # de-whitening matrix self.W_est = [] # de-mixing matrix self.A_est = [] # mixing matrix self.dmean = [] # data mean self.dstd = [] # data standard-deviation self.stim_name = stim_name self.event_id = event_id self.flow = flow self.fhigh = fhigh self._sfreq = 0.0 self.tmin_win = tmin_win self.tmax_win = tmax_win # ICA parameter self.conv_eps = conv_eps # stopping threshold self.max_iter = max_iter self.lrate = lrate # learning rate for the ICA algorithm self.tICA = tICA # should temporal ICA be performed? self.pca_dim = pca_dim self.dim_reduction= dim_reduction self.cost_function = cost_function self.decim_epochs = decim_epochs # make sure to chose meaningful parameters # when not FourierICA is used if self.ica_method != 'fourierica': if conv_eps == 1e-9: self.conv_eps = 1e-12 # stopping threshold if max_iter == 2000: self.max_iter = 200 if lrate == 1: self.lrate = None # learning rate for the ICA algorithm # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # set/get maximum number of repetitions # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _set_nrep(self, nrep): self._nrep = nrep def _get_nrep(self): return int(self._nrep) nrep = property(_get_nrep, _set_nrep) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # set/get ICA method # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _set_ica_method(self, ica_method): possible_methods = ['extended-infomax', 'fastica', 'fourierica', 'infomax'] if ica_method in possible_methods: self._ica_method = ica_method else: print 'WARNING: chosen ICA method does not exist!' print 'Must be one of the following methods: ', possible_methods print 'But your choice was: ', ica_method print 'Programm stops!' import pdb pdb.set_trace() def _get_ica_method(self): return self._ica_method ica_method = property(_get_ica_method, _set_ica_method) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate linkage between components # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _linkage(self, dis): # initialize some variables dlen, dim = dis.shape Md = dis.copy() Md += np.diag(np.ones(dlen)*np.inf) # ------------------------------------------ # estimate clusters # ------------------------------------------ # --> each vector is at first in its own cluster Z = np.zeros((dlen-1, 3)) + np.NaN clusters = np.arange(dlen) Cdist = Md.copy() for idx in np.arange(dlen-1): d_min = np.min(Cdist) if np.isinf(d_min): break # no more connected clusters else: min_idx = np.argmin(np.min(Cdist, axis=0)) c1 = np.argmin(Cdist[:, min_idx]) # cluster1 c2 = clusters[min_idx] # cluster2 # combine the two clusters c1_inds = (clusters == c1).nonzero()[0] # vectors belonging to c1 c2_inds = (clusters == c2).nonzero()[0] # vectors belonging to c2 c_inds = np.concatenate((c1_inds, c2_inds)) # members of the new cluster nc_inds = len(c_inds) # find bigger cluster if len(c2_inds) > len(c1_inds): c, k = c2, c1 else: c, k = c1, c2 clusters[c_inds] = c # update cluster info Z[idx, :] = [c, k, d_min] # save info into Z # ------------------------------------------ # update cluster distances # ------------------------------------------ # remove the subclusters from the cdist table for idxC in c_inds: Cdist[idxC, c_inds] = np.Inf # distance of clusters to its members = Inf k_inds = c_inds[c_inds != c] # vector of the smallest cluster Cdist[k_inds, :] = np.Inf # set distance of the subcluster to Cdist[:, k_inds] = np.Inf # other clusters = Inf # update the distance of this cluster to the other clusters idxC = (clusters != c).nonzero()[0] if len(idxC) > 0: cl = np.unique(clusters[idxC]) for l in cl: o_inds = (clusters == l).nonzero()[0] # indices belonging to cluster k no_inds = len(o_inds) vd = np.zeros((nc_inds, no_inds)) for ivd in range(nc_inds): vd[ivd, :] = Md[c_inds[ivd], o_inds] vd = vd.flatten() idxvd = np.isfinite(vd).nonzero()[0] nidxvd = len(idxvd) sd = np.Inf if nidxvd == 0 else np.sum(vd[idxvd])/nidxvd Cdist[c, l] = sd Cdist[l, c] = sd last = Z[idx, 0] if np.isnan(last): last = Z[idx-1, 0] rest = np.setdiff1d(np.unique(clusters), last) Z[idx:dlen-2, 0] = rest.transpose() Z[idx:dlen-2, 1] = last Z[idx:dlen-2, 2] = np.Inf idx -= 1 else: rest = [] # ------------------------------------------ # return values # ------------------------------------------ # calculate the order of the samples order = np.array([last]) # go through the combination matrix from top to down for k in range(idx, -1, -1): c_var = Z[k, 0] k_var = np.array([Z[k, 1]]) idx_var = np.where(order == c_var)[0] if len(idx_var) == 0: order = np.concatenate((k_var, order)) else: order = np.concatenate((order[:idx_var[0]], k_var, order[idx_var[0]:])) order = np.concatenate((rest, order))[::-1] # to maintain compatibility with Statistics Toolbox, the values # in Z must be yet transformed so that they are similar to the # output of the LINKAGE function Zs = Z.copy() current_cluster = np.array(range(dlen)) iter_stop = len(Z[:, 0]) for idx in range(iter_stop): Zs[idx, 0] = current_cluster[int(Z[idx, 0])] Zs[idx, 1] = current_cluster[int(Z[idx, 1])] current_cluster[int(Z[idx, 0])] = dlen + idx current_cluster[int(Z[idx, 1])] = dlen + idx return Zs, order # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate similarities # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _corrw(self): # get some dimension information npc = int(self.W_est[0].shape[0]) nchan = int(self.W_est[0].shape[1]) ntimes = int(len(self.W_est)) # save estimated demixing matrices W in one matrix weight = np.zeros((ntimes*npc, nchan), dtype=np.complex) for idx in range(ntimes): weight[(idx*npc):((idx+1)*npc), :] = self.W_est[idx] weight = np.dot(weight, self.dewhitenMat) # normalize rows to unit length weight_norm = np.abs(np.sqrt(np.sum(weight*weight.conj(), axis=1))).reshape((npc*ntimes, 1)) weight /= np.repeat(weight_norm, npc, axis=1) # compute similarities similarities = np.abs(np.dot(weight, weight.conj().transpose())) similarities[similarities > 1] = 1 similarities[similarities < 0] = 0 return similarities # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # generate partitions from Z # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _z_to_partition(self, Z): nz = Z.shape[0] + 1 C = np.zeros((nz, nz)) C[0, :] = np.arange(nz) for ic in range(1, nz): C[ic, :] = C[ic-1, :] idx = (C[ic, :] == Z[ic-1, 0]) + (C[ic, :] == Z[ic-1, 1]) C[ic, idx == 1] = nz - 1 + ic for ic in range(nz): uniqC = np.unique(C[ic, :]) newidx = [] for elemC in C[ic, :]: newidx = np.concatenate((newidx, (uniqC == elemC).nonzero()[0])) C[ic, :] = newidx idx = range(nz-1, -1, -1) partition = C[idx, :] return partition # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # compute cluster statistics # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _clusterstat(self, S, partitions): # number of clusters Ncluster = int(np.max(partitions) + 1) # initialize dictionary stat = {'internal_sum': np.zeros(Ncluster) * np.NaN, 'internal_min': np.zeros(Ncluster) * np.NaN, 'internal_avg': np.zeros(Ncluster) * np.NaN, 'internal_max': np.zeros(Ncluster) * np.NaN, 'external_sum': np.zeros(Ncluster) * np.NaN, 'external_min': np.zeros(Ncluster) * np.NaN, 'external_avg': np.zeros(Ncluster) * np.NaN, 'external_max': np.zeros(Ncluster) * np.NaN, 'between_min': np.zeros((Ncluster, Ncluster)), 'between_avg': np.zeros((Ncluster, Ncluster)), 'between_max': np.zeros((Ncluster, Ncluster))} for cluster in range(Ncluster): thisPartition = np.where(partitions == cluster)[0] nthisPartition = len(thisPartition) S_ = np.zeros((nthisPartition, nthisPartition)) for i in range(nthisPartition): S_[i, :] = S[thisPartition[i], thisPartition] S_[range(nthisPartition), range(nthisPartition)] = np.NaN S_ = S_[np.isfinite(S_)] if len(S_) > 0: stat['internal_sum'][cluster] = np.sum(S_) stat['internal_min'][cluster] = np.min(S_) stat['internal_avg'][cluster] = np.mean(S_) stat['internal_max'][cluster] = np.max(S_) if Ncluster > 1: cthisPartition = np.where(partitions != cluster)[0] ncthisPartition = len(cthisPartition) S_ = np.zeros((nthisPartition, ncthisPartition)) for i in range(nthisPartition): S_[i, :] = S[thisPartition[i], cthisPartition] stat['external_sum'][cluster] = np.sum(S_) stat['external_min'][cluster] = np.min(S_) stat['external_avg'][cluster] = np.mean(S_) stat['external_max'][cluster] = np.max(S_) for i in range(Ncluster): Pi = np.where(i == partitions)[0] for j in range(i+1, Ncluster): Pj = np.where(j == partitions)[0] d_ = np.zeros((len(Pi), len(Pj))) for iPi in range(len(Pi)): d_[iPi, :] = S[Pi[iPi], Pj] stat['between_min'][i, j] = np.min(d_) stat['between_avg'][i, j] = np.mean(d_) stat['between_max'][i, j] = np.max(d_) stat['between_min'] += stat['between_min'].transpose() stat['between_avg'] += stat['between_avg'].transpose() stat['between_max'] += stat['between_max'].transpose() return stat # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate the R-index as defined in # Levine, E., Domany, E., 2001. 'Resampling method for # unsupervised estimation of cluster validity'. # Neural Comput. 13 (11), 2573-2593. # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _rindex(self, dissimilarities, partitions, verbose=True): nPart = partitions.shape[0] # number of clusters in each partition Ncluster = np.max(partitions, axis=1) ri = np.zeros(nPart) if verbose: print ">>> Computing R-index..." for k in range(nPart): hist, bin_edges = np.histogram(partitions[k, :], bins=np.arange(1, Ncluster[k]+2)) if any(hist == 1): # contains one-item clusters (index very doubtful) ri[k] = np.NaN elif Ncluster[k] == 0: # degenerate partition (all in the same cluster) ri[k] = np.NaN else: # compute cluster statistics stat = self._clusterstat(dissimilarities, partitions[k, :]) between = stat['between_avg'] between[range(len(between)), range(len(between))] = np.Inf internal = stat['internal_avg'].transpose() ri[k] = np.mean(internal/np.min(between, axis=0)) return ri # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate clusters # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _cluster(self, verbose=True): # ------------------------------------------ # compute dissimilarities # ------------------------------------------ similarities = self._corrw() dissimilarities = 1.0 - similarities # ------------------------------------------ # generate partitions # ------------------------------------------ Z, order = self._linkage(dissimilarities) partitions = self._z_to_partition(Z) # ------------------------------------------ # compute cluster validity # ------------------------------------------ npc = int(self.W_est[0].shape[0]) indexR = self._rindex(dissimilarities, partitions[:npc, :], verbose=verbose) return Z, order, partitions, indexR, dissimilarities, similarities # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # estimate curve that decreases from v0 to vn with a # rate that is somewhere between linear and 1/t # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _potency_curve(self, v0, vn, t): return v0 * ((1.0*vn/v0)**(np.arange(t)/(t-1.0))) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # compute principal coordinates (using linear # Metric Multi-Dimensional Scaling) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _mmds(self, D): nD = D.shape[0] # square dissimilarities D2 = D**2 # center matrix Z = np.identity(nD) - np.ones((nD, nD))/(1.0 * nD) # double centered inner product B = -0.5 * np.dot(Z, np.dot(D2, Z)) # SVD U, sing, V = np.linalg.svd(B) # coordinates X = np.dot(U, np.diag(np.sqrt(sing))) return X # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # projects data vectors using Curvilinear Component # Analysis # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _cca(self, D, P, epochs, Mdist, alpha0, lambda0): # check input data noc, dim = D.shape noc_x_1 = np.zeros(noc, dtype=np.int) me = np.zeros(dim) st = np.zeros(dim) # estimate mean and standard-deviation for i in range(dim): idx = np.where(np.isfinite(D[:, i]))[0] me[i] = np.mean(D[idx, i]) st[i] = np.std(D[idx, i]) # replace unknown projections in initial # projection with known values inds = np.where(np.isnan(P))[0] if len(inds): P[inds] = np.random.rand(len(inds)) dummy, odim = P.shape odim_x_1 = np.ones((odim, 1), dtype=np.int) # training length train_len = int(epochs * noc) # random sample order sample_inds = np.floor(noc * np.random.rand(train_len)) # mutual distances nMdist = Mdist.shape[0] if nMdist == 1: Mdist = np.repeat(1, noc) if nMdist != noc: print ">>> ERROR: Mutual distance matrix size and data set size do not match!" import pdb pdb.set_trace() # alpha and lambda Alpha = self._potency_curve(alpha0, alpha0/100.0, train_len) Lambda = self._potency_curve(lambda0, 0.01, train_len) # action for i in range(train_len): ind = int(sample_inds[i]) # sample index dx = Mdist[:, ind] # mutual distance in the input space known = np.where(np.isfinite(dx))[0] nknown = len(known) if nknown > 0: y = P[ind, :].reshape(1, odim) # sample vector's projection dyy = P[known, :] - y[noc_x_1[known], :] dy = np.sqrt(np.dot(dyy**2, odim_x_1)) dy[dy == 0] = 1.0 # to get ride of div-by-zero's fy = np.exp(-dy/Lambda[i]) * (dx[known].reshape(nknown, 1)/dy - 1.0) P[known, :] += Alpha[i] * fy[:, np.zeros(odim, dtype=np.int)] * dyy # set projections of totally unknown vectors as unknown unknown = np.where(np.isnan(D))[0] if len(unknown) > 0: D_tmp = D.copy() D_tmp[unknown] = 1 unknown = np.where(np.sum(D_tmp, axis=1) == dim)[0] if len(unknown) > 0: P[unknown, :] = np.NaN return P # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # to project points on plane so that Euclidean distances # between the projected points correspond to the # similarity matrix between IC estimates # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _projection(self, dis, verbose=True): # initialize some parameter outputDim = 2 # we project onto a plane alpha = 0.7 epochs = 75.0 radius = np.max([self.nrep/20.0, 10]) s2d = 'sqrtsim2dis' # perform similarity-to-dissimilarity transformation D = np.abs(np.sqrt(dis)) nD = D.shape[0] if verbose: print ">>> Perform projection to plane..." # start from MMDS (linear Metric Multi-Dimensional Scaling) init_proj = self._mmds(D) init_proj = init_proj[:, :outputDim] dummy = np.random.rand(nD, outputDim) proj = self._cca(dummy, init_proj, epochs, D, alpha, radius) return proj # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # to get the index of the component in the center # of each cluster # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _idx2centrotypes(self, P, similarities, mode='partition'): if mode == 'index': nsim = len(P) similarity = np.zeros((nsim, nsim)) for i in range(nsim): similarity[i, :] = similarities[P[i], P] idx_one = np.argmax(np.sum(similarity, axis=0)) centro_idx = P[idx_one] elif mode == 'partition': Ncluster = int(np.max(P) + 1) centro_idx = np.zeros(Ncluster, dtype=np.int) for i in range(Ncluster): idx = np.where(P == i)[0] centro_idx[i] = self._idx2centrotypes(idx, similarities, mode='index') else: print ">>> ERROR: Unknown operation mode!" import pdb pdb.set_trace() return centro_idx # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # get optimal demixing matrix W # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _getW(self, centro_idx): import types nW = len(self.W_est) npc, nchan = self.W_est[0].shape npc = int(npc) nchan = int(nchan) if isinstance(self.W_est[0][0, 0], types.ComplexType): allW = np.zeros((nW * npc, nchan), dtype=np.complex) else: allW = np.zeros((nW * npc, nchan)) for iw in range(nW): allW[iw*npc:(iw+1)*npc, :] = self.W_est[iw] return allW[centro_idx, :] # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # method to estimate the quality of a cluster # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _cluster_quality(self, partition, simililarities, mode='mean'): Ncluster = np.max(partition) stat = self._clusterstat(simililarities, partition) # compute score if mode == 'minmax': internal = stat['internal_min'] external = stat['external_max'] elif mode == 'mean': internal = stat['internal_avg'] external = stat['external_avg'] else: print ">>> ERROR: Unrecognized score function!" import pdb pdb.set_trace() internal[np.isnan(internal)] = 0 external[np.isnan(external)] = 0 score = np.abs(internal - external) return score # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # to compute the stability (quality) indices of the # estimated clusters # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _stability(self, partitions, similarities, L=None): # check input parameter npc = int(self.W_est[0].shape[0]) if L == None: L = npc-1 Ncluster = range(L) NofEstimates = np.zeros(L, dtype=np.int) partition = partitions[L, :] for i in Ncluster: idx = np.where(partition == i)[0] NofEstimates[i] = len(idx) # compute cluster quality index Iq = self._cluster_quality(partition, similarities, mode='mean') return Iq # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # get optimal (de-)mixing matrix # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _get_results(self, partitions, similarities, L=None, sort_results=True): # check input parameter npc = int(self.W_est[0].shape[0]) if L == None: L = npc-1 if L < 0 or L > npc: print ">>> WARNING: Number of requested estimate clusters out of range!" print ">>> Setting number of clusters to %d" % npc L = npc # get indices of ICs in the cluster centers centro_idx = self._idx2centrotypes(partitions[L, :], similarities, mode='partition') # get optimal demixing matrix W = self._getW(centro_idx) Iq = self._stability(partitions, similarities, L=L) if sort_results: idx_sort = np.argsort(Iq)[::-1] Iq = Iq[idx_sort] W = W[idx_sort, :] A = np.linalg.pinv(W) return A, W, Iq # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # prepare data for applying the fit routine # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def prepare_data_for_fit(self, fn_raw, stim_name=None, stim_delay=0, tmin_stim=0.0, tmax_stim=1.0, flow=4.0, fhigh=34.0, event_id=1, resp_id=None, corr_event_picking=None, hamming_data=True, remove_outliers=True, fn_inv=None, contrast_id=[], baseline=(None, None), averaged_epochs=False, decim_epochs=False, interpolate_bads=True, unfiltered=False, verbose=True): ''' Routine to prepare the data for ICA application. Preparation includes epoch generation, transformation to Fourier space (if desired) and source localization applied to single epochs. Parameters ---------- fn_raw: filename of the input data (expect fif-file). stim_name: name of the stimulus channel. Note, for applying FourierCIA data are chopped around stimulus onset. If not set data are chopped in overlapping windows default: stim_names=None stim_delay: delay of stimulus presentation in milliseconds default: stim_delay=0 tmin_stim: time of interest prior to stimulus onset. Important for generating epochs to apply FourierICA default = 0.0 tmax_stim: time of interest after stimulus onset. Important for generating epochs to apply FourierICA default = 1.0 flow: lower frequency border for estimating the optimal de-mixing matrix using FourierICA default: flow=4.0 fhigh: upper frequency border for estimating the optimal de-mixing matrix using FourierICA default: fhigh=34.0 Note: here default flow and fhigh are choosen to contain: - theta (4-7Hz) - low (7.5-9.5Hz) and high alpha (10-12Hz), - low (13-23Hz) and high beta (24-34Hz) event_id: ID of the event of interest to be considered in the stimulus channel. Only of interest if 'stim_name' is set default: event_id=1 resp_id: Response ID for correct event estimation. Note: Must be in the order corresponding to the 'event_id' default: resp_id=None corr_event_picking: if set should contain the complete python path and name of the function used to identify only the correct events hamming_data: if set a hamming window is applied to each epoch prior to Fourier transformation default: hamming_data=True remove_outliers: If set outliers are removed from the Fourier transformed data. Outliers are defined as windows with large log-average power (LAP) LAP_{c,t}=log \sum_{f}{|X_{c,tf}|^2 where c, t and f are channels, window time-onsets and frequencies, respectively. The threshold is defined as |mean(LAP)+3 std(LAP)|. This process can be bypassed or replaced by specifying a function handle as an optional parameter. remove_outliers=False fn_inv: file name of inverse operator. If given FourierICA is applied on data transformed to source space contrast_id: If set FourierICA is applied to contrast epochs between events in event_id and events in contrast_id. is set default: contrast_id=[] baseline: If set baseline correction is applied to epochs prior to ICA estimation. averaged_epochs: Should epochs be averaged before FourierICA application? Note, averaged data require less memory! default: average=False decim_epochs: if set the number of epochs will be reduced (per subject) to that number for the estimation of the demixing matrix. Note: the epochs were chosen randomly from the complete set of epochs. interpolate_bads: if set bad channels are interpolated (using the mne routine raw.interpolate_bads()). unfiltered: bool If true data are not filtered to a certain frequency range when Fourier transformation is applied default: unfiltered=False verbose: bool, str, int, or None If not None, override default verbose level (see mne.verbose). default: verbose=True Returns ------- meg_data: array 2D array containg the MEg data used for FourierICA estimation src_loc_data: array 3D array containing the source localization data used for FourierICA estimation (nfreq x nepochs x nvoxel) vertno: list list containing two arrays with the order of the vertices. data_already_stft: boolean 'True' if data are transformed to Fourier space, otherwise 'False' events: list list containing the indices of all events used to generate the epochs for applying FourierICA sfreq: float sampling frequency of the data meg_channels: list list containing the name of all MEG channels used for FourierICA ''' # ------------------------------------------ # import necessary module # ------------------------------------------ from fourier_ica import apply_stft, stft_source_localization from mne import find_events, pick_types from mne.io import Raw # ------------------------------------------ # prepare data to apply FourierICA # ------------------------------------------ meg_raw = Raw(fn_raw, preload=True) # interpolate bad channels if interpolate_bads: meg_raw.interpolate_bads() meg_channels = pick_types(meg_raw.info, meg=True, eeg=False, eog=False, stim=False, exclude='bads') meg_data = meg_raw._data[meg_channels, :] sfreq = meg_raw.info['sfreq'] # check if ICASSO should be applied # to evoked or resting state data if stim_name: events_all = find_events(meg_raw, stim_channel=stim_name, consecutive=True, shortest_event=1) # check if there is a stimulus delay if stim_delay: stim_delay_tsl = int(np.round(stim_delay * meg_raw.info['sfreq']/1000.0)) events_all[:, 0] += stim_delay_tsl # check if only correct events should be chosen if corr_event_picking: if isinstance(corr_event_picking, basestring): import importlib mod_name, func_name = corr_event_picking.rsplit('.', 1) mod = importlib.import_module(mod_name) func = getattr(mod, func_name) resp_name = 'STI 013' if stim_name == 'STI 014' else 'STI 014' response = find_events(meg_raw, stim_channel=resp_name, consecutive=True, shortest_event=1) if np.any(resp_id): events_all, _ = func(events_all, response, sfreq, event_id, resp_id) else: events_all, _ = func(events_all, response, sfreq, event_id) else: print ">>> ERROR: 'corr_event_picking' should be a string containing the complete python" print ">>> path and name of the function used to identify only the correct events!" import pdb pdb.set_trace() if np.any(contrast_id): contrast_events = events_all[events_all[:, 2] == contrast_id, 0] if not isinstance(event_id, (list, tuple)): event_id = [event_id] for idx, event in enumerate(event_id): if idx == 0: events = events_all[events_all[:, 2] == event, :] else: events = np.concatenate((events, events_all[events_all[:, 2] == event, :])) if not self.tICA: events = events[:, 0] else: events = [] if self.tICA and not fn_inv: print ">>> ERROR: For applying temporal ICA in source space the file name " print " of the inverse operator is required!" import pdb pdb.set_trace() # ------------------------------------------ # check if ICA should be applied in source # space # ------------------------------------------ if fn_inv: # ------------------------------------------ # check if temporal ICA should be applied # on data transformed to source space # --> note: here data are not transformed # to Fourier space # ------------------------------------------ if self.tICA: # ------------------------------------------- # check if all necessary parameters are set # ------------------------------------------- if not stim_name: print ">>> ERROR: For applying temporal ICA in source space a stimulus name is required!" import pdb pdb.set_trace() # ------------------------------------------- # generate epochs around stimulus onset # ------------------------------------------- from mne import Epochs epoch_data = Epochs(meg_raw, events, event_id, tmin_stim, tmax_stim, picks=meg_channels, baseline=baseline, proj=False, verbose=False) if averaged_epochs: X = epoch_data.average().data.transpose() X = X.reshape([X.shape[0], 1, X.shape[1]]) else: X = epoch_data.get_data().transpose([2, 0, 1]) # ------------------------------------------ # FourierICA is applied on data transformed # to source space # ------------------------------------------ else: # ------------------------------------------- # transform data to STFT # ------------------------------------------- # print out some information if verbose: print ">>> transform data to Fourier space..." win_length_sec = tmax_stim - tmin_stim X, _ = apply_stft(meg_data, events=events, tpre=tmin_stim, sfreq=sfreq, flow=flow, fhigh=fhigh, win_length_sec=win_length_sec, hamming_data=hamming_data, remove_outliers=remove_outliers, baseline=baseline, decim_epochs=decim_epochs, unfiltered=unfiltered, verbose=verbose) if np.any(contrast_id): X_contrast, _ = apply_stft(meg_data, events=contrast_events, tpre=tmin_stim, sfreq=sfreq, flow=flow, fhigh=fhigh, win_length_sec=win_length_sec, hamming_data=hamming_data, remove_outliers=remove_outliers, baseline=baseline, decim_epochs=decim_epochs, verbose=verbose) # ------------------------------------------- # perform source localization # ------------------------------------------- # print out some information if verbose: print ">>> estimate inverse solution..." src_loc_data, vertno = stft_source_localization(X, fn_inv, method=self.src_loc_method, morph2fsaverage=self.morph2fsaverage, snr=self.snr) if np.any(contrast_id): src_loc_data_contrast, _ = stft_source_localization(X_contrast, fn_inv, method=self.src_loc_method, morph2fsaverage=self.morph2fsaverage, snr=self.snr) del _ n_epochs = np.min([src_loc_data.shape[1], src_loc_data_contrast.shape[1]]) events = events[:n_epochs] src_loc_data = src_loc_data[:, :n_epochs, :] - src_loc_data_contrast[:, :n_epochs, :] data_already_stft = True meg_data = X # ------------------------------------------ # FourierICA would be applied on # data in the sensor space # ------------------------------------------ else: data_already_stft = False vertno = None src_loc_data = None return meg_data, src_loc_data, vertno, data_already_stft, events, sfreq, meg_channels # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # perform ICASSO based FourierICA signal decomposition # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def fit_tICA(self, ica_data, verbose=True): # ------------------------------------------ # import necessary module # ------------------------------------------ from ica import ica_array from scipy.linalg import pinv # ------------------------------------------ # print out some information # ------------------------------------------ if verbose: print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<" print ">>> Performing %s estimation" % self.ica_method print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<" # ------------------------------------------ # initialize some data # ------------------------------------------ pca = None # ------------------------------------------ # perform ICASSO ICA # ------------------------------------------ for irep in range(self.nrep): weights, pca, activations = ica_array(ica_data, overwrite=None, pca=pca, max_pca_components=self.pca_dim, method=self.ica_method, cost_func=self.cost_function, weights=None, lrate=self.lrate, wchange=self.conv_eps, maxsteps=self.max_iter, verbose=verbose) if irep == 0: self.whitenMat = pca.components_ self.dewhitenMat = pinv(pca.components_) self.dmean = pca.mean_ self.dstd = pca.stddev_ # save results in structure W_orig = np.dot(weights, self.whitenMat) A_orig = np.dot(self.dewhitenMat, pinv(weights)) self.W_est.append(W_orig) self.A_est.append(A_orig) # print out some information if verbose and self.nrep > 1: print ">>> Running %s number %d of %d done" % (self.ica_method, irep+1, self.nrep) if irep == 0: print "..... %s parameter:" % self.ica_method print "....." print "..... Stopping threshold: %d" % self.conv_eps print "..... Maximal number of iterations: %d" % self.max_iter print "..... Learning rate: %d" % self.lrate print "..... Number of independent components: %d" % self.pca_dim print "....." # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # perform ICASSO based FourierICA signal decomposit ion # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def _fit_FourierICA(self, ica_data, events, sfreq, complex_mixing=True, hamming_data=False, remove_outliers=False, envelopeICA=False, normalized=True, data_already_stft=False, verbose=True): # ------------------------------------------ # import necessary module # ------------------------------------------ from fourier_ica import JuMEG_fourier_ica # ------------------------------------------ # generate FourierICA object # ------------------------------------------ if verbose: print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<" print ">>> Performing FourierICA estimation" print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<" win_length_sec = self.tmax_win - self.tmin_win fourier_ica_obj = JuMEG_fourier_ica(events=events, tpre=self.tmin_win, flow=self.flow, fhigh=self.fhigh, sfreq=sfreq, win_length_sec=win_length_sec, remove_outliers=remove_outliers, hamming_data=hamming_data, complex_mixing=complex_mixing, pca_dim=self.pca_dim, max_iter=self.max_iter, conv_eps=self.conv_eps, cost_function=self.cost_function, envelopeICA=envelopeICA, lrate=self.lrate, decim_epochs=self.decim_epochs) # ------------------------------------------ # initialize some data # ------------------------------------------ whitenMat = [] dewhitenMat = [] # ------------------------------------------ # perform ICASSO ICA # ------------------------------------------ for irep in range(self.nrep): # apply FourierICA if self.nrep == 1: verbose_fourierICA = verbose else: verbose_fourierICA = False W_orig, A_orig, S_FT, Smean, Sstddev, objective, whitenMat, \ dewhitenMat = fourier_ica_obj.fit(ica_data, whiten_mat=whitenMat, dewhiten_mat=dewhitenMat, data_already_stft=data_already_stft, data_already_normalized=normalized, verbose=verbose_fourierICA) if irep == 0: self.whitenMat = whitenMat self.dewhitenMat = dewhitenMat self.dmean = Smean self.dstd = Sstddev # save results in structure self.W_est.append(W_orig) self.A_est.append(A_orig) # print out some information if verbose and self.nrep > 1: print ">>> Running FourierICA number %d of %d done" % (irep+1, self.nrep) if irep == 0: str_hamming_window = "True" if fourier_ica_obj.hamming_data else "False" str_complex_mixing = "True" if fourier_ica_obj.complex_mixing else "False" print "..... Fourier ICA parameter:" print "....." print "..... Sampling frequency set to: %d" % fourier_ica_obj.sfreq print "..... Start of frequency band set to: %d" % fourier_ica_obj.flow print "..... End of frequency band set to: %d" % fourier_ica_obj.fhigh print "..... Using hamming window: %s" % str_hamming_window print "..... Assume complex mixing: %s" % str_complex_mixing print "..... Number of independent components: %d" % fourier_ica_obj.ica_dim print "....." return fourier_ica_obj # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ # perform ICASSO based ICA signal decomposition # +++++++++++++++++++++++++++++++++++++++++++++++++++++++ def fit(self, fn_raw, ica_method=None, average=False, stim_name=None, event_id=None, stim_delay=0, corr_event_picking=None, tmin_win=None, tmax_win=None, flow=None, fhigh=None, dim_reduction=None, pca_dim=None, max_iter=None, conv_eps=None, complex_mixing=True, hamming_data=False, remove_outliers=False, envelopeICA=False, fn_inv=None, cost_function=None, contrast_id=[], baseline=(None, None), decim_epochs=False, interpolate_bads=True, verbose=True): """ Perform ICASSO estimation. ICASSO is based on running ICA multiple times with slightly different conditions and clustering the obtained components. Note, here as default FourierICA is applied. Parameters ---------- fn_raw: filename of the input data (expect fif-file). ica_method: Steing containing the information which ICA method should be applied. You can choose between 'extended-infomax', 'fastica', 'infomax' and 'fourierica' default: ica_method='fourierica' average: Should data be averaged across subjects before FourierICA application? Note, averaged data require less memory! default: average=False stim_name: name of the stimulus channel. Note, for applying FourierCIA data are chopped around stimulus onset. If not set data are chopped in overlapping windows default: stim_names=None event_id: Id of the event of interest to be considered in the stimulus channel. Only of interest if 'stim_name' is set default: event_id=1 stim_delay: delay of stimulus presentation in milliseconds default: stim_delay=0 corr_event_picking: if set should contain the complete python path and name of the function used to identify only the correct events tmin_win: time of interest prior to stimulus onset. Important for generating epochs to apply FourierICA default = 0.0 tmax_win: time of interest after stimulus onset. Important for generating epochs to apply FourierICA default = 1.0 flow: lower frequency border for estimating the optimal de-mixing matrix using FourierICA default: flow=4.0 fhigh: upper frequency border for estimating the optimal de-mixing matrix using FourierICA default: fhigh=34.0 Note: here default flow and fhigh are choosen to contain: - theta (4-7Hz) - low (7.5-9.5Hz) and high alpha (10-12Hz), - low (13-23Hz) and high beta (24-34Hz) dim_reduction: {'', 'AIC', 'BIC', 'GAP', 'MDL', 'MIBS', 'explVar'} Method for dimension selection. For further information about the methods please check the script 'dimension_selection.py'. pca_dim: The number of PCA components used to apply FourierICA. If pca_dim > 1 this refers to the exact number of components. If between 0 and 1 pca_dim refers to the variance which should be explained by the chosen components default: pca_dim=0.9 max_iter: maximum number od iterations used in FourierICA default: max_iter=2000 conv_eps: iteration stops when weight changes are smaller then this number default: conv_eps = 1e-9 complex_mixing: if mixing matrix should be real or complex default: complex_mixing=True hamming_data: if set a hamming window is applied to each epoch prior to Fourier transformation default: hamming_data=False remove_outliers: If set outliers are removed from the Fourier transformed data. Outliers are defined as windows with large log-average power (LAP) LAP_{c,t}=log \sum_{f}{|X_{c,tf}|^2 where c, t and f are channels, window time-onsets and frequencies, respectively. The threshold is defined as |mean(LAP)+3 std(LAP)|. This process can be bypassed or replaced by specifying a function handle as an optional parameter. remove_outliers=False envelopeICA: if set ICA is estimated on the envelope of the Fourier transformed input data, i.e., the mixing model is |x|=As default: envelopeICA=False fn_inv: file name of inverse operator. If given FourierICA is applied on data transformed to source space cost_function: which cost-function should be used in the complex ICA algorithm 'g1': g_1(y) = 1 / (2 * np.sqrt(lrate + y)) 'g2': g_2(y) = 1 / (lrate + y) 'g3': g_3(y) = y contrast_id: If set FourierICA is applied to contrast epochs between events in event_id and events in contrast_id. is set default: contrast_id=[] baseline: If set baseline correction is applied to epochs prior to ICA estimation. decim_epochs: if set the number of epochs will be reduced (per subject) to that number for the estimation of the demixing matrix. Note: the epochs were chosen randomly from the complete set of epochs. interpolate_bads: if set bad channels are interpolated (using the mne routine raw.interpolate_bads()). verbose: bool, str, int, or None If not None, override default verbose level (see mne.verbose). default: verbose=True Returns ------- W: estimated optimal de-mixing matrix A: estimated mixing matrix Iq: quality index of the clustering between components belonging to one cluster (between 0 and 1; 1 refers to small clusters, i.e., components in one cluster have a highly similar) fourier_ica_obj: FourierICA object. For further information please have a look into the FourierICA routine """ # ------------------------------------------ # import necessary module # ------------------------------------------ from mne import set_log_level # set log level to 'WARNING' set_log_level('WARNING') # ------------------------------------------ # check input parameter # ------------------------------------------ if ica_method: self.ica_method = ica_method if average: self.average = average if fn_inv: self.fn_inv = fn_inv if cost_function: self.cost_function = cost_function if dim_reduction: self.dim_reduction = dim_reduction if pca_dim: self.pca_dim = pca_dim if stim_name: self.stim_name = stim_name if event_id: self.event_id = event_id if tmin_win: self.tmin_win = tmin_win if tmax_win: self.tmax_win = tmax_win if flow: self.flow = flow if fhigh: self.fhigh = fhigh if max_iter: self.max_iter = max_iter if conv_eps: self.conv_eps = conv_eps if decim_epochs: self.decim_epochs = decim_epochs # ------------------------------------------ # check which ICA algorithm should be # applied # ------------------------------------------ if self.ica_method in ['extended-infomax', 'fastica', 'infomax']: self.tICA = True if not self.cost_function in ['logcosh', 'exp', 'cube']: self.cost_function = 'logcosh' elif self.ica_method == 'fourierica': self.tICA = False else: print 'WARNING: chosen ICA method does not exist!' print 'Programm stops!' import pdb pdb.set_trace() # ------------------------------------------ # prepare data to apply ICASSO # ------------------------------------------ # check if fn_raw is a list, i.e., group FourierICA # should be applied if isinstance(fn_raw, list): # test if FourierICA should be applied if self.ica_method != 'fourierica': print ">>> NOTE: When using temporal group ICA it is recommended " \ "to use ICA based on averaged datasets" print ">>> Parameters are set for group ICA!" average_epochs = True self.average = False else: average_epochs = False # loop over all files for idx, fnraw in enumerate(fn_raw): meg_data_cur, src_loc, vert, data_already_stft, events, sfreq, picks = \ self.prepare_data_for_fit(fnraw, stim_name=self.stim_name, tmin_stim=self.tmin_win, tmax_stim=self.tmax_win, flow=self.flow, fhigh=self.fhigh, event_id=self.event_id, corr_event_picking=corr_event_picking, stim_delay=stim_delay, fn_inv=self.fn_inv[idx], hamming_data=hamming_data, remove_outliers=remove_outliers, contrast_id=contrast_id, baseline=baseline, averaged_epochs=average_epochs, decim_epochs=self.decim_epochs, interpolate_bads=interpolate_bads, verbose=verbose) # normalize source data fftsize, nwindows, nvoxel = src_loc.shape nrows_Xmat_c = fftsize*nwindows src_loc = src_loc.reshape((nrows_Xmat_c, nvoxel), order='F') dmean = np.mean(src_loc, axis=0) dstddev = np.std(src_loc, axis=0) # --------------------------------- # save all data in one matrix # --------------------------------- if self.average: if self.ica_method == 'fourierica': if idx == 0: nfn_raw = len(fn_raw) src_loc_data = np.zeros((nrows_Xmat_c, nvoxel), dtype=np.complex) meg_data = np.zeros((fftsize, nwindows, 248), dtype=np.complex) nwindows_min = nwindows # check if result arrays must be reduced if nwindows_min > nwindows: nwindows_min = nwindows src_loc_data = src_loc_data[:(nwindows_min*fftsize), :] meg_data = meg_data[:, :nwindows_min, :] src_loc_data += (src_loc[:(nwindows_min*fftsize), :] - dmean[np.newaxis, :]) / \ (dstddev[np.newaxis, :]*nfn_raw) meg_data[:, :, picks] += (meg_data_cur[:, :nwindows_min, :]/nfn_raw) else: if idx == 0: nfn_raw = len(fn_raw) src_loc_data = np.zeros((nfn_raw*nrows_Xmat_c, nvoxel), dtype=np.complex) meg_data = np.zeros((fftsize, nfn_raw*nwindows, 248), dtype=np.complex) src_loc_data[(idx*nrows_Xmat_c):((idx+1)*nrows_Xmat_c), :] = \ (src_loc - dmean[np.newaxis, :]) / dstddev[np.newaxis, :] meg_data[:, (idx*nwindows):((idx+1)*nwindows), picks] = meg_data_cur # --------------------------------- # free some me # --------------------------------- del meg_data_cur, src_loc, dmean, dstddev normalized = True else: meg_data, src_loc_data, vertno, data_already_stft, events, sfreq, picks = \ self.prepare_data_for_fit(fn_raw, stim_name=self.stim_name, tmin_stim=self.tmin_win, tmax_stim=self.tmax_win, flow=self.flow, fhigh=self.fhigh, event_id=self.event_id, stim_delay=stim_delay, corr_event_picking=corr_event_picking, fn_inv=self.fn_inv, hamming_data=hamming_data, remove_outliers=remove_outliers, baseline=baseline, decim_epochs=self.decim_epochs, interpolate_bads=interpolate_bads, verbose=verbose) normalized = False self._sfreq = sfreq # ------------------------------------------ # check if PCA dimension is set...if not # use MIBS to estimate the dimension # ------------------------------------------ if not self.pca_dim: # import some modules from .complex_ica import cov from scipy.linalg import eigh from .dimension_selection import aic_mdl, mibs, gap # concatenate STFT for consecutive windows in each channel fftsize, nwindows, nchan = meg_data.shape nrows_Xmat_c = fftsize*nwindows Xmat_c = meg_data.reshape((nrows_Xmat_c, nchan), order='F') covmat = cov(Xmat_c, rowvar=0) Dc, Ec = eigh(covmat.real) idx_sort = np.argsort(Dc.real)[::-1] Dc = Dc[idx_sort].real ntsl = Xmat_c.shape[0] if self.dim_reduction == 'AIC': pca_dim, _ = aic_mdl(Dc) elif self.dim_reduction == 'BIC': pca_dim = mibs(Dc, ntsl, use_bic=True) elif self.dim_reduction == 'MIBS': pca_dim = mibs(Dc, ntsl) elif self.dim_reduction =='GAP': pca_dim = gap(Dc) else: # self.dim_reduction == 'MDL' _, pca_dim = aic_mdl(Dc) if pca_dim > 60: print "WARNING: You have %d PCA components!" % (pca_dim) print "Using now explained variance..." explVar = np.abs(Dc.copy()) explVar /= explVar.sum() pca_dim = np.sum(explVar.cumsum() <= 0.9) + 1 print "Dimension is now: %d components!" % (pca_dim) self.pca_dim = pca_dim del Xmat_c, covmat, Ec, idx_sort, Dc, ntsl, _ # ------------------------------------------ # check if ICA should be applied in sensor # or source space # ------------------------------------------ if self.fn_inv: ica_data = src_loc_data else: ica_data = meg_data.copy() # ------------------------------------------ # check which ICA algorithm should be # applied # ------------------------------------------ if self.ica_method in ['extended-infomax', 'fastica', 'infomax']: self.fit_tICA(ica_data.real.T, verbose=verbose) fourier_ica_obj = None elif self.ica_method == 'fourierica': fourier_ica_obj = self._fit_FourierICA(ica_data, events, sfreq, complex_mixing=complex_mixing, hamming_data=hamming_data, remove_outliers=remove_outliers, envelopeICA=envelopeICA, normalized=normalized, data_already_stft=data_already_stft, verbose=verbose) else: print 'WARNING: chosen ICA method does not exist!' print 'Programm stops!' import pdb pdb.set_trace() # ------------------------------------------ # perform cluster analysis # ------------------------------------------ if self.nrep == 1: if verbose: print ">>>" print ">>> No clustering required as only one ICASSO repetition was performed..." W = self.W_est[0] A = self.A_est[0] Iq = np.zeros(W.shape[0]) else: if verbose: print ">>>" print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<" print ">>> Performing cluster analysis <<<" print ">>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<" Z, order, partitions, indexR, dis, sim = self._cluster() proj = self._projection(dis) A, W, Iq = self._get_results(partitions, sim) # ------------------------------------------ # return results # ------------------------------------------ return W, A, Iq, fourier_ica_obj
bsd-3-clause
loli/semisupervisedforests
sklearn/cluster/__init__.py
12
1331
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, Ward, WardAgglomeration, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'Ward', 'WardAgglomeration', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
CforED/Machine-Learning
sklearn/tests/test_common.py
26
8388
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <amueller@ais.uni-bonn.de> # Gael Varoquaux gael.varoquaux@normalesup.org # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import pkgutil from sklearn.externals.six import PY3 from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import ignore_warnings import sklearn from sklearn.cluster.bicluster import BiclusterMixin from sklearn.decomposition import ProjectedGradientNMF from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( _yield_all_checks, CROSS_DECOMPOSITION, check_parameters_default_constructible, check_class_weight_balanced_linear_classifier, check_transformer_n_iter, check_non_transformer_estimators_n_iter, check_get_params_invariance, check_fit2d_predict1d, check_fit1d_1sample) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, clonable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield check_parameters_default_constructible, name, Estimator def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.startswith("_"): continue for check in _yield_all_checks(name, Estimator): if issubclass(Estimator, ProjectedGradientNMF): # The ProjectedGradientNMF class is deprecated with ignore_warnings(): yield check, name, Estimator else: yield check, name, Estimator def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_balanced_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if 'class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin)] for name, Classifier in linear_classifiers: yield check_class_weight_balanced_linear_classifier, name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (check_non_transformer_estimators_n_iter, name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: if issubclass(Estimator, ProjectedGradientNMF): # The ProjectedGradientNMF class is deprecated with ignore_warnings(): estimator = Estimator() else: estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: if isinstance(estimator, ProjectedGradientNMF): # The ProjectedGradientNMF class is deprecated with ignore_warnings(): yield check_transformer_n_iter, name, estimator else: yield check_transformer_n_iter, name, estimator def test_get_params_invariance(): # Test for estimators that support get_params, that # get_params(deep=False) is a subset of get_params(deep=True) # Related to issue #4465 estimators = all_estimators(include_meta_estimators=False, include_other=True) for name, Estimator in estimators: if hasattr(Estimator, 'get_params'): # The ProjectedGradientNMF class is deprecated if issubclass(Estimator, ProjectedGradientNMF): with ignore_warnings(): yield check_get_params_invariance, name, Estimator else: yield check_get_params_invariance, name, Estimator
bsd-3-clause
chenyyx/scikit-learn-doc-zh
examples/zh/neural_networks/plot_mnist_filters.py
76
2189
""" ===================================== Visualization of MLP weights on MNIST ===================================== Sometimes looking at the learned coefficients of a neural network can provide insight into the learning behavior. For example if weights look unstructured, maybe some were not used at all, or if very large coefficients exist, maybe regularization was too low or the learning rate too high. This example shows how to plot some of the first layer weights in a MLPClassifier trained on the MNIST dataset. The input data consists of 28x28 pixel handwritten digits, leading to 784 features in the dataset. Therefore the first layer weight matrix have the shape (784, hidden_layer_sizes[0]). We can therefore visualize a single column of the weight matrix as a 28x28 pixel image. To make the example run faster, we use very few hidden units, and train only for a very short time. Training longer would result in weights with a much smoother spatial appearance. """ print(__doc__) import matplotlib.pyplot as plt from sklearn.datasets import fetch_mldata from sklearn.neural_network import MLPClassifier mnist = fetch_mldata("MNIST original") # rescale the data, use the traditional train/test split X, y = mnist.data / 255., mnist.target X_train, X_test = X[:60000], X[60000:] y_train, y_test = y[:60000], y[60000:] # mlp = MLPClassifier(hidden_layer_sizes=(100, 100), max_iter=400, alpha=1e-4, # solver='sgd', verbose=10, tol=1e-4, random_state=1) mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4, solver='sgd', verbose=10, tol=1e-4, random_state=1, learning_rate_init=.1) mlp.fit(X_train, y_train) print("Training set score: %f" % mlp.score(X_train, y_train)) print("Test set score: %f" % mlp.score(X_test, y_test)) fig, axes = plt.subplots(4, 4) # use global min / max to ensure all weights are shown on the same scale vmin, vmax = mlp.coefs_[0].min(), mlp.coefs_[0].max() for coef, ax in zip(mlp.coefs_[0].T, axes.ravel()): ax.matshow(coef.reshape(28, 28), cmap=plt.cm.gray, vmin=.5 * vmin, vmax=.5 * vmax) ax.set_xticks(()) ax.set_yticks(()) plt.show()
gpl-3.0
loli/semisupervisedforests
examples/ensemble/plot_gradient_boosting_regularization.py
352
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <peter.prettenhofer@gmail.com> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
bellwethers-in-se/defects
src/old/methods1.py
1
2845
#! /Users/rkrsn/anaconda/bin/python import sys import os from os import getcwd from os import walk from os.path import expanduser # Update PYTHONPATH root = os.path.join(os.getcwd().split('src')[0], 'src') if root not in sys.path: sys.path.append(root) from pdb import set_trace HOME = expanduser('~') axe = root + '/lib/axe/axe/' # AXE pystat = root + '/lib/pystats/' # PySTAT cwd = getcwd() # Current Directory sys.path.extend([axe, pystat, './where2']) from dtree import * from table import * # from w2 import * from w2 import where2, prepare, leaves from makeAmodel import makeAModel # import matplotlib.pyplot as plt def toPandas(): import pandas as pd def explore(dir): datasets = [] for (dirpath, dirnames, filenames) in walk(dir): datasets.append(dirpath) training = [] testing = [] for k in datasets[1:]: train = [[dirPath, fname] for dirPath, _, fname in walk(k)] test = [train[0][0] + '/' + train[0][1].pop(-1)] training.append( [train[0][0] + '/' + p for p in train[0][1] if not p == '.DS_Store']) testing.append(test) return training, testing def newTable(tbl, headerLabel, Rows): tbl2 = clone(tbl) newHead = Sym() newHead.col = len(tbl.headers) newHead.name = headerLabel tbl2.headers = tbl.headers + [newHead] return clone(tbl2, rows=Rows) def createTbl( data, settings=None, _smote=False, isBin=False, bugThres=1, duplicate=False): """ kwargs: _smote = True/False : SMOTE input data (or not) _isBin = True/False : Reduce bugs to defects/no defects _bugThres = int : Threshold for marking stuff as defective, default = 1. Not defective => Bugs < 1 """ makeaModel = makeAModel() _r = [] for t in data: m = makeaModel.csv2py(t, _smote=_smote, duplicate=duplicate) _r += m._rows m._rows = _r # Initialize all parameters for where2 to run prepare(m, settings=None) tree = where2(m, m._rows) # Decision tree using where2 tbl = table(t) headerLabel = '=klass' Rows = [] for k, _ in leaves(tree): # for k, _ in leaves(tree): for j in k.val: tmp = j.cells if isBin: tmp[-1] = 0 if tmp[-1] < bugThres else 1 tmp.append('_' + str(id(k) % 1000)) j.__dict__.update({'cells': tmp}) Rows.append(j.cells) return newTable(tbl, headerLabel, Rows) def test_createTbl(): dir = '../Data/camel/camel-1.6.csv' newTbl = createTbl([dir], _smote=False) newTblSMOTE = createTbl([dir], _smote=True) print(len(newTbl._rows), len(newTblSMOTE._rows)) def drop(test, tree): loc = apex(test, tree) return loc if __name__ == '__main__': test_createTbl()
mit
GiulioGx/RNNs
sources/metrics/ErrorMonitor.py
1
1102
from infos.Info import Info from infos.InfoElement import PrintableInfoElement from infos.InfoGroup import InfoGroup from infos.InfoList import InfoList from metrics.RealValuedMonitor import RealValuedMonitor from datasets.Dataset import Dataset class ErrorMonitor(RealValuedMonitor): def __init__(self, dataset: Dataset, error_fnc): super().__init__(100) self.__dataset = dataset self.__best_error = 100 self.__error_fnc = error_fnc def update(self, measures: list): new_value = RealValuedMonitor.mean(measures, 0) if new_value < self.__best_error: self.__best_error = new_value self._current_value = new_value def get_symbols(self, y, t, mask) -> list: return [self.__error_fnc(y=y, t=t, mask=mask)] # XXX @property def info(self) -> Info: error_info = PrintableInfoElement('curr', ':.2%', self._current_value) best_info = PrintableInfoElement('best', ':.2%', self.__best_error) error_group = InfoGroup('error', InfoList(error_info, best_info)) return error_group
lgpl-3.0
janezhango/BigDataMachineLearning
py/testdir_0xdata_only/test_from_hdfs_hosts.py
2
4197
import unittest, time, sys, random sys.path.extend(['.','..','py']) import h2o, h2o_cmd, h2o_hosts, h2o_browse as h2b, h2o_import as h2i class Basic(unittest.TestCase): def tearDown(self): h2o.check_sandbox_for_errors() @classmethod def setUpClass(cls): localhost = h2o.decide_if_localhost() if (localhost): h2o.build_cloud(3, use_hdfs=True, hdfs_version='cdh3', hdfs_name_node='192.168.1.176') else: h2o_hosts.build_cloud_with_hosts( use_hdfs=True, hdfs_version='cdh3', hdfs_name_node='192.168.1.176') @classmethod def tearDownClass(cls): h2o.tear_down_cloud() def test_B_hdfs_files(self): # larger set in my local dir # fails because classes aren't integers # "allstate_claim_prediction_train_set.zip", csvFilenameAll = [ "3G_poker_shuffle", "TEST-poker1000.csv", # corrupt zip file? # "allstate_claim_prediction_train_set.zip", "and-testing.data", "arcene2_train.both", "arcene_train.both", "bestbuy_test.csv", "bestbuy_train.csv", "billion_rows.csv.gz", "covtype.13x.data", "covtype.13x.shuffle.data", "covtype.169x.data", "covtype.4x.shuffle.data", "covtype.data", "covtype4x.shuffle.data", "hhp.unbalanced.012.1x11.data.gz", "hhp.unbalanced.012.data.gz", "hhp.unbalanced.data.gz", "hhp2.os.noisy.0_1.data", "hhp2.os.noisy.9_4.data", "hhp_9_14_12.data", "leads.csv", "prostate_long_1G.csv", ] # pick 8 randomly! if (1==0): csvFilenameList = random.sample(csvFilenameAll,8) # Alternatively: do the list in order! Note the order is easy to hard else: csvFilenameList = csvFilenameAll # pop open a browser on the cloud h2b.browseTheCloud() timeoutSecs = 1000 # save the first, for all comparisions, to avoid slow drift with each iteration firstglm = {} for csvFilename in csvFilenameList: # creates csvFilename.hex from file in hdfs dir start = time.time() print 'Parsing', csvFilename csvPathname = "datasets/" + csvFilename parseResult = h2i.import_parse(path=csvPathname, schema='hdfs', timeoutSecs=timeoutSecs, retryDelaySecs=1.0) print csvFilename, '\nparse time (python)', time.time() - start, 'seconds' print csvFilename, '\nparse time (h2o):', parseResult['response']['time'] ### print h2o.dump_json(parseResult['response']) print "parse result:", parseResult['destination_key'] # I use this if i want the larger set in my localdir inspect = h2o_cmd.runInspect(None, parseResult['destination_key']) ### print h2o.dump_json(inspect) cols = inspect['cols'] # look for nonzero num_missing_values count in each col for i, colDict in enumerate(cols): num_missing_values = colDict['num_missing_values'] if num_missing_values != 0: ### print "%s: col: %d, num_missing_values: %d" % (csvFilename, i, num_missing_values) pass ### print h2o.dump_json(cols[0]) num_cols = inspect['num_cols'] num_rows = inspect['num_rows'] row_size = inspect['row_size'] ptype = inspect['type'] value_size_bytes = inspect['value_size_bytes'] response = inspect['response'] ptime = response['time'] print "num_cols: %s, num_rows: %s, row_size: %s, ptype: %s, \ value_size_bytes: %s, response: %s, time: %s" % \ (num_cols, num_rows, row_size, ptype, value_size_bytes, response, ptime) # h2b.browseJsonHistoryAsUrlLastMatch("Inspect") print "\n" + csvFilename if __name__ == '__main__': h2o.unit_main()
apache-2.0
CforED/Machine-Learning
sklearn/decomposition/__init__.py
74
1490
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF, non_negative_factorization from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd from .online_lda import LatentDirichletAllocation __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'non_negative_factorization', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD', 'LatentDirichletAllocation']
bsd-3-clause
nelson-liu/scikit-learn
examples/ensemble/plot_forest_iris.py
332
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
nelson-liu/scikit-learn
examples/applications/plot_prediction_latency.py
83
11395
