text
stringlengths 1
2.05k
|
---|
fn div_eq(ref self: i32, other: i32) {
self = Div::div(self, other);
}
}
impl I32IntoU32 of Into<i32, u32> {
fn into(self: i32) -> u32 {
let number_sign: bool = self < 0;
let mut self_positive: i32 = self;
if number_sign {
self_positive = self_positive * -1_i32
}
let number_felt: felt252 = self_positive.into();
let number_u32: u32 = number_felt.try_into().unwrap();
number_u32
}
}
impl I64Number of NumberTrait<i64, i64> {
fn new(mag: i64, sign: bool) -> i64 {
if sign {
return -mag;
}
mag
}
fn new_unscaled(mag: i64, sign: bool) -> i64 {
mag
}
fn from_felt(val: felt252) -> i64 {
panic(array!['not supported!'])
}
fn ceil(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn exp(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn exp2(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn floor(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn ln(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn log2(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn log10(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn pow(self: i64, b: i64) -> i64 {
panic(array!['not supported!'])
}
fn round(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn sqrt(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn acos(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn asin(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn atan(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn cos(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn sin(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn tan(self: i64) -> i64 {
panic(array!['not supported!' |
])
}
fn acosh(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn asinh(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn atanh(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn cosh(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn sinh(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn tanh(self: i64) -> i64 {
panic(array!['not supported!'])
}
fn zero() -> i64 {
0
}
fn is_zero(self: i64) -> bool {
self == 0
}
fn half() -> i64 {
panic(array!['not supported!'])
}
fn one() -> i64 {
1
}
fn neg_one() -> i64 {
-1
}
fn is_one(self: i64) -> bool {
self == 1
}
fn abs(self: i64) -> i64 {
if self >= 0 {
self
} else {
self * -1_i64
}
}
fn neg(self: i64) -> i64 {
self * -1_i64
}
fn min_value() -> i64 {
-9223372036854775807
}
fn max_value() -> i64 {
9223372036854775807
}
fn min(self: i64, other: i64) -> i64 {
if self < other {
self
} else {
other
}
}
fn max(self: i64, other: i64) -> i64 {
if self > other {
self
} else {
other
}
}
fn mag(self: i64) -> i64 {
self
}
fn is_neg(self: i64) -> bool {
self < 0
}
fn xor(lhs: i64, rhs: i64) -> bool {
if (lhs == 0 || rhs == 0) && lhs != rhs {
true
} else {
false
}
}
fn or(lhs: i64, rhs: i64) -> bool {
if lhs == 0 && rhs == 0 {
false
} else {
true
}
}
fn sign(self: i64) -> i64 {
if self == 0 {
0_i64
} else if self > 0 {
1_i64
} else {
-1_i64
}
}
fn and(lhs: i64, rhs: i64) -> bool {
if lhs == 0 || rhs |
== 0 {
false
} else {
true
}
}
fn where(self: i64, x: i64, y: i64) -> i64 {
if self == 0 {
y
} else {
x
}
}
fn NaN() -> i64 {
panic(array!['not supported!'])
}
fn is_nan(self: i64) -> bool {
panic(array!['not supported!'])
}
fn INF() -> i64 {
9223372036854775807
}
fn is_inf(self: i64) -> bool {
self == 9223372036854775807 || self == -9223372036854775807
}
fn is_pos_inf(self: i64) -> bool {
self == 9223372036854775807
}
fn is_neg_inf(self: i64) -> bool {
self == -9223372036854775807
}
fn bitwise_and(lhs: i64, rhs: i64) -> i64 {
panic(array!['not supported!'])
}
fn bitwise_xor(lhs: i64, rhs: i64) -> i64 {
panic(array!['not supported!'])
}
fn bitwise_or(lhs: i64, rhs: i64) -> i64 {
panic(array!['not supported!'])
}
fn add(lhs: i64, rhs: i64) -> i64 {
lhs + rhs
}
fn sub(lhs: i64, rhs: i64) -> i64 {
lhs - rhs
}
}
impl I64Div of Div<i64> {
fn div(lhs: i64, rhs: i64) -> i64 {
assert(rhs != 0, 'divisor cannot be 0');
let mut lhs_positive = lhs;
let mut rhs_positive = rhs;
if lhs < 0 {
lhs_positive = lhs * -1;
}
if rhs < 0 {
rhs_positive = rhs * -1;
}
let lhs_felt: felt252 = lhs_positive.into();
let rhs_felt: felt252 = rhs_positive.into();
let lhs_u128: u128 = lhs_felt.try_into().unwrap();
let rhs_u128: u128 = rhs_felt.try_into().unwrap();
let mut result = lhs_u128 / rhs_u128;
let felt_result: felt252 = result.into();
let signed_int_result: i64 = felt_result.try_into().unwrap();
if lhs * rhs < 0 {
signed_int_result * -1
} else {
signed_int_result
}
}
}
impl I64DivEq of DivEq<i64> { |
fn div_eq(ref self: i64, other: i64) {
self = Div::div(self, other);
}
}
impl I128Number of NumberTrait<i128, i128> {
fn new(mag: i128, sign: bool) -> i128 {
if sign {
return -mag;
}
mag
}
fn new_unscaled(mag: i128, sign: bool) -> i128 {
mag
}
fn from_felt(val: felt252) -> i128 {
panic(array!['not supported!'])
}
fn ceil(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn exp(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn exp2(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn floor(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn ln(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn log2(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn log10(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn pow(self: i128, b: i128) -> i128 {
panic(array!['not supported!'])
}
fn round(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn sqrt(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn acos(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn asin(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn atan(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn cos(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn sin(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn tan(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn acosh(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn asinh(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn atanh(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn cosh(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn sinh( |
self: i128) -> i128 {
panic(array!['not supported!'])
}
fn tanh(self: i128) -> i128 {
panic(array!['not supported!'])
}
fn zero() -> i128 {
0
}
fn is_zero(self: i128) -> bool {
self == 0
}
fn half() -> i128 {
panic(array!['not supported!'])
}
fn one() -> i128 {
1
}
fn neg_one() -> i128 {
-1
}
fn is_one(self: i128) -> bool {
self == 1
}
fn abs(self: i128) -> i128 {
if self >= 0 {
self
} else {
self * -1_i128
}
}
fn neg(self: i128) -> i128 {
self * -1_i128
}
fn min_value() -> i128 {
-170141183460469231731687303715884105727
}
fn max_value() -> i128 {
170141183460469231731687303715884105727
}
fn min(self: i128, other: i128) -> i128 {
if self < other {
self
} else {
other
}
}
fn max(self: i128, other: i128) -> i128 {
if self > other {
self
} else {
other
}
}
fn mag(self: i128) -> i128 {
self
}
fn is_neg(self: i128) -> bool {
self < 0
}
fn xor(lhs: i128, rhs: i128) -> bool {
if (lhs == 0 || rhs == 0) && lhs != rhs {
true
} else {
false
}
}
fn or(lhs: i128, rhs: i128) -> bool {
if lhs == 0 && rhs == 0 {
false
} else {
true
}
}
fn sign(self: i128) -> i128 {
if self == 0 {
0_i128
} else if self > 0 {
1_i128
} else {
-1_i128
}
}
fn and(lhs: i128, rhs: i128) -> bool {
if lhs == 0 || rhs == 0 {
false
} else {
true
}
}
fn where(self: i128, x: i128, y: i128) -> i128 {
if self == 0 {
y
} else {
x
}
}
fn NaN() -> i128 {
panic(array!['not |
supported!'])
}
fn is_nan(self: i128) -> bool {
panic(array!['not supported!'])
}
fn INF() -> i128 {
170141183460469231731687303715884105727
}
fn is_inf(self: i128) -> bool {
self == 170141183460469231731687303715884105727
|| self == -170141183460469231731687303715884105727
}
fn is_pos_inf(self: i128) -> bool {
self == 170141183460469231731687303715884105727
}
fn is_neg_inf(self: i128) -> bool {
self == -170141183460469231731687303715884105727
}
fn bitwise_and(lhs: i128, rhs: i128) -> i128 {
panic(array!['not supported!'])
}
fn bitwise_xor(lhs: i128, rhs: i128) -> i128 {
panic(array!['not supported!'])
}
fn bitwise_or(lhs: i128, rhs: i128) -> i128 {
panic(array!['not supported!'])
}
fn add(lhs: i128, rhs: i128) -> i128 {
lhs + rhs
}
fn sub(lhs: i128, rhs: i128) -> i128 {
lhs - rhs
}
}
impl I128Div of Div<i128> {
fn div(lhs: i128, rhs: i128) -> i128 {
assert(rhs != 0, 'divisor cannot be 0');
let mut lhs_positive = lhs;
let mut rhs_positive = rhs;
if lhs < 0 {
lhs_positive = lhs * -1;
}
if rhs < 0 {
rhs_positive = rhs * -1;
}
let lhs_felt: felt252 = lhs_positive.into();
let rhs_felt: felt252 = rhs_positive.into();
let lhs_u128: u128 = lhs_felt.try_into().unwrap();
let rhs_u128: u128 = rhs_felt.try_into().unwrap();
let mut result = lhs_u128 / rhs_u128;
let felt_result: felt252 = result.into();
let signed_int_result: i128 = felt_result.try_into().unwrap();
if lhs * rhs < 0 {
signed_int_result * -1
} else {
signed_int_result
}
}
}
impl I128DivEq of DivEq<i128> { |
fn div_eq(ref self: i128, other: i128) {
self = Div::div(self, other);
}
}
impl u32Number of NumberTrait<u32, u32> {
fn new(mag: u32, sign: bool) -> u32 {
mag
}
fn new_unscaled(mag: u32, sign: bool) -> u32 {
mag
}
fn from_felt(val: felt252) -> u32 {
panic(array!['not supported!'])
