repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
alephdata/memorious
memorious/operations/fetch.py
session
def session(context, data): """Set some HTTP parameters for all subsequent requests. This includes ``user`` and ``password`` for HTTP basic authentication, and ``user_agent`` as a header. """ context.http.reset() user = context.get('user') password = context.get('password') if user is not None and password is not None: context.http.session.auth = (user, password) user_agent = context.get('user_agent') if user_agent is not None: context.http.session.headers['User-Agent'] = user_agent referer = context.get('url') if referer is not None: context.http.session.headers['Referer'] = referer proxy = context.get('proxy') if proxy is not None: proxies = {'http': proxy, 'https': proxy} context.http.session.proxies = proxies # Explictly save the session because no actual HTTP requests were made. context.http.save() context.emit(data=data)
python
def session(context, data): """Set some HTTP parameters for all subsequent requests. This includes ``user`` and ``password`` for HTTP basic authentication, and ``user_agent`` as a header. """ context.http.reset() user = context.get('user') password = context.get('password') if user is not None and password is not None: context.http.session.auth = (user, password) user_agent = context.get('user_agent') if user_agent is not None: context.http.session.headers['User-Agent'] = user_agent referer = context.get('url') if referer is not None: context.http.session.headers['Referer'] = referer proxy = context.get('proxy') if proxy is not None: proxies = {'http': proxy, 'https': proxy} context.http.session.proxies = proxies # Explictly save the session because no actual HTTP requests were made. context.http.save() context.emit(data=data)
[ "def", "session", "(", "context", ",", "data", ")", ":", "context", ".", "http", ".", "reset", "(", ")", "user", "=", "context", ".", "get", "(", "'user'", ")", "password", "=", "context", ".", "get", "(", "'password'", ")", "if", "user", "is", "not", "None", "and", "password", "is", "not", "None", ":", "context", ".", "http", ".", "session", ".", "auth", "=", "(", "user", ",", "password", ")", "user_agent", "=", "context", ".", "get", "(", "'user_agent'", ")", "if", "user_agent", "is", "not", "None", ":", "context", ".", "http", ".", "session", ".", "headers", "[", "'User-Agent'", "]", "=", "user_agent", "referer", "=", "context", ".", "get", "(", "'url'", ")", "if", "referer", "is", "not", "None", ":", "context", ".", "http", ".", "session", ".", "headers", "[", "'Referer'", "]", "=", "referer", "proxy", "=", "context", ".", "get", "(", "'proxy'", ")", "if", "proxy", "is", "not", "None", ":", "proxies", "=", "{", "'http'", ":", "proxy", ",", "'https'", ":", "proxy", "}", "context", ".", "http", ".", "session", ".", "proxies", "=", "proxies", "# Explictly save the session because no actual HTTP requests were made.", "context", ".", "http", ".", "save", "(", ")", "context", ".", "emit", "(", "data", "=", "data", ")" ]
Set some HTTP parameters for all subsequent requests. This includes ``user`` and ``password`` for HTTP basic authentication, and ``user_agent`` as a header.
[ "Set", "some", "HTTP", "parameters", "for", "all", "subsequent", "requests", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/fetch.py#L74-L103
train
alephdata/memorious
memorious/model/event.py
Event.save
def save(cls, crawler, stage, level, run_id, error=None, message=None): """Create an event, possibly based on an exception.""" event = { 'stage': stage.name, 'level': level, 'timestamp': pack_now(), 'error': error, 'message': message } data = dump_json(event) conn.lpush(make_key(crawler, "events"), data) conn.lpush(make_key(crawler, "events", level), data) conn.lpush(make_key(crawler, "events", stage), data) conn.lpush(make_key(crawler, "events", stage, level), data) conn.lpush(make_key(crawler, "events", run_id), data) conn.lpush(make_key(crawler, "events", run_id, level), data) return event
python
def save(cls, crawler, stage, level, run_id, error=None, message=None): """Create an event, possibly based on an exception.""" event = { 'stage': stage.name, 'level': level, 'timestamp': pack_now(), 'error': error, 'message': message } data = dump_json(event) conn.lpush(make_key(crawler, "events"), data) conn.lpush(make_key(crawler, "events", level), data) conn.lpush(make_key(crawler, "events", stage), data) conn.lpush(make_key(crawler, "events", stage, level), data) conn.lpush(make_key(crawler, "events", run_id), data) conn.lpush(make_key(crawler, "events", run_id, level), data) return event
[ "def", "save", "(", "cls", ",", "crawler", ",", "stage", ",", "level", ",", "run_id", ",", "error", "=", "None", ",", "message", "=", "None", ")", ":", "event", "=", "{", "'stage'", ":", "stage", ".", "name", ",", "'level'", ":", "level", ",", "'timestamp'", ":", "pack_now", "(", ")", ",", "'error'", ":", "error", ",", "'message'", ":", "message", "}", "data", "=", "dump_json", "(", "event", ")", "conn", ".", "lpush", "(", "make_key", "(", "crawler", ",", "\"events\"", ")", ",", "data", ")", "conn", ".", "lpush", "(", "make_key", "(", "crawler", ",", "\"events\"", ",", "level", ")", ",", "data", ")", "conn", ".", "lpush", "(", "make_key", "(", "crawler", ",", "\"events\"", ",", "stage", ")", ",", "data", ")", "conn", ".", "lpush", "(", "make_key", "(", "crawler", ",", "\"events\"", ",", "stage", ",", "level", ")", ",", "data", ")", "conn", ".", "lpush", "(", "make_key", "(", "crawler", ",", "\"events\"", ",", "run_id", ")", ",", "data", ")", "conn", ".", "lpush", "(", "make_key", "(", "crawler", ",", "\"events\"", ",", "run_id", ",", "level", ")", ",", "data", ")", "return", "event" ]
Create an event, possibly based on an exception.