""" ================== Prediction Latency ================== This is an example showing the prediction latency of various scikit-learn estimators. The goal is to measure the latency one can expect when doing predictions either in bulk or atomic (i.e. one by one) mode. The plots represent the distribution of the prediction latency as a boxplot. """ # Authors: Eustache Diemert <eustache@diemert.fr> # License: BSD 3 clause from __future__ import print_function from collections import defaultdict import time import gc import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from scipy.stats import scoreatpercentile from sklearn.datasets.samples_generator import make_regression from sklearn.ensemble.forest import RandomForestRegressor from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.svm.classes import SVR from sklearn.utils import shuffle def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() def atomic_benchmark_estimator(estimator, X_test, verbose=False): """Measure runtime prediction of each instance.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_instances, dtype=np.float) for i in range(n_instances): instance = X_test[[i], :] start = time.time() estimator.predict(instance) runtimes[i] = time.time() - start if verbose: print("atomic_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose): """Measure runtime prediction of the whole input.""" n_instances = X_test.shape[0] runtimes = np.zeros(n_bulk_repeats, dtype=np.float) for i in range(n_bulk_repeats): start = time.time() estimator.predict(X_test) runtimes[i] = time.time() - start runtimes = np.array(list(map(lambda x: x / float(n_instances), runtimes))) if verbose: print("bulk_benchmark runtimes:", min(runtimes), scoreatpercentile( runtimes, 50), max(runtimes)) return runtimes def benchmark_estimator(estimator, X_test, n_bulk_repeats=30, verbose=False): """ Measure runtimes of prediction in both atomic and bulk mode. Parameters ---------- estimator : already trained estimator supporting `predict()` X_test : test input n_bulk_repeats : how many times to repeat when evaluating bulk mode Returns ------- atomic_runtimes, bulk_runtimes : a pair of `np.array` which contain the runtimes in seconds. """ atomic_runtimes = atomic_benchmark_estimator(estimator, X_test, verbose) bulk_runtimes = bulk_benchmark_estimator(estimator, X_test, n_bulk_repeats, verbose) return atomic_runtimes, bulk_runtimes def generate_dataset(n_train, n_test, n_features, noise=0.1, verbose=False): """Generate a regression dataset with the given parameters.""" if verbose: print("generating dataset...") X, y, coef = make_regression(n_samples=n_train + n_test, n_features=n_features, noise=noise, coef=True) random_seed = 13 X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=n_train, random_state=random_seed) X_train, y_train = shuffle(X_train, y_train, random_state=random_seed) X_scaler = StandardScaler() X_train = X_scaler.fit_transform(X_train) X_test = X_scaler.transform(X_test) y_scaler = StandardScaler() y_train = y_scaler.fit_transform(y_train[:, None])[:, 0] y_test = y_scaler.transform(y_test[:, None])[:, 0] gc.collect() if verbose: print("ok") return X_train, y_train, X_test, y_test def boxplot_runtimes(runtimes, pred_type, configuration): """ Plot a new `Figure` with boxplots of prediction runtimes. Parameters ---------- runtimes : list of `np.array` of latencies in micro-seconds cls_names : list of estimator class names that generated the runtimes pred_type : 'bulk' or 'atomic' """ fig, ax1 = plt.subplots(figsize=(10, 6)) bp = plt.boxplot(runtimes, ) cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] plt.setp(ax1, xticklabels=cls_infos) plt.setp(bp['boxes'], color='black') plt.setp(bp['whiskers'], color='black') plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Prediction Time per Instance - %s, %d feats.' % ( pred_type.capitalize(), configuration['n_features'])) ax1.set_ylabel('Prediction Time (us)') plt.show() def benchmark(configuration): """Run the whole benchmark.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) stats = {} for estimator_conf in configuration['estimators']: print("Benchmarking", estimator_conf['instance']) estimator_conf['instance'].fit(X_train, y_train) gc.collect() a, b = benchmark_estimator(estimator_conf['instance'], X_test) stats[estimator_conf['name']] = {'atomic': a, 'bulk': b} cls_names = [estimator_conf['name'] for estimator_conf in configuration[ 'estimators']] runtimes = [1e6 * stats[clf_name]['atomic'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'atomic', configuration) runtimes = [1e6 * stats[clf_name]['bulk'] for clf_name in cls_names] boxplot_runtimes(runtimes, 'bulk (%d)' % configuration['n_test'], configuration) def n_feature_influence(estimators, n_train, n_test, n_features, percentile): """ Estimate influence of the number of features on prediction time. Parameters ---------- estimators : dict of (name (str), estimator) to benchmark n_train : nber of training instances (int) n_test : nber of testing instances (int) n_features : list of feature-space dimensionality to test (int) percentile : percentile at which to measure the speed (int [0-100]) Returns: -------- percentiles : dict(estimator_name, dict(n_features, percentile_perf_in_us)) """ percentiles = defaultdict(defaultdict) for n in n_features: print("benchmarking with %d features" % n) X_train, y_train, X_test, y_test = generate_dataset(n_train, n_test, n) for cls_name, estimator in estimators.items(): estimator.fit(X_train, y_train) gc.collect() runtimes = bulk_benchmark_estimator(estimator, X_test, 30, False) percentiles[cls_name][n] = 1e6 * scoreatpercentile(runtimes, percentile) return percentiles def plot_n_features_influence(percentiles, percentile): fig, ax1 = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] for i, cls_name in enumerate(percentiles.keys()): x = np.array(sorted([n for n in percentiles[cls_name].keys()])) y = np.array([percentiles[cls_name][n] for n in x]) plt.plot(x, y, color=colors[i], ) ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5) ax1.set_axisbelow(True) ax1.set_title('Evolution of Prediction Time with #Features') ax1.set_xlabel('#Features') ax1.set_ylabel('Prediction Time at %d%%-ile (us)' % percentile) plt.show() def benchmark_throughputs(configuration, duration_secs=0.1): """benchmark throughput for different estimators.""" X_train, y_train, X_test, y_test = generate_dataset( configuration['n_train'], configuration['n_test'], configuration['n_features']) throughputs = dict() for estimator_config in configuration['estimators']: estimator_config['instance'].fit(X_train, y_train) start_time = time.time() n_predictions = 0 while (time.time() - start_time) < duration_secs: estimator_config['instance'].predict(X_test[[0]]) n_predictions += 1 throughputs[estimator_config['name']] = n_predictions / duration_secs return throughputs def plot_benchmark_throughput(throughputs, configuration): fig, ax = plt.subplots(figsize=(10, 6)) colors = ['r', 'g', 'b'] cls_infos = ['%s\n(%d %s)' % (estimator_conf['name'], estimator_conf['complexity_computer']( estimator_conf['instance']), estimator_conf['complexity_label']) for estimator_conf in configuration['estimators']] cls_values = [throughputs[estimator_conf['name']] for estimator_conf in configuration['estimators']] plt.bar(range(len(throughputs)), cls_values, width=0.5, color=colors) ax.set_xticks(np.linspace(0.25, len(throughputs) - 0.75, len(throughputs))) ax.set_xticklabels(cls_infos, fontsize=10) ymax = max(cls_values) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('Throughput (predictions/sec)') ax.set_title('Prediction Throughput for different estimators (%d ' 'features)' % configuration['n_features']) plt.show() ############################################################################### # main code start_time = time.time() # benchmark bulk/atomic prediction speed for various regressors configuration = { 'n_train': int(1e3), 'n_test': int(1e2), 'n_features': int(1e2), 'estimators': [ {'name': 'Linear Model', 'instance': SGDRegressor(penalty='elasticnet', alpha=0.01, l1_ratio=0.25, fit_intercept=True), 'complexity_label': 'non-zero coefficients', 'complexity_computer': lambda clf: np.count_nonzero(clf.coef_)}, {'name': 'RandomForest', 'instance': RandomForestRegressor(), 'complexity_label': 'estimators', 'complexity_computer': lambda clf: clf.n_estimators}, {'name': 'SVR', 'instance': SVR(kernel='rbf'), 'complexity_label': 'support vectors', 'complexity_computer': lambda clf: len(clf.support_vectors_)}, ] } benchmark(configuration) # benchmark n_features influence on prediction speed percentile = 90 percentiles = n_feature_influence({'ridge': Ridge()}, configuration['n_train'], configuration['n_test'], [100, 250, 500], percentile) plot_n_features_influence(percentiles, percentile) # benchmark throughput throughputs = benchmark_throughputs(configuration) plot_benchmark_throughput(throughputs, configuration) stop_time = time.time() print("example run in %.2fs" % (stop_time - start_time))
bsd-3-clause
espg/scikit-learn
sklearn/linear_model/tests/test_huber.py
17
7463
# Authors: Manoj Kumar mks542@nyu.edu # License: BSD 3 clause import numpy as np from scipy import optimize, sparse from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.datasets import make_regression from sklearn.linear_model import HuberRegressor, LinearRegression, SGDRegressor, Ridge from sklearn.linear_model._huber import _huber_loss_and_gradient def make_regression_with_outliers(n_samples=50, n_features=20): rng = np.random.RandomState(0) # Generate data with outliers by replacing 10% of the samples with noise. X, y = make_regression( n_samples=n_samples, n_features=n_features, random_state=0, noise=0.05 ) # Replace 10% of the sample with noise. num_noise = int(0.1 * n_samples) random_samples = rng.randint(0, n_samples, num_noise) X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1])) return X, y def test_huber_equals_lr_for_high_epsilon(): # Test that Ridge matches LinearRegression for large epsilon X, y = make_regression_with_outliers() lr = LinearRegression() lr.fit(X, y) huber = HuberRegressor(epsilon=1e3, alpha=0.0) huber.fit(X, y) assert_almost_equal(huber.coef_, lr.coef_, 3) assert_almost_equal(huber.intercept_, lr.intercept_, 2) def test_huber_max_iter(): X, y = make_regression_with_outliers() huber = HuberRegressor(max_iter=1) huber.fit(X, y) assert huber.n_iter_ == huber.max_iter def test_huber_gradient(): # Test that the gradient calculated by _huber_loss_and_gradient is correct rng = np.random.RandomState(1) X, y = make_regression_with_outliers() sample_weight = rng.randint(1, 3, (y.shape[0])) def loss_func(x, *args): return _huber_loss_and_gradient(x, *args)[0] def grad_func(x, *args): return _huber_loss_and_gradient(x, *args)[1] # Check using optimize.check_grad that the gradients are equal. for _ in range(5): # Check for both fit_intercept and otherwise. for n_features in [X.shape[1] + 1, X.shape[1] + 2]: w = rng.randn(n_features) w[-1] = np.abs(w[-1]) grad_same = optimize.check_grad( loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight ) assert_almost_equal(grad_same, 1e-6, 4) def test_huber_sample_weights(): # Test sample_weights implementation in HuberRegressor""" X, y = make_regression_with_outliers() huber = HuberRegressor() huber.fit(X, y) huber_coef = huber.coef_ huber_intercept = huber.intercept_ # Rescale coefs before comparing with assert_array_almost_equal to make # sure that the number of decimal places used is somewhat insensitive to # the amplitude of the coefficients and therefore to the scale of the # data and the regularization parameter scale = max(np.mean(np.abs(huber.coef_)), np.mean(np.abs(huber.intercept_))) huber.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) X, y = make_regression_with_outliers(n_samples=5, n_features=20) X_new = np.vstack((X, np.vstack((X[1], X[1], X[3])))) y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]])) huber.fit(X_new, y_new) huber_coef = huber.coef_ huber_intercept = huber.intercept_ sample_weight = np.ones(X.shape[0]) sample_weight[1] = 3 sample_weight[3] = 2 huber.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) # Test sparse implementation with sample weights. X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor() huber_sparse.fit(X_csr, y, sample_weight=sample_weight) assert_array_almost_equal(huber_sparse.coef_ / scale, huber_coef / scale) def test_huber_sparse(): X, y = make_regression_with_outliers() huber = HuberRegressor(alpha=0.1) huber.fit(X, y) X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(alpha=0.1) huber_sparse.fit(X_csr, y) assert_array_almost_equal(huber_sparse.coef_, huber.coef_) assert_array_equal(huber.outliers_, huber_sparse.outliers_) def test_huber_scaling_invariant(): # Test that outliers filtering is scaling independent. X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=False, alpha=0.0) huber.fit(X, y) n_outliers_mask_1 = huber.outliers_ assert not np.all(n_outliers_mask_1) huber.fit(X, 2.0 * y) n_outliers_mask_2 = huber.outliers_ assert_array_equal(n_outliers_mask_2, n_outliers_mask_1) huber.fit(2.0 * X, 2.0 * y) n_outliers_mask_3 = huber.outliers_ assert_array_equal(n_outliers_mask_3, n_outliers_mask_1) def test_huber_and_sgd_same_results(): # Test they should converge to same coefficients for same parameters X, y = make_regression_with_outliers(n_samples=10, n_features=2) # Fit once to find out the scale parameter. Scale down X and y by scale # so that the scale parameter is optimized to 1.0 huber = HuberRegressor(fit_intercept=False, alpha=0.0, epsilon=1.35) huber.fit(X, y) X_scale = X / huber.scale_ y_scale = y / huber.scale_ huber.fit(X_scale, y_scale) assert_almost_equal(huber.scale_, 1.0, 3) sgdreg = SGDRegressor( alpha=0.0, loss="huber", shuffle=True, random_state=0, max_iter=10000, fit_intercept=False, epsilon=1.35, tol=None, ) sgdreg.fit(X_scale, y_scale) assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1) def test_huber_warm_start(): X, y = make_regression_with_outliers() huber_warm = HuberRegressor(alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1) huber_warm.fit(X, y) huber_warm_coef = huber_warm.coef_.copy() huber_warm.fit(X, y) # SciPy performs the tol check after doing the coef updates, so # these would be almost same but not equal. assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1) assert huber_warm.n_iter_ == 0 def test_huber_better_r2_score(): # Test that huber returns a better r2 score than non-outliers""" X, y = make_regression_with_outliers() huber = HuberRegressor(alpha=0.01) huber.fit(X, y) linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y mask = np.abs(linear_loss) < huber.epsilon * huber.scale_ huber_score = huber.score(X[mask], y[mask]) huber_outlier_score = huber.score(X[~mask], y[~mask]) # The Ridge regressor should be influenced by the outliers and hence # give a worse score on the non-outliers as compared to the huber # regressor. ridge = Ridge(alpha=0.01) ridge.fit(X, y) ridge_score = ridge.score(X[mask], y[mask]) ridge_outlier_score = ridge.score(X[~mask], y[~mask]) assert huber_score > ridge_score # The huber model should also fit poorly on the outliers. assert ridge_outlier_score > huber_outlier_score def test_huber_bool(): # Test that it does not crash with bool data X, y = make_regression(n_samples=200, n_features=2, noise=4.0, random_state=0) X_bool = X > 0 HuberRegressor().fit(X_bool, y)
bsd-3-clause
espg/scikit-learn
sklearn/ensemble/__init__.py
17
1502
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification, regression and anomaly detection. """ from ._base import BaseEnsemble from ._forest import RandomForestClassifier from ._forest import RandomForestRegressor from ._forest import RandomTreesEmbedding from ._forest import ExtraTreesClassifier from ._forest import ExtraTreesRegressor from ._bagging import BaggingClassifier from ._bagging import BaggingRegressor from ._iforest import IsolationForest from ._weight_boosting import AdaBoostClassifier from ._weight_boosting import AdaBoostRegressor from ._gb import GradientBoostingClassifier from ._gb import GradientBoostingRegressor from ._voting import VotingClassifier from ._voting import VotingRegressor from ._stacking import StackingClassifier from ._stacking import StackingRegressor from ._hist_gradient_boosting.gradient_boosting import ( HistGradientBoostingRegressor, HistGradientBoostingClassifier, ) __all__ = [ "BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "IsolationForest", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "VotingRegressor", "StackingClassifier", "StackingRegressor", "HistGradientBoostingClassifier", "HistGradientBoostingRegressor", ]
bsd-3-clause
czhuang/ChordRipple
chord2vec/plot_utilities.py
1
17153
from copy import copy import numpy as np import pylab as plt from pylab import setp from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import proj3d from music_theory_tools import RELATIVE_MINOR, CIRCLE_OF_FIFTHS_MINOR_DICT, CIRCLE_OF_FIFTHS_MAJOR_DICT from load_songs_tools import get_raw_data, get_configs def plot_bach_dist(): configs = get_configs() print configs configs['corpus'] = 'bach' configs['min_count'] = 1 plot_dist(configs) def plot_rock_nontransposed_dist(): configs = get_configs() configs['corpus'] = 'rock' configs['min_count'] = 1 configs['transposed'] = False plot_dist(configs) def plot_rock_transposed_dist(): configs = get_configs() configs['corpus'] = 'rock' configs['min_count'] = 1 configs['transposed'] = True plot_dist(configs) def plot_dist(configs): from make_model_tools import make_Ngram ngram = make_Ngram(configs) counts, syms = ngram.get_sorted_counts() print "---top 5---" for i in range(5): print syms[i], counts[i] print "\n---bottom 5---" for i in range(1, 20): print syms[-i], counts[-i] corpus = configs['corpus'] plt.figure(figsize=(10, 6)) plt.bar(range(len(counts)), counts) plt.title('Sorted chord counts in %s corpus' % corpus, fontsize=16) plt.ylabel('Chord counts', fontsize=14) plt.xlabel('Chords indexed by descending counts', fontsize=14) setp(plt.gca().get_xticklabels(), fontsize=12) setp(plt.gca().get_xticklabels(), fontsize=10) # plt.savefig('%s-counts.pdf' % configs['corpus']) plt.savefig('%s-counts.png' % configs['corpus']) def plot_rock_mat(): configs = get_configs() configs['corpus'] = 'rock' configs['min_count'] = 1 configs['transposed'] = True plot_mat_wrapper(configs) def plot_bach_mat(): configs = get_configs() configs['corpus'] = 'bach' configs['min_count'] = 5 plot_mat_wrapper(configs) def plot_mat_wrapper(configs): from make_model_tools import make_Ngram ngram = make_Ngram(configs) counts, _ = ngram.get_sorted_counts() # bigram = ngram.ngram_counts bigram = ngram.ngram syms = ngram.syms print bigram.shape, len(syms) assert bigram.shape[1] == len(syms) plot_mat_pca_ordered(bigram, syms, configs, fname_tag='', unigram=counts) # title = "Transition Counts in the %s corpus" % configs['corpus'] # plot_mat(bigram, title, syms, save=True) def plot_mat(mat, title, syms, y_tick_syms=None, save=False): mat = np.asarray(mat) print mat.size, len(syms) assert mat.size == len(syms) or mat.size == len(syms)**2 from colormaps import inferno plt.matshow(mat, cmap=inferno) # plt.title(title) from pylab import setp # if mat.shape[1] < 23: # fontsize = 'medium' # else: # fontsize = 'xx-small' fontsize = 'small' fontsize = 'xx-small' if y_tick_syms is None: y_tick_syms = syms #print '# of syms:', len(syms) print ' '.join(syms) if len(y_tick_syms) == 1: if y_tick_syms[0] == 'V': y_tick_str = '$'+y_tick_syms[0]+'_1$' else: y_tick_str = '$'+y_tick_syms[0]+'$' plt.yticks([0], [y_tick_str], fontweight='bold') setp(plt.gca().get_yticklabels(), fontsize='large') else: if len(mat.shape) == 1: plt.yticks(range(len(y_tick_syms)), y_tick_syms, fontweight='bold') else: plt.yticks(range(len(y_tick_syms)), y_tick_syms) setp(plt.gca().get_yticklabels(), fontsize=fontsize) # if one-dimensional if len(mat.shape) == 1: plt.xticks(range(len(syms)), syms, fontweight='bold') else: plt.xticks(range(len(syms)), syms, rotation='vertical') setp(plt.gca().get_xticklabels(), fontsize=fontsize) plt.title(title, y=1.1) # plt.colorbar(shrink=.8) if len(mat.shape) == 1: colorbar = plt.colorbar(shrink=.7, ticks=np.arange(-2.0, 2.1, 1.0)) else: colorbar = plt.colorbar(shrink=.7) if len(y_tick_syms) == 1: colorbar.set_label('chord weights in '+y_tick_str, fontsize=9) # labelpad=-40, y=0.45) colorbar.ax.tick_params(labelsize=9) # plt.tight_layout() plt.savefig('not_sorted_mat.pdf') def plot_mat_pca_ordered(bigram, syms, configs, fname_tag='', unigram=None): from sklearn.decomposition import PCA pca = PCA(n_components=1) pca.fit(bigram) transformed_bigram = np.squeeze(pca.transform(bigram)) print transformed_bigram.shape print 'variance covered: %.2f' % np.sum(pca.explained_variance_ratio_) plot_mat_sort_with(transformed_bigram, syms, configs, bigram, unigram, fname_tag=fname_tag, technique='PCA') return transformed_bigram def plot_mat_sort_with(values_to_sort_with, syms, configs, bigram, unigram=None, fname_tag='', technique='PCA'): sorted_inds = np.argsort(-values_to_sort_with) print sorted_inds sorted_syms = [syms[ind] for ind in sorted_inds] # sorted_ngram = bigram[sorted_inds] print bigram.shape sorted_ngram = [bigram[ind, sorted_inds] for ind in sorted_inds] sorted_ngram = np.squeeze(np.asarray(sorted_ngram)) print sorted_ngram.shape plt.clf() title_str = '%s sorted %s transition count matrix' % (technique, fname_tag) plot_mat(sorted_ngram, title_str, sorted_syms) plt.savefig('all-%s-ordered-%s-%s.pdf' % (technique, fname_tag, configs.name)) plt.savefig('all-%s-ordered-%s-%s.png' % (technique, fname_tag, configs.name)) # just for saving the transition into text, sorted by unigram.. if unigram is None: return output_transition_as_text(unigram, sorted_inds, sorted_ngram, sorted_syms, syms, fname_tag) def output_transition_as_text(unigram, sorted_inds, sorted_ngram, sorted_syms, syms, fname_tag=''): test_sorted_syms = [syms[i] for i in sorted_inds] print len(test_sorted_syms), len(sorted_syms) print test_sorted_syms[5:] print sorted_syms[5:] assert test_sorted_syms == sorted_syms sorted_unigram = [unigram[ind] for ind in sorted_inds] line = '' for i in range(len(syms)): line += '\n%s (%d): ' % (sorted_syms[i], sorted_unigram[i]) local_sorted_inds = np.argsort(sorted_ngram[i, :])[::-1] local_sorted_syms = [sorted_syms[ind] for ind in local_sorted_inds] for j in range(len(syms)): line += '%s (%.2f), ' % (local_sorted_syms[j], sorted_ngram[i, local_sorted_inds[j]]) fname = 'transitions-%s-bach.txt' % fname_tag with open(fname, 'w') as p: p.writelines(line) def plot_mat_sorted_with_itself(values_to_sort_with, syms, configs, row_tag, topn=None, save=False, title_str='', fname_tag=''): #print 'shape', values_to_sort_with.shape sorted_inds = np.argsort(values_to_sort_with) sorted_inds = np.squeeze(sorted_inds) # syms = data.syms if topn is None: topn = len(syms) sorted_syms = [syms[ind] for ind in sorted_inds[:topn]] sorted_ngram = np.sort(values_to_sort_with)[::-1][:topn] if save: plt.clf() #print sorted_ngram.shape if len(sorted_ngram.shape) == 1: sorted_ngram = sorted_ngram[None, :] #print sorted_ngram.shape plot_mat(sorted_ngram, title_str, sorted_syms, y_tick_syms=[row_tag]) if save: plt.savefig('trans-%s-%s.pdf' % (fname_tag, configs.name)) def project_3d_to_2d(xyz, ax): x2, y2, _ = proj3d.proj_transform(xyz[0], xyz[1], xyz[2], ax.get_proj()) xy = np.array([x2, y2]) return xy # def annotate(syms, vecs, pl_ax, is_3d, color='b', text_size=None): # print '# of syms:', len(syms) # print vecs.shape # for i, sym in enumerate(syms): # xy = vecs[i, :] # if is_3d: # xy = project_3d_to_2d(xy, pl_ax) # # if DUPLICATE_BY_ROTATE: # # text_size = 'small' # # else: # # text_size = 'xx-small' # if text_size is None: # # text_size = 'large' # text_size = 'xx-small' # pl_ax.annotate(sym, xy=xy, xytext=(-3, 2), # textcoords = 'offset points', size=text_size, color=color) def annotate(syms, vecs, pl_ax, text_size=None, color='b'): assert len(syms) == vecs.shape[0] print '# of syms:', len(syms) print vecs.shape for i, sym in enumerate(syms): xy = vecs[i, :] if text_size is None: text_size = 'x-small' text_size = 'small' if text_size == 'x-large': fontweight = 'bold' else: fontweight = 'normal' pl_ax.annotate(sym, xy=xy, xytext=(-3, 2), textcoords = 'offset points', size=text_size, color=color, fontweight=fontweight) def add_arrow_annotation(syms, vecs, arrow_dict, pl_ax, is_3d=False, color='#ee8d18', linewidth=3): if not is_3d: assert vecs.shape[1] == 2 else: assert vecs.shape[1] == 3 highlight_syms = arrow_dict.keys() filtered_vecs, filtered_syms = filter_syms(vecs, syms, include_syms=highlight_syms) print highlight_syms print filtered_syms # assert len(highlight_syms) == len(filtered_syms) annotate(filtered_syms, filtered_vecs, pl_ax, color=color, text_size='x-large') for start, end in arrow_dict.iteritems(): if start not in syms or end not in syms: continue start_ind = syms.index(start) end_ind = syms.index(end) start_pos = vecs[start_ind, :] if is_3d: start_pos = project_3d_to_2d(start_pos, pl_ax) # end_pos = (vecs[end_ind, :] - vecs[start_ind, :]) end_pos = vecs[end_ind, :] if is_3d: end_pos = project_3d_to_2d(end_pos, pl_ax) diff = end_pos - start_pos # head_length = np.sqrt(np.square(end_pos[0]) + np.square(end_pos[1]))*0.1 pl_ax.arrow(start_pos[0], start_pos[1], diff[0], diff[1], fc=color, ec=color, head_width=0, head_length=0, linewidth=linewidth) # head_width=0.05, head_length=head_length, def add_most_annotations(syms, vecs, ax, is_3d, plot_relative_minor=True): # annotate(syms, vecs, ax, is_3d) # add_arrow_annotation(syms, vecs, second_res_dict, ax, is_3d) add_arrow_annotation(syms, vecs, CIRCLE_OF_FIFTHS_MAJOR_DICT, ax, is_3d, color='g') add_arrow_annotation(syms, vecs, CIRCLE_OF_FIFTHS_MINOR_DICT, ax, is_3d, color='m') if plot_relative_minor: add_arrow_annotation(syms, vecs, RELATIVE_MINOR, ax, is_3d) def add_secondary_dominants_annotations(syms, vecs, second_res_dict, ax, is_3d): annotate(syms, vecs, ax, is_3d) add_arrow_annotation(syms, vecs, second_res_dict, ax, is_3d) def add_relative_minor_annotations(syms, vecs, ax, is_3d): annotate(syms, vecs, ax, is_3d) add_arrow_annotation(syms, vecs, RELATIVE_MINOR, ax, is_3d) def make_song_dict(song): song_dict = {} for i in range(len(song)-1): song_dict[song[i]] = song[i+1] return song_dict def plot_vec(vecs, syms, configs, highlight_syms=[], with_annotations=False, save=False, fname_tag=None, return_ax=False, zero_gram_vec=None, second_res_dict=None, plot3d=False, subplot=False, doPCA=False): # TODO: hacky settings PLOT_SECOND_ONLY = False PLOT_RELATIVE_MINOR_ONLY = False PLOT_RELATIVE_MINOR = False ONLY_SHOW_HIGHLIGH_SYMBOLS = False original_vecs = vecs from postprocessing_tools import pca_project if doPCA: if plot3d is True: vecs = pca_project(vecs, n_components=3) else: vecs = pca_project(vecs, n_components=2) else: if not plot3d: assert vecs.shape[1] == 2 else: assert vecs.shape[1] == 3 if zero_gram_vec is None: dot_sizes = 2 # 5 else: dot_sizes = np.exp(np.log(zero_gram_vec))/60 highlight_dot_sizes = 25 if vecs.shape[1] < 3: plot3d = False if PLOT_SECOND_ONLY: print 'second_res_dict', len(second_res_dict) print second_res_dict if len(highlight_syms) == 0: from music_theory_tools import CIRCLE_OF_FIFTHS_MAJOR, CIRCLE_OF_FIFTHS_MINOR highlight_syms.extend(CIRCLE_OF_FIFTHS_MAJOR[::]) highlight_syms.extend(CIRCLE_OF_FIFTHS_MINOR[::]) highlight_vecs = [] highlight_syms_copy = copy(highlight_syms) for s in highlight_syms_copy: if s in syms: ind = syms.index(s) highlight_vecs.append(vecs[ind, :]) else: print 'WARNING: %s is not in syms' % s highlight_syms.remove(s) highlight_vecs = np.squeeze(highlight_vecs) if plot3d: print '3D' if not subplot: fig = plt.figure() # TODO: fig might not be defined for 3D subplot ax = fig.add_subplot(1, 1, 1, projection='3d') ax.scatter(vecs[:, 0], vecs[:, 1], vecs[:, 2], s=highlight_dot_sizes, color='b') if len(highlight_vecs) > 0: ax.scatter(highlight_vecs[:, 0], highlight_vecs[:, 1], highlight_vecs[:, 2], s=dot_sizes, color='r') if not with_annotations: annotate(syms, vecs, ax, True) elif PLOT_SECOND_ONLY: add_secondary_dominants_annotations(syms, vecs, second_res_dict, ax, True) elif PLOT_RELATIVE_MINOR_ONLY: add_relative_minor_annotations(syms, vecs, ax, True) else: add_most_annotations(syms, vecs, ax, True, plot_relative_minor=PLOT_RELATIVE_MINOR) else: print '2D', np.shape(vecs) if not subplot: plt.figure() if vecs.shape[1] > 1: if not ONLY_SHOW_HIGHLIGH_SYMBOLS: plt.scatter(vecs[:, 0], vecs[:, 1], s=dot_sizes, color='b') if len(highlight_vecs) > 0: plt.scatter(highlight_vecs[:, 0], highlight_vecs[:, 1], s=highlight_dot_sizes, color='k') ax = plt.gca() if len(highlight_syms) == 0 or not ONLY_SHOW_HIGHLIGH_SYMBOLS: annotate(syms, vecs, ax, False) else: annotate(highlight_syms, highlight_vecs, ax, False) if not with_annotations: pass elif PLOT_SECOND_ONLY: add_secondary_dominants_annotations(syms, vecs, second_res_dict, ax) elif PLOT_RELATIVE_MINOR_ONLY: add_relative_minor_annotations(syms, vecs, ax, False) else: add_most_annotations(syms, vecs, ax, False, plot_relative_minor=PLOT_RELATIVE_MINOR) else: # just 1D plt.plot(vecs, 'x', ) # pl_ax.annotate(sym, xy=xy, xytext=(-3, 2), textcoords = 'offset points', size=text_size, color='b') # title_str = ' '.join(SIMPLE_CHORDS_ORDERED) # plt.title('chord space') plt.tick_params(axis='both', which='major', labelsize=6) fname = configs.name # fname = get_fname_base(vecs, syms, seqs, vec_dim, window_sz=window_sz) # fname = get_fname_base(vecs, syms, seqs, min_count=min_count, vec_dim=vec_dim, # do_pca=doPCA, window_sz=window_sz) if plot3d: fname += '-3d' if PLOT_SECOND_ONLY: fname += '-second' if PLOT_RELATIVE_MINOR_ONLY or PLOT_RELATIVE_MINOR: fname += '-relative_minor' if fname_tag is not None: fname += '-%s' % fname_tag if save: plt.savefig('%s.pdf' % fname) if return_ax: # TODO: ax might not be defined depending on usage return fname, ax, vecs else: return fname def filter_syms(vecs, syms, exclude_syms=None, include_syms=None): filtered_vecs = [] filtered_syms = [] if exclude_syms is not None: for i, sym in enumerate(syms): if sym not in exclude_syms: filtered_vecs.append(vecs[i, :]) filtered_syms.append(sym) else: filtered_vecs = vecs.copy() filtered_syms = copy(syms) filtered_vecs = np.asarray(filtered_vecs) filtered_again_vecs = [] filtered_again_syms = [] if include_syms is not None: for i, sym in enumerate(filtered_syms): if sym in include_syms: filtered_again_vecs.append(filtered_vecs[i, :]) filtered_again_syms.append(sym) else: filtered_again_vecs = filtered_vecs.copy() filtered_again_syms = copy(filtered_syms) return np.asarray(filtered_again_vecs), filtered_again_syms if __name__ == '__main__': # plot_bach_dist() # plot_rock_nontransposed_dist() # plot_rock_transposed_dist() # plot_rock_mat() plot_bach_mat()
mit
bzero/statsmodels
statsmodels/tsa/statespace/sarimax.py
12
82127
""" SARIMAX Model Author: Chad Fulton License: Simplified-BSD """ from __future__ import division, absolute_import, print_function from warnings import warn import numpy as np import pandas as pd from .kalman_filter import KalmanFilter, FilterResults from .mlemodel import MLEModel, MLEResults, MLEResultsWrapper from .tools import ( companion_matrix, diff, is_invertible, constrain_stationary_univariate, unconstrain_stationary_univariate ) from scipy.linalg import solve_discrete_lyapunov from statsmodels.tools.tools import Bunch from statsmodels.tools.data import _is_using_pandas from statsmodels.tsa.tsatools import lagmat from statsmodels.tools.decorators import cache_readonly import statsmodels.base.wrapper as wrap class SARIMAX(MLEModel): r""" Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors model Parameters ---------- endog : array_like The observed time-series process :math:`y` exog : array_like, optional Array of exogenous regressors, shaped nobs x k. order : iterable or iterable of iterables, optional The (p,d,q) order of the model for the number of AR parameters, differences, and MA parameters. `d` must be an integer indicating the integration order of the process, while `p` and `q` may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. Default is an AR(1) model: (1,0,0). seasonal_order : iterable, optional The (P,D,Q,s) order of the seasonal component of the model for the AR parameters, differences, MA parameters, and periodicity. `d` must be an integer indicating the integration order of the process, while `p` and `q` may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. `s` is an integer giving the periodicity (number of periods in season), often it is 4 for quarterly data or 12 for monthly data. Default is no seasonal effect. trend : str{'n','c','t','ct'} or iterable, optional Parameter controlling the deterministic trend polynomial :math:`A(t)`. Can be specified as a string where 'c' indicates a constant (i.e. a degree zero component of the trend polynomial), 't' indicates a linear trend with time, and 'ct' is both. Can also be specified as an iterable defining the polynomial as in `numpy.poly1d`, where `[1,1,0,1]` would denote :math:`a + bt + ct^3`. Default is to not include a trend component. measurement_error : boolean, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. time_varying_regression : boolean, optional Used when an explanatory variables, `exog`, are provided provided to select whether or not coefficients on the exogenous regressors are allowed to vary over time. Default is False. mle_regression : boolean, optional Whether or not to use estimate the regression coefficients for the exogenous variables as part of maximum likelihood estimation or through the Kalman filter (i.e. recursive least squares). If `time_varying_regression` is True, this must be set to False. Default is True. simple_differencing : boolean, optional Whether or not to use partially conditional maximum likelihood estimation. If True, differencing is performed prior to estimation, which discards the first :math:`s D + d` initial rows but reuslts in a smaller state-space formulation. If False, the full SARIMAX model is put in state-space form so that all datapoints can be used in estimation. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : boolean, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. hamilton_representation : boolean, optional Whether or not to use the Hamilton representation of an ARMA process (if True) or the Harvey representation (if False). Default is False. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- measurement_error : boolean Whether or not to assume the endogenous observations `endog` were measured with error. state_error : boolean Whether or not the transition equation has an error component. mle_regression : boolean Whether or not the regression coefficients for the exogenous variables were estimated via maximum likelihood estimation. state_regression : boolean Whether or not the regression coefficients for the exogenous variables are included as elements of the state space and estimated via the Kalman filter. time_varying_regression : boolean Whether or not coefficients on the exogenous regressors are allowed to vary over time. simple_differencing : boolean Whether or not to use partially conditional maximum likelihood estimation. enforce_stationarity : boolean Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. enforce_invertibility : boolean Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. hamilton_representation : boolean Whether or not to use the Hamilton representation of an ARMA process. trend : str{'n','c','t','ct'} or iterable Parameter controlling the deterministic trend polynomial :math:`A(t)`. See the class parameter documentation for more information. polynomial_ar : array Array containing autoregressive lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_ma : array Array containing moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_seasonal_ar : array Array containing seasonal moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_seasonal_ma : array Array containing seasonal moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_trend : array Array containing trend polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). k_ar : int Highest autoregressive order in the model, zero-indexed. k_ar_params : int Number of autoregressive parameters to be estimated. k_diff : int Order of intergration. k_ma : int Highest moving average order in the model, zero-indexed. k_ma_params : int Number of moving average parameters to be estimated. k_seasons : int Number of periods in a season. k_seasonal_ar : int Highest seasonal autoregressive order in the model, zero-indexed. k_seasonal_ar_params : int Number of seasonal autoregressive parameters to be estimated. k_seasonal_diff : int Order of seasonal intergration. k_seasonal_ma : int Highest seasonal moving average order in the model, zero-indexed. k_seasonal_ma_params : int Number of seasonal moving average parameters to be estimated. k_trend : int Order of the trend polynomial plus one (i.e. the constant polynomial would have `k_trend=1`). k_exog : int Number of exogenous regressors. Notes ----- The SARIMA model is specified :math:`(p, d, q) \times (P, D, Q)_s`. .. math:: \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D y_t = A(t) + \theta_q (L) \tilde \theta_Q (L^s) \zeta_t In terms of a univariate structural model, this can be represented as .. math:: y_t & = u_t + \eta_t \\ \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D u_t & = A(t) + \theta_q (L) \tilde \theta_Q (L^s) \zeta_t where :math:`\eta_t` is only applicable in the case of measurement error (although it is also used in the case of a pure regression model, i.e. if p=q=0). In terms of this model, regression with SARIMA errors can be represented easily as .. math:: y_t & = \beta_t x_t + u_t \\ \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D u_t & = A(t) + \theta_q (L) \tilde \theta_Q (L^s) \zeta_t this model is the one used when exogenous regressors are provided. Note that the reduced form lag polynomials will be written as: .. math:: \Phi (L) \equiv \phi_p (L) \tilde \phi_P (L^s) \\ \Theta (L) \equiv \theta_q (L) \tilde \theta_Q (L^s) If `mle_regression` is True, regression coefficients are treated as additional parameters to be estimated via maximum likelihood. Otherwise they are included as part of the state with a diffuse initialization. In this case, however, with approximate diffuse initialization, results can be sensitive to the initial variance. This class allows two different underlying representations of ARMA models as state space models: that of Hamilton and that of Harvey. Both are equivalent in the sense that they are analytical representations of the ARMA model, but the state vectors of each have different meanings. For this reason, maximum likelihood does not result in identical parameter estimates and even the same set of parameters will result in different loglikelihoods. The Harvey representation is convenient because it allows integrating differencing into the state vector to allow using all observations for estimation. In this implementation of differenced models, the Hamilton representation is not able to accomodate differencing in the state vector, so `simple_differencing` (which performs differencing prior to estimation so that the first d + sD observations are lost) must be used. Many other packages use the Hamilton representation, so that tests against Stata and R require using it along with simple differencing (as Stata does). Detailed information about state space models can be found in [1]_. Some specific references are: - Chapter 3.4 describes ARMA and ARIMA models in state space form (using the Harvey representation), and gives references for basic seasonal models and models with a multiplicative form (for example the airline model). It also shows a state space model for a full ARIMA process (this is what is done here if `simple_differencing=False`). - Chapter 3.6 describes estimating regression effects via the Kalman filter (this is performed if `mle_regression` is False), regression with time-varying coefficients, and regression with ARMA errors (recall from above that if regression effects are present, the model estimated by this class is regression with SARIMA errors). - Chapter 8.4 describes the application of an ARMA model to an example dataset. A replication of this section is available in an example IPython notebook in the documentation. References ---------- .. [1] Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford University Press. """ def __init__(self, endog, exog=None, order=(1, 0, 0), seasonal_order=(0, 0, 0, 0), trend=None, measurement_error=False, time_varying_regression=False, mle_regression=True, simple_differencing=False, enforce_stationarity=True, enforce_invertibility=True, hamilton_representation=False, **kwargs): # Model parameters self.k_seasons = seasonal_order[3] self.measurement_error = measurement_error self.time_varying_regression = time_varying_regression self.mle_regression = mle_regression self.simple_differencing = simple_differencing self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility self.hamilton_representation = hamilton_representation # Save given orders self.order = order self.seasonal_order = seasonal_order # Enforce non-MLE coefficients if time varying coefficients is # specified if self.time_varying_regression and self.mle_regression: raise ValueError('Models with time-varying regression coefficients' ' must integrate the coefficients as part of the' ' state vector, so that `mle_regression` must' ' be set to False.') # Lag polynomials # Assume that they are given from lowest degree to highest, that all # degrees except for the constant are included, and that they are # boolean vectors (0 for not included, 1 for included). if isinstance(order[0], int): self.polynomial_ar = np.r_[1., np.ones(order[0])] else: self.polynomial_ar = np.r_[1., order[0]] if isinstance(order[2], int): self.polynomial_ma = np.r_[1., np.ones(order[2])] else: self.polynomial_ma = np.r_[1., order[2]] # Assume that they are given from lowest degree to highest, that the # degrees correspond to (1*s, 2*s, ..., P*s), and that they are # boolean vectors (0 for not included, 1 for included). if isinstance(seasonal_order[0], int): self.polynomial_seasonal_ar = np.r_[ 1., # constant ([0] * (self.k_seasons - 1) + [1]) * seasonal_order[0] ] else: self.polynomial_seasonal_ar = np.r_[ 1., [0] * self.k_seasons * len(seasonal_order[0]) ] for i in range(len(seasonal_order[0])): self.polynomial_seasonal_ar[(i + 1) * self.k_seasons] = ( seasonal_order[0][i] ) if isinstance(seasonal_order[2], int): self.polynomial_seasonal_ma = np.r_[ 1., # constant ([0] * (self.k_seasons - 1) + [1]) * seasonal_order[2] ] else: self.polynomial_seasonal_ma = np.r_[ 1., [0] * self.k_seasons * len(seasonal_order[2]) ] for i in range(len(seasonal_order[2])): self.polynomial_seasonal_ma[(i + 1) * self.k_seasons] = ( seasonal_order[2][i] ) # Deterministic trend polynomial self.trend = trend if trend is None or trend == 'n': self.polynomial_trend = np.ones((0)) elif trend == 'c': self.polynomial_trend = np.r_[1] elif trend == 't': self.polynomial_trend = np.r_[0, 1] elif trend == 'ct': self.polynomial_trend = np.r_[1, 1] else: self.polynomial_trend = (np.array(trend) > 0).astype(int) # Model orders # Note: k_ar, k_ma, k_seasonal_ar, k_seasonal_ma do not include the # constant term, so they may be zero. # Note: for a typical ARMA(p,q) model, p = k_ar_params = k_ar - 1 and # q = k_ma_params = k_ma - 1, although this may not be true for models # with arbitrary log polynomials. self.k_ar = int(self.polynomial_ar.shape[0] - 1) self.k_ar_params = int(np.sum(self.polynomial_ar) - 1) self.k_diff = int(order[1]) self.k_ma = int(self.polynomial_ma.shape[0] - 1) self.k_ma_params = int(np.sum(self.polynomial_ma) - 1) self.k_seasonal_ar = int(self.polynomial_seasonal_ar.shape[0] - 1) self.k_seasonal_ar_params = ( int(np.sum(self.polynomial_seasonal_ar) - 1) ) self.k_seasonal_diff = int(seasonal_order[1]) self.k_seasonal_ma = int(self.polynomial_seasonal_ma.shape[0] - 1) self.k_seasonal_ma_params = ( int(np.sum(self.polynomial_seasonal_ma) - 1) ) # Make internal copies of the differencing orders because if we use # simple differencing, then we will need to internally use zeros after # the simple differencing has been performed self._k_diff = self.k_diff self._k_seasonal_diff = self.k_seasonal_diff # We can only use the Hamilton representation if differencing is not # performed as a part of the state space if (self.hamilton_representation and not (self.simple_differencing or self._k_diff == self._k_seasonal_diff == 0)): raise ValueError('The Hamilton representation is only available' ' for models in which there is no differencing' ' integrated into the state vector. Set' ' `simple_differencing` to True or set' ' `hamilton_representation` to False') # Note: k_trend is not the degree of the trend polynomial, because e.g. # k_trend = 1 corresponds to the degree zero polynomial (with only a # constant term). self.k_trend = int(np.sum(self.polynomial_trend)) # Model order # (this is used internally in a number of locations) self._k_order = max(self.k_ar + self.k_seasonal_ar, self.k_ma + self.k_seasonal_ma + 1) if self._k_order == 1 and self.k_ar + self.k_seasonal_ar == 0: self._k_order = 0 # Exogenous data self.k_exog = 0 if exog is not None: exog_is_using_pandas = _is_using_pandas(exog, None) if not exog_is_using_pandas: exog = np.asarray(exog) # Make sure we have 2-dimensional array if exog.ndim == 1: if not exog_is_using_pandas: exog = exog[:, None] else: exog = pd.DataFrame(exog) self.k_exog = exog.shape[1] # Redefine mle_regression to be true only if it was previously set to # true and there are exogenous regressors self.mle_regression = ( self.mle_regression and exog is not None and self.k_exog > 0 ) # State regression is regression with coefficients estiamted within # the state vector self.state_regression = ( not self.mle_regression and exog is not None and self.k_exog > 0 ) # If all we have is a regression (so k_ar = k_ma = 0), then put the # error term as measurement error if self.state_regression and self._k_order == 0: self.measurement_error = True # Number of states k_states = self._k_order if not self.simple_differencing: k_states += self.k_seasons * self._k_seasonal_diff + self._k_diff if self.state_regression: k_states += self.k_exog # Number of diffuse states k_diffuse_states = k_states if self.enforce_stationarity: k_diffuse_states -= self._k_order # Number of positive definite elements of the state covariance matrix k_posdef = int(self._k_order > 0) # Only have an error component to the states if k_posdef > 0 self.state_error = k_posdef > 0 if self.state_regression and self.time_varying_regression: k_posdef += self.k_exog # Diffuse initialization can be more sensistive to the variance value # in the case of state regression, so set a higher than usual default # variance if self.state_regression: kwargs.setdefault('initial_variance', 1e10) # Number of parameters self.k_params = ( self.k_ar_params + self.k_ma_params + self.k_seasonal_ar_params + self.k_seasonal_ar_params + self.k_trend + self.measurement_error + 1 ) if self.mle_regression: self.k_params += self.k_exog # We need to have an array or pandas at this point self.orig_endog = endog self.orig_exog = exog if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Update the differencing dimensions if simple differencing is applied self.orig_k_diff = self._k_diff self.orig_k_seasonal_diff = self._k_seasonal_diff if (self.simple_differencing and (self._k_diff > 0 or self._k_seasonal_diff > 0)): self._k_diff = 0 self._k_seasonal_diff = 0 # Internally used in several locations self._k_states_diff = ( self._k_diff + self.k_seasons * self._k_seasonal_diff ) # Set some model variables now so they will be available for the # initialize() method, below self.nobs = len(endog) self.k_states = k_states self.k_posdef = k_posdef # By default, do not calculate likelihood while it is controlled by # diffuse initial conditions. kwargs.setdefault('loglikelihood_burn', k_diffuse_states) # Initialize the statespace super(SARIMAX, self).__init__( endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs ) # Handle kwargs specified initialization if self.ssm.initialization is not None: self._manual_initialization = True # Initialize the fixed components of the statespace model self.ssm.design = self.initial_design self.ssm.state_intercept = self.initial_state_intercept self.ssm.transition = self.initial_transition self.ssm.selection = self.initial_selection # If we are estimating a simple ARMA model, then we can use a faster # initialization method (unless initialization was already specified). if k_diffuse_states == 0 and not self._manual_initialization: self.initialize_stationary() # update _init_keys attached by super self._init_keys += ['order', 'seasonal_order', 'trend', 'measurement_error', 'time_varying_regression', 'mle_regression', 'simple_differencing', 'enforce_stationarity', 'enforce_invertibility', 'hamilton_representation'] + list(kwargs.keys()) # TODO: I think the kwargs or not attached, need to recover from ??? def _get_init_kwds(self): kwds = super(SARIMAX, self)._get_init_kwds() for key, value in kwds.items(): if value is None and hasattr(self.ssm, key): kwds[key] = getattr(self.ssm, key) return kwds def prepare_data(self): endog, exog = super(SARIMAX, self).prepare_data() # Perform simple differencing if requested if (self.simple_differencing and (self.orig_k_diff > 0 or self.orig_k_seasonal_diff > 0)): # Perform simple differencing endog = diff(endog.copy(), self.orig_k_diff, self.orig_k_seasonal_diff, self.k_seasons) if exog is not None: exog = diff(exog.copy(), self.orig_k_diff, self.orig_k_seasonal_diff, self.k_seasons) # Reset the ModelData datasets self.data.endog, self.data.exog = ( self.data._convert_endog_exog(endog, exog)) # Reset the nobs self.nobs = endog.shape[0] # Cache the arrays for calculating the intercept from the trend # components time_trend = np.arange(1, self.nobs + 1) self._trend_data = np.zeros((self.nobs, self.k_trend)) i = 0 for k in self.polynomial_trend.nonzero()[0]: if k == 0: self._trend_data[:, i] = np.ones(self.nobs,) else: self._trend_data[:, i] = time_trend**k i += 1 return endog, exog def initialize(self): """ Initialize the SARIMAX model. Notes ----- These initialization steps must occur following the parent class __init__ function calls. """ super(SARIMAX, self).initialize() # Internal flag for whether the default mixed approximate diffuse / # stationary initialization has been overridden with a user-supplied # initialization self._manual_initialization = False # Cache the indexes of included polynomial orders (for update below) # (but we do not want the index of the constant term, so exclude the # first index) self._polynomial_ar_idx = np.nonzero(self.polynomial_ar)[0][1:] self._polynomial_ma_idx = np.nonzero(self.polynomial_ma)[0][1:] self._polynomial_seasonal_ar_idx = np.nonzero( self.polynomial_seasonal_ar )[0][1:] self._polynomial_seasonal_ma_idx = np.nonzero( self.polynomial_seasonal_ma )[0][1:] # Save the indices corresponding to the reduced form lag polynomial # parameters in the transition and selection matrices so that they # don't have to be recalculated for each update() start_row = self._k_states_diff end_row = start_row + self.k_ar + self.k_seasonal_ar col = self._k_states_diff if not self.hamilton_representation: self.transition_ar_params_idx = ( np.s_['transition', start_row:end_row, col] ) else: self.transition_ar_params_idx = ( np.s_['transition', col, start_row:end_row] ) start_row += 1 end_row = start_row + self.k_ma + self.k_seasonal_ma col = 0 if not self.hamilton_representation: self.selection_ma_params_idx = ( np.s_['selection', start_row:end_row, col] ) else: self.design_ma_params_idx = ( np.s_['design', col, start_row:end_row] ) # Cache indices for exog variances in the state covariance matrix if self.state_regression and self.time_varying_regression: idx = np.diag_indices(self.k_posdef) self._exog_variance_idx = ('state_cov', idx[0][-self.k_exog:], idx[1][-self.k_exog:]) def initialize_known(self, initial_state, initial_state_cov): self._manual_initialization = True self.ssm.initialize_known(initial_state, initial_state_cov) initialize_known.__doc__ = KalmanFilter.initialize_known.__doc__ def initialize_approximate_diffuse(self, variance=None): self._manual_initialization = True self.ssm.initialize_approximate_diffuse(variance) initialize_approximate_diffuse.__doc__ = ( KalmanFilter.initialize_approximate_diffuse.__doc__ ) def initialize_stationary(self): self._manual_initialization = True self.ssm.initialize_stationary() initialize_stationary.__doc__ = ( KalmanFilter.initialize_stationary.