repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
mitodl/django-server-status
server_status/views.py
get_redis_info
def get_redis_info(): """Check Redis connection.""" from kombu.utils.url import _parse_url as parse_redis_url from redis import ( StrictRedis, ConnectionError as RedisConnectionError, ResponseError as RedisResponseError, ) for conf_name in ('REDIS_URL', 'BROKER_URL', 'CELERY_BROKER_URL'): if hasattr(settings, conf_name): url = getattr(settings, conf_name) if url.startswith('redis://'): break else: log.error("No redis connection info found in settings.") return {"status": NO_CONFIG} _, host, port, _, password, database, _ = parse_redis_url(url) start = datetime.now() try: rdb = StrictRedis( host=host, port=port, db=database, password=password, socket_timeout=TIMEOUT_SECONDS, ) info = rdb.info() except (RedisConnectionError, TypeError) as ex: log.error("Error making Redis connection: %s", ex.args) return {"status": DOWN} except RedisResponseError as ex: log.error("Bad Redis response: %s", ex.args) return {"status": DOWN, "message": "auth error"} micro = (datetime.now() - start).microseconds del rdb # the redis package does not support Redis's QUIT. ret = { "status": UP, "response_microseconds": micro, } fields = ("uptime_in_seconds", "used_memory", "used_memory_peak") ret.update({x: info[x] for x in fields}) return ret
python
def get_redis_info(): """Check Redis connection.""" from kombu.utils.url import _parse_url as parse_redis_url from redis import ( StrictRedis, ConnectionError as RedisConnectionError, ResponseError as RedisResponseError, ) for conf_name in ('REDIS_URL', 'BROKER_URL', 'CELERY_BROKER_URL'): if hasattr(settings, conf_name): url = getattr(settings, conf_name) if url.startswith('redis://'): break else: log.error("No redis connection info found in settings.") return {"status": NO_CONFIG} _, host, port, _, password, database, _ = parse_redis_url(url) start = datetime.now() try: rdb = StrictRedis( host=host, port=port, db=database, password=password, socket_timeout=TIMEOUT_SECONDS, ) info = rdb.info() except (RedisConnectionError, TypeError) as ex: log.error("Error making Redis connection: %s", ex.args) return {"status": DOWN} except RedisResponseError as ex: log.error("Bad Redis response: %s", ex.args) return {"status": DOWN, "message": "auth error"} micro = (datetime.now() - start).microseconds del rdb # the redis package does not support Redis's QUIT. ret = { "status": UP, "response_microseconds": micro, } fields = ("uptime_in_seconds", "used_memory", "used_memory_peak") ret.update({x: info[x] for x in fields}) return ret
[ "def", "get_redis_info", "(", ")", ":", "from", "kombu", ".", "utils", ".", "url", "import", "_parse_url", "as", "parse_redis_url", "from", "redis", "import", "(", "StrictRedis", ",", "ConnectionError", "as", "RedisConnectionError", ",", "ResponseError", "as", "RedisResponseError", ",", ")", "for", "conf_name", "in", "(", "'REDIS_URL'", ",", "'BROKER_URL'", ",", "'CELERY_BROKER_URL'", ")", ":", "if", "hasattr", "(", "settings", ",", "conf_name", ")", ":", "url", "=", "getattr", "(", "settings", ",", "conf_name", ")", "if", "url", ".", "startswith", "(", "'redis://'", ")", ":", "break", "else", ":", "log", ".", "error", "(", "\"No redis connection info found in settings.\"", ")", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "_", ",", "host", ",", "port", ",", "_", ",", "password", ",", "database", ",", "_", "=", "parse_redis_url", "(", "url", ")", "start", "=", "datetime", ".", "now", "(", ")", "try", ":", "rdb", "=", "StrictRedis", "(", "host", "=", "host", ",", "port", "=", "port", ",", "db", "=", "database", ",", "password", "=", "password", ",", "socket_timeout", "=", "TIMEOUT_SECONDS", ",", ")", "info", "=", "rdb", ".", "info", "(", ")", "except", "(", "RedisConnectionError", ",", "TypeError", ")", "as", "ex", ":", "log", ".", "error", "(", "\"Error making Redis connection: %s\"", ",", "ex", ".", "args", ")", "return", "{", "\"status\"", ":", "DOWN", "}", "except", "RedisResponseError", "as", "ex", ":", "log", ".", "error", "(", "\"Bad Redis response: %s\"", ",", "ex", ".", "args", ")", "return", "{", "\"status\"", ":", "DOWN", ",", "\"message\"", ":", "\"auth error\"", "}", "micro", "=", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "del", "rdb", "# the redis package does not support Redis's QUIT.", "ret", "=", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "micro", ",", "}", "fields", "=", "(", "\"uptime_in_seconds\"", ",", "\"used_memory\"", ",", "\"used_memory_peak\"", ")", "ret", ".", "update", "(", "{", "x", ":", "info", "[", "x", "]", "for", "x", "in", "fields", "}", ")", "return", "ret" ]
Check Redis connection.
[ "Check", "Redis", "connection", "." ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L64-L102
train
mitodl/django-server-status
server_status/views.py
get_elasticsearch_info
def get_elasticsearch_info(): """Check Elasticsearch connection.""" from elasticsearch import ( Elasticsearch, ConnectionError as ESConnectionError ) if hasattr(settings, 'ELASTICSEARCH_URL'): url = settings.ELASTICSEARCH_URL else: return {"status": NO_CONFIG} start = datetime.now() try: search = Elasticsearch(url, request_timeout=TIMEOUT_SECONDS) search.info() except ESConnectionError: return {"status": DOWN} del search # The elasticsearch library has no "close" or "disconnect." micro = (datetime.now() - start).microseconds return { "status": UP, "response_microseconds": micro, }
python
def get_elasticsearch_info(): """Check Elasticsearch connection.""" from elasticsearch import ( Elasticsearch, ConnectionError as ESConnectionError ) if hasattr(settings, 'ELASTICSEARCH_URL'): url = settings.ELASTICSEARCH_URL else: return {"status": NO_CONFIG} start = datetime.now() try: search = Elasticsearch(url, request_timeout=TIMEOUT_SECONDS) search.info() except ESConnectionError: return {"status": DOWN} del search # The elasticsearch library has no "close" or "disconnect." micro = (datetime.now() - start).microseconds return { "status": UP, "response_microseconds": micro, }
[ "def", "get_elasticsearch_info", "(", ")", ":", "from", "elasticsearch", "import", "(", "Elasticsearch", ",", "ConnectionError", "as", "ESConnectionError", ")", "if", "hasattr", "(", "settings", ",", "'ELASTICSEARCH_URL'", ")", ":", "url", "=", "settings", ".", "ELASTICSEARCH_URL", "else", ":", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "start", "=", "datetime", ".", "now", "(", ")", "try", ":", "search", "=", "Elasticsearch", "(", "url", ",", "request_timeout", "=", "TIMEOUT_SECONDS", ")", "search", ".", "info", "(", ")", "except", "ESConnectionError", ":", "return", "{", "\"status\"", ":", "DOWN", "}", "del", "search", "# The elasticsearch library has no \"close\" or \"disconnect.\"", "micro", "=", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "return", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "micro", ",", "}" ]
Check Elasticsearch connection.
[ "Check", "Elasticsearch", "connection", "." ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L105-L125
train
mitodl/django-server-status
server_status/views.py
get_celery_info
def get_celery_info(): """ Check celery availability """ import celery if not getattr(settings, 'USE_CELERY', False): log.error("No celery config found. Set USE_CELERY in settings to enable.") return {"status": NO_CONFIG} start = datetime.now() try: # pylint: disable=no-member app = celery.Celery('tasks') app.config_from_object('django.conf:settings', namespace='CELERY') # Make sure celery is connected with max_retries=1 # and not the default of max_retries=None if the connection # is made lazily app.connection().ensure_connection(max_retries=1) celery_stats = celery.task.control.inspect().stats() if not celery_stats: log.error("No running Celery workers were found.") return {"status": DOWN, "message": "No running Celery workers"} except Exception as exp: # pylint: disable=broad-except log.error("Error connecting to the backend: %s", exp) return {"status": DOWN, "message": "Error connecting to the backend"} return {"status": UP, "response_microseconds": (datetime.now() - start).microseconds}
python
def get_celery_info(): """ Check celery availability """ import celery if not getattr(settings, 'USE_CELERY', False): log.error("No celery config found. Set USE_CELERY in settings to enable.") return {"status": NO_CONFIG} start = datetime.now() try: # pylint: disable=no-member app = celery.Celery('tasks') app.config_from_object('django.conf:settings', namespace='CELERY') # Make sure celery is connected with max_retries=1 # and not the default of max_retries=None if the connection # is made lazily app.connection().ensure_connection(max_retries=1) celery_stats = celery.task.control.inspect().stats() if not celery_stats: log.error("No running Celery workers were found.") return {"status": DOWN, "message": "No running Celery workers"} except Exception as exp: # pylint: disable=broad-except log.error("Error connecting to the backend: %s", exp) return {"status": DOWN, "message": "Error connecting to the backend"} return {"status": UP, "response_microseconds": (datetime.now() - start).microseconds}
[ "def", "get_celery_info", "(", ")", ":", "import", "celery", "if", "not", "getattr", "(", "settings", ",", "'USE_CELERY'", ",", "False", ")", ":", "log", ".", "error", "(", "\"No celery config found. Set USE_CELERY in settings to enable.\"", ")", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "start", "=", "datetime", ".", "now", "(", ")", "try", ":", "# pylint: disable=no-member", "app", "=", "celery", ".", "Celery", "(", "'tasks'", ")", "app", ".", "config_from_object", "(", "'django.conf:settings'", ",", "namespace", "=", "'CELERY'", ")", "# Make sure celery is connected with max_retries=1", "# and not the default of max_retries=None if the connection", "# is made lazily", "app", ".", "connection", "(", ")", ".", "ensure_connection", "(", "max_retries", "=", "1", ")", "celery_stats", "=", "celery", ".", "task", ".", "control", ".", "inspect", "(", ")", ".", "stats", "(", ")", "if", "not", "celery_stats", ":", "log", ".", "error", "(", "\"No running Celery workers were found.\"", ")", "return", "{", "\"status\"", ":", "DOWN", ",", "\"message\"", ":", "\"No running Celery workers\"", "}", "except", "Exception", "as", "exp", ":", "# pylint: disable=broad-except", "log", ".", "error", "(", "\"Error connecting to the backend: %s\"", ",", "exp", ")", "return", "{", "\"status\"", ":", "DOWN", ",", "\"message\"", ":", "\"Error connecting to the backend\"", "}", "return", "{", "\"status\"", ":", "UP", ",", "\"response_microseconds\"", ":", "(", "datetime", ".", "now", "(", ")", "-", "start", ")", ".", "microseconds", "}" ]
Check celery availability
[ "Check", "celery", "availability" ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L128-L153
train
mitodl/django-server-status
server_status/views.py
get_certificate_info
def get_certificate_info(): """ checks app certificate expiry status """ if hasattr(settings, 'MIT_WS_CERTIFICATE') and settings.MIT_WS_CERTIFICATE: mit_ws_certificate = settings.MIT_WS_CERTIFICATE else: return {"status": NO_CONFIG} app_cert = OpenSSL.crypto.load_certificate( OpenSSL.crypto.FILETYPE_PEM, ( mit_ws_certificate if not isinstance(mit_ws_certificate, str) else mit_ws_certificate.encode().decode('unicode_escape').encode() ) ) app_cert_expiration = datetime.strptime( app_cert.get_notAfter().decode('ascii'), '%Y%m%d%H%M%SZ' ) date_delta = app_cert_expiration - datetime.now() # if more then 30 days left in expiry of certificate then app is safe return { 'app_cert_expires': app_cert_expiration.strftime('%Y-%m-%dT%H:%M:%S'), 'status': UP if date_delta.days > 30 else DOWN }
python
def get_certificate_info(): """ checks app certificate expiry status """ if hasattr(settings, 'MIT_WS_CERTIFICATE') and settings.MIT_WS_CERTIFICATE: mit_ws_certificate = settings.MIT_WS_CERTIFICATE else: return {"status": NO_CONFIG} app_cert = OpenSSL.crypto.load_certificate( OpenSSL.crypto.FILETYPE_PEM, ( mit_ws_certificate if not isinstance(mit_ws_certificate, str) else mit_ws_certificate.encode().decode('unicode_escape').encode() ) ) app_cert_expiration = datetime.strptime( app_cert.get_notAfter().decode('ascii'), '%Y%m%d%H%M%SZ' ) date_delta = app_cert_expiration - datetime.now() # if more then 30 days left in expiry of certificate then app is safe return { 'app_cert_expires': app_cert_expiration.strftime('%Y-%m-%dT%H:%M:%S'), 'status': UP if date_delta.days > 30 else DOWN }
[ "def", "get_certificate_info", "(", ")", ":", "if", "hasattr", "(", "settings", ",", "'MIT_WS_CERTIFICATE'", ")", "and", "settings", ".", "MIT_WS_CERTIFICATE", ":", "mit_ws_certificate", "=", "settings", ".", "MIT_WS_CERTIFICATE", "else", ":", "return", "{", "\"status\"", ":", "NO_CONFIG", "}", "app_cert", "=", "OpenSSL", ".", "crypto", ".", "load_certificate", "(", "OpenSSL", ".", "crypto", ".", "FILETYPE_PEM", ",", "(", "mit_ws_certificate", "if", "not", "isinstance", "(", "mit_ws_certificate", ",", "str", ")", "else", "mit_ws_certificate", ".", "encode", "(", ")", ".", "decode", "(", "'unicode_escape'", ")", ".", "encode", "(", ")", ")", ")", "app_cert_expiration", "=", "datetime", ".", "strptime", "(", "app_cert", ".", "get_notAfter", "(", ")", ".", "decode", "(", "'ascii'", ")", ",", "'%Y%m%d%H%M%SZ'", ")", "date_delta", "=", "app_cert_expiration", "-", "datetime", ".", "now", "(", ")", "# if more then 30 days left in expiry of certificate then app is safe", "return", "{", "'app_cert_expires'", ":", "app_cert_expiration", ".", "strftime", "(", "'%Y-%m-%dT%H:%M:%S'", ")", ",", "'status'", ":", "UP", "if", "date_delta", ".", "days", ">", "30", "else", "DOWN", "}" ]
checks app certificate expiry status
[ "checks", "app", "certificate", "expiry", "status" ]
99bd29343138f94a08718fdbd9285e551751777b
https://github.com/mitodl/django-server-status/blob/99bd29343138f94a08718fdbd9285e551751777b/server_status/views.py#L156-L182
train
bitcaster-io/bitcaster
src/telebot/__init__.py
TeleBot._start
def _start(self): '''Requests bot information based on current api_key, and sets self.whoami to dictionary with username, first_name, and id of the configured bot. ''' if self.whoami is None: me = self.get_me() if me.get('ok', False): self.whoami = me['result'] else: raise ValueError('Bot Cannot request information, check ' 'api_key')
python
def _start(self): '''Requests bot information based on current api_key, and sets self.whoami to dictionary with username, first_name, and id of the configured bot. ''' if self.whoami is None: me = self.get_me() if me.get('ok', False): self.whoami = me['result'] else: raise ValueError('Bot Cannot request information, check ' 'api_key')
[ "def", "_start", "(", "self", ")", ":", "if", "self", ".", "whoami", "is", "None", ":", "me", "=", "self", ".", "get_me", "(", ")", "if", "me", ".", "get", "(", "'ok'", ",", "False", ")", ":", "self", ".", "whoami", "=", "me", "[", "'result'", "]", "else", ":", "raise", "ValueError", "(", "'Bot Cannot request information, check '", "'api_key'", ")" ]
Requests bot information based on current api_key, and sets self.whoami to dictionary with username, first_name, and id of the configured bot.
[ "Requests", "bot", "information", "based", "on", "current", "api_key", "and", "sets", "self", ".", "whoami", "to", "dictionary", "with", "username", "first_name", "and", "id", "of", "the", "configured", "bot", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/telebot/__init__.py#L74-L86
train
bitcaster-io/bitcaster
src/telebot/__init__.py
TeleBot.poll
def poll(self, offset=None, poll_timeout=600, cooldown=60, debug=False): '''These should also be in the config section, but some here for overrides ''' if self.config['api_key'] is None: raise ValueError('config api_key is undefined') if offset or self.config.get('offset', None): self.offset = offset or self.config.get('offset', None) self._start() while True: try: response = self.get_updates(poll_timeout, self.offset) if response.get('ok', False) is False: raise ValueError(response['error']) else: self.process_updates(response) except Exception as e: print('Error: Unknown Exception') print(e) if debug: raise e else: time.sleep(cooldown)
python
def poll(self, offset=None, poll_timeout=600, cooldown=60, debug=False): '''These should also be in the config section, but some here for overrides ''' if self.config['api_key'] is None: raise ValueError('config api_key is undefined') if offset or self.config.get('offset', None): self.offset = offset or self.config.get('offset', None) self._start() while True: try: response = self.get_updates(poll_timeout, self.offset) if response.get('ok', False) is False: raise ValueError(response['error']) else: self.process_updates(response) except Exception as e: print('Error: Unknown Exception') print(e) if debug: raise e else: time.sleep(cooldown)
[ "def", "poll", "(", "self", ",", "offset", "=", "None", ",", "poll_timeout", "=", "600", ",", "cooldown", "=", "60", ",", "debug", "=", "False", ")", ":", "if", "self", ".", "config", "[", "'api_key'", "]", "is", "None", ":", "raise", "ValueError", "(", "'config api_key is undefined'", ")", "if", "offset", "or", "self", ".", "config", ".", "get", "(", "'offset'", ",", "None", ")", ":", "self", ".", "offset", "=", "offset", "or", "self", ".", "config", ".", "get", "(", "'offset'", ",", "None", ")", "self", ".", "_start", "(", ")", "while", "True", ":", "try", ":", "response", "=", "self", ".", "get_updates", "(", "poll_timeout", ",", "self", ".", "offset", ")", "if", "response", ".", "get", "(", "'ok'", ",", "False", ")", "is", "False", ":", "raise", "ValueError", "(", "response", "[", "'error'", "]", ")", "else", ":", "self", ".", "process_updates", "(", "response", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Error: Unknown Exception'", ")", "print", "(", "e", ")", "if", "debug", ":", "raise", "e", "else", ":", "time", ".", "sleep", "(", "cooldown", ")" ]
These should also be in the config section, but some here for overrides
[ "These", "should", "also", "be", "in", "the", "config", "section", "but", "some", "here", "for", "overrides" ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/telebot/__init__.py#L88-L114
train
bitcaster-io/bitcaster
src/bitcaster/utils/language.py
get_attr
def get_attr(obj, attr, default=None): """Recursive get object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1 """ if '.' not in attr: return getattr(obj, attr, default) else: L = attr.split('.') return get_attr(getattr(obj, L[0], default), '.'.join(L[1:]), default)
python
def get_attr(obj, attr, default=None): """Recursive get object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1 """ if '.' not in attr: return getattr(obj, attr, default) else: L = attr.split('.') return get_attr(getattr(obj, L[0], default), '.'.join(L[1:]), default)
[ "def", "get_attr", "(", "obj", ",", "attr", ",", "default", "=", "None", ")", ":", "if", "'.'", "not", "in", "attr", ":", "return", "getattr", "(", "obj", ",", "attr", ",", "default", ")", "else", ":", "L", "=", "attr", ".", "split", "(", "'.'", ")", "return", "get_attr", "(", "getattr", "(", "obj", ",", "L", "[", "0", "]", ",", "default", ")", ",", "'.'", ".", "join", "(", "L", "[", "1", ":", "]", ")", ",", "default", ")" ]
Recursive get object's attribute. May use dot notation. >>> class C(object): pass >>> a = C() >>> a.b = C() >>> a.b.c = 4 >>> get_attr(a, 'b.c') 4 >>> get_attr(a, 'b.c.y', None) >>> get_attr(a, 'b.c.y', 1) 1
[ "Recursive", "get", "object", "s", "attribute", ".", "May", "use", "dot", "notation", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/utils/language.py#L32-L51
train
bitcaster-io/bitcaster
src/bitcaster/web/templatetags/bc_assets.py
asset
def asset(path): """ Join the given path with the STATIC_URL setting. Usage:: {% static path [as varname] %} Examples:: {% static "myapp/css/base.css" %} {% static variable_with_path %} {% static "myapp/css/base.css" as admin_base_css %} {% static variable_with_path as varname %} """ commit = bitcaster.get_full_version() return mark_safe('{0}?{1}'.format(_static(path), commit))
python
def asset(path): """ Join the given path with the STATIC_URL setting. Usage:: {% static path [as varname] %} Examples:: {% static "myapp/css/base.css" %} {% static variable_with_path %} {% static "myapp/css/base.css" as admin_base_css %} {% static variable_with_path as varname %} """ commit = bitcaster.get_full_version() return mark_safe('{0}?{1}'.format(_static(path), commit))
[ "def", "asset", "(", "path", ")", ":", "commit", "=", "bitcaster", ".", "get_full_version", "(", ")", "return", "mark_safe", "(", "'{0}?{1}'", ".", "format", "(", "_static", "(", "path", ")", ",", "commit", ")", ")" ]
Join the given path with the STATIC_URL setting. Usage:: {% static path [as varname] %} Examples:: {% static "myapp/css/base.css" %} {% static variable_with_path %} {% static "myapp/css/base.css" as admin_base_css %} {% static variable_with_path as varname %}
[ "Join", "the", "given", "path", "with", "the", "STATIC_URL", "setting", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/web/templatetags/bc_assets.py#L19-L35
train
bitcaster-io/bitcaster
src/bitcaster/utils/wsgi.py
get_client_ip
def get_client_ip(request): """ Naively yank the first IP address in an X-Forwarded-For header and assume this is correct. Note: Don't use this in security sensitive situations since this value may be forged from a client. """ try: return request.META['HTTP_X_FORWARDED_FOR'].split(',')[0].strip() except (KeyError, IndexError): return request.META.get('REMOTE_ADDR')
python
def get_client_ip(request): """ Naively yank the first IP address in an X-Forwarded-For header and assume this is correct. Note: Don't use this in security sensitive situations since this value may be forged from a client. """ try: return request.META['HTTP_X_FORWARDED_FOR'].split(',')[0].strip() except (KeyError, IndexError): return request.META.get('REMOTE_ADDR')
[ "def", "get_client_ip", "(", "request", ")", ":", "try", ":", "return", "request", ".", "META", "[", "'HTTP_X_FORWARDED_FOR'", "]", ".", "split", "(", "','", ")", "[", "0", "]", ".", "strip", "(", ")", "except", "(", "KeyError", ",", "IndexError", ")", ":", "return", "request", ".", "META", ".", "get", "(", "'REMOTE_ADDR'", ")" ]
Naively yank the first IP address in an X-Forwarded-For header and assume this is correct. Note: Don't use this in security sensitive situations since this value may be forged from a client.
[ "Naively", "yank", "the", "first", "IP", "address", "in", "an", "X", "-", "Forwarded", "-", "For", "header", "and", "assume", "this", "is", "correct", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/utils/wsgi.py#L6-L17
train
bitcaster-io/bitcaster
src/tweepy/api.py
API._pack_image
def _pack_image(filename, max_size, form_field='image', f=None): """Pack image from file into multipart-formdata post body""" # image must be less than 700kb in size if f is None: try: if os.path.getsize(filename) > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) except os.error as e: raise TweepError('Unable to access file: %s' % e.strerror) # build the mulitpart-formdata body fp = open(filename, 'rb') else: f.seek(0, 2) # Seek to end of file if f.tell() > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) f.seek(0) # Reset to beginning of file fp = f # image must be gif, jpeg, or png file_type = mimetypes.guess_type(filename) if file_type is None: raise TweepError('Could not determine file type') file_type = file_type[0] if file_type not in ['image/gif', 'image/jpeg', 'image/png']: raise TweepError('Invalid file type for image: %s' % file_type) if isinstance(filename, six.text_type): filename = filename.encode('utf-8') BOUNDARY = b'Tw3ePy' body = [] body.append(b'--' + BOUNDARY) body.append('Content-Disposition: form-data; name="{0}";' ' filename="{1}"'.format(form_field, filename) .encode('utf-8')) body.append('Content-Type: {0}'.format(file_type).encode('utf-8')) body.append(b'') body.append(fp.read()) body.append(b'--' + BOUNDARY + b'--') body.append(b'') fp.close() body = b'\r\n'.join(body) # build headers headers = { 'Content-Type': 'multipart/form-data; boundary=Tw3ePy', 'Content-Length': str(len(body)) } return headers, body
python
def _pack_image(filename, max_size, form_field='image', f=None): """Pack image from file into multipart-formdata post body""" # image must be less than 700kb in size if f is None: try: if os.path.getsize(filename) > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) except os.error as e: raise TweepError('Unable to access file: %s' % e.strerror) # build the mulitpart-formdata body fp = open(filename, 'rb') else: f.seek(0, 2) # Seek to end of file if f.tell() > (max_size * 1024): raise TweepError('File is too big, must be less than %skb.' % max_size) f.seek(0) # Reset to beginning of file fp = f # image must be gif, jpeg, or png file_type = mimetypes.guess_type(filename) if file_type is None: raise TweepError('Could not determine file type') file_type = file_type[0] if file_type not in ['image/gif', 'image/jpeg', 'image/png']: raise TweepError('Invalid file type for image: %s' % file_type) if isinstance(filename, six.text_type): filename = filename.encode('utf-8') BOUNDARY = b'Tw3ePy' body = [] body.append(b'--' + BOUNDARY) body.append('Content-Disposition: form-data; name="{0}";' ' filename="{1}"'.format(form_field, filename) .encode('utf-8')) body.append('Content-Type: {0}'.format(file_type).encode('utf-8')) body.append(b'') body.append(fp.read()) body.append(b'--' + BOUNDARY + b'--') body.append(b'') fp.close() body = b'\r\n'.join(body) # build headers headers = { 'Content-Type': 'multipart/form-data; boundary=Tw3ePy', 'Content-Length': str(len(body)) } return headers, body
[ "def", "_pack_image", "(", "filename", ",", "max_size", ",", "form_field", "=", "'image'", ",", "f", "=", "None", ")", ":", "# image must be less than 700kb in size", "if", "f", "is", "None", ":", "try", ":", "if", "os", ".", "path", ".", "getsize", "(", "filename", ")", ">", "(", "max_size", "*", "1024", ")", ":", "raise", "TweepError", "(", "'File is too big, must be less than %skb.'", "%", "max_size", ")", "except", "os", ".", "error", "as", "e", ":", "raise", "TweepError", "(", "'Unable to access file: %s'", "%", "e", ".", "strerror", ")", "# build the mulitpart-formdata body", "fp", "=", "open", "(", "filename", ",", "'rb'", ")", "else", ":", "f", ".", "seek", "(", "0", ",", "2", ")", "# Seek to end of file", "if", "f", ".", "tell", "(", ")", ">", "(", "max_size", "*", "1024", ")", ":", "raise", "TweepError", "(", "'File is too big, must be less than %skb.'", "%", "max_size", ")", "f", ".", "seek", "(", "0", ")", "# Reset to beginning of file", "fp", "=", "f", "# image must be gif, jpeg, or png", "file_type", "=", "mimetypes", ".", "guess_type", "(", "filename", ")", "if", "file_type", "is", "None", ":", "raise", "TweepError", "(", "'Could not determine file type'", ")", "file_type", "=", "file_type", "[", "0", "]", "if", "file_type", "not", "in", "[", "'image/gif'", ",", "'image/jpeg'", ",", "'image/png'", "]", ":", "raise", "TweepError", "(", "'Invalid file type for image: %s'", "%", "file_type", ")", "if", "isinstance", "(", "filename", ",", "six", ".", "text_type", ")", ":", "filename", "=", "filename", ".", "encode", "(", "'utf-8'", ")", "BOUNDARY", "=", "b'Tw3ePy'", "body", "=", "[", "]", "body", ".", "append", "(", "b'--'", "+", "BOUNDARY", ")", "body", ".", "append", "(", "'Content-Disposition: form-data; name=\"{0}\";'", "' filename=\"{1}\"'", ".", "format", "(", "form_field", ",", "filename", ")", ".", "encode", "(", "'utf-8'", ")", ")", "body", ".", "append", "(", "'Content-Type: {0}'", ".", "format", "(", "file_type", ")", ".", "encode", "(", "'utf-8'", ")", ")", "body", ".", "append", "(", "b''", ")", "body", ".", "append", "(", "fp", ".", "read", "(", ")", ")", "body", ".", "append", "(", "b'--'", "+", "BOUNDARY", "+", "b'--'", ")", "body", ".", "append", "(", "b''", ")", "fp", ".", "close", "(", ")", "body", "=", "b'\\r\\n'", ".", "join", "(", "body", ")", "# build headers", "headers", "=", "{", "'Content-Type'", ":", "'multipart/form-data; boundary=Tw3ePy'", ",", "'Content-Length'", ":", "str", "(", "len", "(", "body", ")", ")", "}", "return", "headers", ",", "body" ]
Pack image from file into multipart-formdata post body
[ "Pack", "image", "from", "file", "into", "multipart", "-", "formdata", "post", "body" ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/tweepy/api.py#L1344-L1394
train
bitcaster-io/bitcaster
src/bitcaster/web/templatetags/bitcaster.py
channel_submit_row
def channel_submit_row(context): """ Display the row of buttons for delete and save. """ change = context['change'] is_popup = context['is_popup'] save_as = context['save_as'] show_save = context.get('show_save', True) show_save_and_continue = context.get('show_save_and_continue', True) can_delete = context['has_delete_permission'] can_add = context['has_add_permission'] can_change = context['has_change_permission'] ctx = Context(context) ctx.update({ 'show_delete_link': (not is_popup and can_delete and change and context.get('show_delete', True) ), 'show_save_as_new': not is_popup and change and save_as, 'show_save_and_add_another': (can_add and not is_popup and (not save_as or context['add']) ), 'show_save_and_continue': (not is_popup and can_change and show_save_and_continue), 'show_save': show_save, }) return ctx
python
def channel_submit_row(context): """ Display the row of buttons for delete and save. """ change = context['change'] is_popup = context['is_popup'] save_as = context['save_as'] show_save = context.get('show_save', True) show_save_and_continue = context.get('show_save_and_continue', True) can_delete = context['has_delete_permission'] can_add = context['has_add_permission'] can_change = context['has_change_permission'] ctx = Context(context) ctx.update({ 'show_delete_link': (not is_popup and can_delete and change and context.get('show_delete', True) ), 'show_save_as_new': not is_popup and change and save_as, 'show_save_and_add_another': (can_add and not is_popup and (not save_as or context['add']) ), 'show_save_and_continue': (not is_popup and can_change and show_save_and_continue), 'show_save': show_save, }) return ctx
[ "def", "channel_submit_row", "(", "context", ")", ":", "change", "=", "context", "[", "'change'", "]", "is_popup", "=", "context", "[", "'is_popup'", "]", "save_as", "=", "context", "[", "'save_as'", "]", "show_save", "=", "context", ".", "get", "(", "'show_save'", ",", "True", ")", "show_save_and_continue", "=", "context", ".", "get", "(", "'show_save_and_continue'", ",", "True", ")", "can_delete", "=", "context", "[", "'has_delete_permission'", "]", "can_add", "=", "context", "[", "'has_add_permission'", "]", "can_change", "=", "context", "[", "'has_change_permission'", "]", "ctx", "=", "Context", "(", "context", ")", "ctx", ".", "update", "(", "{", "'show_delete_link'", ":", "(", "not", "is_popup", "and", "can_delete", "and", "change", "and", "context", ".", "get", "(", "'show_delete'", ",", "True", ")", ")", ",", "'show_save_as_new'", ":", "not", "is_popup", "and", "change", "and", "save_as", ",", "'show_save_and_add_another'", ":", "(", "can_add", "and", "not", "is_popup", "and", "(", "not", "save_as", "or", "context", "[", "'add'", "]", ")", ")", ",", "'show_save_and_continue'", ":", "(", "not", "is_popup", "and", "can_change", "and", "show_save_and_continue", ")", ",", "'show_save'", ":", "show_save", ",", "}", ")", "return", "ctx" ]
Display the row of buttons for delete and save.