[ "Create", "an", "event", "possibly", "based", "on", "an", "exception", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/model/event.py#L19-L35
train
alephdata/memorious
memorious/model/event.py
Event.get_stage_events
def get_stage_events(cls, crawler, stage_name, start, end, level=None): """events from a particular stage""" key = make_key(crawler, "events", stage_name, level) return cls.event_list(key, start, end)
python
def get_stage_events(cls, crawler, stage_name, start, end, level=None): """events from a particular stage""" key = make_key(crawler, "events", stage_name, level) return cls.event_list(key, start, end)
[ "def", "get_stage_events", "(", "cls", ",", "crawler", ",", "stage_name", ",", "start", ",", "end", ",", "level", "=", "None", ")", ":", "key", "=", "make_key", "(", "crawler", ",", "\"events\"", ",", "stage_name", ",", "level", ")", "return", "cls", ".", "event_list", "(", "key", ",", "start", ",", "end", ")" ]
events from a particular stage
[ "events", "from", "a", "particular", "stage" ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/model/event.py#L93-L96
train
alephdata/memorious
memorious/model/event.py
Event.get_run_events
def get_run_events(cls, crawler, run_id, start, end, level=None): """Events from a particular run""" key = make_key(crawler, "events", run_id, level) return cls.event_list(key, start, end)
python
def get_run_events(cls, crawler, run_id, start, end, level=None): """Events from a particular run""" key = make_key(crawler, "events", run_id, level) return cls.event_list(key, start, end)
[ "def", "get_run_events", "(", "cls", ",", "crawler", ",", "run_id", ",", "start", ",", "end", ",", "level", "=", "None", ")", ":", "key", "=", "make_key", "(", "crawler", ",", "\"events\"", ",", "run_id", ",", "level", ")", "return", "cls", ".", "event_list", "(", "key", ",", "start", ",", "end", ")" ]
Events from a particular run
[ "Events", "from", "a", "particular", "run" ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/model/event.py#L99-L102
train
alephdata/memorious
memorious/helpers/__init__.py
soviet_checksum
def soviet_checksum(code): """Courtesy of Sir Vlad Lavrov.""" def sum_digits(code, offset=1): total = 0 for digit, index in zip(code[:7], count(offset)): total += int(digit) * index summed = (total / 11 * 11) return total - summed check = sum_digits(code, 1) if check == 10: check = sum_digits(code, 3) if check == 10: return code + '0' return code + str(check)
python
def soviet_checksum(code): """Courtesy of Sir Vlad Lavrov.""" def sum_digits(code, offset=1): total = 0 for digit, index in zip(code[:7], count(offset)): total += int(digit) * index summed = (total / 11 * 11) return total - summed check = sum_digits(code, 1) if check == 10: check = sum_digits(code, 3) if check == 10: return code + '0' return code + str(check)
[ "def", "soviet_checksum", "(", "code", ")", ":", "def", "sum_digits", "(", "code", ",", "offset", "=", "1", ")", ":", "total", "=", "0", "for", "digit", ",", "index", "in", "zip", "(", "code", "[", ":", "7", "]", ",", "count", "(", "offset", ")", ")", ":", "total", "+=", "int", "(", "digit", ")", "*", "index", "summed", "=", "(", "total", "/", "11", "*", "11", ")", "return", "total", "-", "summed", "check", "=", "sum_digits", "(", "code", ",", "1", ")", "if", "check", "==", "10", ":", "check", "=", "sum_digits", "(", "code", ",", "3", ")", "if", "check", "==", "10", ":", "return", "code", "+", "'0'", "return", "code", "+", "str", "(", "check", ")" ]
Courtesy of Sir Vlad Lavrov.
[ "Courtesy", "of", "Sir", "Vlad", "Lavrov", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/helpers/__init__.py#L16-L30
train
alephdata/memorious
memorious/helpers/__init__.py
search_results_total
def search_results_total(html, xpath, check, delimiter): """ Get the total number of results from the DOM of a search index. """ for container in html.findall(xpath): if check in container.findtext('.'): text = container.findtext('.').split(delimiter) total = int(text[-1].strip()) return total
python
def search_results_total(html, xpath, check, delimiter): """ Get the total number of results from the DOM of a search index. """ for container in html.findall(xpath): if check in container.findtext('.'): text = container.findtext('.').split(delimiter) total = int(text[-1].strip()) return total
[ "def", "search_results_total", "(", "html", ",", "xpath", ",", "check", ",", "delimiter", ")", ":", "for", "container", "in", "html", ".", "findall", "(", "xpath", ")", ":", "if", "check", "in", "container", ".", "findtext", "(", "'.'", ")", ":", "text", "=", "container", ".", "findtext", "(", "'.'", ")", ".", "split", "(", "delimiter", ")", "total", "=", "int", "(", "text", "[", "-", "1", "]", ".", "strip", "(", ")", ")", "return", "total" ]
Get the total number of results from the DOM of a search index.
[ "Get", "the", "total", "number", "of", "results", "from", "the", "DOM", "of", "a", "search", "index", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/helpers/__init__.py#L33-L39
train
alephdata/memorious
memorious/helpers/__init__.py
search_results_last_url
def search_results_last_url(html, xpath, label): """ Get the URL of the 'last' button in a search results listing. """ for container in html.findall(xpath): if container.text_content().strip() == label: return container.find('.//a').get('href')
python
def search_results_last_url(html, xpath, label): """ Get the URL of the 'last' button in a search results listing. """ for container in html.findall(xpath): if container.text_content().strip() == label: return container.find('.//a').get('href')
[ "def", "search_results_last_url", "(", "html", ",", "xpath", ",", "label", ")", ":", "for", "container", "in", "html", ".", "findall", "(", "xpath", ")", ":", "if", "container", ".", "text_content", "(", ")", ".", "strip", "(", ")", "==", "label", ":", "return", "container", ".", "find", "(", "'.//a'", ")", ".", "get", "(", "'href'", ")" ]
Get the URL of the 'last' button in a search results listing.
[ "Get", "the", "URL", "of", "the", "last", "button", "in", "a", "search", "results", "listing", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/helpers/__init__.py#L42-L46
train
alephdata/memorious
memorious/model/crawl.py
Crawl.op_count
def op_count(cls, crawler, stage=None): """Total operations performed for this crawler""" if stage: total_ops = conn.get(make_key(crawler, stage)) else: total_ops = conn.get(make_key(crawler, "total_ops")) return unpack_int(total_ops)
python
def op_count(cls, crawler, stage=None): """Total operations performed for this crawler""" if stage: total_ops = conn.get(make_key(crawler, stage)) else: total_ops = conn.get(make_key(crawler, "total_ops")) return unpack_int(total_ops)
[ "def", "op_count", "(", "cls", ",", "crawler", ",", "stage", "=", "None", ")", ":", "if", "stage", ":", "total_ops", "=", "conn", ".", "get", "(", "make_key", "(", "crawler", ",", "stage", ")", ")", "else", ":", "total_ops", "=", "conn", ".", "get", "(", "make_key", "(", "crawler", ",", "\"total_ops\"", ")", ")", "return", "unpack_int", "(", "total_ops", ")" ]
Total operations performed for this crawler
[ "Total", "operations", "performed", "for", "this", "crawler" ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/model/crawl.py#L21-L27
train
alephdata/memorious
memorious/ui/views.py
index
def index(): """Generate a list of all crawlers, alphabetically, with op counts.""" crawlers = [] for crawler in manager: data = Event.get_counts(crawler) data['last_active'] = crawler.last_run data['total_ops'] = crawler.op_count data['running'] = crawler.is_running data['crawler'] = crawler crawlers.append(data) return render_template('index.html', crawlers=crawlers)
python
def index(): """Generate a list of all crawlers, alphabetically, with op counts.""" crawlers = [] for crawler in manager: data = Event.get_counts(crawler) data['last_active'] = crawler.last_run data['total_ops'] = crawler.op_count data['running'] = crawler.is_running data['crawler'] = crawler crawlers.append(data) return render_template('index.html', crawlers=crawlers)
[ "def", "index", "(", ")", ":", "crawlers", "=", "[", "]", "for", "crawler", "in", "manager", ":", "data", "=", "Event", ".", "get_counts", "(", "crawler", ")", "data", "[", "'last_active'", "]", "=", "crawler", ".", "last_run", "data", "[", "'total_ops'", "]", "=", "crawler", ".", "op_count", "data", "[", "'running'", "]", "=", "crawler", ".", "is_running", "data", "[", "'crawler'", "]", "=", "crawler", "crawlers", ".", "append", "(", "data", ")", "return", "render_template", "(", "'index.html'", ",", "crawlers", "=", "crawlers", ")" ]
Generate a list of all crawlers, alphabetically, with op counts.