}
fn ceil(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn exp(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn exp2(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn floor(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn ln(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn log2(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn log10(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn pow(self: u32, b: u32) -> u32 {
panic(array!['not supported!'])
}
fn round(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn sqrt(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn acos(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn asin(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn atan(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn cos(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn sin(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn tan(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn acosh(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn asinh(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn atanh(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn cosh(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn sinh(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn tanh(self: u32) -> u32 { |
panic(array!['not supported!'])
}
fn zero() -> u32 {
0
}
fn is_zero(self: u32) -> bool {
self == 0
}
fn half() -> u32 {
panic(array!['not supported!'])
}
fn one() -> u32 {
1
}
fn neg_one() -> u32 {
panic(array!['not supported'])
}
fn is_one(self: u32) -> bool {
self == 1
}
fn abs(self: u32) -> u32 {
self
}
fn neg(self: u32) -> u32 {
panic(array!['not supported'])
}
fn min_value() -> u32 {
0
}
fn max_value() -> u32 {
4294967295
}
fn min(self: u32, other: u32) -> u32 {
if self < other {
self
} else {
other
}
}
fn max(self: u32, other: u32) -> u32 {
if self > other {
self
} else {
other
}
}
fn mag(self: u32) -> u32 {
self
}
fn is_neg(self: u32) -> bool {
false
}
fn xor(lhs: u32, rhs: u32) -> bool {
if (lhs == 0 || rhs == 0) && lhs != rhs {
true
} else {
false
}
}
fn or(lhs: u32, rhs: u32) -> bool {
if lhs == 0 && rhs == 0 {
false
} else {
true
}
}
fn sign(self: u32) -> u32 {
panic(array!['not supported!'])
}
fn and(lhs: u32, rhs: u32) -> bool {
if lhs == 0 || rhs == 0 {
false
} else {
true
}
}
fn where(self: u32, x: u32, y: u32) -> u32 {
if self == 0 {
y
} else {
x
}
}
fn NaN() -> u32 {
4242424242
}
fn is_nan(self: u32) -> bool {
self == 4242424242
}
fn INF() -> u32 {
4294967295
}
fn is_inf(self: u32) -> bool {
self == 4294967295
}
fn is_pos_inf(self: u32) -> bool {
self == 4294967295
}
fn is_neg_inf(self: u32) -> bool {
panic(array!['not supported!'])
} |
fn bitwise_and(lhs: u32, rhs: u32) -> u32 {
lhs & rhs
}
fn bitwise_xor(lhs: u32, rhs: u32) -> u32 {
lhs ^ rhs
}
fn bitwise_or(lhs: u32, rhs: u32) -> u32 {
lhs | rhs
}
fn add(lhs: u32, rhs: u32) -> u32 {
lhs + rhs
}
fn sub(lhs: u32, rhs: u32) -> u32 {
lhs - rhs
}
}
use orion::numbers::complex_number::complex_trait::ComplexTrait;
use orion::numbers::complex_number::complex64::{
Complex64Impl, complex64, Complex64Add, Complex64Sub
};
impl Complex64Number of NumberTrait<complex64, FP64x64> {
fn new(mag: FP64x64, sign: bool) -> complex64 {
panic(array!['not supported!'])
}
fn new_unscaled(mag: FP64x64, sign: bool) -> complex64 {
panic(array!['not supported!'])
}
fn from_felt(val: felt252) -> complex64 {
panic(array!['not supported!'])
}
fn ceil(self: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn exp(self: complex64) -> complex64 {
Complex64Impl::exp(self)
}
fn exp2(self: complex64) -> complex64 {
Complex64Impl::exp2(self)
}
fn floor(self: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn ln(self: complex64) -> complex64 {
Complex64Impl::ln(self)
}
fn log2(self: complex64) -> complex64 {
Complex64Impl::log2(self)
}
fn log10(self: complex64) -> complex64 {
Complex64Impl::log10(self)
}
fn pow(self: complex64, b: complex64) -> complex64 {
Complex64Impl::pow(self, b)
}
fn round(self: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn sqrt(self: complex64) -> complex64 {
Complex64Impl::sqrt(self)
}
fn acos(self: complex64) -> complex64 {
Complex64Impl::acos(self)
}
fn asin(self: complex64) -> complex64 {
Complex64Impl::asin(self)
}
fn atan(self: complex64) -> complex64 {
Complex64Impl::atan(self)
}
fn cos(self: complex6 |
4) -> complex64 {
Complex64Impl::cos(self)
}
fn sin(self: complex64) -> complex64 {
Complex64Impl::sin(self)
}
fn tan(self: complex64) -> complex64 {
Complex64Impl::tan(self)
}
fn acosh(self: complex64) -> complex64 {
Complex64Impl::acosh(self)
}
fn asinh(self: complex64) -> complex64 {
Complex64Impl::asinh(self)
}
fn atanh(self: complex64) -> complex64 {
Complex64Impl::atanh(self)
}
fn cosh(self: complex64) -> complex64 {
Complex64Impl::cosh(self)
}
fn sinh(self: complex64) -> complex64 {
Complex64Impl::sinh(self)
}
fn tanh(self: complex64) -> complex64 {
Complex64Impl::tanh(self)
}
fn zero() -> complex64 {
Complex64Impl::zero()
}
fn is_zero(self: complex64) -> bool {
if self == Complex64Impl::zero() {
return true;
}
false
}
fn half() -> complex64 {
panic(array!['not supported!'])
}
fn one() -> complex64 {
Complex64Impl::one()
}
fn neg_one() -> complex64 {
Complex64Impl::new(FP64x64 { mag: core_fp64x64::ONE, sign: true }, FP64x64Impl::ZERO())
}
fn is_one(self: complex64) -> bool {
if self == Complex64Impl::one() {
return true;
}
false
}
fn abs(self: complex64) -> complex64 {
Complex64Impl::new(Complex64Impl::mag(self), FP64x64Impl::ZERO())
}
fn neg(self: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn min_value() -> complex64 {
panic(array!['not supported!'])
}
fn max_value() -> complex64 {
panic(array!['not supported!'])
}
fn min(self: complex64, other: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn max(self: complex64, other: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn mag(self: complex64) -> FP64x64 {
Complex64Impl::mag(self)
}
fn is_ne |
g(self: complex64) -> bool {
panic(array!['not supported!'])
}
fn xor(lhs: complex64, rhs: complex64) -> bool {
panic(array!['not supported!'])
}
fn or(lhs: complex64, rhs: complex64) -> bool {
panic(array!['not supported!'])
}
fn sign(self: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn and(lhs: complex64, rhs: complex64) -> bool {
panic(array!['not supported!'])
}
fn where(self: complex64, x: complex64, y: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn NaN() -> complex64 {
panic(array!['not supported!'])
}
fn is_nan(self: complex64) -> bool {
panic(array!['not supported!'])
}
fn INF() -> complex64 {
panic(array!['not supported!'])
}
fn is_inf(self: complex64) -> bool {
panic(array!['not supported!'])
}
fn is_pos_inf(self: complex64) -> bool {
panic(array!['not supported!'])
}
fn is_neg_inf(self: complex64) -> bool {
panic(array!['not supported!'])
}
fn bitwise_and(lhs: complex64, rhs: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn bitwise_xor(lhs: complex64, rhs: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn bitwise_or(lhs: complex64, rhs: complex64) -> complex64 {
panic(array!['not supported!'])