[ "Display", "the", "row", "of", "buttons", "for", "delete", "and", "save", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/web/templatetags/bitcaster.py#L77-L106
train
bitcaster-io/bitcaster
src/bitcaster/social_auth.py
BitcasterStrategy.get_setting
def get_setting(self, name): notfound = object() "get configuration from 'constance.config' first " value = getattr(config, name, notfound) if name.endswith('_WHITELISTED_DOMAINS'): if value: return value.split(',') else: return [] if value is notfound: value = getattr(settings, name) # Force text on URL named settings that are instance of Promise if name.endswith('_URL'): if isinstance(value, Promise): value = force_text(value) value = resolve_url(value) return value
python
def get_setting(self, name): notfound = object() "get configuration from 'constance.config' first " value = getattr(config, name, notfound) if name.endswith('_WHITELISTED_DOMAINS'): if value: return value.split(',') else: return [] if value is notfound: value = getattr(settings, name) # Force text on URL named settings that are instance of Promise if name.endswith('_URL'): if isinstance(value, Promise): value = force_text(value) value = resolve_url(value) return value
[ "def", "get_setting", "(", "self", ",", "name", ")", ":", "notfound", "=", "object", "(", ")", "value", "=", "getattr", "(", "config", ",", "name", ",", "notfound", ")", "if", "name", ".", "endswith", "(", "'_WHITELISTED_DOMAINS'", ")", ":", "if", "value", ":", "return", "value", ".", "split", "(", "','", ")", "else", ":", "return", "[", "]", "if", "value", "is", "notfound", ":", "value", "=", "getattr", "(", "settings", ",", "name", ")", "# Force text on URL named settings that are instance of Promise", "if", "name", ".", "endswith", "(", "'_URL'", ")", ":", "if", "isinstance", "(", "value", ",", "Promise", ")", ":", "value", "=", "force_text", "(", "value", ")", "value", "=", "resolve_url", "(", "value", ")", "return", "value" ]
get configuration from 'constance.config' first
[ "get", "configuration", "from", "constance", ".", "config", "first" ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/social_auth.py#L78-L95
train
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.debug
def debug(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``DEBUG`` level.""" add(self.target_name, request, constants.DEBUG, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def debug(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``DEBUG`` level.""" add(self.target_name, request, constants.DEBUG, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "debug", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "DEBUG", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``DEBUG`` level.
[ "Add", "a", "message", "with", "the", "DEBUG", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L54-L57
train
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.info
def info(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``INFO`` level.""" add(self.target_name, request, constants.INFO, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def info(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``INFO`` level.""" add(self.target_name, request, constants.INFO, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "info", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "INFO", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``INFO`` level.
[ "Add", "a", "message", "with", "the", "INFO", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L59-L63
train
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.success
def success(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``SUCCESS`` level.""" add(self.target_name, request, constants.SUCCESS, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def success(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``SUCCESS`` level.""" add(self.target_name, request, constants.SUCCESS, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "success", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "SUCCESS", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``SUCCESS`` level.
[ "Add", "a", "message", "with", "the", "SUCCESS", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L65-L68
train
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.warning
def warning(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``WARNING`` level.""" add(self.target_name, request, constants.WARNING, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def warning(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``WARNING`` level.""" add(self.target_name, request, constants.WARNING, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "warning", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "WARNING", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``WARNING`` level.
[ "Add", "a", "message", "with", "the", "WARNING", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L70-L73
train
bitcaster-io/bitcaster
src/bitcaster/messages.py
Wrapper.error
def error(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``ERROR`` level.""" add(self.target_name, request, constants.ERROR, message, extra_tags=extra_tags, fail_silently=fail_silently)
python
def error(self, request, message, extra_tags='', fail_silently=False): """Add a message with the ``ERROR`` level.""" add(self.target_name, request, constants.ERROR, message, extra_tags=extra_tags, fail_silently=fail_silently)
[ "def", "error", "(", "self", ",", "request", ",", "message", ",", "extra_tags", "=", "''", ",", "fail_silently", "=", "False", ")", ":", "add", "(", "self", ".", "target_name", ",", "request", ",", "constants", ".", "ERROR", ",", "message", ",", "extra_tags", "=", "extra_tags", ",", "fail_silently", "=", "fail_silently", ")" ]
Add a message with the ``ERROR`` level.
[ "Add", "a", "message", "with", "the", "ERROR", "level", "." ]
04625a4b67c1ad01e5d38faa3093828b360d4a98
https://github.com/bitcaster-io/bitcaster/blob/04625a4b67c1ad01e5d38faa3093828b360d4a98/src/bitcaster/messages.py#L75-L78
train
bread-and-pepper/django-userena
userena/views.py
signup
def signup(request, signup_form=SignupForm, template_name='userena/signup_form.html', success_url=None, extra_context=None): """ Signup of an account. Signup requiring a username, email and password. After signup a user gets an email with an activation link used to activate their account. After successful signup redirects to ``success_url``. :param signup_form: Form that will be used to sign a user. Defaults to userena's :class:`SignupForm`. :param template_name: String containing the template name that will be used to display the signup form. Defaults to ``userena/signup_form.html``. :param success_url: String containing the URI which should be redirected to after a successful signup. If not supplied will redirect to ``userena_signup_complete`` view. :param extra_context: Dictionary containing variables which are added to the template context. Defaults to a dictionary with a ``form`` key containing the ``signup_form``. **Context** ``form`` Form supplied by ``signup_form``. """ # If signup is disabled, return 403 if userena_settings.USERENA_DISABLE_SIGNUP: raise PermissionDenied # If no usernames are wanted and the default form is used, fallback to the # default form that doesn't display to enter the username. if userena_settings.USERENA_WITHOUT_USERNAMES and (signup_form == SignupForm): signup_form = SignupFormOnlyEmail form = signup_form() if request.method == 'POST': form = signup_form(request.POST, request.FILES) if form.is_valid(): user = form.save() # Send the signup complete signal userena_signals.signup_complete.send(sender=None, user=user) if success_url: redirect_to = success_url else: redirect_to = reverse('userena_signup_complete', kwargs={'username': user.username}) # A new signed user should logout the old one. if request.user.is_authenticated(): logout(request) if (userena_settings.USERENA_SIGNIN_AFTER_SIGNUP and not userena_settings.USERENA_ACTIVATION_REQUIRED): user = authenticate(identification=user.email, check_password=False) login(request, user) return redirect(redirect_to) if not extra_context: extra_context = dict() extra_context['form'] = form return ExtraContextTemplateView.as_view(template_name=template_name, extra_context=extra_context)(request)
python
def signup(request, signup_form=SignupForm, template_name='userena/signup_form.html', success_url=None, extra_context=None): """ Signup of an account. Signup requiring a username, email and password. After signup a user gets an email with an activation link used to activate their account. After successful signup redirects to ``success_url``. :param signup_form: Form that will be used to sign a user. Defaults to userena's :class:`SignupForm`. :param template_name: String containing the template name that will be used to display the signup form. Defaults to ``userena/signup_form.html``. :param success_url: String containing the URI which should be redirected to after a successful signup. If not supplied will redirect to ``userena_signup_complete`` view. :param extra_context: Dictionary containing variables which are added to the template context. Defaults to a dictionary with a ``form`` key containing the ``signup_form``. **Context** ``form`` Form supplied by ``signup_form``. """ # If signup is disabled, return 403 if userena_settings.USERENA_DISABLE_SIGNUP: raise PermissionDenied # If no usernames are wanted and the default form is used, fallback to the # default form that doesn't display to enter the username. if userena_settings.USERENA_WITHOUT_USERNAMES and (signup_form == SignupForm): signup_form = SignupFormOnlyEmail form = signup_form() if request.method == 'POST': form = signup_form(request.POST, request.FILES) if form.is_valid(): user = form.save() # Send the signup complete signal userena_signals.signup_complete.send(sender=None, user=user) if success_url: redirect_to = success_url else: redirect_to = reverse('userena_signup_complete', kwargs={'username': user.username}) # A new signed user should logout the old one. if request.user.is_authenticated(): logout(request) if (userena_settings.USERENA_SIGNIN_AFTER_SIGNUP and not userena_settings.USERENA_ACTIVATION_REQUIRED): user = authenticate(identification=user.email, check_password=False) login(request, user) return redirect(redirect_to) if not extra_context: extra_context = dict() extra_context['form'] = form return ExtraContextTemplateView.as_view(template_name=template_name, extra_context=extra_context)(request)
[ "def", "signup", "(", "request", ",", "signup_form", "=", "SignupForm", ",", "template_name", "=", "'userena/signup_form.html'", ",", "success_url", "=", "None", ",", "extra_context", "=", "None", ")", ":", "# If signup is disabled, return 403", "if", "userena_settings", ".", "USERENA_DISABLE_SIGNUP", ":", "raise", "PermissionDenied", "# If no usernames are wanted and the default form is used, fallback to the", "# default form that doesn't display to enter the username.", "if", "userena_settings", ".", "USERENA_WITHOUT_USERNAMES", "and", "(", "signup_form", "==", "SignupForm", ")", ":", "signup_form", "=", "SignupFormOnlyEmail", "form", "=", "signup_form", "(", ")", "if", "request", ".", "method", "==", "'POST'", ":", "form", "=", "signup_form", "(", "request", ".", "POST", ",", "request", ".", "FILES", ")", "if", "form", ".", "is_valid", "(", ")", ":", "user", "=", "form", ".", "save", "(", ")", "# Send the signup complete signal", "userena_signals", ".", "signup_complete", ".", "send", "(", "sender", "=", "None", ",", "user", "=", "user", ")", "if", "success_url", ":", "redirect_to", "=", "success_url", "else", ":", "redirect_to", "=", "reverse", "(", "'userena_signup_complete'", ",", "kwargs", "=", "{", "'username'", ":", "user", ".", "username", "}", ")", "# A new signed user should logout the old one.", "if", "request", ".", "user", ".", "is_authenticated", "(", ")", ":", "logout", "(", "request", ")", "if", "(", "userena_settings", ".", "USERENA_SIGNIN_AFTER_SIGNUP", "and", "not", "userena_settings", ".", "USERENA_ACTIVATION_REQUIRED", ")", ":", "user", "=", "authenticate", "(", "identification", "=", "user", ".", "email", ",", "check_password", "=", "False", ")", "login", "(", "request", ",", "user", ")", "return", "redirect", "(", "redirect_to", ")", "if", "not", "extra_context", ":", "extra_context", "=", "dict", "(", ")", "extra_context", "[", "'form'", "]", "=", "form", "return", "ExtraContextTemplateView", ".", "as_view", "(", "template_name", "=", "template_name", ",", "extra_context", "=", "extra_context", ")", "(", "request", ")" ]
Signup of an account. Signup requiring a username, email and password. After signup a user gets an email with an activation link used to activate their account. After successful signup redirects to ``success_url``. :param signup_form: Form that will be used to sign a user. Defaults to userena's :class:`SignupForm`. :param template_name: String containing the template name that will be used to display the signup form. Defaults to ``userena/signup_form.html``. :param success_url: String containing the URI which should be redirected to after a successful signup. If not supplied will redirect to ``userena_signup_complete`` view. :param extra_context: Dictionary containing variables which are added to the template context. Defaults to a dictionary with a ``form`` key containing the ``signup_form``. **Context** ``form`` Form supplied by ``signup_form``.
[ "Signup", "of", "an", "account", "." ]
7dfb3d5d148127e32f217a62096d507266a3a83c
https://github.com/bread-and-pepper/django-userena/blob/7dfb3d5d148127e32f217a62096d507266a3a83c/userena/views.py#L73-L146
train
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.extend
def extend(self, other): """ Return a new HyperparameterDefaults instance containing the hyperparameters from the current instance combined with those from other. It is an error if self and other have any hyperparameters in common. """ overlap = [key for key in other.defaults if key in self.defaults] if overlap: raise ValueError( "Duplicate hyperparameter(s): %s" % " ".join(overlap)) new = dict(self.defaults) new.update(other.defaults) return HyperparameterDefaults(**new)
python
def extend(self, other): """ Return a new HyperparameterDefaults instance containing the hyperparameters from the current instance combined with those from other. It is an error if self and other have any hyperparameters in common. """ overlap = [key for key in other.defaults if key in self.defaults] if overlap: raise ValueError( "Duplicate hyperparameter(s): %s" % " ".join(overlap)) new = dict(self.defaults) new.update(other.defaults) return HyperparameterDefaults(**new)
[ "def", "extend", "(", "self", ",", "other", ")", ":", "overlap", "=", "[", "key", "for", "key", "in", "other", ".", "defaults", "if", "key", "in", "self", ".", "defaults", "]", "if", "overlap", ":", "raise", "ValueError", "(", "\"Duplicate hyperparameter(s): %s\"", "%", "\" \"", ".", "join", "(", "overlap", ")", ")", "new", "=", "dict", "(", "self", ".", "defaults", ")", "new", ".", "update", "(", "other", ".", "defaults", ")", "return", "HyperparameterDefaults", "(", "*", "*", "new", ")" ]
Return a new HyperparameterDefaults instance containing the hyperparameters from the current instance combined with those from other. It is an error if self and other have any hyperparameters in common.
[ "Return", "a", "new", "HyperparameterDefaults", "instance", "containing", "the", "hyperparameters", "from", "the", "current", "instance", "combined", "with", "those", "from", "other", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L22-L37
train
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.with_defaults
def with_defaults(self, obj): """ Given a dict of hyperparameter settings, return a dict containing those settings augmented by the defaults for any keys missing from the dict. """ self.check_valid_keys(obj) obj = dict(obj) for (key, value) in self.defaults.items(): if key not in obj: obj[key] = value return obj
python
def with_defaults(self, obj): """ Given a dict of hyperparameter settings, return a dict containing those settings augmented by the defaults for any keys missing from the dict. """ self.check_valid_keys(obj) obj = dict(obj) for (key, value) in self.defaults.items(): if key not in obj: obj[key] = value return obj
[ "def", "with_defaults", "(", "self", ",", "obj", ")", ":", "self", ".", "check_valid_keys", "(", "obj", ")", "obj", "=", "dict", "(", "obj", ")", "for", "(", "key", ",", "value", ")", "in", "self", ".", "defaults", ".", "items", "(", ")", ":", "if", "key", "not", "in", "obj", ":", "obj", "[", "key", "]", "=", "value", "return", "obj" ]
Given a dict of hyperparameter settings, return a dict containing those settings augmented by the defaults for any keys missing from the dict.
[ "Given", "a", "dict", "of", "hyperparameter", "settings", "return", "a", "dict", "containing", "those", "settings", "augmented", "by", "the", "defaults", "for", "any", "keys", "missing", "from", "the", "dict", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L39-L50
train
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.subselect
def subselect(self, obj): """ Filter a dict of hyperparameter settings to only those keys defined in this HyperparameterDefaults . """ return dict( (key, value) for (key, value) in obj.items() if key in self.defaults)
python
def subselect(self, obj): """ Filter a dict of hyperparameter settings to only those keys defined in this HyperparameterDefaults . """ return dict( (key, value) for (key, value) in obj.items() if key in self.defaults)
[ "def", "subselect", "(", "self", ",", "obj", ")", ":", "return", "dict", "(", "(", "key", ",", "value", ")", "for", "(", "key", ",", "value", ")", "in", "obj", ".", "items", "(", ")", "if", "key", "in", "self", ".", "defaults", ")" ]
Filter a dict of hyperparameter settings to only those keys defined in this HyperparameterDefaults .
[ "Filter", "a", "dict", "of", "hyperparameter", "settings", "to", "only", "those", "keys", "defined", "in", "this", "HyperparameterDefaults", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L52-L60
train
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.check_valid_keys
def check_valid_keys(self, obj): """ Given a dict of hyperparameter settings, throw an exception if any keys are not defined in this HyperparameterDefaults instance. """ invalid_keys = [ x for x in obj if x not in self.defaults ] if invalid_keys: raise ValueError( "No such model parameters: %s. Valid parameters are: %s" % (" ".join(invalid_keys), " ".join(self.defaults)))
python
def check_valid_keys(self, obj): """ Given a dict of hyperparameter settings, throw an exception if any keys are not defined in this HyperparameterDefaults instance. """ invalid_keys = [ x for x in obj if x not in self.defaults ] if invalid_keys: raise ValueError( "No such model parameters: %s. Valid parameters are: %s" % (" ".join(invalid_keys), " ".join(self.defaults)))
[ "def", "check_valid_keys", "(", "self", ",", "obj", ")", ":", "invalid_keys", "=", "[", "x", "for", "x", "in", "obj", "if", "x", "not", "in", "self", ".", "defaults", "]", "if", "invalid_keys", ":", "raise", "ValueError", "(", "\"No such model parameters: %s. Valid parameters are: %s\"", "%", "(", "\" \"", ".", "join", "(", "invalid_keys", ")", ",", "\" \"", ".", "join", "(", "self", ".", "defaults", ")", ")", ")" ]
Given a dict of hyperparameter settings, throw an exception if any keys are not defined in this HyperparameterDefaults instance.
[ "Given", "a", "dict", "of", "hyperparameter", "settings", "throw", "an", "exception", "if", "any", "keys", "are", "not", "defined", "in", "this", "HyperparameterDefaults", "instance", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L62-L74
train
openvax/mhcflurry
mhcflurry/hyperparameters.py
HyperparameterDefaults.models_grid
def models_grid(self, **kwargs): ''' Make a grid of models by taking the cartesian product of all specified model parameter lists. Parameters ----------- The valid kwarg parameters are the entries of this HyperparameterDefaults instance. Each parameter must be a list giving the values to search across. Returns ----------- list of dict giving the parameters for each model. The length of the list is the product of the lengths of the input lists. ''' # Check parameters self.check_valid_keys(kwargs) for (key, value) in kwargs.items(): if not isinstance(value, list): raise ValueError( "All parameters must be lists, but %s is %s" % (key, str(type(value)))) # Make models, using defaults. parameters = dict( (key, [value]) for (key, value) in self.defaults.items()) parameters.update(kwargs) parameter_names = list(parameters) parameter_values = [parameters[name] for name in parameter_names] models = [ dict(zip(parameter_names, model_values)) for model_values in itertools.product(*parameter_values) ] return models
python
def models_grid(self, **kwargs): ''' Make a grid of models by taking the cartesian product of all specified model parameter lists. Parameters ----------- The valid kwarg parameters are the entries of this HyperparameterDefaults instance. Each parameter must be a list giving the values to search across. Returns ----------- list of dict giving the parameters for each model. The length of the list is the product of the lengths of the input lists. ''' # Check parameters self.check_valid_keys(kwargs) for (key, value) in kwargs.items(): if not isinstance(value, list): raise ValueError( "All parameters must be lists, but %s is %s" % (key, str(type(value)))) # Make models, using defaults. parameters = dict( (key, [value]) for (key, value) in self.defaults.items()) parameters.update(kwargs) parameter_names = list(parameters) parameter_values = [parameters[name] for name in parameter_names] models = [ dict(zip(parameter_names, model_values)) for model_values in itertools.product(*parameter_values) ] return models
[ "def", "models_grid", "(", "self", ",", "*", "*", "kwargs", ")", ":", "# Check parameters", "self", ".", "check_valid_keys", "(", "kwargs", ")", "for", "(", "key", ",", "value", ")", "in", "kwargs", ".", "items", "(", ")", ":", "if", "not", "isinstance", "(", "value", ",", "list", ")", ":", "raise", "ValueError", "(", "\"All parameters must be lists, but %s is %s\"", "%", "(", "key", ",", "str", "(", "type", "(", "value", ")", ")", ")", ")", "# Make models, using defaults.", "parameters", "=", "dict", "(", "(", "key", ",", "[", "value", "]", ")", "for", "(", "key", ",", "value", ")", "in", "self", ".", "defaults", ".", "items", "(", ")", ")", "parameters", ".", "update", "(", "kwargs", ")", "parameter_names", "=", "list", "(", "parameters", ")", "parameter_values", "=", "[", "parameters", "[", "name", "]", "for", "name", "in", "parameter_names", "]", "models", "=", "[", "dict", "(", "zip", "(", "parameter_names", ",", "model_values", ")", ")", "for", "model_values", "in", "itertools", ".", "product", "(", "*", "parameter_values", ")", "]", "return", "models" ]
Make a grid of models by taking the cartesian product of all specified model parameter lists. Parameters ----------- The valid kwarg parameters are the entries of this HyperparameterDefaults instance. Each parameter must be a list giving the values to search across. Returns ----------- list of dict giving the parameters for each model. The length of the list is the product of the lengths of the input lists.
[ "Make", "a", "grid", "of", "models", "by", "taking", "the", "cartesian", "product", "of", "all", "specified", "model", "parameter", "lists", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/hyperparameters.py#L76-L112
train
openvax/mhcflurry
mhcflurry/allele_encoding.py
AlleleEncoding.fixed_length_vector_encoded_sequences
def fixed_length_vector_encoded_sequences(self, vector_encoding_name): """ Encode alleles. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings() in amino_acid. Returns ------- numpy.array with shape (num sequences, sequence length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name) if cache_key not in self.encoding_cache: index_encoded_matrix = amino_acid.index_encoding( self.fixed_length_sequences.values, amino_acid.AMINO_ACID_INDEX) vector_encoded = amino_acid.fixed_vectors_encoding( index_encoded_matrix, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) result = vector_encoded[self.indices] self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
python
def fixed_length_vector_encoded_sequences(self, vector_encoding_name): """ Encode alleles. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings() in amino_acid. Returns ------- numpy.array with shape (num sequences, sequence length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name) if cache_key not in self.encoding_cache: index_encoded_matrix = amino_acid.index_encoding( self.fixed_length_sequences.values, amino_acid.AMINO_ACID_INDEX) vector_encoded = amino_acid.fixed_vectors_encoding( index_encoded_matrix, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) result = vector_encoded[self.indices] self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
[ "def", "fixed_length_vector_encoded_sequences", "(", "self", ",", "vector_encoding_name", ")", ":", "cache_key", "=", "(", "\"fixed_length_vector_encoding\"", ",", "vector_encoding_name", ")", "if", "cache_key", "not", "in", "self", ".", "encoding_cache", ":", "index_encoded_matrix", "=", "amino_acid", ".", "index_encoding", "(", "self", ".", "fixed_length_sequences", ".", "values", ",", "amino_acid", ".", "AMINO_ACID_INDEX", ")", "vector_encoded", "=", "amino_acid", ".", "fixed_vectors_encoding", "(", "index_encoded_matrix", ",", "amino_acid", ".", "ENCODING_DATA_FRAMES", "[", "vector_encoding_name", "]", ")", "result", "=", "vector_encoded", "[", "self", ".", "indices", "]", "self", ".", "encoding_cache", "[", "cache_key", "]", "=", "result", "return", "self", ".", "encoding_cache", "[", "cache_key", "]" ]
Encode alleles. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings() in amino_acid. Returns ------- numpy.array with shape (num sequences, sequence length, m) where m is vector_encoding_length(vector_encoding_name)
[ "Encode", "alleles", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/allele_encoding.py#L40-L68
train
openvax/mhcflurry
mhcflurry/amino_acid.py
index_encoding
def index_encoding(sequences, letter_to_index_dict): """ Encode a sequence of same-length strings to a matrix of integers of the same shape. The map from characters to integers is given by `letter_to_index_dict`. Given a sequence of `n` strings all of length `k`, return a `k * n` array where the (`i`, `j`)th element is `letter_to_index_dict[sequence[i][j]]`. Parameters ---------- sequences : list of length n of strings of length k letter_to_index_dict : dict : string -> int Returns ------- numpy.array of integers with shape (`k`, `n`) """ df = pandas.DataFrame(iter(s) for s in sequences) result = df.replace(letter_to_index_dict) return result.values
python
def index_encoding(sequences, letter_to_index_dict): """ Encode a sequence of same-length strings to a matrix of integers of the same shape. The map from characters to integers is given by `letter_to_index_dict`. Given a sequence of `n` strings all of length `k`, return a `k * n` array where the (`i`, `j`)th element is `letter_to_index_dict[sequence[i][j]]`. Parameters ---------- sequences : list of length n of strings of length k letter_to_index_dict : dict : string -> int Returns ------- numpy.array of integers with shape (`k`, `n`) """ df = pandas.DataFrame(iter(s) for s in sequences) result = df.replace(letter_to_index_dict) return result.values
[ "def", "index_encoding", "(", "sequences", ",", "letter_to_index_dict", ")", ":", "df", "=", "pandas", ".", "DataFrame", "(", "iter", "(", "s", ")", "for", "s", "in", "sequences", ")", "result", "=", "df", ".", "replace", "(", "letter_to_index_dict", ")", "return", "result", ".", "values" ]
Encode a sequence of same-length strings to a matrix of integers of the same shape. The map from characters to integers is given by `letter_to_index_dict`. Given a sequence of `n` strings all of length `k`, return a `k * n` array where the (`i`, `j`)th element is `letter_to_index_dict[sequence[i][j]]`. Parameters ---------- sequences : list of length n of strings of length k letter_to_index_dict : dict : string -> int Returns ------- numpy.array of integers with shape (`k`, `n`)
[ "Encode", "a", "sequence", "of", "same", "-", "length", "strings", "to", "a", "matrix", "of", "integers", "of", "the", "same", "shape", ".", "The", "map", "from", "characters", "to", "integers", "is", "given", "by", "letter_to_index_dict", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/amino_acid.py#L110-L130
train
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.apply_hyperparameter_renames
def apply_hyperparameter_renames(cls, hyperparameters): """ Handle hyperparameter renames. Parameters ---------- hyperparameters : dict Returns ------- dict : updated hyperparameters """ for (from_name, to_name) in cls.hyperparameter_renames.items(): if from_name in hyperparameters: value = hyperparameters.pop(from_name) if to_name: hyperparameters[to_name] = value return hyperparameters
python
def apply_hyperparameter_renames(cls, hyperparameters): """ Handle hyperparameter renames. Parameters ---------- hyperparameters : dict Returns ------- dict : updated hyperparameters """ for (from_name, to_name) in cls.hyperparameter_renames.items(): if from_name in hyperparameters: value = hyperparameters.pop(from_name) if to_name: hyperparameters[to_name] = value return hyperparameters
[ "def", "apply_hyperparameter_renames", "(", "cls", ",", "hyperparameters", ")", ":", "for", "(", "from_name", ",", "to_name", ")", "in", "cls", ".", "hyperparameter_renames", ".", "items", "(", ")", ":", "if", "from_name", "in", "hyperparameters", ":", "value", "=", "hyperparameters", ".", "pop", "(", "from_name", ")", "if", "to_name", ":", "hyperparameters", "[", "to_name", "]", "=", "value", "return", "hyperparameters" ]
Handle hyperparameter renames. Parameters ---------- hyperparameters : dict Returns ------- dict : updated hyperparameters
[ "Handle", "hyperparameter", "renames", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L136-L154
train
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.borrow_cached_network
def borrow_cached_network(klass, network_json, network_weights): """ Return a keras Model with the specified architecture and weights. As an optimization, when possible this will reuse architectures from a process-wide cache. The returned object is "borrowed" in the sense that its weights can change later after subsequent calls to this method from other objects. If you're using this from a parallel implementation you'll need to hold a lock while using the returned object. Parameters ---------- network_json : string of JSON network_weights : list of numpy.array Returns ------- keras.models.Model """ assert network_weights is not None key = klass.keras_network_cache_key(network_json) if key not in klass.KERAS_MODELS_CACHE: # Cache miss. import keras.models network = keras.models.model_from_json(network_json) existing_weights = None else: # Cache hit. (network, existing_weights) = klass.KERAS_MODELS_CACHE[key] if existing_weights is not network_weights: network.set_weights(network_weights) klass.KERAS_MODELS_CACHE[key] = (network, network_weights) # As an added safety check we overwrite the fit method on the returned # model to throw an error if it is called. def throw(*args, **kwargs): raise NotImplementedError("Do not call fit on cached model.") network.fit = throw return network
python
def borrow_cached_network(klass, network_json, network_weights): """ Return a keras Model with the specified architecture and weights. As an optimization, when possible this will reuse architectures from a process-wide cache. The returned object is "borrowed" in the sense that its weights can change later after subsequent calls to this method from other objects. If you're using this from a parallel implementation you'll need to hold a lock while using the returned object. Parameters ---------- network_json : string of JSON network_weights : list of numpy.array Returns ------- keras.models.Model """ assert network_weights is not None key = klass.keras_network_cache_key(network_json) if key not in klass.KERAS_MODELS_CACHE: # Cache miss. import keras.models network = keras.models.model_from_json(network_json) existing_weights = None else: # Cache hit. (network, existing_weights) = klass.KERAS_MODELS_CACHE[key] if existing_weights is not network_weights: network.set_weights(network_weights) klass.KERAS_MODELS_CACHE[key] = (network, network_weights) # As an added safety check we overwrite the fit method on the returned # model to throw an error if it is called. def throw(*args, **kwargs): raise NotImplementedError("Do not call fit on cached model.") network.fit = throw return network
[ "def", "borrow_cached_network", "(", "klass", ",", "network_json", ",", "network_weights", ")", ":", "assert", "network_weights", "is", "not", "None", "key", "=", "klass", ".", "keras_network_cache_key", "(", "network_json", ")", "if", "key", "not", "in", "klass", ".", "KERAS_MODELS_CACHE", ":", "# Cache miss.", "import", "keras", ".", "models", "network", "=", "keras", ".", "models", ".", "model_from_json", "(", "network_json", ")", "existing_weights", "=", "None", "else", ":", "# Cache hit.", "(", "network", ",", "existing_weights", ")", "=", "klass", ".", "KERAS_MODELS_CACHE", "[", "key", "]", "if", "existing_weights", "is", "not", "network_weights", ":", "network", ".", "set_weights", "(", "network_weights", ")", "klass", ".", "KERAS_MODELS_CACHE", "[", "key", "]", "=", "(", "network", ",", "network_weights", ")", "# As an added safety check we overwrite the fit method on the returned", "# model to throw an error if it is called.", "def", "throw", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "raise", "NotImplementedError", "(", "\"Do not call fit on cached model.\"", ")", "network", ".", "fit", "=", "throw", "return", "network" ]
Return a keras Model with the specified architecture and weights. As an optimization, when possible this will reuse architectures from a process-wide cache. The returned object is "borrowed" in the sense that its weights can change later after subsequent calls to this method from other objects. If you're using this from a parallel implementation you'll need to hold a lock while using the returned object. Parameters ---------- network_json : string of JSON network_weights : list of numpy.array Returns ------- keras.models.Model
[ "Return", "a", "keras", "Model", "with", "the", "specified", "architecture", "and", "weights", ".", "As", "an", "optimization", "when", "possible", "this", "will", "reuse", "architectures", "from", "a", "process", "-", "wide", "cache", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L183-L224
train
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.network
def network(self, borrow=False): """ Return the keras model associated with this predictor. Parameters ---------- borrow : bool Whether to return a cached model if possible. See borrow_cached_network for details Returns ------- keras.models.Model """ if self._network is None and self.network_json is not None: self.load_weights() if borrow: return self.borrow_cached_network( self.network_json, self.network_weights) else: import keras.models self._network = keras.models.model_from_json(self.network_json) if self.network_weights is not None: self._network.set_weights(self.network_weights) self.network_json = None self.network_weights = None return self._network
python
def network(self, borrow=False): """ Return the keras model associated with this predictor. Parameters ---------- borrow : bool Whether to return a cached model if possible. See borrow_cached_network for details Returns ------- keras.models.Model """ if self._network is None and self.network_json is not None: self.load_weights() if borrow: return self.borrow_cached_network( self.network_json, self.network_weights) else: import keras.models self._network = keras.models.model_from_json(self.network_json) if self.network_weights is not None: self._network.set_weights(self.network_weights) self.network_json = None self.network_weights = None return self._network
[ "def", "network", "(", "self", ",", "borrow", "=", "False", ")", ":", "if", "self", ".", "_network", "is", "None", "and", "self", ".", "network_json", "is", "not", "None", ":", "self", ".", "load_weights", "(", ")", "if", "borrow", ":", "return", "self", ".", "borrow_cached_network", "(", "self", ".", "network_json", ",", "self", ".", "network_weights", ")", "else", ":", "import", "keras", ".", "models", "self", ".", "_network", "=", "keras", ".", "models", ".", "model_from_json", "(", "self", ".", "network_json", ")", "if", "self", ".", "network_weights", "is", "not", "None", ":", "self", ".", "_network", ".", "set_weights", "(", "self", ".", "network_weights", ")", "self", ".", "network_json", "=", "None", "self", ".", "network_weights", "=", "None", "return", "self", ".", "_network" ]
Return the keras model associated with this predictor. Parameters ---------- borrow : bool Whether to return a cached model if possible. See borrow_cached_network for details Returns ------- keras.models.Model
[ "Return", "the", "keras", "model", "associated", "with", "this", "predictor", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L226-L253
train
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.load_weights
def load_weights(self): """ Load weights by evaluating self.network_weights_loader, if needed. After calling this, self.network_weights_loader will be None and self.network_weights will be the weights list, if available. """ if self.network_weights_loader: self.network_weights = self.network_weights_loader() self.network_weights_loader = None
python
def load_weights(self): """ Load weights by evaluating self.network_weights_loader, if needed. After calling this, self.network_weights_loader will be None and self.network_weights will be the weights list, if available. """ if self.network_weights_loader: self.network_weights = self.network_weights_loader() self.network_weights_loader = None
[ "def", "load_weights", "(", "self", ")", ":", "if", "self", ".", "network_weights_loader", ":", "self", ".", "network_weights", "=", "self", ".", "network_weights_loader", "(", ")", "self", ".", "network_weights_loader", "=", "None" ]
Load weights by evaluating self.network_weights_loader, if needed. After calling this, self.network_weights_loader will be None and self.network_weights will be the weights list, if available.