[ "Generate", "a", "list", "of", "all", "crawlers", "alphabetically", "with", "op", "counts", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/ui/views.py#L67-L77
train
alephdata/memorious
memorious/operations/clean.py
clean_html
def clean_html(context, data): """Clean an HTML DOM and store the changed version.""" doc = _get_html_document(context, data) if doc is None: context.emit(data=data) return remove_paths = context.params.get('remove_paths') for path in ensure_list(remove_paths): for el in doc.findall(path): el.drop_tree() html_text = html.tostring(doc, pretty_print=True) content_hash = context.store_data(html_text) data['content_hash'] = content_hash context.emit(data=data)
python
def clean_html(context, data): """Clean an HTML DOM and store the changed version.""" doc = _get_html_document(context, data) if doc is None: context.emit(data=data) return remove_paths = context.params.get('remove_paths') for path in ensure_list(remove_paths): for el in doc.findall(path): el.drop_tree() html_text = html.tostring(doc, pretty_print=True) content_hash = context.store_data(html_text) data['content_hash'] = content_hash context.emit(data=data)
[ "def", "clean_html", "(", "context", ",", "data", ")", ":", "doc", "=", "_get_html_document", "(", "context", ",", "data", ")", "if", "doc", "is", "None", ":", "context", ".", "emit", "(", "data", "=", "data", ")", "return", "remove_paths", "=", "context", ".", "params", ".", "get", "(", "'remove_paths'", ")", "for", "path", "in", "ensure_list", "(", "remove_paths", ")", ":", "for", "el", "in", "doc", ".", "findall", "(", "path", ")", ":", "el", ".", "drop_tree", "(", ")", "html_text", "=", "html", ".", "tostring", "(", "doc", ",", "pretty_print", "=", "True", ")", "content_hash", "=", "context", ".", "store_data", "(", "html_text", ")", "data", "[", "'content_hash'", "]", "=", "content_hash", "context", ".", "emit", "(", "data", "=", "data", ")" ]
Clean an HTML DOM and store the changed version.
[ "Clean", "an", "HTML", "DOM", "and", "store", "the", "changed", "version", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/clean.py#L11-L26
train
alephdata/memorious
memorious/task_runner.py
TaskRunner.execute
def execute(cls, stage, state, data, next_allowed_exec_time=None): """Execute the operation, rate limiting allowing.""" try: context = Context.from_state(state, stage) now = datetime.utcnow() if next_allowed_exec_time and now < next_allowed_exec_time: # task not allowed to run yet; put it back in the queue Queue.queue(stage, state, data, delay=next_allowed_exec_time) elif context.crawler.disabled: pass elif context.stage.rate_limit: try: with rate_limiter(context): context.execute(data) except RateLimitException: delay = max(1, 1.0/context.stage.rate_limit) delay = random.randint(1, int(delay)) context.log.info( "Rate limit exceeded, delaying %d sec.", delay ) Queue.queue(stage, state, data, delay=delay) else: context.execute(data) except Exception: log.exception("Task failed to execute:") finally: # Decrease the pending task count after excuting a task. Queue.decr_pending(context.crawler) # If we don't have anymore tasks to execute, time to clean up. if not context.crawler.is_running: context.crawler.aggregate(context)
python
def execute(cls, stage, state, data, next_allowed_exec_time=None): """Execute the operation, rate limiting allowing.""" try: context = Context.from_state(state, stage) now = datetime.utcnow() if next_allowed_exec_time and now < next_allowed_exec_time: # task not allowed to run yet; put it back in the queue Queue.queue(stage, state, data, delay=next_allowed_exec_time) elif context.crawler.disabled: pass elif context.stage.rate_limit: try: with rate_limiter(context): context.execute(data) except RateLimitException: delay = max(1, 1.0/context.stage.rate_limit) delay = random.randint(1, int(delay)) context.log.info( "Rate limit exceeded, delaying %d sec.", delay ) Queue.queue(stage, state, data, delay=delay) else: context.execute(data) except Exception: log.exception("Task failed to execute:") finally: # Decrease the pending task count after excuting a task. Queue.decr_pending(context.crawler) # If we don't have anymore tasks to execute, time to clean up. if not context.crawler.is_running: context.crawler.aggregate(context)
[ "def", "execute", "(", "cls", ",", "stage", ",", "state", ",", "data", ",", "next_allowed_exec_time", "=", "None", ")", ":", "try", ":", "context", "=", "Context", ".", "from_state", "(", "state", ",", "stage", ")", "now", "=", "datetime", ".", "utcnow", "(", ")", "if", "next_allowed_exec_time", "and", "now", "<", "next_allowed_exec_time", ":", "# task not allowed to run yet; put it back in the queue", "Queue", ".", "queue", "(", "stage", ",", "state", ",", "data", ",", "delay", "=", "next_allowed_exec_time", ")", "elif", "context", ".", "crawler", ".", "disabled", ":", "pass", "elif", "context", ".", "stage", ".", "rate_limit", ":", "try", ":", "with", "rate_limiter", "(", "context", ")", ":", "context", ".", "execute", "(", "data", ")", "except", "RateLimitException", ":", "delay", "=", "max", "(", "1", ",", "1.0", "/", "context", ".", "stage", ".", "rate_limit", ")", "delay", "=", "random", ".", "randint", "(", "1", ",", "int", "(", "delay", ")", ")", "context", ".", "log", ".", "info", "(", "\"Rate limit exceeded, delaying %d sec.\"", ",", "delay", ")", "Queue", ".", "queue", "(", "stage", ",", "state", ",", "data", ",", "delay", "=", "delay", ")", "else", ":", "context", ".", "execute", "(", "data", ")", "except", "Exception", ":", "log", ".", "exception", "(", "\"Task failed to execute:\"", ")", "finally", ":", "# Decrease the pending task count after excuting a task.", "Queue", ".", "decr_pending", "(", "context", ".", "crawler", ")", "# If we don't have anymore tasks to execute, time to clean up.", "if", "not", "context", ".", "crawler", ".", "is_running", ":", "context", ".", "crawler", ".", "aggregate", "(", "context", ")" ]
Execute the operation, rate limiting allowing.