}
fn add(lhs: complex64, rhs: complex64) -> complex64 {
Complex64Add::add(lhs, rhs)
}
fn sub(lhs: complex64, rhs: complex64) -> complex64 {
Complex64Sub::sub(lhs, rhs)
}
}
impl U32IntoI32 of Into<u32, i32> {
fn into(self: u32) -> i32 {
let number_felt: felt252 = self.into();
let number_i32: i32 = number_felt.try_into().unwrap();
number_i32
}
} |
mod complex_trait;
mod complex64;
|
use core::debug::PrintTrait;
use orion::numbers::complex_number::complex_trait::ComplexTrait;
use orion::numbers::{FP64x64, FP64x64Impl, FP32x32, FP32x32Impl, FixedTrait}; |
struct complex64 {
real: FP64x64,
img: FP64x64,
}
const PI: u128 = 57952155664616982739;
const HALF_PI: u128 = 28976077832308491370;
const TWO: u128 = 36893488147419103232;
const E: u128 = 50143449208471493718;
const HALF: u128 = 9223372036854775808;
impl Complex64Impl of ComplexTrait<complex64, FP64x64> {
fn new(real: FP64x64, img: FP64x64) -> complex64 {
complex64 { real, img }
}
fn real(self: complex64) -> FP64x64 {
self.real
}
fn img(self: complex64) -> FP64x64 {
self.img
}
fn conjugate(self: complex64) -> complex64 {
ComplexTrait::new(self.real, -self.img)
}
fn zero() -> complex64 {
complex64 { real: FixedTrait::ZERO(), img: FP64x64Impl::ZERO() }
}
fn one() -> complex64 {
complex64 { real: FP64x64Impl::ONE(), img: FP64x64Impl::ZERO() }
}
fn mag(self: complex64) -> FP64x64 {
let two = FP64x64Impl::new(TWO, false);
(self.real.pow(two) + self.img.pow(two)).sqrt()
}
fn arg(self: complex64) -> FP64x64 {
atan2(self.real, self.img)
}
fn exp(self: complex64) -> complex64 {
let real = self.real.exp() * self.img.cos();
let img = self.real.exp() * self.img.sin();
complex64 { real, img }
}
fn exp2(self: complex64) -> complex64 {
let two = complex64 { real: FP64x64Impl::new(TWO, false), img: FP64x64Impl::ZERO() };
two.pow(self)
}
fn sqrt(self: complex64) -> complex64 {
let x = self.real;
let y = self.img;
let two = FP64x64Impl::new(TWO, false);
let real = (((x.pow(two) + y.pow(two)).sqrt() + x) / two).sqrt();
let img = if y == FP64x64Impl::ZERO() {
FP64x64Impl::ZERO()
} else {
(((x.pow(two) + y.pow(two)).sqrt() - x) / two).sqrt()
};
let img = FP64x64Impl::new(img.mag, y.sign);
complex64 { real, img }
}
fn ln(self: complex64) -> complex64 {
let real = self.mag().ln();
let img = self.arg |
();
complex64 { real, img }
}
fn log2(self: complex64) -> complex64 {
let ln_2 = FP64x64Impl::new(12786309186476892720, false);
let ln = self.ln();
complex64 { real: (ln.real / ln_2), img: (ln.img / ln_2) }
}
fn log10(self: complex64) -> complex64 {
let ln_10 = FP64x64Impl::new(42475197399893398429, false);
let ln = self.ln();
complex64 { real: (ln.real / ln_10), img: (ln.img / ln_10) }
}
fn pow(self: complex64, b: complex64) -> complex64 {
let two = FP64x64Impl::new(TWO, false);
let x = self.real;
let y = self.img;
if (b.real == two && b.img == FP64x64Impl::new(0, false)) {
let real = x.pow(two) - y.pow(two);
let img = two * x * y;
return complex64 { real, img };
}
if (b.img == FP64x64Impl::new(0, false)) {
let mag_pow_n = self.mag().pow(b.real);
let arg_mul_n = b.real * self.arg();
let real = mag_pow_n * arg_mul_n.cos();
let img = mag_pow_n * arg_mul_n.sin();
return complex64 { real, img };
}
let A = FP64x64Impl::new(E, false).pow(b.real * self.mag().ln() - b.img * self.arg());
let B = b.real * self.arg() + b.img * self.mag().ln();
let real = A * B.cos();
let img = A * B.sin();
complex64 { real, img }
}
fn cos(self: complex64) -> complex64 {
let a = self.real;
let b = self.img;
complex64 {
real: FP64x64Impl::cos(a) * FP64x64Impl::cosh(b),
img: -FP64x64Impl::sin(a) * FP64x64Impl::sinh(b)
}
}
fn sin(self: complex64) -> complex64 {
let a = self.real;
let b = self.img;
complex64 {
real: FP64x64Impl::sin(a) * FP64x64Impl::cosh(b),
img: FP64x64Impl::cos(a) * FP64x64Impl::sinh(b)
}
}
fn tan(self: complex64) -> complex64 {
let two = FP64 |
x64Impl::new(TWO, false);
let a = self.real;
let b = self.img;
let den = FP64x64Impl::cosh(two * b) + FP64x64Impl::cos(two * a);
complex64 { real: FP64x64Impl::sin(two * a) / den, img: FP64x64Impl::sinh(two * b) / den }
}
fn acos(self: complex64) -> complex64 {
let pi = Complex64Impl::new(FP64x64Impl::new(PI, false), FP64x64Impl::ZERO());
let two = Complex64Impl::new(FP64x64Impl::new(TWO, false), FP64x64Impl::ZERO());
let i = Complex64Impl::new(FP64x64Impl::ZERO(), FP64x64Impl::ONE());
let one = Complex64Impl::new(FP64x64Impl::ONE(), FP64x64Impl::ZERO());
let acos = pi / two
+ i * Complex64Impl::ln(i * self + Complex64Impl::sqrt(one - (self.pow(two))));
acos
}
fn asin(self: complex64) -> complex64 {
let two = Complex64Impl::new(FP64x64Impl::new(TWO, false), FP64x64Impl::ZERO());
let i = Complex64Impl::new(FP64x64Impl::ZERO(), FP64x64Impl::ONE());
let one = Complex64Impl::new(FP64x64Impl::ONE(), FP64x64Impl::ZERO());
let asin = -i * Complex64Impl::ln(i * self + Complex64Impl::sqrt(one - (self.pow(two))));
asin
}
fn atan(self: complex64) -> complex64 {
let two = Complex64Impl::new(FP64x64Impl::new(TWO, false), FP64x64Impl::ZERO());
let i = Complex64Impl::new(FP64x64Impl::ZERO(), FP64x64Impl::ONE());
let one = Complex64Impl::new(FP64x64Impl::ONE(), FP64x64Impl::ZERO());
let atan = one
/ two
* i
* (Complex64Impl::ln(one - i * self) - Complex64Impl::ln(one + i * self));
atan
}
fn acosh(self: complex64) -> complex64 {
let one = Complex64Impl::new(FP64x64Impl::ONE(), FP64x64Impl::ZERO());
let acosh = Complex64Impl::ln(
self + Complex64Impl::sqrt(self + one) * Complex64Impl::sqrt(self - one)
);
acosh
}
fn asinh(self: complex64) -> complex64 {
let one = Complex64Impl::new(FP64x64Impl::ONE(), F |
P64x64Impl::ZERO());
let two = Complex64Impl::new(FP64x64Impl::new(TWO, false), FP64x64Impl::ZERO());
let asinh = Complex64Impl::ln(self + Complex64Impl::sqrt(one + (self.pow(two))));
asinh
}
fn atanh(self: complex64) -> complex64 {
let two = Complex64Impl::new(FP64x64Impl::new(TWO, false), FP64x64Impl::ZERO());
let one = Complex64Impl::new(FP64x64Impl::ONE(), FP64x64Impl::ZERO());
let atanh = (Complex64Impl::ln(one + self) - Complex64Impl::ln(one - self)) / two;
atanh
}
fn cosh(self: complex64) -> complex64 {
let a = self.real;
let b = self.img;
complex64 {
real: FP64x64Impl::cosh(a) * FP64x64Impl::cos(b),
img: FP64x64Impl::sinh(a) * FP64x64Impl::sin(b)
}
}
fn sinh(self: complex64) -> complex64 {
let a = self.real;
let b = self.img;
complex64 {
real: FP64x64Impl::sinh(a) * FP64x64Impl::cos(b),
img: FP64x64Impl::cosh(a) * FP64x64Impl::sin(b)
}
}