[ "Load", "weights", "by", "evaluating", "self", ".", "network_weights_loader", "if", "needed", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L315-L324
train
openvax/mhcflurry
mhcflurry/class1_neural_network.py
Class1NeuralNetwork.predict
def predict(self, peptides, allele_encoding=None, batch_size=4096): """ Predict affinities. If peptides are specified as EncodableSequences, then the predictions will be cached for this predictor as long as the EncodableSequences object remains in memory. The cache is keyed in the object identity of the EncodableSequences, not the sequences themselves. Parameters ---------- peptides : EncodableSequences or list of string allele_encoding : AlleleEncoding, optional Only required when this model is a pan-allele model batch_size : int batch_size passed to Keras Returns ------- numpy.array of nM affinity predictions """ assert self.prediction_cache is not None use_cache = ( allele_encoding is None and isinstance(peptides, EncodableSequences)) if use_cache and peptides in self.prediction_cache: return self.prediction_cache[peptides].copy() x_dict = { 'peptide': self.peptides_to_network_input(peptides) } if allele_encoding is not None: allele_input = self.allele_encoding_to_network_input(allele_encoding) x_dict['allele'] = allele_input network = self.network(borrow=True) raw_predictions = network.predict(x_dict, batch_size=batch_size) predictions = numpy.array(raw_predictions, dtype = "float64")[:,0] result = to_ic50(predictions) if use_cache: self.prediction_cache[peptides] = result return result
python
def predict(self, peptides, allele_encoding=None, batch_size=4096): """ Predict affinities. If peptides are specified as EncodableSequences, then the predictions will be cached for this predictor as long as the EncodableSequences object remains in memory. The cache is keyed in the object identity of the EncodableSequences, not the sequences themselves. Parameters ---------- peptides : EncodableSequences or list of string allele_encoding : AlleleEncoding, optional Only required when this model is a pan-allele model batch_size : int batch_size passed to Keras Returns ------- numpy.array of nM affinity predictions """ assert self.prediction_cache is not None use_cache = ( allele_encoding is None and isinstance(peptides, EncodableSequences)) if use_cache and peptides in self.prediction_cache: return self.prediction_cache[peptides].copy() x_dict = { 'peptide': self.peptides_to_network_input(peptides) } if allele_encoding is not None: allele_input = self.allele_encoding_to_network_input(allele_encoding) x_dict['allele'] = allele_input network = self.network(borrow=True) raw_predictions = network.predict(x_dict, batch_size=batch_size) predictions = numpy.array(raw_predictions, dtype = "float64")[:,0] result = to_ic50(predictions) if use_cache: self.prediction_cache[peptides] = result return result
[ "def", "predict", "(", "self", ",", "peptides", ",", "allele_encoding", "=", "None", ",", "batch_size", "=", "4096", ")", ":", "assert", "self", ".", "prediction_cache", "is", "not", "None", "use_cache", "=", "(", "allele_encoding", "is", "None", "and", "isinstance", "(", "peptides", ",", "EncodableSequences", ")", ")", "if", "use_cache", "and", "peptides", "in", "self", ".", "prediction_cache", ":", "return", "self", ".", "prediction_cache", "[", "peptides", "]", ".", "copy", "(", ")", "x_dict", "=", "{", "'peptide'", ":", "self", ".", "peptides_to_network_input", "(", "peptides", ")", "}", "if", "allele_encoding", "is", "not", "None", ":", "allele_input", "=", "self", ".", "allele_encoding_to_network_input", "(", "allele_encoding", ")", "x_dict", "[", "'allele'", "]", "=", "allele_input", "network", "=", "self", ".", "network", "(", "borrow", "=", "True", ")", "raw_predictions", "=", "network", ".", "predict", "(", "x_dict", ",", "batch_size", "=", "batch_size", ")", "predictions", "=", "numpy", ".", "array", "(", "raw_predictions", ",", "dtype", "=", "\"float64\"", ")", "[", ":", ",", "0", "]", "result", "=", "to_ic50", "(", "predictions", ")", "if", "use_cache", ":", "self", ".", "prediction_cache", "[", "peptides", "]", "=", "result", "return", "result" ]
Predict affinities. If peptides are specified as EncodableSequences, then the predictions will be cached for this predictor as long as the EncodableSequences object remains in memory. The cache is keyed in the object identity of the EncodableSequences, not the sequences themselves. Parameters ---------- peptides : EncodableSequences or list of string allele_encoding : AlleleEncoding, optional Only required when this model is a pan-allele model batch_size : int batch_size passed to Keras Returns ------- numpy.array of nM affinity predictions
[ "Predict", "affinities", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_neural_network.py#L739-L782
train
openvax/mhcflurry
mhcflurry/scoring.py
make_scores
def make_scores( ic50_y, ic50_y_pred, sample_weight=None, threshold_nm=500, max_ic50=50000): """ Calculate AUC, F1, and Kendall Tau scores. Parameters ----------- ic50_y : float list true IC50s (i.e. affinities) ic50_y_pred : float list predicted IC50s sample_weight : float list [optional] threshold_nm : float [optional] max_ic50 : float [optional] Returns ----------- dict with entries "auc", "f1", "tau" """ y_pred = from_ic50(ic50_y_pred, max_ic50) try: auc = sklearn.metrics.roc_auc_score( ic50_y <= threshold_nm, y_pred, sample_weight=sample_weight) except ValueError as e: logging.warning(e) auc = numpy.nan try: f1 = sklearn.metrics.f1_score( ic50_y <= threshold_nm, ic50_y_pred <= threshold_nm, sample_weight=sample_weight) except ValueError as e: logging.warning(e) f1 = numpy.nan try: tau = scipy.stats.kendalltau(ic50_y_pred, ic50_y)[0] except ValueError as e: logging.warning(e) tau = numpy.nan return dict( auc=auc, f1=f1, tau=tau)
python
def make_scores( ic50_y, ic50_y_pred, sample_weight=None, threshold_nm=500, max_ic50=50000): """ Calculate AUC, F1, and Kendall Tau scores. Parameters ----------- ic50_y : float list true IC50s (i.e. affinities) ic50_y_pred : float list predicted IC50s sample_weight : float list [optional] threshold_nm : float [optional] max_ic50 : float [optional] Returns ----------- dict with entries "auc", "f1", "tau" """ y_pred = from_ic50(ic50_y_pred, max_ic50) try: auc = sklearn.metrics.roc_auc_score( ic50_y <= threshold_nm, y_pred, sample_weight=sample_weight) except ValueError as e: logging.warning(e) auc = numpy.nan try: f1 = sklearn.metrics.f1_score( ic50_y <= threshold_nm, ic50_y_pred <= threshold_nm, sample_weight=sample_weight) except ValueError as e: logging.warning(e) f1 = numpy.nan try: tau = scipy.stats.kendalltau(ic50_y_pred, ic50_y)[0] except ValueError as e: logging.warning(e) tau = numpy.nan return dict( auc=auc, f1=f1, tau=tau)
[ "def", "make_scores", "(", "ic50_y", ",", "ic50_y_pred", ",", "sample_weight", "=", "None", ",", "threshold_nm", "=", "500", ",", "max_ic50", "=", "50000", ")", ":", "y_pred", "=", "from_ic50", "(", "ic50_y_pred", ",", "max_ic50", ")", "try", ":", "auc", "=", "sklearn", ".", "metrics", ".", "roc_auc_score", "(", "ic50_y", "<=", "threshold_nm", ",", "y_pred", ",", "sample_weight", "=", "sample_weight", ")", "except", "ValueError", "as", "e", ":", "logging", ".", "warning", "(", "e", ")", "auc", "=", "numpy", ".", "nan", "try", ":", "f1", "=", "sklearn", ".", "metrics", ".", "f1_score", "(", "ic50_y", "<=", "threshold_nm", ",", "ic50_y_pred", "<=", "threshold_nm", ",", "sample_weight", "=", "sample_weight", ")", "except", "ValueError", "as", "e", ":", "logging", ".", "warning", "(", "e", ")", "f1", "=", "numpy", ".", "nan", "try", ":", "tau", "=", "scipy", ".", "stats", ".", "kendalltau", "(", "ic50_y_pred", ",", "ic50_y", ")", "[", "0", "]", "except", "ValueError", "as", "e", ":", "logging", ".", "warning", "(", "e", ")", "tau", "=", "numpy", ".", "nan", "return", "dict", "(", "auc", "=", "auc", ",", "f1", "=", "f1", ",", "tau", "=", "tau", ")" ]
Calculate AUC, F1, and Kendall Tau scores. Parameters ----------- ic50_y : float list true IC50s (i.e. affinities) ic50_y_pred : float list predicted IC50s sample_weight : float list [optional] threshold_nm : float [optional] max_ic50 : float [optional] Returns ----------- dict with entries "auc", "f1", "tau"
[ "Calculate", "AUC", "F1", "and", "Kendall", "Tau", "scores", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/scoring.py#L14-L68
train
openvax/mhcflurry
mhcflurry/encodable_sequences.py
EncodableSequences.variable_length_to_fixed_length_vector_encoding
def variable_length_to_fixed_length_vector_encoding( self, vector_encoding_name, left_edge=4, right_edge=4, max_length=15): """ Encode variable-length sequences using a fixed-length encoding designed for preserving the anchor positions of class I peptides. The sequences must be of length at least left_edge + right_edge, and at most max_length. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings(). left_edge : int, size of fixed-position left side right_edge : int, size of the fixed-position right side max_length : sequence length of the resulting encoding Returns ------- numpy.array with shape (num sequences, max_length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name, left_edge, right_edge, max_length) if cache_key not in self.encoding_cache: fixed_length_sequences = ( self.sequences_to_fixed_length_index_encoded_array( self.sequences, left_edge=left_edge, right_edge=right_edge, max_length=max_length)) result = amino_acid.fixed_vectors_encoding( fixed_length_sequences, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) assert result.shape[0] == len(self.sequences) self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
python
def variable_length_to_fixed_length_vector_encoding( self, vector_encoding_name, left_edge=4, right_edge=4, max_length=15): """ Encode variable-length sequences using a fixed-length encoding designed for preserving the anchor positions of class I peptides. The sequences must be of length at least left_edge + right_edge, and at most max_length. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings(). left_edge : int, size of fixed-position left side right_edge : int, size of the fixed-position right side max_length : sequence length of the resulting encoding Returns ------- numpy.array with shape (num sequences, max_length, m) where m is vector_encoding_length(vector_encoding_name) """ cache_key = ( "fixed_length_vector_encoding", vector_encoding_name, left_edge, right_edge, max_length) if cache_key not in self.encoding_cache: fixed_length_sequences = ( self.sequences_to_fixed_length_index_encoded_array( self.sequences, left_edge=left_edge, right_edge=right_edge, max_length=max_length)) result = amino_acid.fixed_vectors_encoding( fixed_length_sequences, amino_acid.ENCODING_DATA_FRAMES[vector_encoding_name]) assert result.shape[0] == len(self.sequences) self.encoding_cache[cache_key] = result return self.encoding_cache[cache_key]
[ "def", "variable_length_to_fixed_length_vector_encoding", "(", "self", ",", "vector_encoding_name", ",", "left_edge", "=", "4", ",", "right_edge", "=", "4", ",", "max_length", "=", "15", ")", ":", "cache_key", "=", "(", "\"fixed_length_vector_encoding\"", ",", "vector_encoding_name", ",", "left_edge", ",", "right_edge", ",", "max_length", ")", "if", "cache_key", "not", "in", "self", ".", "encoding_cache", ":", "fixed_length_sequences", "=", "(", "self", ".", "sequences_to_fixed_length_index_encoded_array", "(", "self", ".", "sequences", ",", "left_edge", "=", "left_edge", ",", "right_edge", "=", "right_edge", ",", "max_length", "=", "max_length", ")", ")", "result", "=", "amino_acid", ".", "fixed_vectors_encoding", "(", "fixed_length_sequences", ",", "amino_acid", ".", "ENCODING_DATA_FRAMES", "[", "vector_encoding_name", "]", ")", "assert", "result", ".", "shape", "[", "0", "]", "==", "len", "(", "self", ".", "sequences", ")", "self", ".", "encoding_cache", "[", "cache_key", "]", "=", "result", "return", "self", ".", "encoding_cache", "[", "cache_key", "]" ]
Encode variable-length sequences using a fixed-length encoding designed for preserving the anchor positions of class I peptides. The sequences must be of length at least left_edge + right_edge, and at most max_length. Parameters ---------- vector_encoding_name : string How to represent amino acids. One of "BLOSUM62", "one-hot", etc. Full list of supported vector encodings is given by available_vector_encodings(). left_edge : int, size of fixed-position left side right_edge : int, size of the fixed-position right side max_length : sequence length of the resulting encoding Returns ------- numpy.array with shape (num sequences, max_length, m) where m is vector_encoding_length(vector_encoding_name)
[ "Encode", "variable", "-", "length", "sequences", "using", "a", "fixed", "-", "length", "encoding", "designed", "for", "preserving", "the", "anchor", "positions", "of", "class", "I", "peptides", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/encodable_sequences.py#L89-L131
train
openvax/mhcflurry
mhcflurry/encodable_sequences.py
EncodableSequences.sequences_to_fixed_length_index_encoded_array
def sequences_to_fixed_length_index_encoded_array( klass, sequences, left_edge=4, right_edge=4, max_length=15): """ Transform a sequence of strings, where each string is of length at least left_edge + right_edge and at most max_length into strings of length max_length using a scheme designed to preserve the anchor positions of class I peptides. The first left_edge characters in the input always map to the first left_edge characters in the output. Similarly for the last right_edge characters. The middle characters are filled in based on the length, with the X character filling in the blanks. For example, using defaults: AAAACDDDD -> AAAAXXXCXXXDDDD The strings are also converted to int categorical amino acid indices. Parameters ---------- sequence : string left_edge : int right_edge : int max_length : int Returns ------- numpy array of shape (len(sequences), max_length) and dtype int """ # Result array is int32, filled with X (null amino acid) value. result = numpy.full( fill_value=amino_acid.AMINO_ACID_INDEX['X'], shape=(len(sequences), max_length), dtype="int32") df = pandas.DataFrame({"peptide": sequences}) df["length"] = df.peptide.str.len() middle_length = max_length - left_edge - right_edge # For efficiency we handle each supported peptide length using bulk # array operations. for (length, sub_df) in df.groupby("length"): if length < left_edge + right_edge: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "least %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, left_edge + right_edge, len(sub_df))) if length > max_length: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "most %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, max_length, len(sub_df))) # Array of shape (num peptides, length) giving fixed-length amino # acid encoding each peptide of the current length. fixed_length_sequences = numpy.stack( sub_df.peptide.map( lambda s: numpy.array([ amino_acid.AMINO_ACID_INDEX[char] for char in s ])).values) num_null = max_length - length num_null_left = int(math.ceil(num_null / 2)) num_middle_filled = middle_length - num_null middle_start = left_edge + num_null_left # Set left edge result[sub_df.index, :left_edge] = fixed_length_sequences[ :, :left_edge ] # Set middle. result[ sub_df.index, middle_start : middle_start + num_middle_filled ] = fixed_length_sequences[ :, left_edge : left_edge + num_middle_filled ] # Set right edge. result[ sub_df.index, -right_edge: ] = fixed_length_sequences[:, -right_edge:] return result
python
def sequences_to_fixed_length_index_encoded_array( klass, sequences, left_edge=4, right_edge=4, max_length=15): """ Transform a sequence of strings, where each string is of length at least left_edge + right_edge and at most max_length into strings of length max_length using a scheme designed to preserve the anchor positions of class I peptides. The first left_edge characters in the input always map to the first left_edge characters in the output. Similarly for the last right_edge characters. The middle characters are filled in based on the length, with the X character filling in the blanks. For example, using defaults: AAAACDDDD -> AAAAXXXCXXXDDDD The strings are also converted to int categorical amino acid indices. Parameters ---------- sequence : string left_edge : int right_edge : int max_length : int Returns ------- numpy array of shape (len(sequences), max_length) and dtype int """ # Result array is int32, filled with X (null amino acid) value. result = numpy.full( fill_value=amino_acid.AMINO_ACID_INDEX['X'], shape=(len(sequences), max_length), dtype="int32") df = pandas.DataFrame({"peptide": sequences}) df["length"] = df.peptide.str.len() middle_length = max_length - left_edge - right_edge # For efficiency we handle each supported peptide length using bulk # array operations. for (length, sub_df) in df.groupby("length"): if length < left_edge + right_edge: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "least %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, left_edge + right_edge, len(sub_df))) if length > max_length: raise ValueError( "Sequence '%s' (length %d) unsupported: length must be at " "most %d. There are %d total peptides with this length." % ( sub_df.iloc[0].peptide, length, max_length, len(sub_df))) # Array of shape (num peptides, length) giving fixed-length amino # acid encoding each peptide of the current length. fixed_length_sequences = numpy.stack( sub_df.peptide.map( lambda s: numpy.array([ amino_acid.AMINO_ACID_INDEX[char] for char in s ])).values) num_null = max_length - length num_null_left = int(math.ceil(num_null / 2)) num_middle_filled = middle_length - num_null middle_start = left_edge + num_null_left # Set left edge result[sub_df.index, :left_edge] = fixed_length_sequences[ :, :left_edge ] # Set middle. result[ sub_df.index, middle_start : middle_start + num_middle_filled ] = fixed_length_sequences[ :, left_edge : left_edge + num_middle_filled ] # Set right edge. result[ sub_df.index, -right_edge: ] = fixed_length_sequences[:, -right_edge:] return result
[ "def", "sequences_to_fixed_length_index_encoded_array", "(", "klass", ",", "sequences", ",", "left_edge", "=", "4", ",", "right_edge", "=", "4", ",", "max_length", "=", "15", ")", ":", "# Result array is int32, filled with X (null amino acid) value.", "result", "=", "numpy", ".", "full", "(", "fill_value", "=", "amino_acid", ".", "AMINO_ACID_INDEX", "[", "'X'", "]", ",", "shape", "=", "(", "len", "(", "sequences", ")", ",", "max_length", ")", ",", "dtype", "=", "\"int32\"", ")", "df", "=", "pandas", ".", "DataFrame", "(", "{", "\"peptide\"", ":", "sequences", "}", ")", "df", "[", "\"length\"", "]", "=", "df", ".", "peptide", ".", "str", ".", "len", "(", ")", "middle_length", "=", "max_length", "-", "left_edge", "-", "right_edge", "# For efficiency we handle each supported peptide length using bulk", "# array operations.", "for", "(", "length", ",", "sub_df", ")", "in", "df", ".", "groupby", "(", "\"length\"", ")", ":", "if", "length", "<", "left_edge", "+", "right_edge", ":", "raise", "ValueError", "(", "\"Sequence '%s' (length %d) unsupported: length must be at \"", "\"least %d. There are %d total peptides with this length.\"", "%", "(", "sub_df", ".", "iloc", "[", "0", "]", ".", "peptide", ",", "length", ",", "left_edge", "+", "right_edge", ",", "len", "(", "sub_df", ")", ")", ")", "if", "length", ">", "max_length", ":", "raise", "ValueError", "(", "\"Sequence '%s' (length %d) unsupported: length must be at \"", "\"most %d. There are %d total peptides with this length.\"", "%", "(", "sub_df", ".", "iloc", "[", "0", "]", ".", "peptide", ",", "length", ",", "max_length", ",", "len", "(", "sub_df", ")", ")", ")", "# Array of shape (num peptides, length) giving fixed-length amino", "# acid encoding each peptide of the current length.", "fixed_length_sequences", "=", "numpy", ".", "stack", "(", "sub_df", ".", "peptide", ".", "map", "(", "lambda", "s", ":", "numpy", ".", "array", "(", "[", "amino_acid", ".", "AMINO_ACID_INDEX", "[", "char", "]", "for", "char", "in", "s", "]", ")", ")", ".", "values", ")", "num_null", "=", "max_length", "-", "length", "num_null_left", "=", "int", "(", "math", ".", "ceil", "(", "num_null", "/", "2", ")", ")", "num_middle_filled", "=", "middle_length", "-", "num_null", "middle_start", "=", "left_edge", "+", "num_null_left", "# Set left edge", "result", "[", "sub_df", ".", "index", ",", ":", "left_edge", "]", "=", "fixed_length_sequences", "[", ":", ",", ":", "left_edge", "]", "# Set middle.", "result", "[", "sub_df", ".", "index", ",", "middle_start", ":", "middle_start", "+", "num_middle_filled", "]", "=", "fixed_length_sequences", "[", ":", ",", "left_edge", ":", "left_edge", "+", "num_middle_filled", "]", "# Set right edge.", "result", "[", "sub_df", ".", "index", ",", "-", "right_edge", ":", "]", "=", "fixed_length_sequences", "[", ":", ",", "-", "right_edge", ":", "]", "return", "result" ]
Transform a sequence of strings, where each string is of length at least left_edge + right_edge and at most max_length into strings of length max_length using a scheme designed to preserve the anchor positions of class I peptides. The first left_edge characters in the input always map to the first left_edge characters in the output. Similarly for the last right_edge characters. The middle characters are filled in based on the length, with the X character filling in the blanks. For example, using defaults: AAAACDDDD -> AAAAXXXCXXXDDDD The strings are also converted to int categorical amino acid indices. Parameters ---------- sequence : string left_edge : int right_edge : int max_length : int Returns ------- numpy array of shape (len(sequences), max_length) and dtype int
[ "Transform", "a", "sequence", "of", "strings", "where", "each", "string", "is", "of", "length", "at", "least", "left_edge", "+", "right_edge", "and", "at", "most", "max_length", "into", "strings", "of", "length", "max_length", "using", "a", "scheme", "designed", "to", "preserve", "the", "anchor", "positions", "of", "class", "I", "peptides", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/encodable_sequences.py#L134-L223
train
openvax/mhcflurry
mhcflurry/ensemble_centrality.py
robust_mean
def robust_mean(log_values): """ Mean of values falling within the 25-75 percentiles. Parameters ---------- log_values : 2-d numpy.array Center is computed along the second axis (i.e. per row). Returns ------- center : numpy.array of length log_values.shape[1] """ if log_values.shape[1] <= 3: # Too few values to use robust mean. return numpy.nanmean(log_values, axis=1) without_nans = numpy.nan_to_num(log_values) # replace nan with 0 mask = ( (~numpy.isnan(log_values)) & (without_nans <= numpy.nanpercentile(log_values, 75, axis=1).reshape((-1, 1))) & (without_nans >= numpy.nanpercentile(log_values, 25, axis=1).reshape((-1, 1)))) return (without_nans * mask.astype(float)).sum(1) / mask.sum(1)
python
def robust_mean(log_values): """ Mean of values falling within the 25-75 percentiles. Parameters ---------- log_values : 2-d numpy.array Center is computed along the second axis (i.e. per row). Returns ------- center : numpy.array of length log_values.shape[1] """ if log_values.shape[1] <= 3: # Too few values to use robust mean. return numpy.nanmean(log_values, axis=1) without_nans = numpy.nan_to_num(log_values) # replace nan with 0 mask = ( (~numpy.isnan(log_values)) & (without_nans <= numpy.nanpercentile(log_values, 75, axis=1).reshape((-1, 1))) & (without_nans >= numpy.nanpercentile(log_values, 25, axis=1).reshape((-1, 1)))) return (without_nans * mask.astype(float)).sum(1) / mask.sum(1)
[ "def", "robust_mean", "(", "log_values", ")", ":", "if", "log_values", ".", "shape", "[", "1", "]", "<=", "3", ":", "# Too few values to use robust mean.", "return", "numpy", ".", "nanmean", "(", "log_values", ",", "axis", "=", "1", ")", "without_nans", "=", "numpy", ".", "nan_to_num", "(", "log_values", ")", "# replace nan with 0", "mask", "=", "(", "(", "~", "numpy", ".", "isnan", "(", "log_values", ")", ")", "&", "(", "without_nans", "<=", "numpy", ".", "nanpercentile", "(", "log_values", ",", "75", ",", "axis", "=", "1", ")", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", ")", "&", "(", "without_nans", ">=", "numpy", ".", "nanpercentile", "(", "log_values", ",", "25", ",", "axis", "=", "1", ")", ".", "reshape", "(", "(", "-", "1", ",", "1", ")", ")", ")", ")", "return", "(", "without_nans", "*", "mask", ".", "astype", "(", "float", ")", ")", ".", "sum", "(", "1", ")", "/", "mask", ".", "sum", "(", "1", ")" ]
Mean of values falling within the 25-75 percentiles. Parameters ---------- log_values : 2-d numpy.array Center is computed along the second axis (i.e. per row). Returns ------- center : numpy.array of length log_values.shape[1]
[ "Mean", "of", "values", "falling", "within", "the", "25", "-", "75", "percentiles", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/ensemble_centrality.py#L11-L33
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.neural_networks
def neural_networks(self): """ List of the neural networks in the ensemble. Returns ------- list of `Class1NeuralNetwork` """ result = [] for models in self.allele_to_allele_specific_models.values(): result.extend(models) result.extend(self.class1_pan_allele_models) return result
python
def neural_networks(self): """ List of the neural networks in the ensemble. Returns ------- list of `Class1NeuralNetwork` """ result = [] for models in self.allele_to_allele_specific_models.values(): result.extend(models) result.extend(self.class1_pan_allele_models) return result
[ "def", "neural_networks", "(", "self", ")", ":", "result", "=", "[", "]", "for", "models", "in", "self", ".", "allele_to_allele_specific_models", ".", "values", "(", ")", ":", "result", ".", "extend", "(", "models", ")", "result", ".", "extend", "(", "self", ".", "class1_pan_allele_models", ")", "return", "result" ]
List of the neural networks in the ensemble. Returns ------- list of `Class1NeuralNetwork`
[ "List", "of", "the", "neural", "networks", "in", "the", "ensemble", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L140-L152
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.merge
def merge(cls, predictors): """ Merge the ensembles of two or more `Class1AffinityPredictor` instances. Note: the resulting merged predictor will NOT have calibrated percentile ranks. Call `calibrate_percentile_ranks` on it if these are needed. Parameters ---------- predictors : sequence of `Class1AffinityPredictor` Returns ------- `Class1AffinityPredictor` instance """ assert len(predictors) > 0 if len(predictors) == 1: return predictors[0] allele_to_allele_specific_models = collections.defaultdict(list) class1_pan_allele_models = [] allele_to_fixed_length_sequence = predictors[0].allele_to_fixed_length_sequence for predictor in predictors: for (allele, networks) in ( predictor.allele_to_allele_specific_models.items()): allele_to_allele_specific_models[allele].extend(networks) class1_pan_allele_models.extend( predictor.class1_pan_allele_models) return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=allele_to_fixed_length_sequence )
python
def merge(cls, predictors): """ Merge the ensembles of two or more `Class1AffinityPredictor` instances. Note: the resulting merged predictor will NOT have calibrated percentile ranks. Call `calibrate_percentile_ranks` on it if these are needed. Parameters ---------- predictors : sequence of `Class1AffinityPredictor` Returns ------- `Class1AffinityPredictor` instance """ assert len(predictors) > 0 if len(predictors) == 1: return predictors[0] allele_to_allele_specific_models = collections.defaultdict(list) class1_pan_allele_models = [] allele_to_fixed_length_sequence = predictors[0].allele_to_fixed_length_sequence for predictor in predictors: for (allele, networks) in ( predictor.allele_to_allele_specific_models.items()): allele_to_allele_specific_models[allele].extend(networks) class1_pan_allele_models.extend( predictor.class1_pan_allele_models) return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=allele_to_fixed_length_sequence )
[ "def", "merge", "(", "cls", ",", "predictors", ")", ":", "assert", "len", "(", "predictors", ")", ">", "0", "if", "len", "(", "predictors", ")", "==", "1", ":", "return", "predictors", "[", "0", "]", "allele_to_allele_specific_models", "=", "collections", ".", "defaultdict", "(", "list", ")", "class1_pan_allele_models", "=", "[", "]", "allele_to_fixed_length_sequence", "=", "predictors", "[", "0", "]", ".", "allele_to_fixed_length_sequence", "for", "predictor", "in", "predictors", ":", "for", "(", "allele", ",", "networks", ")", "in", "(", "predictor", ".", "allele_to_allele_specific_models", ".", "items", "(", ")", ")", ":", "allele_to_allele_specific_models", "[", "allele", "]", ".", "extend", "(", "networks", ")", "class1_pan_allele_models", ".", "extend", "(", "predictor", ".", "class1_pan_allele_models", ")", "return", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", "=", "allele_to_allele_specific_models", ",", "class1_pan_allele_models", "=", "class1_pan_allele_models", ",", "allele_to_fixed_length_sequence", "=", "allele_to_fixed_length_sequence", ")" ]
Merge the ensembles of two or more `Class1AffinityPredictor` instances. Note: the resulting merged predictor will NOT have calibrated percentile ranks. Call `calibrate_percentile_ranks` on it if these are needed. Parameters ---------- predictors : sequence of `Class1AffinityPredictor` Returns ------- `Class1AffinityPredictor` instance
[ "Merge", "the", "ensembles", "of", "two", "or", "more", "Class1AffinityPredictor", "instances", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L155-L190
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.merge_in_place
def merge_in_place(self, others): """ Add the models present other predictors into the current predictor. Parameters ---------- others : list of Class1AffinityPredictor Other predictors to merge into the current predictor. Returns ------- list of string : names of newly added models """ new_model_names = [] for predictor in others: for model in predictor.class1_pan_allele_models: model_name = self.model_name( "pan-class1", len(self.class1_pan_allele_models)) self.class1_pan_allele_models.append(model) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", "pan-class1"), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) new_model_names.append(model_name) for allele in predictor.allele_to_allele_specific_models: if allele not in self.allele_to_allele_specific_models: self.allele_to_allele_specific_models[allele] = [] current_models = self.allele_to_allele_specific_models[allele] for model in predictor.allele_to_allele_specific_models[allele]: model_name = self.model_name(allele, len(current_models)) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", allele), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) current_models.append(model) new_model_names.append(model_name) self.clear_cache() return new_model_names
python
def merge_in_place(self, others): """ Add the models present other predictors into the current predictor. Parameters ---------- others : list of Class1AffinityPredictor Other predictors to merge into the current predictor. Returns ------- list of string : names of newly added models """ new_model_names = [] for predictor in others: for model in predictor.class1_pan_allele_models: model_name = self.model_name( "pan-class1", len(self.class1_pan_allele_models)) self.class1_pan_allele_models.append(model) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", "pan-class1"), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) new_model_names.append(model_name) for allele in predictor.allele_to_allele_specific_models: if allele not in self.allele_to_allele_specific_models: self.allele_to_allele_specific_models[allele] = [] current_models = self.allele_to_allele_specific_models[allele] for model in predictor.allele_to_allele_specific_models[allele]: model_name = self.model_name(allele, len(current_models)) row = pandas.Series(collections.OrderedDict([ ("model_name", model_name), ("allele", allele), ("config_json", json.dumps(model.get_config())), ("model", model), ])).to_frame().T self._manifest_df = pandas.concat( [self.manifest_df, row], ignore_index=True) current_models.append(model) new_model_names.append(model_name) self.clear_cache() return new_model_names
[ "def", "merge_in_place", "(", "self", ",", "others", ")", ":", "new_model_names", "=", "[", "]", "for", "predictor", "in", "others", ":", "for", "model", "in", "predictor", ".", "class1_pan_allele_models", ":", "model_name", "=", "self", ".", "model_name", "(", "\"pan-class1\"", ",", "len", "(", "self", ".", "class1_pan_allele_models", ")", ")", "self", ".", "class1_pan_allele_models", ".", "append", "(", "model", ")", "row", "=", "pandas", ".", "Series", "(", "collections", ".", "OrderedDict", "(", "[", "(", "\"model_name\"", ",", "model_name", ")", ",", "(", "\"allele\"", ",", "\"pan-class1\"", ")", ",", "(", "\"config_json\"", ",", "json", ".", "dumps", "(", "model", ".", "get_config", "(", ")", ")", ")", ",", "(", "\"model\"", ",", "model", ")", ",", "]", ")", ")", ".", "to_frame", "(", ")", ".", "T", "self", ".", "_manifest_df", "=", "pandas", ".", "concat", "(", "[", "self", ".", "manifest_df", ",", "row", "]", ",", "ignore_index", "=", "True", ")", "new_model_names", ".", "append", "(", "model_name", ")", "for", "allele", "in", "predictor", ".", "allele_to_allele_specific_models", ":", "if", "allele", "not", "in", "self", ".", "allele_to_allele_specific_models", ":", "self", ".", "allele_to_allele_specific_models", "[", "allele", "]", "=", "[", "]", "current_models", "=", "self", ".", "allele_to_allele_specific_models", "[", "allele", "]", "for", "model", "in", "predictor", ".", "allele_to_allele_specific_models", "[", "allele", "]", ":", "model_name", "=", "self", ".", "model_name", "(", "allele", ",", "len", "(", "current_models", ")", ")", "row", "=", "pandas", ".", "Series", "(", "collections", ".", "OrderedDict", "(", "[", "(", "\"model_name\"", ",", "model_name", ")", ",", "(", "\"allele\"", ",", "allele", ")", ",", "(", "\"config_json\"", ",", "json", ".", "dumps", "(", "model", ".", "get_config", "(", ")", ")", ")", ",", "(", "\"model\"", ",", "model", ")", ",", "]", ")", ")", ".", "to_frame", "(", ")", ".", "T", "self", ".", "_manifest_df", "=", "pandas", ".", "concat", "(", "[", "self", ".", "manifest_df", ",", "row", "]", ",", "ignore_index", "=", "True", ")", "current_models", ".", "append", "(", "model", ")", "new_model_names", ".", "append", "(", "model_name", ")", "self", ".", "clear_cache", "(", ")", "return", "new_model_names" ]