[ "Execute", "the", "operation", "rate", "limiting", "allowing", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/task_runner.py#L19-L49
train
alephdata/memorious
memorious/operations/db.py
_recursive_upsert
def _recursive_upsert(context, params, data): """Insert or update nested dicts recursively into db tables""" children = params.get("children", {}) nested_calls = [] for child_params in children: key = child_params.get("key") child_data_list = ensure_list(data.pop(key)) if isinstance(child_data_list, dict): child_data_list = [child_data_list] if not (isinstance(child_data_list, list) and all(isinstance(i, dict) for i in child_data_list)): context.log.warn( "Expecting a dict or a lost of dicts as children for key", key ) continue if child_data_list: table_suffix = child_params.get("table_suffix", key) child_params["table"] = params.get("table") + "_" + table_suffix # copy some properties over from parent to child inherit = child_params.get("inherit", {}) for child_data in child_data_list: for dest, src in inherit.items(): child_data[dest] = data.get(src) nested_calls.append((child_params, child_data)) # Insert or update data _upsert(context, params, data) for child_params, child_data in nested_calls: _recursive_upsert(context, child_params, child_data)
python
def _recursive_upsert(context, params, data): """Insert or update nested dicts recursively into db tables""" children = params.get("children", {}) nested_calls = [] for child_params in children: key = child_params.get("key") child_data_list = ensure_list(data.pop(key)) if isinstance(child_data_list, dict): child_data_list = [child_data_list] if not (isinstance(child_data_list, list) and all(isinstance(i, dict) for i in child_data_list)): context.log.warn( "Expecting a dict or a lost of dicts as children for key", key ) continue if child_data_list: table_suffix = child_params.get("table_suffix", key) child_params["table"] = params.get("table") + "_" + table_suffix # copy some properties over from parent to child inherit = child_params.get("inherit", {}) for child_data in child_data_list: for dest, src in inherit.items(): child_data[dest] = data.get(src) nested_calls.append((child_params, child_data)) # Insert or update data _upsert(context, params, data) for child_params, child_data in nested_calls: _recursive_upsert(context, child_params, child_data)
[ "def", "_recursive_upsert", "(", "context", ",", "params", ",", "data", ")", ":", "children", "=", "params", ".", "get", "(", "\"children\"", ",", "{", "}", ")", "nested_calls", "=", "[", "]", "for", "child_params", "in", "children", ":", "key", "=", "child_params", ".", "get", "(", "\"key\"", ")", "child_data_list", "=", "ensure_list", "(", "data", ".", "pop", "(", "key", ")", ")", "if", "isinstance", "(", "child_data_list", ",", "dict", ")", ":", "child_data_list", "=", "[", "child_data_list", "]", "if", "not", "(", "isinstance", "(", "child_data_list", ",", "list", ")", "and", "all", "(", "isinstance", "(", "i", ",", "dict", ")", "for", "i", "in", "child_data_list", ")", ")", ":", "context", ".", "log", ".", "warn", "(", "\"Expecting a dict or a lost of dicts as children for key\"", ",", "key", ")", "continue", "if", "child_data_list", ":", "table_suffix", "=", "child_params", ".", "get", "(", "\"table_suffix\"", ",", "key", ")", "child_params", "[", "\"table\"", "]", "=", "params", ".", "get", "(", "\"table\"", ")", "+", "\"_\"", "+", "table_suffix", "# copy some properties over from parent to child", "inherit", "=", "child_params", ".", "get", "(", "\"inherit\"", ",", "{", "}", ")", "for", "child_data", "in", "child_data_list", ":", "for", "dest", ",", "src", "in", "inherit", ".", "items", "(", ")", ":", "child_data", "[", "dest", "]", "=", "data", ".", "get", "(", "src", ")", "nested_calls", ".", "append", "(", "(", "child_params", ",", "child_data", ")", ")", "# Insert or update data", "_upsert", "(", "context", ",", "params", ",", "data", ")", "for", "child_params", ",", "child_data", "in", "nested_calls", ":", "_recursive_upsert", "(", "context", ",", "child_params", ",", "child_data", ")" ]
Insert or update nested dicts recursively into db tables
[ "Insert", "or", "update", "nested", "dicts", "recursively", "into", "db", "tables" ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/db.py#L21-L48
train
alephdata/memorious
memorious/operations/db.py
db
def db(context, data): """Insert or update `data` as a row into specified db table""" table = context.params.get("table", context.crawler.name) params = context.params params["table"] = table _recursive_upsert(context, params, data)
python
def db(context, data): """Insert or update `data` as a row into specified db table""" table = context.params.get("table", context.crawler.name) params = context.params params["table"] = table _recursive_upsert(context, params, data)
[ "def", "db", "(", "context", ",", "data", ")", ":", "table", "=", "context", ".", "params", ".", "get", "(", "\"table\"", ",", "context", ".", "crawler", ".", "name", ")", "params", "=", "context", ".", "params", "params", "[", "\"table\"", "]", "=", "table", "_recursive_upsert", "(", "context", ",", "params", ",", "data", ")" ]
Insert or update `data` as a row into specified db table
[ "Insert", "or", "update", "data", "as", "a", "row", "into", "specified", "db", "table" ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/db.py#L51-L56
train
alephdata/memorious
memorious/cli.py
cli
def cli(debug, cache, incremental): """Crawler framework for documents and structured scrapers.""" settings.HTTP_CACHE = cache settings.INCREMENTAL = incremental settings.DEBUG = debug if settings.DEBUG: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) init_memorious()
python
def cli(debug, cache, incremental): """Crawler framework for documents and structured scrapers.""" settings.HTTP_CACHE = cache settings.INCREMENTAL = incremental settings.DEBUG = debug if settings.DEBUG: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) init_memorious()
[ "def", "cli", "(", "debug", ",", "cache", ",", "incremental", ")", ":", "settings", ".", "HTTP_CACHE", "=", "cache", "settings", ".", "INCREMENTAL", "=", "incremental", "settings", ".", "DEBUG", "=", "debug", "if", "settings", ".", "DEBUG", ":", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "DEBUG", ")", "else", ":", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "INFO", ")", "init_memorious", "(", ")" ]
Crawler framework for documents and structured scrapers.