__doc__ ) def initialize_state(self, variance=None): """ Initialize state and state covariance arrays in preparation for the Kalman filter. Parameters ---------- variance : float, optional The variance for approximating diffuse initial conditions. Default can be found in the Representation class documentation. Notes ----- Initializes the ARMA component of the state space to the typical stationary values and the other components as approximate diffuse. Can be overridden be calling one of the other initialization methods before fitting the model. """ # Check if a manual initialization has already been specified if self._manual_initialization: return # If we're not enforcing stationarity, then we can't initialize a # stationary component if not self.enforce_stationarity: self.initialize_approximate_diffuse(variance) return # Otherwise, create the initial state and state covariance matrix # as from a combination of diffuse and stationary components # Create initialized non-stationary components if variance is None: variance = self.ssm.initial_variance dtype = self.ssm.transition.dtype initial_state = np.zeros(self.k_states, dtype=dtype) initial_state_cov = np.eye(self.k_states, dtype=dtype) * variance # Get the offsets (from the bottom or bottom right of the vector / # matrix) for the stationary component. if self.state_regression: start = -(self.k_exog + self._k_order) end = -self.k_exog if self.k_exog > 0 else None else: start = -self._k_order end = None # Add in the initialized stationary components if self._k_order > 0: selection_stationary = self.ssm.selection[start:end, :, 0] selected_state_cov_stationary = np.dot( np.dot(selection_stationary, self.ssm.state_cov[:, :, 0]), selection_stationary.T ) initial_state_cov_stationary = solve_discrete_lyapunov( self.ssm.transition[start:end, start:end, 0], selected_state_cov_stationary ) initial_state_cov[start:end, start:end] = ( initial_state_cov_stationary ) self.ssm.initialize_known(initial_state, initial_state_cov) @property def initial_design(self): """Initial design matrix""" # Basic design matrix design = np.r_[ [1] * self._k_diff, ([0] * (self.k_seasons - 1) + [1]) * self._k_seasonal_diff, [1] * self.state_error, [0] * (self._k_order - 1) ] # If we have exogenous regressors included as part of the state vector # then the exogenous data is incorporated as a time-varying component # of the design matrix if self.state_regression: if self._k_order > 0: design = np.c_[ np.reshape( np.repeat(design, self.nobs), (design.shape[0], self.nobs) ).T, self.exog ].T[None, :, :] else: design = self.exog.T[None, :, :] return design @property def initial_state_intercept(self): """Initial state intercept vector""" # TODO make this self.k_trend > 1 and adjust the update to take # into account that if the trend is a constant, it is not time-varying if self.k_trend > 0: state_intercept = np.zeros((self.k_states, self.nobs)) else: state_intercept = np.zeros((self.k_states,)) return state_intercept @property def initial_transition(self): """Initial transition matrix""" transition = np.zeros((self.k_states, self.k_states)) # Exogenous regressors component if self.state_regression: start = -self.k_exog # T_\beta transition[start:, start:] = np.eye(self.k_exog) # Autoregressive component start = -(self.k_exog + self._k_order) end = -self.k_exog if self.k_exog > 0 else None else: # Autoregressive component start = -self._k_order end = None # T_c transition[start:end, start:end] = companion_matrix(self._k_order) if self.hamilton_representation: transition[start:end, start:end] = np.transpose( companion_matrix(self._k_order) ) # Seasonal differencing component # T^* if self._k_seasonal_diff > 0: seasonal_companion = companion_matrix(self.k_seasons).T seasonal_companion[0, -1] = 1 for d in range(self._k_seasonal_diff): start = self._k_diff + d * self.k_seasons end = self._k_diff + (d + 1) * self.k_seasons # T_c^* transition[start:end, start:end] = seasonal_companion # i for i in range(d + 1, self._k_seasonal_diff): transition[start, end + self.k_seasons - 1] = 1 # \iota transition[start, self._k_states_diff] = 1 # Differencing component if self._k_diff > 0: idx = np.triu_indices(self._k_diff) # T^** transition[idx] = 1 # [0 1] if self.k_seasons > 0: start = self._k_diff end = self._k_states_diff transition[:self._k_diff, start:end] = ( ([0] * (self.k_seasons - 1) + [1]) * self._k_seasonal_diff ) # [1 0] column = self._k_states_diff transition[:self._k_diff, column] = 1 return transition @property def initial_selection(self): """Initial selection matrix""" if not (self.state_regression and self.time_varying_regression): if self.k_posdef > 0: selection = np.r_[ [0] * (self._k_states_diff), [1] * (self._k_order > 0), [0] * (self._k_order - 1), [0] * ((1 - self.mle_regression) * self.k_exog) ][:, None] else: selection = np.zeros((self.k_states, 0)) else: selection = np.zeros((self.k_states, self.k_posdef)) # Typical state variance if self._k_order > 0: selection[0, 0] = 1 # Time-varying regression coefficient variances for i in range(self.k_exog, 0, -1): selection[-i, -i] = 1 return selection def filter(self, params, transformed=True, cov_type=None, return_ssm=False, **kwargs): params = np.array(params, ndmin=1) # Transform parameters if necessary if not transformed: params = self.transform_params(params) transformed = True # Get the state space output result = super(SARIMAX, self).filter(params, transformed, cov_type, return_ssm=True, **kwargs) # Wrap in a results object if not return_ssm: result_kwargs = {} if cov_type is not None: result_kwargs['cov_type'] = cov_type result = SARIMAXResultsWrapper( SARIMAXResults(self, params, result, **result_kwargs) ) return result @staticmethod def _conditional_sum_squares(endog, k_ar, polynomial_ar, k_ma, polynomial_ma, k_trend=0, trend_data=None): k = 2 * k_ma r = max(k + k_ma, k_ar) k_params_ar = 0 if k_ar == 0 else len(polynomial_ar.nonzero()[0]) - 1 k_params_ma = 0 if k_ma == 0 else len(polynomial_ma.nonzero()[0]) - 1 residuals = None if k_ar + k_ma + k_trend > 0: # If we have MA terms, get residuals from an AR(k) model to use # as data for conditional sum of squares estimates of the MA # parameters if k_ma > 0: Y = endog[k:] X = lagmat(endog, k, trim='both') params_ar = np.linalg.pinv(X).dot(Y) residuals = Y - np.dot(X, params_ar) # Run an ARMA(p,q) model using the just computed residuals as data Y = endog[r:] X = np.empty((Y.shape[0], 0)) if k_trend > 0: if trend_data is None: raise ValueError('Trend data must be provided if' ' `k_trend` > 0.') X = np.c_[X, trend_data[:(-r if r > 0 else None), :]] if k_ar > 0: cols = polynomial_ar.nonzero()[0][1:] - 1 X = np.c_[X, lagmat(endog, k_ar)[r:, cols]] if k_ma > 0: cols = polynomial_ma.nonzero()[0][1:] - 1 X = np.c_[X, lagmat(residuals, k_ma)[r-k:, cols]] # Get the array of [ar_params, ma_params] params = np.linalg.pinv(X).dot(Y) residuals = Y - np.dot(X, params) # Default output params_trend = [] params_ar = [] params_ma = [] params_variance = [] # Get the params offset = 0 if k_trend > 0: params_trend = params[offset:k_trend + offset] offset += k_trend if k_ar > 0: params_ar = params[offset:k_params_ar + offset] offset += k_params_ar if k_ma > 0: params_ma = params[offset:k_params_ma + offset] offset += k_params_ma if residuals is not None: params_variance = (residuals[k_params_ma:]**2).mean() return (params_trend, params_ar, params_ma, params_variance) @property def start_params(self): """ Starting parameters for maximum likelihood estimation """ # Perform differencing if necessary (i.e. if simple differencing is # false so that the state-space model will use the entire dataset) trend_data = self._trend_data if not self.simple_differencing and ( self._k_diff > 0 or self._k_seasonal_diff > 0): endog = diff(self.endog, self._k_diff, self._k_seasonal_diff, self.k_seasons) if self.exog is not None: exog = diff(self.exog, self._k_diff, self._k_seasonal_diff, self.k_seasons) else: exog = None trend_data = trend_data[:endog.shape[0], :] else: endog = self.endog.copy() exog = self.exog.copy() if self.exog is not None else None endog = endog.squeeze() # Although the Kalman filter can deal with missing values in endog, # conditional sum of squares cannot if np.any(np.isnan(endog)): endog = endog[~np.isnan(endog)] if exog is not None: exog = exog[~np.isnan(endog)] if trend_data is not None: trend_data = trend_data[~np.isnan(endog)] # Regression effects via OLS params_exog = [] if self.k_exog > 0: params_exog = np.linalg.pinv(exog).dot(endog) endog -= np.dot(exog, params_exog) if self.state_regression: params_exog = [] # Non-seasonal ARMA component and trend (params_trend, params_ar, params_ma, params_variance) = self._conditional_sum_squares( endog, self.k_ar, self.polynomial_ar, self.k_ma, self.polynomial_ma, self.k_trend, trend_data ) # If we have estimated non-stationary start parameters but enforce # stationarity is on, raise an error invalid_ar = ( self.k_ar > 0 and self.enforce_stationarity and not is_invertible(np.r_[1, -params_ar]) ) if invalid_ar: raise ValueError('Non-stationary starting autoregressive' ' parameters found with `enforce_stationarity`' ' set to True.') # If we have estimated non-invertible start parameters but enforce # invertibility is on, raise an error invalid_ma = ( self.k_ma > 0 and self.enforce_invertibility and not is_invertible(np.r_[1, params_ma]) ) if invalid_ma: raise ValueError('non-invertible starting MA parameters found' ' with `enforce_invertibility` set to True.') # Seasonal Parameters _, params_seasonal_ar, params_seasonal_ma, params_seasonal_variance = ( self._conditional_sum_squares( endog, self.k_seasonal_ar, self.polynomial_seasonal_ar, self.k_seasonal_ma, self.polynomial_seasonal_ma ) ) # If we have estimated non-stationary start parameters but enforce # stationarity is on, raise an error invalid_seasonal_ar = ( self.k_seasonal_ar > 0 and self.enforce_stationarity and not is_invertible(np.r_[1, -params_seasonal_ar]) ) if invalid_seasonal_ar: raise ValueError('Non-stationary starting autoregressive' ' parameters found with `enforce_stationarity`' ' set to True.') # If we have estimated non-invertible start parameters but enforce # invertibility is on, raise an error invalid_seasonal_ma = ( self.k_seasonal_ma > 0 and self.enforce_invertibility and not is_invertible(np.r_[1, params_seasonal_ma]) ) if invalid_seasonal_ma: raise ValueError('non-invertible starting seasonal moving average' ' parameters found with `enforce_invertibility`' ' set to True.') # Variances params_exog_variance = [] if self.state_regression and self.time_varying_regression: # TODO how to set the initial variance parameters? params_exog_variance = [1] * self.k_exog if self.state_error and params_variance == []: if not params_seasonal_variance == []: params_variance = params_seasonal_variance elif self.k_exog > 0: params_variance = np.dot(endog, endog) else: params_variance = 1 params_measurement_variance = 1 if self.measurement_error else [] # Combine all parameters return np.r_[ params_trend, params_exog, params_ar, params_ma, params_seasonal_ar, params_seasonal_ma, params_exog_variance, params_measurement_variance, params_variance ] @property def endog_names(self, latex=False): """Names of endogenous variables""" diff = '' if self.k_diff > 0: if self.k_diff == 1: diff = '\Delta' if latex else 'D' else: diff = ('\Delta^%d' if latex else 'D%d') % self.k_diff seasonal_diff = '' if self.k_seasonal_diff > 0: if self.k_seasonal_diff == 1: seasonal_diff = (('\Delta_%d' if latex else 'DS%d') % (self.k_seasons)) else: seasonal_diff = (('\Delta_%d^%d' if latex else 'D%dS%d') % (self.k_seasonal_diff, self.k_seasons)) endog_diff = self.simple_differencing if endog_diff and self.k_diff > 0 and self.k_seasonal_diff > 0: return (('%s%s %s' if latex else '%s.%s.%s') % (diff, seasonal_diff, self.data.ynames)) elif endog_diff and self.k_diff > 0: return (('%s %s' if latex else '%s.%s') % (diff, self.data.ynames)) elif endog_diff and self.k_seasonal_diff > 0: return (('%s %s' if latex else '%s.%s') % (seasonal_diff, self.data.ynames)) else: return self.data.ynames params_complete = [ 'trend', 'exog', 'ar', 'ma', 'seasonal_ar', 'seasonal_ma', 'exog_variance', 'measurement_variance', 'variance' ] @property def param_terms(self): """ List of parameters actually included in the model, in sorted order. TODO Make this an OrderedDict with slice or indices as the values. """ model_orders = self.model_orders # Get basic list from model orders params = [ order for order in self.params_complete if model_orders[order] > 0 ] # k_exog may be positive without associated parameters if it is in the # state vector if 'exog' in params and not self.mle_regression: params.remove('exog') return params @property def param_names(self): """ List of human readable parameter names (for parameters actually included in the model). """ params_sort_order = self.param_terms model_names = self.model_names return [ name for param in params_sort_order for name in model_names[param] ] @property def model_orders(self): """ The orders of each of the polynomials in the model. """ return { 'trend': self.k_trend, 'exog': self.k_exog, 'ar': self.k_ar, 'ma': self.k_ma, 'seasonal_ar': self.k_seasonal_ar, 'seasonal_ma': self.k_seasonal_ma, 'reduced_ar': self.k_ar + self.k_seasonal_ar, 'reduced_ma': self.k_ma + self.k_seasonal_ma, 'exog_variance': self.k_exog if ( self.state_regression and self.time_varying_regression) else 0, 'measurement_variance': int(self.measurement_error), 'variance': int(self.state_error), } @property def model_names(self): """ The plain text names of all possible model parameters. """ return self._get_model_names(latex=False) @property def model_latex_names(self): """ The latex names of all possible model parameters. """ return self._get_model_names(latex=True) def _get_model_names(self, latex=False): names = { 'trend': None, 'exog': None, 'ar': None, 'ma': None, 'seasonal_ar': None, 'seasonal_ma': None, 'reduced_ar': None, 'reduced_ma': None, 'exog_variance': None, 'measurement_variance': None, 'variance': None, } # Trend if self.k_trend > 0: trend_template = 't_%d' if latex else 'trend.%d' names['trend'] = [] for i in self.polynomial_trend.nonzero()[0]: if i == 0: names['trend'].append('intercept') elif i == 1: names['trend'].append('drift') else: names['trend'].append(trend_template % i) # Exogenous coefficients if self.k_exog > 0: names['exog'] = self.exog_names # Autoregressive if self.k_ar > 0: ar_template = '$\\phi_%d$' if latex else 'ar.L%d' names['ar'] = [] for i in self.polynomial_ar.nonzero()[0][1:]: names['ar'].append(ar_template % i) # Moving Average if self.k_ma > 0: ma_template = '$\\theta_%d$' if latex else 'ma.L%d' names['ma'] = [] for i in self.polynomial_ma.nonzero()[0][1:]: names['ma'].append(ma_template % i) # Seasonal Autoregressive if self.k_seasonal_ar > 0: seasonal_ar_template = ( '$\\tilde \\phi_%d$' if latex else 'ar.S.L%d' ) names['seasonal_ar'] = [] for i in self.polynomial_seasonal_ar.nonzero()[0][1:]: names['seasonal_ar'].append(seasonal_ar_template % i) # Seasonal Moving Average if self.k_seasonal_ma > 0: seasonal_ma_template = ( '$\\tilde \\theta_%d$' if latex else 'ma.S.L%d' ) names['seasonal_ma'] = [] for i in self.polynomial_seasonal_ma.nonzero()[0][1:]: names['seasonal_ma'].append(seasonal_ma_template % i) # Reduced Form Autoregressive if self.k_ar > 0 or self.k_seasonal_ar > 0: reduced_polynomial_ar = reduced_polynomial_ar = -np.polymul( self.polynomial_ar, self.polynomial_seasonal_ar ) ar_template = '$\\Phi_%d$' if latex else 'ar.R.L%d' names['reduced_ar'] = [] for i in reduced_polynomial_ar.nonzero()[0][1:]: names['reduced_ar'].append(ar_template % i) # Reduced Form Moving Average if self.k_ma > 0 or self.k_seasonal_ma > 0: reduced_polynomial_ma = np.polymul( self.polynomial_ma, self.polynomial_seasonal_ma ) ma_template = '$\\Theta_%d$' if latex else 'ma.R.L%d' names['reduced_ma'] = [] for i in reduced_polynomial_ma.nonzero()[0][1:]: names['reduced_ma'].append(ma_template % i) # Exogenous variances if self.state_regression and self.time_varying_regression: exog_var_template = '$\\sigma_\\text{%s}^2$' if latex else 'var.%s' names['exog_variance'] = [ exog_var_template % exog_name for exog_name in self.exog_names ] # Measurement error variance if self.measurement_error: meas_var_tpl = ( '$\\sigma_\\eta^2$' if latex else 'var.measurement_error' ) names['measurement_variance'] = [meas_var_tpl] # State variance if self.state_error: var_tpl = '$\\sigma_\\zeta^2$' if latex else 'sigma2' names['variance'] = [var_tpl] return names def transform_params(self, unconstrained): """ Transform unconstrained parameters used by the optimizer to constrained parameters used in likelihood evaluation. Used primarily to enforce stationarity of the autoregressive lag polynomial, invertibility of the moving average lag polynomial, and positive variance parameters. Parameters ---------- unconstrained : array_like Unconstrained parameters used by the optimizer. Returns ------- constrained : array_like Constrained parameters used in likelihood evaluation. Notes ----- If the lag polynomial has non-consecutive powers (so that the coefficient is zero on some element of the polynomial), then the constraint function is not onto the entire space of invertible polynomials, although it only excludes a very small portion very close to the invertibility boundary. """ unconstrained = np.array(unconstrained, ndmin=1) constrained = np.zeros(unconstrained.shape, unconstrained.dtype) start = end = 0 # Retain the trend parameters if self.k_trend > 0: end += self.k_trend constrained[start:end] = unconstrained[start:end] start += self.k_trend # Retain any MLE regression coefficients if self.mle_regression: end += self.k_exog constrained[start:end] = unconstrained[start:end] start += self.k_exog # Transform the AR parameters (phi) to be stationary if self.k_ar_params > 0: end += self.k_ar_params if self.enforce_stationarity: constrained[start:end] = ( constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_ar_params # Transform the MA parameters (theta) to be invertible if self.k_ma_params > 0: end += self.k_ma_params if self.enforce_invertibility: constrained[start:end] = ( constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_ma_params # Transform the seasonal AR parameters (\tilde phi) to be stationary if self.k_seasonal_ar > 0: end += self.k_seasonal_ar_params if self.enforce_stationarity: constrained[start:end] = ( constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_seasonal_ar_params # Transform the seasonal MA parameters (\tilde theta) to be invertible if self.k_seasonal_ma_params > 0: end += self.k_seasonal_ma_params if self.enforce_invertibility: constrained[start:end] = ( constrain_stationary_univariate(unconstrained[start:end]) ) else: constrained[start:end] = unconstrained[start:end] start += self.k_seasonal_ma_params # Transform the standard deviation parameters to be positive if self.state_regression and self.time_varying_regression: end += self.k_exog constrained[start:end] = unconstrained[start:end]**2 start += self.k_exog if self.measurement_error: constrained[start] = unconstrained[start]**2 start += 1 end += 1 if self.state_error: constrained[start] = unconstrained[start]**2 # start += 1 # end += 1 return constrained def untransform_params(self, constrained): """ Transform constrained parameters used in likelihood evaluation to unconstrained parameters used by the optimizer Used primarily to reverse enforcement of stationarity of the autoregressive lag polynomial and invertibility of the moving average lag polynomial. Parameters ---------- constrained : array_like Constrained parameters used in likelihood evaluation. Returns ------- constrained : array_like Unconstrained parameters used by the optimizer. Notes ----- If the lag polynomial has non-consecutive powers (so that the coefficient is zero on some element of the polynomial), then the constraint function is not onto the entire space of invertible polynomials, although it only excludes a very small portion very close to the invertibility boundary. """ constrained = np.array(constrained, ndmin=1) unconstrained = np.zeros(constrained.shape, constrained.dtype) start = end = 0 # Retain the trend parameters if self.k_trend > 0: end += self.k_trend unconstrained[start:end] = constrained[start:end] start += self.k_trend # Retain any MLE regression coefficients if self.mle_regression: end += self.k_exog unconstrained[start:end] = constrained[start:end] start += self.k_exog # Transform the AR parameters (phi) to be stationary if self.k_ar_params > 0: end += self.k_ar_params if self.enforce_stationarity: unconstrained[start:end] = ( unconstrain_stationary_univariate(constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_ar_params # Transform the MA parameters (theta) to be invertible if self.k_ma_params > 0: end += self.k_ma_params if self.enforce_invertibility: unconstrained[start:end] = ( unconstrain_stationary_univariate(constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_ma_params # Transform the seasonal AR parameters (\tilde phi) to be stationary if self.k_seasonal_ar > 0: end += self.k_seasonal_ar_params if self.enforce_stationarity: unconstrained[start:end] = ( unconstrain_stationary_univariate(constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_seasonal_ar_params # Transform the seasonal MA parameters (\tilde theta) to be invertible if self.k_seasonal_ma_params > 0: end += self.k_seasonal_ma_params if self.enforce_invertibility: unconstrained[start:end] = ( unconstrain_stationary_univariate(constrained[start:end]) ) else: unconstrained[start:end] = constrained[start:end] start += self.k_seasonal_ma_params # Untransform the standard deviation if self.state_regression and self.time_varying_regression: end += self.k_exog unconstrained[start:end] = constrained[start:end]**0.5 start += self.k_exog if self.measurement_error: unconstrained[start] = constrained[start]**0.5 start += 1 end += 1 if self.state_error: unconstrained[start] = constrained[start]**0.5 # start += 1 # end += 1 return unconstrained def update(self, params, transformed=True): """ Update the parameters of the model Updates the representation matrices to fill in the new parameter values. Parameters ---------- params : array_like Array of new parameters. transformed : boolean, optional Whether or not `params` is already transformed. If set to False, `transform_params` is called. Default is True.. Returns ------- params : array_like Array of parameters. """ params = super(SARIMAX, self).update(params, transformed) params_trend = None params_exog = None params_ar = None params_ma = None params_seasonal_ar = None params_seasonal_ma = None params_exog_variance = None params_measurement_variance = None params_variance = None # Extract the parameters start = end = 0 end += self.k_trend params_trend = params[start:end] start += self.k_trend if self.mle_regression: end += self.k_exog params_exog = params[start:end] start += self.k_exog end += self.k_ar_params params_ar = params[start:end] start += self.k_ar_params end += self.k_ma_params params_ma = params[start:end] start += self.k_ma_params end += self.k_seasonal_ar_params params_seasonal_ar = params[start:end] start += self.k_seasonal_ar_params end += self.k_seasonal_ma_params params_seasonal_ma = params[start:end] start += self.k_seasonal_ma_params if self.state_regression and self.time_varying_regression: end += self.k_exog params_exog_variance = params[start:end] start += self.k_exog if self.measurement_error: params_measurement_variance = params[start] start += 1 end += 1 if self.state_error: params_variance = params[start] # start += 1 # end += 1 # Update lag polynomials if self.k_ar > 0: if self.polynomial_ar.dtype == params.dtype: self.polynomial_ar[self._polynomial_ar_idx] = -params_ar else: polynomial_ar = self.polynomial_ar.real.astype(params.dtype) polynomial_ar[self._polynomial_ar_idx] = -params_ar self.polynomial_ar = polynomial_ar if self.k_ma > 0: if self.polynomial_ma.dtype == params.dtype: self.polynomial_ma[self._polynomial_ma_idx] = params_ma else: polynomial_ma = self.polynomial_ma.real.astype(params.dtype) polynomial_ma[self._polynomial_ma_idx] = params_ma self.polynomial_ma = polynomial_ma if self.k_seasonal_ar > 0: idx = self._polynomial_seasonal_ar_idx if self.polynomial_seasonal_ar.dtype == params.dtype: self.polynomial_seasonal_ar[idx] = -params_seasonal_ar else: polynomial_seasonal_ar = ( self.polynomial_seasonal_ar.real.astype(params.dtype) ) polynomial_seasonal_ar[idx] = -params_seasonal_ar self.polynomial_seasonal_ar = polynomial_seasonal_ar if self.k_seasonal_ma > 0: idx = self._polynomial_seasonal_ma_idx if self.polynomial_seasonal_ma.dtype == params.dtype: self.polynomial_seasonal_ma[idx] = params_seasonal_ma else: polynomial_seasonal_ma = ( self.polynomial_seasonal_ma.real.astype(params.dtype) ) polynomial_seasonal_ma[idx] = params_seasonal_ma self.polynomial_seasonal_ma = polynomial_seasonal_ma # Get the reduced form lag polynomial terms by multiplying the regular # and seasonal lag polynomials # Note: that although the numpy np.polymul examples assume that they # are ordered from highest degree to lowest, whereas our are from # lowest to highest, it does not matter. if self.k_seasonal_ar > 0: reduced_polynomial_ar = -np.polymul( self.polynomial_ar, self.polynomial_seasonal_ar ) else: reduced_polynomial_ar = -self.polynomial_ar if self.k_seasonal_ma > 0: reduced_polynomial_ma = np.polymul( self.polynomial_ma, self.polynomial_seasonal_ma ) else: reduced_polynomial_ma = self.polynomial_ma # Observation intercept # Exogenous data with MLE estimation of parameters enters through a # time-varying observation intercept (is equivalent to simply # subtracting it out of the endogenous variable first) if self.mle_regression: self.ssm['obs_intercept'] = np.dot(self.exog, params_exog)[None, :] # State intercept (Harvey) or additional observation intercept # (Hamilton) # SARIMA trend enters through the a time-varying state intercept, # associated with the first row of the stationary component of the # state vector (i.e. the first element of the state vector following # any differencing elements) if self.k_trend > 0: data = np.dot(self._trend_data, params_trend).astype(params.dtype) if not self.hamilton_representation: self.ssm['state_intercept', self._k_states_diff, :] = data else: # The way the trend enters in the Hamilton representation means # that the parameter is not an ``intercept'' but instead the # mean of the process. The trend values in `data` are meant for # an intercept, and so must be transformed to represent the # mean instead if self.hamilton_representation: data /= np.sum(-reduced_polynomial_ar) # If we already set the observation intercept for MLE # regression, just add to it if self.mle_regression: self.ssm.obs_intercept += data[None, :] # Otherwise set it directly else: self.ssm.obs_intercept = data[None, :] # Observation covariance matrix if self.measurement_error: self.ssm['obs_cov', 0, 0] = params_measurement_variance # Transition matrix if self.k_ar > 0 or self.k_seasonal_ar > 0: self.ssm[self.transition_ar_params_idx] = reduced_polynomial_ar[1:] elif not self.ssm.transition.dtype == params.dtype: # This is required if the transition matrix is not really in use # (e.g. for an MA(q) process) so that it's dtype never changes as # the parameters' dtype changes. This changes the dtype manually. self.ssm.transition = self.ssm.transition.real.astype(params.dtype) # Selection matrix (Harvey) or Design matrix (Hamilton) if self.k_ma > 0 or self.k_seasonal_ma > 0: if not self.hamilton_representation: self.ssm[self.selection_ma_params_idx] = ( reduced_polynomial_ma[1:] ) else: self.ssm[self.design_ma_params_idx] = reduced_polynomial_ma[1:] # State covariance matrix if self.k_posdef > 0: self.ssm['state_cov', 0, 0] = params_variance if self.state_regression and self.time_varying_regression: self.ssm[self._exog_variance_idx] = params_exog_variance # Initialize if not self._manual_initialization: self.initialize_state() return params class SARIMAXResults(MLEResults): """ Class to hold results from fitting an SARIMAX model. Parameters ---------- model : SARIMAX instance The fitted model instance Attributes ---------- specification : dictionary Dictionary including all attributes from the SARIMAX model instance. polynomial_ar : array Array containing autoregressive lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_ma : array Array containing moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_seasonal_ar : array Array containing seasonal autoregressive lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_seasonal_ma : array Array containing seasonal moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_trend : array Array containing trend polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). model_orders : list of int The orders of each of the polynomials in the model. param_terms : list of str List of parameters actually included in the model, in sorted order. See Also -------- statsmodels.tsa.statespace.kalman_filter.FilterResults statsmodels.tsa.statespace.mlemodel.MLEResults """ def __init__(self, model, params, filter_results, cov_type='opg', **kwargs): super(SARIMAXResults, self).__init__(model, params, filter_results, cov_type, **kwargs) self.df_resid = np.inf # attribute required for wald tests self.specification = Bunch(**{ # Set additional model parameters 'k_seasons': self.model.k_seasons, 'measurement_error': self.model.measurement_error, 'time_varying_regression': self.model.time_varying_regression, 'mle_regression': self.model.mle_regression, 'simple_differencing': self.model.simple_differencing, 'enforce_stationarity': self.model.enforce_stationarity, 'enforce_invertibility': self.model.enforce_invertibility, 'hamilton_representation': self.model.hamilton_representation, 'order': self.model.order, 'seasonal_order': self.model.seasonal_order, # Model order 'k_diff': self.model.k_diff, 'k_seasonal_diff': self.model.k_seasonal_diff, 'k_ar': self.model.k_ar, 'k_ma': self.model.k_ma, 'k_seasonal_ar': self.model.k_seasonal_ar, 'k_seasonal_ma': self.model.k_seasonal_ma, # Param Numbers 'k_ar_params': self.model.k_ar_params, 'k_ma_params': self.model.k_ma_params, # Trend / Regression 'trend': self.model.trend, 'k_trend': self.model.k_trend, 'k_exog': self.model.k_exog, 'mle_regression': self.model.mle_regression, 'state_regression': self.model.state_regression, }) # Polynomials self.polynomial_trend = self.model.polynomial_trend self.polynomial_ar = self.model.polynomial_ar self.polynomial_ma = self.model.polynomial_ma self.polynomial_seasonal_ar = self.model.polynomial_seasonal_ar self.polynomial_seasonal_ma = self.model.polynomial_seasonal_ma self.polynomial_reduced_ar = np.polymul( self.polynomial_ar, self.polynomial_seasonal_ar ) self.polynomial_reduced_ma = np.polymul( self.polynomial_ma, self.polynomial_seasonal_ma ) # Distinguish parameters self.model_orders = self.model.model_orders self.param_terms = self.model.param_terms start = end = 0 for name in self.param_terms: end += self.model_orders[name] setattr(self, '_params_%s' % name, self.params[start:end]) start += self.model_orders[name] @cache_readonly def arroots(self): """ (array) Roots of the reduced form autoregressive lag polynomial """ return np.roots(self.polynomial_reduced_ar)**-1 @cache_readonly def maroots(self): """ (array) Roots of the reduced form moving average lag polynomial """ return np.roots(self.polynomial_reduced_ma)**-1 @cache_readonly def arfreq(self): """ (array) Frequency of the roots of the reduced form autoregressive lag polynomial """ z = self.arroots if not z.size: return return np.arctan2(z.imag, z.real) / (2 * np.pi) @cache_readonly def mafreq(self): """ (array) Frequency of the roots of the reduced form moving average lag polynomial """ z = self.maroots if not z.size: return return np.arctan2(z.imag, z.real) / (2 * np.pi) @cache_readonly def arparams(self): """ (array) Autoregressive parameters actually estimated in the model. Does not include parameters whose values are constrained to be zero. """ return self._params_ar @cache_readonly def maparams(self): """ (array) Moving average parameters actually estimated in the model. Does not include parameters whose values are constrained to be zero. """ return self._params_ma def predict(self, start=None, end=None, exog=None, dynamic=False, **kwargs): """ In-sample prediction and out-of-sample forecasting Parameters ---------- start : int, str, or datetime, optional Zero-indexed observation number at which to start forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. Default is the the zeroth observation. end : int, str, or datetime, optional Zero-indexed observation number at which to end forecasting, ie., the first forecast is start. Can also be a date string to parse or a datetime type. However, if the dates index does not have a fixed frequency, end must be an integer index if you want out of sample prediction. Default is the last observation in the sample. exog : array_like, optional If the model includes exogenous regressors, you must provide exactly enough out-of-sample values for the exogenous variables if end is beyond the last observation in the sample. dynamic : boolean, int, str, or datetime, optional Integer offset relative to `start` at which to begin dynamic prediction. Can also be an absolute date string to parse or a datetime type (these are not interpreted as offsets). Prior to this observation, true endogenous values will be used for prediction; starting with this observation and continuing through the end of prediction, forecasted endogenous values will be used instead. full_results : boolean, optional If True, returns a FilterResults instance; if False returns a tuple with forecasts, the forecast errors, and the forecast error covariance matrices. Default is False. **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- forecast : array Array of out of sample forecasts. """ if start is None: start = 0 # Handle end (e.g. date) _start = self.model._get_predict_start(start) _end, _out_of_sample = self.model._get_predict_end(end) # Handle exogenous parameters if _out_of_sample and (self.model.k_exog + self.model.k_trend > 0): # Create a new faux SARIMAX model for the extended dataset nobs = self.model.data.orig_endog.shape[0] + _out_of_sample endog = np.zeros((nobs, self.model.k_endog)) if self.model.k_exog > 0: if exog is None: raise ValueError('Out-of-sample forecasting in a model' ' with a regression component requires' ' additional exogenous values via the' ' `exog` argument.') exog = np.array(exog) required_exog_shape = (_out_of_sample, self.model.k_exog) if not exog.shape == required_exog_shape: raise ValueError('Provided exogenous values are not of the' ' appropriate shape. Required %s, got %s.' % (str(required_exog_shape), str(exog.shape))) exog = np.c_[self.model.data.orig_exog.T, exog.T].T # TODO replace with init_kwds or specification or similar model = SARIMAX( endog, exog=exog, order=self.model.order, seasonal_order=self.model.seasonal_order, trend=self.model.trend, measurement_error=self.model.measurement_error, time_varying_regression=self.model.time_varying_regression, mle_regression=self.model.mle_regression, simple_differencing=self.model.simple_differencing, enforce_stationarity=self.model.enforce_stationarity, enforce_invertibility=self.model.enforce_invertibility, hamilton_representation=self.model.hamilton_representation ) model.update(self.params) # Set the kwargs with the update time-varying state space # representation matrices for name in self.filter_results.shapes.keys(): if name == 'obs': continue mat = getattr(model.ssm, name) if mat.shape[-1] > 1: if len(mat.shape) == 2: kwargs[name] = mat[:, -_out_of_sample:] else: kwargs[name] = mat[:, :, -_out_of_sample:] elif self.model.k_exog == 0 and exog is not None: warn('Exogenous array provided to predict, but additional data not' ' required. `exog` argument ignored.') return super(SARIMAXResults, self).predict( start=start, end=end, exog=exog, dynamic=dynamic, **kwargs ) def forecast(self, steps=1, exog=None, **kwargs): """ Out-of-sample forecasts Parameters ---------- steps : int, optional The number of out of sample forecasts from the end of the sample. Default is 1. exog : array_like, optional If the model includes exogenous regressors, you must provide exactly enough out-of-sample values for the exogenous variables for each step forecasted. **kwargs Additional arguments may required for forecasting beyond the end of the sample. See `FilterResults.predict` for more details. Returns ------- forecast : array Array of out of sample forecasts. """ return super(SARIMAXResults, self).forecast(steps, exog=exog, **kwargs) def summary(self, alpha=.05, start=None): # Create the model name # See if we have an ARIMA component order = '' if self.model.k_ar + self.model.k_diff + self.model.k_ma > 0: if self.model.k_ar == self.model.k_ar_params: order_ar = self.model.k_ar else: order_ar = tuple(self.polynomial_ar.nonzero()[0][1:]) if self.model.k_ma == self.model.k_ma_params: order_ma = self.model.k_ma else: order_ma = tuple(self.polynomial_ma.nonzero()[0][1:]) # If there is simple differencing, then that is reflected in the # dependent variable name k_diff = 0 if self.model.simple_differencing else self.model.k_diff order = '(%s, %d, %s)' % (order_ar, k_diff, order_ma) # See if we have an SARIMA component seasonal_order = '' has_seasonal = ( self.model.k_seasonal_ar + self.model.k_seasonal_diff + self.model.k_seasonal_ma ) > 0 if has_seasonal: if self.model.k_ar == self.model.k_ar_params: order_seasonal_ar = ( int(self.model.k_seasonal_ar / self.model.k_seasons) ) else: order_seasonal_ar = ( tuple(self.polynomial_seasonal_ar.nonzero()[0][1:]) ) if self.model.k_ma == self.model.k_ma_params: order_seasonal_ma = ( int(self.model.k_seasonal_ma / self.model.k_seasons) ) else: order_seasonal_ma = ( tuple(self.polynomial_seasonal_ma.nonzero()[0][1:]) ) # If there is simple differencing, then that is reflected in the # dependent variable name k_seasonal_diff = self.model.k_seasonal_diff if self.model.simple_differencing: k_seasonal_diff = 0 seasonal_order = ('(%s, %d, %s, %d)' % (str(order_seasonal_ar), k_seasonal_diff, str(order_seasonal_ma), self.model.k_seasons)) if not order == '': order += 'x' model_name = ( '%s%s%s' % (self.model.__class__.__name__, order, seasonal_order) ) return super(SARIMAXResults, self).summary( alpha=alpha, start=start, model_name=model_name ) summary.__doc__ = MLEResults.summary.__doc__ class SARIMAXResultsWrapper(MLEResultsWrapper): _attrs = {} _wrap_attrs = wrap.union_dicts(MLEResultsWrapper._wrap_attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts(MLEResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(SARIMAXResultsWrapper, SARIMAXResults)
bsd-3-clause
allenai/document-qa
docqa/doc_qa_models.py
1
13498
from typing import List, Optional, Dict, Union, Set import tensorflow as tf from tensorflow import Tensor from docqa.data_processing.qa_training_data import ParagraphAndQuestionDataset, ParagraphAndQuestionSpec from docqa.encoder import DocumentAndQuestionEncoder from docqa.model import Model, Prediction from docqa.nn.embedder import WordEmbedder, CharWordEmbedder from docqa.nn.layers import SequenceMapper, SequenceBiMapper, AttentionMapper, SequenceEncoder, \ SequenceMapperWithContext, MapMulti, SequencePredictionLayer, AttentionPredictionLayer from docqa.text_preprocessor import TextPreprocessor from docqa.utils import ResourceLoader class ParagraphQuestionModel(Model): """ Base class for models that take paragraph/questions as input, handles embedding the text in a modular way. Its a bit of a hack, but at the moment we leave it up to the client to be aware of and use the `preprocessor` (if not None) before passing input to `encode`. This is in particular so the preprocessing can be done only once and before we sort/batch the input data """ def __init__(self, encoder: DocumentAndQuestionEncoder, word_embed: Optional[WordEmbedder], char_embed: Optional[CharWordEmbedder] = None, word_embed_layer: Optional[MapMulti] = None, preprocessor: Optional[TextPreprocessor] = None): if word_embed is None and char_embed is None: raise ValueError() self.preprocessor = preprocessor self.word_embed = word_embed self.char_embed = char_embed self.word_embed_layer = word_embed_layer self.encoder = encoder self._is_train_placeholder = None def init(self, corpus, loader: ResourceLoader): if self.word_embed is not None: self.word_embed.set_vocab(corpus, loader, None if self.preprocessor is None else self.preprocessor.special_tokens()) if self.char_embed is not None: self.char_embed.embeder.set_vocab(corpus) def set_inputs(self, datasets: List[ParagraphAndQuestionDataset], word_vec_loader=None): voc = set() for dataset in datasets: voc.update(dataset.get_vocab()) input_spec = datasets[0].get_spec() for dataset in datasets[1:]: input_spec += dataset.get_spec() return self.set_input_spec(input_spec, voc, word_vec_loader) def set_input_spec(self, input_spec: ParagraphAndQuestionSpec, voc: Set[str], word_vec_loader: ResourceLoader=None): if word_vec_loader is None: word_vec_loader = ResourceLoader() if self.word_embed is not None: self.word_embed.init(word_vec_loader, voc) if self.char_embed is not None: self.char_embed.embeder.init(word_vec_loader, voc) self.encoder.init(input_spec, True, self.word_embed, None if self.char_embed is None else self.char_embed.embeder) self._is_train_placeholder = tf.placeholder(tf.bool, ()) return self.encoder.get_placeholders() def get_placeholders(self): return self.encoder.get_placeholders() + [self._is_train_placeholder] def get_predictions_for(self, input_tensors: Dict[Tensor, Tensor]): is_train = input_tensors[self._is_train_placeholder] enc = self.encoder q_mask = input_tensors[enc.question_len] c_mask = input_tensors[enc.context_len] q_embed = [] c_embed = [] if enc.question_chars in input_tensors: with tf.variable_scope("char-embed"): q, c = self.char_embed.embed(is_train, (input_tensors[enc.question_chars], input_tensors[enc.question_word_len]), (input_tensors[enc.context_chars], input_tensors[enc.context_word_len])) q_embed.append(q) c_embed.append(c) if enc.question_words in input_tensors: with tf.variable_scope("word-embed"): q, c = self.word_embed.embed(is_train, (input_tensors[enc.question_words], q_mask), (input_tensors[enc.context_words], c_mask)) if self.word_embed_layer is not None: with tf.variable_scope("embed-map"): q, c = self.word_embed_layer.apply(is_train, (q, q_mask), (c, c_mask)) q_embed.append(q) c_embed.append(c) if enc.question_features in input_tensors: q_embed.append(input_tensors.get(enc.question_features)) c_embed.append(input_tensors.get(enc.context_features)) q_embed = tf.concat(q_embed, axis=2) c_embed = tf.concat(c_embed, axis=2) answer = [input_tensors[x] for x in enc.answer_encoder.get_placeholders()] return self._get_predictions_for(is_train, q_embed, q_mask, c_embed, c_mask, answer) def _get_predictions_for(self, is_train, question_embed, question_mask, context_embed, context_mask, answer) -> Prediction: raise NotImplemented() def encode(self, batch: List, is_train: bool): data = self.encoder.encode(batch, is_train) data[self._is_train_placeholder] = is_train return data def __getstate__(self): state = super().__getstate__() state["_is_train_placeholder"] = None return state def __setstate__(self, state): if "state" in state: if "preprocessor" not in state["state"]: state["state"]["preprocessor"] = None super().__setstate__(state) class ContextOnly(ParagraphQuestionModel): def __init__(self, encoder: DocumentAndQuestionEncoder, word_embed: Optional[WordEmbedder], char_embed: Optional[CharWordEmbedder], context_encoder: SequenceMapper, prediction: SequencePredictionLayer): super().__init__(encoder, word_embed, char_embed) self.context_encoder = context_encoder self.prediction = prediction def _get_predictions_for(self, is_train, question_embed, question_mask, context_embed, context_mask, answer) -> Prediction: with tf.variable_scope("encode"): self.context_encoder.apply(is_train, context_embed, context_mask) with tf.variable_scope("predict"): return self.prediction.apply(is_train, context_embed, answer, context_mask) class Attention(ParagraphQuestionModel): """ Model that encodes the question and context, then applies an attention mechanism between the two to produce a query-aware context representation, which is used to make a prediction. """ def __init__(self, encoder: DocumentAndQuestionEncoder, preprocess: Optional[TextPreprocessor], word_embed: Optional[WordEmbedder], word_embed_layer: Optional[MapMulti], char_embed: Optional[CharWordEmbedder], embed_mapper: Optional[SequenceMapper], question_mapper: Optional[SequenceMapper], context_mapper: Optional[SequenceMapper], memory_builder: SequenceBiMapper, attention: AttentionMapper, match_encoder: SequenceMapper, predictor: Union[SequencePredictionLayer, AttentionPredictionLayer]): super().__init__(encoder, word_embed, char_embed, word_embed_layer, preprocess) self.embed_mapper = embed_mapper self.question_mapper = question_mapper self.context_mapper = context_mapper self.memory_builder = memory_builder self.attention = attention self.match_encoder = match_encoder self.predictor = predictor def _get_predictions_for(self, is_train, question_rep, question_mask, context_rep, context_mask, answer) -> Prediction: if self.embed_mapper is not None: with tf.variable_scope("map_embed"): context_rep = self.embed_mapper.apply(is_train, context_rep, context_mask) with tf.variable_scope("map_embed", reuse=True): question_rep = self.embed_mapper.apply(is_train, question_rep, question_mask) if self.question_mapper is not None: with tf.variable_scope("map_question"): question_rep = self.question_mapper.apply(is_train, question_rep, question_mask) if self.context_mapper is not None: with tf.variable_scope("map_context"): context_rep = self.context_mapper.apply(is_train, context_rep, context_mask) with tf.variable_scope("buid_memories"): keys, memories = self.memory_builder.apply(is_train, question_rep, question_mask) with tf.variable_scope("apply_attention"): context_rep = self.attention.apply(is_train, context_rep, keys, memories, context_mask, question_mask) if self.match_encoder is not None: with tf.variable_scope("process_attention"): context_rep = self.match_encoder.apply(is_train, context_rep, context_mask) with tf.variable_scope("predict"): if isinstance(self.predictor, AttentionPredictionLayer): return self.predictor.apply(is_train, context_rep, question_rep, answer, context_mask, question_mask) else: return self.predictor.apply(is_train, context_rep, answer, context_mask) class AttentionAndEncode(ParagraphQuestionModel): def __init__(self, encoder: DocumentAndQuestionEncoder, word_embed: Optional[WordEmbedder], word_embed_layer: Optional[MapMulti], char_embed: Optional[CharWordEmbedder], embed_mapper: Optional[SequenceMapper], question_mapper: Optional[SequenceMapper], question_encoder: SequenceEncoder, context_mapper: Optional[SequenceMapper], memory_builder: SequenceBiMapper, attention: AttentionMapper, post_attention_mapper: Optional[SequenceMapper], contextual_mapper: SequenceMapperWithContext, post_context_mapper: Optional[SequenceMapper], predictor: SequencePredictionLayer): super().__init__(encoder, word_embed, char_embed, word_embed_layer) self.question_encoder = question_encoder self.embed_mapper = embed_mapper self.question_mapper = question_mapper self.context_mapper = context_mapper self.memory_builder = memory_builder self.contextual_mapper = contextual_mapper self.attention = attention self.post_attention_mapper = post_attention_mapper self.post_context_mapper = post_context_mapper self.predictor = predictor def _get_predictions_for(self, is_train, question_rep, question_mask, context_rep, context_mask, answer) -> Prediction: if self.embed_mapper is not None: with tf.variable_scope("map_embed"): context_rep = self.embed_mapper.apply(is_train, context_rep, context_mask) with tf.variable_scope("map_embed", reuse=True): question_rep = self.embed_mapper.apply(is_train, question_rep, question_mask) if self.question_mapper is not None: with tf.variable_scope("map_question"): question_rep = self.question_mapper.apply(is_train, question_rep, question_mask) if self.context_mapper is not None: with tf.variable_scope("map_context"): context_rep = self.context_mapper.apply(is_train, context_rep, context_mask) with tf.variable_scope("build_memories"): keys, memories = self.memory_builder.apply(is_train, question_rep, question_mask) with tf.variable_scope("apply_attention"): context_rep = self.attention.apply(is_train, context_rep, keys, memories, context_mask, question_mask) if self.post_attention_mapper is not None: with tf.variable_scope("process_attention"): context_rep = self.post_attention_mapper.apply(is_train, context_rep, context_mask) with tf.variable_scope("encode_question"): question_encoded = self.question_encoder.apply(is_train, question_rep, question_mask) with tf.variable_scope("map_with_context"): context_rep = self.contextual_mapper.apply(is_train, context_rep, question_encoded, context_mask) if self.post_context_mapper is not None: with tf.variable_scope("process_context_mapped"): context_rep = self.post_context_mapper.apply(is_train, context_rep, context_mask) with tf.variable_scope("predict"): return self.predictor.apply(is_train, context_rep, answer, context_mask)
apache-2.0
google/referring-manipulation
third_party/blended_diffusion/guided_diffusion/guided_diffusion/dist_util.py
2
2424
""" Helpers for distributed training. """ import io import os import socket import blobfile as bf from mpi4py import MPI import torch as th import torch.distributed as dist # Change this to reflect your cluster layout. # The GPU for a given rank is (rank % GPUS_PER_NODE). GPUS_PER_NODE = 8 SETUP_RETRY_COUNT = 3 def setup_dist(): """ Setup a distributed process group. """ if dist.is_initialized(): return os.environ["CUDA_VISIBLE_DEVICES"] = f"{MPI.COMM_WORLD.Get_rank() % GPUS_PER_NODE}" comm = MPI.COMM_WORLD backend = "gloo" if not th.cuda.is_available() else "nccl" if backend == "gloo": hostname = "localhost" else: hostname = socket.gethostbyname(socket.getfqdn()) os.environ["MASTER_ADDR"] = comm.bcast(hostname, root=0) os.environ["RANK"] = str(comm.rank) os.environ["WORLD_SIZE"] = str(comm.size) port = comm.bcast(_find_free_port(), root=0) os.environ["MASTER_PORT"] = str(port) dist.init_process_group(backend=backend, init_method="env://") def dev(): """ Get the device to use for torch.distributed. """ if th.cuda.is_available(): return th.device(f"cuda") return th.device("cpu") def load_state_dict(path, **kwargs): """ Load a PyTorch file without redundant fetches across MPI ranks. """ chunk_size = 2 ** 30 # MPI has a relatively small size limit if MPI.COMM_WORLD.Get_rank() == 0: with bf.BlobFile(path, "rb") as f: data = f.read() num_chunks = len(data) // chunk_size if len(data) % chunk_size: num_chunks += 1 MPI.COMM_WORLD.bcast(num_chunks) for i in range(0, len(data), chunk_size): MPI.COMM_WORLD.bcast(data[i : i + chunk_size]) else: num_chunks = MPI.COMM_WORLD.bcast(None) data = bytes() for _ in range(num_chunks): data += MPI.COMM_WORLD.bcast(None) return th.load(io.BytesIO(data), **kwargs) def sync_params(params): """ Synchronize a sequence of Tensors across ranks from rank 0. """ for p in params: with th.no_grad(): dist.broadcast(p, 0) def _find_free_port(): try: s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(("", 0)) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) return s.getsockname()[1] finally: s.close()
apache-2.0
tqchen/tinyflow
example/mnist_lenet.py
2
2061
"""TinyFlow Example: LeNet for Digits classification. This code uses automatic variable shape inference for shorter code. """ import tinyflow as tf from tinyflow.datasets import get_mnist # Create the model x = tf.placeholder(tf.float32) conv1 = tf.nn.conv2d(x, num_filter=20, ksize=[1, 5, 5, 1], name="conv1", no_bias=False) tanh1 = tf.tanh(conv1) pool1 = tf.nn.max_pool(tanh1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1]) conv2 = tf.nn.conv2d(pool1, num_filter=50, ksize=[1, 5, 5, 1], name="conv2", no_bias=False) tanh2 = tf.tanh(conv2) pool2 = tf.nn.max_pool(tanh2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1]) flatten = tf.nn.flatten_layer(pool2) fc1 = tf.nn.linear(flatten, num_hidden=500, name="fc1") tanh3 = tf.tanh(fc1) fc2 = tf.nn.linear(tanh3, num_hidden=10, name="fc2") # define loss label = tf.placeholder(tf.float32) cross_entropy = tf.nn.mean_sparse_softmax_cross_entropy_with_logits(fc2, label) train_step = tf.train.AdamOptimizer(0.005).minimize(cross_entropy) sess = tf.Session(config='gpu') # Auromatic variable shape inference API, infers the shape and initialize the weights. known_shape = {x: [100, 1, 28, 28], label: [100]} stdev = 0.01 init_step = [] for v, name, shape in tf.infer_variable_shapes( cross_entropy, feed_dict=known_shape): init_step.append(tf.assign(v, tf.normal(shape, stdev))) print("shape[%s]=%s" % (name, str(shape))) sess.run(init_step) sess.run(tf.initialize_all_variables()) # get the mnist dataset mnist = get_mnist(flatten=False, onehot=False) print_period = 1000 for epoch in range(10): sum_loss = 0.0 num_batch = 600 for i in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(100) loss, _ = sess.run([cross_entropy, train_step], feed_dict={x: batch_xs, label:batch_ys}) sum_loss += loss print("epoch[%d] cross_entropy=%g" % (epoch, sum_loss /num_batch)) correct_prediction = tf.equal(tf.argmax(fc2, 1), label) accuracy = tf.reduce_mean(correct_prediction) print(sess.run(accuracy, feed_dict={x: mnist.test.images, label: mnist.test.labels}))
apache-2.0
nelson-liu/scikit-learn
sklearn/linear_model/tests/test_bayes.py
14
2640
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_return_std(): # Test return_std option for both Bayesian regressors def f(X): return np.dot(X, w) + b def f_noise(X, noise_mult): return f(X) + np.random.randn(X.shape[0])*noise_mult d = 5 n_train = 50 n_test = 10 w = np.array([1.0, 0.0, 1.0, -1.0, 0.0]) b = 1.0 X = np.random.random((n_train, d)) X_test = np.random.random((n_test, d)) for decimal, noise_mult in enumerate([1, 0.1, 0.01]): y = f_noise(X, noise_mult) m1 = BayesianRidge() m1.fit(X, y) y_mean1, y_std1 = m1.predict(X_test, return_std=True) assert_array_almost_equal(y_std1, noise_mult, decimal=decimal) m2 = ARDRegression() m2.fit(X, y) y_mean2, y_std2 = m2.predict(X_test, return_std=True) assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
bsd-3-clause
0x0all/nupic
examples/opf/experiments/missing_record/simple_0/description.py
17
1725
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- ## This file defines parameters for a prediction experiment. import os from nupic.frameworks.opf.expdescriptionhelpers import importBaseDescription # the sub-experiment configuration config = \ { 'dataSource': 'file://' + os.path.join(os.path.dirname(__file__), '../datasets/simple_0.csv'), 'windowSize': 25, 'modelParams': { 'sensorParams': { 'verbosity': 0, 'encoders': { 'timestamp_timeOfDay': None, 'timestamp_dayOfWeek': None, 'field2': None, } }, 'clParams': { 'clVerbosity': 0, } } } mod = importBaseDescription('../base/description.py', config) locals().update(mod.__dict__)
gpl-3.0
0x0all/nupic
py/regions/ImageSensor.py
2
128845