fn tanh(self: complex64) -> complex64 {
let two = FP64x64Impl::new(TWO, false);
let a = self.real;
let b = self.img;
let den = FP64x64Impl::cosh(two * a) + FP64x64Impl::cos(two * b);
complex64 { real: FP64x64Impl::sinh(two * a) / den, img: FP64x64Impl::sin(two * b) / den }
}
fn to_polar(self: complex64) -> (FP64x64, FP64x64) {
let mag = self.mag();
let arg = self.arg();
(mag, arg)
}
fn from_polar(mag: FP64x64, arg: FP64x64) -> complex64 {
let real = mag * arg.cos();
let img = mag * arg.sin();
complex64 { real, img }
}
fn reciprocal(self: complex64) -> complex64 {
let two = FP64x64Impl::new(TWO, false);
let x = self.real;
let y = self.img;
let real = x / (x.pow(two) + y.pow(two));
let img = -y / (x.pow(two) + y.pow(two));
complex64 { real, img }
}
}
fn atan2(x: FP64x64, y: FP64x |
64) -> FP64x64 {
let two = FP64x64Impl::new(TWO, false);
if (y != FP64x64Impl::ZERO() || x > FP64x64Impl::ZERO()) {
return two * (y / (x + (x.pow(two) + y.pow(two)).sqrt())).atan();
} else if x < FP64x64Impl::ZERO() {
return FP64x64Impl::new(PI, false);
} else {
panic(array!['undifined'])
}
}
impl Complex64Print of PrintTrait<complex64> { |
fn print(self: complex64) {
self.real.print();
'+'.print();
self.img.print();
'i'.print();
}
}
impl Complex64Add of Add<complex64> {
fn add(lhs: complex64, rhs: complex64) -> complex64 {
complex64_add(lhs, rhs)
}
}
impl Complex64AddEq of AddEq<complex64> { |
fn add_eq(ref self: complex64, other: complex64) {
self = Add::add(self, other);
}
}
impl Complex64Sub of Sub<complex64> {
fn sub(lhs: complex64, rhs: complex64) -> complex64 {
complex64_sub(lhs, rhs)
}
}
impl Complex64SubEq of SubEq<complex64> { |
fn sub_eq(ref self: complex64, other: complex64) {
self = Sub::sub(self, other);
}
}
impl Complex64Mul of Mul<complex64> {
fn mul(lhs: complex64, rhs: complex64) -> complex64 {
complex64_mul(lhs, rhs)
}
}
impl Complex64MulEq of MulEq<complex64> { |
fn mul_eq(ref self: complex64, other: complex64) {
self = Mul::mul(self, other);
}
}
impl Complex64Div of Div<complex64> {
fn div(lhs: complex64, rhs: complex64) -> complex64 {
complex64_div(lhs, rhs)
}
}
impl Complex64DivEq of DivEq<complex64> { |
fn div_eq(ref self: complex64, other: complex64) {
self = Div::div(self, other);
}
}
impl Complex64PartialEq of PartialEq<complex64> {
fn eq(lhs: @complex64, rhs: @complex64) -> bool {
complex64_eq(*lhs, *rhs)
}
fn ne(lhs: @complex64, rhs: @complex64) -> bool {
complex64_ne(*lhs, *rhs)
}
}
impl Complex64Neg of Neg<complex64> {
fn neg(a: complex64) -> complex64 {
complex64_neg(a)
}
}
fn complex64_add(a: complex64, b: complex64) -> complex64 {
let real = a.real + b.real;
let img = a.img + b.img;
ComplexTrait::new(real, img)
}
fn complex64_sub(a: complex64, b: complex64) -> complex64 {
let real = a.real - b.real;
let img = a.img - b.img;
ComplexTrait::new(real, img)
}
fn complex64_mul(a: complex64, b: complex64) -> complex64 {
let real = a.real * b.real - a.img * b.img;
let img = a.real * b.img + a.img * b.real;
ComplexTrait::new(real, img)
}
fn complex64_div(a: complex64, b: complex64) -> complex64 {
complex64_mul(a, b.reciprocal())
}
fn complex64_eq(a: complex64, b: complex64) -> bool {
if a.real == b.real && a.img == b.img {
return true;
}
false
}
fn complex64_ne(a: complex64, b: complex64) -> bool {
!complex64_eq(a, b)
}
fn complex64_neg(x: complex64) -> complex64 {
ComplexTrait::new(-x.real, -x.img)
} |
trait ComplexTrait<T, F> {
fn new(real: F, img: F) -> T;
fn real(self: T) -> F;
fn img(self: T) -> F;
fn conjugate(self: T) -> T;
fn zero() -> T;
fn one() -> T;
fn mag(self: T) -> F;
fn arg(self: T) -> F;
fn exp(self: T) -> T;
fn exp2(self: T) -> T;
fn ln(self: T) -> T; |
fn log2(self: T) -> T;
fn log10(self: T) -> T;
fn pow(self: T, b: T) -> T;
fn sqrt(self: T) -> T;
fn acos(self: T) -> T;
fn asin(self: T) -> T;
fn atan(self: T) -> T;
fn cos(self: T) -> T;
fn sin(self: T) -> T;
fn tan(self: T) -> T;
fn |
acosh(self: T) -> T;
fn asinh(self: T) -> T;
fn atanh(self: T) -> T;
fn cosh(self: T) -> T;
fn sinh(self: T) -> T;
fn tanh(self: T) -> T;
fn to_polar(self: T) -> (F, F);
fn from_polar(mag: F, arg: F) -> T;
fn reciprocal(self: T) -> T;
} |
//! Fixed-Point implemented from https://github.com/influenceth/cubit and adjusted to Q8.23
mod core;
mod implementations;
mod utils;
|
trait FixedTrait<T, MAG> {
fn new(mag: MAG, sign: bool) -> T;
fn new_unscaled(mag: MAG, sign: bool) -> T;
fn from_felt(val: felt252) -> T;
fn abs(self: T) -> T;
fn ceil(self: T) -> T;
fn exp(self: T) -> T;
fn exp2(self: T) -> T;
fn floor(self: T) -> T;
fn ln(self: T) -> T;
fn log2(self: T) -> T;
fn |
log10(self: T) -> T;
fn pow(self: T, b: T) -> T;
fn round(self: T) -> T;
fn sqrt(self: T) -> T;
fn acos(self: T) -> T;
fn acos_fast(self: T) -> T;
fn asin(self: T) -> T;
fn asin_fast(self: T) -> T;
fn atan(self: T) -> T;
fn atan_fast(self: T) -> T;
fn cos(self: T) -> T; |
fn cos_fast(self: T) -> T;
fn sin(self: T) -> T;
fn sin_fast(self: T) -> T;
fn tan(self: T) -> T;
fn tan_fast(self: T) -> T;
fn acosh(self: T) -> T;
fn asinh(self: T) -> T;
fn atanh(self: T) -> T;
fn cosh(self: T) -> T;
fn sinh(self: T) -> T;
fn tanh(self: T) -> T;
fn sign(self: T) -> T; |
fn erf(self: T) -> T;
fn ZERO() -> T;
fn HALF() -> T;
fn ONE() -> T;
fn MAX() -> T;
fn NaN() -> T;
fn is_nan(self: T) -> bool;
fn INF() -> T;
fn POS_INF() -> T;
fn NEG_INF() -> T;
fn is_inf(self: T) -> bool;
fn is_pos_inf(self: T) -> bool;
fn is_neg_inf(self: T) -> bool;
} |
mod fp8x23;
mod fp16x16;
mod fp64x64;
mod fp32x32;
mod fp16x16wide;
mod fp8x23wide;
|
mod core;
mod math;
mod helpers;
|
use core::debug::PrintTrait;
use orion::numbers::fixed_point::core::FixedTrait;
use orion::numbers::fixed_point::implementations::fp16x16::math::{
core as core_math, trig, hyp, erf
};
use orion::numbers::fixed_point::utils; |
struct FP16x16 {
mag: u32,
sign: bool
}
const TWO: u32 = 131072;
const ONE: u32 = 65536;
const HALF: u32 = 32768;
const MAX: u32 = 2147483648;
impl FP16x16Impl of FixedTrait<FP16x16, u32> {
fn ZERO() -> FP16x16 {
FP16x16 { mag: 0, sign: false }
}
fn HALF() -> FP16x16 {
FP16x16 { mag: HALF, sign: false }
}
fn ONE() -> FP16x16 {
FP16x16 { mag: ONE, sign: false }
}
fn MAX() -> FP16x16 {
FP16x16 { mag: MAX, sign: false }
}
fn new(mag: u32, sign: bool) -> FP16x16 {
FP16x16 { mag: mag, sign: sign }
}
fn new_unscaled(mag: u32, sign: bool) -> FP16x16 {
FP16x16 { mag: mag * ONE, sign: sign }
}
fn from_felt(val: felt252) -> FP16x16 {
let mag = core::integer::u32_try_from_felt252(utils::felt_abs(val)).unwrap();