[ "Crawler", "framework", "for", "documents", "and", "structured", "scrapers", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/cli.py#L21-L30
train
alephdata/memorious
memorious/cli.py
run
def run(crawler): """Run a specified crawler.""" crawler = get_crawler(crawler) crawler.run() if is_sync_mode(): TaskRunner.run_sync()
python
def run(crawler): """Run a specified crawler.""" crawler = get_crawler(crawler) crawler.run() if is_sync_mode(): TaskRunner.run_sync()
[ "def", "run", "(", "crawler", ")", ":", "crawler", "=", "get_crawler", "(", "crawler", ")", "crawler", ".", "run", "(", ")", "if", "is_sync_mode", "(", ")", ":", "TaskRunner", ".", "run_sync", "(", ")" ]
Run a specified crawler.
[ "Run", "a", "specified", "crawler", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/cli.py#L43-L48
train
alephdata/memorious
memorious/cli.py
index
def index(): """List the available crawlers.""" crawler_list = [] for crawler in manager: is_due = 'yes' if crawler.check_due() else 'no' if crawler.disabled: is_due = 'off' crawler_list.append([crawler.name, crawler.description, crawler.schedule, is_due, Queue.size(crawler)]) headers = ['Name', 'Description', 'Schedule', 'Due', 'Pending'] print(tabulate(crawler_list, headers=headers))
python
def index(): """List the available crawlers.""" crawler_list = [] for crawler in manager: is_due = 'yes' if crawler.check_due() else 'no' if crawler.disabled: is_due = 'off' crawler_list.append([crawler.name, crawler.description, crawler.schedule, is_due, Queue.size(crawler)]) headers = ['Name', 'Description', 'Schedule', 'Due', 'Pending'] print(tabulate(crawler_list, headers=headers))
[ "def", "index", "(", ")", ":", "crawler_list", "=", "[", "]", "for", "crawler", "in", "manager", ":", "is_due", "=", "'yes'", "if", "crawler", ".", "check_due", "(", ")", "else", "'no'", "if", "crawler", ".", "disabled", ":", "is_due", "=", "'off'", "crawler_list", ".", "append", "(", "[", "crawler", ".", "name", ",", "crawler", ".", "description", ",", "crawler", ".", "schedule", ",", "is_due", ",", "Queue", ".", "size", "(", "crawler", ")", "]", ")", "headers", "=", "[", "'Name'", ",", "'Description'", ",", "'Schedule'", ",", "'Due'", ",", "'Pending'", "]", "print", "(", "tabulate", "(", "crawler_list", ",", "headers", "=", "headers", ")", ")" ]
List the available crawlers.
[ "List", "the", "available", "crawlers", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/cli.py#L74-L87
train
alephdata/memorious
memorious/cli.py
scheduled
def scheduled(wait=False): """Run crawlers that are due.""" manager.run_scheduled() while wait: # Loop and try to run scheduled crawlers at short intervals manager.run_scheduled() time.sleep(settings.SCHEDULER_INTERVAL)
python
def scheduled(wait=False): """Run crawlers that are due.""" manager.run_scheduled() while wait: # Loop and try to run scheduled crawlers at short intervals manager.run_scheduled() time.sleep(settings.SCHEDULER_INTERVAL)
[ "def", "scheduled", "(", "wait", "=", "False", ")", ":", "manager", ".", "run_scheduled", "(", ")", "while", "wait", ":", "# Loop and try to run scheduled crawlers at short intervals", "manager", ".", "run_scheduled", "(", ")", "time", ".", "sleep", "(", "settings", ".", "SCHEDULER_INTERVAL", ")" ]
Run crawlers that are due.
[ "Run", "crawlers", "that", "are", "due", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/cli.py#L92-L98
train
alephdata/memorious
memorious/operations/store.py
_get_directory_path
def _get_directory_path(context): """Get the storage path fro the output.""" path = os.path.join(settings.BASE_PATH, 'store') path = context.params.get('path', path) path = os.path.join(path, context.crawler.name) path = os.path.abspath(os.path.expandvars(path)) try: os.makedirs(path) except Exception: pass return path
python
def _get_directory_path(context): """Get the storage path fro the output.""" path = os.path.join(settings.BASE_PATH, 'store') path = context.params.get('path', path) path = os.path.join(path, context.crawler.name) path = os.path.abspath(os.path.expandvars(path)) try: os.makedirs(path) except Exception: pass return path
[ "def", "_get_directory_path", "(", "context", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "settings", ".", "BASE_PATH", ",", "'store'", ")", "path", "=", "context", ".", "params", ".", "get", "(", "'path'", ",", "path", ")", "path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "context", ".", "crawler", ".", "name", ")", "path", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "expandvars", "(", "path", ")", ")", "try", ":", "os", ".", "makedirs", "(", "path", ")", "except", "Exception", ":", "pass", "return", "path" ]
Get the storage path fro the output.
[ "Get", "the", "storage", "path", "fro", "the", "output", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/store.py#L9-L19
train
alephdata/memorious
memorious/operations/store.py
directory
def directory(context, data): """Store the collected files to a given directory.""" with context.http.rehash(data) as result: if not result.ok: return content_hash = data.get('content_hash') if content_hash is None: context.emit_warning("No content hash in data.") return path = _get_directory_path(context) file_name = data.get('file_name', result.file_name) file_name = safe_filename(file_name, default='raw') file_name = '%s.%s' % (content_hash, file_name) data['_file_name'] = file_name file_path = os.path.join(path, file_name) if not os.path.exists(file_path): shutil.copyfile(result.file_path, file_path) context.log.info("Store [directory]: %s", file_name) meta_path = os.path.join(path, '%s.json' % content_hash) with open(meta_path, 'w') as fh: json.dump(data, fh)
python
def directory(context, data): """Store the collected files to a given directory.""" with context.http.rehash(data) as result: if not result.ok: return content_hash = data.get('content_hash') if content_hash is None: context.emit_warning("No content hash in data.") return path = _get_directory_path(context) file_name = data.get('file_name', result.file_name) file_name = safe_filename(file_name, default='raw') file_name = '%s.%s' % (content_hash, file_name) data['_file_name'] = file_name file_path = os.path.join(path, file_name) if not os.path.exists(file_path): shutil.copyfile(result.file_path, file_path) context.log.info("Store [directory]: %s", file_name) meta_path = os.path.join(path, '%s.json' % content_hash) with open(meta_path, 'w') as fh: json.dump(data, fh)
[ "def", "directory", "(", "context", ",", "data", ")", ":", "with", "context", ".", "http", ".", "rehash", "(", "data", ")", "as", "result", ":", "if", "not", "result", ".", "ok", ":", "return", "content_hash", "=", "data", ".", "get", "(", "'content_hash'", ")", "if", "content_hash", "is", "None", ":", "context", ".", "emit_warning", "(", "\"No content hash in data.\"", ")", "return", "path", "=", "_get_directory_path", "(", "context", ")", "file_name", "=", "data", ".", "get", "(", "'file_name'", ",", "result", ".", "file_name", ")", "file_name", "=", "safe_filename", "(", "file_name", ",", "default", "=", "'raw'", ")", "file_name", "=", "'%s.%s'", "%", "(", "content_hash", ",", "file_name", ")", "data", "[", "'_file_name'", "]", "=", "file_name", "file_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "file_name", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "file_path", ")", ":", "shutil", ".", "copyfile", "(", "result", ".", "file_path", ",", "file_path", ")", "context", ".", "log", ".", "info", "(", "\"Store [directory]: %s\"", ",", "file_name", ")", "meta_path", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'%s.json'", "%", "content_hash", ")", "with", "open", "(", "meta_path", ",", "'w'", ")", "as", "fh", ":", "json", ".", "dump", "(", "data", ",", "fh", ")" ]
Store the collected files to a given directory.