Add the models present other predictors into the current predictor. Parameters ---------- others : list of Class1AffinityPredictor Other predictors to merge into the current predictor. Returns ------- list of string : names of newly added models
[ "Add", "the", "models", "present", "other", "predictors", "into", "the", "current", "predictor", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L192-L241
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.percentile_ranks
def percentile_ranks(self, affinities, allele=None, alleles=None, throw=True): """ Return percentile ranks for the given ic50 affinities and alleles. The 'allele' and 'alleles' argument are as in the `predict` method. Specify one of these. Parameters ---------- affinities : sequence of float nM affinities allele : string alleles : sequence of string throw : boolean If True, a ValueError will be raised in the case of unsupported alleles. If False, a warning will be logged and NaN will be returned for those percentile ranks. Returns ------- numpy.array of float """ if allele is not None: try: transform = self.allele_to_percent_rank_transform[allele] return transform.transform(affinities) except KeyError: msg = "Allele %s has no percentile rank information" % allele if throw: raise ValueError(msg) else: warnings.warn(msg) # Return NaNs return numpy.ones(len(affinities)) * numpy.nan if alleles is None: raise ValueError("Specify allele or alleles") df = pandas.DataFrame({"affinity": affinities}) df["allele"] = alleles df["result"] = numpy.nan for (allele, sub_df) in df.groupby("allele"): df.loc[sub_df.index, "result"] = self.percentile_ranks( sub_df.affinity, allele=allele, throw=throw) return df.result.values
python
def percentile_ranks(self, affinities, allele=None, alleles=None, throw=True): """ Return percentile ranks for the given ic50 affinities and alleles. The 'allele' and 'alleles' argument are as in the `predict` method. Specify one of these. Parameters ---------- affinities : sequence of float nM affinities allele : string alleles : sequence of string throw : boolean If True, a ValueError will be raised in the case of unsupported alleles. If False, a warning will be logged and NaN will be returned for those percentile ranks. Returns ------- numpy.array of float """ if allele is not None: try: transform = self.allele_to_percent_rank_transform[allele] return transform.transform(affinities) except KeyError: msg = "Allele %s has no percentile rank information" % allele if throw: raise ValueError(msg) else: warnings.warn(msg) # Return NaNs return numpy.ones(len(affinities)) * numpy.nan if alleles is None: raise ValueError("Specify allele or alleles") df = pandas.DataFrame({"affinity": affinities}) df["allele"] = alleles df["result"] = numpy.nan for (allele, sub_df) in df.groupby("allele"): df.loc[sub_df.index, "result"] = self.percentile_ranks( sub_df.affinity, allele=allele, throw=throw) return df.result.values
[ "def", "percentile_ranks", "(", "self", ",", "affinities", ",", "allele", "=", "None", ",", "alleles", "=", "None", ",", "throw", "=", "True", ")", ":", "if", "allele", "is", "not", "None", ":", "try", ":", "transform", "=", "self", ".", "allele_to_percent_rank_transform", "[", "allele", "]", "return", "transform", ".", "transform", "(", "affinities", ")", "except", "KeyError", ":", "msg", "=", "\"Allele %s has no percentile rank information\"", "%", "allele", "if", "throw", ":", "raise", "ValueError", "(", "msg", ")", "else", ":", "warnings", ".", "warn", "(", "msg", ")", "# Return NaNs", "return", "numpy", ".", "ones", "(", "len", "(", "affinities", ")", ")", "*", "numpy", ".", "nan", "if", "alleles", "is", "None", ":", "raise", "ValueError", "(", "\"Specify allele or alleles\"", ")", "df", "=", "pandas", ".", "DataFrame", "(", "{", "\"affinity\"", ":", "affinities", "}", ")", "df", "[", "\"allele\"", "]", "=", "alleles", "df", "[", "\"result\"", "]", "=", "numpy", ".", "nan", "for", "(", "allele", ",", "sub_df", ")", "in", "df", ".", "groupby", "(", "\"allele\"", ")", ":", "df", ".", "loc", "[", "sub_df", ".", "index", ",", "\"result\"", "]", "=", "self", ".", "percentile_ranks", "(", "sub_df", ".", "affinity", ",", "allele", "=", "allele", ",", "throw", "=", "throw", ")", "return", "df", ".", "result", ".", "values" ]
Return percentile ranks for the given ic50 affinities and alleles. The 'allele' and 'alleles' argument are as in the `predict` method. Specify one of these. Parameters ---------- affinities : sequence of float nM affinities allele : string alleles : sequence of string throw : boolean If True, a ValueError will be raised in the case of unsupported alleles. If False, a warning will be logged and NaN will be returned for those percentile ranks. Returns ------- numpy.array of float
[ "Return", "percentile", "ranks", "for", "the", "given", "ic50", "affinities", "and", "alleles", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L722-L766
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.calibrate_percentile_ranks
def calibrate_percentile_ranks( self, peptides=None, num_peptides_per_length=int(1e5), alleles=None, bins=None): """ Compute the cumulative distribution of ic50 values for a set of alleles over a large universe of random peptides, to enable computing quantiles in this distribution later. Parameters ---------- peptides : sequence of string or EncodableSequences, optional Peptides to use num_peptides_per_length : int, optional If peptides argument is not specified, then num_peptides_per_length peptides are randomly sampled from a uniform distribution for each supported length alleles : sequence of string, optional Alleles to perform calibration for. If not specified all supported alleles will be calibrated. bins : object Anything that can be passed to numpy.histogram's "bins" argument can be used here, i.e. either an integer or a sequence giving bin edges. This is in ic50 space. Returns ---------- EncodableSequences : peptides used for calibration """ if bins is None: bins = to_ic50(numpy.linspace(1, 0, 1000)) if alleles is None: alleles = self.supported_alleles if peptides is None: peptides = [] lengths = range( self.supported_peptide_lengths[0], self.supported_peptide_lengths[1] + 1) for length in lengths: peptides.extend( random_peptides(num_peptides_per_length, length)) encoded_peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): predictions = self.predict(encoded_peptides, allele=allele) transform = PercentRankTransform() transform.fit(predictions, bins=bins) self.allele_to_percent_rank_transform[allele] = transform return encoded_peptides
python
def calibrate_percentile_ranks( self, peptides=None, num_peptides_per_length=int(1e5), alleles=None, bins=None): """ Compute the cumulative distribution of ic50 values for a set of alleles over a large universe of random peptides, to enable computing quantiles in this distribution later. Parameters ---------- peptides : sequence of string or EncodableSequences, optional Peptides to use num_peptides_per_length : int, optional If peptides argument is not specified, then num_peptides_per_length peptides are randomly sampled from a uniform distribution for each supported length alleles : sequence of string, optional Alleles to perform calibration for. If not specified all supported alleles will be calibrated. bins : object Anything that can be passed to numpy.histogram's "bins" argument can be used here, i.e. either an integer or a sequence giving bin edges. This is in ic50 space. Returns ---------- EncodableSequences : peptides used for calibration """ if bins is None: bins = to_ic50(numpy.linspace(1, 0, 1000)) if alleles is None: alleles = self.supported_alleles if peptides is None: peptides = [] lengths = range( self.supported_peptide_lengths[0], self.supported_peptide_lengths[1] + 1) for length in lengths: peptides.extend( random_peptides(num_peptides_per_length, length)) encoded_peptides = EncodableSequences.create(peptides) for (i, allele) in enumerate(alleles): predictions = self.predict(encoded_peptides, allele=allele) transform = PercentRankTransform() transform.fit(predictions, bins=bins) self.allele_to_percent_rank_transform[allele] = transform return encoded_peptides
[ "def", "calibrate_percentile_ranks", "(", "self", ",", "peptides", "=", "None", ",", "num_peptides_per_length", "=", "int", "(", "1e5", ")", ",", "alleles", "=", "None", ",", "bins", "=", "None", ")", ":", "if", "bins", "is", "None", ":", "bins", "=", "to_ic50", "(", "numpy", ".", "linspace", "(", "1", ",", "0", ",", "1000", ")", ")", "if", "alleles", "is", "None", ":", "alleles", "=", "self", ".", "supported_alleles", "if", "peptides", "is", "None", ":", "peptides", "=", "[", "]", "lengths", "=", "range", "(", "self", ".", "supported_peptide_lengths", "[", "0", "]", ",", "self", ".", "supported_peptide_lengths", "[", "1", "]", "+", "1", ")", "for", "length", "in", "lengths", ":", "peptides", ".", "extend", "(", "random_peptides", "(", "num_peptides_per_length", ",", "length", ")", ")", "encoded_peptides", "=", "EncodableSequences", ".", "create", "(", "peptides", ")", "for", "(", "i", ",", "allele", ")", "in", "enumerate", "(", "alleles", ")", ":", "predictions", "=", "self", ".", "predict", "(", "encoded_peptides", ",", "allele", "=", "allele", ")", "transform", "=", "PercentRankTransform", "(", ")", "transform", ".", "fit", "(", "predictions", ",", "bins", "=", "bins", ")", "self", ".", "allele_to_percent_rank_transform", "[", "allele", "]", "=", "transform", "return", "encoded_peptides" ]
Compute the cumulative distribution of ic50 values for a set of alleles over a large universe of random peptides, to enable computing quantiles in this distribution later. Parameters ---------- peptides : sequence of string or EncodableSequences, optional Peptides to use num_peptides_per_length : int, optional If peptides argument is not specified, then num_peptides_per_length peptides are randomly sampled from a uniform distribution for each supported length alleles : sequence of string, optional Alleles to perform calibration for. If not specified all supported alleles will be calibrated. bins : object Anything that can be passed to numpy.histogram's "bins" argument can be used here, i.e. either an integer or a sequence giving bin edges. This is in ic50 space. Returns ---------- EncodableSequences : peptides used for calibration
[ "Compute", "the", "cumulative", "distribution", "of", "ic50", "values", "for", "a", "set", "of", "alleles", "over", "a", "large", "universe", "of", "random", "peptides", "to", "enable", "computing", "quantiles", "in", "this", "distribution", "later", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L1074-L1128
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.filter_networks
def filter_networks(self, predicate): """ Return a new Class1AffinityPredictor containing a subset of this predictor's neural networks. Parameters ---------- predicate : Class1NeuralNetwork -> boolean Function specifying which neural networks to include Returns ------- Class1AffinityPredictor """ allele_to_allele_specific_models = {} for (allele, models) in self.allele_to_allele_specific_models.items(): allele_to_allele_specific_models[allele] = [ m for m in models if predicate(m) ] class1_pan_allele_models = [ m for m in self.class1_pan_allele_models if predicate(m) ] return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence, )
python
def filter_networks(self, predicate): """ Return a new Class1AffinityPredictor containing a subset of this predictor's neural networks. Parameters ---------- predicate : Class1NeuralNetwork -> boolean Function specifying which neural networks to include Returns ------- Class1AffinityPredictor """ allele_to_allele_specific_models = {} for (allele, models) in self.allele_to_allele_specific_models.items(): allele_to_allele_specific_models[allele] = [ m for m in models if predicate(m) ] class1_pan_allele_models = [ m for m in self.class1_pan_allele_models if predicate(m) ] return Class1AffinityPredictor( allele_to_allele_specific_models=allele_to_allele_specific_models, class1_pan_allele_models=class1_pan_allele_models, allele_to_fixed_length_sequence=self.allele_to_fixed_length_sequence, )
[ "def", "filter_networks", "(", "self", ",", "predicate", ")", ":", "allele_to_allele_specific_models", "=", "{", "}", "for", "(", "allele", ",", "models", ")", "in", "self", ".", "allele_to_allele_specific_models", ".", "items", "(", ")", ":", "allele_to_allele_specific_models", "[", "allele", "]", "=", "[", "m", "for", "m", "in", "models", "if", "predicate", "(", "m", ")", "]", "class1_pan_allele_models", "=", "[", "m", "for", "m", "in", "self", ".", "class1_pan_allele_models", "if", "predicate", "(", "m", ")", "]", "return", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", "=", "allele_to_allele_specific_models", ",", "class1_pan_allele_models", "=", "class1_pan_allele_models", ",", "allele_to_fixed_length_sequence", "=", "self", ".", "allele_to_fixed_length_sequence", ",", ")" ]
Return a new Class1AffinityPredictor containing a subset of this predictor's neural networks. Parameters ---------- predicate : Class1NeuralNetwork -> boolean Function specifying which neural networks to include Returns ------- Class1AffinityPredictor
[ "Return", "a", "new", "Class1AffinityPredictor", "containing", "a", "subset", "of", "this", "predictor", "s", "neural", "networks", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L1130-L1157
train
openvax/mhcflurry
mhcflurry/class1_affinity_predictor.py
Class1AffinityPredictor.model_select
def model_select( self, score_function, alleles=None, min_models=1, max_models=10000): """ Perform model selection using a user-specified scoring function. Model selection is done using a "step up" variable selection procedure, in which models are repeatedly added to an ensemble until the score stops improving. Parameters ---------- score_function : Class1AffinityPredictor -> float function Scoring function alleles : list of string, optional If not specified, model selection is performed for all alleles. min_models : int, optional Min models to select per allele max_models : int, optional Max models to select per allele Returns ------- Class1AffinityPredictor : predictor containing the selected models """ if alleles is None: alleles = self.supported_alleles dfs = [] allele_to_allele_specific_models = {} for allele in alleles: df = pandas.DataFrame({ 'model': self.allele_to_allele_specific_models[allele] }) df["model_num"] = df.index df["allele"] = allele df["selected"] = False round_num = 1 while not df.selected.all() and sum(df.selected) < max_models: score_col = "score_%2d" % round_num prev_score_col = "score_%2d" % (round_num - 1) existing_selected = list(df[df.selected].model) df[score_col] = [ numpy.nan if row.selected else score_function( Class1AffinityPredictor( allele_to_allele_specific_models={ allele: [row.model] + existing_selected } ) ) for (_, row) in df.iterrows() ] if round_num > min_models and ( df[score_col].max() < df[prev_score_col].max()): break # In case of a tie, pick a model at random. (best_model_index,) = df.loc[ (df[score_col] == df[score_col].max()) ].sample(1).index df.loc[best_model_index, "selected"] = True round_num += 1 dfs.append(df) allele_to_allele_specific_models[allele] = list( df.loc[df.selected].model) df = pandas.concat(dfs, ignore_index=True) new_predictor = Class1AffinityPredictor( allele_to_allele_specific_models, metadata_dataframes={ "model_selection": df, }) return new_predictor
python
def model_select( self, score_function, alleles=None, min_models=1, max_models=10000): """ Perform model selection using a user-specified scoring function. Model selection is done using a "step up" variable selection procedure, in which models are repeatedly added to an ensemble until the score stops improving. Parameters ---------- score_function : Class1AffinityPredictor -> float function Scoring function alleles : list of string, optional If not specified, model selection is performed for all alleles. min_models : int, optional Min models to select per allele max_models : int, optional Max models to select per allele Returns ------- Class1AffinityPredictor : predictor containing the selected models """ if alleles is None: alleles = self.supported_alleles dfs = [] allele_to_allele_specific_models = {} for allele in alleles: df = pandas.DataFrame({ 'model': self.allele_to_allele_specific_models[allele] }) df["model_num"] = df.index df["allele"] = allele df["selected"] = False round_num = 1 while not df.selected.all() and sum(df.selected) < max_models: score_col = "score_%2d" % round_num prev_score_col = "score_%2d" % (round_num - 1) existing_selected = list(df[df.selected].model) df[score_col] = [ numpy.nan if row.selected else score_function( Class1AffinityPredictor( allele_to_allele_specific_models={ allele: [row.model] + existing_selected } ) ) for (_, row) in df.iterrows() ] if round_num > min_models and ( df[score_col].max() < df[prev_score_col].max()): break # In case of a tie, pick a model at random. (best_model_index,) = df.loc[ (df[score_col] == df[score_col].max()) ].sample(1).index df.loc[best_model_index, "selected"] = True round_num += 1 dfs.append(df) allele_to_allele_specific_models[allele] = list( df.loc[df.selected].model) df = pandas.concat(dfs, ignore_index=True) new_predictor = Class1AffinityPredictor( allele_to_allele_specific_models, metadata_dataframes={ "model_selection": df, }) return new_predictor
[ "def", "model_select", "(", "self", ",", "score_function", ",", "alleles", "=", "None", ",", "min_models", "=", "1", ",", "max_models", "=", "10000", ")", ":", "if", "alleles", "is", "None", ":", "alleles", "=", "self", ".", "supported_alleles", "dfs", "=", "[", "]", "allele_to_allele_specific_models", "=", "{", "}", "for", "allele", "in", "alleles", ":", "df", "=", "pandas", ".", "DataFrame", "(", "{", "'model'", ":", "self", ".", "allele_to_allele_specific_models", "[", "allele", "]", "}", ")", "df", "[", "\"model_num\"", "]", "=", "df", ".", "index", "df", "[", "\"allele\"", "]", "=", "allele", "df", "[", "\"selected\"", "]", "=", "False", "round_num", "=", "1", "while", "not", "df", ".", "selected", ".", "all", "(", ")", "and", "sum", "(", "df", ".", "selected", ")", "<", "max_models", ":", "score_col", "=", "\"score_%2d\"", "%", "round_num", "prev_score_col", "=", "\"score_%2d\"", "%", "(", "round_num", "-", "1", ")", "existing_selected", "=", "list", "(", "df", "[", "df", ".", "selected", "]", ".", "model", ")", "df", "[", "score_col", "]", "=", "[", "numpy", ".", "nan", "if", "row", ".", "selected", "else", "score_function", "(", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", "=", "{", "allele", ":", "[", "row", ".", "model", "]", "+", "existing_selected", "}", ")", ")", "for", "(", "_", ",", "row", ")", "in", "df", ".", "iterrows", "(", ")", "]", "if", "round_num", ">", "min_models", "and", "(", "df", "[", "score_col", "]", ".", "max", "(", ")", "<", "df", "[", "prev_score_col", "]", ".", "max", "(", ")", ")", ":", "break", "# In case of a tie, pick a model at random.", "(", "best_model_index", ",", ")", "=", "df", ".", "loc", "[", "(", "df", "[", "score_col", "]", "==", "df", "[", "score_col", "]", ".", "max", "(", ")", ")", "]", ".", "sample", "(", "1", ")", ".", "index", "df", ".", "loc", "[", "best_model_index", ",", "\"selected\"", "]", "=", "True", "round_num", "+=", "1", "dfs", ".", "append", "(", "df", ")", "allele_to_allele_specific_models", "[", "allele", "]", "=", "list", "(", "df", ".", "loc", "[", "df", ".", "selected", "]", ".", "model", ")", "df", "=", "pandas", ".", "concat", "(", "dfs", ",", "ignore_index", "=", "True", ")", "new_predictor", "=", "Class1AffinityPredictor", "(", "allele_to_allele_specific_models", ",", "metadata_dataframes", "=", "{", "\"model_selection\"", ":", "df", ",", "}", ")", "return", "new_predictor" ]
Perform model selection using a user-specified scoring function. Model selection is done using a "step up" variable selection procedure, in which models are repeatedly added to an ensemble until the score stops improving. Parameters ---------- score_function : Class1AffinityPredictor -> float function Scoring function alleles : list of string, optional If not specified, model selection is performed for all alleles. min_models : int, optional Min models to select per allele max_models : int, optional Max models to select per allele Returns ------- Class1AffinityPredictor : predictor containing the selected models
[ "Perform", "model", "selection", "using", "a", "user", "-", "specified", "scoring", "function", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/class1_affinity_predictor.py#L1159-L1245
train
openvax/mhcflurry
mhcflurry/percent_rank_transform.py
PercentRankTransform.to_series
def to_series(self): """ Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series """ return pandas.Series( self.cdf, index=[numpy.nan] + list(self.bin_edges) + [numpy.nan])
python
def to_series(self): """ Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series """ return pandas.Series( self.cdf, index=[numpy.nan] + list(self.bin_edges) + [numpy.nan])
[ "def", "to_series", "(", "self", ")", ":", "return", "pandas", ".", "Series", "(", "self", ".", "cdf", ",", "index", "=", "[", "numpy", ".", "nan", "]", "+", "list", "(", "self", ".", "bin_edges", ")", "+", "[", "numpy", ".", "nan", "]", ")" ]
Serialize the fit to a pandas.Series. The index on the series gives the bin edges and the valeus give the CDF. Returns ------- pandas.Series
[ "Serialize", "the", "fit", "to", "a", "pandas", ".", "Series", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/percent_rank_transform.py#L46-L58
train
openvax/mhcflurry
mhcflurry/downloads.py
get_default_class1_models_dir
def get_default_class1_models_dir(test_exists=True): """ Return the absolute path to the default class1 models dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is set to an absolute path, return that path. If it's set to a relative path (i.e. does not start with /) then return that path taken to be relative to the mhcflurry downloads dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is NOT set, then return the path to downloaded models in the "models_class1" download. Parameters ---------- test_exists : boolean, optional Whether to raise an exception of the path does not exist Returns ------- string : absolute path """ if _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR: result = join(get_downloads_dir(), _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR) if test_exists and not exists(result): raise IOError("No such directory: %s" % result) return result else: return get_path("models_class1", "models", test_exists=test_exists)
python
def get_default_class1_models_dir(test_exists=True): """ Return the absolute path to the default class1 models dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is set to an absolute path, return that path. If it's set to a relative path (i.e. does not start with /) then return that path taken to be relative to the mhcflurry downloads dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is NOT set, then return the path to downloaded models in the "models_class1" download. Parameters ---------- test_exists : boolean, optional Whether to raise an exception of the path does not exist Returns ------- string : absolute path """ if _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR: result = join(get_downloads_dir(), _MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR) if test_exists and not exists(result): raise IOError("No such directory: %s" % result) return result else: return get_path("models_class1", "models", test_exists=test_exists)
[ "def", "get_default_class1_models_dir", "(", "test_exists", "=", "True", ")", ":", "if", "_MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR", ":", "result", "=", "join", "(", "get_downloads_dir", "(", ")", ",", "_MHCFLURRY_DEFAULT_CLASS1_MODELS_DIR", ")", "if", "test_exists", "and", "not", "exists", "(", "result", ")", ":", "raise", "IOError", "(", "\"No such directory: %s\"", "%", "result", ")", "return", "result", "else", ":", "return", "get_path", "(", "\"models_class1\"", ",", "\"models\"", ",", "test_exists", "=", "test_exists", ")" ]
Return the absolute path to the default class1 models dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is set to an absolute path, return that path. If it's set to a relative path (i.e. does not start with /) then return that path taken to be relative to the mhcflurry downloads dir. If environment variable MHCFLURRY_DEFAULT_CLASS1_MODELS is NOT set, then return the path to downloaded models in the "models_class1" download. Parameters ---------- test_exists : boolean, optional Whether to raise an exception of the path does not exist Returns ------- string : absolute path
[ "Return", "the", "absolute", "path", "to", "the", "default", "class1", "models", "dir", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L57-L85
train
openvax/mhcflurry
mhcflurry/downloads.py
get_current_release_downloads
def get_current_release_downloads(): """ Return a dict of all available downloads in the current release. The dict keys are the names of the downloads. The values are a dict with two entries: downloaded : bool Whether the download is currently available locally metadata : dict Info about the download from downloads.yml such as URL """ downloads = ( get_downloads_metadata() ['releases'] [get_current_release()] ['downloads']) return OrderedDict( (download["name"], { 'downloaded': exists(join(get_downloads_dir(), download["name"])), 'metadata': download, }) for download in downloads )
python
def get_current_release_downloads(): """ Return a dict of all available downloads in the current release. The dict keys are the names of the downloads. The values are a dict with two entries: downloaded : bool Whether the download is currently available locally metadata : dict Info about the download from downloads.yml such as URL """ downloads = ( get_downloads_metadata() ['releases'] [get_current_release()] ['downloads']) return OrderedDict( (download["name"], { 'downloaded': exists(join(get_downloads_dir(), download["name"])), 'metadata': download, }) for download in downloads )
[ "def", "get_current_release_downloads", "(", ")", ":", "downloads", "=", "(", "get_downloads_metadata", "(", ")", "[", "'releases'", "]", "[", "get_current_release", "(", ")", "]", "[", "'downloads'", "]", ")", "return", "OrderedDict", "(", "(", "download", "[", "\"name\"", "]", ",", "{", "'downloaded'", ":", "exists", "(", "join", "(", "get_downloads_dir", "(", ")", ",", "download", "[", "\"name\"", "]", ")", ")", ",", "'metadata'", ":", "download", ",", "}", ")", "for", "download", "in", "downloads", ")" ]
Return a dict of all available downloads in the current release. The dict keys are the names of the downloads. The values are a dict with two entries: downloaded : bool Whether the download is currently available locally metadata : dict Info about the download from downloads.yml such as URL
[ "Return", "a", "dict", "of", "all", "available", "downloads", "in", "the", "current", "release", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L88-L111
train
openvax/mhcflurry
mhcflurry/downloads.py
get_path
def get_path(download_name, filename='', test_exists=True): """ Get the local path to a file in a MHCflurry download Parameters ----------- download_name : string filename : string Relative path within the download to the file of interest test_exists : boolean If True (default) throw an error telling the user how to download the data if the file does not exist Returns ----------- string giving local absolute path """ assert '/' not in download_name, "Invalid download: %s" % download_name path = join(get_downloads_dir(), download_name, filename) if test_exists and not exists(path): raise RuntimeError( "Missing MHCflurry downloadable file: %s. " "To download this data, run:\n\tmhcflurry-downloads fetch %s\n" "in a shell." % (quote(path), download_name)) return path
python
def get_path(download_name, filename='', test_exists=True): """ Get the local path to a file in a MHCflurry download Parameters ----------- download_name : string filename : string Relative path within the download to the file of interest test_exists : boolean If True (default) throw an error telling the user how to download the data if the file does not exist Returns ----------- string giving local absolute path """ assert '/' not in download_name, "Invalid download: %s" % download_name path = join(get_downloads_dir(), download_name, filename) if test_exists and not exists(path): raise RuntimeError( "Missing MHCflurry downloadable file: %s. " "To download this data, run:\n\tmhcflurry-downloads fetch %s\n" "in a shell." % (quote(path), download_name)) return path
[ "def", "get_path", "(", "download_name", ",", "filename", "=", "''", ",", "test_exists", "=", "True", ")", ":", "assert", "'/'", "not", "in", "download_name", ",", "\"Invalid download: %s\"", "%", "download_name", "path", "=", "join", "(", "get_downloads_dir", "(", ")", ",", "download_name", ",", "filename", ")", "if", "test_exists", "and", "not", "exists", "(", "path", ")", ":", "raise", "RuntimeError", "(", "\"Missing MHCflurry downloadable file: %s. \"", "\"To download this data, run:\\n\\tmhcflurry-downloads fetch %s\\n\"", "\"in a shell.\"", "%", "(", "quote", "(", "path", ")", ",", "download_name", ")", ")", "return", "path" ]
Get the local path to a file in a MHCflurry download Parameters ----------- download_name : string filename : string Relative path within the download to the file of interest test_exists : boolean If True (default) throw an error telling the user how to download the data if the file does not exist Returns ----------- string giving local absolute path
[ "Get", "the", "local", "path", "to", "a", "file", "in", "a", "MHCflurry", "download" ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L114-L141
train
openvax/mhcflurry
mhcflurry/downloads.py
configure
def configure(): """ Setup various global variables based on environment variables. """ global _DOWNLOADS_DIR global _CURRENT_RELEASE _CURRENT_RELEASE = None _DOWNLOADS_DIR = environ.get("MHCFLURRY_DOWNLOADS_DIR") if not _DOWNLOADS_DIR: metadata = get_downloads_metadata() _CURRENT_RELEASE = environ.get("MHCFLURRY_DOWNLOADS_CURRENT_RELEASE") if not _CURRENT_RELEASE: _CURRENT_RELEASE = metadata['current-release'] current_release_compatability = ( metadata["releases"][_CURRENT_RELEASE]["compatibility-version"]) current_compatability = metadata["current-compatibility-version"] if current_release_compatability != current_compatability: logging.warn( "The specified downloads are not compatible with this version " "of the MHCflurry codebase. Downloads: release %s, " "compatability version: %d. Code compatability version: %d" % ( _CURRENT_RELEASE, current_release_compatability, current_compatability)) data_dir = environ.get("MHCFLURRY_DATA_DIR") if not data_dir: # increase the version every time we make a breaking change in # how the data is organized. For changes to e.g. just model # serialization, the downloads release numbers should be used. data_dir = user_data_dir("mhcflurry", version="4") _DOWNLOADS_DIR = join(data_dir, _CURRENT_RELEASE) logging.debug("Configured MHCFLURRY_DOWNLOADS_DIR: %s" % _DOWNLOADS_DIR)
python
def configure(): """ Setup various global variables based on environment variables. """ global _DOWNLOADS_DIR global _CURRENT_RELEASE _CURRENT_RELEASE = None _DOWNLOADS_DIR = environ.get("MHCFLURRY_DOWNLOADS_DIR") if not _DOWNLOADS_DIR: metadata = get_downloads_metadata() _CURRENT_RELEASE = environ.get("MHCFLURRY_DOWNLOADS_CURRENT_RELEASE") if not _CURRENT_RELEASE: _CURRENT_RELEASE = metadata['current-release'] current_release_compatability = ( metadata["releases"][_CURRENT_RELEASE]["compatibility-version"]) current_compatability = metadata["current-compatibility-version"] if current_release_compatability != current_compatability: logging.warn( "The specified downloads are not compatible with this version " "of the MHCflurry codebase. Downloads: release %s, " "compatability version: %d. Code compatability version: %d" % ( _CURRENT_RELEASE, current_release_compatability, current_compatability)) data_dir = environ.get("MHCFLURRY_DATA_DIR") if not data_dir: # increase the version every time we make a breaking change in # how the data is organized. For changes to e.g. just model # serialization, the downloads release numbers should be used. data_dir = user_data_dir("mhcflurry", version="4") _DOWNLOADS_DIR = join(data_dir, _CURRENT_RELEASE) logging.debug("Configured MHCFLURRY_DOWNLOADS_DIR: %s" % _DOWNLOADS_DIR)
[ "def", "configure", "(", ")", ":", "global", "_DOWNLOADS_DIR", "global", "_CURRENT_RELEASE", "_CURRENT_RELEASE", "=", "None", "_DOWNLOADS_DIR", "=", "environ", ".", "get", "(", "\"MHCFLURRY_DOWNLOADS_DIR\"", ")", "if", "not", "_DOWNLOADS_DIR", ":", "metadata", "=", "get_downloads_metadata", "(", ")", "_CURRENT_RELEASE", "=", "environ", ".", "get", "(", "\"MHCFLURRY_DOWNLOADS_CURRENT_RELEASE\"", ")", "if", "not", "_CURRENT_RELEASE", ":", "_CURRENT_RELEASE", "=", "metadata", "[", "'current-release'", "]", "current_release_compatability", "=", "(", "metadata", "[", "\"releases\"", "]", "[", "_CURRENT_RELEASE", "]", "[", "\"compatibility-version\"", "]", ")", "current_compatability", "=", "metadata", "[", "\"current-compatibility-version\"", "]", "if", "current_release_compatability", "!=", "current_compatability", ":", "logging", ".", "warn", "(", "\"The specified downloads are not compatible with this version \"", "\"of the MHCflurry codebase. Downloads: release %s, \"", "\"compatability version: %d. Code compatability version: %d\"", "%", "(", "_CURRENT_RELEASE", ",", "current_release_compatability", ",", "current_compatability", ")", ")", "data_dir", "=", "environ", ".", "get", "(", "\"MHCFLURRY_DATA_DIR\"", ")", "if", "not", "data_dir", ":", "# increase the version every time we make a breaking change in", "# how the data is organized. For changes to e.g. just model", "# serialization, the downloads release numbers should be used.", "data_dir", "=", "user_data_dir", "(", "\"mhcflurry\"", ",", "version", "=", "\"4\"", ")", "_DOWNLOADS_DIR", "=", "join", "(", "data_dir", ",", "_CURRENT_RELEASE", ")", "logging", ".", "debug", "(", "\"Configured MHCFLURRY_DOWNLOADS_DIR: %s\"", "%", "_DOWNLOADS_DIR", ")" ]
Setup various global variables based on environment variables.