FixedTrait::new(mag, utils::felt_sign(val))
}
fn abs(self: FP16x16) -> FP16x16 {
core_math::abs(self)
}
fn acos(self: FP16x16) -> FP16x16 {
trig::acos_fast(self)
}
fn acos_fast(self: FP16x16) -> FP16x16 {
trig::acos_fast(self)
}
fn acosh(self: FP16x16) -> FP16x16 {
hyp::acosh(self)
}
fn asin(self: FP16x16) -> FP16x16 {
trig::asin_fast(self)
}
fn asin_fast(self: FP16x16) -> FP16x16 {
trig::asin_fast(self)
}
fn asinh(self: FP16x16) -> FP16x16 {
hyp::asinh(self)
}
fn atan(self: FP16x16) -> FP16x16 {
trig::atan_fast(self)
}
fn atan_fast(self: FP16x16) -> FP16x16 {
trig::atan_fast(self)
}
fn atanh(self: FP16x16) -> FP16x16 {
hyp::atanh(self)
}
fn ceil(self: FP16x16) -> FP16x16 {
core_math::ceil(self)
}
fn cos(self: FP16x16) -> FP16x16 {
trig::cos_fast(self)
}
fn cos_fast(self: FP16x16) -> FP16x16 {
trig::cos_fast(self)
}
fn cosh(self: FP16x16) -> FP16x16 {
hyp::cosh(self)
}
fn floor(self: FP16x16) -> FP16x16 {
core_math::floor(self) |
}
fn exp(self: FP16x16) -> FP16x16 {
core_math::exp(self)
}
fn exp2(self: FP16x16) -> FP16x16 {
core_math::exp2(self)
}
fn ln(self: FP16x16) -> FP16x16 {
core_math::ln(self)
}
fn log2(self: FP16x16) -> FP16x16 {
core_math::log2(self)
}
fn log10(self: FP16x16) -> FP16x16 {
core_math::log10(self)
}
fn pow(self: FP16x16, b: FP16x16) -> FP16x16 {
core_math::pow(self, b)
}
fn round(self: FP16x16) -> FP16x16 {
core_math::round(self)
}
fn sin(self: FP16x16) -> FP16x16 {
trig::sin_fast(self)
}
fn sin_fast(self: FP16x16) -> FP16x16 {
trig::sin_fast(self)
}
fn sinh(self: FP16x16) -> FP16x16 {
hyp::sinh(self)
}
fn sqrt(self: FP16x16) -> FP16x16 {
core_math::sqrt(self)
}
fn tan(self: FP16x16) -> FP16x16 {
trig::tan_fast(self)
}
fn tan_fast(self: FP16x16) -> FP16x16 {
trig::tan_fast(self)
}
fn tanh(self: FP16x16) -> FP16x16 {
hyp::tanh(self)
}
fn sign(self: FP16x16) -> FP16x16 {
core_math::sign(self)
}
fn NaN() -> FP16x16 {
FP16x16 { mag: 0, sign: true }
}
fn is_nan(self: FP16x16) -> bool {
self == FP16x16 { mag: 0, sign: true }
}
fn INF() -> FP16x16 {
FP16x16 { mag: 4294967295, sign: false }
}
fn POS_INF() -> FP16x16 {
FP16x16 { mag: 4294967295, sign: false }
}
fn NEG_INF() -> FP16x16 {
FP16x16 { mag: 4294967295, sign: true }
}
fn is_inf(self: FP16x16) -> bool {
self.mag == 4294967295
}
fn is_pos_inf(self: FP16x16) -> bool {
self.is_inf() && !self.sign
}
fn is_neg_inf(self: FP16x16) -> bool {
self.is_inf() && self.sign
}
fn erf(self: FP16x16) -> FP16x16 {
erf::erf(self)
}
}
impl FP16x16Print of PrintTrait<FP16x16> { |
fn print(self: FP16x16) {
self.sign.print();
self.mag.print();
}
}
impl FP16x16IntoFelt252 of Into<FP16x16, felt252> {
fn into(self: FP16x16) -> felt252 {
let mag_felt = self.mag.into();
if self.sign {
mag_felt * -1
} else {
mag_felt * 1
}
}
}
impl FP16x16IntoI32 of Into<FP16x16, i32> {
fn into(self: FP16x16) -> i32 {
_i32_into_fp(self)
}
}
impl FP16x16TryIntoI8 of TryInto<FP16x16, i8> {
fn try_into(self: FP16x16) -> Option<i8> {
_i8_try_from_fp(self)
}
}
impl FP16x16TryIntoU128 of TryInto<FP16x16, u128> {
fn try_into(self: FP16x16) -> Option<u128> {
if self.sign {
Option::None(())
} else {
Option::Some((self.mag / ONE).into())
}
}
}
impl FP16x16TryIntoU64 of TryInto<FP16x16, u64> {
fn try_into(self: FP16x16) -> Option<u64> {
if self.sign {
Option::None(())
} else {
Option::Some((self.mag / ONE).into())
}
}
}
impl FP16x16TryIntoU32 of TryInto<FP16x16, u32> {
fn try_into(self: FP16x16) -> Option<u32> {
if self.sign {
Option::None(())
} else {
Option::Some(self.mag / ONE)
}
}
}
impl FP16x16TryIntoU16 of TryInto<FP16x16, u16> {
fn try_into(self: FP16x16) -> Option<u16> {
if self.sign {
Option::None(())
} else {
(self.mag / ONE).try_into()
}
}
}
impl FP16x16TryIntoU8 of TryInto<FP16x16, u8> {
fn try_into(self: FP16x16) -> Option<u8> {
if self.sign {
Option::None(())
} else {
(self.mag / ONE).try_into()
}
}
}
impl FP16x16PartialEq of PartialEq<FP16x16> {
fn eq(lhs: @FP16x16, rhs: @FP16x16) -> bool {
core_math::eq(lhs, rhs)
}
fn ne(lhs: @FP16x16, rhs: @FP16x16) -> bool {
core_math::ne(lhs, rhs)
}
}
impl FP16x16A |
dd of Add<FP16x16> {
fn add(lhs: FP16x16, rhs: FP16x16) -> FP16x16 {
core_math::add(lhs, rhs)
}
}
impl FP16x16AddEq of AddEq<FP16x16> { |
fn add_eq(ref self: FP16x16, other: FP16x16) {
self = Add::add(self, other);
}
}
impl FP16x16Sub of Sub<FP16x16> {
fn sub(lhs: FP16x16, rhs: FP16x16) -> FP16x16 {
core_math::sub(lhs, rhs)
}
}
impl FP16x16SubEq of SubEq<FP16x16> { |
fn sub_eq(ref self: FP16x16, other: FP16x16) {
self = Sub::sub(self, other);
}
}
impl FP16x16Mul of Mul<FP16x16> {
fn mul(lhs: FP16x16, rhs: FP16x16) -> FP16x16 {
core_math::mul(lhs, rhs)
}
}
impl FP16x16MulEq of MulEq<FP16x16> { |
fn mul_eq(ref self: FP16x16, other: FP16x16) {
self = Mul::mul(self, other);
}
}
impl FP16x16Div of Div<FP16x16> {
fn div(lhs: FP16x16, rhs: FP16x16) -> FP16x16 {
core_math::div(lhs, rhs)
}
}
impl FP16x16DivEq of DivEq<FP16x16> { |
fn div_eq(ref self: FP16x16, other: FP16x16) {
self = Div::div(self, other);
}
}
impl FP16x16PartialOrd of PartialOrd<FP16x16> {
fn ge(lhs: FP16x16, rhs: FP16x16) -> bool {
core_math::ge(lhs, rhs)
}
fn gt(lhs: FP16x16, rhs: FP16x16) -> bool {
core_math::gt(lhs, rhs)
}
fn le(lhs: FP16x16, rhs: FP16x16) -> bool {
core_math::le(lhs, rhs)
}
fn lt(lhs: FP16x16, rhs: FP16x16) -> bool {
core_math::lt(lhs, rhs)
}
}
impl FP16x16Neg of Neg<FP16x16> {
fn neg(a: FP16x16) -> FP16x16 {
core_math::neg(a)
}
}
impl FP16x16Rem of Rem<FP16x16> {
fn rem(lhs: FP16x16, rhs: FP16x16) -> FP16x16 {
core_math::rem(lhs, rhs)
}
}
fn _i32_into_fp(x: FP16x16) -> i32 {
let number_felt: felt252 = (x.mag / ONE).into();
let number_i32: i32 = number_felt.try_into().unwrap();
if x.sign {
return number_i32 * -1_i32;
}
number_i32
}
fn _i8_try_from_fp(x: FP16x16) -> Option<i8> {
let unscaled_mag: Option<u8> = (x.mag / ONE).try_into();
match unscaled_mag {
Option::Some => {
let number_felt: felt252 = unscaled_mag.unwrap().into();
let mut number_i8: i8 = number_felt.try_into().unwrap();
if x.sign {
return Option::Some(number_i8 * -1_i8);
}
Option::Some(number_i8)
},
Option::None => Option::None(())
}
} |
use core::debug::PrintTrait;
use orion::numbers::fixed_point::implementations::fp16x16::core::{
HALF, ONE, TWO, FP16x16, FP16x16Impl, FP16x16Sub, FP16x16Div, FixedTrait, FP16x16Print
};
const DEFAULT_PRECISION: u32 = 7; // 1e-4
// To use `DEFAULT_PRECISION`, final arg is: `Option::None(())`.
// To use `custom_precision` of 430_u32: `Option::Some(430_u32)`.