[ "Store", "the", "collected", "files", "to", "a", "given", "directory", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/store.py#L22-L46
train
alephdata/memorious
memorious/operations/initializers.py
seed
def seed(context, data): """Initialize a crawler with a set of seed URLs. The URLs are given as a list or single value to the ``urls`` parameter. If this is called as a second stage in a crawler, the URL will be formatted against the supplied ``data`` values, e.g.: https://crawl.site/entries/%(number)s.html """ for key in ('url', 'urls'): for url in ensure_list(context.params.get(key)): url = url % data context.emit(data={'url': url})
python
def seed(context, data): """Initialize a crawler with a set of seed URLs. The URLs are given as a list or single value to the ``urls`` parameter. If this is called as a second stage in a crawler, the URL will be formatted against the supplied ``data`` values, e.g.: https://crawl.site/entries/%(number)s.html """ for key in ('url', 'urls'): for url in ensure_list(context.params.get(key)): url = url % data context.emit(data={'url': url})
[ "def", "seed", "(", "context", ",", "data", ")", ":", "for", "key", "in", "(", "'url'", ",", "'urls'", ")", ":", "for", "url", "in", "ensure_list", "(", "context", ".", "params", ".", "get", "(", "key", ")", ")", ":", "url", "=", "url", "%", "data", "context", ".", "emit", "(", "data", "=", "{", "'url'", ":", "url", "}", ")" ]
Initialize a crawler with a set of seed URLs. The URLs are given as a list or single value to the ``urls`` parameter. If this is called as a second stage in a crawler, the URL will be formatted against the supplied ``data`` values, e.g.: https://crawl.site/entries/%(number)s.html
[ "Initialize", "a", "crawler", "with", "a", "set", "of", "seed", "URLs", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/initializers.py#L5-L18
train
alephdata/memorious
memorious/operations/initializers.py
enumerate
def enumerate(context, data): """Iterate through a set of items and emit each one of them.""" items = ensure_list(context.params.get('items')) for item in items: data['item'] = item context.emit(data=data)
python
def enumerate(context, data): """Iterate through a set of items and emit each one of them.""" items = ensure_list(context.params.get('items')) for item in items: data['item'] = item context.emit(data=data)
[ "def", "enumerate", "(", "context", ",", "data", ")", ":", "items", "=", "ensure_list", "(", "context", ".", "params", ".", "get", "(", "'items'", ")", ")", "for", "item", "in", "items", ":", "data", "[", "'item'", "]", "=", "item", "context", ".", "emit", "(", "data", "=", "data", ")" ]
Iterate through a set of items and emit each one of them.
[ "Iterate", "through", "a", "set", "of", "items", "and", "emit", "each", "one", "of", "them", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/initializers.py#L21-L26
train
alephdata/memorious
memorious/operations/initializers.py
sequence
def sequence(context, data): """Generate a sequence of numbers. It is the memorious equivalent of the xrange function, accepting the ``start``, ``stop`` and ``step`` parameters. This can run in two ways: * As a single function generating all numbers in the given range. * Recursively, generating numbers one by one with an optional ``delay``. The latter mode is useful in order to generate very large sequences without completely clogging up the user queue. If an optional ``tag`` is given, each number will be emitted only once across multiple runs of the crawler. """ number = data.get('number', context.params.get('start', 1)) stop = context.params.get('stop') step = context.params.get('step', 1) delay = context.params.get('delay') prefix = context.params.get('tag') while True: tag = None if prefix is None else '%s:%s' % (prefix, number) if tag is None or not context.check_tag(tag): context.emit(data={'number': number}) if tag is not None: context.set_tag(tag, True) number = number + step if step > 0 and number >= stop: break if step < 0 and number <= stop: break if delay is not None: context.recurse(data={'number': number}, delay=delay) break
python
def sequence(context, data): """Generate a sequence of numbers. It is the memorious equivalent of the xrange function, accepting the ``start``, ``stop`` and ``step`` parameters. This can run in two ways: * As a single function generating all numbers in the given range. * Recursively, generating numbers one by one with an optional ``delay``. The latter mode is useful in order to generate very large sequences without completely clogging up the user queue. If an optional ``tag`` is given, each number will be emitted only once across multiple runs of the crawler. """ number = data.get('number', context.params.get('start', 1)) stop = context.params.get('stop') step = context.params.get('step', 1) delay = context.params.get('delay') prefix = context.params.get('tag') while True: tag = None if prefix is None else '%s:%s' % (prefix, number) if tag is None or not context.check_tag(tag): context.emit(data={'number': number}) if tag is not None: context.set_tag(tag, True) number = number + step if step > 0 and number >= stop: break if step < 0 and number <= stop: break if delay is not None: context.recurse(data={'number': number}, delay=delay) break
[ "def", "sequence", "(", "context", ",", "data", ")", ":", "number", "=", "data", ".", "get", "(", "'number'", ",", "context", ".", "params", ".", "get", "(", "'start'", ",", "1", ")", ")", "stop", "=", "context", ".", "params", ".", "get", "(", "'stop'", ")", "step", "=", "context", ".", "params", ".", "get", "(", "'step'", ",", "1", ")", "delay", "=", "context", ".", "params", ".", "get", "(", "'delay'", ")", "prefix", "=", "context", ".", "params", ".", "get", "(", "'tag'", ")", "while", "True", ":", "tag", "=", "None", "if", "prefix", "is", "None", "else", "'%s:%s'", "%", "(", "prefix", ",", "number", ")", "if", "tag", "is", "None", "or", "not", "context", ".", "check_tag", "(", "tag", ")", ":", "context", ".", "emit", "(", "data", "=", "{", "'number'", ":", "number", "}", ")", "if", "tag", "is", "not", "None", ":", "context", ".", "set_tag", "(", "tag", ",", "True", ")", "number", "=", "number", "+", "step", "if", "step", ">", "0", "and", "number", ">=", "stop", ":", "break", "if", "step", "<", "0", "and", "number", "<=", "stop", ":", "break", "if", "delay", "is", "not", "None", ":", "context", ".", "recurse", "(", "data", "=", "{", "'number'", ":", "number", "}", ",", "delay", "=", "delay", ")", "break" ]
Generate a sequence of numbers. It is the memorious equivalent of the xrange function, accepting the ``start``, ``stop`` and ``step`` parameters. This can run in two ways: * As a single function generating all numbers in the given range. * Recursively, generating numbers one by one with an optional ``delay``. The latter mode is useful in order to generate very large sequences without completely clogging up the user queue. If an optional ``tag`` is given, each number will be emitted only once across multiple runs of the crawler.