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ This file defines ImageSensor, an extensible sensor for images. """ import os import re import sys import shutil import inspect import cPickle as pickle import copy from base64 import b64encode, b64decode from unicodedata import normalize from PyRegion import PyRegion import numpy from PIL import (Image, ImageChops, ImageDraw) from nupic.bindings.math import GetNTAReal RealNumpyDType = GetNTAReal() #from nupic.regions.PyRegion import (PyNode, # NodeSpec, # NodeSpecItem, # RealTypeName, # RealNumpyDType) #from nupic.regions import PyNode as PyNodeModule from nupic.image import (serializeImage, deserializeImage, imageExtensions) def containsConvolutionPostFilter(postFilters): """Determine if the post filters contain a convolution filter""" for p in postFilters: if p[0].endswith('Convolution'): return True return False class ImageSensor(PyRegion): """ ImageSensor is an extensible sensor for grayscale and black and white images. It uses 'filter' and 'explorer' plugins to do advanced image processing and training. It loads images either from files on disk or directly from the Numenta tools. There are several commands for loading images: - loadSingleImage, for loading a single image file from disk - loadMultipleImages, for loading multiple image files from disk - loadSerializedImage, for receiving a serialized image directly The loadSingleImage and loadMultipleImage commands don't actually load images into memory until the images are needed. Furthermore, the filters (see below) are not run until needed. This keeps ImageSensor's memory usage low, making it possible to use large datasets and run many filters. There is also a 'memoryLimit' parameter, which caps the total amount of memory to be used for storing images. ImageSensor will automatically unload images and filter outputs as necessary to stay within the limit. ImageSensor does not necessarily present each image to the bottom nodes of the network once; rather, the explorer plugin dictates the movement of the sensor across the image. Typically, the sensor will sweep over each image for many iterations, in order to help the network generate invariance. The filter plugins are located in regions/ImageSensorFilters. Bundled filters include scaling, contrast normalization, and Gabor filters. To make a new filter, subclass BaseFilter (using the other filters as examples), and drop the new filter in the ImageSensorFilters directory. The explorer plugins, located in regions/ImageSensorExplorers, control how the sensor moves through the set of input images, their filtered versions, and possible locations of the sensor window on the image. You may create new explorers by subclassing BaseExplorer and putting them in the ImageSensorExplorers directory. The documentation for the BaseExplorer class contains detailed information on explorers. Only the 'width', 'height', and 'depth' parameters need to be set when the sensor is first constructed, though other parameters may be set at that time. Some ImageSensor parameters may need to be changed for each level of level-by-level training. For example, Pictures trains a single node at each level and then clones the trained node to all other nodes at the same level. Only some bottom-level nodes are enabled, except when training the top node. Thus, the Pictures example changes ImageSensor's enabledWidth and enabledHeight parameters with each level of training. In many cases, users may wish to change the explorer for each level of training. Some explorers can calculate ahead of time how many iterations will be necessary to explorer all the images, though explorers that move randomly cannot. If you are using one of the deterministic explorers, such as ExhaustiveSweep, you can use ImageSensor's numIterations parameter to get the total number of iterations for the loaded images. Changing the explorer or images will change the number of iterations, so make sure to check the parameter right before running the network. The simplest explorer, 'Flash', presents each image once without any sweeping. If you have trained a network with a different explorer and wish to perform "flash inference" for testing, just set the explorer to 'Flash'. All of ImageSensor's public commands and parameters are documented through its NodeSpec. You can view the NodeSpec with the following Python commands: from nupic.network import nodeHelp nodeHelp("py.ImageSensor") """ def _init(self, width=1, height=1, depth=1, mode='gray', blankWithReset=False, background=255, invertOutput=False, filters=[], postFilters=[], explorer="Flash", categoryOutputFile="", logText=False, logOutputImages=False, logOriginalImages=False, logFilteredImages=False, logLocationImages=False, logLocationOnOriginalImage=False, logBoundingBox=False, logDir="imagesensor_log", automaskingTolerance=0, automaskingPadding=0, memoryLimit=100, minimalBoundingBox=False, dataOut=None, categoryOut=None, partitionOut=None, resetOut=None, bboxOut=None, alphaOut=None, useAux=False, auxDataOut=None, auxDataWidth=None, **keywds): """ width -- Width of the sensor's output to the network (pixels). height -- Height of the sensor's output to the network (pixels). depth -- Optional parameter used to send multiple versions of an image out at the same time. mode -- Current options are 'gray' (8-bit grayscale) and 'bw' (1-bit black and white). blankWithReset -- ** DEPRECATED ** Whether to send a blank output every time the explorer generates a reset signal (such as when beginning a new sweep). Turning on blanks increases the number of iterations. background -- Pixel value of background, used for padding a cropped image, and also for finding the bounding box in the absence of a mask. invertOutput -- Inverts the output of the node (e.g. white pixels become black). filters -- List of filters to apply to each image. Each element in the list should be either a string (just the filter name) or a list containing both the filter name and a dictionary specifying its arguments. explorer -- Explorer (used to move the sensor through the input space). Specify as a string (just the explorer name) or a list containing both the explorer name and a dictionary specifying its arguments. categoryOutputFile -- Name of file to which to write category number on each compute (useful for analyzing network accuracy after inference). logText -- Toggle for verbose logging to imagesensor_log.txt. logOutputImages -- Toggle for writing each output to disk (as an image) on each iteration. logOriginalImages -- Toggle for writing the original, unfiltered version of the current image to disk on each iteration. logFilteredImages -- Toggle for writing the intermediate versions of images to disk as they pass through the filter chain. logLocationImages -- Toggle for writing an image to disk on each iteration which shows the location of the sensor window. logLocationOnOriginalImage -- Whether to overlay the location rectangle on the original image instead of the filtered image. Does not work if the two images do not have the same size, and may be nonsensical even if they do (for example, if a filter moved the object within the image). logBoundingBox -- Toggle for writing a log containing the bounding box information for each output image. automaskingTolerance -- Affects the process by which bounding box masks are automatically generated from images based on similarity to the specified 'background' pixel value. The bounding box will enclose all pixels in the image that differ from 'background' by more than the value specified in 'automaskingTolerance'. Default is 0, which generates bounding boxes that enclose all pixels that differ at all from the background. In general, increasing the value of 'automaskingTolerance' will produce tighter (smaller) bounding box masks. automaskingPadding -- Affects the process by which bounding box masks are automatically generated from images. After computing the bounding box based on image similarity with respect to the background, the box will be expanded by 'automaskPadding' pixels in all four directions (constrained by the original size of the image.) memoryLimit -- Maximum amount of memory that ImageSensor should use for storing images, in megabytes. ImageSensor will unload images and filter outputs to stay beneath this ceiling. Set to -1 for no limit. minimalBoundingBox -- Whether the bounding box found by looking at the image background should be set even if it touches one of the sides of the image. Set to False to avoid chopping edges off certain images, or True if that is not an issue and you wish to use a sweeping explorer. dataOut -- The output element count of the 'dataOut' output. categoryOut -- The output element count of the 'categoryOut' output (NuPIC 1 only). resetOut -- The output element count of the 'resetOut' output (NuPIC 1 only). bboxOut -- The output element count of the 'bboxOut' output (NuPIC 1 only). alphaOut -- The output element count of the 'alphaOut' output (NuPIC 1 only) auxDataWidth -- The output element count of the 'auxData' output (NuPIC2 only). """ PyRegion.__init__(self, **keywds) # Validate the output element counts if dataOut: if hasattr(dataOut, "__iter__"): if ([1] * (3 - len(dataOut)) + list(dataOut)) == [depth, height, width]: pass elif dataOut == (depth * height * width): pass else: if not containsConvolutionPostFilter(postFilters): raise RuntimeError("The 'dataOut' output element count must be equal" " to depth * height * width.") # In NuPIC 2, these are all None if categoryOut and categoryOut != 1: raise RuntimeError("The 'categoryOut' output element count must be 1.") if partitionOut and partitionOut != 1: raise RuntimeError("The 'partitionOut' output element count must be 1.") if resetOut and resetOut != 1: raise RuntimeError("The 'resetOut' output element count must be 1.") if bboxOut and bboxOut != 4: raise RuntimeError("The 'bboxOut' output element count must be 4.") if alphaOut and alphaOut != width * height: raise RuntimeError("The 'alphaOut' output element count must be equal " "to width * height") self.useAux = useAux self.width = width self.height = height self.depth = depth self.mode = mode self.blankWithReset = blankWithReset self.background = background self.automaskingTolerance = automaskingTolerance self.automaskingPadding = automaskingPadding if self.mode == 'bw' and self.background != 0: self.background = 255 self.invertOutput = invertOutput self.categoryOutputFile = categoryOutputFile self.logFile = None self.bboxLogFile = None self.logText = logText self.logOutputImages = logOutputImages self.logOriginalImages = logOriginalImages self.logFilteredImages = logFilteredImages self.logLocationImages = logLocationImages self.logLocationOnOriginalImage = logLocationOnOriginalImage self.logBoundingBox = logBoundingBox self.logDir = logDir self.memoryLimit = memoryLimit self.minimalBoundingBox = minimalBoundingBox self.enabledWidth = self.width self.enabledHeight = self.height # The imageList data structure contains all the information about all the # images which have been loaded via and of the load* methods. Some images # may not be in memory, but their metadata is always kept in imageList. # imageList[imageIndex] returns all the information about the image with # the specified index, in a dictionary. The keys in the dictionary are: # 'image': The unfiltered image. # 'imagePath': The path from which the image was loaded. # 'maskPath': The path from which the mask was loaded. # 'categoryName': The name of the image's category. # 'categoryIndex': The index of the image's category. # 'filtered': A dictionary of filtered images created from this image. # In general, images are only loaded once they are needed. But if an image # is loaded via loadSerializedImage, then its entry in imageList has an # 'image' value but no 'imagePath' value. Thus, it will never be deleted # from memory because it cannot be recovered. All other images are fair # game. # The 'filtered' dictionary requires more explanation. Each key in the # dictionary is a tuple specifying the positions of the filters that # generated the image. (Filters can generate multiple outputs, so an # image that comes out of the filter pipeline must be referenced by its # position in the outputs of each filter in the pipeline). The dictionary # also contains images that have been run through only part of the filter # pipeline, which are kept around for us as inputs for the remaining # filters. # Here is an example with 3 filters in the pipeline: # 0: A Resize filter that generates 3 outputs (small, medium, large) # 1: An EqualizeHistogram filter that generates 1 output # 2: A Rotation2D filter that generates 5 outputs (5 rotation angles) # A typical key for an image would be (0, 0, 2), specifying the smallest # scale from the Resize filter (0), the only output from the # EqualizeHistogram filter (0), and the middle rotation angle (2). # Another valid key would be (1), specifying an image that has gone through # the Resize filter (the middle scale), but which has not been through # the other filters yet. This image would neven be shown to the network, # but it would be used by ImageSensor to compute other images. # The _getFilteredImages method is the only method which directly accesses # the filtered images in imageList. Filtering is only done on-demand. # If _getFilteredImages is called and the requested images have not yet # been created, _applyFilter is called to run each filter, and the # resulting images are stored in imageList for later use. They may be # deleted due to the memoryLimit parameter, in which case they will be # recreated later if necessary. self._imageList = [] self.categoryInfo = [] # (categoryName, canonicalImage) for each category self._imageQueue = [] # Queue of image indices for managing memory self._filterQueue = [] # Queue of filter outputs for mananging memory self._pixelCount = 0 # Count of total loaded pixels for mananging memory self.outputImage = None # Copy of the last image sent to the network self.locationImage = None # Copy of the location image for the last output self.prevPosition = None # Position used for the last compute iteration self._categoryOutputFile = None # To write the category on each iteration self._iteration = 0 # Internal iteration counter self.explorer = None self._setFilters(filters) self._setPostFilters(postFilters) self._setExplorer(explorer) self._holdForOffset = 0 self._cubeOutputs = not containsConvolutionPostFilter(postFilters) self._auxDataWidth = auxDataWidth def __init__(self, *args, **kw): self._init(*args, **kw) def loadSingleImage(self, imagePath, maskPath=None, categoryName=None, clearImageList=True, skipExplorerUpdate=False, auxPath=None, userAuxData=None, sequenceIndex=None, frameIndex=None): """ Add the specified image to the list of images. Images are not loaded into memory until they are needed. imagePath -- Path to the image to load. auxPath -- Path to the auxiliary data for the image. maskPath -- Path to the mask to load with this image. categoryName -- Name of the category of this image. clearImageList -- If True, all loaded images are removed before this image is loaded. If False, this image is appended to the list of images. sequenceIndex -- Unique sequence index. frameIndex -- The frame number within the sequence. """ if categoryName is not None and type(categoryName) is not str: categoryName = str(categoryName) if clearImageList: self.clearImageList(skipExplorerUpdate=True) if userAuxData is not None: manualAux = True else: manualAux = False self._addImage(imagePath=imagePath, maskPath=maskPath, categoryName=categoryName, auxPath=auxPath, manualAux = manualAux, userAuxData=userAuxData, sequenceIndex=sequenceIndex, frameIndex=frameIndex) if not skipExplorerUpdate: self.explorer[2].update(numImages=len(self._imageList)) self._logCommand([('index', len(self._imageList)-1)]) if clearImageList: self.explorer[2].first() return self.getParameter('numImages'), self.getParameter('numMasks') def loadSpecificImages(self, imagePaths, categoryNames=None, clearImageList=True): """ Add multiple images to the list of images. See the loadMultipleImages to load images which have been organized by category on disk. This command is equivalent to calling loadSingleImage repeatedly, but it is faster because it avoids updating the explorer between each image, and because it only involves one call to the runtime engine. imagePaths -- List with the path of each image. categoryNames -- Category name for each image (or can be a single string with the category name that should be applied to all images). clearImageList -- If True, all loaded images are removed before this image is loaded. If False, this image is appended to the list of images. """ if categoryNames is not None and isinstance(categoryNames, basestring): categoryNames = [categoryNames] * len(imagePaths) if clearImageList: self.clearImageList(skipExplorerUpdate=True) for i in xrange(len(imagePaths)): if categoryNames is not None: categoryName = categoryNames[i] else: categoryName = None self.loadSingleImage(imagePath=imagePaths[i], categoryName=categoryName, clearImageList=False, skipExplorerUpdate=True) self.explorer[2].update(numImages=len(self._imageList)) return self.getParameter('numImages'), self.getParameter('numMasks') def _walk(self, top): """ Directory tree generator lifted from python 2.6 and then stripped down. It improves on the 2.5 os.walk() by adding the 'followlinks' capability. """ try: # Note that listdir and error are globals in this module due # to earlier import-*. names = os.listdir(top) except OSError, e: raise RuntimeError("Unable to get a list of files due to an OS error.\nDirectory: "+top+"\nThis may be due to an issue with Snow Leopard.") #raise except: return dirs, nondirs = [], [] for name in names: if os.path.isdir(os.path.join(top, name)): dirs.append(name) else: nondirs.append(name) yield top, dirs, nondirs for name in dirs: path = os.path.join(top, name) for x in self._walk(path): yield x def loadMultipleImages(self, imagePath, extension=None, maskPath=None, first=None, last=None, subsample=1, clearImageList=True, strictMaskLocations=True, categoryNameFilter=None, pattern=None, skipInterval=None, skipOffset=None, useCategories=True, auxPath=None, auxType=None): """ Add images from multiple categories to the list of images. Images are not loaded into memory until they are needed. imagePath -- Path from which to load the images (see note below). auxPath -- Path from which to load the auxiliary data for each image. auxType -- Type of auxiliary data: the file extension. extension -- Extension of images files to accept (or None to accept all valid images). maskPath -- Path from which to load masks that correspond to the loaded images (see note below). first -- Index of the first image in each category to load. If first == 1, ImageSensor skips the first image and loads the rest. last -- Index of the last image in each category to load. If last == 1, ImageSensor loads the first two images. subsample -- ImageSensor loads 1/subsample of the images in each category. If subsample == 3, loads the first image, the fourth, the seventh, and so on. clearImageList -- If True, ImageSensor removes all loaded images when loading these new images. If False, the images loaded by this method will be appended to the existing list of images. strictMaskLocations -- If True, ImageSensor will only load masks whose path (in the mask directory) exactly parallels the path to the image (in the image directory). If False, ImageSensor will attempt to find the masks even if there aren't category subdirectories, or all the mask files are in the root mask directory, etc. categoryNameFilter -- String or list of strings that will be matched against category names. Only categories that match one of the strings will be processed. Each string can be a regular expression. pattern -- Regular expression for filtering images. Only images which match the regular expression (via re.search()) will be accepted. The path provided to pattern is the absolute path to the image file. skipInterval -- The inverse of 'subsample'; this parameter directs ImageSensor to skip every Nth image that it would otherwise load. For example, if 'skipInterval' is 2, then ImageSensor will load only every other image. The default is None, which directs ImageSensor to skip no images. Note that a 'skipInterval' of 1 implies to skip every image, which is nonsensical; therefore, non-None values of 'skipInterval' which are less than 2 cause RuntimeErrors to be raised. skipOffset -- Operates in conjunction with 'skipInterval'. Specifies an offset to use for the purpose of skipping. For example, if 'skipInterval' was 10 (skip every 10th image) and 'skipOffset' was 0 (or None), then the first 9 images would be loaded, the 10th would be skipped, etc. But if 'skipOffset' were 2, then the first 7 images would be loaded, the 8th skipped, the next 9 loaded, the 17th skipped, etc. Defaults to None (equivalent to zero.) If both 'skipOffset' and 'skipInterval' are non-None, then 'skipOffset' must be non-negative and less than 'skipInterval'. useCategories -- True for normal behavior, or False to load any image found in imagePath, without looking for nested directory folders. Returns a tuple containing the number of images loaded and the number of masks loaded. This method expects a directory structure like the following: imagePath/categoryName1/image01.ext image02.ext categoryName2/image01.ext image02.ext Optionally, images can be nested arbitrarily deep. For instance: imagePath/categoryName1/objectName1/image01.ext image02.ext objectName2/image01.ext image02.ext categoryName2/objectName1/image01.ext A depth-first search is performed to find images. Directories and images are processed in sorted order. The nested directory structure with category names is necessary, but the names of the image files are unimportant. """ if first is not None and type(first) != int: raise RuntimeError("'first' must be None or a nonnegative integer") if last is not None and type(last) != int: raise RuntimeError("'last' must be None or a nonnegative integer") if subsample is not None and type(subsample) != int: raise RuntimeError("'subsample' must be None or a positive integer") if skipInterval is not None and (type(skipInterval) != int or skipInterval < 2): raise RuntimeError("'skipInterval' must be None or an integer >= 2") if skipOffset is not None and skipInterval is not None and \ (type(skipOffset) != int or skipOffset < 0 or skipOffset >= skipInterval): raise RuntimeError("'skipOffset' must be None or a non-negative integer " "< 'skipInterval'") self._logCommand() filterLogDir = os.path.join(self.logDir, 'output_from_filters') if self.logFilteredImages: if clearImageList and os.path.exists(filterLogDir): shutil.rmtree(filterLogDir) if self.filters and not os.path.exists(filterLogDir): os.makedirs(filterLogDir) if clearImageList: self.clearImageList(skipExplorerUpdate=True) if extension: # Only look for the extension specified by the user if not extension.startswith('.'): extension = '.' + extension extensions = [extension] else: extensions = imageExtensions # NTA_DATA_DIR may be set in the autotest environment if "NTA_DATA_DIR" in os.environ and not os.path.abspath(imagePath): imagePath = os.path.join(os.environ["NTA_DATA_DIR"], imagePath) print "ImageSensor: looking for data in NTA_DATA_DIR=%s" % os.environ["NTA_DATA_DIR"] imagePath = os.path.abspath(imagePath) if auxPath is not None: if type(auxPath) is not list: auxPath = [auxPath] for k in range(0, len(auxPath)): auxPath[k] = os.path.abspath(auxPath[k]) if maskPath: maskPath = os.path.abspath(maskPath) if not os.path.exists(maskPath): maskPath = None # Convert 'first', 'last', and 'subsample' to proper Python names/format start = first stop = None if last is not None: stop = last + 1 step = subsample # Handle skipping images that would otherwise be loaded if skipOffset is None: skipOffset = 0 images = [] categoryList = [None] if useCategories: # Assume each directory in imagePath is its own category categoryList = [c for c in sorted(os.listdir(imagePath)) if c[0] != '.' and os.path.isdir(os.path.join(imagePath, c))] if categoryList: # Filter categories if specified if categoryNameFilter: # Need to convert to NFC and re-encode to UTF-8 or else paths may not # match the category filter categoryList = [normalize('NFC', unicode(c, 'utf8')).encode('utf8') for c in categoryList] if isinstance(categoryNameFilter, basestring): categoryNameFilter = [categoryNameFilter] else: categoryNameFilter = list(categoryNameFilter) # With a large number of categories, the regular expression # match can be very expensive. Determine whether there are # any regular expressions in the filter list. If there are, # then do the full regex match, otherwise just compare strings # directly. hasRegex = False # use a regex to see if it has any regexes isTextRegex = re.compile("[a-zA-Z_]+") hasRegex = False in [isTextRegex.match(r) is not None for r in categoryNameFilter] if not hasRegex: categoryList = [c for c in categoryList if c in categoryNameFilter] else: for i, r in enumerate(categoryNameFilter): if r[-1] != '$': categoryNameFilter[i] += '$' matchers = [re.compile(r) for r in categoryNameFilter] categoryList = [c for c in categoryList if True in [r.match(c) is not None for r in matchers]] for category in categoryList: skipCounter = skipOffset # Call loadSingleImage on every image with the correct extension at any # depth, using a depth first search categoryFilenames = [] if category: walkPath = os.path.join(imagePath, category) else: walkPath = imagePath category = os.path.split(imagePath)[1] #if float(".".join([str(x) for x in sys.version_info[:2]])) >= 2.6: # w = os.walk(walkPath, followlinks=True) #else: # w = os.walk(walkPath) w = self._walk(walkPath) while True: try: dirpath, dirnames, filenames = w.next() except StopIteration: break # Don't enter directories that begin with '.' for d in dirnames[:]: if d.startswith('.'): dirnames.remove(d) dirnames.sort() # Ignore files that begin with '.' filenames = [f for f in filenames if not f.startswith('.')] # Only load images with the right extension filenames = [f for f in filenames if os.path.splitext(f)[1].lower() in extensions] if pattern: # Filter images with regular expression filenames = [f for f in filenames if re.search(pattern, os.path.join(dirpath, f))] filenames.sort() imageFilenames = [os.path.join(dirpath, f) for f in filenames] # Get the corresponding path to the masks if maskPath: maskdirpath = os.path.join(maskPath, dirpath[len(imagePath)+1:]) maskFilenames = [os.path.join(maskdirpath, f) for f in filenames] if strictMaskLocations: # Only allow masks with parallel filenames for i, filename in enumerate(maskFilenames): if not os.path.exists(filename): maskFilenames[i] = None else: # Find the masks even if the path does not match exactly for i, filename in enumerate(maskFilenames): while True: if os.path.exists(filename): maskFilenames[i] = filename break if os.path.split(filename)[0] == maskPath: # Failed to find the mask maskFilenames[i] = None break # Try to find the mask by eliminating subdirectories body, tail = os.path.split(filename) head, body = os.path.split(body) while not os.path.exists(head): tail = os.path.join(body, tail) head, body = os.path.split(head) filename = os.path.join(head, tail) else: maskFilenames = [None for f in filenames] # Add our new images and masks to the list for this category categoryFilenames.extend(zip(imageFilenames, maskFilenames)) # We have the full list of filenames for this category for f in categoryFilenames[start:stop:step]: skipCounter += 1 if not skipInterval or skipCounter % skipInterval: images.append((f[0], f[1], category)) # Load all images and masks if not hasattr(auxType,'__iter__'): auxType = [auxType] if not hasattr(auxPath,'__iter__'): auxPath = [auxPath] sequenceInfo = self._computeSequenceInfo(images) for i in xrange(len(images)): # Generate the auxiliary data path imageName = images[i][0].split(imagePath) if auxPath[0] is not None and len(auxPath)>=1: currentAuxPath = [] for k in range(0, len(auxPath)): currentAuxPath.append("".join([auxPath[k],imageName[1]+auxType[k]])) else: currentAuxPath = None self.loadSingleImage(imagePath=images[i][0], maskPath=images[i][1], categoryName=images[i][2], clearImageList=False, skipExplorerUpdate=True, auxPath=currentAuxPath, sequenceIndex=sequenceInfo[i][0], frameIndex=sequenceInfo[i][1]) self.explorer[2].update(numImages=len(self._imageList), sequenceCount=sequenceInfo[-1][0], frameCount=len(self._imageList)) return self.getParameter('numImages'), self.getParameter('numMasks') def _computeSequenceInfo(self, images): """ Generates the set of sequence IDs and frameIndexs for the images in the dataset. """ sequenceInfo = [] seqAlias = None seqID = -1 frameIndex = -1 for image in images: parentDir = os.path.split(os.path.split(image[0])[0])[1] frameIndex += 1 if parentDir == image[2]: seqID += 1 frameIndex = 0 seqAlias = None elif parentDir != seqAlias: seqID += 1 frameIndex = 0 seqAlias = parentDir sequenceInfo.append((seqID, frameIndex)) return sequenceInfo def loadSerializedImage(self, s, categoryName=None, clearImageList=True, info=None, erode=None, userAuxData=None, auxPath=None, manualAux=False): """ Receive a serialized image (as a string) and add to the list of images. s -- Serialized version of the image. categoryName -- Name of the category of the image. clearImageList -- If True, all loaded images are removed before this image is loaded. If False, this image is appended to the list of images. info -- an optional dict of attribute-value pairs to insert into the image's .info field, after deserialization erode -- Use this value for the erode flag (True or False) rather than calculating it. To serialize an image before passing it to this command, do the following: from nupic.image import serializeImage s = serializeImage(image) """ if clearImageList: self.clearImageList(skipExplorerUpdate=True) self._addImage(image=deserializeImage(s, info), categoryName=categoryName, erode=erode, userAuxData=userAuxData, auxPath=auxPath, manualAux=manualAux) self.explorer[2].update(numImages=len(self._imageList)) if clearImageList: self.explorer[2].first() self._meetMemoryLimit() return self.getParameter('numImages'), self.getParameter('numMasks') def clearImageList(self, skipExplorerUpdate=False): """ Clear the list of images. """ self._imageList = [] self._imageQueue = [] self._filterQueue = [] self._pixelCount = 0 self.prevPosition = None if not skipExplorerUpdate: self.explorer[2].update(numImages=0) def seek(self, iteration=None, image=None, filters=None, offset=None, reset=None, sequenceIndex=None, frameIndex=None): """ Seek to the specified iteration, image, filter position, or offset. iteration -- Iteration number. image -- Image number. filters -- Tuple specifying a position for each filter. offset -- Tuple of integers specifying the offset as (x,y). sequenceIndex -- The sequence to seek to. frameIndex -- The frame within a sequence to seek to. Examples: seek(0) -- Reset to the first iteration. seek(image=100, filters=(0,0,..,0)) -- Seek to image 100 and position 0 for each filter. seek(offset=(0,0)) -- Seek to the original position of the current image. The 'iteration' parameter cannot be combined with the other parameters. """ self._logCommand() # Combine image, filters, and offset into position position = None if image is None and sequenceIndex is not None: image = self.getIterationFromSequence(sequenceIndex, frameIndex) if image is not None or filters is not None or offset is not None \ or reset is not None: position = {'image': image, 'filters': filters, 'offset': offset, 'reset': reset} # Validate inputs if iteration is not None and position is not None: raise RuntimeError("Cannot combine 'iteration' with other arguments") if iteration is None and position is None: raise RuntimeError("Must specify at least one argument") if position is not None: if position['offset'] and type(position['offset']) is tuple: position['offset'] = list(position['offset']) if position['image'] is not None: if position['image'] < 0: raise RuntimeError("'image' must be nonnegative") if position['image'] >= len(self._imageList): raise RuntimeError("'image' exceeds number of loaded images") if position['filters'] is not None: if type(position['filters']) != list: raise RuntimeError("'filters' must be a list of nonnegative values") if len(position['filters']) != len(self.filters): raise RuntimeError("Length of 'filters' does not match numFilters") # Account for holdFor as best we can. This won't be exact because it doesn't take into # account the current position within the holdFor if iteration is not None: self._holdForOffset = iteration % self.explorer[2].holdFor iteration //= self.explorer[2].holdFor self.explorer[2].seek(iteration=iteration, position=position) def getNumIterations(self, image=None): """ Calculate how many samples the explorer will provide. image -- If None, returns the sum of the iterations for all the loaded images. Otherwise, image should be an integer specifying the image for which to calculate iterations. """ if image is not None and type(image) != int: raise RuntimeError("'image' must be None or a nonnegative integer") return self.explorer[2].getNumIterations(image) * self.explorer[2].holdFor def getSequenceCount(self): """ Calculates how many sequences the sensor will provide. """ if self._imageList is None: return -1 else: return self._imageList[-1]['sequenceIndex']+1 def getFrameCount(self, sequenceIndex): """ Calculates the number of frames in a sequence. """ if sequenceIndex<0: raise RuntimeError("'sequenceIndex' must be a non-negative integer.") if sequenceIndex>self._imageList[-1]['sequenceIndex']: raise RuntimeError("'sequenceIndex' out of range.") if self._imageList is None: return -1 elif sequenceIndex==self._imageList[-1]['sequenceIndex']: return self._imageList[-1]['frameIndex']+1 else: ID = 0 while sequenceIndex>=self._imageList[ID]['sequenceIndex']: ID+=1 return self._imageList[ID-1]['frameIndex']+1 def getIterationRange(self, sequenceIndex=None): """ Returns the range of the iteration numbers for the given sequence ID. If sequenceIndex is None, then the total range of iterations is returned. """ if sequenceIndex is None: return 0, len(self._imageList) else: startIteration = self.getIterationFromSequence(sequenceIndex) stopIteration = self.getIterationFromSequence(sequenceIndex, self.getFrameCount(sequenceIndex)-1) return startIteration, stopIteration def getIterationFromSequence(self, sequenceIndex, frameIndex=0): """ Returns the iteration number for the given frame in the sequence. """ if sequenceIndex<0: raise RuntimeError("'sequenceIndex' must be a non-negative integer.") if sequenceIndex>self._imageList[-1]['sequenceIndex']: raise RuntimeError("'sequenceIndex' out of range.") if self._imageList is None: return -1 else: ID = 0 while sequenceIndex>self._imageList[ID]['sequenceIndex']: ID+=1 while frameIndex>self._imageList[ID]['frameIndex']: ID+=1 if self._imageList[ID]['sequenceIndex'] != sequenceIndex: raise RuntimeError("'frameIndex' out of range.") return ID def getSequenceFromIteration(self, iteration): """ Returns the sequence information given the iteration number. """ if iteration < 0: raise RuntimeError("'iteration' must be a non-negative integer.") if iteration>len(self._imageList): raise RuntimeError("'iteration' out of range.") else: return self._imageList[iteration]['sequenceIndex'], self._imageList[iteration]['frameIndex'] def saveImagesToFile(self, filename): """ Save imageList, categoryInfo, and filters to the specified file. Loads all images and runs all filters first. This method can be used to speed up image loading when expensive filters are run. After loading images once and passing them through the filters, use saveImagesToFile to dump the filtered versions to disk. On subsequent runs with the same images and filters, call loadImagesFromFile to load the filtered images and avoid rerunning the filters. """ # Load all images and run all filters for i in xrange(len(self._imageList)): self._applyAllFilters(i) # Create serializable versions for pickling sImageList = _serializeImageList(self._imageList) filters = self.getParameter('filters') sCategoryInfo = self.getParameter('categoryInfo') # Pickle serializable objects to file f = open(filename, 'wb') pickle.dump((sImageList, filters, sCategoryInfo), f, protocol=pickle.HIGHEST_PROTOCOL) f.close() def loadImagesFromFile(self, filename): """ Load from a file created with saveImagesToFile. Loads imageList and categoryInfo. Also loads the filters used to create the saved images, and overwrites ImageSensor.filters. """ f = open(filename, 'rb') sImageList, filters, sCategoryInfo = pickle.load(f) f.close() self.setParameter('filters', -1, filters) self._imageList = _deserializeImageList(sImageList) self.explorer[2].update(numImages=len(self._imageList)) self.setParameter('categoryInfo', -1, sCategoryInfo) return self.getParameter('numImages'), self.getParameter('numMasks') def _addImage(self, image=None, imagePath=None, maskPath=None, categoryName=None, erode=None, userAuxData=None, auxPath=None, manualAux=False, sequenceIndex=None, frameIndex=None): """ Create a dictionary for an image and metadata and add to the imageList. """ item = {'image': image, 'imagePath': imagePath, 'auxData': userAuxData, 'auxPath': auxPath, 'manualAux': manualAux, 'maskPath': maskPath, 'erode': True, 'categoryName': categoryName, 'categoryIndex': None, 'partitionID': None, 'filtered': {}, 'sequenceIndex': sequenceIndex, 'frameIndex': frameIndex} self._imageList.append(item) if erode is not None: item['erode'] = erode setErodeFlag = False else: setErodeFlag = True # Look up category index from name if item['categoryName'] is None: # Unspecified category item['categoryName'] = "" item['categoryIndex'] = -1 else: # Look up the category in categoryInfo for i in xrange(len(self.categoryInfo)): if self.categoryInfo[i][0] == item['categoryName']: item['categoryIndex'] = i break if item['categoryIndex'] is None: # This is the first image of this category (blank categories ignored) item['categoryIndex'] = len(self.categoryInfo) # Load the image in order to use it for categoryInfo original = self._loadImage(len(self._imageList) - 1, returnOriginal=True, setErodeFlag=setErodeFlag) if not image: self._imageQueue.insert(0, len(self._imageList) - 1) # Append this category to categoryInfo self.categoryInfo.append((item['categoryName'], original)) elif image: # Image is already present, just prepare it # Not necessary if it was already loaded for categoryInfo self._loadImage(len(self._imageList) - 1, setErodeFlag=setErodeFlag) def _loadImage(self, index, returnOriginal=False, setErodeFlag=True, userAuxData=None): """ Load an image that exists in the imageList but is not loaded into memory. index -- Index of the image to load. returnOriginal -- Whether to return an unmodified version of the image for categoryInfo. """ item = self._imageList[index] if not item['image']: # Load the image from disk f = open(item['imagePath'], 'rb') item['image'] = Image.open(f) item['image'].load() f.close() # Update the pixel count self._pixelCount += item['image'].size[0] * item['image'].size[1] # Extract auxiliary data if item['manualAux'] is False: if item['auxPath'] is not None: if item['auxData'] is None: # Load the auxiliary data from disk auxPath = item['auxPath'] numAuxInput = len(auxPath) for k in range(0,numAuxInput): if item['auxData'] is None: item['auxData'] = numpy.fromfile(item['auxPath'][k]) else: item['auxData'] = numpy.concatenate([item['auxData'],numpy.fromfile(item['auxPath'][k])]) # Extract partition ID if it exists partitionID = item['image'].info.get('partitionID') if partitionID is None: partitionID = -1 item['partitionID'] = int(partitionID) # Convert to grayscale if item['image'].mode not in ('L', 'LA'): if 'A' in item['image'].getbands(): # Convert to grayscale but preserve alpha channel item['image'] = item['image'].convert('LA') else: item['image'] = item['image'].convert('L') if returnOriginal: # Keep copy of original image original = item['image'].copy() bbox = None if item['maskPath'] is not None: # Load the mask image and add it to the image as the alpha channel # If the image already has an alpha channel, it will be overwritten f = open(item['maskPath'], 'rb') mask = Image.open(f) mask.load() if mask.mode != 'L': mask = mask.convert('L') f.close() item['image'].putalpha(mask) elif item['image'].mode != 'LA': diffImage = ImageChops.difference(item['image'], ImageChops.constant(item['image'], self.background)) if self.automaskingTolerance: diffImage = ImageChops.subtract(diffImage, ImageChops.constant(item['image'], self.automaskingTolerance)) bbox = diffImage.getbbox() if not bbox: bbox = (0, 0, item['image'].size[0], item['image'].size[1]) elif self.automaskingPadding: bbox = ( max(0, bbox[0] - self.automaskingPadding), max(0, bbox[1] - self.automaskingPadding), min(item['image'].size[0], bbox[2] + self.automaskingPadding), min(item['image'].size[1], bbox[3] + self.automaskingPadding), ) if not self.minimalBoundingBox: # Do not use the bounding box found from the background color unless # it does not touch any of the sides of the image if not (bbox[0] > 0 and bbox[1] > 0 and bbox[2] < item['image'].size[0] and bbox[3] < item['image'].size[1]): # Bounding box was not brought in on all four sides # Set it back to the full image bbox = (0, 0, item['image'].size[0], item['image'].size[1]) mask = ImageChops.constant(item['image'], 0) mask.paste(255, bbox) item['image'].putalpha(mask) if setErodeFlag: # Check if the image has a nonuniform alpha channel # If so, set the 'erode' option to False, indicating that the alpha # channel is meaningful and it does not need to be eroded by GaborNode # to avoid "phantom edges" # If a bounding box was used to generated the alpha channel, use the box # directly to avoid the expense of scanning the pixels if bbox: # Bounding box was used # Set to dilate mode if the bounding box doesn't touch any of the edges if bbox[0] != 0 \ and bbox[1] != 0 \ and bbox[2] != item['image'].size[0] \ and bbox[3] != item['image'].size[1]: # Nonuniform alpha channel (from bounding box) item['erode'] = False else: extrema = item['image'].split()[1].getextrema() if extrema[0] != extrema[1]: # Nonuniform alpha channel item['erode'] = False if returnOriginal: return original def _applyFilter(self, image, imageIndex, filterIndex): """Apply the specified filter to the image.""" filtered = self.filters[filterIndex][2].process(image) if type(filtered) is not list: filtered = [filtered] for i, item in enumerate(filtered): if type(item) is not list: filtered[i] = [item] # Verify that the filter produced the correct number of outputs outputCount = self.filters[filterIndex][2].getOutputCount() if type(outputCount) not in (tuple, list): outputCount = (outputCount, 1) if len(filtered) != outputCount[0] or \ False in [len(outputs) == outputCount[1] for outputs in filtered]: raise RuntimeError("The %s filter " % self.filters[filterIndex][0] + "did not return the correct number of outputs. The number of images " + "that it returned does not match the return value of the filter's " + "getOutputCount() method.") for item in filtered: for image in item: # Verify that the image has the correct mode if image.mode != 'LA': s = """Filtered image returned by the "%s" filter (index %d) has illegal mode '%s'. Images must be mode 'LA' (grayscale with alpha channel containing the mask).""" % (self.filters[filterIndex][0], filterIndex, image.mode) if image.mode == 'L': s += " The filter may have removed the alpha channel." raise RuntimeError(s) # Update the pixel count self._pixelCount += image.size[0] * image.size[1] if self.logFilteredImages: # Save filter output to disk filterLogDir = os.path.join(self.logDir, 'output_from_filters') path = os.path.join(filterLogDir, '%02d_' % filterIndex + self.filters[filterIndex][0], '%09d' % imageIndex) # Create the output directory if it does not exist if not os.path.exists(path): os.makedirs(path) index = 0 pathContents = [x for x in sorted(os.listdir(path)) if re.match('\d', x)] if pathContents: index = int(re.match('(\d*)', pathContents[-1]).groups()[0]) + 1 for f in filtered: if len(f) > 1: # Simultaneous outputs for i, image in enumerate(f): filename = os.path.join(path, '%02d_%02d.png' % (index, i)) image.split()[0].save(filename) else: # Single output filename = os.path.join(path, '%02d.png' % index) f[0].split()[0].save(filename) index += 1 return filtered def _applyPostFilters(self, image, filterIndex=0): """ Recursively apply the postFilters to the image and return a list of images. """ # Filter the image raw_output = None filtered = self.postFilters[filterIndex][2].process(image) # Handle special case where the post filter wants to control the output # of the image sensor (e.g convolution post filters) if type(filtered) is tuple: assert len(filtered) == 2 raw_output = filtered[1] assert type(raw_output) == numpy.ndarray filtered = filtered[0][0] # Flatten all responses into a single list if type(filtered) is not list: # One response filtered = [filtered] else: if type(filtered[0]) is list: # Simultaneous responses filtered2 = [] for responses in filtered: filtered2.extend(responses) filtered = filtered2 # Verify that the filter produced the correct number of outputs outputCount = self.postFilters[filterIndex][2].getOutputCount() if type(outputCount) in (tuple, list): if len(outputCount) == 1: outputCount = outputCount[0] else: outputCount = outputCount[0] * outputCount[1] if len(filtered) != outputCount: raise RuntimeError("%s postFilter " % self.postFilters[filterIndex][0] + "did not return the correct number of outputs") for image in filtered: # Verify that the image has the correct mode if image.mode != 'LA': s = """Filtered image returned by the "%s" postFilter (index %d) has illegal mode '%s'. Images must be mode 'LA' (grayscale with alpha channel containing the mask).""" % (self.postFilters[filterIndex][0], filterIndex, image.mode) if image.mode == 'L': s += " The filter may have removed the alpha channel." raise RuntimeError(s) if self.logFilteredImages: # Save intermediate outputs to disk filterLogDir = os.path.join(self.logDir, 'output_from_post_filters') path = os.path.join(filterLogDir, '%02d_' % filterIndex + self.postFilters[filterIndex][0]) # Create the output directory if it does not exist if not os.path.exists(path): os.makedirs(path) # Save the images if len(filtered) > 1: for i, image in enumerate(filtered): name = os.path.join(path, "%09d_%02d.png" % (self._iteration, i)) image.save(name) else: name = os.path.join(path, "%09d.png" % self._iteration) filtered[0].save(name) if filterIndex == len(self.postFilters) - 1: return filtered, raw_output # Concatenate all responses into one flat list of simultaneous responses responses = [] for image in filtered: response = self._applyPostFilters(image, filterIndex+1) if raw_output is not None: assert (response[1] is None) # Only one post-filter can determine raw_output responses.extend(response[0]) return responses, raw_output def _applyAllFilters(self, image=None): """ Run all filters on the specified image or all images. """ numFilterOutputs = self._getNumFilterOutputs(self.filters) if image is None: images = xrange(len(self._imageList)) else: images = [image] for image in images: filterPosition = [0] * len(self.filters) while True: self._getFilteredImages({'image': image, 'filters': filterPosition}) for i in xrange(len(self.filters)-1, -1, -1): filterPosition[i] += 1 if filterPosition[i] == numFilterOutputs[i]: filterPosition[i] = 0 else: break if filterPosition == [0] * len(self.filters): break def _getOriginalImage(self, index=None): """ Get the specified image, loading it if necessary. index -- Index of the image to retrieve. Retrieves the current image if not specified. """ if index is None: index = self.explorer[2].position['image'] if not self._imageList[index]['image']: # Image needs to be loaded self._loadImage(index) return self._imageList[index]['image'] def _getFilteredImages(self, position=None): """ Get the filtered images specified by the position. position -- Position to use. Uses current position if not specified. """ if not position: position = self.explorer[2].position if not self._imageList[position['image']]['image']: # Image needs to be loaded self._loadImage(position['image']) if not self.filters: # No filters - return original version return [self._imageList[position['image']]['image']] # Iterate through the specified list of filter positions # Run filters as necessary allFilteredImages = self._imageList[position['image']]['filtered'] filterPosition = tuple() for filterIndex, pos in enumerate(position['filters']): filterPosition += (pos,) if not filterPosition in allFilteredImages: # Run the filter if len(filterPosition) > 1: # Use the first of the simultaneous responses imageToFilter = allFilteredImages[filterPosition[:-1]][0] else: imageToFilter = self._imageList[position['image']]['image'] # Inject the original image path to the Image's info # dict in case the filter wants to use it. imageToFilter.info['path'] = self._imageList[position['image']]['imagePath'] newFilteredImages = self._applyFilter(imageToFilter, position['image'], filterIndex) for j, image in enumerate(newFilteredImages): # Store in the dictionary of filtered images thisFilterPosition = filterPosition[:-1] + (j,) allFilteredImages[thisFilterPosition] = image # Update the filter queue thisFilterTuple = (position['image'], thisFilterPosition) if thisFilterTuple in self._filterQueue: self._filterQueue.remove(thisFilterTuple) self._filterQueue.insert(0, thisFilterTuple) # Update the queues to mark this image as recently accessed # Only mark the original image if it could be loaded from disk again if self._imageList[position['image']]['imagePath']: if position['image'] in self._imageQueue: self._imageQueue.remove(position['image']) self._imageQueue.insert(0, position['image']) # Mark all precursors to the current filter for i in xrange(1, len(position['filters']) + 1): partialFilterTuple = (position['image'], tuple(position['filters'][:i])) if partialFilterTuple in self._filterQueue: self._filterQueue.remove(partialFilterTuple) self._filterQueue.insert(0, partialFilterTuple) self._meetMemoryLimit() return allFilteredImages[filterPosition] def _getImageInfo(self, imageIndex=None): """ Get the dictionary of info for the image, excluding actual PIL images. image -- Image index to use. Uses current position if not specified. """ if imageIndex is None: imageIndex = self.explorer[2].position['image'] item = self._imageList[imageIndex].copy() item.pop('image') item.pop('filtered') return item def _getOutputImages(self): """Get the current image(s) to send out, based on the current position. A post filter may want to provide the finall output of the node. In this case it will return a non-None final output that the ImageSensor will use as the output of the node regardless of the output images. """ if self.prevPosition['reset'] and self.blankWithReset: # Blank return ([Image.new('LA', (self.enabledWidth, self.enabledHeight))] \ * self.depth, None) else: # Get the image(s) to send out allImages = self._getFilteredImages() # Calculate a scale factor in each dimension for adjusting the offset scaleX = [image.size[0] / float(allImages[0].size[0]) for image in allImages] scaleY = [image.size[1] / float(allImages[0].size[1]) for image in allImages] offset = self.explorer[2].position['offset'] # Normally, the enabledSize is smaller than the sensor size. But, there are some # configurations where the user might want to explore in a larger size, then run # it through a post-filter to get the end sensor size (for example, when using a # fish-eye post filter). If we detect that the enabledSize is greater than the # sensor size, then change our crop bounds dstImgWidth = max(self.width, self.enabledWidth) dstImgHeight = max(self.height, self.enabledHeight) # Cut out the relevant part of each image newImages = [] for i, image in enumerate(allImages): x = int(offset[0] * scaleX[i]) y = int(offset[1] * scaleY[i]) cropBounds = (max(0, x), max(0, y), min(x + dstImgWidth, image.size[0]), min(y + dstImgHeight, image.size[1])) croppedImage = image.crop(cropBounds) newImage = Image.new(croppedImage.split()[0].mode, (dstImgWidth, dstImgHeight), self.background) if newImage.mode == 'L': newImage.putalpha(Image.new('L', newImage.size)) newImage.paste(croppedImage, (max(0, -x), max(0, -y))) newImages.append(newImage) # Crop the shifted images back to the enabled size croppedImages = [image.crop((0, 0, int(round(self.enabledWidth * scaleX[i])), int(round(self.enabledHeight * scaleY[i])))) for i, image in enumerate(newImages)] # Filter through the post filters final_output = None if self.postFilters: newCroppedImages = [] for i in xrange(len(croppedImages)): (responses, raw_output) = self._applyPostFilters(croppedImages[i]) if raw_output is not None: assert final_output is None final_output = raw_output while type(responses[0]) == list: responses = responses[0] newCroppedImages.extend(responses) croppedImages = newCroppedImages # Check that the number of images matches the depth if len(croppedImages) != self.depth: raise RuntimeError("The filters and postFilters created %d images to" " send out simultaneously, which does not match ImageSensor's" " depth parameter, set to %d." % (len(croppedImages), self.depth)) # Invert output if necessary if self.invertOutput: if croppedImages[0].mode == '1': croppedImages = [ImageChops.invert(image) for image in croppedImages] else: for i, croppedImage in enumerate(croppedImages): grayscale = croppedImage.split()[0] alpha = croppedImage.split()[1] inverted = ImageChops.invert(grayscale) inverted.putalpha(alpha) croppedImages[i] = inverted return (croppedImages, final_output) def _logCommand(self, reportList=None, argList='auto'): """ Print information about the calling command to the ImageSensor log file. Without arguments, prints the calling command's name and arguments. Add extra information to print with reportList. If necessary, override the list of arguments with argList. reportList -- Extra data to print, as a list of tuples (like an ordered dictionary). argList -- Arguments to print, as a list of tuples. Default value 'auto' specifies that they should be obtained automatically. ImageSensor has a very specific log file format that is machine-readable. A typical section looks like this: ('seek', {'iteration': 0, 'image': None, 'position': None}, {}) ('compute', {}, {'iteration': 0, 'position': {'image': 0, 'filters': [0,0,0], 'offset': [0,0]}, 'isBlank': False}) The log snippet above indicates that the 'seek' command was issued, with the argument iteration=0. The command executed and has nothing extra to report. Then the runtime engine called 'compute'. The compute command reports back that this was iteration 0, and the explorer chose image 0, filter position [0,0,0], and offset [0,0]. Since each call generates one line of properly-formatted Python code, it is easy to read in the report file and parse it with a Python script. Does not print if self.logText is False. Opens the file if necessary. """ if not self.logText: return # Set up the log directory and log file if necessary if not os.path.exists(self.logDir): os.makedirs(self.logDir) if self.logFile is None: self.logFile = open(os.path.join(self.logDir, 'imagesensor_log.txt'), 'w') # Get the caller's name callerInfo = inspect.stack()[1] callerName = callerInfo[3] # Automatically get the caller's arguments, unless they were specified if argList == 'auto': callerFrame = callerInfo[0] callerArgs, a, k, callerLocals = inspect.getargvalues(callerFrame) argList = [(name, callerLocals[name]) for name in callerArgs if name != 'self'] # Create strings to print # argList and reportList are lists of tuples # Convert each into a string form of a dictionary, but preserve the order argStr = reportStr = {} if argList: argStr = '{' for key, value in argList: argStr += "'%s': %s, " % (key, repr(value)) argStr = argStr[:-2] + '}' if reportList: reportStr = '{' for key, value in reportList: reportStr += "'%s': %s, " % (key, repr(value)) reportStr = reportStr[:-2] + '}' # Print to the file print >>self.logFile, '(%s, %s, %s)' \ % (repr(callerName), argStr, reportStr) + os.linesep self.logFile.flush() def _logOutputImages(self): """ Save the output images to disk. """ # Create output directory if necessary outputLogDir = os.path.join(self.logDir, 'output_to_network') if not os.path.exists(outputLogDir): os.makedirs(outputLogDir) # Save the sensor's output images if self.depth > 1: for i in xrange(self.depth): outputImageName = "%09d_%02d.png" % (self._iteration, i) name = os.path.join(outputLogDir, outputImageName) self.outputImage[i].split()[0].save(name) else: outputImageName = "%09d.png" % self._iteration name = os.path.join(outputLogDir, outputImageName) self.outputImage.split()[0].save(name) def _logBoundingBox(self, bbox): """ Log the current bounding box """ # Create the log directory and log file if necessary if not os.path.exists(self.logDir): os.makedirs(self.logDir) if self.bboxLogFile is None: self.bboxLogFile = open(os.path.join(self.logDir, 'imagesensor_bbox_log.txt'), 'w') # Log the bounding box print >>self.bboxLogFile, '%d %d %d %d' % (bbox[0], bbox[1], bbox[2], bbox[3]) self.bboxLogFile.flush() def _logOriginalImage(self): """ Save the original, unfiltered image to disk. """ # Create output directory if necessary originalLogDir = os.path.join(self.logDir, 'original_images') if not os.path.exists(originalLogDir): os.makedirs(originalLogDir) # Save the original image originalImageName = "%09d.png" % self._iteration image = self._getOriginalImage().split()[0] image.save(os.path.join(originalLogDir, originalImageName)) def _logLocationImage(self): """ Save the location of the sensor window to disk (as an image). """ # Create output directory if necessary locationLogDir = os.path.join(self.logDir, 'output_locations') if not os.path.exists(locationLogDir): os.makedirs(locationLogDir) # Save the location image if not self.locationImage: self.locationImage = self._createLocationImage() locationImageName = "%09d.png" % self._iteration self.locationImage.save(os.path.join(locationLogDir, locationImageName)) def _createLocationImage(self): """ Create the 'location' image, with a rectangle around the sensor window. """ if self.prevPosition['reset'] and self.blankWithReset: # Create a blank image locationImage = Image.new('1', (self.width, self.height)) if self.invertOutput: locationImage = ImageChops.invert(locationImage) else: # Get the filtered image firstImage = self._getFilteredImages(self.prevPosition)[0] # Select backdrop upon which sensor position will be overlaid if self.logLocationOnOriginalImage: filteredImage = firstImage firstImage = self._getOriginalImage(self.prevPosition['image']) if firstImage.size != filteredImage.size: raise RuntimeError("logLocationOnOriginalImage is True, but the" " filtered image does not match the size of the original" " image, so the location image would be invalid") locationImage = Image.new('RGB', firstImage.size) locationImage.paste(firstImage, (0,0)) locationImageDraw = ImageDraw.Draw(locationImage) x, y = self.prevPosition['offset'] x2, y2 = x + self.enabledWidth - 1, y + self.enabledHeight - 1 locationImageDraw.rectangle((x-1, y-1, x2+1, y2+1), outline='red') if locationImage.size[0] > 32 or locationImage.size[1] > 32: # Draw again to create a thicker border locationImageDraw.rectangle((x-2, y-2, x2+2, y2+2), outline='red') return locationImage def _writeCategoryToFile(self, category): """ Write the specified category index to the file at self.categoryOutputFile. category -- Category index (integer). """ if self.categoryOutputFile: # Only write if we have a valid filename if not self._categoryOutputFile: self._categoryOutputFile = open(self.categoryOutputFile, 'w') # Write a 1 to the first line to specify one entry per line self._categoryOutputFile.write('1' + os.linesep) self._categoryOutputFile.write(str(category) + os.linesep) self._categoryOutputFile.flush() def _setFilters(self, filters): """ Change one or more filters, and recompute the ones that changed. filters -- List of filters, where each filter is a list [classname, parameters] (or just a string with the class name, if the filter needs no parameters). Filters should be located in the regions/ImageSensorFilters directory. """ if filters: if not isinstance(filters, list): raise TypeError("'filters' must be a list of one or more filters") if isinstance(filters, list) and len(filters) == 2 \ and isinstance(filters[1], dict): raise TypeError("'filters' must be a _list_ of filters. If you " "are specifying a filter with the [name, {args}] " "syntax, nest it within a list: [[name, {args}]]") filters = copy.deepcopy(filters) if self.logFilteredImages: # Remove the filter log directory if it exists filterLogDir = os.path.join(self.logDir, 'output_from_filters') if os.path.exists(filterLogDir): shutil.rmtree(filterLogDir) if filters is None: filters = [] elif type(filters) is tuple: filters = list(filters) for i, filter in enumerate(filters): if type(filter) is str: filters[i] = [filter, {}] elif type(filter) is tuple: filters[i] = list(filters[i]) if len(filters[i]) == 1: filters[i].append({}) self.filters = filters self._importFilters(self.filters) # Validate no filter except the last returns simultaneous responses for i in xrange(len(self.filters)-1): outputCount = self.filters[i][2].getOutputCount() if type(outputCount) in (tuple, list) and len(outputCount) > 1 \ and outputCount[1] > 1: raise RuntimeError("Only the last filter can return a nested list of " "images (multiple simultaneous responses). " "The %s filter, " % self.filters[i][0] + "index %d of %d, " % (i, len(self.filters)-1) + "creates %d simultaneous responses." % outputCount[1]) # Invalidate the filtered versions of all images for item in self._imageList: if item['filtered']: item['filtered'] = {} self._filterQueue = [] # Update the pixel count to only count to the original images self._pixelCount = 0 for i in self._imageQueue: image = self._imageList[i]['image'] self._pixelCount += image.size[0] * image.size[1] # Tell the explorer about these new filters if type(self.explorer) == list and len(self.explorer) > 2: self.explorer[2].update(numFilters=len(filters), numFilterOutputs=self._getNumFilterOutputs(self.filters)) def _setPostFilters(self, postFilters): """ Change one or more postFilters, and recompute the ones that changed. postFilters -- List of filters, where each filter is a list [classname, parameters] (or just a string with the class name, if the filter needs no parameters). Filters should be located in the regions/ImageSensorFilters directory. """ if postFilters: if not isinstance(postFilters, list): raise TypeError("'postFilters' must be a list of one or more filters") if isinstance(postFilters, list) and len(postFilters) == 2 \ and isinstance(postFilters[1], dict): raise TypeError("'postFilters' must be a _list_ of filters. If you " "are specifying a filter with the [name, {args}] " "syntax, nest it within a list: [[name, {args}]]") postFilters = copy.deepcopy(postFilters) if postFilters is None: postFilters = [] elif type(postFilters) is tuple: postFilters = list(postFilters) for i, filter in enumerate(postFilters): if type(filter) is str: postFilters[i] = [filter, {}] elif type(filter) is tuple: postFilters[i] = list(postFilters[i]) if len(postFilters[i]) == 1: postFilters[i].append({}) self.postFilters = postFilters self._importFilters(self.postFilters) def _getNumFilterOutputs(self, filters): """ Return the number of outputs for each filter. Ignores simultaneous outputs. """ numFilterOutputs = [] for f in filters: n = f[2].getOutputCount() if type(n) in (tuple, list): numFilterOutputs.append(n[0]) elif type(n) is int: numFilterOutputs.append(n) else: raise RuntimeError("%s filter must return an int or a " % f[0] + "list/tuple of two ints from getOutputCount()") return numFilterOutputs def _importFilters(self, filters): """ Import and instantiate all the specified filters. This method lives on its own so that it can be used by both _setFilters and _setPostFilters. """ for i in xrange(len(filters)): # Import the filter # If name is just the class name, such as 'PadToFit', we assume the same # name for the module: names = ['PadToFit', 'PadToFit'] # If name is of the form 'ModuleName.ClassName' (useful to try multiple # versions of the same filter): names = ['ModuleName', 'ClassName'] # By default, ImageSensor searches for filters in # nupic.regions.ImageSensorFilters. If the import fails, it tries the # import unmodified - so you may use filters that are located anywhere # that Python knows about. if not '.' in filters[i][0]: moduleName = className = filters[i][0] else: components = filters[i][0].split('.') moduleName = '.'.join(components[:-1]) className = components[-1] try: # Search in ImageSensorFilters first filterModule = __import__('nupic.regions.ImageSensorFilters.