fn assert_precise(result: FP16x16, expected: felt252, msg: felt252, custom_precision: Option<u32>) {
let precision = match custom_precision {
Option::Some(val) => val,
Option::None => DEFAULT_PRECISION,
};
let diff = (result - FixedTrait::from_felt(expected)).mag;
if (diff > precision) {
result.print();
assert(diff <= precision, msg);
}
}
fn assert_relative(
result: FP16x16, expected: felt252, msg: felt252, custom_precision: Option<u32>
) {
let precision = match custom_precision {
Option::Some(val) => val,
Option::None => DEFAULT_PRECISION,
};
let diff = result - FixedTrait::from_felt(expected);
let rel_diff = (diff / result).mag;
if (rel_diff > precision) {
result.print();
assert(rel_diff <= precision, msg);
}
}
|
mod core;
mod comp;
mod lut;
mod trig;
mod hyp;
mod erf;
|
use orion::numbers::fixed_point::implementations::fp16x16::core::{
FP16x16, FixedTrait, FP16x16Impl, FP16x16PartialOrd, FP16x16PartialEq
};
fn max(a: FP16x16, b: FP16x16) -> FP16x16 {
if a >= b {
a
} else {
b
}
}
fn min(a: FP16x16, b: FP16x16) -> FP16x16 {
if a <= b {
a
} else {
b
}
}
fn xor(a: FP16x16, b: FP16x16) -> bool {
if (a == FixedTrait::new(0, false) || b == FixedTrait::new(0, false)) && (a != b) {
true
} else {
false
}
}
fn or(a: FP16x16, b: FP16x16) -> bool {
let zero = FixedTrait::new(0, false);
if a == zero && b == zero {
false
} else {
true
}
}
fn and(a: FP16x16, b: FP16x16) -> bool {
let zero = FixedTrait::new(0, false);
if a == zero || b == zero {
false
} else {
true
}
}
fn where(a: FP16x16, b: FP16x16, c: FP16x16) -> FP16x16 {
if a == FixedTrait::new(0, false) {
c
} else {
b
}
}
fn bitwise_and(a: FP16x16, b: FP16x16) -> FP16x16 {
FixedTrait::new(a.mag & b.mag, a.sign & b.sign)
}
fn bitwise_xor(a: FP16x16, b: FP16x16) -> FP16x16 {
FixedTrait::new(a.mag ^ b.mag, a.sign ^ b.sign)
}
fn bitwise_or(a: FP16x16, b: FP16x16) -> FP16x16 {
FixedTrait::new(a.mag | b.mag, a.sign | b.sign)
}
mod tests {
use super::{FixedTrait, max, min, bitwise_and, bitwise_xor, bitwise_or}; |
fn test_max() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(0, false);
let c = FixedTrait::new_unscaled(1, true);
assert(max(a, a) == a, 'max(a, a)');
assert(max(a, b) == a, 'max(a, b)');
assert(max(a, c) == a, 'max(a, c)');
assert(max(b, a) == a, 'max(b, a)');
assert(max(b, b) == b, 'max(b, b)');
assert(max(b, c) == b, 'max(b, c)');
assert(max(c, a) == a, 'max(c, a)');
assert(max(c, b) == b, 'max(c, b)');
assert(max(c, c) == c, 'max(c, c)');
} |
fn test_min() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(0, false);
let c = FixedTrait::new_unscaled(1, true);
assert(min(a, a) == a, 'min(a, a)');
assert(min(a, b) == b, 'min(a, b)');
assert(min(a, c) == c, 'min(a, c)');
assert(min(b, a) == b, 'min(b, a)');
assert(min(b, b) == b, 'min(b, b)');
assert(min(b, c) == c, 'min(b, c)');
assert(min(c, a) == c, 'min(c, a)');
assert(min(c, b) == c, 'min(c, b)');
assert(min(c, c) == c, 'min(c, c)');
} |
fn test_bitwise_and() {
let a = FixedTrait::new(225280, false);
let b = FixedTrait::new(4160843776, true);
let c = FixedTrait::new(94208, false);
assert(bitwise_and(a, b) == c, 'bitwise_and(a,b)')
} |
fn test_bitwise_xor() {
let a = FixedTrait::new(225280, false);
let b = FixedTrait::new(4160843776, true);
let c = FixedTrait::new(4160880640, true);
assert(bitwise_xor(a, b) == c, 'bitwise_xor(a,b)')
} |
fn test_bitwise_or() {
let a = FixedTrait::new(225280, false);
let b = FixedTrait::new(4160843776, true);
let c = FixedTrait::new(4160974848, true);
assert(bitwise_or(a, b) == c, 'bitwise_or(a,b)')
}
} |
use core::integer;
use orion::numbers::fixed_point::implementations::fp16x16::core::{
HALF, ONE, MAX, FP16x16, FP16x16Impl, FP16x16Add, FP16x16AddEq, FP16x16Sub, FP16x16Mul,
FP16x16MulEq, FP16x16TryIntoU128, FP16x16PartialEq, FP16x16PartialOrd, FP16x16SubEq, FP16x16Neg,
FP16x16Div, FP16x16IntoFelt252, FixedTrait
};
use orion::numbers::fixed_point::implementations::fp16x16::math::lut;
fn abs(a: FP16x16) -> FP16x16 {
FixedTrait::new(a.mag, false)
}
fn add(a: FP16x16, b: FP16x16) -> FP16x16 {
if a.sign == b.sign {
return FixedTrait::new(a.mag + b.mag, a.sign);
}
if a.mag == b.mag {
return FixedTrait::ZERO();
}
if (a.mag > b.mag) {
FixedTrait::new(a.mag - b.mag, a.sign)
} else {
FixedTrait::new(b.mag - a.mag, b.sign)
}
}
fn ceil(a: FP16x16) -> FP16x16 {
let (div, rem) = integer::u32_safe_divmod(a.mag, integer::u32_as_non_zero(ONE));
if rem == 0 {
a
} else if !a.sign {
FixedTrait::new_unscaled(div + 1, false)
} else if div == 0 {
FixedTrait::new_unscaled(0, false)
} else {
FixedTrait::new_unscaled(div, true)
}
}
fn div(a: FP16x16, b: FP16x16) -> FP16x16 {
let a_u64 = integer::u32_wide_mul(a.mag, ONE);
let res_u64 = a_u64 / b.mag.into();
FixedTrait::new(res_u64.try_into().unwrap(), a.sign ^ b.sign)
}
fn eq(a: @FP16x16, b: @FP16x16) -> bool {
(*a.mag == *b.mag) && (*a.sign == *b.sign)
}
fn exp(a: FP16x16) -> FP16x16 {
exp2(FixedTrait::new(94548, false) * a)
}
fn exp2(a: FP16x16) -> FP16x16 {
if (a.mag == 0) {
return FixedTrait::ONE();
}
let (int_part, frac_part) = integer::u32_safe_divmod(a.mag, integer::u32_as_non_zero(ONE));
let int_res = FixedTrait::new_unscaled(lut::exp2(int_part), false);
let mut res_u = int_res;
if frac_part != 0 {
let frac = FixedTrait::new(frac_part, false);
let r7 = FixedTrait::new(1, false) * frac;
let r6 = (r7 + FixedTrait::new(10, false)) * frac;
let r5 = ( |
r6 + FixedTrait::new(87, false)) * frac;
let r4 = (r5 + FixedTrait::new(630, false)) * frac;
let r3 = (r4 + FixedTrait::new(3638, false)) * frac;
let r2 = (r3 + FixedTrait::new(15743, false)) * frac;
let r1 = (r2 + FixedTrait::new(45426, false)) * frac;
res_u = res_u * (r1 + FixedTrait::ONE());
}
if a.sign {
FixedTrait::ONE() / res_u
} else {
res_u
}
}
fn exp2_int(exp: u32) -> FP16x16 {
FixedTrait::new_unscaled(lut::exp2(exp), false)
}
fn floor(a: FP16x16) -> FP16x16 {
let (div, rem) = integer::u32_safe_divmod(a.mag, integer::u32_as_non_zero(ONE));
if rem == 0 {
a
} else if !a.sign {
FixedTrait::new_unscaled(div, false)
} else {
FixedTrait::new_unscaled(div + 1, true)
}
}
fn ge(a: FP16x16, b: FP16x16) -> bool {
if a.sign != b.sign {
!a.sign
} else {
(a.mag == b.mag) || ((a.mag > b.mag) ^ a.sign)
}
}
fn gt(a: FP16x16, b: FP16x16) -> bool {
if a.sign != b.sign {
!a.sign
} else {
(a.mag != b.mag) && ((a.mag > b.mag) ^ a.sign)
}
}
fn le(a: FP16x16, b: FP16x16) -> bool {
if a.sign != b.sign {
a.sign
} else {
(a.mag == b.mag) || ((a.mag < b.mag) ^ a.sign)
}
}
fn ln(a: FP16x16) -> FP16x16 {
FixedTrait::new(45426, false) * log2(a)
}
fn log2(a: FP16x16) -> FP16x16 {
assert(a.sign == false, 'must be positive');
if (a.mag == ONE) {
return FixedTrait::ZERO();
} else if (a.mag < ONE) {
let div = FixedTrait::ONE() / a;
return -log2(div);
}
let whole = a.mag / ONE;
let (msb, div) = lut::msb(whole);
if a.mag == div * ONE {
FixedTrait::new_unscaled(msb, false)
} else {
let norm = a / FixedTrait::new_unscaled(div, false);
let r8 = FixedTrait::new(596, true) * norm;
let r7 = (r8 + FixedTrait::new(8116, false)) * norm;
let r6 = (r7 + FixedTrait::new(49044, true)) * norm;
let r5 = (r6 + FixedTrait::new |
(172935, false)) * norm;
let r4 = (r5 + FixedTrait::new(394096, true)) * norm;