[ "Generate", "a", "sequence", "of", "numbers", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/operations/initializers.py#L29-L67
train
alephdata/memorious
memorious/logic/http.py
ContextHttpResponse.fetch
def fetch(self): """Lazily trigger download of the data when requested.""" if self._file_path is not None: return self._file_path temp_path = self.context.work_path if self._content_hash is not None: self._file_path = storage.load_file(self._content_hash, temp_path=temp_path) return self._file_path if self.response is not None: self._file_path = random_filename(temp_path) content_hash = sha1() with open(self._file_path, 'wb') as fh: for chunk in self.response.iter_content(chunk_size=8192): content_hash.update(chunk) fh.write(chunk) self._remove_file = True chash = content_hash.hexdigest() self._content_hash = storage.archive_file(self._file_path, content_hash=chash) if self.http.cache and self.ok: self.context.set_tag(self.request_id, self.serialize()) self.retrieved_at = datetime.utcnow().isoformat() return self._file_path
python
def fetch(self): """Lazily trigger download of the data when requested.""" if self._file_path is not None: return self._file_path temp_path = self.context.work_path if self._content_hash is not None: self._file_path = storage.load_file(self._content_hash, temp_path=temp_path) return self._file_path if self.response is not None: self._file_path = random_filename(temp_path) content_hash = sha1() with open(self._file_path, 'wb') as fh: for chunk in self.response.iter_content(chunk_size=8192): content_hash.update(chunk) fh.write(chunk) self._remove_file = True chash = content_hash.hexdigest() self._content_hash = storage.archive_file(self._file_path, content_hash=chash) if self.http.cache and self.ok: self.context.set_tag(self.request_id, self.serialize()) self.retrieved_at = datetime.utcnow().isoformat() return self._file_path
[ "def", "fetch", "(", "self", ")", ":", "if", "self", ".", "_file_path", "is", "not", "None", ":", "return", "self", ".", "_file_path", "temp_path", "=", "self", ".", "context", ".", "work_path", "if", "self", ".", "_content_hash", "is", "not", "None", ":", "self", ".", "_file_path", "=", "storage", ".", "load_file", "(", "self", ".", "_content_hash", ",", "temp_path", "=", "temp_path", ")", "return", "self", ".", "_file_path", "if", "self", ".", "response", "is", "not", "None", ":", "self", ".", "_file_path", "=", "random_filename", "(", "temp_path", ")", "content_hash", "=", "sha1", "(", ")", "with", "open", "(", "self", ".", "_file_path", ",", "'wb'", ")", "as", "fh", ":", "for", "chunk", "in", "self", ".", "response", ".", "iter_content", "(", "chunk_size", "=", "8192", ")", ":", "content_hash", ".", "update", "(", "chunk", ")", "fh", ".", "write", "(", "chunk", ")", "self", ".", "_remove_file", "=", "True", "chash", "=", "content_hash", ".", "hexdigest", "(", ")", "self", ".", "_content_hash", "=", "storage", ".", "archive_file", "(", "self", ".", "_file_path", ",", "content_hash", "=", "chash", ")", "if", "self", ".", "http", ".", "cache", "and", "self", ".", "ok", ":", "self", ".", "context", ".", "set_tag", "(", "self", ".", "request_id", ",", "self", ".", "serialize", "(", ")", ")", "self", ".", "retrieved_at", "=", "datetime", ".", "utcnow", "(", ")", ".", "isoformat", "(", ")", "return", "self", ".", "_file_path" ]
Lazily trigger download of the data when requested.
[ "Lazily", "trigger", "download", "of", "the", "data", "when", "requested", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/logic/http.py#L162-L185
train
alephdata/memorious
memorious/util.py
make_key
def make_key(*criteria): """Make a string key out of many criteria.""" criteria = [stringify(c) for c in criteria] criteria = [c for c in criteria if c is not None] if len(criteria): return ':'.join(criteria)
python
def make_key(*criteria): """Make a string key out of many criteria.""" criteria = [stringify(c) for c in criteria] criteria = [c for c in criteria if c is not None] if len(criteria): return ':'.join(criteria)
[ "def", "make_key", "(", "*", "criteria", ")", ":", "criteria", "=", "[", "stringify", "(", "c", ")", "for", "c", "in", "criteria", "]", "criteria", "=", "[", "c", "for", "c", "in", "criteria", "if", "c", "is", "not", "None", "]", "if", "len", "(", "criteria", ")", ":", "return", "':'", ".", "join", "(", "criteria", ")" ]
Make a string key out of many criteria.
[ "Make", "a", "string", "key", "out", "of", "many", "criteria", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/util.py#L6-L11
train
alephdata/memorious
memorious/util.py
random_filename
def random_filename(path=None): """Make a UUID-based file name which is extremely unlikely to exist already.""" filename = uuid4().hex if path is not None: filename = os.path.join(path, filename) return filename
python
def random_filename(path=None): """Make a UUID-based file name which is extremely unlikely to exist already.""" filename = uuid4().hex if path is not None: filename = os.path.join(path, filename) return filename
[ "def", "random_filename", "(", "path", "=", "None", ")", ":", "filename", "=", "uuid4", "(", ")", ".", "hex", "if", "path", "is", "not", "None", ":", "filename", "=", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", "return", "filename" ]
Make a UUID-based file name which is extremely unlikely to exist already.