[ "Setup", "various", "global", "variables", "based", "on", "environment", "variables", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/downloads.py#L144-L179
train
openvax/mhcflurry
mhcflurry/parallelism.py
make_worker_pool
def make_worker_pool( processes=None, initializer=None, initializer_kwargs_per_process=None, max_tasks_per_worker=None): """ Convenience wrapper to create a multiprocessing.Pool. This function adds support for per-worker initializer arguments, which are not natively supported by the multiprocessing module. The motivation for this feature is to support allocating each worker to a (different) GPU. IMPLEMENTATION NOTE: The per-worker initializer arguments are implemented using a Queue. Each worker reads its arguments from this queue when it starts. When it terminates, it adds its initializer arguments back to the queue, so a future process can initialize itself using these arguments. There is one issue with this approach, however. If a worker crashes, it never repopulates the queue of initializer arguments. This will prevent any future worker from re-using those arguments. To deal with this issue we add a second 'backup queue'. This queue always contains the full set of initializer arguments: whenever a worker reads from it, it always pushes the pop'd args back to the end of the queue immediately. If the primary arg queue is ever empty, then workers will read from this backup queue. Parameters ---------- processes : int Number of workers. Default: num CPUs. initializer : function, optional Init function to call in each worker initializer_kwargs_per_process : list of dict, optional Arguments to pass to initializer function for each worker. Length of list must equal the number of workers. max_tasks_per_worker : int, optional Restart workers after this many tasks. Requires Python >=3.2. Returns ------- multiprocessing.Pool """ if not processes: processes = cpu_count() pool_kwargs = { 'processes': processes, } if max_tasks_per_worker: pool_kwargs["maxtasksperchild"] = max_tasks_per_worker if initializer: if initializer_kwargs_per_process: assert len(initializer_kwargs_per_process) == processes kwargs_queue = Queue() kwargs_queue_backup = Queue() for kwargs in initializer_kwargs_per_process: kwargs_queue.put(kwargs) kwargs_queue_backup.put(kwargs) pool_kwargs["initializer"] = worker_init_entry_point pool_kwargs["initargs"] = ( initializer, kwargs_queue, kwargs_queue_backup) else: pool_kwargs["initializer"] = initializer worker_pool = Pool(**pool_kwargs) print("Started pool: %s" % str(worker_pool)) pprint(pool_kwargs) return worker_pool
python
def make_worker_pool( processes=None, initializer=None, initializer_kwargs_per_process=None, max_tasks_per_worker=None): """ Convenience wrapper to create a multiprocessing.Pool. This function adds support for per-worker initializer arguments, which are not natively supported by the multiprocessing module. The motivation for this feature is to support allocating each worker to a (different) GPU. IMPLEMENTATION NOTE: The per-worker initializer arguments are implemented using a Queue. Each worker reads its arguments from this queue when it starts. When it terminates, it adds its initializer arguments back to the queue, so a future process can initialize itself using these arguments. There is one issue with this approach, however. If a worker crashes, it never repopulates the queue of initializer arguments. This will prevent any future worker from re-using those arguments. To deal with this issue we add a second 'backup queue'. This queue always contains the full set of initializer arguments: whenever a worker reads from it, it always pushes the pop'd args back to the end of the queue immediately. If the primary arg queue is ever empty, then workers will read from this backup queue. Parameters ---------- processes : int Number of workers. Default: num CPUs. initializer : function, optional Init function to call in each worker initializer_kwargs_per_process : list of dict, optional Arguments to pass to initializer function for each worker. Length of list must equal the number of workers. max_tasks_per_worker : int, optional Restart workers after this many tasks. Requires Python >=3.2. Returns ------- multiprocessing.Pool """ if not processes: processes = cpu_count() pool_kwargs = { 'processes': processes, } if max_tasks_per_worker: pool_kwargs["maxtasksperchild"] = max_tasks_per_worker if initializer: if initializer_kwargs_per_process: assert len(initializer_kwargs_per_process) == processes kwargs_queue = Queue() kwargs_queue_backup = Queue() for kwargs in initializer_kwargs_per_process: kwargs_queue.put(kwargs) kwargs_queue_backup.put(kwargs) pool_kwargs["initializer"] = worker_init_entry_point pool_kwargs["initargs"] = ( initializer, kwargs_queue, kwargs_queue_backup) else: pool_kwargs["initializer"] = initializer worker_pool = Pool(**pool_kwargs) print("Started pool: %s" % str(worker_pool)) pprint(pool_kwargs) return worker_pool
[ "def", "make_worker_pool", "(", "processes", "=", "None", ",", "initializer", "=", "None", ",", "initializer_kwargs_per_process", "=", "None", ",", "max_tasks_per_worker", "=", "None", ")", ":", "if", "not", "processes", ":", "processes", "=", "cpu_count", "(", ")", "pool_kwargs", "=", "{", "'processes'", ":", "processes", ",", "}", "if", "max_tasks_per_worker", ":", "pool_kwargs", "[", "\"maxtasksperchild\"", "]", "=", "max_tasks_per_worker", "if", "initializer", ":", "if", "initializer_kwargs_per_process", ":", "assert", "len", "(", "initializer_kwargs_per_process", ")", "==", "processes", "kwargs_queue", "=", "Queue", "(", ")", "kwargs_queue_backup", "=", "Queue", "(", ")", "for", "kwargs", "in", "initializer_kwargs_per_process", ":", "kwargs_queue", ".", "put", "(", "kwargs", ")", "kwargs_queue_backup", ".", "put", "(", "kwargs", ")", "pool_kwargs", "[", "\"initializer\"", "]", "=", "worker_init_entry_point", "pool_kwargs", "[", "\"initargs\"", "]", "=", "(", "initializer", ",", "kwargs_queue", ",", "kwargs_queue_backup", ")", "else", ":", "pool_kwargs", "[", "\"initializer\"", "]", "=", "initializer", "worker_pool", "=", "Pool", "(", "*", "*", "pool_kwargs", ")", "print", "(", "\"Started pool: %s\"", "%", "str", "(", "worker_pool", ")", ")", "pprint", "(", "pool_kwargs", ")", "return", "worker_pool" ]
Convenience wrapper to create a multiprocessing.Pool. This function adds support for per-worker initializer arguments, which are not natively supported by the multiprocessing module. The motivation for this feature is to support allocating each worker to a (different) GPU. IMPLEMENTATION NOTE: The per-worker initializer arguments are implemented using a Queue. Each worker reads its arguments from this queue when it starts. When it terminates, it adds its initializer arguments back to the queue, so a future process can initialize itself using these arguments. There is one issue with this approach, however. If a worker crashes, it never repopulates the queue of initializer arguments. This will prevent any future worker from re-using those arguments. To deal with this issue we add a second 'backup queue'. This queue always contains the full set of initializer arguments: whenever a worker reads from it, it always pushes the pop'd args back to the end of the queue immediately. If the primary arg queue is ever empty, then workers will read from this backup queue. Parameters ---------- processes : int Number of workers. Default: num CPUs. initializer : function, optional Init function to call in each worker initializer_kwargs_per_process : list of dict, optional Arguments to pass to initializer function for each worker. Length of list must equal the number of workers. max_tasks_per_worker : int, optional Restart workers after this many tasks. Requires Python >=3.2. Returns ------- multiprocessing.Pool
[ "Convenience", "wrapper", "to", "create", "a", "multiprocessing", ".", "Pool", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/parallelism.py#L115-L188
train
openvax/mhcflurry
mhcflurry/calibrate_percentile_ranks_command.py
calibrate_percentile_ranks
def calibrate_percentile_ranks(allele, predictor, peptides=None): """ Private helper function. """ global GLOBAL_DATA if peptides is None: peptides = GLOBAL_DATA["calibration_peptides"] predictor.calibrate_percentile_ranks( peptides=peptides, alleles=[allele]) return { allele: predictor.allele_to_percent_rank_transform[allele], }
python
def calibrate_percentile_ranks(allele, predictor, peptides=None): """ Private helper function. """ global GLOBAL_DATA if peptides is None: peptides = GLOBAL_DATA["calibration_peptides"] predictor.calibrate_percentile_ranks( peptides=peptides, alleles=[allele]) return { allele: predictor.allele_to_percent_rank_transform[allele], }
[ "def", "calibrate_percentile_ranks", "(", "allele", ",", "predictor", ",", "peptides", "=", "None", ")", ":", "global", "GLOBAL_DATA", "if", "peptides", "is", "None", ":", "peptides", "=", "GLOBAL_DATA", "[", "\"calibration_peptides\"", "]", "predictor", ".", "calibrate_percentile_ranks", "(", "peptides", "=", "peptides", ",", "alleles", "=", "[", "allele", "]", ")", "return", "{", "allele", ":", "predictor", ".", "allele_to_percent_rank_transform", "[", "allele", "]", ",", "}" ]
Private helper function.
[ "Private", "helper", "function", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/calibrate_percentile_ranks_command.py#L140-L152
train
openvax/mhcflurry
mhcflurry/common.py
set_keras_backend
def set_keras_backend(backend=None, gpu_device_nums=None, num_threads=None): """ Configure Keras backend to use GPU or CPU. Only tensorflow is supported. Parameters ---------- backend : string, optional one of 'tensorflow-default', 'tensorflow-cpu', 'tensorflow-gpu' gpu_device_nums : list of int, optional GPU devices to potentially use num_threads : int, optional Tensorflow threads to use """ os.environ["KERAS_BACKEND"] = "tensorflow" original_backend = backend if not backend: backend = "tensorflow-default" if gpu_device_nums is not None: os.environ["CUDA_VISIBLE_DEVICES"] = ",".join( [str(i) for i in gpu_device_nums]) if backend == "tensorflow-cpu" or gpu_device_nums == []: print("Forcing tensorflow/CPU backend.") os.environ["CUDA_VISIBLE_DEVICES"] = "" device_count = {'CPU': 1, 'GPU': 0} elif backend == "tensorflow-gpu": print("Forcing tensorflow/GPU backend.") device_count = {'CPU': 0, 'GPU': 1} elif backend == "tensorflow-default": print("Forcing tensorflow backend.") device_count = None else: raise ValueError("Unsupported backend: %s" % backend) import tensorflow from keras import backend as K if K.backend() == 'tensorflow': config = tensorflow.ConfigProto(device_count=device_count) config.gpu_options.allow_growth = True if num_threads: config.inter_op_parallelism_threads = num_threads config.intra_op_parallelism_threads = num_threads session = tensorflow.Session(config=config) K.set_session(session) else: if original_backend or gpu_device_nums or num_threads: warnings.warn( "Only tensorflow backend can be customized. Ignoring " " customization. Backend: %s" % K.backend())
python
def set_keras_backend(backend=None, gpu_device_nums=None, num_threads=None): """ Configure Keras backend to use GPU or CPU. Only tensorflow is supported. Parameters ---------- backend : string, optional one of 'tensorflow-default', 'tensorflow-cpu', 'tensorflow-gpu' gpu_device_nums : list of int, optional GPU devices to potentially use num_threads : int, optional Tensorflow threads to use """ os.environ["KERAS_BACKEND"] = "tensorflow" original_backend = backend if not backend: backend = "tensorflow-default" if gpu_device_nums is not None: os.environ["CUDA_VISIBLE_DEVICES"] = ",".join( [str(i) for i in gpu_device_nums]) if backend == "tensorflow-cpu" or gpu_device_nums == []: print("Forcing tensorflow/CPU backend.") os.environ["CUDA_VISIBLE_DEVICES"] = "" device_count = {'CPU': 1, 'GPU': 0} elif backend == "tensorflow-gpu": print("Forcing tensorflow/GPU backend.") device_count = {'CPU': 0, 'GPU': 1} elif backend == "tensorflow-default": print("Forcing tensorflow backend.") device_count = None else: raise ValueError("Unsupported backend: %s" % backend) import tensorflow from keras import backend as K if K.backend() == 'tensorflow': config = tensorflow.ConfigProto(device_count=device_count) config.gpu_options.allow_growth = True if num_threads: config.inter_op_parallelism_threads = num_threads config.intra_op_parallelism_threads = num_threads session = tensorflow.Session(config=config) K.set_session(session) else: if original_backend or gpu_device_nums or num_threads: warnings.warn( "Only tensorflow backend can be customized. Ignoring " " customization. Backend: %s" % K.backend())
[ "def", "set_keras_backend", "(", "backend", "=", "None", ",", "gpu_device_nums", "=", "None", ",", "num_threads", "=", "None", ")", ":", "os", ".", "environ", "[", "\"KERAS_BACKEND\"", "]", "=", "\"tensorflow\"", "original_backend", "=", "backend", "if", "not", "backend", ":", "backend", "=", "\"tensorflow-default\"", "if", "gpu_device_nums", "is", "not", "None", ":", "os", ".", "environ", "[", "\"CUDA_VISIBLE_DEVICES\"", "]", "=", "\",\"", ".", "join", "(", "[", "str", "(", "i", ")", "for", "i", "in", "gpu_device_nums", "]", ")", "if", "backend", "==", "\"tensorflow-cpu\"", "or", "gpu_device_nums", "==", "[", "]", ":", "print", "(", "\"Forcing tensorflow/CPU backend.\"", ")", "os", ".", "environ", "[", "\"CUDA_VISIBLE_DEVICES\"", "]", "=", "\"\"", "device_count", "=", "{", "'CPU'", ":", "1", ",", "'GPU'", ":", "0", "}", "elif", "backend", "==", "\"tensorflow-gpu\"", ":", "print", "(", "\"Forcing tensorflow/GPU backend.\"", ")", "device_count", "=", "{", "'CPU'", ":", "0", ",", "'GPU'", ":", "1", "}", "elif", "backend", "==", "\"tensorflow-default\"", ":", "print", "(", "\"Forcing tensorflow backend.\"", ")", "device_count", "=", "None", "else", ":", "raise", "ValueError", "(", "\"Unsupported backend: %s\"", "%", "backend", ")", "import", "tensorflow", "from", "keras", "import", "backend", "as", "K", "if", "K", ".", "backend", "(", ")", "==", "'tensorflow'", ":", "config", "=", "tensorflow", ".", "ConfigProto", "(", "device_count", "=", "device_count", ")", "config", ".", "gpu_options", ".", "allow_growth", "=", "True", "if", "num_threads", ":", "config", ".", "inter_op_parallelism_threads", "=", "num_threads", "config", ".", "intra_op_parallelism_threads", "=", "num_threads", "session", "=", "tensorflow", ".", "Session", "(", "config", "=", "config", ")", "K", ".", "set_session", "(", "session", ")", "else", ":", "if", "original_backend", "or", "gpu_device_nums", "or", "num_threads", ":", "warnings", ".", "warn", "(", "\"Only tensorflow backend can be customized. Ignoring \"", "\" customization. Backend: %s\"", "%", "K", ".", "backend", "(", ")", ")" ]
Configure Keras backend to use GPU or CPU. Only tensorflow is supported. Parameters ---------- backend : string, optional one of 'tensorflow-default', 'tensorflow-cpu', 'tensorflow-gpu' gpu_device_nums : list of int, optional GPU devices to potentially use num_threads : int, optional Tensorflow threads to use
[ "Configure", "Keras", "backend", "to", "use", "GPU", "or", "CPU", ".", "Only", "tensorflow", "is", "supported", "." ]
deb7c1629111254b484a2711619eb2347db36524
https://github.com/openvax/mhcflurry/blob/deb7c1629111254b484a2711619eb2347db36524/mhcflurry/common.py#L14-L68
train
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.uproot
def uproot(tree): """ Take a subranch of a tree and deep-copy the children of this subbranch into a new LabeledTree """ uprooted = tree.copy() uprooted.parent = None for child in tree.all_children(): uprooted.add_general_child(child) return uprooted
python
def uproot(tree): """ Take a subranch of a tree and deep-copy the children of this subbranch into a new LabeledTree """ uprooted = tree.copy() uprooted.parent = None for child in tree.all_children(): uprooted.add_general_child(child) return uprooted
[ "def", "uproot", "(", "tree", ")", ":", "uprooted", "=", "tree", ".", "copy", "(", ")", "uprooted", ".", "parent", "=", "None", "for", "child", "in", "tree", ".", "all_children", "(", ")", ":", "uprooted", ".", "add_general_child", "(", "child", ")", "return", "uprooted" ]
Take a subranch of a tree and deep-copy the children of this subbranch into a new LabeledTree
[ "Take", "a", "subranch", "of", "a", "tree", "and", "deep", "-", "copy", "the", "children", "of", "this", "subbranch", "into", "a", "new", "LabeledTree" ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L35-L44
train
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.copy
def copy(self): """ Deep Copy of a LabeledTree """ return LabeledTree( udepth = self.udepth, depth = self.depth, text = self.text, label = self.label, children = self.children.copy() if self.children != None else [], parent = self.parent)
python
def copy(self): """ Deep Copy of a LabeledTree """ return LabeledTree( udepth = self.udepth, depth = self.depth, text = self.text, label = self.label, children = self.children.copy() if self.children != None else [], parent = self.parent)
[ "def", "copy", "(", "self", ")", ":", "return", "LabeledTree", "(", "udepth", "=", "self", ".", "udepth", ",", "depth", "=", "self", ".", "depth", ",", "text", "=", "self", ".", "text", ",", "label", "=", "self", ".", "label", ",", "children", "=", "self", ".", "children", ".", "copy", "(", ")", "if", "self", ".", "children", "!=", "None", "else", "[", "]", ",", "parent", "=", "self", ".", "parent", ")" ]
Deep Copy of a LabeledTree
[ "Deep", "Copy", "of", "a", "LabeledTree" ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L60-L70
train
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.add_child
def add_child(self, child): """ Adds a branch to the current tree. """ self.children.append(child) child.parent = self self.udepth = max([child.udepth for child in self.children]) + 1
python
def add_child(self, child): """ Adds a branch to the current tree. """ self.children.append(child) child.parent = self self.udepth = max([child.udepth for child in self.children]) + 1
[ "def", "add_child", "(", "self", ",", "child", ")", ":", "self", ".", "children", ".", "append", "(", "child", ")", "child", ".", "parent", "=", "self", "self", ".", "udepth", "=", "max", "(", "[", "child", ".", "udepth", "for", "child", "in", "self", ".", "children", "]", ")", "+", "1" ]
Adds a branch to the current tree.
[ "Adds", "a", "branch", "to", "the", "current", "tree", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L72-L78
train
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.lowercase
def lowercase(self): """ Lowercase all strings in this tree. Works recursively and in-place. """ if len(self.children) > 0: for child in self.children: child.lowercase() else: self.text = self.text.lower()
python
def lowercase(self): """ Lowercase all strings in this tree. Works recursively and in-place. """ if len(self.children) > 0: for child in self.children: child.lowercase() else: self.text = self.text.lower()
[ "def", "lowercase", "(", "self", ")", ":", "if", "len", "(", "self", ".", "children", ")", ">", "0", ":", "for", "child", "in", "self", ".", "children", ":", "child", ".", "lowercase", "(", ")", "else", ":", "self", ".", "text", "=", "self", ".", "text", ".", "lower", "(", ")" ]
Lowercase all strings in this tree. Works recursively and in-place.
[ "Lowercase", "all", "strings", "in", "this", "tree", ".", "Works", "recursively", "and", "in", "-", "place", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L92-L101
train
JonathanRaiman/pytreebank
pytreebank/labeled_trees.py
LabeledTree.inject_visualization_javascript
def inject_visualization_javascript(tree_width=1200, tree_height=400, tree_node_radius=10): """ In an Ipython notebook, show SST trees using the same Javascript code as used by Jason Chuang's visualisations. """ from .javascript import insert_sentiment_markup insert_sentiment_markup(tree_width=tree_width, tree_height=tree_height, tree_node_radius=tree_node_radius)
python
def inject_visualization_javascript(tree_width=1200, tree_height=400, tree_node_radius=10): """ In an Ipython notebook, show SST trees using the same Javascript code as used by Jason Chuang's visualisations. """ from .javascript import insert_sentiment_markup insert_sentiment_markup(tree_width=tree_width, tree_height=tree_height, tree_node_radius=tree_node_radius)
[ "def", "inject_visualization_javascript", "(", "tree_width", "=", "1200", ",", "tree_height", "=", "400", ",", "tree_node_radius", "=", "10", ")", ":", "from", ".", "javascript", "import", "insert_sentiment_markup", "insert_sentiment_markup", "(", "tree_width", "=", "tree_width", ",", "tree_height", "=", "tree_height", ",", "tree_node_radius", "=", "tree_node_radius", ")" ]
In an Ipython notebook, show SST trees using the same Javascript code as used by Jason Chuang's visualisations.
[ "In", "an", "Ipython", "notebook", "show", "SST", "trees", "using", "the", "same", "Javascript", "code", "as", "used", "by", "Jason", "Chuang", "s", "visualisations", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/labeled_trees.py#L195-L201
train
JonathanRaiman/pytreebank
pytreebank/parse.py
create_tree_from_string
def create_tree_from_string(line): """ Parse and convert a string representation of an example into a LabeledTree datastructure. Arguments: ---------- line : str, string version of the tree. Returns: -------- LabeledTree : parsed tree. """ depth = 0 current_word = "" root = None current_node = root for char in line: if char == '(': if current_node is not None and len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" depth += 1 if depth > 1: # replace current head node by this node: child = LabeledTree(depth=depth) current_node.add_child(child) current_node = child root.add_general_child(child) else: root = LabeledTree(depth=depth) root.add_general_child(root) current_node = root elif char == ')': # assign current word: if len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" # go up a level: depth -= 1 if current_node.parent != None: current_node.parent.udepth = max(current_node.udepth+1, current_node.parent.udepth) current_node = current_node.parent else: # add to current read word current_word += char if depth != 0: raise ParseError("Not an equal amount of closing and opening parentheses") return root
python
def create_tree_from_string(line): """ Parse and convert a string representation of an example into a LabeledTree datastructure. Arguments: ---------- line : str, string version of the tree. Returns: -------- LabeledTree : parsed tree. """ depth = 0 current_word = "" root = None current_node = root for char in line: if char == '(': if current_node is not None and len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" depth += 1 if depth > 1: # replace current head node by this node: child = LabeledTree(depth=depth) current_node.add_child(child) current_node = child root.add_general_child(child) else: root = LabeledTree(depth=depth) root.add_general_child(root) current_node = root elif char == ')': # assign current word: if len(current_word) > 0: attribute_text_label(current_node, current_word) current_word = "" # go up a level: depth -= 1 if current_node.parent != None: current_node.parent.udepth = max(current_node.udepth+1, current_node.parent.udepth) current_node = current_node.parent else: # add to current read word current_word += char if depth != 0: raise ParseError("Not an equal amount of closing and opening parentheses") return root
[ "def", "create_tree_from_string", "(", "line", ")", ":", "depth", "=", "0", "current_word", "=", "\"\"", "root", "=", "None", "current_node", "=", "root", "for", "char", "in", "line", ":", "if", "char", "==", "'('", ":", "if", "current_node", "is", "not", "None", "and", "len", "(", "current_word", ")", ">", "0", ":", "attribute_text_label", "(", "current_node", ",", "current_word", ")", "current_word", "=", "\"\"", "depth", "+=", "1", "if", "depth", ">", "1", ":", "# replace current head node by this node:", "child", "=", "LabeledTree", "(", "depth", "=", "depth", ")", "current_node", ".", "add_child", "(", "child", ")", "current_node", "=", "child", "root", ".", "add_general_child", "(", "child", ")", "else", ":", "root", "=", "LabeledTree", "(", "depth", "=", "depth", ")", "root", ".", "add_general_child", "(", "root", ")", "current_node", "=", "root", "elif", "char", "==", "')'", ":", "# assign current word:", "if", "len", "(", "current_word", ")", ">", "0", ":", "attribute_text_label", "(", "current_node", ",", "current_word", ")", "current_word", "=", "\"\"", "# go up a level:", "depth", "-=", "1", "if", "current_node", ".", "parent", "!=", "None", ":", "current_node", ".", "parent", ".", "udepth", "=", "max", "(", "current_node", ".", "udepth", "+", "1", ",", "current_node", ".", "parent", ".", "udepth", ")", "current_node", "=", "current_node", ".", "parent", "else", ":", "# add to current read word", "current_word", "+=", "char", "if", "depth", "!=", "0", ":", "raise", "ParseError", "(", "\"Not an equal amount of closing and opening parentheses\"", ")", "return", "root" ]
Parse and convert a string representation of an example into a LabeledTree datastructure. Arguments: ---------- line : str, string version of the tree. Returns: -------- LabeledTree : parsed tree.
[ "Parse", "and", "convert", "a", "string", "representation", "of", "an", "example", "into", "a", "LabeledTree", "datastructure", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L49-L101
train
JonathanRaiman/pytreebank
pytreebank/parse.py
import_tree_corpus
def import_tree_corpus(path): """ Import a text file of treebank trees. Arguments: ---------- path : str, filename for tree corpus. Returns: -------- list<LabeledTree> : loaded examples. """ tree_list = LabeledTreeCorpus() with codecs.open(path, "r", "UTF-8") as f: for line in f: tree_list.append(create_tree_from_string(line)) return tree_list
python
def import_tree_corpus(path): """ Import a text file of treebank trees. Arguments: ---------- path : str, filename for tree corpus. Returns: -------- list<LabeledTree> : loaded examples. """ tree_list = LabeledTreeCorpus() with codecs.open(path, "r", "UTF-8") as f: for line in f: tree_list.append(create_tree_from_string(line)) return tree_list
[ "def", "import_tree_corpus", "(", "path", ")", ":", "tree_list", "=", "LabeledTreeCorpus", "(", ")", "with", "codecs", ".", "open", "(", "path", ",", "\"r\"", ",", "\"UTF-8\"", ")", "as", "f", ":", "for", "line", "in", "f", ":", "tree_list", ".", "append", "(", "create_tree_from_string", "(", "line", ")", ")", "return", "tree_list" ]
Import a text file of treebank trees. Arguments: ---------- path : str, filename for tree corpus. Returns: -------- list<LabeledTree> : loaded examples.
[ "Import", "a", "text", "file", "of", "treebank", "trees", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L144-L160
train
JonathanRaiman/pytreebank
pytreebank/parse.py
load_sst
def load_sst(path=None, url='http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'): """ Download and read in the Stanford Sentiment Treebank dataset into a dictionary with a 'train', 'dev', and 'test' keys. The dictionary keys point to lists of LabeledTrees. Arguments: ---------- path : str, (optional defaults to ~/stanford_sentiment_treebank), directory where the corpus should be downloaded (and imported from). url : str, where the corpus should be downloaded from (defaults to nlp.stanford.edu address). Returns: -------- dict : loaded dataset """ if path is None: # find a good temporary path path = os.path.expanduser("~/stanford_sentiment_treebank/") makedirs(path, exist_ok=True) fnames = download_sst(path, url) return {key: import_tree_corpus(value) for key, value in fnames.items()}
python
def load_sst(path=None, url='http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'): """ Download and read in the Stanford Sentiment Treebank dataset into a dictionary with a 'train', 'dev', and 'test' keys. The dictionary keys point to lists of LabeledTrees. Arguments: ---------- path : str, (optional defaults to ~/stanford_sentiment_treebank), directory where the corpus should be downloaded (and imported from). url : str, where the corpus should be downloaded from (defaults to nlp.stanford.edu address). Returns: -------- dict : loaded dataset """ if path is None: # find a good temporary path path = os.path.expanduser("~/stanford_sentiment_treebank/") makedirs(path, exist_ok=True) fnames = download_sst(path, url) return {key: import_tree_corpus(value) for key, value in fnames.items()}
[ "def", "load_sst", "(", "path", "=", "None", ",", "url", "=", "'http://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip'", ")", ":", "if", "path", "is", "None", ":", "# find a good temporary path", "path", "=", "os", ".", "path", ".", "expanduser", "(", "\"~/stanford_sentiment_treebank/\"", ")", "makedirs", "(", "path", ",", "exist_ok", "=", "True", ")", "fnames", "=", "download_sst", "(", "path", ",", "url", ")", "return", "{", "key", ":", "import_tree_corpus", "(", "value", ")", "for", "key", ",", "value", "in", "fnames", ".", "items", "(", ")", "}" ]
Download and read in the Stanford Sentiment Treebank dataset into a dictionary with a 'train', 'dev', and 'test' keys. The dictionary keys point to lists of LabeledTrees. Arguments: ---------- path : str, (optional defaults to ~/stanford_sentiment_treebank), directory where the corpus should be downloaded (and imported from). url : str, where the corpus should be downloaded from (defaults to nlp.stanford.edu address). Returns: -------- dict : loaded dataset
[ "Download", "and", "read", "in", "the", "Stanford", "Sentiment", "Treebank", "dataset", "into", "a", "dictionary", "with", "a", "train", "dev", "and", "test", "keys", ".", "The", "dictionary", "keys", "point", "to", "lists", "of", "LabeledTrees", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L163-L187
train
JonathanRaiman/pytreebank
pytreebank/parse.py
LabeledTreeCorpus.labels
def labels(self): """ Construct a dictionary of string -> labels Returns: -------- OrderedDict<str, int> : string label pairs. """ labelings = OrderedDict() for tree in self: for label, line in tree.to_labeled_lines(): labelings[line] = label return labelings
python
def labels(self): """ Construct a dictionary of string -> labels Returns: -------- OrderedDict<str, int> : string label pairs. """ labelings = OrderedDict() for tree in self: for label, line in tree.to_labeled_lines(): labelings[line] = label return labelings
[ "def", "labels", "(", "self", ")", ":", "labelings", "=", "OrderedDict", "(", ")", "for", "tree", "in", "self", ":", "for", "label", ",", "line", "in", "tree", ".", "to_labeled_lines", "(", ")", ":", "labelings", "[", "line", "]", "=", "label", "return", "labelings" ]
Construct a dictionary of string -> labels Returns: -------- OrderedDict<str, int> : string label pairs.