let r3 = (r4 + FixedTrait::new(608566, false)) * norm;
let r2 = (r3 + FixedTrait::new(655828, true)) * norm;
let r1 = (r2 + FixedTrait::new(534433, false)) * norm;
r1 + FixedTrait::new(224487, true) + FixedTrait::new_unscaled(msb, false)
}
}
fn log10(a: FP16x16) -> FP16x16 {
FixedTrait::new(19728, false) * log2(a)
}
fn lt(a: FP16x16, b: FP16x16) -> bool {
if a.sign != b.sign {
a.sign
} else {
(a.mag != b.mag) && ((a.mag < b.mag) ^ a.sign)
}
}
fn mul(a: FP16x16, b: FP16x16) -> FP16x16 {
let prod_u128 = integer::u32_wide_mul(a.mag, b.mag);
FixedTrait::new((prod_u128 / ONE.into()).try_into().unwrap(), a.sign ^ b.sign)
}
fn ne(a: @FP16x16, b: @FP16x16) -> bool {
(*a.mag != *b.mag) || (*a.sign != *b.sign)
}
fn neg(a: FP16x16) -> FP16x16 {
if a.mag == 0 {
a
} else if !a.sign {
FixedTrait::new(a.mag, !a.sign)
} else {
FixedTrait::new(a.mag, false)
}
}
fn pow(a: FP16x16, b: FP16x16) -> FP16x16 {
let (_, rem) = integer::u32_safe_divmod(b.mag, integer::u32_as_non_zero(ONE));
if (rem == 0) {
return pow_int(a, b.mag / ONE, b.sign);
}
exp(b * ln(a))
}
fn pow_int(a: FP16x16, b: u32, sign: bool) -> FP16x16 {
let mut x = a;
let mut n = b;
if sign {
x = FixedTrait::ONE() / x;
}
if n == 0 {
return FixedTrait::ONE();
}
let mut y = FixedTrait::ONE();
let two = integer::u32_as_non_zero(2);
while n > 1 {
let (div, rem) = integer::u32_safe_divmod(n, two);
if rem == 1 {
y = x * y;
}
x = x * x;
n = div;
};
x * y
}
fn rem(a: FP16x16, b: FP16x16) -> FP16x16 {
a - floor(a / b) * b
}
fn round(a: FP16x16) -> FP16x16 {
let (div, rem) = integer::u32_safe_divmod(a.mag, integer::u32_as_non_zero(ONE));
if (HALF <= rem) {
FixedTrait::new_unscaled(div |
+ 1, a.sign)
} else {
FixedTrait::new_unscaled(div, a.sign)
}
}
fn sqrt(a: FP16x16) -> FP16x16 {
assert(a.sign == false, 'must be positive');
let root = integer::u64_sqrt(a.mag.into() * ONE.into());
FixedTrait::new(root.into(), false)
}
fn sub(a: FP16x16, b: FP16x16) -> FP16x16 {
add(a, -b)
}
fn sign(a: FP16x16) -> FP16x16 {
if a.mag == 0 {
FixedTrait::new(0, false)
} else {
FixedTrait::new(ONE, a.sign)
}
}
mod tests {
use orion::numbers::fixed_point::implementations::fp16x16::helpers::{
assert_precise, assert_relative
};
use orion::numbers::fixed_point::implementations::fp16x16::math::trig::{PI, HALF_PI};
use super::{
FixedTrait, ONE, FP16x16, ceil, floor, sqrt, round, lut, pow, exp, exp2, exp2_int, ln, log2,
log10, eq, add, ne, HALF
}; |
fn test_into() {
let a = FixedTrait::<FP16x16>::new_unscaled(5, false);
assert(a.mag == 5 * ONE, 'invalid result');
} |
fn test_try_into_u128() {
let a = FixedTrait::<FP16x16>::new_unscaled(5, false);
assert(a.try_into().unwrap() == 5_u128, 'invalid result');
let b = FixedTrait::<FP16x16>::new(5 * ONE, false);
assert(b.try_into().unwrap() == 5_u128, 'invalid result');
let d = FixedTrait::<FP16x16>::new_unscaled(0, false);
assert(d.try_into().unwrap() == 0_u128, 'invalid result');
} |
fn test_negative_try_into_u128() {
let a = FixedTrait::<FP16x16>::new_unscaled(1, true);
let _a: u128 = a.try_into().unwrap();
} |
fn test_acos() {
let a = FixedTrait::<FP16x16>::ONE();
assert(a.acos().into() == 0, 'invalid one');
} |
fn test_asin() {
let a = FixedTrait::ONE();
assert_precise(a.asin(), HALF_PI.into(), 'invalid one', Option::None(()));
} |
fn test_atan() {
let a = FixedTrait::new(2 * ONE, false);
assert_relative(a.atan(), 72558, 'invalid two', Option::None(()));
} |
fn test_ceil() {
let a = FixedTrait::new(190054, false);
assert(ceil(a).mag == 3 * ONE, 'invalid pos decimal');
} |
fn test_floor() {
let a = FixedTrait::new(190054, false);
assert(floor(a).mag == 2 * ONE, 'invalid pos decimal');
} |
fn test_round() {
let a = FixedTrait::new(190054, false);
assert(round(a).mag == 3 * ONE, 'invalid pos decimal');
} |
fn test_sqrt_fail() {
let a = FixedTrait::new_unscaled(25, true);
sqrt(a);
} |
fn test_sqrt() {
let mut a = FixedTrait::new_unscaled(0, false);
assert(sqrt(a).mag == 0, 'invalid zero root');
a = FixedTrait::new_unscaled(25, false);
assert(sqrt(a).mag == 5 * ONE, 'invalid pos root');
} |
fn test_msb() {
let a = FixedTrait::<FP16x16>::new_unscaled(100, false);
let (msb, div) = lut::msb(a.mag / ONE);
assert(msb == 6, 'invalid msb');
assert(div == 64, 'invalid msb ceil');
} |
fn test_pow() {
let a = FixedTrait::new_unscaled(3, false);
let b = FixedTrait::new_unscaled(4, false);
assert(pow(a, b).mag == 81 * ONE, 'invalid pos base power');
} |
fn test_pow_frac() {
let a = FixedTrait::new_unscaled(3, false);
let b = FixedTrait::new(32768, false);
assert_relative(
pow(a, b), 113512, 'invalid pos base power', Option::None(())
);
} |
fn test_exp() {
let a = FixedTrait::new_unscaled(2, false);
assert_relative(exp(a), 484249, 'invalid exp of 2', Option::None(()));
} |
fn test_exp2() {
let a = FixedTrait::new_unscaled(5, false);
assert(exp2(a).mag == 2097152, 'invalid exp2 of 2');
} |
fn test_exp2_int() {
assert(exp2_int(5).into() == 2097152, 'invalid exp2 of 2');
} |
fn test_ln() {
let mut a = FixedTrait::new_unscaled(1, false);
assert(ln(a).mag == 0, 'invalid ln of 1');
a = FixedTrait::new(178145, false);
assert_relative(ln(a), ONE.into(), 'invalid ln of 2.7...', Option::None(()));
} |
fn test_log2() {
let mut a = FixedTrait::new_unscaled(32, false);
assert(log2(a) == FixedTrait::new_unscaled(5, false), 'invalid log2 32');
a = FixedTrait::new_unscaled(10, false);
assert_relative(log2(a), 217706, 'invalid log2 10', Option::None(()));
} |
fn test_log10() {
let a = FixedTrait::new_unscaled(100, false);
assert_relative(log10(a), 2 * ONE.into(), 'invalid log10', Option::None(()));
} |
fn test_eq() {
let a = FixedTrait::new_unscaled(42, false);
let b = FixedTrait::new_unscaled(42, false);
let c = eq(@a, @b);
assert(c, 'invalid result');
} |
fn test_ne() {
let a = FixedTrait::new_unscaled(42, false);
let b = FixedTrait::new_unscaled(42, false);
let c = ne(@a, @b);
assert(!c, 'invalid result');
} |
fn test_add() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(2, false);
assert(add(a, b) == FixedTrait::new_unscaled(3, false), 'invalid result');
} |
fn test_add_eq() {
let mut a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(2, false);
a += b;
assert(a == FixedTrait::<FP16x16>::new_unscaled(3, false), 'invalid result');
} |
fn test_sub() {
let a = FixedTrait::new_unscaled(5, false);
let b = FixedTrait::new_unscaled(2, false);
let c = a - b;
assert(c == FixedTrait::<FP16x16>::new_unscaled(3, false), 'false result invalid');
} |
fn test_sub_eq() {
let mut a = FixedTrait::new_unscaled(5, false);
let b = FixedTrait::new_unscaled(2, false);
a -= b;
assert(a == FixedTrait::<FP16x16>::new_unscaled(3, false), 'invalid result');
} |
fn test_mul_pos() {
let a = FP16x16 { mag: 190054, sign: false };
let b = FP16x16 { mag: 190054, sign: false };
let c = a * b;
assert(c.mag == 551155, 'invalid result');
} |
fn test_mul_neg() {
let a = FixedTrait::new_unscaled(5, false);
let b = FixedTrait::new_unscaled(2, true);
let c = a * b;
assert(c == FixedTrait::<FP16x16>::new_unscaled(10, true), 'invalid result');
} |
fn test_mul_eq() {
let mut a = FixedTrait::new_unscaled(5, false);
let b = FixedTrait::new_unscaled(2, true);
a *= b;
assert(a == FixedTrait::<FP16x16>::new_unscaled(10, true), 'invalid result');
} |