%s' % moduleName, {}, {}, className) except: try: filterModule = __import__(moduleName, {}, {}, className) except: raise RuntimeError('Could not find filter "%s"' % filters[i][0]) filterClass = getattr(filterModule, className) # Instantiate the filter filters[i].append(filterClass(**copy.deepcopy(filters[i][1]))) filters[i][2].update(mode=self.mode, background=self.background) def _setExplorer(self, explorer): """ Set the explorer (algorithm used to explore the input space). explorer -- List containing the explorer name and parameters. """ if explorer is None: raise RuntimeError("Must specify explorer (try 'Flash' for no sweeping)") explorer = copy.deepcopy(explorer) if type(explorer) is str: explorer = [explorer, {}] elif type(explorer) is tuple: explorer = list(explorer) if len(explorer) == 1: explorer.append({}) # Import the explorer # If name is just the class name, such as 'Flash', we assume the same # name for the module: names = ['Flash', 'Flash'] # If name is of the form 'ModuleName.ClassName' (useful to try multiple # versions of the same explorer): names = ['ModuleName', 'ClassName'] # By default, ImageSensor searches for explorers in # nupic.regions.ImageSensorExplorers. If the import fails, it tries the # import unmodified - so you may use explorers that are located anywhere # that Python knows about. if not '.' in explorer[0]: moduleName = className = explorer[0] else: components = explorer[0].split('.') moduleName = '.'.join(components[:-1]) className = components[-1] try: # Search in ImageSensorExplorers first explorerModule = __import__('nupic.regions.ImageSensorExplorers.%s' % moduleName, {}, {}, className) except ImportError: try: explorerModule = __import__(moduleName, {}, {}, className) except ImportError: raise RuntimeError('Could not find explorer "%s"' % explorer[0]) explorerClass = getattr(explorerModule, className) explorerArgs = copy.deepcopy(explorer[1]) # Append the image accessor methods to the arguments explorerArgs.update({ 'getOriginalImage': self._getOriginalImage, 'getFilteredImages': self._getFilteredImages, 'getImageInfo': self._getImageInfo }) # Instantiate the explorer self.explorer = explorer self.explorer.append(explorerClass(**explorerArgs)) self.explorer[2].update(numImages=len(self._imageList), numFilters=len(self.filters), numFilterOutputs=self._getNumFilterOutputs(self.filters), enabledWidth=self.enabledWidth, enabledHeight=self.enabledHeight, blankWithReset=self.blankWithReset) def _meetMemoryLimit(self): """ Unload images as necessary to stay within the memory limit. """ if self.memoryLimit < 0: return while self._pixelCount * 4 / 1000000.0 > self.memoryLimit: if len(self._filterQueue) > 1: # Unload the filtered image used least recently imageIndex, filterPosition = self._filterQueue.pop() filtered = self._imageList[imageIndex]['filtered'][filterPosition] for i in xrange(len(filtered)): self._pixelCount -= filtered[i].size[0] * filtered[i].size[1] self._imageList[imageIndex]['filtered'].pop(filterPosition) elif self._imageQueue: if len(self._imageQueue) == 1 and not self.filters: # No filters and this is the current image - don't unload it break # Unload the original image used least recently imageIndex = self._imageQueue.pop() size = self._imageList[imageIndex]['image'].size self._pixelCount -= size[0] * size[1] self._imageList[imageIndex]['image'] = None else: break def _updatePrevPosition(self): """ Deep copy position to self.prevPosition. """ position = self.explorer[2].position self.prevPosition = { 'image': position['image'], 'filters': copy.copy(position['filters']), 'offset': copy.copy(position['offset']), 'reset': position['reset'] } def compute(self, inputs=None, outputs=None): """ Generate the next sensor output and send it out. This method is called by the runtime engine. """ #from dbgp.client import brk; brk(port=9019) if len(self._imageList) == 0: raise RuntimeError("ImageSensor can't run compute: no images loaded") # Check to see if the new image belongs to a new sequence, if so force Reset prevPosition = self.prevPosition if prevPosition is not None: prevSequenceID = self._imageList[prevPosition['image']]['sequenceIndex'] else: prevSequenceID = None self._updatePrevPosition() newPosition = self.prevPosition if newPosition is not None: newSequenceID = self._imageList[newPosition['image']]['sequenceIndex'] else: newSequenceID = None if newSequenceID != prevSequenceID: self.prevPosition['reset'] = True # Get the image(s) to send out outputImages, final_output = self._getOutputImages() # Compile information about this iteration and log it imageInfo = self._getImageInfo() if imageInfo['imagePath'] is None: filename = "" else: filename = os.path.split(imageInfo['imagePath'])[1] category = imageInfo['categoryIndex'] if category == -1: categoryName = "" else: categoryName = self.categoryInfo[category][0] self._logCommand([ ('iteration', self._iteration), ('position', self.explorer[2].position), ('filename', filename), ('categoryIndex', category), ('categoryName', categoryName), ('erode', imageInfo['erode']), ('blank', bool(self.prevPosition['reset'] and self.blankWithReset)) ], None) # If we don't have a partition ID at this point (e.g., because # of memory limits), then we need to try and pull from the # just-loaded image if imageInfo['partitionID'] is None: imgPosn = self.explorer[2].position['image'] imageInfo['partitionID'] = self._imageList[imgPosn].get('partitionID') if self.depth == 1: self.outputImage = outputImages[0] else: self.outputImage = outputImages # Invalidate the old location image self.locationImage = None # Log the images and locations if specified if self.logOutputImages: self._logOutputImages() if self.logOriginalImages: self._logOriginalImage() if self.logLocationImages: self._logLocationImage() holdFor = self.explorer[2].holdFor self._holdForOffset += 1 if self._holdForOffset >= holdFor: self._holdForOffset = 0 self.explorer[2].next() self._iteration += 1 # Save category to file self._writeCategoryToFile(category) if outputs: # Convert the output images to a numpy vector croppedArrays = [numpy.asarray(image.split()[0], RealNumpyDType) for image in outputImages] # Pad the images to fit the full output size if necessary generating # a stack of images, each of them self.width X self.height pad = self._cubeOutputs and \ (self.depth > 1 or \ croppedArrays[0].shape != (self.height, self.width)) if pad: fullArrays = [numpy.zeros((self.height, self.width), RealNumpyDType) for i in xrange(self.depth)] for i in xrange(self.depth): fullArrays[i][:croppedArrays[i].shape[0],:croppedArrays[i].shape[1]] \ = croppedArrays[i] else: fullArrays = croppedArrays # Flatten and concatenate the arrays outputArray = numpy.concatenate([a.flat for a in fullArrays]) # Send black and white images as (0, 1) instead of (0, 255) if self.mode == 'bw': outputArray /= 255 # dataOut - main output if final_output is None: outputs['dataOut'][:] = outputArray else: outputs['dataOut'][:] = final_output # categoryOut - category index outputs['categoryOut'][:] = \ numpy.array([float(category)], RealNumpyDType) # auxDataOut - auxiliary data auxDataOut = imageInfo['auxData'] if auxDataOut is not None: outputs['auxDataOut'][:] = auxDataOut # resetOut - reset flag if 'resetOut' in outputs: outputs['resetOut'][:] = \ numpy.array([float(self.prevPosition['reset'])],RealNumpyDType) # bboxOut - bounding box if 'bboxOut' in outputs and len(outputs['bboxOut']) == 4: bbox = outputImages[0].split()[1].getbbox() if bbox is None: bbox = (0, 0, 0, 0) outputs['bboxOut'][:] = numpy.array(bbox, RealNumpyDType) # Optionally log the bounding box information if self.logBoundingBox: self._logBoundingBox(bbox) # alphaOut - alpha channel if 'alphaOut' in outputs and len(outputs['alphaOut']) > 1: alphaOut = \ numpy.asarray(outputImages[0].split()[1], RealNumpyDType).flatten() if not imageInfo['erode']: # Change the 0th element of the output to signal that the alpha # channel should be dilated, not eroded alphaOut[0] = -alphaOut[0] - 1 outputs['alphaOut'][:alphaOut.shape[0]] = alphaOut # partitionOut - partition ID (defaults to zero) if 'partitionOut' in outputs: partition = imageInfo.get('partitionID') if partition is None: partition = 0 outputs['partitionOut'][:] = \ numpy.array([float(partition)], RealNumpyDType) def getParameter(self, parameterName, index=-1): """Get the value of an ImageSensor parameter.""" if parameterName == 'filters': # Remove filter objects return [filter[:2] for filter in self.filters] elif parameterName == 'postFilters': # Remove filter objects return [filter[:2] for filter in self.postFilters] elif parameterName == 'explorer': # Remove explorer object return self.explorer[:2] elif parameterName == 'numImages': return len(self._imageList) elif parameterName == 'numMasks': return len([True for x in self._imageList if x['maskPath']]) elif parameterName in ('numIterations', 'maxOutputVectorCount'): return self.getNumIterations() elif parameterName == 'activeOutputCount': return self.width * self.height * self.depth elif parameterName == 'position': return self.explorer[2].position elif parameterName == 'imageInfo': return [self._getImageInfo(i) for i in xrange(len(self._imageList))] elif parameterName == 'prevImageInfo': if self.prevPosition and self._imageList: return self._getImageInfo(self.prevPosition['image']) else: return None elif parameterName == 'nextImageInfo': if self.explorer[2].position and self._imageList: return self._getImageInfo() else: return None elif parameterName == 'categoryInfo': return serializeCategoryInfo(self.categoryInfo) elif parameterName == 'outputImage': if self._iteration == 0: return if self.depth == 1: return serializeImage(self.outputImage.split()[0]) else: return [serializeImage(image.split()[0]) for image in self.outputImage] elif parameterName == 'outputImageWithAlpha': if self._iteration == 0: return if self.depth == 1: return serializeImage(self.outputImage) else: return [serializeImage(image) for image in self.outputImage] elif parameterName == 'originalImage': if not self._imageList or self._iteration == 0: return return serializeImage( self._getOriginalImage(self.prevPosition['image']).split()[0]) elif parameterName == 'locationImage': if not self._imageList or self._iteration == 0 or not self.prevPosition: return if not self.locationImage: self.locationImage = self._createLocationImage() return serializeImage(self.locationImage) elif parameterName == 'background': if self.mode == 'bw': return self.background / 255 else: return self.background elif parameterName =='auxData': auxData = [numpy.array(imageList['auxData']) for imageList in self._imageList] return auxData elif parameterName == 'sequenceCount': return self.getSequenceCount() elif parameterName == 'metadata': metadata = dict() # Compute the position relative to center imageIdx = self.prevPosition['image'] image = self._getOriginalImage(imageIdx) centerX = (image.size[0] - self.enabledWidth) / 2 centerY = (image.size[1] - self.enabledHeight) / 2 (posX, posY) = self.prevPosition['offset'] metadata['posnY'] = centerY - posY metadata['posnX'] = centerX - posX metadata['catIndex'] = self._getImageInfo(imageIdx)['categoryIndex'] metadata['catName'] = self.categoryInfo[metadata['catIndex']][0] return str(metadata) else: return PyRegion.getParameter(self, parameterName, index) def setParameter(self, parameterName, index, parameterValue): """Set the value of an ImageSensor parameter.""" if parameterName == 'filters': self._setFilters(parameterValue) elif parameterName == 'postFilters': self._setPostFilters(parameterValue) elif parameterName == 'explorer': self._setExplorer(parameterValue) elif parameterName == 'enabledWidth': self.enabledWidth = parameterValue self.explorer[2].update(enabledWidth=parameterValue) elif parameterName == 'enabledHeight': self.enabledHeight = parameterValue self.explorer[2].update(enabledHeight=parameterValue) elif parameterName == 'width': self.width = parameterValue elif parameterName == 'height': self.height = parameterValue elif parameterName == 'blankWithReset': self.blankWithReset = parameterValue self.explorer[2].update(blankWithReset=parameterValue) elif parameterName == 'categoryOutputFile': if self._categoryOutputFile: self._categoryOutputFile.close() self._categoryOutputFile = None self.categoryOutputFile = parameterValue elif parameterName == 'categoryInfo': self.categoryInfo = deserializeCategoryInfo(parameterValue) # TODO change the names and indices of the loaded image? elif parameterName == 'background': self.background = parameterValue if self.mode == 'bw': self.background *= 255 for filter in self.filters + self.postFilters: filter[2].update(background=self.background) elif parameterName == 'logDir': if self.logFile is not None and self.logDir != parameterValue: self.logFile.close() self.logFile = None if self.bboxLogFile is not None and self.logDir != parameterValue: self.bboxLogFile.close() self.bboxLogFile = None self.logDir = parameterValue elif parameterName == 'logText': self.logText = parameterValue if self.logFile is not None and not self.logText: self.logFile.close() self.logFile = None elif parameterName == 'memoryLimit': self.memoryLimit = parameterValue self._meetMemoryLimit() else: if not hasattr(self, parameterName): raise Exception("%s is not a valid parameter of the ImageSensor" \ % parameterName) setattr(self, parameterName, parameterValue) def __getstate__(self): """Get serializable state.""" # Serialize images stored in categoryInfo serializedCategoryInfo = [(name, b64encode(imageStr)) for name, imageStr in self.getParameter('categoryInfo')] # Get the object-less filters and explorer resetFilters = self.getParameter('filters') resetPostFilters = self.getParameter('postFilters') resetExplorer = self.getParameter('explorer') # Compile a dictionary of attributes to save state = dict() for name in ['width', 'height', 'depth', 'mode', 'blankWithReset', 'enabledWidth', 'enabledHeight', 'invertOutput', 'background', 'automaskingTolerance', 'automaskingPadding', 'memoryLimit', 'minimalBoundingBox', '_cubeOutputs', '_auxDataWidth']: state[name] = getattr(self, name) # Add attributes that have been manipulated state.update({'serializedCategoryInfo': serializedCategoryInfo, 'resetExplorer': resetExplorer, 'resetFilters': resetFilters, 'resetPostFilters': resetPostFilters}) # Save a version number state['version'] = 1.7 return state def __setstate__(self, state): """Set state from serialized state.""" # Register a global variable for scanning or other tomfoolery #PyNodeModule.nodes = getattr(PyNodeModule, 'nodes', []) + [self] if type(state) is tuple: raise RuntimeError("Cannot convert legacy ImageSensor state") # Get the version number version = state.pop('version') # Get attributes that need to be manipulated serializedCategoryInfo = state.pop('serializedCategoryInfo') resetFilters = state.pop('resetFilters') resetPostFilters = state.pop('resetPostFilters') resetExplorer = state.pop('resetExplorer') for name in state: setattr(self, name, state[name]) # Deserialize images stored in categoryInfo (not base64-encoded) if version >= 1.64: # Undo base64 encoding serializedCategoryInfo = [(name, b64decode(imageStr)) for name, imageStr in serializedCategoryInfo] self.setParameter('categoryInfo', -1, serializedCategoryInfo) # Set variables that weren't saved self._imageList = [] self._imageQueue = [] self._filterQueue = [] self._pixelCount = 0 self._iteration = 0 self.logFile = None self.bboxLogFile = None self.logText = False self.logOutputImages = False self.logOriginalImages = False self.logFilteredImages = False self.logLocationImages = False self.logLocationOnOriginalImage = False self.logBoundingBox = False self.logDir = "imagesensor_log" self.categoryOutputFile = None self._categoryOutputFile = None self.outputImage = None self.locationImage = None self.prevPosition = None # Set up the filters and explorer self.explorer = None self._setFilters(resetFilters) self._setPostFilters(resetPostFilters) self._setExplorer(resetExplorer) self._cubeOutputs = not containsConvolutionPostFilter(resetPostFilters) # Backward compatibility if version < 1.63: if not hasattr(self, 'automaskingTolerance'): self.automaskingTolerance = 0 if not hasattr(self, 'automaskingPadding'): self.automaskingPadding = 0 if not hasattr(self, '_holdForOffset'): self._holdForOffset = 0 if not hasattr(self, '_auxDataWidth'): self._auxDataWidth = 0 if version < 1.65: # Set to True, the old behavior, though it is set to False by default # in new networks self.minimalBoundingBox = True @classmethod def getSpec(cls): """Return the Spec for this Region.""" ns = dict( description=ImageSensor.__doc__, singleNodeOnly=False, inputs = {}, outputs = dict( dataOut=dict( description="""Pixels of the image.""", dataType='Real32', count=1, regionLevel=False, isDefaultOutput=True), categoryOut=dict( description="""Index of the current image's category.""", dataType='Real32', count=1, regionLevel=True, isDefaultOutput=False), resetOut=dict( description="""Boolean reset output.""", dataType='Real32', count=1, regionLevel=True, isDefaultOutput=False), bboxOut=dict( description="""Bounding box output (4-tuple).""", dataType='Real32', count=4, regionLevel=True, isDefaultOutput=False), alphaOut=dict( description="""Alpha channel output.""", dataType='Real32', count=0, regionLevel=True, isDefaultOutput=False), partitionOut=dict( description="""Index of the leave-one-out partition associated with the current image.""", dataType='Real32', count=1, regionLevel=True, isDefaultOutput=False), auxDataOut=dict( description="""Auxiliary data sent directly to the classifier.""", dataType='Real32', count=0, regionLevel=True, isDefaultOutput=False), ), parameters = dict( outputImageWithAlpha=dict( description="""Serialized version of the current output image(s) with the alpha channel. If depth > 1, multiple serialized images will be returned in a list. To deserialize: from nupic.image import deserializeImage outputImage = deserializeImage(sensor.getParameter('outputImageWithAlpha'))""", dataType='Byte', count=0, constraints='', accessMode='Read' ), originalImage=dict( description="""Serialized version of the original, unfiltered version of the current image. To deserialize: from nupic.image import deserializeImage originalImage = deserializeImage(sensor.getParameter('originalImage'))""", dataType='Byte', count=0, constraints='', accessMode='Read' ), locationImage=dict( description="""Serialized version of the current 'location image', which shows the position of the sensor overlaid on the filtered image (optionally, the original image). To deserialize: from nupic.image import deserializeImage locationImage = deserializeImage(sensor.getParameter('locationImage'))""", dataType='Byte', count=0, constraints='', accessMode='Read' ), height=dict( description="""Height of the image, in pixels.""", dataType='UInt32', count=1, constraints='interval: [1, ...]', accessMode='ReadWrite' ), automaskingPadding=dict( description="""Affects the process by which bounding box masks are automatically generated from images. After computing the bounding box based on image similarity with respect to the background, the box will be expanded by 'automaskPadding' pixels in all four directions (constrained by the original size of the image.)""", dataType='UInt32', count=1, constraints='interval: [0, ...]', accessMode='ReadWrite' ), numMasks=dict( description="""Number of masks that the sensor has loaded.""", dataType='UInt32', count=1, constraints='', accessMode='Read' ), filters=dict( description="""List of filters to apply to each image. Each element in the list should be either a string (just the filter name) or a list containing both the filter name and a dictionary specifying its arguments.""", dataType='Byte', count=0, constraints='', accessMode='ReadWrite' ), logOutputImages=dict( description="""Toggle for writing each output to disk (as an image) on each iteration.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), prevPosition=dict( description="""The position of the sensor from the *previous* compute, as a dictionary. Because "outputImage" and "locationImage" match the output of the previous compute (not the upcoming one), they do not correlate with the "position" parameter; use this parameter instead.""", dataType='Byte', count=0, constraints='', accessMode='Read' ), minimalBoundingBox=dict( description="""Whether the bounding box found by looking at the image background should be set even if it touches one of the sides of the image. Set to False to avoid chopping edges off certain images, or True if that is not an issue and you wish to use a sweeping explorer.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), numImages=dict( description="""Number of images that the sensor has loaded.""", dataType='UInt32', count=1, constraints='', accessMode='Read' ), logLocationOnOriginalImage=dict( description="""Whether to overlay the location rectangle on the original image instead of the filtered image. Does not work if the two images do not have the same size, and may be nonsensical even if they do (for example, if a filter moved the object within the image).""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), outputImage=dict( description="""Serialized version of the current output image(s). If depth > 1, multiple serialized images will be returned in a list. To deserialize: from nupic.image import deserializeImage outputImage = deserializeImage(sensor.getParameter('outputImage'))""", dataType='Byte', count=0, constraints='', accessMode='Read' ), logFilteredImages=dict( description="""Toggle for writing the intermediate versions of images to disk as they pass through the filter chain.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), width=dict( description="""Width of the image, in pixels.""", dataType='UInt32', count=1, constraints='interval: [1, ...]', accessMode='ReadWrite' ), auxDataWidth=dict( description="""The number of elements in in the auxiliary data vector.""", dataType='int', count=1, constraints='', accessMode='ReadWrite' ), categoryOutputFile=dict( description="""Name of file to which to write category number on each compute.""", dataType='Byte', count=0, constraints='', accessMode='ReadWrite' ), logLocationImages=dict( description="""Toggle for writing an image to disk on each iteration which shows the location of the sensor window.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), nextImageInfo=dict( description="""Dictionary of information for the image which will be used for the next compute.""", dataType='Byte', count=0, constraints='', accessMode='Read' ), enabledWidth=dict( description="""Width of the enabled 'window', in pixels.""", dataType='UInt32', count=1, constraints='interval: [1, ...]', accessMode='ReadWrite' ), numIterations=dict( description="""Number of iterations necessary to fully explore all loaded images. Only some explorers support this. Use the getNumIterations command if you wish to get the number of iterations for a particular image.""", dataType='UInt32', count=1, constraints='', accessMode='Read' ), logText=dict( description="""Toggle for verbose logging to imagesensor_log.txt.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), explorer=dict( description="""Explorer (used to move the sensor through the input space). Specify as a string (just the explorer name) or a list containing both the explorer name and a dictionary specifying its arguments.""", dataType='Byte', count=0, constraints='', accessMode='ReadWrite' ), imageInfo=dict( description="""A list with a dictionary of information for each image that has been loaded.""", dataType='Byte', count=0, constraints='', accessMode='Read' ), useAux=dict( description="""Use auxiliary input data at the classifier level""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), automaskingTolerance=dict( description="""Controls the process by which bounding box masks are automatically generated from images based on similarity to the specified 'background' pixel value. The bounding box will enclose all pixels in the image that differ from 'background' by more than the value specified in 'automaskingTolerance'. Default is 0, which generates bounding boxes that enclose all pixels that differ at all from the background. In general, increasing the value of 'automaskingTolerance' will produce tighter (smaller) bounding box masks.""", dataType='UInt32', count=1, constraints='interval: [0, 255]', accessMode='ReadWrite' ), activeOutputCount=dict( description="""The number of active elements in the dataOut output.""", dataType='UInt32', count=1, constraints='', accessMode='Read' ), memoryLimit=dict( description="""Maximum amount of memory that ImageSensor should use for storing images, in megabytes. ImageSensor will unload images and filter outputs to stay beneath this ceiling. Set to -1 for no limit.""", dataType='int', count=1, constraints='interval: [-1, ...]', accessMode='ReadWrite' ), logDir=dict( description="""Name of the imagesensor log directory, which is created in the session bundle if any logging options are enabled. Default is imagesensor_log.""", dataType='Byte', count=0, constraints='', accessMode='ReadWrite' ), background=dict( description="""Value of "background" pixels. May be used to pad images during sweeping, as well as to find the bounds of an object if no mask is available.""", dataType='UInt32', count=1, constraints='interval: [0, 255]', accessMode='ReadWrite' ), position=dict( description="""The position of the sensor that will be used for the *next* compute, as a dictionary.""", dataType='Byte', count=0, constraints='', accessMode='Read' ), auxData=dict( description="""List of Auxiliary Data for every image in the image list""", dataType='Byte', count=0, constraints='', accessMode='Read' ), invertOutput=dict( description="""Whether to invert the pixel values before sending an image to the network. If invertOutput is enabled, a white object on a black background becomes a black object on a white background.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), categoryInfo=dict( description="""A list with a tuple for each category that the sensor has learned. The tuple contains the category name (i.e. 'dog') and a serialized version of an example image for the category. To deserialize: from nupic.regions.ImageSensor import deserializeCategoryInfo categoryInfo = deserializeCategoryInfo(sensor.getParameter('categoryInfo'))""", dataType='Byte', count=0, constraints='', accessMode='ReadWrite' ), prevImageInfo=dict( description="""Dictionary of information for the image used during the previous compute.""", dataType='Byte', count=0, constraints='', accessMode='Read' ), logOriginalImages=dict( description="""Toggle for writing the original, unfiltered version of the current image to disk on each iteration.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), enabledHeight=dict( description="""Height of the enabled 'window', in pixels.""", dataType='UInt32', count=1, constraints='interval: [1, ...]', accessMode='ReadWrite' ), depth=dict( description="""Number of images to send out simultaneously.""", dataType='UInt32', count=1, constraints='interval: [1, ...]', accessMode='Read' ), mode=dict( description="""'gray' (8-bit grayscale) or 'bw' (1-bit black and white).""", dataType='Byte', count=0, constraints='enum: gray, bw', accessMode='Read' ), logBoundingBox=dict( description="""Toggle for logging the bounding box information on each iteration.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), blankWithReset=dict( description="""** DEPRECATED ** Whether to send a blank output every time the explorer generates a reset signal (such as when beginning a new sweep). Turning on blanks increases the number of iterations.""", dataType='bool', count=1, constraints='bool', accessMode='ReadWrite' ), metadata=dict( description="""Parameter that contains a dict of metadata for the most recently generated output image.""", dataType='Byte', count=0, constraints='', accessMode='Read' ), postFilters=dict( description="""List of filters to apply to each image just before the image is sent to the network. Each element in the list should either be a string (just the filter name) or a list containing both the filter name and a dictionary specifying its arguments.""", dataType='Byte', count=0, constraints='', accessMode='ReadWrite' ), maxOutputVectorCount=dict( description="""(alias for numIterations) Number of iterations necessary to fully explore all loaded images. Only some explorers support this. Use the getNumIterations command if you wish to get the number of iterations for a particular image.""", dataType='UInt32', count=1, constraints='', accessMode='Read' ) ), commands=dict( loadSingleImage=dict(description='load a single image'), loadMultipleImages=dict(description='load multiple images'), ) ) return ns #def getSpec(self): # """Return the NodeSpec for this PyNode.""" # # parent = PyNode.getSpec(self) # out = NodeSpec( # description=ImageSensor.__doc__, # singleNodeOnly=False, # inputs = [], # outputs = [ # NodeSpecItem(name="dataOut", type=RealTypeName, elementCount=0, # isDefaultOutput2=True, # description="""Pixels of the image."""), # NodeSpecItem(name="categoryOut", type=RealTypeName, regionLevel2=True, # description="""Index of the current image's category."""), # NodeSpecItem(name="resetOut", type=RealTypeName, regionLevel2=True, # description="""Boolean reset output."""), # NodeSpecItem(name="bboxOut", type=RealTypeName, regionLevel2=True, # elementCount=4, # description="""Bounding box output (4-tuple)."""), # NodeSpecItem(name="alphaOut", type=RealTypeName, # elementCount=0, # description="""Alpha channel output."""), # NodeSpecItem(name="partitionOut", type=RealTypeName, regionLevel2=True, # description="""Index of the leave-one-out partition associated with the current image."""), # NodeSpecItem(name="auxDataOut", type=RealTypeName, elementCount=0, # regionLevel2=True, # description="""Auxiliary data sent directly to the classifier.""") # ], # parameters = [ # NodeSpecItem(name="useAux", type="bool", constraints="bool", access="cgs", # value=False, # description="Use auxiliary input data at the classifier level"), # NodeSpecItem(name="width", type="uint", access="cg", # constraints="interval: [1, ...]", value=1, # description="""Width of the image, in pixels."""), # NodeSpecItem(name="height", type="uint", access="cg", # constraints="interval: [1, ...]", value=1, # description="""Height of the image, in pixels."""), # NodeSpecItem(name="depth", type="uint", access="cg", # constraints="interval: [1, ...]", value=1, # description="""Number of images to send out simultaneously."""), # NodeSpecItem(name="mode", type="string", access="cg", # constraints="enum: gray, bw", value='gray', # description="""'gray' (8-bit grayscale) or 'bw' (1-bit black and white)."""), # NodeSpecItem(name="enabledWidth", type="uint", access="gs", # constraints="interval: [1, ...]", # description="""Width of the enabled 'window', in pixels."""), # NodeSpecItem(name="enabledHeight", type="uint", access="gs", # constraints="interval: [1, ...]", # description="""Height of the enabled 'window', in pixels."""), # NodeSpecItem(name="activeOutputCount", type="uint", access="g", # description="""The number of active elements in the dataOut output."""), # NodeSpecItem(name="background", type="uint", access="cgs", # constraints="interval: [0, 255]", value=0, # description="""Value of "background" pixels. May be used to pad images during sweeping, # as well as to find the bounds of an object if no mask is available."""), # NodeSpecItem(name="automaskingTolerance", type="uint", access="cgs", # constraints="interval: [0, 255]", value=0, # description="""Controls the process by which bounding box masks # are automatically generated from images based on similarity to the # specified 'background' pixel value. The bounding box will enclose all # pixels in the image that differ from 'background' by more than # the value specified in 'automaskingTolerance'. Default is 0, which # generates bounding boxes that enclose all pixels that differ at all # from the background. In general, increasing the value of # 'automaskingTolerance' will produce tighter (smaller) bounding box masks."""), # NodeSpecItem(name="automaskingPadding", type="uint", access="cgs", # constraints="interval: [0, ...]", value=0, # description="""Affects the process by which bounding box masks # are automatically generated from images. After computing the # bounding box based on image similarity with respect to the background, # the box will be expanded by 'automaskPadding' pixels in all four # directions (constrained by the original size of the image.)"""), # NodeSpecItem(name="invertOutput", type="bool", constraints="bool", access="cgs", # value=False, # description="""Whether to invert the pixel values before sending an image to the # network. If invertOutput is enabled, a white object on a black background # becomes a black object on a white background."""), # NodeSpecItem(name="filters", type="PyObject", access="cgs", # value=[], # description="""List of filters to apply to each image. Each element in the # list should be either a string (just the filter name) or a list containing # both the filter name and a dictionary specifying its arguments."""), # NodeSpecItem(name="postFilters", type="PyObject", access="cgs", # value=[], # description="""List of filters to apply to each image just before the image # is sent to the network. Each element in the list should either be a string # (just the filter name) or a list containing both the filter name and a # dictionary specifying its arguments."""), # NodeSpecItem(name="explorer", type="PyObject", access="cgs", # value="Flash", # description="""Explorer (used to move the sensor through the input space). # Specify as a string (just the explorer name) or a list containing both the # explorer name and a dictionary specifying its arguments."""), # NodeSpecItem(name="categoryOutputFile", type="string", access="cgs", # value="", # description="""Name of file to which to write category number on each compute."""), # NodeSpecItem(name="logText", type="bool", constraints="bool", access="cgs", # value=False, # description="""Toggle for verbose logging to imagesensor_log.txt."""), # NodeSpecItem(name="logOutputImages", type="bool", constraints="bool", access="cgs", # value=False, # description="""Toggle for writing each output to disk (as an image) # on each iteration."""), # NodeSpecItem(name="logOriginalImages", type="bool", constraints="bool", access="cgs", # value=False, # description="""Toggle for writing the original, unfiltered version of the current # image to disk on each iteration."""), # NodeSpecItem(name="logFilteredImages", type="bool", constraints="bool", access="cgs", # value=False, # description="""Toggle for writing the intermediate versions of images to disk # as they pass through the filter chain."""), # NodeSpecItem(name="logLocationImages", type="bool", constraints="bool", access="cgs", # value=False, # description="""Toggle for writing an image to disk on each iteration which shows # the location of the sensor window."""), # NodeSpecItem(name="logLocationOnOriginalImage", type="bool", constraints="bool", access="cgs", # value=False, # description="""Whether to overlay the location rectangle on the original image instead # of the filtered image. Does not work if the two images do not have the # same size, and may be nonsensical even if they do (for example, if a filter # moved the object within the image)."""), # NodeSpecItem(name="logBoundingBox", type="bool", constraints="bool", access="cgs", # value=False, # description="""Toggle for logging the bounding box information on each iteration."""), # NodeSpecItem(name="logDir", type="string", access="cgs", # value="imagesensor_log", # description="""Name of the imagesensor log directory, which is created in the session # bundle if any logging options are enabled. Default is imagesensor_log."""), # NodeSpecItem(name="memoryLimit", type="int", access="cgs", # constraints="interval: [-1, ...]", value=100, # description="""Maximum amount of memory that ImageSensor should use for storing images, # in megabytes. ImageSensor will unload images and filter outputs to stay beneath # this ceiling. Set to -1 for no limit."""), # NodeSpecItem(name="numImages", type="uint", access="g", # description="""Number of images that the sensor has loaded."""), # NodeSpecItem(name="numMasks", type="uint", access="g", # description="""Number of masks that the sensor has loaded."""), # NodeSpecItem(name="numIterations", type="uint", access="g", # description="""Number of iterations necessary to fully explore all loaded images. Only # some explorers support this. Use the getNumIterations command if you wish to # get the number of iterations for a particular image."""), # NodeSpecItem(name="maxOutputVectorCount", type="uint", access="g", # description="""(alias for numIterations) Number of iterations necessary to fully explore # all loaded images. Only some explorers support this. Use the getNumIterations command # if you wish to get the number of iterations for a particular image."""), # NodeSpecItem(name="blankWithReset", type="bool", constraints="bool", access="cgs", # value=False, # description="""** DEPRECATED ** Whether to send a blank output every time the explorer # generates a reset signal (such as when beginning a new sweep). Turning # on blanks increases the number of iterations."""), # NodeSpecItem(name="position", type="PyObject", access="g", # description="""The position of the sensor that will be used for the *next* compute, # as a dictionary."""), # NodeSpecItem(name="prevPosition", type="PyObject", access="g", # description="""The position of the sensor from the *previous* compute, as a # dictionary. Because "outputImage" and "locationImage" match the output of the # previous compute (not the upcoming one), they do not correlate with the # "position" parameter; use this parameter instead."""), # NodeSpecItem(name="imageInfo", type="PyObject", access="g", # description="""A list with a dictionary of information for each image that has # been loaded."""), # NodeSpecItem(name="prevImageInfo", type="PyObject", access="g", # description="""Dictionary of information for the image used during the previous compute."""), # NodeSpecItem(name="nextImageInfo", type="PyObject", access="g", # description="""Dictionary of information for the image which will be used for the next # compute."""), # NodeSpecItem(name="categoryInfo", type="PyObject", access="gs", # description="""A list with a tuple for each category that the sensor has learned. The # tuple contains the category name (i.e. 'dog') and a serialized version of # an example image for the category. To deserialize: # from nupic.regions.ImageSensor import deserializeCategoryInfo # categoryInfo = deserializeCategoryInfo(sensor.getParameter('categoryInfo'))"""), # NodeSpecItem(name="outputImage", type="PyObject", access="g", # description="""Serialized version of the current output image(s). If depth > 1, # multiple serialized images will be returned in a list. To deserialize: # from nupic.image import deserializeImage # outputImage = deserializeImage(sensor.getParameter('outputImage'))"""), # NodeSpecItem(name="outputImageWithAlpha", type="PyObject", access="g", # description="""Serialized version of the current output image(s) with the alpha channel. # If depth > 1, multiple serialized images will be returned in a list. To deserialize: # from nupic.image import deserializeImage # outputImage = deserializeImage(sensor.getParameter('outputImageWithAlpha'))"""), # NodeSpecItem(name="originalImage", type="string", access="g", # description="""Serialized version of the original, unfiltered version of the # current image. To deserialize: # from nupic.image import deserializeImage # originalImage = deserializeImage(sensor.getParameter('originalImage'))"""), # NodeSpecItem(name="locationImage", type="string", access="g", # description="""Serialized version of the current 'location image', which shows the # position of the sensor overlaid on the filtered image (optionally, the # original image). To deserialize: # from nupic.image import deserializeImage # locationImage = deserializeImage(sensor.getParameter('locationImage'))"""), # NodeSpecItem(name="minimalBoundingBox", type="bool", constraints="bool", access="cgs", # description="""Whether the bounding box found by looking at the # image background should be set even if it touches one of the sides of # the image. Set to False to avoid chopping edges off certain images, or # True if that is not an issue and you wish to use a sweeping explorer."""), # NodeSpecItem(name="auxDataWidth", type="int", access="cgs", # description="""The number of elements in in the auxiliary data vector."""), # NodeSpecItem(name="auxData", type="PyObject", access="g", # description="""List of Auxiliary Data for every image in the image list"""), # NodeSpecItem(name="metadata", type="string", access="g", # description="""Parameter that contains a dict of metadata for the most # recently generated output image."""), # ] # ) # return out + parent #--------------------------------------------------------------------------------- def initialize(self, dims, splitterMaps): pass #--------------------------------------------------------------------------------- def getOutputElementCount(self, name): if name == 'auxDataOut': return self._auxDataWidth if self._auxDataWidth else 0 elif name == 'dataOut': return 1 elif name == 'alphaOut': return 1 else: raise Exception('Unknown output: ' + name) #def interpret2(self, command): # """NuPIC 2 replacement for interpret in NuPIC 1 nodes""" # # This process effectively strips out one level of quotes; manifests # # as a problem with pathnames on windows # exec(command.replace("\\", "\\\\")) def serializeCategoryInfo(categoryInfo): return [[name, serializeImage(image)] for name, image in categoryInfo] def deserializeCategoryInfo(sCategoryInfo): if sCategoryInfo is None: return [] return [[name, (deserializeImage(sImage) if sImage is not None else None)] for name, sImage in sCategoryInfo] def _serializeImageList(imageList): sImageList = [] for i in xrange(len(imageList)): sImageList.append(imageList[i].copy()) if sImageList[i]['image']: sImageList[i]['image'] = serializeImage(sImageList[i]['image']) if sImageList[i]['filtered']: sImageList[i]['filtered'] = _serializeAllImages(sImageList[i]['filtered']) return sImageList def _deserializeImageList(sImageList): imageList = sImageList for i in xrange(len(imageList)): if imageList[i]['image']: imageList[i]['image'] = deserializeImage(imageList[i]['image']) if imageList[i]['filtered']: imageList[i]['filtered'] = _deserializeAllImages(imageList[i]['filtered']) return imageList def _serializeAllImages(old): new = {} for key in old: new[key] = [serializeImage(image) for image in old[key]] return new def _deserializeAllImages(old): new = {} for key in old: new[key] = [deserializeImage(sImage) for sImage in old[key]] return new
gpl-3.0
useabode/redash
redash/query_runner/big_query.py
4
10388
import datetime import json import logging import sys import time from base64 import b64decode import httplib2 import requests from redash import settings from redash.query_runner import * from redash.utils import JSONEncoder logger = logging.getLogger(__name__) try: import apiclient.errors from apiclient.discovery import build from apiclient.errors import HttpError from oauth2client.service_account import ServiceAccountCredentials from oauth2client.contrib import gce enabled = True except ImportError: enabled = False types_map = { 'INTEGER': TYPE_INTEGER, 'FLOAT': TYPE_FLOAT, 'BOOLEAN': TYPE_BOOLEAN, 'STRING': TYPE_STRING, 'TIMESTAMP': TYPE_DATETIME, } def transform_row(row, fields): column_index = 0 row_data = {} for cell in row["f"]: field = fields[column_index] cell_value = cell['v'] if cell_value is None: pass # Otherwise just cast the value elif field['type'] == 'INTEGER': cell_value = int(cell_value) elif field['type'] == 'FLOAT': cell_value = float(cell_value) elif field['type'] == 'BOOLEAN': cell_value = cell_value.lower() == "true" elif field['type'] == 'TIMESTAMP': cell_value = datetime.datetime.fromtimestamp(float(cell_value)) row_data[field["name"]] = cell_value column_index += 1 return row_data def _load_key(filename): f = file(filename, "rb") try: return f.read() finally: f.close() def _get_query_results(jobs, project_id, job_id, start_index): query_reply = jobs.getQueryResults(projectId=project_id, jobId=job_id, startIndex=start_index).execute() logging.debug('query_reply %s', query_reply) if not query_reply['jobComplete']: time.sleep(10) return _get_query_results(jobs, project_id, job_id, start_index) return query_reply class BigQuery(BaseQueryRunner): noop_query = "SELECT 1" @classmethod def enabled(cls): return enabled @classmethod def configuration_schema(cls): return { 'type': 'object', 'properties': { 'projectId': { 'type': 'string', 'title': 'Project ID' }, 'jsonKeyFile': { "type": "string", 'title': 'JSON Key File' }, 'totalMBytesProcessedLimit': { "type": "number", 'title': 'Scanned Data Limit (MB)' }, 'userDefinedFunctionResourceUri': { "type": "string", 'title': 'UDF Source URIs (i.e. gs://bucket/date_utils.js, gs://bucket/string_utils.js )' }, 'useStandardSql': { "type": "boolean", 'title': "Use Standard SQL (Beta)", }, 'loadSchema': { "type": "boolean", "title": "Load Schema" }, 'maximumBillingTier': { "type": "number", "title": "Maximum Billing Tier" } }, 'required': ['jsonKeyFile', 'projectId'], "order": ['projectId', 'jsonKeyFile', 'loadSchema', 'useStandardSql', 'totalMBytesProcessedLimit', 'maximumBillingTier', 'userDefinedFunctionResourceUri'], 'secret': ['jsonKeyFile'] } @classmethod def annotate_query(cls): return False def __init__(self, configuration): super(BigQuery, self).__init__(configuration) def _get_bigquery_service(self): scope = [ "https://www.googleapis.com/auth/bigquery", "https://www.googleapis.com/auth/drive" ] key = json.loads(b64decode(self.configuration['jsonKeyFile'])) creds = ServiceAccountCredentials.from_json_keyfile_dict(key, scope) http = httplib2.Http(timeout=settings.BIGQUERY_HTTP_TIMEOUT) http = creds.authorize(http) return build("bigquery", "v2", http=http) def _get_project_id(self): return self.configuration["projectId"] def _get_total_bytes_processed(self, jobs, query): job_data = { "query": query, "dryRun": True, } if self.configuration.get('useStandardSql', False): job_data['useLegacySql'] = False response = jobs.query(projectId=self._get_project_id(), body=job_data).execute() return int(response["totalBytesProcessed"]) def _get_query_result(self, jobs, query): project_id = self._get_project_id() job_data = { "configuration": { "query": { "query": query, } } } if self.configuration.get('useStandardSql', False): job_data['configuration']['query']['useLegacySql'] = False if "userDefinedFunctionResourceUri" in self.configuration: resource_uris = self.configuration["userDefinedFunctionResourceUri"].split(',') job_data["configuration"]["query"]["userDefinedFunctionResources"] = map( lambda resource_uri: {"resourceUri": resource_uri}, resource_uris) if "maximumBillingTier" in self.configuration: job_data["configuration"]["query"]["maximumBillingTier"] = self.configuration["maximumBillingTier"] insert_response = jobs.insert(projectId=project_id, body=job_data).execute() current_row = 0 query_reply = _get_query_results(jobs, project_id=project_id, job_id=insert_response['jobReference']['jobId'], start_index=current_row) logger.debug("bigquery replied: %s", query_reply) rows = [] while ("rows" in query_reply) and current_row < query_reply['totalRows']: for row in query_reply["rows"]: rows.append(transform_row(row, query_reply["schema"]["fields"])) current_row += len(query_reply['rows']) query_reply = jobs.getQueryResults(projectId=project_id, jobId=query_reply['jobReference']['jobId'], startIndex=current_row).execute() columns = [{'name': f["name"], 'friendly_name': f["name"], 'type': types_map.get(f['type'], "string")} for f in query_reply["schema"]["fields"]] data = { "columns": columns, "rows": rows } return data def get_schema(self, get_stats=False): if not self.configuration.get('loadSchema', False): return [] service = self._get_bigquery_service() project_id = self._get_project_id() datasets = service.datasets().list(projectId=project_id).execute() schema = [] for dataset in datasets.get('datasets', []): dataset_id = dataset['datasetReference']['datasetId'] tables = service.tables().list(projectId=project_id, datasetId=dataset_id).execute() for table in tables.get('tables', []): table_data = service.tables().get(projectId=project_id, datasetId=dataset_id, tableId=table['tableReference']['tableId']).execute() schema.append({'name': table_data['id'], 'columns': map(lambda r: r['name'], table_data['schema']['fields'])}) return schema def run_query(self, query, user): logger.debug("BigQuery got query: %s", query) bigquery_service = self._get_bigquery_service() jobs = bigquery_service.jobs() try: if "totalMBytesProcessedLimit" in self.configuration: limitMB = self.configuration["totalMBytesProcessedLimit"] processedMB = self._get_total_bytes_processed(jobs, query) / 1000.0 / 1000.0 if limitMB < processedMB: return None, "Larger than %d MBytes will be processed (%f MBytes)" % (limitMB, processedMB) data = self._get_query_result(jobs, query) error = None json_data = json.dumps(data, cls=JSONEncoder) except apiclient.errors.HttpError, e: json_data = None if e.resp.status == 400: error = json.loads(e.content)['error']['message'] else: error = e.content except KeyboardInterrupt: error = "Query cancelled by user." json_data = None except Exception: raise sys.exc_info()[1], None, sys.exc_info()[2] return json_data, error class BigQueryGCE(BigQuery): @classmethod def type(cls): return "bigquery_gce" @classmethod def enabled(cls): try: # check if we're on a GCE instance requests.get('http://metadata.google.internal') except requests.exceptions.ConnectionError: return False return True @classmethod def configuration_schema(cls): return { 'type': 'object', 'properties': { 'totalMBytesProcessedLimit': { "type": "number", 'title': 'Total MByte Processed Limit' }, 'userDefinedFunctionResourceUri': { "type": "string", 'title': 'UDF Source URIs (i.e. gs://bucket/date_utils.js, gs://bucket/string_utils.js )' }, 'useStandardSql': { "type": "boolean", 'title': "Use Standard SQL (Beta)", }, 'loadSchema': { "type": "boolean", "title": "Load Schema" } } } def _get_project_id(self): return requests.get('http://metadata/computeMetadata/v1/project/project-id', headers={'Metadata-Flavor': 'Google'}).content def _get_bigquery_service(self): credentials = gce.AppAssertionCredentials(scope='https://www.googleapis.com/auth/bigquery') http = httplib2.Http() http = credentials.authorize(http) return build("bigquery", "v2", http=http) register(BigQuery) register(BigQueryGCE)
bsd-2-clause
anielsen001/scipy
scipy/stats/stats.py
9
179575