[ "Construct", "a", "dictionary", "of", "string", "-", ">", "labels" ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L112-L124
train
JonathanRaiman/pytreebank
pytreebank/parse.py
LabeledTreeCorpus.to_file
def to_file(self, path, mode="w"): """ Save the corpus to a text file in the original format. Arguments: ---------- path : str, where to save the corpus. mode : str, how to open the file. """ with open(path, mode=mode) as f: for tree in self: for label, line in tree.to_labeled_lines(): f.write(line + "\n")
python
def to_file(self, path, mode="w"): """ Save the corpus to a text file in the original format. Arguments: ---------- path : str, where to save the corpus. mode : str, how to open the file. """ with open(path, mode=mode) as f: for tree in self: for label, line in tree.to_labeled_lines(): f.write(line + "\n")
[ "def", "to_file", "(", "self", ",", "path", ",", "mode", "=", "\"w\"", ")", ":", "with", "open", "(", "path", ",", "mode", "=", "mode", ")", "as", "f", ":", "for", "tree", "in", "self", ":", "for", "label", ",", "line", "in", "tree", ".", "to_labeled_lines", "(", ")", ":", "f", ".", "write", "(", "line", "+", "\"\\n\"", ")" ]
Save the corpus to a text file in the original format. Arguments: ---------- path : str, where to save the corpus. mode : str, how to open the file.
[ "Save", "the", "corpus", "to", "a", "text", "file", "in", "the", "original", "format", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/parse.py#L127-L140
train
JonathanRaiman/pytreebank
pytreebank/treelstm.py
import_tree_corpus
def import_tree_corpus(labels_path, parents_path, texts_path): """ Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees. """ with codecs.open(labels_path, "r", "UTF-8") as f: label_lines = f.readlines() with codecs.open(parents_path, "r", "UTF-8") as f: parent_lines = f.readlines() with codecs.open(texts_path, "r", "UTF-8") as f: word_lines = f.readlines() assert len(label_lines) == len(parent_lines) assert len(label_lines) == len(word_lines) trees = [] for labels, parents, words in zip(label_lines, parent_lines, word_lines): labels = [int(l) + 2 for l in labels.strip().split(" ")] parents = [int(l) for l in parents.strip().split(" ")] words = words.strip().split(" ") assert len(labels) == len(parents) trees.append(read_tree(parents, labels, words)) return trees
python
def import_tree_corpus(labels_path, parents_path, texts_path): """ Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees. """ with codecs.open(labels_path, "r", "UTF-8") as f: label_lines = f.readlines() with codecs.open(parents_path, "r", "UTF-8") as f: parent_lines = f.readlines() with codecs.open(texts_path, "r", "UTF-8") as f: word_lines = f.readlines() assert len(label_lines) == len(parent_lines) assert len(label_lines) == len(word_lines) trees = [] for labels, parents, words in zip(label_lines, parent_lines, word_lines): labels = [int(l) + 2 for l in labels.strip().split(" ")] parents = [int(l) for l in parents.strip().split(" ")] words = words.strip().split(" ") assert len(labels) == len(parents) trees.append(read_tree(parents, labels, words)) return trees
[ "def", "import_tree_corpus", "(", "labels_path", ",", "parents_path", ",", "texts_path", ")", ":", "with", "codecs", ".", "open", "(", "labels_path", ",", "\"r\"", ",", "\"UTF-8\"", ")", "as", "f", ":", "label_lines", "=", "f", ".", "readlines", "(", ")", "with", "codecs", ".", "open", "(", "parents_path", ",", "\"r\"", ",", "\"UTF-8\"", ")", "as", "f", ":", "parent_lines", "=", "f", ".", "readlines", "(", ")", "with", "codecs", ".", "open", "(", "texts_path", ",", "\"r\"", ",", "\"UTF-8\"", ")", "as", "f", ":", "word_lines", "=", "f", ".", "readlines", "(", ")", "assert", "len", "(", "label_lines", ")", "==", "len", "(", "parent_lines", ")", "assert", "len", "(", "label_lines", ")", "==", "len", "(", "word_lines", ")", "trees", "=", "[", "]", "for", "labels", ",", "parents", ",", "words", "in", "zip", "(", "label_lines", ",", "parent_lines", ",", "word_lines", ")", ":", "labels", "=", "[", "int", "(", "l", ")", "+", "2", "for", "l", "in", "labels", ".", "strip", "(", ")", ".", "split", "(", "\" \"", ")", "]", "parents", "=", "[", "int", "(", "l", ")", "for", "l", "in", "parents", ".", "strip", "(", ")", ".", "split", "(", "\" \"", ")", "]", "words", "=", "words", ".", "strip", "(", ")", ".", "split", "(", "\" \"", ")", "assert", "len", "(", "labels", ")", "==", "len", "(", "parents", ")", "trees", ".", "append", "(", "read_tree", "(", "parents", ",", "labels", ",", "words", ")", ")", "return", "trees" ]
Import dataset from the TreeLSTM data generation scrips. Arguments: ---------- labels_path : str, where are labels are stored (should be in data/sst/labels.txt). parents_path : str, where the parent relationships are stored (should be in data/sst/parents.txt). texts_path : str, where are strings for each tree are stored (should be in data/sst/sents.txt). Returns: -------- list<LabeledTree> : loaded example trees.
[ "Import", "dataset", "from", "the", "TreeLSTM", "data", "generation", "scrips", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/treelstm.py#L8-L42
train
JonathanRaiman/pytreebank
pytreebank/treelstm.py
assign_texts
def assign_texts(node, words, next_idx=0): """ Recursively assign the words to nodes by finding and assigning strings to the leaves of a tree in left to right order. """ if len(node.children) == 0: node.text = words[next_idx] return next_idx + 1 else: for child in node.children: next_idx = assign_texts(child, words, next_idx) return next_idx
python
def assign_texts(node, words, next_idx=0): """ Recursively assign the words to nodes by finding and assigning strings to the leaves of a tree in left to right order. """ if len(node.children) == 0: node.text = words[next_idx] return next_idx + 1 else: for child in node.children: next_idx = assign_texts(child, words, next_idx) return next_idx
[ "def", "assign_texts", "(", "node", ",", "words", ",", "next_idx", "=", "0", ")", ":", "if", "len", "(", "node", ".", "children", ")", "==", "0", ":", "node", ".", "text", "=", "words", "[", "next_idx", "]", "return", "next_idx", "+", "1", "else", ":", "for", "child", "in", "node", ".", "children", ":", "next_idx", "=", "assign_texts", "(", "child", ",", "words", ",", "next_idx", ")", "return", "next_idx" ]
Recursively assign the words to nodes by finding and assigning strings to the leaves of a tree in left to right order.
[ "Recursively", "assign", "the", "words", "to", "nodes", "by", "finding", "and", "assigning", "strings", "to", "the", "leaves", "of", "a", "tree", "in", "left", "to", "right", "order", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/treelstm.py#L44-L56
train
JonathanRaiman/pytreebank
pytreebank/treelstm.py
read_tree
def read_tree(parents, labels, words): """ Take as input a list of integers for parents and labels, along with a list of words, and reconstruct a LabeledTree. """ trees = {} root = None for i in range(1, len(parents) + 1): if not i in trees and parents[i - 1] != - 1: idx = i prev = None while True: parent = parents[idx - 1] if parent == -1: break tree = LabeledTree() if prev is not None: tree.add_child(prev) trees[idx] = tree tree.label = labels[idx - 1] if trees.get(parent) is not None: trees[parent].add_child(tree) break elif parent == 0: root = tree break else: prev = tree idx = parent assert assign_texts(root, words) == len(words) return root
python
def read_tree(parents, labels, words): """ Take as input a list of integers for parents and labels, along with a list of words, and reconstruct a LabeledTree. """ trees = {} root = None for i in range(1, len(parents) + 1): if not i in trees and parents[i - 1] != - 1: idx = i prev = None while True: parent = parents[idx - 1] if parent == -1: break tree = LabeledTree() if prev is not None: tree.add_child(prev) trees[idx] = tree tree.label = labels[idx - 1] if trees.get(parent) is not None: trees[parent].add_child(tree) break elif parent == 0: root = tree break else: prev = tree idx = parent assert assign_texts(root, words) == len(words) return root
[ "def", "read_tree", "(", "parents", ",", "labels", ",", "words", ")", ":", "trees", "=", "{", "}", "root", "=", "None", "for", "i", "in", "range", "(", "1", ",", "len", "(", "parents", ")", "+", "1", ")", ":", "if", "not", "i", "in", "trees", "and", "parents", "[", "i", "-", "1", "]", "!=", "-", "1", ":", "idx", "=", "i", "prev", "=", "None", "while", "True", ":", "parent", "=", "parents", "[", "idx", "-", "1", "]", "if", "parent", "==", "-", "1", ":", "break", "tree", "=", "LabeledTree", "(", ")", "if", "prev", "is", "not", "None", ":", "tree", ".", "add_child", "(", "prev", ")", "trees", "[", "idx", "]", "=", "tree", "tree", ".", "label", "=", "labels", "[", "idx", "-", "1", "]", "if", "trees", ".", "get", "(", "parent", ")", "is", "not", "None", ":", "trees", "[", "parent", "]", ".", "add_child", "(", "tree", ")", "break", "elif", "parent", "==", "0", ":", "root", "=", "tree", "break", "else", ":", "prev", "=", "tree", "idx", "=", "parent", "assert", "assign_texts", "(", "root", ",", "words", ")", "==", "len", "(", "words", ")", "return", "root" ]
Take as input a list of integers for parents and labels, along with a list of words, and reconstruct a LabeledTree.
[ "Take", "as", "input", "a", "list", "of", "integers", "for", "parents", "and", "labels", "along", "with", "a", "list", "of", "words", "and", "reconstruct", "a", "LabeledTree", "." ]
7b4c671d3dff661cc3677e54db817e50c5a1c666
https://github.com/JonathanRaiman/pytreebank/blob/7b4c671d3dff661cc3677e54db817e50c5a1c666/pytreebank/treelstm.py#L58-L89
train
GiulioRossetti/ndlib
ndlib/models/opinions/CognitiveOpDynModel.py
CognitiveOpDynModel.set_initial_status
def set_initial_status(self, configuration=None): """ Override behaviour of methods in class DiffusionModel. Overwrites initial status using random real values. Generates random node profiles. """ super(CognitiveOpDynModel, self).set_initial_status(configuration) # set node status for node in self.status: self.status[node] = np.random.random_sample() self.initial_status = self.status.copy() # set new node parameters self.params['nodes']['cognitive'] = {} # first correct the input model parameters and retreive T_range, B_range and R_distribution T_range = (self.params['model']['T_range_min'], self.params['model']['T_range_max']) if self.params['model']['T_range_min'] > self.params['model']['T_range_max']: T_range = (self.params['model']['T_range_max'], self.params['model']['T_range_min']) B_range = (self.params['model']['B_range_min'], self.params['model']['B_range_max']) if self.params['model']['B_range_min'] > self.params['model']['B_range_max']: B_range = (self.params['model']['B_range_max'], self.params['model']['B_range_min']) s = float(self.params['model']['R_fraction_negative'] + self.params['model']['R_fraction_neutral'] + self.params['model']['R_fraction_positive']) R_distribution = (self.params['model']['R_fraction_negative']/s, self.params['model']['R_fraction_neutral']/s, self.params['model']['R_fraction_positive']/s) # then sample parameters from the ranges and distribution for node in self.graph.nodes(): R_prob = np.random.random_sample() if R_prob < R_distribution[0]: R = -1 elif R_prob < (R_distribution[0] + R_distribution[1]): R = 0 else: R = 1 # R, B and T parameters in a tuple self.params['nodes']['cognitive'][node] = (R, B_range[0] + (B_range[1] - B_range[0])*np.random.random_sample(), T_range[0] + (T_range[1] - T_range[0])*np.random.random_sample())
python
def set_initial_status(self, configuration=None): """ Override behaviour of methods in class DiffusionModel. Overwrites initial status using random real values. Generates random node profiles. """ super(CognitiveOpDynModel, self).set_initial_status(configuration) # set node status for node in self.status: self.status[node] = np.random.random_sample() self.initial_status = self.status.copy() # set new node parameters self.params['nodes']['cognitive'] = {} # first correct the input model parameters and retreive T_range, B_range and R_distribution T_range = (self.params['model']['T_range_min'], self.params['model']['T_range_max']) if self.params['model']['T_range_min'] > self.params['model']['T_range_max']: T_range = (self.params['model']['T_range_max'], self.params['model']['T_range_min']) B_range = (self.params['model']['B_range_min'], self.params['model']['B_range_max']) if self.params['model']['B_range_min'] > self.params['model']['B_range_max']: B_range = (self.params['model']['B_range_max'], self.params['model']['B_range_min']) s = float(self.params['model']['R_fraction_negative'] + self.params['model']['R_fraction_neutral'] + self.params['model']['R_fraction_positive']) R_distribution = (self.params['model']['R_fraction_negative']/s, self.params['model']['R_fraction_neutral']/s, self.params['model']['R_fraction_positive']/s) # then sample parameters from the ranges and distribution for node in self.graph.nodes(): R_prob = np.random.random_sample() if R_prob < R_distribution[0]: R = -1 elif R_prob < (R_distribution[0] + R_distribution[1]): R = 0 else: R = 1 # R, B and T parameters in a tuple self.params['nodes']['cognitive'][node] = (R, B_range[0] + (B_range[1] - B_range[0])*np.random.random_sample(), T_range[0] + (T_range[1] - T_range[0])*np.random.random_sample())
[ "def", "set_initial_status", "(", "self", ",", "configuration", "=", "None", ")", ":", "super", "(", "CognitiveOpDynModel", ",", "self", ")", ".", "set_initial_status", "(", "configuration", ")", "# set node status", "for", "node", "in", "self", ".", "status", ":", "self", ".", "status", "[", "node", "]", "=", "np", ".", "random", ".", "random_sample", "(", ")", "self", ".", "initial_status", "=", "self", ".", "status", ".", "copy", "(", ")", "# set new node parameters", "self", ".", "params", "[", "'nodes'", "]", "[", "'cognitive'", "]", "=", "{", "}", "# first correct the input model parameters and retreive T_range, B_range and R_distribution", "T_range", "=", "(", "self", ".", "params", "[", "'model'", "]", "[", "'T_range_min'", "]", ",", "self", ".", "params", "[", "'model'", "]", "[", "'T_range_max'", "]", ")", "if", "self", ".", "params", "[", "'model'", "]", "[", "'T_range_min'", "]", ">", "self", ".", "params", "[", "'model'", "]", "[", "'T_range_max'", "]", ":", "T_range", "=", "(", "self", ".", "params", "[", "'model'", "]", "[", "'T_range_max'", "]", ",", "self", ".", "params", "[", "'model'", "]", "[", "'T_range_min'", "]", ")", "B_range", "=", "(", "self", ".", "params", "[", "'model'", "]", "[", "'B_range_min'", "]", ",", "self", ".", "params", "[", "'model'", "]", "[", "'B_range_max'", "]", ")", "if", "self", ".", "params", "[", "'model'", "]", "[", "'B_range_min'", "]", ">", "self", ".", "params", "[", "'model'", "]", "[", "'B_range_max'", "]", ":", "B_range", "=", "(", "self", ".", "params", "[", "'model'", "]", "[", "'B_range_max'", "]", ",", "self", ".", "params", "[", "'model'", "]", "[", "'B_range_min'", "]", ")", "s", "=", "float", "(", "self", ".", "params", "[", "'model'", "]", "[", "'R_fraction_negative'", "]", "+", "self", ".", "params", "[", "'model'", "]", "[", "'R_fraction_neutral'", "]", "+", "self", ".", "params", "[", "'model'", "]", "[", "'R_fraction_positive'", "]", ")", "R_distribution", "=", "(", "self", ".", "params", "[", "'model'", "]", "[", "'R_fraction_negative'", "]", "/", "s", ",", "self", ".", "params", "[", "'model'", "]", "[", "'R_fraction_neutral'", "]", "/", "s", ",", "self", ".", "params", "[", "'model'", "]", "[", "'R_fraction_positive'", "]", "/", "s", ")", "# then sample parameters from the ranges and distribution", "for", "node", "in", "self", ".", "graph", ".", "nodes", "(", ")", ":", "R_prob", "=", "np", ".", "random", ".", "random_sample", "(", ")", "if", "R_prob", "<", "R_distribution", "[", "0", "]", ":", "R", "=", "-", "1", "elif", "R_prob", "<", "(", "R_distribution", "[", "0", "]", "+", "R_distribution", "[", "1", "]", ")", ":", "R", "=", "0", "else", ":", "R", "=", "1", "# R, B and T parameters in a tuple", "self", ".", "params", "[", "'nodes'", "]", "[", "'cognitive'", "]", "[", "node", "]", "=", "(", "R", ",", "B_range", "[", "0", "]", "+", "(", "B_range", "[", "1", "]", "-", "B_range", "[", "0", "]", ")", "*", "np", ".", "random", ".", "random_sample", "(", ")", ",", "T_range", "[", "0", "]", "+", "(", "T_range", "[", "1", "]", "-", "T_range", "[", "0", "]", ")", "*", "np", ".", "random", ".", "random_sample", "(", ")", ")" ]
Override behaviour of methods in class DiffusionModel. Overwrites initial status using random real values. Generates random node profiles.
[ "Override", "behaviour", "of", "methods", "in", "class", "DiffusionModel", ".", "Overwrites", "initial", "status", "using", "random", "real", "values", ".", "Generates", "random", "node", "profiles", "." ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/models/opinions/CognitiveOpDynModel.py#L92-L133
train
GiulioRossetti/ndlib
ndlib/models/ModelConfig.py
Configuration.add_node_configuration
def add_node_configuration(self, param_name, node_id, param_value): """ Set a parameter for a given node :param param_name: parameter identifier (as specified by the chosen model) :param node_id: node identifier :param param_value: parameter value """ if param_name not in self.config['nodes']: self.config['nodes'][param_name] = {node_id: param_value} else: self.config['nodes'][param_name][node_id] = param_value
python
def add_node_configuration(self, param_name, node_id, param_value): """ Set a parameter for a given node :param param_name: parameter identifier (as specified by the chosen model) :param node_id: node identifier :param param_value: parameter value """ if param_name not in self.config['nodes']: self.config['nodes'][param_name] = {node_id: param_value} else: self.config['nodes'][param_name][node_id] = param_value
[ "def", "add_node_configuration", "(", "self", ",", "param_name", ",", "node_id", ",", "param_value", ")", ":", "if", "param_name", "not", "in", "self", ".", "config", "[", "'nodes'", "]", ":", "self", ".", "config", "[", "'nodes'", "]", "[", "param_name", "]", "=", "{", "node_id", ":", "param_value", "}", "else", ":", "self", ".", "config", "[", "'nodes'", "]", "[", "param_name", "]", "[", "node_id", "]", "=", "param_value" ]
Set a parameter for a given node :param param_name: parameter identifier (as specified by the chosen model) :param node_id: node identifier :param param_value: parameter value
[ "Set", "a", "parameter", "for", "a", "given", "node" ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/models/ModelConfig.py#L72-L83
train
GiulioRossetti/ndlib
ndlib/models/ModelConfig.py
Configuration.add_node_set_configuration
def add_node_set_configuration(self, param_name, node_to_value): """ Set Nodes parameter :param param_name: parameter identifier (as specified by the chosen model) :param node_to_value: dictionary mapping each node a parameter value """ for nid, val in future.utils.iteritems(node_to_value): self.add_node_configuration(param_name, nid, val)
python
def add_node_set_configuration(self, param_name, node_to_value): """ Set Nodes parameter :param param_name: parameter identifier (as specified by the chosen model) :param node_to_value: dictionary mapping each node a parameter value """ for nid, val in future.utils.iteritems(node_to_value): self.add_node_configuration(param_name, nid, val)
[ "def", "add_node_set_configuration", "(", "self", ",", "param_name", ",", "node_to_value", ")", ":", "for", "nid", ",", "val", "in", "future", ".", "utils", ".", "iteritems", "(", "node_to_value", ")", ":", "self", ".", "add_node_configuration", "(", "param_name", ",", "nid", ",", "val", ")" ]
Set Nodes parameter :param param_name: parameter identifier (as specified by the chosen model) :param node_to_value: dictionary mapping each node a parameter value
[ "Set", "Nodes", "parameter" ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/models/ModelConfig.py#L85-L93
train
GiulioRossetti/ndlib
ndlib/models/ModelConfig.py
Configuration.add_edge_configuration
def add_edge_configuration(self, param_name, edge, param_value): """ Set a parameter for a given edge :param param_name: parameter identifier (as specified by the chosen model) :param edge: edge identifier :param param_value: parameter value """ if param_name not in self.config['edges']: self.config['edges'][param_name] = {edge: param_value} else: self.config['edges'][param_name][edge] = param_value
python
def add_edge_configuration(self, param_name, edge, param_value): """ Set a parameter for a given edge :param param_name: parameter identifier (as specified by the chosen model) :param edge: edge identifier :param param_value: parameter value """ if param_name not in self.config['edges']: self.config['edges'][param_name] = {edge: param_value} else: self.config['edges'][param_name][edge] = param_value
[ "def", "add_edge_configuration", "(", "self", ",", "param_name", ",", "edge", ",", "param_value", ")", ":", "if", "param_name", "not", "in", "self", ".", "config", "[", "'edges'", "]", ":", "self", ".", "config", "[", "'edges'", "]", "[", "param_name", "]", "=", "{", "edge", ":", "param_value", "}", "else", ":", "self", ".", "config", "[", "'edges'", "]", "[", "param_name", "]", "[", "edge", "]", "=", "param_value" ]
Set a parameter for a given edge :param param_name: parameter identifier (as specified by the chosen model) :param edge: edge identifier :param param_value: parameter value
[ "Set", "a", "parameter", "for", "a", "given", "edge" ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/models/ModelConfig.py#L95-L106
train
GiulioRossetti/ndlib
ndlib/models/ModelConfig.py
Configuration.add_edge_set_configuration
def add_edge_set_configuration(self, param_name, edge_to_value): """ Set Edges parameter :param param_name: parameter identifier (as specified by the chosen model) :param edge_to_value: dictionary mapping each edge a parameter value """ for edge, val in future.utils.iteritems(edge_to_value): self.add_edge_configuration(param_name, edge, val)
python
def add_edge_set_configuration(self, param_name, edge_to_value): """ Set Edges parameter :param param_name: parameter identifier (as specified by the chosen model) :param edge_to_value: dictionary mapping each edge a parameter value """ for edge, val in future.utils.iteritems(edge_to_value): self.add_edge_configuration(param_name, edge, val)
[ "def", "add_edge_set_configuration", "(", "self", ",", "param_name", ",", "edge_to_value", ")", ":", "for", "edge", ",", "val", "in", "future", ".", "utils", ".", "iteritems", "(", "edge_to_value", ")", ":", "self", ".", "add_edge_configuration", "(", "param_name", ",", "edge", ",", "val", ")" ]
Set Edges parameter :param param_name: parameter identifier (as specified by the chosen model) :param edge_to_value: dictionary mapping each edge a parameter value
[ "Set", "Edges", "parameter" ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/models/ModelConfig.py#L108-L116
train
GiulioRossetti/ndlib
ndlib/utils.py
multi_runs
def multi_runs(model, execution_number=1, iteration_number=50, infection_sets=None, nprocesses=multiprocessing.cpu_count()): """ Multiple executions of a given model varying the initial set of infected nodes :param model: a configured diffusion model :param execution_number: number of instantiations :param iteration_number: number of iterations per execution :param infection_sets: predefined set of infected nodes sets :param nprocesses: number of processes. Default values cpu number. :return: resulting trends for all the executions """ if nprocesses > multiprocessing.cpu_count(): nprocesses = multiprocessing.cpu_count() executions = [] if infection_sets is not None: if len(infection_sets) != execution_number: raise InitializationException( {"message": "Number of infection sets provided does not match the number of executions required"}) for x in past.builtins.xrange(0, execution_number, nprocesses): with closing(multiprocessing.Pool(processes=nprocesses, maxtasksperchild=10)) as pool: tasks = [copy.copy(model).reset(infection_sets[i]) for i in past.builtins.xrange(x, min(x + nprocesses, execution_number))] results = [pool.apply_async(__execute, (t, iteration_number)) for t in tasks] for result in results: executions.append(result.get()) else: for x in past.builtins.xrange(0, execution_number, nprocesses): with closing(multiprocessing.Pool(processes=nprocesses, maxtasksperchild=10)) as pool: tasks = [copy.deepcopy(model).reset() for _ in past.builtins.xrange(x, min(x + nprocesses, execution_number))] results = [pool.apply_async(__execute, (t, iteration_number)) for t in tasks] for result in results: executions.append(result.get()) return executions
python
def multi_runs(model, execution_number=1, iteration_number=50, infection_sets=None, nprocesses=multiprocessing.cpu_count()): """ Multiple executions of a given model varying the initial set of infected nodes :param model: a configured diffusion model :param execution_number: number of instantiations :param iteration_number: number of iterations per execution :param infection_sets: predefined set of infected nodes sets :param nprocesses: number of processes. Default values cpu number. :return: resulting trends for all the executions """ if nprocesses > multiprocessing.cpu_count(): nprocesses = multiprocessing.cpu_count() executions = [] if infection_sets is not None: if len(infection_sets) != execution_number: raise InitializationException( {"message": "Number of infection sets provided does not match the number of executions required"}) for x in past.builtins.xrange(0, execution_number, nprocesses): with closing(multiprocessing.Pool(processes=nprocesses, maxtasksperchild=10)) as pool: tasks = [copy.copy(model).reset(infection_sets[i]) for i in past.builtins.xrange(x, min(x + nprocesses, execution_number))] results = [pool.apply_async(__execute, (t, iteration_number)) for t in tasks] for result in results: executions.append(result.get()) else: for x in past.builtins.xrange(0, execution_number, nprocesses): with closing(multiprocessing.Pool(processes=nprocesses, maxtasksperchild=10)) as pool: tasks = [copy.deepcopy(model).reset() for _ in past.builtins.xrange(x, min(x + nprocesses, execution_number))] results = [pool.apply_async(__execute, (t, iteration_number)) for t in tasks] for result in results: executions.append(result.get()) return executions
[ "def", "multi_runs", "(", "model", ",", "execution_number", "=", "1", ",", "iteration_number", "=", "50", ",", "infection_sets", "=", "None", ",", "nprocesses", "=", "multiprocessing", ".", "cpu_count", "(", ")", ")", ":", "if", "nprocesses", ">", "multiprocessing", ".", "cpu_count", "(", ")", ":", "nprocesses", "=", "multiprocessing", ".", "cpu_count", "(", ")", "executions", "=", "[", "]", "if", "infection_sets", "is", "not", "None", ":", "if", "len", "(", "infection_sets", ")", "!=", "execution_number", ":", "raise", "InitializationException", "(", "{", "\"message\"", ":", "\"Number of infection sets provided does not match the number of executions required\"", "}", ")", "for", "x", "in", "past", ".", "builtins", ".", "xrange", "(", "0", ",", "execution_number", ",", "nprocesses", ")", ":", "with", "closing", "(", "multiprocessing", ".", "Pool", "(", "processes", "=", "nprocesses", ",", "maxtasksperchild", "=", "10", ")", ")", "as", "pool", ":", "tasks", "=", "[", "copy", ".", "copy", "(", "model", ")", ".", "reset", "(", "infection_sets", "[", "i", "]", ")", "for", "i", "in", "past", ".", "builtins", ".", "xrange", "(", "x", ",", "min", "(", "x", "+", "nprocesses", ",", "execution_number", ")", ")", "]", "results", "=", "[", "pool", ".", "apply_async", "(", "__execute", ",", "(", "t", ",", "iteration_number", ")", ")", "for", "t", "in", "tasks", "]", "for", "result", "in", "results", ":", "executions", ".", "append", "(", "result", ".", "get", "(", ")", ")", "else", ":", "for", "x", "in", "past", ".", "builtins", ".", "xrange", "(", "0", ",", "execution_number", ",", "nprocesses", ")", ":", "with", "closing", "(", "multiprocessing", ".", "Pool", "(", "processes", "=", "nprocesses", ",", "maxtasksperchild", "=", "10", ")", ")", "as", "pool", ":", "tasks", "=", "[", "copy", ".", "deepcopy", "(", "model", ")", ".", "reset", "(", ")", "for", "_", "in", "past", ".", "builtins", ".", "xrange", "(", "x", ",", "min", "(", "x", "+", "nprocesses", ",", "execution_number", ")", ")", "]", "results", "=", "[", "pool", ".", "apply_async", "(", "__execute", ",", "(", "t", ",", "iteration_number", ")", ")", "for", "t", "in", "tasks", "]", "for", "result", "in", "results", ":", "executions", ".", "append", "(", "result", ".", "get", "(", ")", ")", "return", "executions" ]
Multiple executions of a given model varying the initial set of infected nodes :param model: a configured diffusion model :param execution_number: number of instantiations :param iteration_number: number of iterations per execution :param infection_sets: predefined set of infected nodes sets :param nprocesses: number of processes. Default values cpu number. :return: resulting trends for all the executions
[ "Multiple", "executions", "of", "a", "given", "model", "varying", "the", "initial", "set", "of", "infected", "nodes" ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/utils.py#L15-L58
train
GiulioRossetti/ndlib
ndlib/utils.py
__execute
def __execute(model, iteration_number): """ Execute a simulation model :param model: a configured diffusion model :param iteration_number: number of iterations :return: computed trends """ iterations = model.iteration_bunch(iteration_number, False) trends = model.build_trends(iterations)[0] del iterations del model return trends
python
def __execute(model, iteration_number): """ Execute a simulation model :param model: a configured diffusion model :param iteration_number: number of iterations :return: computed trends """ iterations = model.iteration_bunch(iteration_number, False) trends = model.build_trends(iterations)[0] del iterations del model return trends
[ "def", "__execute", "(", "model", ",", "iteration_number", ")", ":", "iterations", "=", "model", ".", "iteration_bunch", "(", "iteration_number", ",", "False", ")", "trends", "=", "model", ".", "build_trends", "(", "iterations", ")", "[", "0", "]", "del", "iterations", "del", "model", "return", "trends" ]
Execute a simulation model :param model: a configured diffusion model :param iteration_number: number of iterations :return: computed trends
[ "Execute", "a", "simulation", "model" ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/utils.py#L61-L73
train
GiulioRossetti/ndlib
ndlib/models/opinions/AlgorithmicBiasModel.py
AlgorithmicBiasModel.set_initial_status
def set_initial_status(self, configuration=None): """ Override behaviour of methods in class DiffusionModel. Overwrites initial status using random real values. """ super(AlgorithmicBiasModel, self).set_initial_status(configuration) # set node status for node in self.status: self.status[node] = np.random.random_sample() self.initial_status = self.status.copy()
python
def set_initial_status(self, configuration=None): """ Override behaviour of methods in class DiffusionModel. Overwrites initial status using random real values. """ super(AlgorithmicBiasModel, self).set_initial_status(configuration) # set node status for node in self.status: self.status[node] = np.random.random_sample() self.initial_status = self.status.copy()
[ "def", "set_initial_status", "(", "self", ",", "configuration", "=", "None", ")", ":", "super", "(", "AlgorithmicBiasModel", ",", "self", ")", ".", "set_initial_status", "(", "configuration", ")", "# set node status", "for", "node", "in", "self", ".", "status", ":", "self", ".", "status", "[", "node", "]", "=", "np", ".", "random", ".", "random_sample", "(", ")", "self", ".", "initial_status", "=", "self", ".", "status", ".", "copy", "(", ")" ]
Override behaviour of methods in class DiffusionModel. Overwrites initial status using random real values.