fn test_div() {
let a = FixedTrait::new_unscaled(10, false);
let b = FixedTrait::<FP16x16>::new(190054, false);
let c = a / b;
assert(c.mag == 225986, 'invalid pos decimal');
} |
fn test_le() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(0, false);
let c = FixedTrait::<FP16x16>::new_unscaled(1, true);
assert(a <= a, 'a <= a');
assert(!(a <= b), 'a <= b');
assert(!(a <= c), 'a <= c');
assert(b <= a, 'b <= a');
assert(b <= b, 'b <= b');
assert(!(b <= c), 'b <= c');
assert(c <= a, 'c <= a');
assert(c <= b, 'c <= b');
assert(c <= c, 'c <= c');
} |
fn test_lt() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(0, false);
let c = FixedTrait::<FP16x16>::new_unscaled(1, true);
assert(!(a < a), 'a < a');
assert(!(a < b), 'a < b');
assert(!(a < c), 'a < c');
assert(b < a, 'b < a');
assert(!(b < b), 'b < b');
assert(!(b < c), 'b < c');
assert(c < a, 'c < a');
assert(c < b, 'c < b');
assert(!(c < c), 'c < c');
} |
fn test_ge() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(0, false);
let c = FixedTrait::<FP16x16>::new_unscaled(1, true);
assert(a >= a, 'a >= a');
assert(a >= b, 'a >= b');
assert(a >= c, 'a >= c');
assert(!(b >= a), 'b >= a');
assert(b >= b, 'b >= b');
assert(b >= c, 'b >= c');
assert(!(c >= a), 'c >= a');
assert(!(c >= b), 'c >= b');
assert(c >= c, 'c >= c');
} |
fn test_gt() {
let a = FixedTrait::new_unscaled(1, false);
let b = FixedTrait::new_unscaled(0, false);
let c = FixedTrait::<FP16x16>::new_unscaled(1, true);
assert(!(a > a), 'a > a');
assert(a > b, 'a > b');
assert(a > c, 'a > c');
assert(!(b > a), 'b > a');
assert(!(b > b), 'b > b');
assert(b > c, 'b > c');
assert(!(c > a), 'c > a');
assert(!(c > b), 'c > b');
assert(!(c > c), 'c > c');
} |
fn test_cos() {
let a = FixedTrait::<FP16x16>::new(HALF_PI, false);
assert(a.cos().into() == 0, 'invalid half pi');
} |
fn test_sin() {
let a = FixedTrait::new(HALF_PI, false);
assert_precise(a.sin(), ONE.into(), 'invalid half pi', Option::None(()));
} |
fn test_tan() {
let a = FixedTrait::<FP16x16>::new(HALF_PI / 2, false);
assert(a.tan().mag == 65536, 'invalid quarter pi');
} |
fn test_sign() {
let a = FixedTrait::<FP16x16>::new(0, false);
assert(a.sign().mag == 0 && !a.sign().sign, 'invalid sign (0, true)');
let a = FixedTrait::<FP16x16>::new(HALF, true);
assert(a.sign().mag == ONE && a.sign().sign, 'invalid sign (HALF, true)');
let a = FixedTrait::<FP16x16>::new(HALF, false);
assert(a.sign().mag == ONE && !a.sign().sign, 'invalid sign (HALF, false)');
let a = FixedTrait::<FP16x16>::new(ONE, true);
assert(a.sign().mag == ONE && a.sign().sign, 'invalid sign (ONE, true)');
let a = FixedTrait::<FP16x16>::new(ONE, false);
assert(a.sign().mag == ONE && !a.sign().sign, 'invalid sign (ONE, false)');
} |
fn test_sign_fail() {
let a = FixedTrait::<FP16x16>::new(HALF, true);
assert(a.sign().mag != ONE && !a.sign().sign, 'invalid sign (HALF, true)');
}
} |
use orion::numbers::fixed_point::implementations::fp16x16::core::{ONE, FP16x16, FixedTrait};
use orion::numbers::fixed_point::implementations::fp16x16::math::lut::erf_lut;
const ERF_COMPUTATIONAL_ACCURACY: u32 = 100;
const ROUND_CHECK_NUMBER: u32 = 10;
// Values > MAX_ERF_NUMBER return 1
const MAX_ERF_NUMBER: u32 = 229376;
// Values <= ERF_TRUNCATION_NUMBER -> two decimal places, and values > ERF_TRUNCATION_NUMBER -> one decimal place
const ERF_TRUNCATION_NUMBER: u32 = 131072;
fn erf(x: FP16x16) -> FP16x16 {
// Lookup
// 1. if x.mag < 3.5 { lookup table }
// 2. else{ return 1}
let mut erf_value: u32 = 0;
if x.mag < MAX_ERF_NUMBER {
erf_value = erf_lut(x.mag);
} else {
erf_value = ONE;
}
FP16x16 { mag: erf_value, sign: x.sign }
}
|
use orion::numbers::fixed_point::implementations::fp16x16::core::{
HALF, ONE, TWO, FP16x16, FP16x16Impl, FP16x16Add, FP16x16AddEq, FP16x16Sub, FP16x16Mul,
FP16x16MulEq, FP16x16TryIntoU128, FP16x16PartialEq, FP16x16PartialOrd, FP16x16SubEq, FP16x16Neg,
FP16x16Div, FP16x16IntoFelt252, FixedTrait
};
fn cosh(a: FP16x16) -> FP16x16 {
let ea = a.exp();
(ea + (FixedTrait::ONE() / ea)) / FixedTrait::new(TWO, false)
}
fn sinh(a: FP16x16) -> FP16x16 {
let ea = a.exp();
(ea - (FixedTrait::ONE() / ea)) / FixedTrait::new(TWO, false)
}
fn tanh(a: FP16x16) -> FP16x16 {
let ea = a.exp();
let ea_i = FixedTrait::ONE() / ea;
(ea - ea_i) / (ea + ea_i)
}
fn acosh(a: FP16x16) -> FP16x16 {
let root = (a * a - FixedTrait::ONE()).sqrt();
(a + root).ln()
}
fn asinh(a: FP16x16) -> FP16x16 {
let root = (a * a + FixedTrait::ONE()).sqrt();
(a + root).ln()
}
fn atanh(a: FP16x16) -> FP16x16 {
let one = FixedTrait::ONE();
let ln_arg = (one + a) / (one - a);
ln_arg.ln() / FixedTrait::new(TWO, false)
}
mod tests {
use orion::numbers::fixed_point::implementations::fp16x16::helpers::assert_precise;
use super::{FixedTrait, TWO, cosh, ONE, sinh, tanh, acosh, asinh, atanh, HALF}; |
fn test_cosh() {
let a = FixedTrait::new(TWO, false);
assert_precise(cosh(a), 246550, 'invalid two', Option::None(()));
let a = FixedTrait::ONE();
assert_precise(cosh(a), 101127, 'invalid one', Option::None(()));
let a = FixedTrait::ZERO();
assert_precise(cosh(a), ONE.into(), 'invalid zero', Option::None(()));
let a = FixedTrait::ONE();
assert_precise(cosh(a), 101127, 'invalid neg one', Option::None(()));
let a = FixedTrait::new(TWO, true);
assert_precise(cosh(a), 246568, 'invalid neg two', Option::None(()));
} |
fn test_sinh() {
let a = FixedTrait::new(TWO, false);
assert_precise(sinh(a), 237681, 'invalid two', Option::None(()));
let a = FixedTrait::ONE();
assert_precise(sinh(a), 77018, 'invalid one', Option::None(()));
let a = FixedTrait::ZERO();
assert(sinh(a).into() == 0, 'invalid zero');
let a = FixedTrait::new(ONE, true);
assert_precise(sinh(a), -77018, 'invalid neg one', Option::None(()));
let a = FixedTrait::new(TWO, true);
assert_precise(sinh(a), -237699, 'invalid neg two', Option::None(()));
} |
fn test_tanh() {
let a = FixedTrait::new(TWO, false);
assert_precise(tanh(a), 63179, 'invalid two', Option::None(()));
let a = FixedTrait::ONE();
assert_precise(tanh(a), 49912, 'invalid one', Option::None(()));
let a = FixedTrait::ZERO();
assert(tanh(a).into() == 0, 'invalid zero');
let a = FixedTrait::new(ONE, true);
assert_precise(tanh(a), -49912, 'invalid neg one', Option::None(()));
let a = FixedTrait::new(TWO, true);
assert_precise(tanh(a), -63179, 'invalid neg two', Option::None(()));
} |
fn test_acosh() {
let a = FixedTrait::new(246559, false);
assert_precise(acosh(a), 131072, 'invalid two', Option::None(()));
let a = FixedTrait::new(101127, false);
assert_precise(acosh(a), ONE.into(), 'invalid one', Option::None(()));
let a = FixedTrait::ONE();
assert(acosh(a).into() == 0, 'invalid zero');
} |
fn test_asinh() {
let a = FixedTrait::new(237690, false);
assert_precise(asinh(a), 131072, 'invalid two', Option::None(()));
let a = FixedTrait::new(77018, false);
assert_precise(asinh(a), ONE.into(), 'invalid one', Option::None(()));
let a = FixedTrait::ZERO();
assert(asinh(a).into() == 0, 'invalid zero');
let a = FixedTrait::new(77018, true);
assert_precise(asinh(a), -ONE.into(), 'invalid neg one', Option::None(()));
let a = FixedTrait::new(237690, true);
assert_precise(asinh(a), -131017, 'invalid neg two', Option::None(()));
} |