# Copyright (c) Gary Strangman. All rights reserved # # Disclaimer # # This software is provided "as-is". There are no expressed or implied # warranties of any kind, including, but not limited to, the warranties # of merchantability and fitness for a given application. In no event # shall Gary Strangman be liable for any direct, indirect, incidental, # special, exemplary or consequential damages (including, but not limited # to, loss of use, data or profits, or business interruption) however # caused and on any theory of liability, whether in contract, strict # liability or tort (including negligence or otherwise) arising in any way # out of the use of this software, even if advised of the possibility of # such damage. # # # Heavily adapted for use by SciPy 2002 by Travis Oliphant """ A collection of basic statistical functions for python. The function names appear below. Some scalar functions defined here are also available in the scipy.special package where they work on arbitrary sized arrays. Disclaimers: The function list is obviously incomplete and, worse, the functions are not optimized. All functions have been tested (some more so than others), but they are far from bulletproof. Thus, as with any free software, no warranty or guarantee is expressed or implied. :-) A few extra functions that don't appear in the list below can be found by interested treasure-hunters. These functions don't necessarily have both list and array versions but were deemed useful. Central Tendency ---------------- .. autosummary:: :toctree: generated/ gmean hmean mode Moments ------- .. autosummary:: :toctree: generated/ moment variation skew kurtosis normaltest Altered Versions ---------------- .. autosummary:: :toctree: generated/ tmean tvar tstd tsem describe Frequency Stats --------------- .. autosummary:: :toctree: generated/ itemfreq scoreatpercentile percentileofscore histogram cumfreq relfreq Variability ----------- .. autosummary:: :toctree: generated/ obrientransform signaltonoise sem zmap zscore iqr Trimming Functions ------------------ .. autosummary:: :toctree: generated/ threshold trimboth trim1 Correlation Functions --------------------- .. autosummary:: :toctree: generated/ pearsonr fisher_exact spearmanr pointbiserialr kendalltau linregress theilslopes Inferential Stats ----------------- .. autosummary:: :toctree: generated/ ttest_1samp ttest_ind ttest_ind_from_stats ttest_rel chisquare power_divergence ks_2samp mannwhitneyu ranksums wilcoxon kruskal friedmanchisquare combine_pvalues Probability Calculations ------------------------ .. autosummary:: :toctree: generated/ chisqprob betai ANOVA Functions --------------- .. autosummary:: :toctree: generated/ f_oneway f_value Support Functions ----------------- .. autosummary:: :toctree: generated/ ss square_of_sums rankdata References ---------- .. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ from __future__ import division, print_function, absolute_import from collections import namedtuple import math import warnings # Scipy imports. from scipy._lib.six import callable, string_types, xrange from scipy._lib._version import NumpyVersion from numpy import array, asarray, ma, zeros import scipy.special as special import scipy.linalg as linalg import numpy as np from . import distributions, mstats_basic, _stats from ._distn_infrastructure import _lazywhere from ._stats_mstats_common import _find_repeats, linregress, theilslopes from ._stats import _kendall_condis __all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation', 'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest', 'normaltest', 'jarque_bera', 'itemfreq', 'scoreatpercentile', 'percentileofscore', 'histogram', 'histogram2', 'cumfreq', 'relfreq', 'obrientransform', 'signaltonoise', 'sem', 'zmap', 'zscore', 'iqr', 'threshold', 'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway', 'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr', 'kendalltau', 'linregress', 'theilslopes', 'ttest_1samp', 'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel', 'kstest', 'chisquare', 'power_divergence', 'ks_2samp', 'mannwhitneyu', 'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare', 'chisqprob', 'betai', 'f_value_wilks_lambda', 'f_value', 'f_value_multivariate', 'ss', 'square_of_sums', 'fastsort', 'rankdata', 'combine_pvalues', ] def _chk_asarray(a, axis): if axis is None: a = np.ravel(a) outaxis = 0 else: a = np.asarray(a) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) return a, outaxis def _chk2_asarray(a, b, axis): if axis is None: a = np.ravel(a) b = np.ravel(b) outaxis = 0 else: a = np.asarray(a) b = np.asarray(b) outaxis = axis if a.ndim == 0: a = np.atleast_1d(a) if b.ndim == 0: b = np.atleast_1d(b) return a, b, outaxis def _contains_nan(a, nan_policy='propagate'): policies = ['propagate', 'raise', 'omit'] if nan_policy not in policies: raise ValueError("nan_policy must be one of {%s}" % ', '.join("'%s'" % s for s in policies)) try: # Calling np.sum to avoid creating a huge array into memory # e.g. np.isnan(a).any() with np.errstate(invalid='ignore'): contains_nan = np.isnan(np.sum(a)) except TypeError: # If the check cannot be properly performed we fallback to omiting # nan values and raising a warning. This can happen when attempting to # sum things that are not numbers (e.g. as in the function `mode`). contains_nan = False nan_policy = 'omit' warnings.warn("The input array could not be properly checked for nan " "values. nan values will be ignored.", RuntimeWarning) if contains_nan and nan_policy == 'raise': raise ValueError("The input contains nan values") return (contains_nan, nan_policy) ##################################### # CENTRAL TENDENCY # ##################################### def gmean(a, axis=0, dtype=None): """ Compute the geometric mean along the specified axis. Returns the geometric average of the array elements. That is: n-th root of (x1 * x2 * ... * xn) Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : int or None, optional Axis along which the geometric mean is computed. Default is 0. If None, compute over the whole array `a`. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If dtype is not specified, it defaults to the dtype of a, unless a has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- gmean : ndarray see dtype parameter above See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average hmean : Harmonic mean Notes ----- The geometric average is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity because masked arrays automatically mask any non-finite values. """ if not isinstance(a, np.ndarray): # if not an ndarray object attempt to convert it log_a = np.log(np.array(a, dtype=dtype)) elif dtype: # Must change the default dtype allowing array type if isinstance(a, np.ma.MaskedArray): log_a = np.log(np.ma.asarray(a, dtype=dtype)) else: log_a = np.log(np.asarray(a, dtype=dtype)) else: log_a = np.log(a) return np.exp(log_a.mean(axis=axis)) def hmean(a, axis=0, dtype=None): """ Calculates the harmonic mean along the specified axis. That is: n / (1/x1 + 1/x2 + ... + 1/xn) Parameters ---------- a : array_like Input array, masked array or object that can be converted to an array. axis : int or None, optional Axis along which the harmonic mean is computed. Default is 0. If None, compute over the whole array `a`. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer `dtype` with a precision less than that of the default platform integer. In that case, the default platform integer is used. Returns ------- hmean : ndarray see `dtype` parameter above See Also -------- numpy.mean : Arithmetic average numpy.average : Weighted average gmean : Geometric mean Notes ----- The harmonic mean is computed over a single dimension of the input array, axis=0 by default, or all values in the array if axis=None. float64 intermediate and return values are used for integer inputs. Use masked arrays to ignore any non-finite values in the input or that arise in the calculations such as Not a Number and infinity. """ if not isinstance(a, np.ndarray): a = np.array(a, dtype=dtype) if np.all(a > 0): # Harmonic mean only defined if greater than zero if isinstance(a, np.ma.MaskedArray): size = a.count(axis) else: if axis is None: a = a.ravel() size = a.shape[0] else: size = a.shape[axis] return size / np.sum(1.0/a, axis=axis, dtype=dtype) else: raise ValueError("Harmonic mean only defined if all elements greater than zero") ModeResult = namedtuple('ModeResult', ('mode', 'count')) def mode(a, axis=0, nan_policy='propagate'): """ Returns an array of the modal (most common) value in the passed array. If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- mode : ndarray Array of modal values. count : ndarray Array of counts for each mode. Examples -------- >>> a = np.array([[6, 8, 3, 0], ... [3, 2, 1, 7], ... [8, 1, 8, 4], ... [5, 3, 0, 5], ... [4, 7, 5, 9]]) >>> from scipy import stats >>> stats.mode(a) (array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]])) To get mode of whole array, specify ``axis=None``: >>> stats.mode(a, axis=None) (array([3]), array([3])) """ a, axis = _chk_asarray(a, axis) if a.size == 0: return np.array([]), np.array([]) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.mode(a, axis) scores = np.unique(np.ravel(a)) # get ALL unique values testshape = list(a.shape) testshape[axis] = 1 oldmostfreq = np.zeros(testshape, dtype=a.dtype) oldcounts = np.zeros(testshape, dtype=int) for score in scores: template = (a == score) counts = np.expand_dims(np.sum(template, axis), axis) mostfrequent = np.where(counts > oldcounts, score, oldmostfreq) oldcounts = np.maximum(counts, oldcounts) oldmostfreq = mostfrequent return ModeResult(mostfrequent, oldcounts) def _mask_to_limits(a, limits, inclusive): """Mask an array for values outside of given limits. This is primarily a utility function. Parameters ---------- a : array limits : (float or None, float or None) A tuple consisting of the (lower limit, upper limit). Values in the input array less than the lower limit or greater than the upper limit will be masked out. None implies no limit. inclusive : (bool, bool) A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to lower or upper are allowed. Returns ------- A MaskedArray. Raises ------ A ValueError if there are no values within the given limits. """ lower_limit, upper_limit = limits lower_include, upper_include = inclusive am = ma.MaskedArray(a) if lower_limit is not None: if lower_include: am = ma.masked_less(am, lower_limit) else: am = ma.masked_less_equal(am, lower_limit) if upper_limit is not None: if upper_include: am = ma.masked_greater(am, upper_limit) else: am = ma.masked_greater_equal(am, upper_limit) if am.count() == 0: raise ValueError("No array values within given limits") return am def tmean(a, limits=None, inclusive=(True, True), axis=None): """ Compute the trimmed mean. This function finds the arithmetic mean of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None (default), then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to compute test. Default is None. Returns ------- tmean : float See also -------- trim_mean : returns mean after trimming a proportion from both tails. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmean(x) 9.5 >>> stats.tmean(x, (3,17)) 10.0 """ a = asarray(a) if limits is None: return np.mean(a, None) am = _mask_to_limits(a.ravel(), limits, inclusive) return am.mean(axis=axis) def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed variance This function computes the sample variance of an array of values, while ignoring values which are outside of given `limits`. Parameters ---------- a : array_like Array of values. limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tvar : float Trimmed variance. Notes ----- `tvar` computes the unbiased sample variance, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tvar(x) 35.0 >>> stats.tvar(x, (3,17)) 20.0 """ a = asarray(a) a = a.astype(float).ravel() if limits is None: n = len(a) return a.var() * n/(n-1.) am = _mask_to_limits(a, limits, inclusive) return np.ma.var(am, ddof=ddof, axis=axis) def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'): """ Compute the trimmed minimum This function finds the miminum value of an array `a` along the specified axis, but only considering values greater than a specified lower limit. Parameters ---------- a : array_like array of values lowerlimit : None or float, optional Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the lower limit are included. The default value is True. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- tmin : float, int or ndarray Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmin(x) 0 >>> stats.tmin(x, 13) 13 >>> stats.tmin(x, 13, inclusive=False) 14 """ a, axis = _chk_asarray(a, axis) am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False)) contains_nan, nan_policy = _contains_nan(am, nan_policy) if contains_nan and nan_policy == 'omit': am = ma.masked_invalid(am) res = ma.minimum.reduce(am, axis).data if res.ndim == 0: return res[()] return res def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'): """ Compute the trimmed maximum This function computes the maximum value of an array along a given axis, while ignoring values larger than a specified upper limit. Parameters ---------- a : array_like array of values upperlimit : None or float, optional Values in the input array greater than the given limit will be ignored. When upperlimit is None, then all values are used. The default value is None. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. inclusive : {True, False}, optional This flag determines whether values exactly equal to the upper limit are included. The default value is True. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- tmax : float, int or ndarray Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tmax(x) 19 >>> stats.tmax(x, 13) 13 >>> stats.tmax(x, 13, inclusive=False) 12 """ a, axis = _chk_asarray(a, axis) am = _mask_to_limits(a, (None, upperlimit), (False, inclusive)) contains_nan, nan_policy = _contains_nan(am, nan_policy) if contains_nan and nan_policy == 'omit': am = ma.masked_invalid(am) res = ma.maximum.reduce(am, axis).data if res.ndim == 0: return res[()] return res def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed sample standard deviation This function finds the sample standard deviation of given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tstd : float Notes ----- `tstd` computes the unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tstd(x) 5.9160797830996161 >>> stats.tstd(x, (3,17)) 4.4721359549995796 """ return np.sqrt(tvar(a, limits, inclusive, axis, ddof)) def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1): """ Compute the trimmed standard error of the mean. This function finds the standard error of the mean for given values, ignoring values outside the given `limits`. Parameters ---------- a : array_like array of values limits : None or (lower limit, upper limit), optional Values in the input array less than the lower limit or greater than the upper limit will be ignored. When limits is None, then all values are used. Either of the limit values in the tuple can also be None representing a half-open interval. The default value is None. inclusive : (bool, bool), optional A tuple consisting of the (lower flag, upper flag). These flags determine whether values exactly equal to the lower or upper limits are included. The default value is (True, True). axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom. Default is 1. Returns ------- tsem : float Notes ----- `tsem` uses unbiased sample standard deviation, i.e. it uses a correction factor ``n / (n - 1)``. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.tsem(x) 1.3228756555322954 >>> stats.tsem(x, (3,17)) 1.1547005383792515 """ a = np.asarray(a).ravel() if limits is None: return a.std(ddof=ddof) / np.sqrt(a.size) am = _mask_to_limits(a, limits, inclusive) sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis)) return sd / np.sqrt(am.count()) ##################################### # MOMENTS # ##################################### def moment(a, moment=1, axis=0, nan_policy='propagate'): r""" Calculates the nth moment about the mean for a sample. A moment is a specific quantitative measure of the shape of a set of points. It is often used to calculate coefficients of skewness and kurtosis due to its close relationship with them. Parameters ---------- a : array_like data moment : int or array_like of ints, optional order of central moment that is returned. Default is 1. axis : int or None, optional Axis along which the central moment is computed. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- n-th central moment : ndarray or float The appropriate moment along the given axis or over all values if axis is None. The denominator for the moment calculation is the number of observations, no degrees of freedom correction is done. See also -------- kurtosis, skew, describe Notes ----- The k-th central moment of a data sample is: .. math:: m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k Where n is the number of samples and x-bar is the mean. This function uses exponentiation by squares [1]_ for efficiency. References ---------- .. [1] http://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.moment(a, moment, axis) if a.size == 0: # empty array, return nan(s) with shape matching `moment` if np.isscalar(moment): return np.nan else: return np.ones(np.asarray(moment).shape, dtype=np.float64) * np.nan # for array_like moment input, return a value for each. if not np.isscalar(moment): mmnt = [_moment(a, i, axis) for i in moment] return np.array(mmnt) else: return _moment(a, moment, axis) def _moment(a, moment, axis): if np.abs(moment - np.round(moment)) > 0: raise ValueError("All moment parameters must be integers") if moment == 0: # When moment equals 0, the result is 1, by definition. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.ones(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return 1.0 elif moment == 1: # By definition the first moment about the mean is 0. shape = list(a.shape) del shape[axis] if shape: # return an actual array of the appropriate shape return np.zeros(shape, dtype=float) else: # the input was 1D, so return a scalar instead of a rank-0 array return np.float64(0.0) else: # Exponentiation by squares: form exponent sequence n_list = [moment] current_n = moment while current_n > 2: if current_n % 2: current_n = (current_n-1)/2 else: current_n /= 2 n_list.append(current_n) # Starting point for exponentiation by squares a_zero_mean = a - np.expand_dims(np.mean(a, axis), axis) if n_list[-1] == 1: s = a_zero_mean.copy() else: s = a_zero_mean**2 # Perform multiplications for n in n_list[-2::-1]: s = s**2 if n % 2: s *= a_zero_mean return np.mean(s, axis) def variation(a, axis=0, nan_policy='propagate'): """ Computes the coefficient of variation, the ratio of the biased standard deviation to the mean. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate the coefficient of variation. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- variation : ndarray The calculated variation along the requested axis. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.variation(a, axis) return a.std(axis) / a.mean(axis) def skew(a, axis=0, bias=True, nan_policy='propagate'): """ Computes the skewness of a data set. For normally distributed data, the skewness should be about 0. A skewness value > 0 means that there is more weight in the left tail of the distribution. The function `skewtest` can be used to determine if the skewness value is close enough to 0, statistically speaking. Parameters ---------- a : ndarray data axis : int or None, optional Axis along which skewness is calculated. Default is 0. If None, compute over the whole array `a`. bias : bool, optional If False, then the calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- skewness : ndarray The skewness of values along an axis, returning 0 where all values are equal. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Section 2.2.24.1 """ a, axis = _chk_asarray(a, axis) n = a.shape[axis] contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.skew(a, axis, bias) m2 = moment(a, 2, axis) m3 = moment(a, 3, axis) zero = (m2 == 0) vals = _lazywhere(~zero, (m2, m3), lambda m2, m3: m3 / m2**1.5, 0.) if not bias: can_correct = (n > 2) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m3 = np.extract(can_correct, m3) nval = np.sqrt((n-1.0)*n) / (n-2.0) * m3/m2**1.5 np.place(vals, can_correct, nval) if vals.ndim == 0: return vals.item() return vals def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'): """ Computes the kurtosis (Fisher or Pearson) of a dataset. Kurtosis is the fourth central moment divided by the square of the variance. If Fisher's definition is used, then 3.0 is subtracted from the result to give 0.0 for a normal distribution. If bias is False then the kurtosis is calculated using k statistics to eliminate bias coming from biased moment estimators Use `kurtosistest` to see if result is close enough to normal. Parameters ---------- a : array data for which the kurtosis is calculated axis : int or None, optional Axis along which the kurtosis is calculated. Default is 0. If None, compute over the whole array `a`. fisher : bool, optional If True, Fisher's definition is used (normal ==> 0.0). If False, Pearson's definition is used (normal ==> 3.0). bias : bool, optional If False, then the calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- kurtosis : array The kurtosis of values along an axis. If all values are equal, return -3 for Fisher's definition and 0 for Pearson's definition. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.kurtosis(a, axis, fisher, bias) n = a.shape[axis] m2 = moment(a, 2, axis) m4 = moment(a, 4, axis) zero = (m2 == 0) olderr = np.seterr(all='ignore') try: vals = np.where(zero, 0, m4 / m2**2.0) finally: np.seterr(**olderr) if not bias: can_correct = (n > 3) & (m2 > 0) if can_correct.any(): m2 = np.extract(can_correct, m2) m4 = np.extract(can_correct, m4) nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0) np.place(vals, can_correct, nval + 3.0) if vals.ndim == 0: vals = vals.item() # array scalar if fisher: return vals - 3 else: return vals DescribeResult = namedtuple('DescribeResult', ('nobs', 'minmax', 'mean', 'variance', 'skewness', 'kurtosis')) def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'): """ Computes several descriptive statistics of the passed array. Parameters ---------- a : array_like Input data. axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees of freedom (only for variance). Default is 1. bias : bool, optional If False, then the skewness and kurtosis calculations are corrected for statistical bias. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- nobs : int Number of observations (length of data along `axis`). minmax: tuple of ndarrays or floats Minimum and maximum value of data array. mean : ndarray or float Arithmetic mean of data along axis. variance : ndarray or float Unbiased variance of the data along axis, denominator is number of observations minus one. skewness : ndarray or float Skewness, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction. kurtosis : ndarray or float Kurtosis (Fisher). The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used. See Also -------- skew, kurtosis Examples -------- >>> from scipy import stats >>> a = np.arange(10) >>> stats.describe(a) DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.1666666666666661, skewness=0.0, kurtosis=-1.2242424242424244) >>> b = [[1, 2], [3, 4]] >>> stats.describe(b) DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])), mean=array([ 2., 3.]), variance=array([ 2., 2.]), skewness=array([ 0., 0.]), kurtosis=array([-2., -2.])) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.describe(a, axis, ddof, bias) if a.size == 0: raise ValueError("The input must not be empty.") n = a.shape[axis] mm = (np.min(a, axis=axis), np.max(a, axis=axis)) m = np.mean(a, axis=axis) v = np.var(a, axis=axis, ddof=ddof) sk = skew(a, axis, bias=bias) kurt = kurtosis(a, axis, bias=bias) return DescribeResult(n, mm, m, v, sk, kurt) ##################################### # NORMALITY TESTS # ##################################### SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue')) def skewtest(a, axis=0, nan_policy='propagate'): """ Tests whether the skew is different from the normal distribution. This function tests the null hypothesis that the skewness of the population that the sample was drawn from is the same as that of a corresponding normal distribution. Parameters ---------- a : array The data to be tested axis : int or None, optional Axis along which statistics are calculated. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float The computed z-score for this test. pvalue : float a 2-sided p-value for the hypothesis test Notes ----- The sample size must be at least 8. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.skewtest(a, axis) if axis is None: a = np.ravel(a) axis = 0 b2 = skew(a, axis) n = float(a.shape[axis]) if n < 8: raise ValueError( "skewtest is not valid with less than 8 samples; %i samples" " were given." % int(n)) y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2))) beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) / ((n-2.0) * (n+5) * (n+7) * (n+9))) W2 = -1 + math.sqrt(2 * (beta2 - 1)) delta = 1 / math.sqrt(0.5 * math.log(W2)) alpha = math.sqrt(2.0 / (W2 - 1)) y = np.where(y == 0, 1, y) Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1)) return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue')) def kurtosistest(a, axis=0, nan_policy='propagate'): """ Tests whether a dataset has normal kurtosis This function tests the null hypothesis that the kurtosis of the population from which the sample was drawn is that of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``. Parameters ---------- a : array array of the sample data axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float The computed z-score for this test. pvalue : float The 2-sided p-value for the hypothesis test Notes ----- Valid only for n>20. The Z-score is set to 0 for bad entries. This function uses the method described in [1]_. References ---------- .. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983. """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.kurtosistest(a, axis) n = float(a.shape[axis]) if n < 5: raise ValueError( "kurtosistest requires at least 5 observations; %i observations" " were given." % int(n)) if n < 20: warnings.warn("kurtosistest only valid for n>=20 ... continuing " "anyway, n=%i" % int(n)) b2 = kurtosis(a, axis, fisher=False) E = 3.0*(n-1) / (n+1) varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1 x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4 # [1]_ Eq. 2: sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) / (n*(n-2)*(n-3))) # [1]_ Eq. 3: A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2))) term1 = 1 - 2/(9.0*A) denom = 1 + x*np.sqrt(2/(A-4.0)) denom = np.where(denom < 0, 99, denom) term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom, 1/3.0)) Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5 Z = np.where(denom == 99, 0, Z) if Z.ndim == 0: Z = Z[()] # zprob uses upper tail, so Z needs to be positive return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z))) NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue')) def normaltest(a, axis=0, nan_policy='propagate'): """ Tests whether a sample differs from a normal distribution. This function tests the null hypothesis that a sample comes from a normal distribution. It is based on D'Agostino and Pearson's [1]_, [2]_ test that combines skew and kurtosis to produce an omnibus test of normality. Parameters ---------- a : array_like The array containing the data to be tested. axis : int or None, optional Axis along which to compute test. Default is 0. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and ``k`` is the z-score returned by `kurtosistest`. pvalue : float or array A 2-sided chi squared probability for the hypothesis test. References ---------- .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for moderate and large sample size", Biometrika, 58, 341-348 .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from normality", Biometrika, 60, 613-622 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.normaltest(a, axis) s, _ = skewtest(a, axis) k, _ = kurtosistest(a, axis) k2 = s*s + k*k return NormaltestResult(k2, distributions.chi2.sf(k2, 2)) def jarque_bera(x): """ Perform the Jarque-Bera goodness of fit test on sample data. The Jarque-Bera test tests whether the sample data has the skewness and kurtosis matching a normal distribution. Note that this test only works for a large enough number of data samples (>2000) as the test statistic asymptotically has a Chi-squared distribution with 2 degrees of freedom. Parameters ---------- x : array_like Observations of a random variable. Returns ------- jb_value : float The test statistic. p : float The p-value for the hypothesis test. References ---------- .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality, homoscedasticity and serial independence of regression residuals", 6 Econometric Letters 255-259. Examples -------- >>> from scipy import stats >>> np.random.seed(987654321) >>> x = np.random.normal(0, 1, 100000) >>> y = np.random.rayleigh(1, 100000) >>> stats.jarque_bera(x) (4.7165707989581342, 0.09458225503041906) >>> stats.jarque_bera(y) (6713.7098548143422, 0.0) """ x = np.asarray(x) n = float(x.size) if n == 0: raise ValueError('At least one observation is required.') mu = x.mean() diffx = x - mu skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.) kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2 jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4) p = 1 - distributions.chi2.cdf(jb_value, 2) return jb_value, p ##################################### # FREQUENCY FUNCTIONS # ##################################### def itemfreq(a): """ Returns a 2-D array of item frequencies. Parameters ---------- a : (N,) array_like Input array. Returns ------- itemfreq : (K, 2) ndarray A 2-D frequency table. Column 1 contains sorted, unique values from `a`, column 2 contains their respective counts. Examples -------- >>> from scipy import stats >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4]) >>> stats.itemfreq(a) array([[ 0., 2.], [ 1., 4.], [ 2., 2.], [ 4., 1.], [ 5., 1.]]) >>> np.bincount(a) array([2, 4, 2, 0, 1, 1]) >>> stats.itemfreq(a/10.) array([[ 0. , 2. ], [ 0.1, 4. ], [ 0.2, 2. ], [ 0.4, 1. ], [ 0.5, 1. ]]) """ items, inv = np.unique(a, return_inverse=True) freq = np.bincount(inv) return np.array([items, freq]).T def scoreatpercentile(a, per, limit=(), interpolation_method='fraction', axis=None): """ Calculate the score at a given percentile of the input sequence. For example, the score at `per=50` is the median. If the desired quantile lies between two data points, we interpolate between them, according to the value of `interpolation`. If the parameter `limit` is provided, it should be a tuple (lower, upper) of two values. Parameters ---------- a : array_like A 1-D array of values from which to extract score. per : array_like Percentile(s) at which to extract score. Values should be in range [0,100]. limit : tuple, optional Tuple of two scalars, the lower and upper limits within which to compute the percentile. Values of `a` outside this (closed) interval will be ignored. interpolation_method : {'fraction', 'lower', 'higher'}, optional This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j` - fraction: ``i + (j - i) * fraction`` where ``fraction`` is the fractional part of the index surrounded by ``i`` and ``j``. - lower: ``i``. - higher: ``j``. axis : int, optional Axis along which the percentiles are computed. Default is None. If None, compute over the whole array `a`. Returns ------- score : float or ndarray Score at percentile(s). See Also -------- percentileofscore, numpy.percentile Notes ----- This function will become obsolete in the future. For Numpy 1.9 and higher, `numpy.percentile` provides all the functionality that `scoreatpercentile` provides. And it's significantly faster. Therefore it's recommended to use `numpy.percentile` for users that have numpy >= 1.9. Examples -------- >>> from scipy import stats >>> a = np.arange(100) >>> stats.scoreatpercentile(a, 50) 49.5 """ # adapted from NumPy's percentile function. When we require numpy >= 1.8, # the implementation of this function can be replaced by np.percentile. a = np.asarray(a) if a.size == 0: # empty array, return nan(s) with shape matching `per` if np.isscalar(per): return np.nan else: return np.ones(np.asarray(per).shape, dtype=np.float64) * np.nan if limit: a = a[(limit[0] <= a) & (a <= limit[1])] sorted = np.sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted, per, interpolation_method, axis) # handle sequence of per's without calling sort multiple times def _compute_qth_percentile(sorted, per, interpolation_method, axis): if not np.isscalar(per): score = [_compute_qth_percentile(sorted, i, interpolation_method, axis) for i in per] return np.array(score) if (per < 0) or (per > 100): raise ValueError("percentile must be in the range [0, 100]") indexer = [slice(None)] * sorted.ndim idx = per / 100. * (sorted.shape[axis] - 1) if int(idx) != idx: # round fractional indices according to interpolation method if interpolation_method == 'lower': idx = int(np.floor(idx)) elif interpolation_method == 'higher': idx = int(np.ceil(idx)) elif interpolation_method == 'fraction': pass # keep idx as fraction and interpolate else: raise ValueError("interpolation_method can only be 'fraction', " "'lower' or 'higher'") i = int(idx) if i == idx: indexer[axis] = slice(i, i + 1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i + 2) j = i + 1 weights = array([(j - idx), (idx - i)], float) wshape = [1] * sorted.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use np.add.reduce (== np.sum but a little faster) to coerce data type return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval def percentileofscore(a, score, kind='rank'): """ The percentile rank of a score relative to a list of scores. A `percentileofscore` of, for example, 80% means that 80% of the scores in `a` are below the given score. In the case of gaps or ties, the exact definition depends on the optional keyword, `kind`. Parameters ---------- a : array_like Array of scores to which `score` is compared. score : int or float Score that is compared to the elements in `a`. kind : {'rank', 'weak', 'strict', 'mean'}, optional This optional parameter specifies the interpretation of the resulting score: - "rank": Average percentage ranking of score. In case of multiple matches, average the percentage rankings of all matching scores. - "weak": This kind corresponds to the definition of a cumulative distribution function. A percentileofscore of 80% means that 80% of values are less than or equal to the provided score. - "strict": Similar to "weak", except that only values that are strictly less than the given score are counted. - "mean": The average of the "weak" and "strict" scores, often used in testing. See http://en.wikipedia.org/wiki/Percentile_rank Returns ------- pcos : float Percentile-position of score (0-100) relative to `a`. See Also -------- numpy.percentile Examples -------- Three-quarters of the given values lie below a given score: >>> from scipy import stats >>> stats.percentileofscore([1, 2, 3, 4], 3) 75.0 With multiple matches, note how the scores of the two matches, 0.6 and 0.8 respectively, are averaged: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3) 70.0 Only 2/5 values are strictly less than 3: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict') 40.0 But 4/5 values are less than or equal to 3: >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak') 80.0 The average between the weak and the strict scores is >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean') 60.0 """ a = np.array(a) n = len(a) if kind == 'rank': if not np.any(a == score): a = np.append(a, score) a_len = np.array(list(range(len(a)))) else: a_len = np.array(list(range(len(a)))) + 1.0 a = np.sort(a) idx = [a == score] pct = (np.mean(a_len[idx]) / n) * 100.0 return pct elif kind == 'strict': return np.sum(a < score) / float(n) * 100 elif kind == 'weak': return np.sum(a <= score) / float(n) * 100 elif kind == 'mean': return (np.sum(a < score) + np.sum(a <= score)) * 50 / float(n) else: raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'") @np.deprecate(message=("scipy.stats.histogram2 is deprecated in scipy 0.16.0; " "use np.histogram2d instead")) def histogram2(a, bins): """ Compute histogram using divisions in bins. Count the number of times values from array `a` fall into numerical ranges defined by `bins`. Range x is given by bins[x] <= range_x < bins[x+1] where x =0,N and N is the length of the `bins` array. The last range is given by bins[N] <= range_N < infinity. Values less than bins[0] are not included in the histogram. Parameters ---------- a : array_like of rank 1 The array of values to be assigned into bins bins : array_like of rank 1 Defines the ranges of values to use during histogramming. Returns ------- histogram2 : ndarray of rank 1 Each value represents the occurrences for a given bin (range) of values. """ # comment: probably obsoleted by numpy.histogram() n = np.searchsorted(np.sort(a), bins) n = np.concatenate([n, [len(a)]]) return n[1:] - n[:-1] HistogramResult = namedtuple('HistogramResult', ('count', 'lowerlimit', 'binsize', 'extrapoints')) @np.deprecate(message=("scipy.stats.histogram is deprecated in scipy 0.17.0; " "use np.histogram instead")) def histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False): # _histogram is used in relfreq/cumfreq, so need to keep it res = _histogram(a, numbins=numbins, defaultlimits=defaultlimits, weights=weights, printextras=printextras) return res def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False): """ Separates the range into several bins and returns the number of instances in each bin. Parameters ---------- a : array_like Array of scores which will be put into bins. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultlimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 printextras : bool, optional If True, if there are extra points (i.e. the points that fall outside the bin limits) a warning is raised saying how many of those points there are. Default is False. Returns ------- count : ndarray Number of points (or sum of weights) in each bin. lowerlimit : float Lowest value of histogram, the lower limit of the first bin. binsize : float The size of the bins (all bins have the same size). extrapoints : int The number of points outside the range of the histogram. See Also -------- numpy.histogram Notes ----- This histogram is based on numpy's histogram but has a larger range by default if default limits is not set. """ a = np.ravel(a) if defaultlimits is None: if a.size == 0: # handle empty arrays. Undetermined range, so use 0-1. defaultlimits = (0, 1) else: # no range given, so use values in `a` data_min = a.min() data_max = a.max() # Have bins extend past min and max values slightly s = (data_max - data_min) / (2. * (numbins - 1.)) defaultlimits = (data_min - s, data_max + s) # use numpy's histogram method to compute bins hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits, weights=weights) # hist are not always floats, convert to keep with old output hist = np.array(hist, dtype=float) # fixed width for bins is assumed, as numpy's histogram gives # fixed width bins for int values for 'bins' binsize = bin_edges[1] - bin_edges[0] # calculate number of extra points extrapoints = len([v for v in a if defaultlimits[0] > v or v > defaultlimits[1]]) if extrapoints > 0 and printextras: warnings.warn("Points outside given histogram range = %s" % extrapoints) return HistogramResult(hist, defaultlimits[0], binsize, extrapoints) CumfreqResult = namedtuple('CumfreqResult', ('cumcount', 'lowerlimit', 'binsize', 'extrapoints')) def cumfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Returns a cumulative frequency histogram, using the histogram function. A cumulative histogram is a mapping that counts the cumulative number of observations in all of the bins up to the specified bin. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- cumcount : ndarray Binned values of cumulative frequency. lowerlimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> x = [1, 4, 2, 1, 3, 1] >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5)) >>> res.cumcount array([ 1., 2., 3., 3.]) >>> res.extrapoints 3 Create a normal distribution with 1000 random values >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) Calculate cumulative frequencies >>> res = stats.cumfreq(samples, numbins=25) Calculate space of values for x >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size, ... res.cumcount.size) Plot histogram and cumulative histogram >>> fig = plt.figure(figsize=(10, 4)) >>> ax1 = fig.add_subplot(1, 2, 1) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax1.hist(samples, bins=25) >>> ax1.set_title('Histogram') >>> ax2.bar(x, res.cumcount, width=res.binsize) >>> ax2.set_title('Cumulative histogram') >>> ax2.set_xlim([x.min(), x.max()]) >>> plt.show() """ h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights) cumhist = np.cumsum(h * 1, axis=0) return CumfreqResult(cumhist, l, b, e) RelfreqResult = namedtuple('RelfreqResult', ('frequency', 'lowerlimit', 'binsize', 'extrapoints')) def relfreq(a, numbins=10, defaultreallimits=None, weights=None): """ Returns a relative frequency histogram, using the histogram function. A relative frequency histogram is a mapping of the number of observations in each of the bins relative to the total of observations. Parameters ---------- a : array_like Input array. numbins : int, optional The number of bins to use for the histogram. Default is 10. defaultreallimits : tuple (lower, upper), optional The lower and upper values for the range of the histogram. If no value is given, a range slightly larger than the range of the values in a is used. Specifically ``(a.min() - s, a.max() + s)``, where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``. weights : array_like, optional The weights for each value in `a`. Default is None, which gives each value a weight of 1.0 Returns ------- frequency : ndarray Binned values of relative frequency. lowerlimit : float Lower real limit binsize : float Width of each bin. extrapoints : int Extra points. Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import stats >>> a = np.array([2, 4, 1, 2, 3, 2]) >>> res = stats.relfreq(a, numbins=4) >>> res.frequency array([ 0.16666667, 0.5 , 0.16666667, 0.16666667]) >>> np.sum(res.frequency) # relative frequencies should add up to 1 1.0 Create a normal distribution with 1000 random values >>> rng = np.random.RandomState(seed=12345) >>> samples = stats.norm.rvs(size=1000, random_state=rng) Calculate relative frequencies >>> res = stats.relfreq(samples, numbins=25) Calculate space of values for x >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size, ... res.frequency.size) Plot relative frequency histogram >>> fig = plt.figure(figsize=(5, 4)) >>> ax = fig.add_subplot(1, 1, 1) >>> ax.bar(x, res.frequency, width=res.binsize) >>> ax.set_title('Relative frequency histogram') >>> ax.set_xlim([x.min(), x.max()]) >>> plt.show() """ a = np.asanyarray(a) h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights) h = h / float(a.shape[0]) return RelfreqResult(h, l, b, e) ##################################### # VARIABILITY FUNCTIONS # ##################################### def obrientransform(*args): """ Computes the O'Brien transform on input data (any number of arrays). Used to test for homogeneity of variance prior to running one-way stats. Each array in ``*args`` is one level of a factor. If `f_oneway` is run on the transformed data and found significant, the variances are unequal. From Maxwell and Delaney [1]_, p.112. Parameters ---------- args : tuple of array_like Any number of arrays. Returns ------- obrientransform : ndarray Transformed data for use in an ANOVA. The first dimension of the result corresponds to the sequence of transformed arrays. If the arrays given are all 1-D of the same length, the return value is a 2-D array; otherwise it is a 1-D array of type object, with each element being an ndarray. References ---------- .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990. Examples -------- We'll test the following data sets for differences in their variance. >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10] >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15] Apply the O'Brien transform to the data. >>> from scipy.stats import obrientransform >>> tx, ty = obrientransform(x, y) Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the transformed data. >>> from scipy.stats import f_oneway >>> F, p = f_oneway(tx, ty) >>> p 0.1314139477040335 If we require that ``p < 0.05`` for significance, we cannot conclude that the variances are different. """ TINY = np.sqrt(np.finfo(float).eps) # `arrays` will hold the transformed arguments. arrays = [] for arg in args: a = np.asarray(arg) n = len(a) mu = np.mean(a) sq = (a - mu)**2 sumsq = sq.sum() # The O'Brien transform. t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2)) # Check that the mean of the transformed data is equal to the # original variance. var = sumsq / (n - 1) if abs(var - np.mean(t)) > TINY: raise ValueError('Lack of convergence in obrientransform.') arrays.append(t) return np.array(arrays) @np.deprecate(message="scipy.stats.signaltonoise is deprecated in scipy 0.16.0") def signaltonoise(a, axis=0, ddof=0): """ The signal-to-noise ratio of the input data. Returns the signal-to-noise ratio of `a`, here defined as the mean divided by the standard deviation. Parameters ---------- a : array_like An array_like object containing the sample data. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Degrees of freedom correction for standard deviation. Default is 0. Returns ------- s2n : ndarray The mean to standard deviation ratio(s) along `axis`, or 0 where the standard deviation is 0. """ a = np.asanyarray(a) m = a.mean(axis) sd = a.std(axis=axis, ddof=ddof) return np.where(sd == 0, 0, m/sd) def sem(a, axis=0, ddof=1, nan_policy='propagate'): """ Calculates the standard error of the mean (or standard error of measurement) of the values in the input array. Parameters ---------- a : array_like An array containing the values for which the standard error is returned. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- s : ndarray or float The standard error of the mean in the sample(s), along the input axis. Notes ----- The default value for `ddof` is different to the default (0) used by other ddof containing routines, such as np.std and np.nanstd. Examples -------- Find standard error along the first axis: >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> stats.sem(a) array([ 2.8284, 2.8284, 2.8284, 2.8284]) Find standard error across the whole array, using n degrees of freedom: >>> stats.sem(a, axis=None, ddof=0) 1.2893796958227628 """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.sem(a, axis, ddof) n = a.shape[axis] s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n) return s def zscore(a, axis=0, ddof=0): """ Calculates the z score of each value in the sample, relative to the sample mean and standard deviation. Parameters ---------- a : array_like An array like object containing the sample data. axis : int or None, optional Axis along which to operate. Default is 0. If None, compute over the whole array `a`. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like The z-scores, standardized by mean and standard deviation of input array `a`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, ... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508]) >>> from scipy import stats >>> stats.zscore(a) array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786, 0.6748, -1.1488, -1.3324]) Computing along a specified axis, using n-1 degrees of freedom (``ddof=1``) to calculate the standard deviation: >>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608], ... [ 0.7149, 0.0775, 0.6072, 0.9656], ... [ 0.6341, 0.1403, 0.9759, 0.4064], ... [ 0.5918, 0.6948, 0.904 , 0.3721], ... [ 0.0921, 0.2481, 0.1188, 0.1366]]) >>> stats.zscore(b, axis=1, ddof=1) array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358], [ 0.33048416, -1.37380874, 0.04251374, 1.00081084], [ 0.26796377, -1.12598418, 1.23283094, -0.37481053], [-0.22095197, 0.24468594, 1.19042819, -1.21416216], [-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]]) """ a = np.asanyarray(a) mns = a.mean(axis=axis) sstd = a.std(axis=axis, ddof=ddof) if axis and mns.ndim < a.ndim: return ((a - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd, axis=axis)) else: return (a - mns) / sstd def zmap(scores, compare, axis=0, ddof=0): """ Calculates the relative z-scores. Returns an array of z-scores, i.e., scores that are standardized to zero mean and unit variance, where mean and variance are calculated from the comparison array. Parameters ---------- scores : array_like The input for which z-scores are calculated. compare : array_like The input from which the mean and standard deviation of the normalization are taken; assumed to have the same dimension as `scores`. axis : int or None, optional Axis over which mean and variance of `compare` are calculated. Default is 0. If None, compute over the whole array `scores`. ddof : int, optional Degrees of freedom correction in the calculation of the standard deviation. Default is 0. Returns ------- zscore : array_like Z-scores, in the same shape as `scores`. Notes ----- This function preserves ndarray subclasses, and works also with matrices and masked arrays (it uses `asanyarray` instead of `asarray` for parameters). Examples -------- >>> from scipy.stats import zmap >>> a = [0.5, 2.0, 2.5, 3] >>> b = [0, 1, 2, 3, 4] >>> zmap(a, b) array([-1.06066017, 0. , 0.35355339, 0.70710678]) """ scores, compare = map(np.asanyarray, [scores, compare]) mns = compare.mean(axis=axis) sstd = compare.std(axis=axis, ddof=ddof) if axis and mns.ndim < compare.ndim: return ((scores - np.expand_dims(mns, axis=axis)) / np.expand_dims(sstd, axis=axis)) else: return (scores - mns) / sstd # Private dictionary initialized only once at module level # See https://en.wikipedia.org/wiki/Robust_measures_of_scale _scale_conversions = {'raw': 1.0, 'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)} def iqr(x, axis=None, rng=(25, 75), scale='raw', nan_policy='propagate', interpolation='linear', keepdims=False): """ Compute the interquartile range of the data along the specified axis. The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. It is a measure of the dispersion similar to standard deviation or variance, but is much more robust against outliers [2]_. The ``rng`` parameter allows this function to compute other percentile ranges than the actual IQR. For example, setting ``rng=(0, 100)`` is equivalent to `numpy.ptp`. The IQR of an empty array is `np.nan`. .. versionadded:: 0.18.0 Parameters ---------- x : array_like Input array or object that can be converted to an array. axis : int or sequence of int, optional Axis along which the range is computed. The default is to compute the IQR for the entire array. rng : Two-element sequence containing floats in range of [0,100] optional Percentiles over which to compute the range. Each must be between 0 and 100, inclusive. The default is the true IQR: `(25, 75)`. The order of the elements is not important. scale : scalar or str, optional The numerical value of scale will be divided out of the final result. The following string values are recognized: 'raw' : No scaling, just return the raw IQR. 'normal' : Scale by :math:`2 \\sqrt{2} erf^{-1}(\\frac{1}{2}) \\approx 1.349`. The default is 'raw'. Array-like scale is also allowed, as long as it broadcasts correctly to the output such that ``out / scale`` is a valid operation. The output dimensions depend on the input array, `x`, the `axis` argument, and the `keepdims` flag. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional Specifies the interpolation method to use when the percentile boundaries lie between two data points `i` and `j`: * 'linear' : `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * 'lower' : `i`. * 'higher' : `j`. * 'nearest' : `i` or `j` whichever is nearest. * 'midpoint' : `(i + j) / 2`. Default is 'linear'. keepdims : bool, optional If this is set to `True`, the reduced axes are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array `x`. Returns ------- iqr : scalar or ndarray If ``axis=None``, a scalar is returned. If the input contains integers or floats of smaller precision than ``np.float64``, then the output data-type is ``np.float64``. Otherwise, the output data-type is the same as that of the input. See Also -------- numpy.std, numpy.var Examples -------- >>> from scipy.stats import iqr >>> x = np.array([[10, 7, 4], [3, 2, 1]]) >>> x array([[10, 7, 4], [ 3, 2, 1]]) >>> iqr(x) 4.0 >>> iqr(x, axis=0) array([ 3.5, 2.5, 1.5]) >>> iqr(x, axis=1) array([ 3., 1.]) >>> iqr(x, axis=1, keepdims=True) array([[ 3.], [ 1.]]) Notes ----- This function is heavily dependent on the version of `numpy` that is installed. Versions greater than 1.11.0b3 are highly recommended, as they include a number of enhancements and fixes to `numpy.percentile` and `numpy.nanpercentile` that affect the operation of this function. The following modifications apply: Below 1.10.0 : `nan_policy` is poorly defined. The default behavior of `numpy.percentile` is used for 'propagate'. This is a hybrid of 'omit' and 'propagate' that mostly yields a skewed version of 'omit' since NaNs are sorted to the end of the data. A warning is raised if there are NaNs in the data. Below 1.9.0: `numpy.nanpercentile` does not exist. This means that `numpy.percentile` is used regardless of `nan_policy` and a warning is issued. See previous item for a description of the behavior. Below 1.9.0: `keepdims` and `interpolation` are not supported. The keywords get ignored with a warning if supplied with non-default values. However, multiple axes are still supported. References ---------- .. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale .. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile """ x = asarray(x) # This check prevents percentile from raising an error later. Also, it is # consistent with `np.var` and `np.std`. if not x.size: return np.nan # An error may be raised here, so fail-fast, before doing lengthy # computations, even though `scale` is not used until later if isinstance(scale, string_types): scale_key = scale.lower() if scale_key not in _scale_conversions: raise ValueError("{0} not a valid scale for `iqr`".format(scale)) scale = _scale_conversions[scale_key] # Select the percentile function to use based on nans and policy contains_nan, nan_policy = _contains_nan(x, nan_policy) if contains_nan and nan_policy == 'omit': percentile_func = _iqr_nanpercentile else: percentile_func = _iqr_percentile if len(rng) != 2: raise TypeError("quantile range must be two element sequence") rng = sorted(rng) pct = percentile_func(x, rng, axis=axis, interpolation=interpolation, keepdims=keepdims, contains_nan=contains_nan) out = np.subtract(pct[1], pct[0]) if scale != 1.0: out /= scale return out def _iqr_percentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False): """ Private wrapper that works around older versions of `numpy`. While this function is pretty much necessary for the moment, it should be removed as soon as the minimum supported numpy version allows. """ if contains_nan and NumpyVersion(np.__version__) < '1.10.0a': # I see no way to avoid the version check to ensure that the corrected # NaN behavior has been implemented except to call `percentile` on a # small array. msg = "Keyword nan_policy='propagate' not correctly supported for " \ "numpy versions < 1.10.x. The default behavior of " \ "`numpy.percentile` will be used." warnings.warn(msg, RuntimeWarning) try: # For older versions of numpy, there are two things that can cause a # problem here: missing keywords and non-scalar axis. The former can be # partially handled with a warning, the latter can be handled fully by # hacking in an implementation similar to numpy's function for # providing multi-axis functionality # (`numpy.lib.function_base._ureduce` for the curious). result = np.percentile(x, q, axis=axis, keepdims=keepdims, interpolation=interpolation) except TypeError: if interpolation != 'linear' or keepdims: # At time or writing, this means np.__version__ < 1.9.0 warnings.warn("Keywords interpolation and keepdims not supported " "for your version of numpy", RuntimeWarning) try: # Special processing if axis is an iterable original_size = len(axis) except TypeError: # Axis is a scalar at this point pass else: axis = np.unique(np.asarray(axis) % x.ndim) if original_size > axis.size: # mimic numpy if axes are duplicated raise ValueError("duplicate value in axis") if axis.size == x.ndim: # axis includes all axes: revert to None axis = None elif axis.size == 1: # no rolling necessary axis = axis[0] else: # roll multiple axes to the end and flatten that part out for ax in axis[::-1]: x = np.rollaxis(x, ax, x.ndim) x = x.reshape(x.shape[:-axis.size] + (np.prod(x.shape[-axis.size:]),)) axis = -1 result = np.percentile(x, q, axis=axis) return result def _iqr_nanpercentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False): """ Private wrapper that works around the following: 1. A bug in `np.nanpercentile` that was around until numpy version 1.11.0. 2. A bug in `np.percentile` NaN handling that was fixed in numpy version 1.10.0. 3. The non-existence of `np.nanpercentile` before numpy version 1.9.0. While this function is pretty much necessary for the moment, it should be removed as soon as the minimum supported numpy version allows. """ if hasattr(np, 'nanpercentile'): # At time or writing, this means np.__version__ < 1.9.0 result = np.nanpercentile(x, q, axis=axis, interpolation=interpolation, keepdims=keepdims) # If non-scalar result and nanpercentile does not do proper axis roll. # I see no way of avoiding the version test since dimensions may just # happen to match in the data. if result.ndim > 1 and NumpyVersion(np.__version__) < '1.11.0a': axis = np.asarray(axis) if axis.size == 1: # If only one axis specified, reduction happens along that dimension if axis.ndim == 0: axis = axis[None] result = np.rollaxis(result, axis[0]) else: # If multiple axes, reduced dimeision is last result = np.rollaxis(result, -1) else: msg = "Keyword nan_policy='omit' not correctly supported for numpy " \ "versions < 1.9.x. The default behavior of numpy.percentile " \ "will be used." warnings.warn(msg, RuntimeWarning) result = _iqr_percentile(x, q, axis=axis) return result ##################################### # TRIMMING FUNCTIONS # ##################################### @np.deprecate(message="stats.threshold is deprecated in scipy 0.17.0") def threshold(a, threshmin=None, threshmax=None, newval=0): """ Clip array to a given value. Similar to numpy.clip(), except that values less than `threshmin` or greater than `threshmax` are replaced by `newval`, instead of by `threshmin` and `threshmax` respectively. Parameters ---------- a : array_like Data to threshold. threshmin : float, int or None, optional Minimum threshold, defaults to None. threshmax : float, int or None, optional Maximum threshold, defaults to None. newval : float or int, optional Value to put in place of values in `a` outside of bounds. Defaults to 0. Returns ------- out : ndarray The clipped input array, with values less than `threshmin` or greater than `threshmax` replaced with `newval`. Examples -------- >>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8]) >>> from scipy import stats >>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1) array([-1, -1, 6, 3, -1, 6, -1, -1, -1, 8]) """ a = asarray(a).copy() mask = zeros(a.shape, dtype=bool) if threshmin is not None: mask |= (a < threshmin) if threshmax is not None: mask |= (a > threshmax) a[mask] = newval return a SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper')) def sigmaclip(a, low=4., high=4.): """ Iterative sigma-clipping of array elements. The output array contains only those elements of the input array `c` that satisfy the conditions :: mean(c) - std(c)*low < c < mean(c) + std(c)*high Starting from the full sample, all elements outside the critical range are removed. The iteration continues with a new critical range until no elements are outside the range. Parameters ---------- a : array_like Data array, will be raveled if not 1-D. low : float, optional Lower bound factor of sigma clipping. Default is 4. high : float, optional Upper bound factor of sigma clipping. Default is 4. Returns ------- clipped : ndarray Input array with clipped elements removed. lower : float Lower threshold value use for clipping. upper : float Upper threshold value use for clipping. Examples -------- >>> from scipy.stats import sigmaclip >>> a = np.concatenate((np.linspace(9.5, 10.5, 31), ... np.linspace(0, 20, 5))) >>> fact = 1.5 >>> c, low, upp = sigmaclip(a, fact, fact) >>> c array([ 9.96666667, 10. , 10.03333333, 10. ]) >>> c.var(), c.std() (0.00055555555555555165, 0.023570226039551501) >>> low, c.mean() - fact*c.std(), c.min() (9.9646446609406727, 9.9646446609406727, 9.9666666666666668) >>> upp, c.mean() + fact*c.std(), c.max() (10.035355339059327, 10.035355339059327, 10.033333333333333) >>> a = np.concatenate((np.linspace(9.5, 10.5, 11), ... np.linspace(-100, -50, 3))) >>> c, low, upp = sigmaclip(a, 1.8, 1.8) >>> (c == np.linspace(9.5, 10.5, 11)).all() True """ c = np.asarray(a).ravel() delta = 1 while delta: c_std = c.std() c_mean = c.mean() size = c.size critlower = c_mean - c_std*low critupper = c_mean + c_std*high c = c[(c > critlower) & (c < critupper)] delta = size - c.size return SigmaclipResult(c, critlower, critupper) def trimboth(a, proportiontocut, axis=0): """ Slices off a proportion of items from both ends of an array. Slices off the passed proportion of items from both ends of the passed array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and** rightmost 10% of scores). The trimmed values are the lowest and highest ones. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off`proportiontocut`). Parameters ---------- a : array_like Data to trim. proportiontocut : float Proportion (in range 0-1) of total data set to trim of each end. axis : int or None, optional Axis along which to trim data. Default is 0. If None, compute over the whole array `a`. Returns ------- out : ndarray Trimmed version of array `a`. The order of the trimmed content is undefined. See Also -------- trim_mean Examples -------- >>> from scipy import stats >>> a = np.arange(20) >>> b = stats.trimboth(a, 0.1) >>> b.shape (16,) """ a = np.asarray(a) if a.size == 0: return a if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut >= uppercut): raise ValueError("Proportion too big.") # np.partition is preferred but it only exist in numpy 1.8.0 and higher, # in those cases we use np.sort try: atmp = np.partition(a, (lowercut, uppercut - 1), axis) except AttributeError: atmp = np.sort(a, axis) sl = [slice(None)] * atmp.ndim sl[axis] = slice(lowercut, uppercut) return atmp[sl] def trim1(a, proportiontocut, tail='right', axis=0): """ Slices off a proportion from ONE end of the passed array distribution. If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost' 10% of scores. The lowest or highest values are trimmed (depending on the tail). Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off of 'left' or 'right' of distribution tail : {'left', 'right'}, optional Defaults to 'right'. axis : int or None, optional Axis along which to trim data. Default is 0. If None, compute over the whole array `a`. Returns ------- trim1 : ndarray Trimmed version of array `a`. The order of the trimmed content is undefined. """ a = np.asarray(a) if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] # avoid possible corner case if proportiontocut >= 1: return [] if tail.lower() == 'right': lowercut = 0 uppercut = nobs - int(proportiontocut * nobs) elif tail.lower() == 'left': lowercut = int(proportiontocut * nobs) uppercut = nobs # np.partition is preferred but it only exist in numpy 1.8.0 and higher, # in those cases we use np.sort try: atmp = np.partition(a, (lowercut, uppercut - 1), axis) except AttributeError: atmp = np.sort(a, axis) return atmp[lowercut:uppercut] def trim_mean(a, proportiontocut, axis=0): """ Return mean of array after trimming distribution from both tails. If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores. The input is sorted before slicing. Slices off less if proportion results in a non-integer slice index (i.e., conservatively slices off `proportiontocut` ). Parameters ---------- a : array_like Input array proportiontocut : float Fraction to cut off of both tails of the distribution axis : int or None, optional Axis along which the trimmed means are computed. Default is 0. If None, compute over the whole array `a`. Returns ------- trim_mean : ndarray Mean of trimmed array. See Also -------- trimboth tmean : compute the trimmed mean ignoring values outside given `limits`. Examples -------- >>> from scipy import stats >>> x = np.arange(20) >>> stats.trim_mean(x, 0.1) 9.5 >>> x2 = x.reshape(5, 4) >>> x2 array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19]]) >>> stats.trim_mean(x2, 0.25) array([ 8., 9., 10., 11.]) >>> stats.trim_mean(x2, 0.25, axis=1) array([ 1.5, 5.5, 9.5, 13.5, 17.5]) """ a = np.asarray(a) if a.size == 0: return np.nan if axis is None: a = a.ravel() axis = 0 nobs = a.shape[axis] lowercut = int(proportiontocut * nobs) uppercut = nobs - lowercut if (lowercut > uppercut): raise ValueError("Proportion too big.") # np.partition is preferred but it only exist in numpy 1.8.0 and higher, # in those cases we use np.sort try: atmp = np.partition(a, (lowercut, uppercut - 1), axis) except AttributeError: atmp = np.sort(a, axis) sl = [slice(None)] * atmp.ndim sl[axis] = slice(lowercut, uppercut) return np.mean(atmp[sl], axis=axis) F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue')) def f_oneway(*args): """ Performs a 1-way ANOVA. The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean. The test is applied to samples from two or more groups, possibly with differing sizes. Parameters ---------- sample1, sample2, ... : array_like The sample measurements for each group. Returns ------- statistic : float The computed F-value of the test. pvalue : float The associated p-value from the F-distribution. Notes ----- The ANOVA test has important assumptions that must be satisfied in order for the associated p-value to be valid. 1. The samples are independent. 2. Each sample is from a normally distributed population. 3. The population standard deviations of the groups are all equal. This property is known as homoscedasticity. If these assumptions are not true for a given set of data, it may still be possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although with some loss of power. The algorithm is from Heiman[2], pp.394-7. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 14. http://faculty.vassar.edu/lowry/ch14pt1.html .. [2] Heiman, G.W. Research Methods in Statistics. 2002. .. [3] McDonald, G. H. "Handbook of Biological Statistics", One-way ANOVA. http://www.biostathandbook.com/onewayanova.html Examples -------- >>> import scipy.stats as stats [3]_ Here are some data on a shell measurement (the length of the anterior adductor muscle scar, standardized by dividing by length) in the mussel Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon; Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a much larger data set used in McDonald et al. (1991). >>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735, ... 0.0659, 0.0923, 0.0836] >>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835, ... 0.0725] >>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105] >>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764, ... 0.0689] >>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045] >>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne) (7.1210194716424473, 0.00028122423145345439) """ args = [np.asarray(arg, dtype=float) for arg in args] # ANOVA on N groups, each in its own array num_groups = len(args) alldata = np.concatenate(args) bign = len(alldata) # Determine the mean of the data, and subtract that from all inputs to a # variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariance # to a shift in location, and centering all data around zero vastly # improves numerical stability. offset = alldata.mean() alldata -= offset sstot = _sum_of_squares(alldata) - (_square_of_sums(alldata) / float(bign)) ssbn = 0 for a in args: ssbn += _square_of_sums(a - offset) / float(len(a)) # Naming: variables ending in bn/b are for "between treatments", wn/w are # for "within treatments" ssbn -= (_square_of_sums(alldata) / float(bign)) sswn = sstot - ssbn dfbn = num_groups - 1 dfwn = bign - num_groups msb = ssbn / float(dfbn) msw = sswn / float(dfwn) f = msb / msw prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf return F_onewayResult(f, prob) def pearsonr(x, y): """ Calculates a Pearson correlation coefficient and the p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. Strictly speaking, Pearson's correlation requires that each dataset be normally distributed, and not necessarily zero-mean. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- x : (N,) array_like Input y : (N,) array_like Input Returns ------- r : float Pearson's correlation coefficient p-value : float 2-tailed p-value References ---------- http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation """ # x and y should have same length. x = np.asarray(x) y = np.asarray(y) n = len(x) mx = x.mean() my = y.mean() xm, ym = x - mx, y - my r_num = np.add.reduce(xm * ym) r_den = np.sqrt(_sum_of_squares(xm) * _sum_of_squares(ym)) r = r_num / r_den # Presumably, if abs(r) > 1, then it is only some small artifact of floating # point arithmetic. r = max(min(r, 1.0), -1.0) df = n - 2 if abs(r) == 1.0: prob = 0.0 else: t_squared = r**2 * (df / ((1.0 - r) * (1.0 + r))) prob = _betai(0.5*df, 0.5, df/(df+t_squared)) return r, prob def fisher_exact(table, alternative='two-sided'): """Performs a Fisher exact test on a 2x2 contingency table. Parameters ---------- table : array_like of ints A 2x2 contingency table. Elements should be non-negative integers. alternative : {'two-sided', 'less', 'greater'}, optional Which alternative hypothesis to the null hypothesis the test uses. Default is 'two-sided'. Returns ------- oddsratio : float This is prior odds ratio and not a posterior estimate. p_value : float P-value, the probability of obtaining a distribution at least as extreme as the one that was actually observed, assuming that the null hypothesis is true. See Also -------- chi2_contingency : Chi-square test of independence of variables in a contingency table. Notes ----- The calculated odds ratio is different from the one R uses. This scipy implementation returns the (more common) "unconditional Maximum Likelihood Estimate", while R uses the "conditional Maximum Likelihood Estimate". For tables with large numbers, the (inexact) chi-square test implemented in the function `chi2_contingency` can also be used. Examples -------- Say we spend a few days counting whales and sharks in the Atlantic and Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the Indian ocean 2 whales and 5 sharks. Then our contingency table is:: Atlantic Indian whales 8 2 sharks 1 5 We use this table to find the p-value: >>> import scipy.stats as stats >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]]) >>> pvalue 0.0349... The probability that we would observe this or an even more imbalanced ratio by chance is about 3.5%. A commonly used significance level is 5%--if we adopt that, we can therefore conclude that our observed imbalance is statistically significant; whales prefer the Atlantic while sharks prefer the Indian ocean. """ hypergeom = distributions.hypergeom c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm if not c.shape == (2, 2): raise ValueError("The input `table` must be of shape (2, 2).") if np.any(c < 0): raise ValueError("All values in `table` must be nonnegative.") if 0 in c.sum(axis=0) or 0 in c.sum(axis=1): # If both values in a row or column are zero, the p-value is 1 and # the odds ratio is NaN. return np.nan, 1.0 if c[1,0] > 0 and c[0,1] > 0: oddsratio = c[0,0] * c[1,1] / float(c[1,0] * c[0,1]) else: oddsratio = np.inf n1 = c[0,0] + c[0,1] n2 = c[1,0] + c[1,1] n = c[0,0] + c[1,0] def binary_search(n, n1, n2, side): """Binary search for where to begin lower/upper halves in two-sided test. """ if side == "upper": minval = mode maxval = n else: minval = 0 maxval = mode guess = -1 while maxval - minval > 1: if maxval == minval + 1 and guess == minval: guess = maxval else: guess = (maxval + minval) // 2 pguess = hypergeom.pmf(guess, n1 + n2, n1, n) if side == "upper": ng = guess - 1 else: ng = guess + 1 if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n): break elif pguess < pexact: maxval = guess else: minval = guess if guess == -1: guess = minval if side == "upper": while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess -= 1 while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess += 1 else: while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon: guess += 1 while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon: guess -= 1 return guess if alternative == 'less': pvalue = hypergeom.cdf(c[0,0], n1 + n2, n1, n) elif alternative == 'greater': # Same formula as the 'less' case, but with the second column. pvalue = hypergeom.cdf(c[0,1], n1 + n2, n1, c[0,1] + c[1,1]) elif alternative == 'two-sided': mode = int(float((n + 1) * (n1 + 1)) / (n1 + n2 + 2)) pexact = hypergeom.pmf(c[0,0], n1 + n2, n1, n) pmode = hypergeom.pmf(mode, n1 + n2, n1, n) epsilon = 1 - 1e-4 if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon: return oddsratio, 1. elif c[0,0] < mode: plower = hypergeom.cdf(c[0,0], n1 + n2, n1, n) if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, plower guess = binary_search(n, n1, n2, "upper") pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n) else: pupper = hypergeom.sf(c[0,0] - 1, n1 + n2, n1, n) if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon: return oddsratio, pupper guess = binary_search(n, n1, n2, "lower") pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n) else: msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}" raise ValueError(msg) if pvalue > 1.0: pvalue = 1.0 return oddsratio, pvalue SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue')) def spearmanr(a, b=None, axis=0, nan_policy='propagate'): """ Calculates a Spearman rank-order correlation coefficient and the p-value to test for non-correlation. The Spearman correlation is a nonparametric measure of the monotonicity of the relationship between two datasets. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact monotonic relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. Parameters ---------- a, b : 1D or 2D array_like, b is optional One or two 1-D or 2-D arrays containing multiple variables and observations. When these are 1-D, each represents a vector of observations of a single variable. For the behavior in the 2-D case, see under ``axis``, below. Both arrays need to have the same length in the ``axis`` dimension. axis : int or None, optional If axis=0 (default), then each column represents a variable, with observations in the rows. If axis=1, the relationship is transposed: each row represents a variable, while the columns contain observations. If axis=None, then both arrays will be raveled. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- correlation : float or ndarray (2-D square) Spearman correlation matrix or correlation coefficient (if only 2 variables are given as parameters. Correlation matrix is square with length equal to total number of variables (columns or rows) in a and b combined. pvalue : float The two-sided p-value for a hypothesis test whose null hypothesis is that two sets of data are uncorrelated, has same dimension as rho. Notes ----- Changes in scipy 0.8.0: rewrite to add tie-handling, and axis. References ---------- .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard Probability and Statistics Tables and Formulae. Chapman & Hall: New York. 2000. Section 14.7 Examples -------- >>> from scipy import stats >>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7]) (0.82078268166812329, 0.088587005313543798) >>> np.random.seed(1234321) >>> x2n = np.random.randn(100, 2) >>> y2n = np.random.randn(100, 2) >>> stats.spearmanr(x2n) (0.059969996999699973, 0.55338590803773591) >>> stats.spearmanr(x2n[:,0], x2n[:,1]) (0.059969996999699973, 0.55338590803773591) >>> rho, pval = stats.spearmanr(x2n, y2n) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> pval array([[ 0. , 0.55338591, 0.06435364, 0.53617935], [ 0.55338591, 0. , 0.27592895, 0.80234077], [ 0.06435364, 0.27592895, 0. , 0.73039992], [ 0.53617935, 0.80234077, 0.73039992, 0. ]]) >>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1) >>> rho array([[ 1. , 0.05997 , 0.18569457, 0.06258626], [ 0.05997 , 1. , 0.110003 , 0.02534653], [ 0.18569457, 0.110003 , 1. , 0.03488749], [ 0.06258626, 0.02534653, 0.03488749, 1. ]]) >>> stats.spearmanr(x2n, y2n, axis=None) (0.10816770419260482, 0.1273562188027364) >>> stats.spearmanr(x2n.ravel(), y2n.ravel()) (0.10816770419260482, 0.1273562188027364) >>> xint = np.random.randint(10, size=(100, 2)) >>> stats.spearmanr(xint) (0.052760927029710199, 0.60213045837062351) """ a, axisout = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) b = ma.masked_invalid(b) return mstats_basic.spearmanr(a, b, axis) if a.size <= 1: return SpearmanrResult(np.nan, np.nan) ar = np.apply_along_axis(rankdata, axisout, a) br = None if b is not None: b, axisout = _chk_asarray(b, axis) contains_nan, nan_policy = _contains_nan(b, nan_policy) if contains_nan and nan_policy == 'omit': b = ma.masked_invalid(b) return mstats_basic.spearmanr(a, b, axis) br = np.apply_along_axis(rankdata, axisout, b) n = a.shape[axisout] rs = np.corrcoef(ar, br, rowvar=axisout) olderr = np.seterr(divide='ignore') # rs can have elements equal to 1 try: # clip the small negative values possibly caused by rounding # errors before taking the square root t = rs * np.sqrt(((n-2)/((rs+1.0)*(1.0-rs))).clip(0)) finally: np.seterr(**olderr) prob = 2 * distributions.t.sf(np.abs(t), n-2) if rs.shape == (2, 2): return SpearmanrResult(rs[1, 0], prob[1, 0]) else: return SpearmanrResult(rs, prob) PointbiserialrResult = namedtuple('PointbiserialrResult', ('correlation', 'pvalue')) def pointbiserialr(x, y): r""" Calculates a point biserial correlation coefficient and its p-value. The point biserial correlation is used to measure the relationship between a binary variable, x, and a continuous variable, y. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply a determinative relationship. This function uses a shortcut formula but produces the same result as `pearsonr`. Parameters ---------- x : array_like of bools Input array. y : array_like Input array. Returns ------- correlation : float R value pvalue : float 2-tailed p-value Notes ----- `pointbiserialr` uses a t-test with ``n-1`` degrees of freedom. It is equivalent to `pearsonr.` The value of the point-biserial correlation can be calculated from: .. math:: r_{pb} = \frac{\overline{Y_{1}} - \overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}} Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}` are number of observations coded 0 and 1 respectively; :math:`N` is the total number of observations and :math:`s_{y}` is the standard deviation of all the metric observations. A value of :math:`r_{pb}` that is significantly different from zero is completely equivalent to a significant difference in means between the two groups. Thus, an independent groups t Test with :math:`N-2` degrees of freedom may be used to test whether :math:`r_{pb}` is nonzero. The relation between the t-statistic for comparing two independent groups and :math:`r_{pb}` is given by: .. math:: t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}} References ---------- .. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math. Statist., Vol. 20, no.1, pp. 125-126, 1949. .. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25, np. 3, pp. 603-607, 1954. .. [3] http://onlinelibrary.wiley.com/doi/10.1002/9781118445112.stat06227/full Examples -------- >>> from scipy import stats >>> a = np.array([0, 0, 0, 1, 1, 1, 1]) >>> b = np.arange(7) >>> stats.pointbiserialr(a, b) (0.8660254037844386, 0.011724811003954652) >>> stats.pearsonr(a, b) (0.86602540378443871, 0.011724811003954626) >>> np.corrcoef(a, b) array([[ 1. , 0.8660254], [ 0.8660254, 1. ]]) """ rpb, prob = pearsonr(x, y) return PointbiserialrResult(rpb, prob) KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue')) def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate'): """ Calculates Kendall's tau, a correlation measure for ordinal data. Kendall's tau is a measure of the correspondence between two rankings. Values close to 1 indicate strong agreement, values close to -1 indicate strong disagreement. This is the tau-b version of Kendall's tau which accounts for ties. Parameters ---------- x, y : array_like Arrays of rankings, of the same shape. If arrays are not 1-D, they will be flattened to 1-D. initial_lexsort : bool, optional Whether to use lexsort or quicksort as the sorting method for the initial sort of the inputs. Default is lexsort (True), for which `kendalltau` is of complexity O(n log(n)). If False, the complexity is O(n^2), but with a smaller pre-factor (so quicksort may be faster for small arrays). nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- correlation : float The tau statistic. pvalue : float The two-sided p-value for a hypothesis test whose null hypothesis is an absence of association, tau = 0. See also -------- spearmanr : Calculates a Spearman rank-order correlation coefficient. theilslopes : Computes the Theil-Sen estimator for a set of points (x, y). Notes ----- The definition of Kendall's tau that is used is:: tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U)) where P is the number of concordant pairs, Q the number of discordant pairs, T the number of ties only in `x`, and U the number of ties only in `y`. If a tie occurs for the same pair in both `x` and `y`, it is not added to either T or U. References ---------- W.R. Knight, "A Computer Method for Calculating Kendall's Tau with Ungrouped Data", Journal of the American Statistical Association, Vol. 61, No. 314, Part 1, pp. 436-439, 1966. Examples -------- >>> from scipy import stats >>> x1 = [12, 2, 1, 12, 2] >>> x2 = [1, 4, 7, 1, 0] >>> tau, p_value = stats.kendalltau(x1, x2) >>> tau -0.47140452079103173 >>> p_value 0.24821309157521476 """ x = np.asarray(x).ravel() y = np.asarray(y).ravel() if x.size != y.size: raise ValueError("All inputs to `kendalltau` must be of the same size, " "found x-size %s and y-size %s" % (x.size, y.size)) elif not x.size or not y.size: return KendalltauResult(np.nan, np.nan) # Return NaN if arrays are empty # check both x and y cnx, npx = _contains_nan(x, nan_policy) cny, npy = _contains_nan(y, nan_policy) contains_nan = cnx or cny if npx == 'omit' or npy == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'propagate': return KendalltauResult(np.nan, np.nan) elif contains_nan and nan_policy == 'omit': x = ma.masked_invalid(x) y = ma.masked_invalid(y) return mstats_basic.kendalltau(x, y) if initial_lexsort is not None: # deprecate to drop! warnings.warn('"initial_lexsort" is gone!') def count_rank_tie(ranks): cnt = np.bincount(ranks).astype('int64', copy=False) return (cnt * (cnt - 1) // 2).sum() size = x.size perm = np.argsort(y) # sort on y and convert y to dense ranks x, y = x[perm], y[perm] y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp) # stable sort on x and convert x to dense ranks perm = np.argsort(x, kind='mergesort') x, y = x[perm], y[perm] x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp) con, dis = _kendall_condis(x, y) # concordant & discordant pairs obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True] cnt = np.diff(np.where(obs)[0]).astype('int64', copy=False) ntie = (cnt * (cnt - 1) // 2).sum() # joint ties xtie = count_rank_tie(x) - ntie # ties only in x ytie = count_rank_tie(y) - ntie # ties only in y if con + dis + xtie == 0 or con + dis + ytie == 0: return KendalltauResult(np.nan, np.nan) tau = (con - dis) / np.sqrt(con + dis + xtie) / np.sqrt(con + dis + ytie) # what follows reproduces the ending of Gary Strangman's original # stats.kendalltau() in SciPy svar = (4.0 * size + 10.0) / (9.0 * size * (size - 1)) z = tau / np.sqrt(svar) prob = special.erfc(np.abs(z) / 1.4142136) return KendalltauResult(tau, prob) ##################################### # INFERENTIAL STATISTICS # ##################################### Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue')) def ttest_1samp(a, popmean, axis=0, nan_policy='propagate'): """ Calculates the T-test for the mean of ONE group of scores. This is a two-sided test for the null hypothesis that the expected value (mean) of a sample of independent observations `a` is equal to the given population mean, `popmean`. Parameters ---------- a : array_like sample observation popmean : float or array_like expected value in null hypothesis, if array_like than it must have the same shape as `a` excluding the axis dimension axis : int or None, optional Axis along which to compute test. If None, compute over the whole array `a`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Examples -------- >>> from scipy import stats >>> np.random.seed(7654567) # fix seed to get the same result >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2)) Test if mean of random sample is equal to true mean, and different mean. We reject the null hypothesis in the second case and don't reject it in the first case. >>> stats.ttest_1samp(rvs,5.0) (array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674])) >>> stats.ttest_1samp(rvs,0.0) (array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999])) Examples using axis and non-scalar dimension for population mean. >>> stats.ttest_1samp(rvs,[5.0,0.0]) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1) (array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04])) >>> stats.ttest_1samp(rvs,[[5.0],[0.0]]) (array([[-0.68014479, -0.04323899], [ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01], [ 7.89094663e-03, 1.49986458e-04]])) """ a, axis = _chk_asarray(a, axis) contains_nan, nan_policy = _contains_nan(a, nan_policy) if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) return mstats_basic.ttest_1samp(a, popmean, axis) n = a.shape[axis] df = n - 1 d = np.mean(a, axis) - popmean v = np.var(a, axis, ddof=1) denom = np.sqrt(v / float(n)) with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(d, denom) t, prob = _ttest_finish(df, t) return Ttest_1sampResult(t, prob) def _ttest_finish(df, t): """Common code between all 3 t-test functions.""" prob = distributions.t.sf(np.abs(t), df) * 2 # use np.abs to get upper tail if t.ndim == 0: t = t[()] return t, prob def _ttest_ind_from_stats(mean1, mean2, denom, df): d = mean1 - mean2 with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(d, denom) t, prob = _ttest_finish(df, t) return (t, prob) def _unequal_var_ttest_denom(v1, n1, v2, n2): vn1 = v1 / n1 vn2 = v2 / n2 with np.errstate(divide='ignore', invalid='ignore'): df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1)) # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0). # Hence it doesn't matter what df is as long as it's not NaN. df = np.where(np.isnan(df), 1, df) denom = np.sqrt(vn1 + vn2) return df, denom def _equal_var_ttest_denom(v1, n1, v2, n2): df = n1 + n2 - 2.0 svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2)) return df, denom Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue')) def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2, equal_var=True): """ T-test for means of two independent samples from descriptive statistics. This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. Parameters ---------- mean1 : array_like The mean(s) of sample 1. std1 : array_like The standard deviation(s) of sample 1. nobs1 : array_like The number(s) of observations of sample 1. mean2 : array_like The mean(s) of sample 2 std2 : array_like The standard deviations(s) of sample 2. nobs2 : array_like The number(s) of observations of sample 2. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. Returns ------- statistic : float or array The calculated t-statistics pvalue : float or array The two-tailed p-value. See also -------- scipy.stats.ttest_ind Notes ----- .. versionadded:: 0.16.0 References ---------- .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test """ if equal_var: df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) else: df, denom = _unequal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2) res = _ttest_ind_from_stats(mean1, mean2, denom, df) return Ttest_indResult(*res) def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate'): """ Calculates the T-test for the means of *two independent* samples of scores. This is a two-sided test for the null hypothesis that 2 independent samples have identical average (expected) values. This test assumes that the populations have identical variances by default. Parameters ---------- a, b : array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. equal_var : bool, optional If True (default), perform a standard independent 2 sample test that assumes equal population variances [1]_. If False, perform Welch's t-test, which does not assume equal population variance [2]_. .. versionadded:: 0.11.0 nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array The calculated t-statistic. pvalue : float or array The two-tailed p-value. Notes ----- We can use this test, if we observe two independent samples from the same or different population, e.g. exam scores of boys and girls or of two ethnic groups. The test measures whether the average (expected) value differs significantly across samples. If we observe a large p-value, for example larger than 0.05 or 0.1, then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. References ---------- .. [1] http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test .. [2] http://en.wikipedia.org/wiki/Welch%27s_t_test Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) Test with sample with identical means: >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500) >>> stats.ttest_ind(rvs1,rvs2) (0.26833823296239279, 0.78849443369564776) >>> stats.ttest_ind(rvs1,rvs2, equal_var = False) (0.26833823296239279, 0.78849452749500748) `ttest_ind` underestimates p for unequal variances: >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500) >>> stats.ttest_ind(rvs1, rvs3) (-0.46580283298287162, 0.64145827413436174) >>> stats.ttest_ind(rvs1, rvs3, equal_var = False) (-0.46580283298287162, 0.64149646246569292) When n1 != n2, the equal variance t-statistic is no longer equal to the unequal variance t-statistic: >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs4) (-0.99882539442782481, 0.3182832709103896) >>> stats.ttest_ind(rvs1, rvs4, equal_var = False) (-0.69712570584654099, 0.48716927725402048) T-test with different means, variance, and n: >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100) >>> stats.ttest_ind(rvs1, rvs5) (-1.4679669854490653, 0.14263895620529152) >>> stats.ttest_ind(rvs1, rvs5, equal_var = False) (-0.94365973617132992, 0.34744170334794122) """ a, b, axis = _chk2_asarray(a, b, axis) # check both a and b cna, npa = _contains_nan(a, nan_policy) cnb, npb = _contains_nan(b, nan_policy) contains_nan = cna or cnb if npa == 'omit' or npb == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) b = ma.masked_invalid(b) return mstats_basic.ttest_ind(a, b, axis, equal_var) if a.size == 0 or b.size == 0: return Ttest_indResult(np.nan, np.nan) v1 = np.var(a, axis, ddof=1) v2 = np.var(b, axis, ddof=1) n1 = a.shape[axis] n2 = b.shape[axis] if equal_var: df, denom = _equal_var_ttest_denom(v1, n1, v2, n2) else: df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2) res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df) return Ttest_indResult(*res) Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue')) def ttest_rel(a, b, axis=0, nan_policy='propagate'): """ Calculates the T-test on TWO RELATED samples of scores, a and b. This is a two-sided test for the null hypothesis that 2 related or repeated samples have identical average (expected) values. Parameters ---------- a, b : array_like The arrays must have the same shape. axis : int or None, optional Axis along which to compute test. If None, compute over the whole arrays, `a`, and `b`. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float or array t-statistic pvalue : float or array two-tailed p-value Notes ----- Examples for the use are scores of the same set of student in different exams, or repeated sampling from the same units. The test measures whether the average score differs significantly across samples (e.g. exams). If we observe a large p-value, for example greater than 0.05 or 0.1 then we cannot reject the null hypothesis of identical average scores. If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%, then we reject the null hypothesis of equal averages. Small p-values are associated with large t-statistics. References ---------- http://en.wikipedia.org/wiki/T-test#Dependent_t-test Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) # fix random seed to get same numbers >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500) >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs2) (0.24101764965300962, 0.80964043445811562) >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + ... stats.norm.rvs(scale=0.2,size=500)) >>> stats.ttest_rel(rvs1,rvs3) (-3.9995108708727933, 7.3082402191726459e-005) """ a, b, axis = _chk2_asarray(a, b, axis) cna, npa = _contains_nan(a, nan_policy) cnb, npb = _contains_nan(b, nan_policy) contains_nan = cna or cnb if npa == 'omit' or npb == 'omit': nan_policy = 'omit' if contains_nan and nan_policy == 'omit': a = ma.masked_invalid(a) b = ma.masked_invalid(b) m = ma.mask_or(ma.getmask(a), ma.getmask(b)) aa = ma.array(a, mask=m, copy=True) bb = ma.array(b, mask=m, copy=True) return mstats_basic.ttest_rel(aa, bb, axis) if a.shape[axis] != b.shape[axis]: raise ValueError('unequal length arrays') if a.size == 0 or b.size == 0: return np.nan, np.nan n = a.shape[axis] df = float(n - 1) d = (a - b).astype(np.float64) v = np.var(d, axis, ddof=1) dm = np.mean(d, axis) denom = np.sqrt(v / float(n)) with np.errstate(divide='ignore', invalid='ignore'): t = np.divide(dm, denom) t, prob = _ttest_finish(df, t) return Ttest_relResult(t, prob) KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue')) def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'): """ Perform the Kolmogorov-Smirnov test for goodness of fit. This performs a test of the distribution G(x) of an observed random variable against a given distribution F(x). Under the null hypothesis the two distributions are identical, G(x)=F(x). The alternative hypothesis can be either 'two-sided' (default), 'less' or 'greater'. The KS test is only valid for continuous distributions. Parameters ---------- rvs : str, array or callable If a string, it should be the name of a distribution in `scipy.stats`. If an array, it should be a 1-D array of observations of random variables. If a callable, it should be a function to generate random variables; it is required to have a keyword argument `size`. cdf : str or callable If a string, it should be the name of a distribution in `scipy.stats`. If `rvs` is a string then `cdf` can be False or the same as `rvs`. If a callable, that callable is used to calculate the cdf. args : tuple, sequence, optional Distribution parameters, used if `rvs` or `cdf` are strings. N : int, optional Sample size if `rvs` is string or callable. Default is 20. alternative : {'two-sided', 'less','greater'}, optional Defines the alternative hypothesis (see explanation above). Default is 'two-sided'. mode : 'approx' (default) or 'asymp', optional Defines the distribution used for calculating the p-value. - 'approx' : use approximation to exact distribution of test statistic - 'asymp' : use asymptotic distribution of test statistic Returns ------- statistic : float KS test statistic, either D, D+ or D-. pvalue : float One-tailed or two-tailed p-value. Notes ----- In the one-sided test, the alternative is that the empirical cumulative distribution function of the random variable is "less" or "greater" than the cumulative distribution function F(x) of the hypothesis, ``G(x)<=F(x)``, resp. ``G(x)>=F(x)``. Examples -------- >>> from scipy import stats >>> x = np.linspace(-15, 15, 9) >>> stats.kstest(x, 'norm') (0.44435602715924361, 0.038850142705171065) >>> np.random.seed(987654321) # set random seed to get the same result >>> stats.kstest('norm', False, N=100) (0.058352892479417884, 0.88531190944151261) The above lines are equivalent to: >>> np.random.seed(987654321) >>> stats.kstest(stats.norm.rvs(size=100), 'norm') (0.058352892479417884, 0.88531190944151261) *Test against one-sided alternative hypothesis* Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``: >>> np.random.seed(987654321) >>> x = stats.norm.rvs(loc=0.2, size=100) >>> stats.kstest(x,'norm', alternative = 'less') (0.12464329735846891, 0.040989164077641749) Reject equal distribution against alternative hypothesis: less >>> stats.kstest(x,'norm', alternative = 'greater') (0.0072115233216311081, 0.98531158590396395) Don't reject equal distribution against alternative hypothesis: greater >>> stats.kstest(x,'norm', mode='asymp') (0.12464329735846891, 0.08944488871182088) *Testing t distributed random variables against normal distribution* With 100 degrees of freedom the t distribution looks close to the normal distribution, and the K-S test does not reject the hypothesis that the sample came from the normal distribution: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(100,size=100),'norm') (0.072018929165471257, 0.67630062862479168) With 3 degrees of freedom the t distribution looks sufficiently different from the normal distribution, that we can reject the hypothesis that the sample came from the normal distribution at the 10% level: >>> np.random.seed(987654321) >>> stats.kstest(stats.t.rvs(3,size=100),'norm') (0.131016895759829, 0.058826222555312224) """ if isinstance(rvs, string_types): if (not cdf) or (cdf == rvs): cdf = getattr(distributions, rvs).cdf rvs = getattr(distributions, rvs).rvs else: raise AttributeError("if rvs is string, cdf has to be the " "same distribution") if isinstance(cdf, string_types): cdf = getattr(distributions, cdf).cdf if callable(rvs): kwds = {'size': N} vals = np.sort(rvs(*args, **kwds)) else: vals = np.sort(rvs) N = len(vals) cdfvals = cdf(vals, *args) # to not break compatibility with existing code if alternative == 'two_sided': alternative = 'two-sided' if alternative in ['two-sided', 'greater']: Dplus = (np.arange(1.0, N + 1)/N - cdfvals).max() if alternative == 'greater': return KstestResult(Dplus, distributions.ksone.sf(Dplus, N)) if alternative in ['two-sided', 'less']: Dmin = (cdfvals - np.arange(0.0, N)/N).max() if alternative == 'less': return KstestResult(Dmin, distributions.ksone.sf(Dmin, N)) if alternative == 'two-sided': D = np.max([Dplus, Dmin]) if mode == 'asymp': return KstestResult(D, distributions.kstwobign.sf(D * np.sqrt(N))) if mode == 'approx': pval_two = distributions.kstwobign.sf(D * np.sqrt(N)) if N > 2666 or pval_two > 0.80 - N*0.3/1000: return KstestResult(D, pval_two) else: return KstestResult(D, 2 * distributions.ksone.sf(D, N)) # Map from names to lambda_ values used in power_divergence(). _power_div_lambda_names = { "pearson": 1, "log-likelihood": 0, "freeman-tukey": -0.5, "mod-log-likelihood": -1, "neyman": -2, "cressie-read": 2/3, } def _count(a, axis=None): """ Count the number of non-masked elements of an array. This function behaves like np.ma.count(), but is much faster for ndarrays. """ if hasattr(a, 'count'): num = a.count(axis=axis) if isinstance(num, np.ndarray) and num.ndim == 0: # In some cases, the `count` method returns a scalar array (e.g. # np.array(3)), but we want a plain integer. num = int(num) else: if axis is None: num = a.size else: num = a.shape[axis] return num Power_divergenceResult = namedtuple('Power_divergenceResult', ('statistic', 'pvalue')) def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None): """ Cressie-Read power divergence statistic and goodness of fit test. This function tests the null hypothesis that the categorical data has the given frequencies, using the Cressie-Read power divergence statistic. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. lambda_ : float or str, optional `lambda_` gives the power in the Cressie-Read power divergence statistic. The default is 1. For convenience, `lambda_` may be assigned one of the following strings, in which case the corresponding numerical value is used:: String Value Description "pearson" 1 Pearson's chi-squared statistic. In this case, the function is equivalent to `stats.chisquare`. "log-likelihood" 0 Log-likelihood ratio. Also known as the G-test [3]_. "freeman-tukey" -1/2 Freeman-Tukey statistic. "mod-log-likelihood" -1 Modified log-likelihood ratio. "neyman" -2 Neyman's statistic. "cressie-read" 2/3 The power recommended in [5]_. Returns ------- statistic : float or ndarray The Cressie-Read power divergence test statistic. The value is a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D. pvalue : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `stat` are scalars. See Also -------- chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. When `lambda_` is less than zero, the formula for the statistic involves dividing by `f_obs`, so a warning or error may be generated if any value in `f_obs` is 0. Similarly, a warning or error may be generated if any value in `f_exp` is zero when `lambda_` >= 0. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. This function handles masked arrays. If an element of `f_obs` or `f_exp` is masked, then data at that position is ignored, and does not count towards the size of the data set. .. versionadded:: 0.13.0 References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test .. [3] "G-test", http://en.wikipedia.org/wiki/G-test .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and practice of statistics in biological research", New York: Freeman (1981) .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984), pp. 440-464. Examples -------- (See `chisquare` for more examples.) When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. Here we perform a G-test (i.e. use the log-likelihood ratio statistic): >>> from scipy.stats import power_divergence >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood') (2.006573162632538, 0.84823476779463769) The expected frequencies can be given with the `f_exp` argument: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[16, 16, 16, 16, 16, 8], ... lambda_='log-likelihood') (3.3281031458963746, 0.6495419288047497) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> power_divergence(obs, lambda_="log-likelihood") (array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> power_divergence(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> power_divergence(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the test statistic with `ddof`. >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we must use ``axis=1``: >>> power_divergence([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], ... [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ # Convert the input argument `lambda_` to a numerical value. if isinstance(lambda_, string_types): if lambda_ not in _power_div_lambda_names: names = repr(list(_power_div_lambda_names.keys()))[1:-1] raise ValueError("invalid string for lambda_: {0!r}. Valid strings " "are {1}".format(lambda_, names)) lambda_ = _power_div_lambda_names[lambda_] elif lambda_ is None: lambda_ = 1 f_obs = np.asanyarray(f_obs) if f_exp is not None: f_exp = np.atleast_1d(np.asanyarray(f_exp)) else: # Compute the equivalent of # f_exp = f_obs.mean(axis=axis, keepdims=True) # Older versions of numpy do not have the 'keepdims' argument, so # we have to do a little work to achieve the same result. # Ignore 'invalid' errors so the edge case of a data set with length 0 # is handled without spurious warnings. with np.errstate(invalid='ignore'): f_exp = np.atleast_1d(f_obs.mean(axis=axis)) if axis is not None: reduced_shape = list(f_obs.shape) reduced_shape[axis] = 1 f_exp.shape = reduced_shape # `terms` is the array of terms that are summed along `axis` to create # the test statistic. We use some specialized code for a few special # cases of lambda_. if lambda_ == 1: # Pearson's chi-squared statistic terms = (f_obs - f_exp)**2 / f_exp elif lambda_ == 0: # Log-likelihood ratio (i.e. G-test) terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp) elif lambda_ == -1: # Modified log-likelihood ratio terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs) else: # General Cressie-Read power divergence. terms = f_obs * ((f_obs / f_exp)**lambda_ - 1) terms /= 0.5 * lambda_ * (lambda_ + 1) stat = terms.sum(axis=axis) num_obs = _count(terms, axis=axis) ddof = asarray(ddof) p = distributions.chi2.sf(stat, num_obs - 1 - ddof) return Power_divergenceResult(stat, p) def chisquare(f_obs, f_exp=None, ddof=0, axis=0): """ Calculates a one-way chi square test. The chi square test tests the null hypothesis that the categorical data has the given frequencies. Parameters ---------- f_obs : array_like Observed frequencies in each category. f_exp : array_like, optional Expected frequencies in each category. By default the categories are assumed to be equally likely. ddof : int, optional "Delta degrees of freedom": adjustment to the degrees of freedom for the p-value. The p-value is computed using a chi-squared distribution with ``k - 1 - ddof`` degrees of freedom, where `k` is the number of observed frequencies. The default value of `ddof` is 0. axis : int or None, optional The axis of the broadcast result of `f_obs` and `f_exp` along which to apply the test. If axis is None, all values in `f_obs` are treated as a single data set. Default is 0. Returns ------- chisq : float or ndarray The chi-squared test statistic. The value is a float if `axis` is None or `f_obs` and `f_exp` are 1-D. p : float or ndarray The p-value of the test. The value is a float if `ddof` and the return value `chisq` are scalars. See Also -------- power_divergence mstats.chisquare Notes ----- This test is invalid when the observed or expected frequencies in each category are too small. A typical rule is that all of the observed and expected frequencies should be at least 5. The default degrees of freedom, k-1, are for the case when no parameters of the distribution are estimated. If p parameters are estimated by efficient maximum likelihood then the correct degrees of freedom are k-1-p. If the parameters are estimated in a different way, then the dof can be between k-1-p and k-1. However, it is also possible that the asymptotic distribution is not a chisquare, in which case this test is not appropriate. References ---------- .. [1] Lowry, Richard. "Concepts and Applications of Inferential Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html .. [2] "Chi-squared test", http://en.wikipedia.org/wiki/Chi-squared_test Examples -------- When just `f_obs` is given, it is assumed that the expected frequencies are uniform and given by the mean of the observed frequencies. >>> from scipy.stats import chisquare >>> chisquare([16, 18, 16, 14, 12, 12]) (2.0, 0.84914503608460956) With `f_exp` the expected frequencies can be given. >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8]) (3.5, 0.62338762774958223) When `f_obs` is 2-D, by default the test is applied to each column. >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T >>> obs.shape (6, 2) >>> chisquare(obs) (array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415])) By setting ``axis=None``, the test is applied to all data in the array, which is equivalent to applying the test to the flattened array. >>> chisquare(obs, axis=None) (23.31034482758621, 0.015975692534127565) >>> chisquare(obs.ravel()) (23.31034482758621, 0.015975692534127565) `ddof` is the change to make to the default degrees of freedom. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1) (2.0, 0.73575888234288467) The calculation of the p-values is done by broadcasting the chi-squared statistic with `ddof`. >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2]) (2.0, array([ 0.84914504, 0.73575888, 0.5724067 ])) `f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting `f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared statistics, we use ``axis=1``: >>> chisquare([16, 18, 16, 14, 12, 12], ... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]], ... axis=1) (array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846])) """ return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis, lambda_="pearson") Ks_2sampResult = namedtuple('Ks_2sampResult', ('statistic', 'pvalue')) def ks_2samp(data1, data2): """ Computes the Kolmogorov-Smirnov statistic on 2 samples. This is a two-sided test for the null hypothesis that 2 independent samples are drawn from the same continuous distribution. Parameters ---------- data1, data2 : sequence of 1-D ndarrays two arrays of sample observations assumed to be drawn from a continuous distribution, sample sizes can be different Returns ------- statistic : float KS statistic pvalue : float two-tailed p-value Notes ----- This tests whether 2 samples are drawn from the same distribution. Note that, like in the case of the one-sample K-S test, the distribution is assumed to be continuous. This is the two-sided test, one-sided tests are not implemented. The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution. If the K-S statistic is small or the p-value is high, then we cannot reject the hypothesis that the distributions of the two samples are the same. Examples -------- >>> from scipy import stats >>> np.random.seed(12345678) #fix random seed to get the same result >>> n1 = 200 # size of first sample >>> n2 = 300 # size of second sample For a different distribution, we can reject the null hypothesis since the pvalue is below 1%: >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1) >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5) >>> stats.ks_2samp(rvs1, rvs2) (0.20833333333333337, 4.6674975515806989e-005) For a slightly different distribution, we cannot reject the null hypothesis at a 10% or lower alpha since the p-value at 0.144 is higher than 10% >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0) >>> stats.ks_2samp(rvs1, rvs3) (0.10333333333333333, 0.14498781825751686) For an identical distribution, we cannot reject the null hypothesis since the p-value is high, 41%: >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0) >>> stats.ks_2samp(rvs1, rvs4) (0.07999999999999996, 0.41126949729859719) """ data1 = np.sort(data1) data2 = np.sort(data2) n1, = data1.shape n2, = data2.shape common_type = np.find_common_type([], [data1.dtype, data2.dtype]) if not (np.issubdtype(common_type, np.number) and not np.issubdtype(common_type, np.complexfloating)): raise ValueError('ks_2samp only accepts real inputs') # nans, if any, are at the end after sorting. if np.isnan(data1[-1]) or np.isnan(data2[-1]): raise ValueError('ks_2samp only accepts non-nan inputs') # Absolute KS distance can be computed (less efficiently) as follows: # data_all = np.concatenate([data1, data2]) # d = np.max(np.abs(data1.searchsorted(data_all, side='right') / n1 - # data2.searchsorted(data_all, side='right') / n2)) d = _stats.ks_2samp(np.asarray(data1, common_type), np.asarray(data2, common_type)) en = np.sqrt(n1 * n2 / float(n1 + n2)) try: prob = distributions.kstwobign.sf((en + 0.12 + 0.11 / en) * d) except: prob = 1.0 return Ks_2sampResult(d, prob) def tiecorrect(rankvals): """ Tie correction factor for ties in the Mann-Whitney U and Kruskal-Wallis H tests. Parameters ---------- rankvals : array_like A 1-D sequence of ranks. Typically this will be the array returned by `stats.rankdata`. Returns ------- factor : float Correction factor for U or H. See Also -------- rankdata : Assign ranks to the data mannwhitneyu : Mann-Whitney rank test kruskal : Kruskal-Wallis H test References ---------- .. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Examples -------- >>> from scipy.stats import tiecorrect, rankdata >>> tiecorrect([1, 2.5, 2.5, 4]) 0.9 >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4]) >>> ranks array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5]) >>> tiecorrect(ranks) 0.9833333333333333 """ arr = np.sort(rankvals) idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0] cnt = np.diff(idx).astype(np.float64) size = np.float64(arr.size) return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size) MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue')) def mannwhitneyu(x, y, use_continuity=True, alternative=None): """ Computes the Mann-Whitney rank test on samples x and y. Parameters ---------- x, y : array_like Array of samples, should be one-dimensional. use_continuity : bool, optional Whether a continuity correction (1/2.) should be taken into account. Default is True. alternative : None (deprecated), 'less', 'two-sided', or 'greater' Whether to get the p-value for the one-sided hypothesis ('less' or 'greater') or for the two-sided hypothesis ('two-sided'). Defaults to None, which results in a p-value half the size of the 'two-sided' p-value and a different U statistic. The default behavior is not the same as using 'less' or 'greater': it only exists for backward compatibility and is deprecated. Returns ------- statistic : float The Mann-Whitney U statistic, equal to min(U for x, U for y) if `alternative` is equal to None (deprecated; exists for backward compatibility), and U for y otherwise. pvalue : float p-value assuming an asymptotic normal distribution. One-sided or two-sided, depending on the choice of `alternative`. Notes ----- Use only when the number of observation in each sample is > 20 and you have 2 independent samples of ranks. Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U. This test corrects for ties and by default uses a continuity correction. """ if alternative is None: warnings.warn("Calling `mannwhitneyu` without specifying " "`alternative` is deprecated.", DeprecationWarning) x = np.asarray(x) y = np.asarray(y) n1 = len(x) n2 = len(y) ranked = rankdata(np.concatenate((x, y))) rankx = ranked[0:n1] # get the x-ranks u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0) # calc U for x u2 = n1*n2 - u1 # remainder is U for y T = tiecorrect(ranked) if T == 0: raise ValueError('All numbers are identical in mannwhitneyu') sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0) meanrank = n1*n2/2.0 + 0.5 * use_continuity if alternative is None or alternative == 'two-sided': bigu = max(u1, u2) elif alternative == 'less': bigu = u1 elif alternative == 'greater': bigu = u2 else: raise ValueError("alternative should be None, 'less', 'greater' " "or 'two-sided'") z = (bigu - meanrank) / sd if alternative is None: # This behavior, equal to half the size of the two-sided # p-value, is deprecated. p = distributions.norm.sf(abs(z)) elif alternative == 'two-sided': p = 2 * distributions.norm.sf(abs(z)) else: p = distributions.norm.sf(z) u = u2 # This behavior is deprecated. if alternative is None: u = min(u1, u2) return MannwhitneyuResult(u, p) RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue')) def ranksums(x, y): """ Compute the Wilcoxon rank-sum statistic for two samples. The Wilcoxon rank-sum test tests the null hypothesis that two sets of measurements are drawn from the same distribution. The alternative hypothesis is that values in one sample are more likely to be larger than the values in the other sample. This test should be used to compare two samples from continuous distributions. It does not handle ties between measurements in x and y. For tie-handling and an optional continuity correction see `scipy.stats.mannwhitneyu`. Parameters ---------- x,y : array_like The data from the two samples Returns ------- statistic : float The test statistic under the large-sample approximation that the rank sum statistic is normally distributed pvalue : float The two-sided p-value of the test References ---------- .. [1] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test """ x, y = map(np.asarray, (x, y)) n1 = len(x) n2 = len(y) alldata = np.concatenate((x, y)) ranked = rankdata(alldata) x = ranked[:n1] s = np.sum(x, axis=0) expected = n1 * (n1+n2+1) / 2.0 z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0) prob = 2 * distributions.norm.sf(abs(z)) return RanksumsResult(z, prob) KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue')) def kruskal(*args, **kwargs): """ Compute the Kruskal-Wallis H-test for independent samples The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different. Parameters ---------- sample1, sample2, ... : array_like Two or more arrays with the sample measurements can be given as arguments. nan_policy : {'propagate', 'raise', 'omit'}, optional Defines how to handle when input contains nan. 'propagate' returns nan, 'raise' throws an error, 'omit' performs the calculations ignoring nan values. Default is 'propagate'. Returns ------- statistic : float The Kruskal-Wallis H statistic, corrected for ties pvalue : float The p-value for the test using the assumption that H has a chi square distribution See Also -------- f_oneway : 1-way ANOVA mannwhitneyu : Mann-Whitney rank test on two samples. friedmanchisquare : Friedman test for repeated measurements Notes ----- Due to the assumption that H has a chi square distribution, the number of samples in each group must not be too small. A typical rule is that each sample must have at least 5 measurements. References ---------- .. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in One-Criterion Variance Analysis", Journal of the American Statistical Association, Vol. 47, Issue 260, pp. 583-621, 1952. .. [2] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance Examples -------- >>> from scipy import stats >>> x = [1, 3, 5, 7, 9] >>> y = [2, 4, 6, 8, 10] >>> stats.kruskal(x, y) KruskalResult(statistic=0.27272727272727337, pvalue=0.60150813444058948) >>> x = [1, 1, 1] >>> y = [2, 2, 2] >>> z = [2, 2] >>> stats.kruskal(x, y, z) KruskalResult(statistic=7.0, pvalue=0.030197383422318501) """ args = list(map(np.asarray, args)) num_groups = len(args) if num_groups < 2: raise ValueError("Need at least two groups in stats.kruskal()") for arg in args: if arg.size == 0: return KruskalResult(np.nan, np.nan) n = np.asarray(list(map(len, args))) if 'nan_policy' in kwargs.keys(): if kwargs['nan_policy'] not in ('propagate', 'raise', 'omit'): raise ValueError("nan_policy must be 'propagate', " "'raise' or'omit'") else: nan_policy = kwargs['nan_policy'] else: nan_policy = 'propagate' contains_nan = False for arg in args: cn = _contains_nan(arg, nan_policy) if cn[0]: contains_nan = True break if contains_nan and nan_policy == 'omit': for a in args: a = ma.masked_invalid(a) return mstats_basic.kruskal(*args) if contains_nan and nan_policy == 'propagate': return KruskalResult(np.nan, np.nan) alldata = np.concatenate(args) ranked = rankdata(alldata) ties = tiecorrect(ranked) if ties == 0: raise ValueError('All numbers are identical in kruskal') # Compute sum^2/n for each group and sum j = np.insert(np.cumsum(n), 0, 0) ssbn = 0 for i in range(num_groups): ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / float(n[i]) totaln = np.sum(n) h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1) df = num_groups - 1 h /= ties return KruskalResult(h, distributions.chi2.sf(h, df)) FriedmanchisquareResult = namedtuple('FriedmanchisquareResult', ('statistic', 'pvalue')) def friedmanchisquare(*args): """ Computes the Friedman test for repeated measurements The Friedman test tests the null hypothesis that repeated measurements of the same individuals have the same distribution. It is often used to test for consistency among measurements obtained in different ways. For example, if two measurement techniques are used on the same set of individuals, the Friedman test can be used to determine if the two measurement techniques are consistent. Parameters ---------- measurements1, measurements2, measurements3... : array_like Arrays of measurements. All of the arrays must have the same number of elements. At least 3 sets of measurements must be given. Returns ------- statistic : float the test statistic, correcting for ties pvalue : float the associated p-value assuming that the test statistic has a chi squared distribution Notes ----- Due to the assumption that the test statistic has a chi squared distribution, the p-value is only reliable for n > 10 and more than 6 repeated measurements. References ---------- .. [1] http://en.wikipedia.org/wiki/Friedman_test """ k = len(args) if k < 3: raise ValueError('\nLess than 3 levels. Friedman test not appropriate.