[ "Override", "behaviour", "of", "methods", "in", "class", "DiffusionModel", ".", "Overwrites", "initial", "status", "using", "random", "real", "values", "." ]
23ecf50c0f76ff2714471071ab9ecb600f4a9832
https://github.com/GiulioRossetti/ndlib/blob/23ecf50c0f76ff2714471071ab9ecb600f4a9832/ndlib/models/opinions/AlgorithmicBiasModel.py#L54-L64
train
HearthSim/python-hearthstone
hearthstone/entities.py
Player.names
def names(self): """ Returns the player's name and real name. Returns two empty strings if the player is unknown. AI real name is always an empty string. """ if self.name == self.UNKNOWN_HUMAN_PLAYER: return "", "" if not self.is_ai and " " in self.name: return "", self.name return self.name, ""
python
def names(self): """ Returns the player's name and real name. Returns two empty strings if the player is unknown. AI real name is always an empty string. """ if self.name == self.UNKNOWN_HUMAN_PLAYER: return "", "" if not self.is_ai and " " in self.name: return "", self.name return self.name, ""
[ "def", "names", "(", "self", ")", ":", "if", "self", ".", "name", "==", "self", ".", "UNKNOWN_HUMAN_PLAYER", ":", "return", "\"\"", ",", "\"\"", "if", "not", "self", ".", "is_ai", "and", "\" \"", "in", "self", ".", "name", ":", "return", "\"\"", ",", "self", ".", "name", "return", "self", ".", "name", ",", "\"\"" ]
Returns the player's name and real name. Returns two empty strings if the player is unknown. AI real name is always an empty string.
[ "Returns", "the", "player", "s", "name", "and", "real", "name", ".", "Returns", "two", "empty", "strings", "if", "the", "player", "is", "unknown", ".", "AI", "real", "name", "is", "always", "an", "empty", "string", "." ]
3690b714248b578dcbba8a492bf228ff09a6aeaf
https://github.com/HearthSim/python-hearthstone/blob/3690b714248b578dcbba8a492bf228ff09a6aeaf/hearthstone/entities.py#L147-L159
train
scikit-hep/root_pandas
root_pandas/readwrite.py
_getgroup
def _getgroup(string, depth): """ Get a group from the string, where group is a list of all the comma separated substrings up to the next '}' char or the brace enclosed substring if there is no comma """ out, comma = [], False while string: items, string = _getitem(string, depth) if not string: break out += items if string[0] == '}': if comma: return out, string[1:] return ['{' + a + '}' for a in out], string[1:] if string[0] == ',': comma, string = True, string[1:] return None
python
def _getgroup(string, depth): """ Get a group from the string, where group is a list of all the comma separated substrings up to the next '}' char or the brace enclosed substring if there is no comma """ out, comma = [], False while string: items, string = _getitem(string, depth) if not string: break out += items if string[0] == '}': if comma: return out, string[1:] return ['{' + a + '}' for a in out], string[1:] if string[0] == ',': comma, string = True, string[1:] return None
[ "def", "_getgroup", "(", "string", ",", "depth", ")", ":", "out", ",", "comma", "=", "[", "]", ",", "False", "while", "string", ":", "items", ",", "string", "=", "_getitem", "(", "string", ",", "depth", ")", "if", "not", "string", ":", "break", "out", "+=", "items", "if", "string", "[", "0", "]", "==", "'}'", ":", "if", "comma", ":", "return", "out", ",", "string", "[", "1", ":", "]", "return", "[", "'{'", "+", "a", "+", "'}'", "for", "a", "in", "out", "]", ",", "string", "[", "1", ":", "]", "if", "string", "[", "0", "]", "==", "','", ":", "comma", ",", "string", "=", "True", ",", "string", "[", "1", ":", "]", "return", "None" ]
Get a group from the string, where group is a list of all the comma separated substrings up to the next '}' char or the brace enclosed substring if there is no comma
[ "Get", "a", "group", "from", "the", "string", "where", "group", "is", "a", "list", "of", "all", "the", "comma", "separated", "substrings", "up", "to", "the", "next", "}", "char", "or", "the", "brace", "enclosed", "substring", "if", "there", "is", "no", "comma" ]
57991a4feaeb9213575cfba7a369fc05cc0d846b
https://github.com/scikit-hep/root_pandas/blob/57991a4feaeb9213575cfba7a369fc05cc0d846b/root_pandas/readwrite.py#L55-L77
train
scikit-hep/root_pandas
root_pandas/readwrite.py
filter_noexpand_columns
def filter_noexpand_columns(columns): """Return columns not containing and containing the noexpand prefix. Parameters ---------- columns: sequence of str A sequence of strings to be split Returns ------- Two lists, the first containing strings without the noexpand prefix, the second containing those that do with the prefix filtered out. """ prefix_len = len(NOEXPAND_PREFIX) noexpand = [c[prefix_len:] for c in columns if c.startswith(NOEXPAND_PREFIX)] other = [c for c in columns if not c.startswith(NOEXPAND_PREFIX)] return other, noexpand
python
def filter_noexpand_columns(columns): """Return columns not containing and containing the noexpand prefix. Parameters ---------- columns: sequence of str A sequence of strings to be split Returns ------- Two lists, the first containing strings without the noexpand prefix, the second containing those that do with the prefix filtered out. """ prefix_len = len(NOEXPAND_PREFIX) noexpand = [c[prefix_len:] for c in columns if c.startswith(NOEXPAND_PREFIX)] other = [c for c in columns if not c.startswith(NOEXPAND_PREFIX)] return other, noexpand
[ "def", "filter_noexpand_columns", "(", "columns", ")", ":", "prefix_len", "=", "len", "(", "NOEXPAND_PREFIX", ")", "noexpand", "=", "[", "c", "[", "prefix_len", ":", "]", "for", "c", "in", "columns", "if", "c", ".", "startswith", "(", "NOEXPAND_PREFIX", ")", "]", "other", "=", "[", "c", "for", "c", "in", "columns", "if", "not", "c", ".", "startswith", "(", "NOEXPAND_PREFIX", ")", "]", "return", "other", ",", "noexpand" ]
Return columns not containing and containing the noexpand prefix. Parameters ---------- columns: sequence of str A sequence of strings to be split Returns ------- Two lists, the first containing strings without the noexpand prefix, the second containing those that do with the prefix filtered out.
[ "Return", "columns", "not", "containing", "and", "containing", "the", "noexpand", "prefix", "." ]
57991a4feaeb9213575cfba7a369fc05cc0d846b
https://github.com/scikit-hep/root_pandas/blob/57991a4feaeb9213575cfba7a369fc05cc0d846b/root_pandas/readwrite.py#L117-L133
train
scikit-hep/root_pandas
root_pandas/readwrite.py
to_root
def to_root(df, path, key='my_ttree', mode='w', store_index=True, *args, **kwargs): """ Write DataFrame to a ROOT file. Parameters ---------- path: string File path to new ROOT file (will be overwritten) key: string Name of tree that the DataFrame will be saved as mode: string, {'w', 'a'} Mode that the file should be opened in (default: 'w') store_index: bool (optional, default: True) Whether the index of the DataFrame should be stored as an __index__* branch in the tree Notes ----- Further *args and *kwargs are passed to root_numpy's array2root. >>> df = DataFrame({'x': [1,2,3], 'y': [4,5,6]}) >>> df.to_root('test.root') The DataFrame index will be saved as a branch called '__index__*', where * is the name of the index in the original DataFrame """ if mode == 'a': mode = 'update' elif mode == 'w': mode = 'recreate' else: raise ValueError('Unknown mode: {}. Must be "a" or "w".'.format(mode)) from root_numpy import array2tree # We don't want to modify the user's DataFrame here, so we make a shallow copy df_ = df.copy(deep=False) if store_index: name = df_.index.name if name is None: # Handle the case where the index has no name name = '' df_['__index__' + name] = df_.index # Convert categorical columns into something root_numpy can serialise for col in df_.select_dtypes(['category']).columns: name_components = ['__rpCaT', col, str(df_[col].cat.ordered)] name_components.extend(df_[col].cat.categories) if ['*' not in c for c in name_components]: sep = '*' else: raise ValueError('Unable to find suitable separator for columns') df_[col] = df_[col].cat.codes df_.rename(index=str, columns={col: sep.join(name_components)}, inplace=True) arr = df_.to_records(index=False) root_file = ROOT.TFile.Open(path, mode) if not root_file: raise IOError("cannot open file {0}".format(path)) if not root_file.IsWritable(): raise IOError("file {0} is not writable".format(path)) # Navigate to the requested directory open_dirs = [root_file] for dir_name in key.split('/')[:-1]: current_dir = open_dirs[-1].Get(dir_name) if not current_dir: current_dir = open_dirs[-1].mkdir(dir_name) current_dir.cd() open_dirs.append(current_dir) # The key is now just the top component key = key.split('/')[-1] # If a tree with that name exists, we want to update it tree = open_dirs[-1].Get(key) if not tree: tree = None tree = array2tree(arr, name=key, tree=tree) tree.Write(key, ROOT.TFile.kOverwrite) root_file.Close()
python
def to_root(df, path, key='my_ttree', mode='w', store_index=True, *args, **kwargs): """ Write DataFrame to a ROOT file. Parameters ---------- path: string File path to new ROOT file (will be overwritten) key: string Name of tree that the DataFrame will be saved as mode: string, {'w', 'a'} Mode that the file should be opened in (default: 'w') store_index: bool (optional, default: True) Whether the index of the DataFrame should be stored as an __index__* branch in the tree Notes ----- Further *args and *kwargs are passed to root_numpy's array2root. >>> df = DataFrame({'x': [1,2,3], 'y': [4,5,6]}) >>> df.to_root('test.root') The DataFrame index will be saved as a branch called '__index__*', where * is the name of the index in the original DataFrame """ if mode == 'a': mode = 'update' elif mode == 'w': mode = 'recreate' else: raise ValueError('Unknown mode: {}. Must be "a" or "w".'.format(mode)) from root_numpy import array2tree # We don't want to modify the user's DataFrame here, so we make a shallow copy df_ = df.copy(deep=False) if store_index: name = df_.index.name if name is None: # Handle the case where the index has no name name = '' df_['__index__' + name] = df_.index # Convert categorical columns into something root_numpy can serialise for col in df_.select_dtypes(['category']).columns: name_components = ['__rpCaT', col, str(df_[col].cat.ordered)] name_components.extend(df_[col].cat.categories) if ['*' not in c for c in name_components]: sep = '*' else: raise ValueError('Unable to find suitable separator for columns') df_[col] = df_[col].cat.codes df_.rename(index=str, columns={col: sep.join(name_components)}, inplace=True) arr = df_.to_records(index=False) root_file = ROOT.TFile.Open(path, mode) if not root_file: raise IOError("cannot open file {0}".format(path)) if not root_file.IsWritable(): raise IOError("file {0} is not writable".format(path)) # Navigate to the requested directory open_dirs = [root_file] for dir_name in key.split('/')[:-1]: current_dir = open_dirs[-1].Get(dir_name) if not current_dir: current_dir = open_dirs[-1].mkdir(dir_name) current_dir.cd() open_dirs.append(current_dir) # The key is now just the top component key = key.split('/')[-1] # If a tree with that name exists, we want to update it tree = open_dirs[-1].Get(key) if not tree: tree = None tree = array2tree(arr, name=key, tree=tree) tree.Write(key, ROOT.TFile.kOverwrite) root_file.Close()
[ "def", "to_root", "(", "df", ",", "path", ",", "key", "=", "'my_ttree'", ",", "mode", "=", "'w'", ",", "store_index", "=", "True", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "mode", "==", "'a'", ":", "mode", "=", "'update'", "elif", "mode", "==", "'w'", ":", "mode", "=", "'recreate'", "else", ":", "raise", "ValueError", "(", "'Unknown mode: {}. Must be \"a\" or \"w\".'", ".", "format", "(", "mode", ")", ")", "from", "root_numpy", "import", "array2tree", "# We don't want to modify the user's DataFrame here, so we make a shallow copy", "df_", "=", "df", ".", "copy", "(", "deep", "=", "False", ")", "if", "store_index", ":", "name", "=", "df_", ".", "index", ".", "name", "if", "name", "is", "None", ":", "# Handle the case where the index has no name", "name", "=", "''", "df_", "[", "'__index__'", "+", "name", "]", "=", "df_", ".", "index", "# Convert categorical columns into something root_numpy can serialise", "for", "col", "in", "df_", ".", "select_dtypes", "(", "[", "'category'", "]", ")", ".", "columns", ":", "name_components", "=", "[", "'__rpCaT'", ",", "col", ",", "str", "(", "df_", "[", "col", "]", ".", "cat", ".", "ordered", ")", "]", "name_components", ".", "extend", "(", "df_", "[", "col", "]", ".", "cat", ".", "categories", ")", "if", "[", "'*'", "not", "in", "c", "for", "c", "in", "name_components", "]", ":", "sep", "=", "'*'", "else", ":", "raise", "ValueError", "(", "'Unable to find suitable separator for columns'", ")", "df_", "[", "col", "]", "=", "df_", "[", "col", "]", ".", "cat", ".", "codes", "df_", ".", "rename", "(", "index", "=", "str", ",", "columns", "=", "{", "col", ":", "sep", ".", "join", "(", "name_components", ")", "}", ",", "inplace", "=", "True", ")", "arr", "=", "df_", ".", "to_records", "(", "index", "=", "False", ")", "root_file", "=", "ROOT", ".", "TFile", ".", "Open", "(", "path", ",", "mode", ")", "if", "not", "root_file", ":", "raise", "IOError", "(", "\"cannot open file {0}\"", ".", "format", "(", "path", ")", ")", "if", "not", "root_file", ".", "IsWritable", "(", ")", ":", "raise", "IOError", "(", "\"file {0} is not writable\"", ".", "format", "(", "path", ")", ")", "# Navigate to the requested directory", "open_dirs", "=", "[", "root_file", "]", "for", "dir_name", "in", "key", ".", "split", "(", "'/'", ")", "[", ":", "-", "1", "]", ":", "current_dir", "=", "open_dirs", "[", "-", "1", "]", ".", "Get", "(", "dir_name", ")", "if", "not", "current_dir", ":", "current_dir", "=", "open_dirs", "[", "-", "1", "]", ".", "mkdir", "(", "dir_name", ")", "current_dir", ".", "cd", "(", ")", "open_dirs", ".", "append", "(", "current_dir", ")", "# The key is now just the top component", "key", "=", "key", ".", "split", "(", "'/'", ")", "[", "-", "1", "]", "# If a tree with that name exists, we want to update it", "tree", "=", "open_dirs", "[", "-", "1", "]", ".", "Get", "(", "key", ")", "if", "not", "tree", ":", "tree", "=", "None", "tree", "=", "array2tree", "(", "arr", ",", "name", "=", "key", ",", "tree", "=", "tree", ")", "tree", ".", "Write", "(", "key", ",", "ROOT", ".", "TFile", ".", "kOverwrite", ")", "root_file", ".", "Close", "(", ")" ]
Write DataFrame to a ROOT file. Parameters ---------- path: string File path to new ROOT file (will be overwritten) key: string Name of tree that the DataFrame will be saved as mode: string, {'w', 'a'} Mode that the file should be opened in (default: 'w') store_index: bool (optional, default: True) Whether the index of the DataFrame should be stored as an __index__* branch in the tree Notes ----- Further *args and *kwargs are passed to root_numpy's array2root. >>> df = DataFrame({'x': [1,2,3], 'y': [4,5,6]}) >>> df.to_root('test.root') The DataFrame index will be saved as a branch called '__index__*', where * is the name of the index in the original DataFrame
[ "Write", "DataFrame", "to", "a", "ROOT", "file", "." ]
57991a4feaeb9213575cfba7a369fc05cc0d846b
https://github.com/scikit-hep/root_pandas/blob/57991a4feaeb9213575cfba7a369fc05cc0d846b/root_pandas/readwrite.py#L334-L417
train
MisterY/gnucash-portfolio
gnucash_portfolio/reports/security_info.py
SecurityInfoReport.run
def run(self, symbol: str) -> SecurityDetailsViewModel: """ Loads the model for security details """ from pydatum import Datum svc = self._svc sec_agg = svc.securities.get_aggregate_for_symbol(symbol) model = SecurityDetailsViewModel() model.symbol = sec_agg.security.namespace + ":" + sec_agg.security.mnemonic model.security = sec_agg.security # Quantity model.quantity = sec_agg.get_quantity() model.value = sec_agg.get_value() currency = sec_agg.get_currency() if currency: assert isinstance(currency, str) model.currency = currency model.price = sec_agg.get_last_available_price() model.average_price = sec_agg.get_avg_price() # Here we take only the amount paid for the remaining stock. model.total_paid = sec_agg.get_total_paid_for_remaining_stock() # Profit/loss model.profit_loss = model.value - model.total_paid if model.total_paid: model.profit_loss_perc = abs(model.profit_loss) * 100 / model.total_paid else: model.profit_loss_perc = 0 if abs(model.value) < abs(model.total_paid): model.profit_loss_perc *= -1 # Income model.income = sec_agg.get_income_total() if model.total_paid: model.income_perc = model.income * 100 / model.total_paid else: model.income_perc = 0 # income in the last 12 months start = Datum() start.subtract_months(12) end = Datum() model.income_last_12m = sec_agg.get_income_in_period(start, end) if model.total_paid == 0: model.income_perc_last_12m = 0 else: model.income_perc_last_12m = model.income_last_12m * 100 / model.total_paid # Return of Capital roc = sec_agg.get_return_of_capital() model.return_of_capital = roc # total return model.total_return = model.profit_loss + model.income if model.total_paid: model.total_return_perc = model.total_return * 100 / model.total_paid else: model.total_return_perc = 0 # load all holding accounts model.accounts = sec_agg.accounts # Income accounts model.income_accounts = sec_agg.get_income_accounts() # Load asset classes to which this security belongs. # todo load asset allocation, find the parents for this symbol # svc.asset_allocation.load_config_only(svc.currencies.default_currency) # stocks = svc.asset_allocation.get_stock(model.symbol) # # for stock in stocks: # model.asset_classes.append(stock.asset_class) from asset_allocation import AppAggregate aa = AppAggregate() aa.open_session() aa.get_asset_classes_for_security(None, model.symbol) return model
python
def run(self, symbol: str) -> SecurityDetailsViewModel: """ Loads the model for security details """ from pydatum import Datum svc = self._svc sec_agg = svc.securities.get_aggregate_for_symbol(symbol) model = SecurityDetailsViewModel() model.symbol = sec_agg.security.namespace + ":" + sec_agg.security.mnemonic model.security = sec_agg.security # Quantity model.quantity = sec_agg.get_quantity() model.value = sec_agg.get_value() currency = sec_agg.get_currency() if currency: assert isinstance(currency, str) model.currency = currency model.price = sec_agg.get_last_available_price() model.average_price = sec_agg.get_avg_price() # Here we take only the amount paid for the remaining stock. model.total_paid = sec_agg.get_total_paid_for_remaining_stock() # Profit/loss model.profit_loss = model.value - model.total_paid if model.total_paid: model.profit_loss_perc = abs(model.profit_loss) * 100 / model.total_paid else: model.profit_loss_perc = 0 if abs(model.value) < abs(model.total_paid): model.profit_loss_perc *= -1 # Income model.income = sec_agg.get_income_total() if model.total_paid: model.income_perc = model.income * 100 / model.total_paid else: model.income_perc = 0 # income in the last 12 months start = Datum() start.subtract_months(12) end = Datum() model.income_last_12m = sec_agg.get_income_in_period(start, end) if model.total_paid == 0: model.income_perc_last_12m = 0 else: model.income_perc_last_12m = model.income_last_12m * 100 / model.total_paid # Return of Capital roc = sec_agg.get_return_of_capital() model.return_of_capital = roc # total return model.total_return = model.profit_loss + model.income if model.total_paid: model.total_return_perc = model.total_return * 100 / model.total_paid else: model.total_return_perc = 0 # load all holding accounts model.accounts = sec_agg.accounts # Income accounts model.income_accounts = sec_agg.get_income_accounts() # Load asset classes to which this security belongs. # todo load asset allocation, find the parents for this symbol # svc.asset_allocation.load_config_only(svc.currencies.default_currency) # stocks = svc.asset_allocation.get_stock(model.symbol) # # for stock in stocks: # model.asset_classes.append(stock.asset_class) from asset_allocation import AppAggregate aa = AppAggregate() aa.open_session() aa.get_asset_classes_for_security(None, model.symbol) return model
[ "def", "run", "(", "self", ",", "symbol", ":", "str", ")", "->", "SecurityDetailsViewModel", ":", "from", "pydatum", "import", "Datum", "svc", "=", "self", ".", "_svc", "sec_agg", "=", "svc", ".", "securities", ".", "get_aggregate_for_symbol", "(", "symbol", ")", "model", "=", "SecurityDetailsViewModel", "(", ")", "model", ".", "symbol", "=", "sec_agg", ".", "security", ".", "namespace", "+", "\":\"", "+", "sec_agg", ".", "security", ".", "mnemonic", "model", ".", "security", "=", "sec_agg", ".", "security", "# Quantity", "model", ".", "quantity", "=", "sec_agg", ".", "get_quantity", "(", ")", "model", ".", "value", "=", "sec_agg", ".", "get_value", "(", ")", "currency", "=", "sec_agg", ".", "get_currency", "(", ")", "if", "currency", ":", "assert", "isinstance", "(", "currency", ",", "str", ")", "model", ".", "currency", "=", "currency", "model", ".", "price", "=", "sec_agg", ".", "get_last_available_price", "(", ")", "model", ".", "average_price", "=", "sec_agg", ".", "get_avg_price", "(", ")", "# Here we take only the amount paid for the remaining stock.", "model", ".", "total_paid", "=", "sec_agg", ".", "get_total_paid_for_remaining_stock", "(", ")", "# Profit/loss", "model", ".", "profit_loss", "=", "model", ".", "value", "-", "model", ".", "total_paid", "if", "model", ".", "total_paid", ":", "model", ".", "profit_loss_perc", "=", "abs", "(", "model", ".", "profit_loss", ")", "*", "100", "/", "model", ".", "total_paid", "else", ":", "model", ".", "profit_loss_perc", "=", "0", "if", "abs", "(", "model", ".", "value", ")", "<", "abs", "(", "model", ".", "total_paid", ")", ":", "model", ".", "profit_loss_perc", "*=", "-", "1", "# Income", "model", ".", "income", "=", "sec_agg", ".", "get_income_total", "(", ")", "if", "model", ".", "total_paid", ":", "model", ".", "income_perc", "=", "model", ".", "income", "*", "100", "/", "model", ".", "total_paid", "else", ":", "model", ".", "income_perc", "=", "0", "# income in the last 12 months", "start", "=", "Datum", "(", ")", "start", ".", "subtract_months", "(", "12", ")", "end", "=", "Datum", "(", ")", "model", ".", "income_last_12m", "=", "sec_agg", ".", "get_income_in_period", "(", "start", ",", "end", ")", "if", "model", ".", "total_paid", "==", "0", ":", "model", ".", "income_perc_last_12m", "=", "0", "else", ":", "model", ".", "income_perc_last_12m", "=", "model", ".", "income_last_12m", "*", "100", "/", "model", ".", "total_paid", "# Return of Capital", "roc", "=", "sec_agg", ".", "get_return_of_capital", "(", ")", "model", ".", "return_of_capital", "=", "roc", "# total return", "model", ".", "total_return", "=", "model", ".", "profit_loss", "+", "model", ".", "income", "if", "model", ".", "total_paid", ":", "model", ".", "total_return_perc", "=", "model", ".", "total_return", "*", "100", "/", "model", ".", "total_paid", "else", ":", "model", ".", "total_return_perc", "=", "0", "# load all holding accounts", "model", ".", "accounts", "=", "sec_agg", ".", "accounts", "# Income accounts", "model", ".", "income_accounts", "=", "sec_agg", ".", "get_income_accounts", "(", ")", "# Load asset classes to which this security belongs.", "# todo load asset allocation, find the parents for this symbol", "# svc.asset_allocation.load_config_only(svc.currencies.default_currency)", "# stocks = svc.asset_allocation.get_stock(model.symbol)", "#", "# for stock in stocks:", "# model.asset_classes.append(stock.asset_class)", "from", "asset_allocation", "import", "AppAggregate", "aa", "=", "AppAggregate", "(", ")", "aa", ".", "open_session", "(", ")", "aa", ".", "get_asset_classes_for_security", "(", "None", ",", "model", ".", "symbol", ")", "return", "model" ]
Loads the model for security details
[ "Loads", "the", "model", "for", "security", "details" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/reports/security_info.py#L15-L93
train
MisterY/gnucash-portfolio
gnucash_portfolio/scheduledtxaggregate.py
handle_friday
def handle_friday(next_date: Datum, period: str, mult: int, start_date: Datum): """ Extracted the calculation for when the next_day is Friday """ assert isinstance(next_date, Datum) assert isinstance(start_date, Datum) # Starting from line 220. tmp_sat = next_date.clone() tmp_sat.add_days(1) tmp_sun = next_date.clone() tmp_sun.add_days(2) if period == RecurrencePeriod.END_OF_MONTH.value: if (next_date.is_end_of_month() or tmp_sat.is_end_of_month() or tmp_sun.is_end_of_month()): next_date.add_months(1) else: next_date.add_months(mult - 1) else: if tmp_sat.get_day_name() == start_date.get_day_name(): next_date.add_days(1) next_date.add_months(mult) elif tmp_sun.get_day_name() == start_date.get_day_name(): next_date.add_days(2) next_date.add_months(mult) elif next_date.get_day() >= start_date.get_day(): next_date.add_months(mult) elif next_date.is_end_of_month(): next_date.add_months(mult) elif tmp_sat.is_end_of_month(): next_date.add_days(1) next_date.add_months(mult) elif tmp_sun.is_end_of_month(): next_date.add_days(2) next_date.add_months(mult) else: # /* one fewer month fwd because of the occurrence in this month */ next_date.subtract_months(1) return next_date
python
def handle_friday(next_date: Datum, period: str, mult: int, start_date: Datum): """ Extracted the calculation for when the next_day is Friday """ assert isinstance(next_date, Datum) assert isinstance(start_date, Datum) # Starting from line 220. tmp_sat = next_date.clone() tmp_sat.add_days(1) tmp_sun = next_date.clone() tmp_sun.add_days(2) if period == RecurrencePeriod.END_OF_MONTH.value: if (next_date.is_end_of_month() or tmp_sat.is_end_of_month() or tmp_sun.is_end_of_month()): next_date.add_months(1) else: next_date.add_months(mult - 1) else: if tmp_sat.get_day_name() == start_date.get_day_name(): next_date.add_days(1) next_date.add_months(mult) elif tmp_sun.get_day_name() == start_date.get_day_name(): next_date.add_days(2) next_date.add_months(mult) elif next_date.get_day() >= start_date.get_day(): next_date.add_months(mult) elif next_date.is_end_of_month(): next_date.add_months(mult) elif tmp_sat.is_end_of_month(): next_date.add_days(1) next_date.add_months(mult) elif tmp_sun.is_end_of_month(): next_date.add_days(2) next_date.add_months(mult) else: # /* one fewer month fwd because of the occurrence in this month */ next_date.subtract_months(1) return next_date
[ "def", "handle_friday", "(", "next_date", ":", "Datum", ",", "period", ":", "str", ",", "mult", ":", "int", ",", "start_date", ":", "Datum", ")", ":", "assert", "isinstance", "(", "next_date", ",", "Datum", ")", "assert", "isinstance", "(", "start_date", ",", "Datum", ")", "# Starting from line 220.", "tmp_sat", "=", "next_date", ".", "clone", "(", ")", "tmp_sat", ".", "add_days", "(", "1", ")", "tmp_sun", "=", "next_date", ".", "clone", "(", ")", "tmp_sun", ".", "add_days", "(", "2", ")", "if", "period", "==", "RecurrencePeriod", ".", "END_OF_MONTH", ".", "value", ":", "if", "(", "next_date", ".", "is_end_of_month", "(", ")", "or", "tmp_sat", ".", "is_end_of_month", "(", ")", "or", "tmp_sun", ".", "is_end_of_month", "(", ")", ")", ":", "next_date", ".", "add_months", "(", "1", ")", "else", ":", "next_date", ".", "add_months", "(", "mult", "-", "1", ")", "else", ":", "if", "tmp_sat", ".", "get_day_name", "(", ")", "==", "start_date", ".", "get_day_name", "(", ")", ":", "next_date", ".", "add_days", "(", "1", ")", "next_date", ".", "add_months", "(", "mult", ")", "elif", "tmp_sun", ".", "get_day_name", "(", ")", "==", "start_date", ".", "get_day_name", "(", ")", ":", "next_date", ".", "add_days", "(", "2", ")", "next_date", ".", "add_months", "(", "mult", ")", "elif", "next_date", ".", "get_day", "(", ")", ">=", "start_date", ".", "get_day", "(", ")", ":", "next_date", ".", "add_months", "(", "mult", ")", "elif", "next_date", ".", "is_end_of_month", "(", ")", ":", "next_date", ".", "add_months", "(", "mult", ")", "elif", "tmp_sat", ".", "is_end_of_month", "(", ")", ":", "next_date", ".", "add_days", "(", "1", ")", "next_date", ".", "add_months", "(", "mult", ")", "elif", "tmp_sun", ".", "is_end_of_month", "(", ")", ":", "next_date", ".", "add_days", "(", "2", ")", "next_date", ".", "add_months", "(", "mult", ")", "else", ":", "# /* one fewer month fwd because of the occurrence in this month */", "next_date", ".", "subtract_months", "(", "1", ")", "return", "next_date" ]
Extracted the calculation for when the next_day is Friday
[ "Extracted", "the", "calculation", "for", "when", "the", "next_day", "is", "Friday" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/scheduledtxaggregate.py#L173-L212
train
MisterY/gnucash-portfolio
gnucash_portfolio/scheduledtxaggregate.py
ScheduledTxAggregate.get_next_occurrence
def get_next_occurrence(self) -> date: """ Returns the next occurrence date for transaction """ result = get_next_occurrence(self.transaction) assert isinstance(result, date) return result
python
def get_next_occurrence(self) -> date: """ Returns the next occurrence date for transaction """ result = get_next_occurrence(self.transaction) assert isinstance(result, date) return result
[ "def", "get_next_occurrence", "(", "self", ")", "->", "date", ":", "result", "=", "get_next_occurrence", "(", "self", ".", "transaction", ")", "assert", "isinstance", "(", "result", ",", "date", ")", "return", "result" ]
Returns the next occurrence date for transaction
[ "Returns", "the", "next", "occurrence", "date", "for", "transaction" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/scheduledtxaggregate.py#L222-L226
train
MisterY/gnucash-portfolio
gnucash_portfolio/scheduledtxaggregate.py
ScheduledTxsAggregate.get_enabled
def get_enabled(self) -> List[ScheduledTransaction]: """ Returns only enabled scheduled transactions """ query = ( self.query .filter(ScheduledTransaction.enabled == True) ) return query.all()
python
def get_enabled(self) -> List[ScheduledTransaction]: """ Returns only enabled scheduled transactions """ query = ( self.query .filter(ScheduledTransaction.enabled == True) ) return query.all()
[ "def", "get_enabled", "(", "self", ")", "->", "List", "[", "ScheduledTransaction", "]", ":", "query", "=", "(", "self", ".", "query", ".", "filter", "(", "ScheduledTransaction", ".", "enabled", "==", "True", ")", ")", "return", "query", ".", "all", "(", ")" ]
Returns only enabled scheduled transactions
[ "Returns", "only", "enabled", "scheduled", "transactions" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/scheduledtxaggregate.py#L254-L260
train
MisterY/gnucash-portfolio
gnucash_portfolio/scheduledtxaggregate.py
ScheduledTxsAggregate.get_by_id
def get_by_id(self, tx_id: str) -> ScheduledTransaction: """ Fetches a tx by id """ return self.query.filter(ScheduledTransaction.guid == tx_id).first()
python
def get_by_id(self, tx_id: str) -> ScheduledTransaction: """ Fetches a tx by id """ return self.query.filter(ScheduledTransaction.guid == tx_id).first()
[ "def", "get_by_id", "(", "self", ",", "tx_id", ":", "str", ")", "->", "ScheduledTransaction", ":", "return", "self", ".", "query", ".", "filter", "(", "ScheduledTransaction", ".", "guid", "==", "tx_id", ")", ".", "first", "(", ")" ]
Fetches a tx by id
[ "Fetches", "a", "tx", "by", "id" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/scheduledtxaggregate.py#L262-L264
train
MisterY/gnucash-portfolio
gnucash_portfolio/scheduledtxaggregate.py
ScheduledTxsAggregate.get_aggregate_by_id
def get_aggregate_by_id(self, tx_id: str) -> ScheduledTxAggregate: """ Creates an aggregate for single entity """ tran = self.get_by_id(tx_id) return self.get_aggregate_for(tran)
python
def get_aggregate_by_id(self, tx_id: str) -> ScheduledTxAggregate: """ Creates an aggregate for single entity """ tran = self.get_by_id(tx_id) return self.get_aggregate_for(tran)
[ "def", "get_aggregate_by_id", "(", "self", ",", "tx_id", ":", "str", ")", "->", "ScheduledTxAggregate", ":", "tran", "=", "self", ".", "get_by_id", "(", "tx_id", ")", "return", "self", ".", "get_aggregate_for", "(", "tran", ")" ]
Creates an aggregate for single entity
[ "Creates", "an", "aggregate", "for", "single", "entity" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/scheduledtxaggregate.py#L270-L273
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_avg_price_stat
def get_avg_price_stat(self) -> Decimal: """ Calculates the statistical average price for the security, by averaging only the prices paid. Very simple first implementation. """ avg_price = Decimal(0) price_total = Decimal(0) price_count = 0 for account in self.security.accounts: # Ignore trading accounts. if account.type == AccountType.TRADING.name: continue for split in account.splits: # Don't count the non-transactions. if split.quantity == 0: continue price = split.value / split.quantity price_count += 1 price_total += price if price_count: avg_price = price_total / price_count return avg_price
python
def get_avg_price_stat(self) -> Decimal: """ Calculates the statistical average price for the security, by averaging only the prices paid. Very simple first implementation. """ avg_price = Decimal(0) price_total = Decimal(0) price_count = 0 for account in self.security.accounts: # Ignore trading accounts. if account.type == AccountType.TRADING.name: continue for split in account.splits: # Don't count the non-transactions. if split.quantity == 0: continue price = split.value / split.quantity price_count += 1 price_total += price if price_count: avg_price = price_total / price_count return avg_price
[ "def", "get_avg_price_stat", "(", "self", ")", "->", "Decimal", ":", "avg_price", "=", "Decimal", "(", "0", ")", "price_total", "=", "Decimal", "(", "0", ")", "price_count", "=", "0", "for", "account", "in", "self", ".", "security", ".", "accounts", ":", "# Ignore trading accounts.", "if", "account", ".", "type", "==", "AccountType", ".", "TRADING", ".", "name", ":", "continue", "for", "split", "in", "account", ".", "splits", ":", "# Don't count the non-transactions.", "if", "split", ".", "quantity", "==", "0", ":", "continue", "price", "=", "split", ".", "value", "/", "split", ".", "quantity", "price_count", "+=", "1", "price_total", "+=", "price", "if", "price_count", ":", "avg_price", "=", "price_total", "/", "price_count", "return", "avg_price" ]
Calculates the statistical average price for the security, by averaging only the prices paid. Very simple first implementation.