\n') n = len(args[0]) for i in range(1, k): if len(args[i]) != n: raise ValueError('Unequal N in friedmanchisquare. Aborting.') # Rank data data = np.vstack(args).T data = data.astype(float) for i in range(len(data)): data[i] = rankdata(data[i]) # Handle ties ties = 0 for i in range(len(data)): replist, repnum = find_repeats(array(data[i])) for t in repnum: ties += t * (t*t - 1) c = 1 - ties / float(k*(k*k - 1)*n) ssbn = np.sum(data.sum(axis=0)**2) chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1)) def combine_pvalues(pvalues, method='fisher', weights=None): """ Methods for combining the p-values of independent tests bearing upon the same hypothesis. Parameters ---------- pvalues : array_like, 1-D Array of p-values assumed to come from independent tests. method : {'fisher', 'stouffer'}, optional Name of method to use to combine p-values. The following methods are available: - "fisher": Fisher's method (Fisher's combined probability test), the default. - "stouffer": Stouffer's Z-score method. weights : array_like, 1-D, optional Optional array of weights used only for Stouffer's Z-score method. Returns ------- statistic: float The statistic calculated by the specified method: - "fisher": The chi-squared statistic - "stouffer": The Z-score pval: float The combined p-value. Notes ----- Fisher's method (also known as Fisher's combined probability test) [1]_ uses a chi-squared statistic to compute a combined p-value. The closely related Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The advantage of Stouffer's method is that it is straightforward to introduce weights, which can make Stouffer's method more powerful than Fisher's method when the p-values are from studies of different size [3]_ [4]_. Fisher's method may be extended to combine p-values from dependent tests [5]_. Extensions such as Brown's method and Kost's method are not currently implemented. .. versionadded:: 0.15.0 References ---------- .. [1] https://en.wikipedia.org/wiki/Fisher%27s_method .. [2] http://en.wikipedia.org/wiki/Fisher's_method#Relation_to_Stouffer.27s_Z-score_method .. [3] Whitlock, M. C. "Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach." Journal of Evolutionary Biology 18, no. 5 (2005): 1368-1373. .. [4] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis." Journal of Evolutionary Biology 24, no. 8 (2011): 1836-1841. .. [5] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method """ pvalues = np.asarray(pvalues) if pvalues.ndim != 1: raise ValueError("pvalues is not 1-D") if method == 'fisher': Xsq = -2 * np.sum(np.log(pvalues)) pval = distributions.chi2.sf(Xsq, 2 * len(pvalues)) return (Xsq, pval) elif method == 'stouffer': if weights is None: weights = np.ones_like(pvalues) elif len(weights) != len(pvalues): raise ValueError("pvalues and weights must be of the same size.") weights = np.asarray(weights) if weights.ndim != 1: raise ValueError("weights is not 1-D") Zi = distributions.norm.isf(pvalues) Z = np.dot(weights, Zi) / np.linalg.norm(weights) pval = distributions.norm.sf(Z) return (Z, pval) else: raise ValueError( "Invalid method '%s'. Options are 'fisher' or 'stouffer'", method) ##################################### # PROBABILITY CALCULATIONS # ##################################### @np.deprecate(message="stats.chisqprob is deprecated in scipy 0.17.0; " "use stats.distributions.chi2.sf instead.") def chisqprob(chisq, df): """ Probability value (1-tail) for the Chi^2 probability distribution. Broadcasting rules apply. Parameters ---------- chisq : array_like or float > 0 df : array_like or float, probably int >= 1 Returns ------- chisqprob : ndarray The area from `chisq` to infinity under the Chi^2 probability distribution with degrees of freedom `df`. """ return distributions.chi2.sf(chisq, df) @np.deprecate(message="stats.betai is deprecated in scipy 0.17.0; " "use special.betainc instead") def betai(a, b, x): """ Returns the incomplete beta function. I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt) where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma function of a. The standard broadcasting rules apply to a, b, and x. Parameters ---------- a : array_like or float > 0 b : array_like or float > 0 x : array_like or float x will be clipped to be no greater than 1.0 . Returns ------- betai : ndarray Incomplete beta function. """ return _betai(a, b, x) def _betai(a, b, x): x = np.asarray(x) x = np.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0 return special.betainc(a, b, x) ##################################### # ANOVA CALCULATIONS # ##################################### @np.deprecate(message="stats.f_value_wilks_lambda deprecated in scipy 0.17.0") def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b): """Calculation of Wilks lambda F-statistic for multivarite data, per Maxwell & Delaney p.657. """ if isinstance(ER, (int, float)): ER = array([[ER]]) if isinstance(EF, (int, float)): EF = array([[EF]]) lmbda = linalg.det(EF) / linalg.det(ER) if (a-1)**2 + (b-1)**2 == 5: q = 1 else: q = np.sqrt(((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 - 5)) n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1) d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1) return n_um / d_en @np.deprecate(message="stats.f_value deprecated in scipy 0.17.0") def f_value(ER, EF, dfR, dfF): """ Returns an F-statistic for a restricted vs. unrestricted model. Parameters ---------- ER : float `ER` is the sum of squared residuals for the restricted model or null hypothesis EF : float `EF` is the sum of squared residuals for the unrestricted model or alternate hypothesis dfR : int `dfR` is the degrees of freedom in the restricted model dfF : int `dfF` is the degrees of freedom in the unrestricted model Returns ------- F-statistic : float """ return (ER - EF) / float(dfR - dfF) / (EF / float(dfF)) @np.deprecate(message="stats.f_value_multivariate deprecated in scipy 0.17.0") def f_value_multivariate(ER, EF, dfnum, dfden): """ Returns a multivariate F-statistic. Parameters ---------- ER : ndarray Error associated with the null hypothesis (the Restricted model). From a multivariate F calculation. EF : ndarray Error associated with the alternate hypothesis (the Full model) From a multivariate F calculation. dfnum : int Degrees of freedom the Restricted model. dfden : int Degrees of freedom associated with the Restricted model. Returns ------- fstat : float The computed F-statistic. """ if isinstance(ER, (int, float)): ER = array([[ER]]) if isinstance(EF, (int, float)): EF = array([[EF]]) n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum) d_en = linalg.det(EF) / float(dfden) return n_um / d_en ##################################### # SUPPORT FUNCTIONS # ##################################### RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts')) def find_repeats(arr): """ Find repeats and repeat counts. Parameters ---------- arr : array_like Input array. This is cast to float64. Returns ------- values : ndarray The unique values from the (flattened) input that are repeated. counts : ndarray Number of times the corresponding 'value' is repeated. Notes ----- In numpy >= 1.9 `numpy.unique` provides similar functionality. The main difference is that `find_repeats` only returns repeated values. Examples -------- >>> from scipy import stats >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5]) RepeatedResults(values=array([ 2.]), counts=array([4])) >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]]) RepeatedResults(values=array([ 4., 5.]), counts=array([2, 2])) """ # Note: always copies. return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64))) @np.deprecate(message="scipy.stats.ss is deprecated in scipy 0.17.0") def ss(a, axis=0): return _sum_of_squares(a, axis) def _sum_of_squares(a, axis=0): """ Squares each element of the input array, and returns the sum(s) of that. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- sum_of_squares : ndarray The sum along the given axis for (a**2). See also -------- _square_of_sums : The square(s) of the sum(s) (the opposite of `_sum_of_squares`). """ a, axis = _chk_asarray(a, axis) return np.sum(a*a, axis) @np.deprecate(message="scipy.stats.square_of_sums is deprecated " "in scipy 0.17.0") def square_of_sums(a, axis=0): return _square_of_sums(a, axis) def _square_of_sums(a, axis=0): """ Sums elements of the input array, and returns the square(s) of that sum. Parameters ---------- a : array_like Input array. axis : int or None, optional Axis along which to calculate. Default is 0. If None, compute over the whole array `a`. Returns ------- square_of_sums : float or ndarray The square of the sum over `axis`. See also -------- _sum_of_squares : The sum of squares (the opposite of `square_of_sums`). """ a, axis = _chk_asarray(a, axis) s = np.sum(a, axis) if not np.isscalar(s): return s.astype(float) * s else: return float(s) * s @np.deprecate(message="scipy.stats.fastsort is deprecated in scipy 0.16.0") def fastsort(a): """ Sort an array and provide the argsort. Parameters ---------- a : array_like Input array. Returns ------- fastsort : ndarray of type int sorted indices into the original array """ # TODO: the wording in the docstring is nonsense. it = np.argsort(a) as_ = a[it] return as_, it def rankdata(a, method='average'): """ rankdata(a, method='average') Assign ranks to data, dealing with ties appropriately. Ranks begin at 1. The `method` argument controls how ranks are assigned to equal values. See [1]_ for further discussion of ranking methods. Parameters ---------- a : array_like The array of values to be ranked. The array is first flattened. method : str, optional The method used to assign ranks to tied elements. The options are 'average', 'min', 'max', 'dense' and 'ordinal'. 'average': The average of the ranks that would have been assigned to all the tied values is assigned to each value. 'min': The minimum of the ranks that would have been assigned to all the tied values is assigned to each value. (This is also referred to as "competition" ranking.) 'max': The maximum of the ranks that would have been assigned to all the tied values is assigned to each value. 'dense': Like 'min', but the rank of the next highest element is assigned the rank immediately after those assigned to the tied elements. 'ordinal': All values are given a distinct rank, corresponding to the order that the values occur in `a`. The default is 'average'. Returns ------- ranks : ndarray An array of length equal to the size of `a`, containing rank scores. References ---------- .. [1] "Ranking", http://en.wikipedia.org/wiki/Ranking Examples -------- >>> from scipy.stats import rankdata >>> rankdata([0, 2, 3, 2]) array([ 1. , 2.5, 4. , 2.5]) >>> rankdata([0, 2, 3, 2], method='min') array([ 1, 2, 4, 2]) >>> rankdata([0, 2, 3, 2], method='max') array([ 1, 3, 4, 3]) >>> rankdata([0, 2, 3, 2], method='dense') array([ 1, 2, 3, 2]) >>> rankdata([0, 2, 3, 2], method='ordinal') array([ 1, 2, 4, 3]) """ if method not in ('average', 'min', 'max', 'dense', 'ordinal'): raise ValueError('unknown method "{0}"'.format(method)) arr = np.ravel(np.asarray(a)) algo = 'mergesort' if method == 'ordinal' else 'quicksort' sorter = np.argsort(arr, kind=algo) inv = np.empty(sorter.size, dtype=np.intp) inv[sorter] = np.arange(sorter.size, dtype=np.intp) if method == 'ordinal': return inv + 1 arr = arr[sorter] obs = np.r_[True, arr[1:] != arr[:-1]] dense = obs.cumsum()[inv] if method == 'dense': return dense # cumulative counts of each unique value count = np.r_[np.nonzero(obs)[0], len(obs)] if method == 'max': return count[dense] if method == 'min': return count[dense - 1] + 1 # average method return .5 * (count[dense] + count[dense - 1] + 1)
bsd-3-clause
wandb/client
tests/functional_tests/t0_main/artifacts/use-and-link-model.py
1
1248
import torch import torch.nn as nn import torch.nn.functional as F # noqa import wandb from wandb.beta.workflows import link_model, use_model from wandb.data_types import _SavedModel class Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(9216, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = self.dropout1(x) x = torch.flatten(x, 1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def main(): run = wandb.init() my_model = Net() sm = _SavedModel.init(my_model) art = wandb.Artifact("my-model", "model") art.add(sm, "index") art = run.log_artifact(art) art.wait() sm = use_model("my-model:latest") link_model(sm, "entity/project/test_portfolio") run.finish() if __name__ == "__main__": main()
mit
espg/scikit-learn
sklearn/impute/_base.py
7
38334
# Authors: Nicolas Tresegnie <nicolas.tresegnie@gmail.com> # Sergey Feldman <sergeyfeldman@gmail.com> # License: BSD 3 clause import numbers import warnings from collections import Counter import numpy as np import numpy.ma as ma from scipy import sparse as sp from ..base import BaseEstimator, TransformerMixin from ..utils._param_validation import StrOptions, Hidden from ..utils.fixes import _mode from ..utils.sparsefuncs import _get_median from ..utils.validation import check_is_fitted from ..utils.validation import FLOAT_DTYPES from ..utils.validation import _check_feature_names_in from ..utils._mask import _get_mask from ..utils import _is_pandas_na from ..utils import is_scalar_nan def _check_inputs_dtype(X, missing_values): if _is_pandas_na(missing_values): # Allow using `pd.NA` as missing values to impute numerical arrays. return if X.dtype.kind in ("f", "i", "u") and not isinstance(missing_values, numbers.Real): raise ValueError( "'X' and 'missing_values' types are expected to be" " both numerical. Got X.dtype={} and " " type(missing_values)={}.".format(X.dtype, type(missing_values)) ) def _most_frequent(array, extra_value, n_repeat): """Compute the most frequent value in a 1d array extended with [extra_value] * n_repeat, where extra_value is assumed to be not part of the array.""" # Compute the most frequent value in array only if array.size > 0: if array.dtype == object: # scipy.stats.mode is slow with object dtype array. # Python Counter is more efficient counter = Counter(array) most_frequent_count = counter.most_common(1)[0][1] # tie breaking similarly to scipy.stats.mode most_frequent_value = min( value for value, count in counter.items() if count == most_frequent_count ) else: mode = _mode(array) most_frequent_value = mode[0][0] most_frequent_count = mode[1][0] else: most_frequent_value = 0 most_frequent_count = 0 # Compare to array + [extra_value] * n_repeat if most_frequent_count == 0 and n_repeat == 0: return np.nan elif most_frequent_count < n_repeat: return extra_value elif most_frequent_count > n_repeat: return most_frequent_value elif most_frequent_count == n_repeat: # tie breaking similarly to scipy.stats.mode return min(most_frequent_value, extra_value) class _BaseImputer(TransformerMixin, BaseEstimator): """Base class for all imputers. It adds automatically support for `add_indicator`. """ _parameter_constraints: dict = { "missing_values": ["missing_values"], "add_indicator": ["boolean"], } def __init__(self, *, missing_values=np.nan, add_indicator=False): self.missing_values = missing_values self.add_indicator = add_indicator def _fit_indicator(self, X): """Fit a MissingIndicator.""" if self.add_indicator: self.indicator_ = MissingIndicator( missing_values=self.missing_values, error_on_new=False ) self.indicator_._fit(X, precomputed=True) else: self.indicator_ = None def _transform_indicator(self, X): """Compute the indicator mask.' Note that X must be the original data as passed to the imputer before any imputation, since imputation may be done inplace in some cases. """ if self.add_indicator: if not hasattr(self, "indicator_"): raise ValueError( "Make sure to call _fit_indicator before _transform_indicator" ) return self.indicator_.transform(X) def _concatenate_indicator(self, X_imputed, X_indicator): """Concatenate indicator mask with the imputed data.""" if not self.add_indicator: return X_imputed hstack = sp.hstack if sp.issparse(X_imputed) else np.hstack if X_indicator is None: raise ValueError( "Data from the missing indicator are not provided. Call " "_fit_indicator and _transform_indicator in the imputer " "implementation." ) return hstack((X_imputed, X_indicator)) def _concatenate_indicator_feature_names_out(self, names, input_features): if not self.add_indicator: return names indicator_names = self.indicator_.get_feature_names_out(input_features) return np.concatenate([names, indicator_names]) def _more_tags(self): return {"allow_nan": is_scalar_nan(self.missing_values)} class SimpleImputer(_BaseImputer): """Univariate imputer for completing missing values with simple strategies. Replace missing values using a descriptive statistic (e.g. mean, median, or most frequent) along each column, or using a constant value. Read more in the :ref:`User Guide <impute>`. .. versionadded:: 0.20 `SimpleImputer` replaces the previous `sklearn.preprocessing.Imputer` estimator which is now removed. Parameters ---------- missing_values : int, float, str, np.nan, None or pandas.NA, default=np.nan The placeholder for the missing values. All occurrences of `missing_values` will be imputed. For pandas' dataframes with nullable integer dtypes with missing values, `missing_values` can be set to either `np.nan` or `pd.NA`. strategy : str, default='mean' The imputation strategy. - If "mean", then replace missing values using the mean along each column. Can only be used with numeric data. - If "median", then replace missing values using the median along each column. Can only be used with numeric data. - If "most_frequent", then replace missing using the most frequent value along each column. Can be used with strings or numeric data. If there is more than one such value, only the smallest is returned. - If "constant", then replace missing values with fill_value. Can be used with strings or numeric data. .. versionadded:: 0.20 strategy="constant" for fixed value imputation. fill_value : str or numerical value, default=None When strategy == "constant", fill_value is used to replace all occurrences of missing_values. If left to the default, fill_value will be 0 when imputing numerical data and "missing_value" for strings or object data types. verbose : int, default=0 Controls the verbosity of the imputer. .. deprecated:: 1.1 The 'verbose' parameter was deprecated in version 1.1 and will be removed in 1.3. A warning will always be raised upon the removal of empty columns in the future version. copy : bool, default=True If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Note that, in the following cases, a new copy will always be made, even if `copy=False`: - If `X` is not an array of floating values; - If `X` is encoded as a CSR matrix; - If `add_indicator=True`. add_indicator : bool, default=False If True, a :class:`MissingIndicator` transform will stack onto output of the imputer's transform. This allows a predictive estimator to account for missingness despite imputation. If a feature has no missing values at fit/train time, the feature won't appear on the missing indicator even if there are missing values at transform/test time. Attributes ---------- statistics_ : array of shape (n_features,) The imputation fill value for each feature. Computing statistics can result in `np.nan` values. During :meth:`transform`, features corresponding to `np.nan` statistics will be discarded. indicator_ : :class:`~sklearn.impute.MissingIndicator` Indicator used to add binary indicators for missing values. `None` if `add_indicator=False`. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- IterativeImputer : Multivariate imputer that estimates values to impute for each feature with missing values from all the others. KNNImputer : Multivariate imputer that estimates missing features using nearest samples. Notes ----- Columns which only contained missing values at :meth:`fit` are discarded upon :meth:`transform` if strategy is not `"constant"`. In a prediction context, simple imputation usually performs poorly when associated with a weak learner. However, with a powerful learner, it can lead to as good or better performance than complex imputation such as :class:`~sklearn.impute.IterativeImputer` or :class:`~sklearn.impute.KNNImputer`. Examples -------- >>> import numpy as np >>> from sklearn.impute import SimpleImputer >>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean') >>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]]) SimpleImputer() >>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]] >>> print(imp_mean.transform(X)) [[ 7. 2. 3. ] [ 4. 3.5 6. ] [10. 3.5 9. ]] """ _parameter_constraints: dict = { **_BaseImputer._parameter_constraints, "strategy": [StrOptions({"mean", "median", "most_frequent", "constant"})], "fill_value": "no_validation", # any object is valid "verbose": ["verbose", Hidden(StrOptions({"deprecated"}))], "copy": ["boolean"], } def __init__( self, *, missing_values=np.nan, strategy="mean", fill_value=None, verbose="deprecated", copy=True, add_indicator=False, ): super().__init__(missing_values=missing_values, add_indicator=add_indicator) self.strategy = strategy self.fill_value = fill_value self.verbose = verbose self.copy = copy def _validate_input(self, X, in_fit): if self.strategy in ("most_frequent", "constant"): # If input is a list of strings, dtype = object. # Otherwise ValueError is raised in SimpleImputer # with strategy='most_frequent' or 'constant' # because the list is converted to Unicode numpy array if isinstance(X, list) and any( isinstance(elem, str) for row in X for elem in row ): dtype = object else: dtype = None else: dtype = FLOAT_DTYPES if not in_fit and self._fit_dtype.kind == "O": # Use object dtype if fitted on object dtypes dtype = self._fit_dtype if _is_pandas_na(self.missing_values) or is_scalar_nan(self.missing_values): force_all_finite = "allow-nan" else: force_all_finite = True try: X = self._validate_data( X, reset=in_fit, accept_sparse="csc", dtype=dtype, force_all_finite=force_all_finite, copy=self.copy, ) except ValueError as ve: if "could not convert" in str(ve): new_ve = ValueError( "Cannot use {} strategy with non-numeric data:\n{}".format( self.strategy, ve ) ) raise new_ve from None else: raise ve if in_fit: # Use the dtype seen in `fit` for non-`fit` conversion self._fit_dtype = X.dtype _check_inputs_dtype(X, self.missing_values) if X.dtype.kind not in ("i", "u", "f", "O"): raise ValueError( "SimpleImputer does not support data with dtype " "{0}. Please provide either a numeric array (with" " a floating point or integer dtype) or " "categorical data represented either as an array " "with integer dtype or an array of string values " "with an object dtype.".format(X.dtype) ) return X def fit(self, X, y=None): """Fit the imputer on `X`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present here for API consistency by convention. Returns ------- self : object Fitted estimator. """ self._validate_params() if self.verbose != "deprecated": warnings.warn( "The 'verbose' parameter was deprecated in version " "1.1 and will be removed in 1.3. A warning will " "always be raised upon the removal of empty columns " "in the future version.", FutureWarning, ) X = self._validate_input(X, in_fit=True) # default fill_value is 0 for numerical input and "missing_value" # otherwise if self.fill_value is None: if X.dtype.kind in ("i", "u", "f"): fill_value = 0 else: fill_value = "missing_value" else: fill_value = self.fill_value # fill_value should be numerical in case of numerical input if ( self.strategy == "constant" and X.dtype.kind in ("i", "u", "f") and not isinstance(fill_value, numbers.Real) ): raise ValueError( "'fill_value'={0} is invalid. Expected a " "numerical value when imputing numerical " "data".format(fill_value) ) if sp.issparse(X): # missing_values = 0 not allowed with sparse data as it would # force densification if self.missing_values == 0: raise ValueError( "Imputation not possible when missing_values " "== 0 and input is sparse. Provide a dense " "array instead." ) else: self.statistics_ = self._sparse_fit( X, self.strategy, self.missing_values, fill_value ) else: self.statistics_ = self._dense_fit( X, self.strategy, self.missing_values, fill_value ) return self def _sparse_fit(self, X, strategy, missing_values, fill_value): """Fit the transformer on sparse data.""" missing_mask = _get_mask(X, missing_values) mask_data = missing_mask.data n_implicit_zeros = X.shape[0] - np.diff(X.indptr) statistics = np.empty(X.shape[1]) if strategy == "constant": # for constant strategy, self.statistcs_ is used to store # fill_value in each column statistics.fill(fill_value) else: for i in range(X.shape[1]): column = X.data[X.indptr[i] : X.indptr[i + 1]] mask_column = mask_data[X.indptr[i] : X.indptr[i + 1]] column = column[~mask_column] # combine explicit and implicit zeros mask_zeros = _get_mask(column, 0) column = column[~mask_zeros] n_explicit_zeros = mask_zeros.sum() n_zeros = n_implicit_zeros[i] + n_explicit_zeros if strategy == "mean": s = column.size + n_zeros statistics[i] = np.nan if s == 0 else column.sum() / s elif strategy == "median": statistics[i] = _get_median(column, n_zeros) elif strategy == "most_frequent": statistics[i] = _most_frequent(column, 0, n_zeros) super()._fit_indicator(missing_mask) return statistics def _dense_fit(self, X, strategy, missing_values, fill_value): """Fit the transformer on dense data.""" missing_mask = _get_mask(X, missing_values) masked_X = ma.masked_array(X, mask=missing_mask) super()._fit_indicator(missing_mask) # Mean if strategy == "mean": mean_masked = np.ma.mean(masked_X, axis=0) # Avoid the warning "Warning: converting a masked element to nan." mean = np.ma.getdata(mean_masked) mean[np.ma.getmask(mean_masked)] = np.nan return mean # Median elif strategy == "median": median_masked = np.ma.median(masked_X, axis=0) # Avoid the warning "Warning: converting a masked element to nan." median = np.ma.getdata(median_masked) median[np.ma.getmaskarray(median_masked)] = np.nan return median # Most frequent elif strategy == "most_frequent": # Avoid use of scipy.stats.mstats.mode due to the required # additional overhead and slow benchmarking performance. # See Issue 14325 and PR 14399 for full discussion. # To be able access the elements by columns X = X.transpose() mask = missing_mask.transpose() if X.dtype.kind == "O": most_frequent = np.empty(X.shape[0], dtype=object) else: most_frequent = np.empty(X.shape[0]) for i, (row, row_mask) in enumerate(zip(X[:], mask[:])): row_mask = np.logical_not(row_mask).astype(bool) row = row[row_mask] most_frequent[i] = _most_frequent(row, np.nan, 0) return most_frequent # Constant elif strategy == "constant": # for constant strategy, self.statistcs_ is used to store # fill_value in each column return np.full(X.shape[1], fill_value, dtype=X.dtype) def transform(self, X): """Impute all missing values in `X`. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) The input data to complete. Returns ------- X_imputed : {ndarray, sparse matrix} of shape \ (n_samples, n_features_out) `X` with imputed values. """ check_is_fitted(self) X = self._validate_input(X, in_fit=False) statistics = self.statistics_ if X.shape[1] != statistics.shape[0]: raise ValueError( "X has %d features per sample, expected %d" % (X.shape[1], self.statistics_.shape[0]) ) # compute mask before eliminating invalid features missing_mask = _get_mask(X, self.missing_values) # Delete the invalid columns if strategy is not constant if self.strategy == "constant": valid_statistics = statistics valid_statistics_indexes = None else: # same as np.isnan but also works for object dtypes invalid_mask = _get_mask(statistics, np.nan) valid_mask = np.logical_not(invalid_mask) valid_statistics = statistics[valid_mask] valid_statistics_indexes = np.flatnonzero(valid_mask) if invalid_mask.any(): invalid_features = np.arange(X.shape[1])[invalid_mask] if self.verbose != "deprecated" and self.verbose: # use feature names warning if features are provided if hasattr(self, "feature_names_in_"): invalid_features = self.feature_names_in_[invalid_features] warnings.warn( "Skipping features without any observed values:" f" {invalid_features}. At least one non-missing value is needed" f" for imputation with strategy='{self.strategy}'." ) X = X[:, valid_statistics_indexes] # Do actual imputation if sp.issparse(X): if self.missing_values == 0: raise ValueError( "Imputation not possible when missing_values " "== 0 and input is sparse. Provide a dense " "array instead." ) else: # if no invalid statistics are found, use the mask computed # before, else recompute mask if valid_statistics_indexes is None: mask = missing_mask.data else: mask = _get_mask(X.data, self.missing_values) indexes = np.repeat( np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr) )[mask] X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False) else: # use mask computed before eliminating invalid mask if valid_statistics_indexes is None: mask_valid_features = missing_mask else: mask_valid_features = missing_mask[:, valid_statistics_indexes] n_missing = np.sum(mask_valid_features, axis=0) values = np.repeat(valid_statistics, n_missing) coordinates = np.where(mask_valid_features.transpose())[::-1] X[coordinates] = values X_indicator = super()._transform_indicator(missing_mask) return super()._concatenate_indicator(X, X_indicator) def inverse_transform(self, X): """Convert the data back to the original representation. Inverts the `transform` operation performed on an array. This operation can only be performed after :class:`SimpleImputer` is instantiated with `add_indicator=True`. Note that `inverse_transform` can only invert the transform in features that have binary indicators for missing values. If a feature has no missing values at `fit` time, the feature won't have a binary indicator, and the imputation done at `transform` time won't be inverted. .. versionadded:: 0.24 Parameters ---------- X : array-like of shape \ (n_samples, n_features + n_features_missing_indicator) The imputed data to be reverted to original data. It has to be an augmented array of imputed data and the missing indicator mask. Returns ------- X_original : ndarray of shape (n_samples, n_features) The original `X` with missing values as it was prior to imputation. """ check_is_fitted(self) if not self.add_indicator: raise ValueError( "'inverse_transform' works only when " "'SimpleImputer' is instantiated with " "'add_indicator=True'. " f"Got 'add_indicator={self.add_indicator}' " "instead." ) n_features_missing = len(self.indicator_.features_) non_empty_feature_count = X.shape[1] - n_features_missing array_imputed = X[:, :non_empty_feature_count].copy() missing_mask = X[:, non_empty_feature_count:].astype(bool) n_features_original = len(self.statistics_) shape_original = (X.shape[0], n_features_original) X_original = np.zeros(shape_original) X_original[:, self.indicator_.features_] = missing_mask full_mask = X_original.astype(bool) imputed_idx, original_idx = 0, 0 while imputed_idx < len(array_imputed.T): if not np.all(X_original[:, original_idx]): X_original[:, original_idx] = array_imputed.T[imputed_idx] imputed_idx += 1 original_idx += 1 else: original_idx += 1 X_original[full_mask] = self.missing_values return X_original def _more_tags(self): return { "allow_nan": ( _is_pandas_na(self.missing_values) or is_scalar_nan(self.missing_values) ) } def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features` is `None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then the following input feature names are generated: `["x0", "x1", ..., "x(n_features_in_ - 1)"]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ input_features = _check_feature_names_in(self, input_features) non_missing_mask = np.logical_not(_get_mask(self.statistics_, np.nan)) names = input_features[non_missing_mask] return self._concatenate_indicator_feature_names_out(names, input_features) class MissingIndicator(TransformerMixin, BaseEstimator): """Binary indicators for missing values. Note that this component typically should not be used in a vanilla :class:`Pipeline` consisting of transformers and a classifier, but rather could be added using a :class:`FeatureUnion` or :class:`ColumnTransformer`. Read more in the :ref:`User Guide <impute>`. .. versionadded:: 0.20 Parameters ---------- missing_values : int, float, str, np.nan or None, default=np.nan The placeholder for the missing values. All occurrences of `missing_values` will be imputed. For pandas' dataframes with nullable integer dtypes with missing values, `missing_values` should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`. features : {'missing-only', 'all'}, default='missing-only' Whether the imputer mask should represent all or a subset of features. - If `'missing-only'` (default), the imputer mask will only represent features containing missing values during fit time. - If `'all'`, the imputer mask will represent all features. sparse : bool or 'auto', default='auto' Whether the imputer mask format should be sparse or dense. - If `'auto'` (default), the imputer mask will be of same type as input. - If `True`, the imputer mask will be a sparse matrix. - If `False`, the imputer mask will be a numpy array. error_on_new : bool, default=True If `True`, :meth:`transform` will raise an error when there are features with missing values that have no missing values in :meth:`fit`. This is applicable only when `features='missing-only'`. Attributes ---------- features_ : ndarray of shape (n_missing_features,) or (n_features,) The features indices which will be returned when calling :meth:`transform`. They are computed during :meth:`fit`. If `features='all'`, `features_` is equal to `range(n_features)`. n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- SimpleImputer : Univariate imputation of missing values. IterativeImputer : Multivariate imputation of missing values. Examples -------- >>> import numpy as np >>> from sklearn.impute import MissingIndicator >>> X1 = np.array([[np.nan, 1, 3], ... [4, 0, np.nan], ... [8, 1, 0]]) >>> X2 = np.array([[5, 1, np.nan], ... [np.nan, 2, 3], ... [2, 4, 0]]) >>> indicator = MissingIndicator() >>> indicator.fit(X1) MissingIndicator() >>> X2_tr = indicator.transform(X2) >>> X2_tr array([[False, True], [ True, False], [False, False]]) """ _parameter_constraints: dict = { "missing_values": [numbers.Real, numbers.Integral, str, None], "features": [StrOptions({"missing-only", "all"})], "sparse": ["boolean", StrOptions({"auto"})], "error_on_new": ["boolean"], } def __init__( self, *, missing_values=np.nan, features="missing-only", sparse="auto", error_on_new=True, ): self.missing_values = missing_values self.features = features self.sparse = sparse self.error_on_new = error_on_new def _get_missing_features_info(self, X): """Compute the imputer mask and the indices of the features containing missing values. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The input data with missing values. Note that `X` has been checked in :meth:`fit` and :meth:`transform` before to call this function. Returns ------- imputer_mask : {ndarray, sparse matrix} of shape \ (n_samples, n_features) The imputer mask of the original data. features_with_missing : ndarray of shape (n_features_with_missing) The features containing missing values. """ if not self._precomputed: imputer_mask = _get_mask(X, self.missing_values) else: imputer_mask = X if sp.issparse(X): imputer_mask.eliminate_zeros() if self.features == "missing-only": n_missing = imputer_mask.getnnz(axis=0) if self.sparse is False: imputer_mask = imputer_mask.toarray() elif imputer_mask.format == "csr": imputer_mask = imputer_mask.tocsc() else: if not self._precomputed: imputer_mask = _get_mask(X, self.missing_values) else: imputer_mask = X if self.features == "missing-only": n_missing = imputer_mask.sum(axis=0) if self.sparse is True: imputer_mask = sp.csc_matrix(imputer_mask) if self.features == "all": features_indices = np.arange(X.shape[1]) else: features_indices = np.flatnonzero(n_missing) return imputer_mask, features_indices def _validate_input(self, X, in_fit): if not is_scalar_nan(self.missing_values): force_all_finite = True else: force_all_finite = "allow-nan" X = self._validate_data( X, reset=in_fit, accept_sparse=("csc", "csr"), dtype=None, force_all_finite=force_all_finite, ) _check_inputs_dtype(X, self.missing_values) if X.dtype.kind not in ("i", "u", "f", "O"): raise ValueError( "MissingIndicator does not support data with " "dtype {0}. Please provide either a numeric array" " (with a floating point or integer dtype) or " "categorical data represented either as an array " "with integer dtype or an array of string values " "with an object dtype.".format(X.dtype) ) if sp.issparse(X) and self.missing_values == 0: # missing_values = 0 not allowed with sparse data as it would # force densification raise ValueError( "Sparse input with missing_values=0 is " "not supported. Provide a dense " "array instead." ) return X def _fit(self, X, y=None, precomputed=False): """Fit the transformer on `X`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data, where `n_samples` is the number of samples and `n_features` is the number of features. If `precomputed=True`, then `X` is a mask of the input data. precomputed : bool Whether the input data is a mask. Returns ------- imputer_mask : {ndarray, sparse matrix} of shape (n_samples, \ n_features) The imputer mask of the original data. """ if precomputed: if not (hasattr(X, "dtype") and X.dtype.kind == "b"): raise ValueError("precomputed is True but the input data is not a mask") self._precomputed = True else: self._precomputed = False # Need not validate X again as it would have already been validated # in the Imputer calling MissingIndicator if not self._precomputed: X = self._validate_input(X, in_fit=True) self._n_features = X.shape[1] missing_features_info = self._get_missing_features_info(X) self.features_ = missing_features_info[1] return missing_features_info[0] def fit(self, X, y=None): """Fit the transformer on `X`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data, where `n_samples` is the number of samples and `n_features` is the number of features. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted estimator. """ self._validate_params() self._fit(X, y) return self def transform(self, X): """Generate missing values indicator for `X`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data to complete. Returns ------- Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \ or (n_samples, n_features_with_missing) The missing indicator for input data. The data type of `Xt` will be boolean. """ check_is_fitted(self) # Need not validate X again as it would have already been validated # in the Imputer calling MissingIndicator if not self._precomputed: X = self._validate_input(X, in_fit=False) else: if not (hasattr(X, "dtype") and X.dtype.kind == "b"): raise ValueError("precomputed is True but the input data is not a mask") imputer_mask, features = self._get_missing_features_info(X) if self.features == "missing-only": features_diff_fit_trans = np.setdiff1d(features, self.features_) if self.error_on_new and features_diff_fit_trans.size > 0: raise ValueError( "The features {} have missing values " "in transform but have no missing values " "in fit.".format(features_diff_fit_trans) ) if self.features_.size < self._n_features: imputer_mask = imputer_mask[:, self.features_] return imputer_mask def fit_transform(self, X, y=None): """Generate missing values indicator for `X`. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input data to complete. y : Ignored Not used, present for API consistency by convention. Returns ------- Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \ or (n_samples, n_features_with_missing) The missing indicator for input data. The data type of `Xt` will be boolean. """ self._validate_params() imputer_mask = self._fit(X, y) if self.features_.size < self._n_features: imputer_mask = imputer_mask[:, self.features_] return imputer_mask def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features` is `None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then the following input feature names are generated: `["x0", "x1", ..., "x(n_features_in_ - 1)"]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ input_features = _check_feature_names_in(self, input_features) prefix = self.__class__.__name__.lower() return np.asarray( [ f"{prefix}_{feature_name}" for feature_name in input_features[self.features_] ], dtype=object, ) def _more_tags(self): return { "allow_nan": True, "X_types": ["2darray", "string"], "preserves_dtype": [], }
bsd-3-clause
theflofly/tensorflow
tensorflow/python/data/experimental/kernel_tests/csv_dataset_test.py
10
20083
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.experimental.CsvDataset`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import gzip import os import zlib from tensorflow.python.data.experimental.ops import error_ops from tensorflow.python.data.experimental.ops import readers from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import readers as core_readers from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import test @test_util.run_all_in_graph_and_eager_modes class CsvDatasetTest(test_base.DatasetTestBase): def _setup_files(self, inputs, linebreak='\n', compression_type=None): filenames = [] for i, ip in enumerate(inputs): fn = os.path.join(self.get_temp_dir(), 'temp_%d.csv' % i) contents = linebreak.join(ip).encode('utf-8') if compression_type is None: with open(fn, 'wb') as f: f.write(contents) elif compression_type == 'GZIP': with gzip.GzipFile(fn, 'wb') as f: f.write(contents) elif compression_type == 'ZLIB': contents = zlib.compress(contents) with open(fn, 'wb') as f: f.write(contents) else: raise ValueError('Unsupported compression_type', compression_type) filenames.append(fn) return filenames def _make_test_datasets(self, inputs, **kwargs): # Test by comparing its output to what we could get with map->decode_csv filenames = self._setup_files(inputs) dataset_expected = core_readers.TextLineDataset(filenames) dataset_expected = dataset_expected.map( lambda l: parsing_ops.decode_csv(l, **kwargs)) dataset_actual = readers.CsvDataset(filenames, **kwargs) return (dataset_actual, dataset_expected) def _test_by_comparison(self, inputs, **kwargs): """Checks that CsvDataset is equiv to TextLineDataset->map(decode_csv).""" dataset_actual, dataset_expected = self._make_test_datasets( inputs, **kwargs) self.assertDatasetsEqual(dataset_actual, dataset_expected) def _verify_output_or_err(self, dataset, expected_output=None, expected_err_re=None): if expected_err_re is None: # Verify that output is expected, without errors nxt = self.getNext(dataset) expected_output = [[ v.encode('utf-8') if isinstance(v, str) else v for v in op ] for op in expected_output] for value in expected_output: op = self.evaluate(nxt()) self.assertAllEqual(op, value) with self.assertRaises(errors.OutOfRangeError): self.evaluate(nxt()) else: nxt = self.getNext(dataset) while True: try: self.evaluate(nxt()) except errors.OutOfRangeError: break def _test_dataset( self, inputs, expected_output=None, expected_err_re=None, linebreak='\n', compression_type=None, # Used for both setup and parsing **kwargs): """Checks that elements produced by CsvDataset match expected output.""" # Convert str type because py3 tf strings are bytestrings filenames = self._setup_files(inputs, linebreak, compression_type) kwargs['compression_type'] = compression_type if expected_err_re is not None: # Verify that OpError is produced as expected with self.assertRaisesOpError(expected_err_re): dataset = readers.CsvDataset(filenames, **kwargs) self._verify_output_or_err(dataset, expected_output, expected_err_re) else: dataset = readers.CsvDataset(filenames, **kwargs) self._verify_output_or_err(dataset, expected_output, expected_err_re) def testCsvDataset_requiredFields(self): record_defaults = [[]] * 4 inputs = [['1,2,3,4']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_int(self): record_defaults = [[0]] * 4 inputs = [['1,2,3,4', '5,6,7,8']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_float(self): record_defaults = [[0.0]] * 4 inputs = [['1.0,2.1,3.2,4.3', '5.4,6.5,7.6,8.7']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_string(self): record_defaults = [['']] * 4 inputs = [['1.0,2.1,hello,4.3', '5.4,6.5,goodbye,8.7']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_withEmptyFields(self): record_defaults = [[0]] * 4 inputs = [[',,,', '1,1,1,', ',2,2,2']] self._test_dataset( inputs, [[0, 0, 0, 0], [1, 1, 1, 0], [0, 2, 2, 2]], record_defaults=record_defaults) def testCsvDataset_errWithUnquotedQuotes(self): record_defaults = [['']] * 3 inputs = [['1,2"3,4']] self._test_dataset( inputs, expected_err_re='Unquoted fields cannot have quotes inside', record_defaults=record_defaults) def testCsvDataset_errWithUnescapedQuotes(self): record_defaults = [['']] * 3 inputs = [['"a"b","c","d"']] self._test_dataset( inputs, expected_err_re= 'Quote inside a string has to be escaped by another quote', record_defaults=record_defaults) def testCsvDataset_ignoreErrWithUnescapedQuotes(self): record_defaults = [['']] * 3 inputs = [['1,"2"3",4', '1,"2"3",4",5,5', 'a,b,"c"d"', 'e,f,g']] filenames = self._setup_files(inputs) dataset = readers.CsvDataset(filenames, record_defaults=record_defaults) dataset = dataset.apply(error_ops.ignore_errors()) self._verify_output_or_err(dataset, [['e', 'f', 'g']]) def testCsvDataset_ignoreErrWithUnquotedQuotes(self): record_defaults = [['']] * 3 inputs = [['1,2"3,4', 'a,b,c"d', '9,8"7,6,5', 'e,f,g']] filenames = self._setup_files(inputs) dataset = readers.CsvDataset(filenames, record_defaults=record_defaults) dataset = dataset.apply(error_ops.ignore_errors()) self._verify_output_or_err(dataset, [['e', 'f', 'g']]) def testCsvDataset_withNoQuoteDelimAndUnquotedQuotes(self): record_defaults = [['']] * 3 inputs = [['1,2"3,4']] self._test_by_comparison( inputs, record_defaults=record_defaults, use_quote_delim=False) def testCsvDataset_mixedTypes(self): record_defaults = [ constant_op.constant([], dtype=dtypes.int32), constant_op.constant([], dtype=dtypes.float32), constant_op.constant([], dtype=dtypes.string), constant_op.constant([], dtype=dtypes.float64) ] inputs = [['1,2.1,3.2,4.3', '5,6.5,7.6,8.7']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_withUseQuoteDelimFalse(self): record_defaults = [['']] * 4 inputs = [['1,2,"3,4"', '"5,6",7,8']] self._test_by_comparison( inputs, record_defaults=record_defaults, use_quote_delim=False) def testCsvDataset_withFieldDelim(self): record_defaults = [[0]] * 4 inputs = [['1:2:3:4', '5:6:7:8']] self._test_by_comparison( inputs, record_defaults=record_defaults, field_delim=':') def testCsvDataset_withNaValue(self): record_defaults = [[0]] * 4 inputs = [['1,NA,3,4', 'NA,6,7,8']] self._test_by_comparison( inputs, record_defaults=record_defaults, na_value='NA') def testCsvDataset_withSelectCols(self): record_defaults = [['']] * 2 inputs = [['1,2,3,4', '"5","6","7","8"']] self._test_by_comparison( inputs, record_defaults=record_defaults, select_cols=[1, 2]) def testCsvDataset_withSelectColsTooHigh(self): record_defaults = [[0]] * 2 inputs = [['1,2,3,4', '5,6,7,8']] self._test_dataset( inputs, expected_err_re='Expect 2 fields but have 1 in record', record_defaults=record_defaults, select_cols=[3, 4]) def testCsvDataset_withOneCol(self): record_defaults = [['NA']] inputs = [['0', '', '2']] self._test_dataset( inputs, [['0'], ['NA'], ['2']], record_defaults=record_defaults) def testCsvDataset_withMultipleFiles(self): record_defaults = [[0]] * 4 inputs = [['1,2,3,4', '5,6,7,8'], ['5,6,7,8']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_withLeadingAndTrailingSpaces(self): record_defaults = [[0.0]] * 4 inputs = [['0, 1, 2, 3']] expected = [[0.0, 1.0, 2.0, 3.0]] self._test_dataset(inputs, expected, record_defaults=record_defaults) def testCsvDataset_errorWithMissingDefault(self): record_defaults = [[]] * 2 inputs = [['0,']] self._test_dataset( inputs, expected_err_re='Field 1 is required but missing in record!', record_defaults=record_defaults) def testCsvDataset_errorWithFewerDefaultsThanFields(self): record_defaults = [[0.0]] * 2 inputs = [['0,1,2,3']] self._test_dataset( inputs, expected_err_re='Expect 2 fields but have more in record', record_defaults=record_defaults) def testCsvDataset_errorWithMoreDefaultsThanFields(self): record_defaults = [[0.0]] * 5 inputs = [['0,1,2,3']] self._test_dataset( inputs, expected_err_re='Expect 5 fields but have 4 in record', record_defaults=record_defaults) def testCsvDataset_withHeader(self): record_defaults = [[0]] * 2 inputs = [['col1,col2', '1,2']] expected = [[1, 2]] self._test_dataset( inputs, expected, record_defaults=record_defaults, header=True, ) def testCsvDataset_withHeaderAndNoRecords(self): record_defaults = [[0]] * 2 inputs = [['col1,col2']] expected = [] self._test_dataset( inputs, expected, record_defaults=record_defaults, header=True, ) def testCsvDataset_errorWithHeaderEmptyFile(self): record_defaults = [[0]] * 2 inputs = [[]] expected_err_re = "Can't read header of file" self._test_dataset( inputs, expected_err_re=expected_err_re, record_defaults=record_defaults, header=True, ) def testCsvDataset_withEmptyFile(self): record_defaults = [['']] * 2 inputs = [['']] # Empty file self._test_dataset( inputs, expected_output=[], record_defaults=record_defaults) def testCsvDataset_errorWithEmptyRecord(self): record_defaults = [['']] * 2 inputs = [['', '1,2']] # First record is empty self._test_dataset( inputs, expected_err_re='Expect 2 fields but have 1 in record', record_defaults=record_defaults) def testCsvDataset_withChainedOps(self): # Testing that one dataset can create multiple iterators fine. # `repeat` creates multiple iterators from the same C++ Dataset. record_defaults = [[0]] * 4 inputs = [['1,,3,4', '5,6,,8']] ds_actual, ds_expected = self._make_test_datasets( inputs, record_defaults=record_defaults) self.assertDatasetsEqual( ds_actual.repeat(5).prefetch(1), ds_expected.repeat(5).prefetch(1)) def testCsvDataset_withTypeDefaults(self): # Testing using dtypes as record_defaults for required fields record_defaults = [dtypes.float32, [0.0]] inputs = [['1.0,2.0', '3.0,4.0']] self._test_dataset( inputs, [[1.0, 2.0], [3.0, 4.0]], record_defaults=record_defaults, ) def testMakeCsvDataset_fieldOrder(self): data = [[ '1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19', '1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19' ]] file_path = self._setup_files(data) ds = readers.make_csv_dataset( file_path, batch_size=1, shuffle=False, num_epochs=1) nxt = self.getNext(ds) result = list(self.evaluate(nxt()).values()) self.assertEqual(result, sorted(result)) ## The following tests exercise parsing logic for quoted fields def testCsvDataset_withQuoted(self): record_defaults = [['']] * 4 inputs = [['"a","b","c :)","d"', '"e","f","g :(","h"']] self._test_by_comparison(inputs, record_defaults=record_defaults) def testCsvDataset_withOneColAndQuotes(self): record_defaults = [['']] inputs = [['"0"', '"1"', '"2"']] self._test_dataset( inputs, [['0'], ['1'], ['2']], record_defaults=record_defaults) def testCsvDataset_withNewLine(self): # In this case, we expect it to behave differently from # TextLineDataset->map(decode_csv) since that flow has bugs record_defaults = [['']] * 4 inputs = [['a,b,"""c""\n0","d\ne"', 'f,g,h,i']] expected = [['a', 'b', '"c"\n0', 'd\ne'], ['f', 'g', 'h', 'i']] self._test_dataset(inputs, expected, record_defaults=record_defaults) def testCsvDataset_withNewLineInUnselectedCol(self): record_defaults = [['']] inputs = [['1,"2\n3",4', '5,6,7']] self._test_dataset( inputs, expected_output=[['1'], ['5']], record_defaults=record_defaults, select_cols=[0]) def testCsvDataset_withMultipleNewLines(self): # In this case, we expect it to behave differently from # TextLineDataset->map(decode_csv) since that flow has bugs record_defaults = [['']] * 4 inputs = [['a,"b\n\nx","""c""\n \n0","d\ne"', 'f,g,h,i']] expected = [['a', 'b\n\nx', '"c"\n \n0', 'd\ne'], ['f', 'g', 'h', 'i']] self._test_dataset(inputs, expected, record_defaults=record_defaults) def testCsvDataset_errorWithTerminateMidRecord(self): record_defaults = [['']] * 4 inputs = [['a,b,c,"a']] self._test_dataset( inputs, expected_err_re= 'Reached end of file without closing quoted field in record', record_defaults=record_defaults) def testCsvDataset_withEscapedQuotes(self): record_defaults = [['']] * 4 inputs = [['1.0,2.1,"she said: ""hello""",4.3', '5.4,6.5,goodbye,8.7']] self._test_by_comparison(inputs, record_defaults=record_defaults) ## Testing that parsing works with all buffer sizes, quoted/unquoted fields, ## and different types of line breaks def testCsvDataset_withInvalidBufferSize(self): record_defaults = [['']] * 4 inputs = [['a,b,c,d']] self._test_dataset( inputs, expected_err_re='buffer_size should be positive', record_defaults=record_defaults, buffer_size=0) def _test_dataset_on_buffer_sizes(self, inputs, expected, linebreak, record_defaults, compression_type=None, num_sizes_to_test=20): # Testing reading with a range of buffer sizes that should all work. for i in list(range(1, 1 + num_sizes_to_test)) + [None]: self._test_dataset( inputs, expected, linebreak=linebreak, compression_type=compression_type, record_defaults=record_defaults, buffer_size=i) def testCsvDataset_withLF(self): record_defaults = [['NA']] * 3 inputs = [['abc,def,ghi', '0,1,2', ',,']] expected = [['abc', 'def', 'ghi'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\n', record_defaults=record_defaults) def testCsvDataset_withCR(self): # Test that when the line separator is '\r', parsing works with all buffer # sizes record_defaults = [['NA']] * 3 inputs = [['abc,def,ghi', '0,1,2', ',,']] expected = [['abc', 'def', 'ghi'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\r', record_defaults=record_defaults) def testCsvDataset_withCRLF(self): # Test that when the line separator is '\r\n', parsing works with all buffer # sizes record_defaults = [['NA']] * 3 inputs = [['abc,def,ghi', '0,1,2', ',,']] expected = [['abc', 'def', 'ghi'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\r\n', record_defaults=record_defaults) def testCsvDataset_withBufferSizeAndQuoted(self): record_defaults = [['NA']] * 3 inputs = [['"\n\n\n","\r\r\r","abc"', '"0","1","2"', '"","",""']] expected = [['\n\n\n', '\r\r\r', 'abc'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\n', record_defaults=record_defaults) def testCsvDataset_withCRAndQuoted(self): # Test that when the line separator is '\r', parsing works with all buffer # sizes record_defaults = [['NA']] * 3 inputs = [['"\n\n\n","\r\r\r","abc"', '"0","1","2"', '"","",""']] expected = [['\n\n\n', '\r\r\r', 'abc'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\r', record_defaults=record_defaults) def testCsvDataset_withCRLFAndQuoted(self): # Test that when the line separator is '\r\n', parsing works with all buffer # sizes record_defaults = [['NA']] * 3 inputs = [['"\n\n\n","\r\r\r","abc"', '"0","1","2"', '"","",""']] expected = [['\n\n\n', '\r\r\r', 'abc'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\r\n', record_defaults=record_defaults) def testCsvDataset_withGzipCompressionType(self): record_defaults = [['NA']] * 3 inputs = [['"\n\n\n","\r\r\r","abc"', '"0","1","2"', '"","",""']] expected = [['\n\n\n', '\r\r\r', 'abc'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\r\n', compression_type='GZIP', record_defaults=record_defaults) def testCsvDataset_withZlibCompressionType(self): record_defaults = [['NA']] * 3 inputs = [['"\n\n\n","\r\r\r","abc"', '"0","1","2"', '"","",""']] expected = [['\n\n\n', '\r\r\r', 'abc'], ['0', '1', '2'], ['NA', 'NA', 'NA']] self._test_dataset_on_buffer_sizes( inputs, expected, linebreak='\r\n', compression_type='ZLIB', record_defaults=record_defaults) def testCsvDataset_withScalarDefaults(self): record_defaults = [constant_op.constant(0, dtype=dtypes.int64)] * 4 inputs = [[',,,', '1,1,1,', ',2,2,2']] self._test_dataset( inputs, [[0, 0, 0, 0], [1, 1, 1, 0], [0, 2, 2, 2]], record_defaults=record_defaults) def testCsvDataset_with2DDefaults(self): record_defaults = [constant_op.constant([[0]], dtype=dtypes.int64)] * 4 inputs = [[',,,', '1,1,1,', ',2,2,2']] if context.executing_eagerly(): err_spec = errors.InvalidArgumentError, ( 'Each record default should be at ' 'most rank 1.') else: err_spec = ValueError, 'Shape must be at most rank 1 but is rank 2' with self.assertRaisesWithPredicateMatch(*err_spec): self._test_dataset( inputs, [[0, 0, 0, 0], [1, 1, 1, 0], [0, 2, 2, 2]], record_defaults=record_defaults) if __name__ == '__main__': test.main()
apache-2.0
numenta/nupic.research
packages/archive/src/nupic/research/archive/continual_learning/split_mnist_byclass.py
3
3499
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2020, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import os import numpy as np import torch from torchvision import datasets class MNISTSplitter(object): """ Just a simple class for downloading and splitting your MNIST dataset :param data_dir: Where you want the data to live. Defaults to None """ def __init__(self, data_dir=None): if data_dir is None: data_dir = "/home/ec2-user/nta/data/mnist/" if not os.path.isdir(data_dir): print("Making directory {}".format(data_dir)) os.mkdir(data_dir) if len(os.listdir(data_dir)) > 0.0: print("Warning: will delete and replace local files") for file_path in os.listdir(data_dir): try: os.remove(os.path.join(data_dir, file_path)) except OSError as err: print("Error {} : {}".format(os.path.join(data_dir, file_path), err)) self.data_dir = data_dir self.num_classes = 10 self.train_data, self.test_data = self.get_datasets(self.data_dir) def get_datasets(self, data_dir): """ Get the datasets """ train_dataset = datasets.MNIST(data_dir, download=True, train=True) test_dataset = datasets.MNIST(data_dir, download=True, train=False) print("Saved data to {}".format(data_dir)) return train_dataset, test_dataset def split_mnist(self, data_dir): """ Get tensors for each class and save them individually """ xs_train, ys_train = self.train_data.data, self.train_data.targets xs_test, ys_test = self.test_data.data, self.test_data.targets for class_ in range(self.num_classes): # Training data y_inds = np.where(ys_train == class_)[0] x_class = xs_train[y_inds, :, :] torch.save( (x_class, class_ * torch.ones(len(y_inds))), data_dir + "/mnist_train_{}.npz".format(class_), ) # Test data y_inds = np.where(ys_test == class_)[0] x_class = xs_test[y_inds, :, :] torch.save( (x_class, class_ * torch.ones(len(y_inds))), data_dir + "/mnist_test_{}.npz".format(class_), ) if __name__ == "__main__": data_dir = "/home/ec2-user/nta/data/mnist/" splitter = MNISTSplitter(data_dir=data_dir) print("Splitting... ") splitter.split_mnist(data_dir) print("Done!")
agpl-3.0