[ "Calculates", "the", "statistical", "average", "price", "for", "the", "security", "by", "averaging", "only", "the", "prices", "paid", ".", "Very", "simple", "first", "implementation", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L41-L67
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_avg_price_fifo
def get_avg_price_fifo(self) -> Decimal: """ Calculates the average price paid for the security. security = Commodity Returns Decimal value. """ balance = self.get_quantity() if not balance: return Decimal(0) paid = Decimal(0) accounts = self.get_holding_accounts() # get unused splits (quantity and total paid) per account. for account in accounts: splits = self.get_available_splits_for_account(account) for split in splits: paid += split.value avg_price = paid / balance return avg_price
python
def get_avg_price_fifo(self) -> Decimal: """ Calculates the average price paid for the security. security = Commodity Returns Decimal value. """ balance = self.get_quantity() if not balance: return Decimal(0) paid = Decimal(0) accounts = self.get_holding_accounts() # get unused splits (quantity and total paid) per account. for account in accounts: splits = self.get_available_splits_for_account(account) for split in splits: paid += split.value avg_price = paid / balance return avg_price
[ "def", "get_avg_price_fifo", "(", "self", ")", "->", "Decimal", ":", "balance", "=", "self", ".", "get_quantity", "(", ")", "if", "not", "balance", ":", "return", "Decimal", "(", "0", ")", "paid", "=", "Decimal", "(", "0", ")", "accounts", "=", "self", ".", "get_holding_accounts", "(", ")", "# get unused splits (quantity and total paid) per account.", "for", "account", "in", "accounts", ":", "splits", "=", "self", ".", "get_available_splits_for_account", "(", "account", ")", "for", "split", "in", "splits", ":", "paid", "+=", "split", ".", "value", "avg_price", "=", "paid", "/", "balance", "return", "avg_price" ]
Calculates the average price paid for the security. security = Commodity Returns Decimal value.
[ "Calculates", "the", "average", "price", "paid", "for", "the", "security", ".", "security", "=", "Commodity", "Returns", "Decimal", "value", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L69-L89
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_available_splits_for_account
def get_available_splits_for_account(self, account: Account) -> List[Split]: """ Returns all unused splits in the account. Used for the calculation of avg.price. The split that has been partially used will have its quantity reduced to available quantity only. """ available_splits = [] # get all purchase splits in the account query = ( self.get_splits_query() .filter(Split.account == account) ) buy_splits = ( query.filter(Split.quantity > 0) .join(Transaction) .order_by(desc(Transaction.post_date)) ).all() buy_q = sum(split.quantity for split in buy_splits) sell_splits = query.filter(Split.quantity < 0).all() sell_q = sum(split.quantity for split in sell_splits) balance = buy_q + sell_q if balance == 0: return available_splits for real_split in buy_splits: split = splitmapper.map_split(real_split, SplitModel()) if split.quantity < balance: # take this split and reduce the balance. balance -= split.quantity else: # This is the last split. price = split.value / split.quantity # Take only the remaining quantity. split.quantity -= balance # Also adjust the value for easier calculation elsewhere. split.value = balance * price # The remaining balance is now distributed into splits. balance = 0 # add to the collection. available_splits.append(split) if balance == 0: break return available_splits
python
def get_available_splits_for_account(self, account: Account) -> List[Split]: """ Returns all unused splits in the account. Used for the calculation of avg.price. The split that has been partially used will have its quantity reduced to available quantity only. """ available_splits = [] # get all purchase splits in the account query = ( self.get_splits_query() .filter(Split.account == account) ) buy_splits = ( query.filter(Split.quantity > 0) .join(Transaction) .order_by(desc(Transaction.post_date)) ).all() buy_q = sum(split.quantity for split in buy_splits) sell_splits = query.filter(Split.quantity < 0).all() sell_q = sum(split.quantity for split in sell_splits) balance = buy_q + sell_q if balance == 0: return available_splits for real_split in buy_splits: split = splitmapper.map_split(real_split, SplitModel()) if split.quantity < balance: # take this split and reduce the balance. balance -= split.quantity else: # This is the last split. price = split.value / split.quantity # Take only the remaining quantity. split.quantity -= balance # Also adjust the value for easier calculation elsewhere. split.value = balance * price # The remaining balance is now distributed into splits. balance = 0 # add to the collection. available_splits.append(split) if balance == 0: break return available_splits
[ "def", "get_available_splits_for_account", "(", "self", ",", "account", ":", "Account", ")", "->", "List", "[", "Split", "]", ":", "available_splits", "=", "[", "]", "# get all purchase splits in the account", "query", "=", "(", "self", ".", "get_splits_query", "(", ")", ".", "filter", "(", "Split", ".", "account", "==", "account", ")", ")", "buy_splits", "=", "(", "query", ".", "filter", "(", "Split", ".", "quantity", ">", "0", ")", ".", "join", "(", "Transaction", ")", ".", "order_by", "(", "desc", "(", "Transaction", ".", "post_date", ")", ")", ")", ".", "all", "(", ")", "buy_q", "=", "sum", "(", "split", ".", "quantity", "for", "split", "in", "buy_splits", ")", "sell_splits", "=", "query", ".", "filter", "(", "Split", ".", "quantity", "<", "0", ")", ".", "all", "(", ")", "sell_q", "=", "sum", "(", "split", ".", "quantity", "for", "split", "in", "sell_splits", ")", "balance", "=", "buy_q", "+", "sell_q", "if", "balance", "==", "0", ":", "return", "available_splits", "for", "real_split", "in", "buy_splits", ":", "split", "=", "splitmapper", ".", "map_split", "(", "real_split", ",", "SplitModel", "(", ")", ")", "if", "split", ".", "quantity", "<", "balance", ":", "# take this split and reduce the balance.", "balance", "-=", "split", ".", "quantity", "else", ":", "# This is the last split.", "price", "=", "split", ".", "value", "/", "split", ".", "quantity", "# Take only the remaining quantity.", "split", ".", "quantity", "-=", "balance", "# Also adjust the value for easier calculation elsewhere.", "split", ".", "value", "=", "balance", "*", "price", "# The remaining balance is now distributed into splits.", "balance", "=", "0", "# add to the collection.", "available_splits", ".", "append", "(", "split", ")", "if", "balance", "==", "0", ":", "break", "return", "available_splits" ]
Returns all unused splits in the account. Used for the calculation of avg.price. The split that has been partially used will have its quantity reduced to available quantity only.
[ "Returns", "all", "unused", "splits", "in", "the", "account", ".", "Used", "for", "the", "calculation", "of", "avg", ".", "price", ".", "The", "split", "that", "has", "been", "partially", "used", "will", "have", "its", "quantity", "reduced", "to", "available", "quantity", "only", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L91-L133
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_num_shares
def get_num_shares(self) -> Decimal: """ Returns the number of shares at this time """ from pydatum import Datum today = Datum().today() return self.get_num_shares_on(today)
python
def get_num_shares(self) -> Decimal: """ Returns the number of shares at this time """ from pydatum import Datum today = Datum().today() return self.get_num_shares_on(today)
[ "def", "get_num_shares", "(", "self", ")", "->", "Decimal", ":", "from", "pydatum", "import", "Datum", "today", "=", "Datum", "(", ")", ".", "today", "(", ")", "return", "self", ".", "get_num_shares_on", "(", "today", ")" ]
Returns the number of shares at this time
[ "Returns", "the", "number", "of", "shares", "at", "this", "time" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L135-L139
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_last_available_price
def get_last_available_price(self) -> PriceModel: """ Finds the last available price for security. Uses PriceDb. """ price_db = PriceDbApplication() symbol = SecuritySymbol(self.security.namespace, self.security.mnemonic) result = price_db.get_latest_price(symbol) return result
python
def get_last_available_price(self) -> PriceModel: """ Finds the last available price for security. Uses PriceDb. """ price_db = PriceDbApplication() symbol = SecuritySymbol(self.security.namespace, self.security.mnemonic) result = price_db.get_latest_price(symbol) return result
[ "def", "get_last_available_price", "(", "self", ")", "->", "PriceModel", ":", "price_db", "=", "PriceDbApplication", "(", ")", "symbol", "=", "SecuritySymbol", "(", "self", ".", "security", ".", "namespace", ",", "self", ".", "security", ".", "mnemonic", ")", "result", "=", "price_db", ".", "get_latest_price", "(", "symbol", ")", "return", "result" ]
Finds the last available price for security. Uses PriceDb.
[ "Finds", "the", "last", "available", "price", "for", "security", ".", "Uses", "PriceDb", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L154-L159
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.__get_holding_accounts_query
def __get_holding_accounts_query(self): """ Returns all holding accounts, except Trading accounts. """ query = ( self.book.session.query(Account) .filter(Account.commodity == self.security) .filter(Account.type != AccountType.trading.value) ) # generic.print_sql(query) return query
python
def __get_holding_accounts_query(self): """ Returns all holding accounts, except Trading accounts. """ query = ( self.book.session.query(Account) .filter(Account.commodity == self.security) .filter(Account.type != AccountType.trading.value) ) # generic.print_sql(query) return query
[ "def", "__get_holding_accounts_query", "(", "self", ")", ":", "query", "=", "(", "self", ".", "book", ".", "session", ".", "query", "(", "Account", ")", ".", "filter", "(", "Account", ".", "commodity", "==", "self", ".", "security", ")", ".", "filter", "(", "Account", ".", "type", "!=", "AccountType", ".", "trading", ".", "value", ")", ")", "# generic.print_sql(query)", "return", "query" ]
Returns all holding accounts, except Trading accounts.
[ "Returns", "all", "holding", "accounts", "except", "Trading", "accounts", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L180-L188
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_income_accounts
def get_income_accounts(self) -> List[Account]: """ Returns all income accounts for this security. Income accounts are accounts not under Trading, expressed in currency, and having the same name as the mnemonic. They should be under Assets but this requires a recursive SQL query. """ # trading = self.book.trading_account(self.security) # log(DEBUG, "trading account = %s, %s", trading.fullname, trading.guid) # Example on how to self-link, i.e. parent account, using alias. # parent_alias = aliased(Account) # .join(parent_alias, Account.parent) # parent_alias.parent_guid != trading.guid query = ( self.book.session.query(Account) .join(Commodity) .filter(Account.name == self.security.mnemonic) .filter(Commodity.namespace == "CURRENCY") # .filter(Account.type != "TRADING") .filter(Account.type == AccountType.income.value) ) # generic.print_sql(query) return query.all()
python
def get_income_accounts(self) -> List[Account]: """ Returns all income accounts for this security. Income accounts are accounts not under Trading, expressed in currency, and having the same name as the mnemonic. They should be under Assets but this requires a recursive SQL query. """ # trading = self.book.trading_account(self.security) # log(DEBUG, "trading account = %s, %s", trading.fullname, trading.guid) # Example on how to self-link, i.e. parent account, using alias. # parent_alias = aliased(Account) # .join(parent_alias, Account.parent) # parent_alias.parent_guid != trading.guid query = ( self.book.session.query(Account) .join(Commodity) .filter(Account.name == self.security.mnemonic) .filter(Commodity.namespace == "CURRENCY") # .filter(Account.type != "TRADING") .filter(Account.type == AccountType.income.value) ) # generic.print_sql(query) return query.all()
[ "def", "get_income_accounts", "(", "self", ")", "->", "List", "[", "Account", "]", ":", "# trading = self.book.trading_account(self.security)", "# log(DEBUG, \"trading account = %s, %s\", trading.fullname, trading.guid)", "# Example on how to self-link, i.e. parent account, using alias.", "# parent_alias = aliased(Account)", "# .join(parent_alias, Account.parent)", "# parent_alias.parent_guid != trading.guid", "query", "=", "(", "self", ".", "book", ".", "session", ".", "query", "(", "Account", ")", ".", "join", "(", "Commodity", ")", ".", "filter", "(", "Account", ".", "name", "==", "self", ".", "security", ".", "mnemonic", ")", ".", "filter", "(", "Commodity", ".", "namespace", "==", "\"CURRENCY\"", ")", "# .filter(Account.type != \"TRADING\")", ".", "filter", "(", "Account", ".", "type", "==", "AccountType", ".", "income", ".", "value", ")", ")", "# generic.print_sql(query)", "return", "query", ".", "all", "(", ")" ]
Returns all income accounts for this security. Income accounts are accounts not under Trading, expressed in currency, and having the same name as the mnemonic. They should be under Assets but this requires a recursive SQL query.
[ "Returns", "all", "income", "accounts", "for", "this", "security", ".", "Income", "accounts", "are", "accounts", "not", "under", "Trading", "expressed", "in", "currency", "and", "having", "the", "same", "name", "as", "the", "mnemonic", ".", "They", "should", "be", "under", "Assets", "but", "this", "requires", "a", "recursive", "SQL", "query", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L190-L214
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_income_total
def get_income_total(self) -> Decimal: """ Sum of all income = sum of balances of all income accounts. """ accounts = self.get_income_accounts() # log(DEBUG, "income accounts: %s", accounts) income = Decimal(0) for acct in accounts: income += acct.get_balance() return income
python
def get_income_total(self) -> Decimal: """ Sum of all income = sum of balances of all income accounts. """ accounts = self.get_income_accounts() # log(DEBUG, "income accounts: %s", accounts) income = Decimal(0) for acct in accounts: income += acct.get_balance() return income
[ "def", "get_income_total", "(", "self", ")", "->", "Decimal", ":", "accounts", "=", "self", ".", "get_income_accounts", "(", ")", "# log(DEBUG, \"income accounts: %s\", accounts)", "income", "=", "Decimal", "(", "0", ")", "for", "acct", "in", "accounts", ":", "income", "+=", "acct", ".", "get_balance", "(", ")", "return", "income" ]
Sum of all income = sum of balances of all income accounts.
[ "Sum", "of", "all", "income", "=", "sum", "of", "balances", "of", "all", "income", "accounts", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L216-L223
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_income_in_period
def get_income_in_period(self, start: datetime, end: datetime) -> Decimal: """ Returns all income in the given period """ accounts = self.get_income_accounts() income = Decimal(0) for acct in accounts: acc_agg = AccountAggregate(self.book, acct) acc_bal = acc_agg.get_balance_in_period(start, end) income += acc_bal return income
python
def get_income_in_period(self, start: datetime, end: datetime) -> Decimal: """ Returns all income in the given period """ accounts = self.get_income_accounts() income = Decimal(0) for acct in accounts: acc_agg = AccountAggregate(self.book, acct) acc_bal = acc_agg.get_balance_in_period(start, end) income += acc_bal return income
[ "def", "get_income_in_period", "(", "self", ",", "start", ":", "datetime", ",", "end", ":", "datetime", ")", "->", "Decimal", ":", "accounts", "=", "self", ".", "get_income_accounts", "(", ")", "income", "=", "Decimal", "(", "0", ")", "for", "acct", "in", "accounts", ":", "acc_agg", "=", "AccountAggregate", "(", "self", ".", "book", ",", "acct", ")", "acc_bal", "=", "acc_agg", ".", "get_balance_in_period", "(", "start", ",", "end", ")", "income", "+=", "acc_bal", "return", "income" ]
Returns all income in the given period
[ "Returns", "all", "income", "in", "the", "given", "period" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L225-L234
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_prices
def get_prices(self) -> List[PriceModel]: """ Returns all available prices for security """ # return self.security.prices.order_by(Price.date) from pricedb.dal import Price pricedb = PriceDbApplication() repo = pricedb.get_price_repository() query = (repo.query(Price) .filter(Price.namespace == self.security.namespace) .filter(Price.symbol == self.security.mnemonic) .orderby_desc(Price.date) ) return query.all()
python
def get_prices(self) -> List[PriceModel]: """ Returns all available prices for security """ # return self.security.prices.order_by(Price.date) from pricedb.dal import Price pricedb = PriceDbApplication() repo = pricedb.get_price_repository() query = (repo.query(Price) .filter(Price.namespace == self.security.namespace) .filter(Price.symbol == self.security.mnemonic) .orderby_desc(Price.date) ) return query.all()
[ "def", "get_prices", "(", "self", ")", "->", "List", "[", "PriceModel", "]", ":", "# return self.security.prices.order_by(Price.date)", "from", "pricedb", ".", "dal", "import", "Price", "pricedb", "=", "PriceDbApplication", "(", ")", "repo", "=", "pricedb", ".", "get_price_repository", "(", ")", "query", "=", "(", "repo", ".", "query", "(", "Price", ")", ".", "filter", "(", "Price", ".", "namespace", "==", "self", ".", "security", ".", "namespace", ")", ".", "filter", "(", "Price", ".", "symbol", "==", "self", ".", "security", ".", "mnemonic", ")", ".", "orderby_desc", "(", "Price", ".", "date", ")", ")", "return", "query", ".", "all", "(", ")" ]
Returns all available prices for security
[ "Returns", "all", "available", "prices", "for", "security" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L236-L248
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_quantity
def get_quantity(self) -> Decimal: """ Returns the number of shares for the given security. It gets the number from all the accounts in the book. """ from pydatum import Datum # Use today's date but reset hour and lower. today = Datum() today.today() today.end_of_day() return self.get_num_shares_on(today.value)
python
def get_quantity(self) -> Decimal: """ Returns the number of shares for the given security. It gets the number from all the accounts in the book. """ from pydatum import Datum # Use today's date but reset hour and lower. today = Datum() today.today() today.end_of_day() return self.get_num_shares_on(today.value)
[ "def", "get_quantity", "(", "self", ")", "->", "Decimal", ":", "from", "pydatum", "import", "Datum", "# Use today's date but reset hour and lower.", "today", "=", "Datum", "(", ")", "today", ".", "today", "(", ")", "today", ".", "end_of_day", "(", ")", "return", "self", ".", "get_num_shares_on", "(", "today", ".", "value", ")" ]
Returns the number of shares for the given security. It gets the number from all the accounts in the book.
[ "Returns", "the", "number", "of", "shares", "for", "the", "given", "security", ".", "It", "gets", "the", "number", "from", "all", "the", "accounts", "in", "the", "book", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L250-L260
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_splits_query
def get_splits_query(self): """ Returns the query for all splits for this security """ query = ( self.book.session.query(Split) .join(Account) .filter(Account.type != AccountType.trading.value) .filter(Account.commodity_guid == self.security.guid) ) return query
python
def get_splits_query(self): """ Returns the query for all splits for this security """ query = ( self.book.session.query(Split) .join(Account) .filter(Account.type != AccountType.trading.value) .filter(Account.commodity_guid == self.security.guid) ) return query
[ "def", "get_splits_query", "(", "self", ")", ":", "query", "=", "(", "self", ".", "book", ".", "session", ".", "query", "(", "Split", ")", ".", "join", "(", "Account", ")", ".", "filter", "(", "Account", ".", "type", "!=", "AccountType", ".", "trading", ".", "value", ")", ".", "filter", "(", "Account", ".", "commodity_guid", "==", "self", ".", "security", ".", "guid", ")", ")", "return", "query" ]
Returns the query for all splits for this security
[ "Returns", "the", "query", "for", "all", "splits", "for", "this", "security" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L262-L270
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_total_paid
def get_total_paid(self) -> Decimal: """ Returns the total amount paid, in currency, for the stocks owned """ query = ( self.get_splits_query() ) splits = query.all() total = Decimal(0) for split in splits: total += split.value return total
python
def get_total_paid(self) -> Decimal: """ Returns the total amount paid, in currency, for the stocks owned """ query = ( self.get_splits_query() ) splits = query.all() total = Decimal(0) for split in splits: total += split.value return total
[ "def", "get_total_paid", "(", "self", ")", "->", "Decimal", ":", "query", "=", "(", "self", ".", "get_splits_query", "(", ")", ")", "splits", "=", "query", ".", "all", "(", ")", "total", "=", "Decimal", "(", "0", ")", "for", "split", "in", "splits", ":", "total", "+=", "split", ".", "value", "return", "total" ]
Returns the total amount paid, in currency, for the stocks owned
[ "Returns", "the", "total", "amount", "paid", "in", "currency", "for", "the", "stocks", "owned" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L272-L283
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_total_paid_for_remaining_stock
def get_total_paid_for_remaining_stock(self) -> Decimal: """ Returns the amount paid only for the remaining stock """ paid = Decimal(0) accounts = self.get_holding_accounts() for acc in accounts: splits = self.get_available_splits_for_account(acc) paid += sum(split.value for split in splits) return paid
python
def get_total_paid_for_remaining_stock(self) -> Decimal: """ Returns the amount paid only for the remaining stock """ paid = Decimal(0) accounts = self.get_holding_accounts() for acc in accounts: splits = self.get_available_splits_for_account(acc) paid += sum(split.value for split in splits) return paid
[ "def", "get_total_paid_for_remaining_stock", "(", "self", ")", "->", "Decimal", ":", "paid", "=", "Decimal", "(", "0", ")", "accounts", "=", "self", ".", "get_holding_accounts", "(", ")", "for", "acc", "in", "accounts", ":", "splits", "=", "self", ".", "get_available_splits_for_account", "(", "acc", ")", "paid", "+=", "sum", "(", "split", ".", "value", "for", "split", "in", "splits", ")", "return", "paid" ]
Returns the amount paid only for the remaining stock
[ "Returns", "the", "amount", "paid", "only", "for", "the", "remaining", "stock" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L285-L293
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_value
def get_value(self) -> Decimal: """ Returns the current value of stocks """ quantity = self.get_quantity() price = self.get_last_available_price() if not price: # raise ValueError("no price found for", self.full_symbol) return Decimal(0) value = quantity * price.value return value
python
def get_value(self) -> Decimal: """ Returns the current value of stocks """ quantity = self.get_quantity() price = self.get_last_available_price() if not price: # raise ValueError("no price found for", self.full_symbol) return Decimal(0) value = quantity * price.value return value
[ "def", "get_value", "(", "self", ")", "->", "Decimal", ":", "quantity", "=", "self", ".", "get_quantity", "(", ")", "price", "=", "self", ".", "get_last_available_price", "(", ")", "if", "not", "price", ":", "# raise ValueError(\"no price found for\", self.full_symbol)", "return", "Decimal", "(", "0", ")", "value", "=", "quantity", "*", "price", ".", "value", "return", "value" ]
Returns the current value of stocks
[ "Returns", "the", "current", "value", "of", "stocks" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L295-L304
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.get_value_in_base_currency
def get_value_in_base_currency(self) -> Decimal: """ Calculates the value of security holdings in base currency """ # check if the currency is the base currency. amt_orig = self.get_value() # Security currency sec_cur = self.get_currency() #base_cur = self.book.default_currency cur_svc = CurrenciesAggregate(self.book) base_cur = cur_svc.get_default_currency() if sec_cur == base_cur: return amt_orig # otherwise recalculate single_svc = cur_svc.get_currency_aggregate(sec_cur) rate = single_svc.get_latest_rate(base_cur) result = amt_orig * rate.value return result
python
def get_value_in_base_currency(self) -> Decimal: """ Calculates the value of security holdings in base currency """ # check if the currency is the base currency. amt_orig = self.get_value() # Security currency sec_cur = self.get_currency() #base_cur = self.book.default_currency cur_svc = CurrenciesAggregate(self.book) base_cur = cur_svc.get_default_currency() if sec_cur == base_cur: return amt_orig # otherwise recalculate single_svc = cur_svc.get_currency_aggregate(sec_cur) rate = single_svc.get_latest_rate(base_cur) result = amt_orig * rate.value return result
[ "def", "get_value_in_base_currency", "(", "self", ")", "->", "Decimal", ":", "# check if the currency is the base currency.", "amt_orig", "=", "self", ".", "get_value", "(", ")", "# Security currency", "sec_cur", "=", "self", ".", "get_currency", "(", ")", "#base_cur = self.book.default_currency", "cur_svc", "=", "CurrenciesAggregate", "(", "self", ".", "book", ")", "base_cur", "=", "cur_svc", ".", "get_default_currency", "(", ")", "if", "sec_cur", "==", "base_cur", ":", "return", "amt_orig", "# otherwise recalculate", "single_svc", "=", "cur_svc", ".", "get_currency_aggregate", "(", "sec_cur", ")", "rate", "=", "single_svc", ".", "get_latest_rate", "(", "base_cur", ")", "result", "=", "amt_orig", "*", "rate", ".", "value", "return", "result" ]
Calculates the value of security holdings in base currency
[ "Calculates", "the", "value", "of", "security", "holdings", "in", "base", "currency" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L306-L324
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecurityAggregate.accounts
def accounts(self) -> List[Account]: """ Returns the asset accounts in which the security is held """ # use only Assets sub-accounts result = ( [acct for acct in self.security.accounts if acct.fullname.startswith('Assets')] ) return result
python
def accounts(self) -> List[Account]: """ Returns the asset accounts in which the security is held """ # use only Assets sub-accounts result = ( [acct for acct in self.security.accounts if acct.fullname.startswith('Assets')] ) return result
[ "def", "accounts", "(", "self", ")", "->", "List", "[", "Account", "]", ":", "# use only Assets sub-accounts", "result", "=", "(", "[", "acct", "for", "acct", "in", "self", ".", "security", ".", "accounts", "if", "acct", ".", "fullname", ".", "startswith", "(", "'Assets'", ")", "]", ")", "return", "result" ]
Returns the asset accounts in which the security is held
[ "Returns", "the", "asset", "accounts", "in", "which", "the", "security", "is", "held" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L348-L354
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecuritiesAggregate.find
def find(self, search_term: str) -> List[Commodity]: """ Searches for security by part of the name """ query = ( self.query .filter(Commodity.mnemonic.like('%' + search_term + '%') | Commodity.fullname.like('%' + search_term + '%')) ) return query.all()
python
def find(self, search_term: str) -> List[Commodity]: """ Searches for security by part of the name """ query = ( self.query .filter(Commodity.mnemonic.like('%' + search_term + '%') | Commodity.fullname.like('%' + search_term + '%')) ) return query.all()
[ "def", "find", "(", "self", ",", "search_term", ":", "str", ")", "->", "List", "[", "Commodity", "]", ":", "query", "=", "(", "self", ".", "query", ".", "filter", "(", "Commodity", ".", "mnemonic", ".", "like", "(", "'%'", "+", "search_term", "+", "'%'", ")", "|", "Commodity", ".", "fullname", ".", "like", "(", "'%'", "+", "search_term", "+", "'%'", ")", ")", ")", "return", "query", ".", "all", "(", ")" ]
Searches for security by part of the name
[ "Searches", "for", "security", "by", "part", "of", "the", "name" ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L370-L377
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecuritiesAggregate.get_all
def get_all(self) -> List[Commodity]: """ Loads all non-currency commodities, assuming they are stocks. """ query = ( self.query .order_by(Commodity.namespace, Commodity.mnemonic) ) return query.all()
python
def get_all(self) -> List[Commodity]: """ Loads all non-currency commodities, assuming they are stocks. """ query = ( self.query .order_by(Commodity.namespace, Commodity.mnemonic) ) return query.all()
[ "def", "get_all", "(", "self", ")", "->", "List", "[", "Commodity", "]", ":", "query", "=", "(", "self", ".", "query", ".", "order_by", "(", "Commodity", ".", "namespace", ",", "Commodity", ".", "mnemonic", ")", ")", "return", "query", ".", "all", "(", ")" ]
Loads all non-currency commodities, assuming they are stocks.
[ "Loads", "all", "non", "-", "currency", "commodities", "assuming", "they", "are", "stocks", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L379-L385
train
MisterY/gnucash-portfolio
gnucash_portfolio/securitiesaggregate.py
SecuritiesAggregate.get_by_symbol
def get_by_symbol(self, symbol: str) -> Commodity: """ Returns the commodity with the given symbol. If more are found, an exception will be thrown. """ # handle namespace. Accept GnuCash and Yahoo-style symbols. full_symbol = self.__parse_gc_symbol(symbol) query = ( self.query .filter(Commodity.mnemonic == full_symbol["mnemonic"]) ) if full_symbol["namespace"]: query = query.filter(Commodity.namespace == full_symbol["namespace"]) return query.first()
python
def get_by_symbol(self, symbol: str) -> Commodity: """ Returns the commodity with the given symbol. If more are found, an exception will be thrown. """ # handle namespace. Accept GnuCash and Yahoo-style symbols. full_symbol = self.__parse_gc_symbol(symbol) query = ( self.query .filter(Commodity.mnemonic == full_symbol["mnemonic"]) ) if full_symbol["namespace"]: query = query.filter(Commodity.namespace == full_symbol["namespace"]) return query.first()
[ "def", "get_by_symbol", "(", "self", ",", "symbol", ":", "str", ")", "->", "Commodity", ":", "# handle namespace. Accept GnuCash and Yahoo-style symbols.", "full_symbol", "=", "self", ".", "__parse_gc_symbol", "(", "symbol", ")", "query", "=", "(", "self", ".", "query", ".", "filter", "(", "Commodity", ".", "mnemonic", "==", "full_symbol", "[", "\"mnemonic\"", "]", ")", ")", "if", "full_symbol", "[", "\"namespace\"", "]", ":", "query", "=", "query", ".", "filter", "(", "Commodity", ".", "namespace", "==", "full_symbol", "[", "\"namespace\"", "]", ")", "return", "query", ".", "first", "(", ")" ]
Returns the commodity with the given symbol. If more are found, an exception will be thrown.
[ "Returns", "the", "commodity", "with", "the", "given", "symbol", ".", "If", "more", "are", "found", "an", "exception", "will", "be", "thrown", "." ]
bfaad8345a5479d1cd111acee1939e25c2a638c2
https://github.com/MisterY/gnucash-portfolio/blob/bfaad8345a5479d1cd111acee1939e25c2a638c2/gnucash_portfolio/securitiesaggregate.py#L387-L402
train