[ "Make", "a", "UUID", "-", "based", "file", "name", "which", "is", "extremely", "unlikely", "to", "exist", "already", "." ]
b4033c5064447ed5f696f9c2bbbc6c12062d2fa4
https://github.com/alephdata/memorious/blob/b4033c5064447ed5f696f9c2bbbc6c12062d2fa4/memorious/util.py#L14-L20
train
jasonlaska/spherecluster
spherecluster/util.py
sample_vMF
def sample_vMF(mu, kappa, num_samples): """Generate num_samples N-dimensional samples from von Mises Fisher distribution around center mu \in R^N with concentration kappa. """ dim = len(mu) result = np.zeros((num_samples, dim)) for nn in range(num_samples): # sample offset from center (on sphere) with spread kappa w = _sample_weight(kappa, dim) # sample a point v on the unit sphere that's orthogonal to mu v = _sample_orthonormal_to(mu) # compute new point result[nn, :] = v * np.sqrt(1. - w ** 2) + w * mu return result
python
def sample_vMF(mu, kappa, num_samples): """Generate num_samples N-dimensional samples from von Mises Fisher distribution around center mu \in R^N with concentration kappa. """ dim = len(mu) result = np.zeros((num_samples, dim)) for nn in range(num_samples): # sample offset from center (on sphere) with spread kappa w = _sample_weight(kappa, dim) # sample a point v on the unit sphere that's orthogonal to mu v = _sample_orthonormal_to(mu) # compute new point result[nn, :] = v * np.sqrt(1. - w ** 2) + w * mu return result
[ "def", "sample_vMF", "(", "mu", ",", "kappa", ",", "num_samples", ")", ":", "dim", "=", "len", "(", "mu", ")", "result", "=", "np", ".", "zeros", "(", "(", "num_samples", ",", "dim", ")", ")", "for", "nn", "in", "range", "(", "num_samples", ")", ":", "# sample offset from center (on sphere) with spread kappa", "w", "=", "_sample_weight", "(", "kappa", ",", "dim", ")", "# sample a point v on the unit sphere that's orthogonal to mu", "v", "=", "_sample_orthonormal_to", "(", "mu", ")", "# compute new point", "result", "[", "nn", ",", ":", "]", "=", "v", "*", "np", ".", "sqrt", "(", "1.", "-", "w", "**", "2", ")", "+", "w", "*", "mu", "return", "result" ]
Generate num_samples N-dimensional samples from von Mises Fisher distribution around center mu \in R^N with concentration kappa.
[ "Generate", "num_samples", "N", "-", "dimensional", "samples", "from", "von", "Mises", "Fisher", "distribution", "around", "center", "mu", "\\", "in", "R^N", "with", "concentration", "kappa", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/util.py#L16-L32
train
jasonlaska/spherecluster
spherecluster/util.py
_sample_weight
def _sample_weight(kappa, dim): """Rejection sampling scheme for sampling distance from center on surface of the sphere. """ dim = dim - 1 # since S^{n-1} b = dim / (np.sqrt(4. * kappa ** 2 + dim ** 2) + 2 * kappa) x = (1. - b) / (1. + b) c = kappa * x + dim * np.log(1 - x ** 2) while True: z = np.random.beta(dim / 2., dim / 2.) w = (1. - (1. + b) * z) / (1. - (1. - b) * z) u = np.random.uniform(low=0, high=1) if kappa * w + dim * np.log(1. - x * w) - c >= np.log(u): return w
python
def _sample_weight(kappa, dim): """Rejection sampling scheme for sampling distance from center on surface of the sphere. """ dim = dim - 1 # since S^{n-1} b = dim / (np.sqrt(4. * kappa ** 2 + dim ** 2) + 2 * kappa) x = (1. - b) / (1. + b) c = kappa * x + dim * np.log(1 - x ** 2) while True: z = np.random.beta(dim / 2., dim / 2.) w = (1. - (1. + b) * z) / (1. - (1. - b) * z) u = np.random.uniform(low=0, high=1) if kappa * w + dim * np.log(1. - x * w) - c >= np.log(u): return w
[ "def", "_sample_weight", "(", "kappa", ",", "dim", ")", ":", "dim", "=", "dim", "-", "1", "# since S^{n-1}", "b", "=", "dim", "/", "(", "np", ".", "sqrt", "(", "4.", "*", "kappa", "**", "2", "+", "dim", "**", "2", ")", "+", "2", "*", "kappa", ")", "x", "=", "(", "1.", "-", "b", ")", "/", "(", "1.", "+", "b", ")", "c", "=", "kappa", "*", "x", "+", "dim", "*", "np", ".", "log", "(", "1", "-", "x", "**", "2", ")", "while", "True", ":", "z", "=", "np", ".", "random", ".", "beta", "(", "dim", "/", "2.", ",", "dim", "/", "2.", ")", "w", "=", "(", "1.", "-", "(", "1.", "+", "b", ")", "*", "z", ")", "/", "(", "1.", "-", "(", "1.", "-", "b", ")", "*", "z", ")", "u", "=", "np", ".", "random", ".", "uniform", "(", "low", "=", "0", ",", "high", "=", "1", ")", "if", "kappa", "*", "w", "+", "dim", "*", "np", ".", "log", "(", "1.", "-", "x", "*", "w", ")", "-", "c", ">=", "np", ".", "log", "(", "u", ")", ":", "return", "w" ]
Rejection sampling scheme for sampling distance from center on surface of the sphere.
[ "Rejection", "sampling", "scheme", "for", "sampling", "distance", "from", "center", "on", "surface", "of", "the", "sphere", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/util.py#L35-L49
train
jasonlaska/spherecluster
spherecluster/util.py
_sample_orthonormal_to
def _sample_orthonormal_to(mu): """Sample point on sphere orthogonal to mu.""" v = np.random.randn(mu.shape[0]) proj_mu_v = mu * np.dot(mu, v) / np.linalg.norm(mu) orthto = v - proj_mu_v return orthto / np.linalg.norm(orthto)
python
def _sample_orthonormal_to(mu): """Sample point on sphere orthogonal to mu.""" v = np.random.randn(mu.shape[0]) proj_mu_v = mu * np.dot(mu, v) / np.linalg.norm(mu) orthto = v - proj_mu_v return orthto / np.linalg.norm(orthto)
[ "def", "_sample_orthonormal_to", "(", "mu", ")", ":", "v", "=", "np", ".", "random", ".", "randn", "(", "mu", ".", "shape", "[", "0", "]", ")", "proj_mu_v", "=", "mu", "*", "np", ".", "dot", "(", "mu", ",", "v", ")", "/", "np", ".", "linalg", ".", "norm", "(", "mu", ")", "orthto", "=", "v", "-", "proj_mu_v", "return", "orthto", "/", "np", ".", "linalg", ".", "norm", "(", "orthto", ")" ]
Sample point on sphere orthogonal to mu.
[ "Sample", "point", "on", "sphere", "orthogonal", "to", "mu", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/util.py#L52-L57
train
jasonlaska/spherecluster
spherecluster/spherical_kmeans.py
_spherical_kmeans_single_lloyd
def _spherical_kmeans_single_lloyd( X, n_clusters, sample_weight=None, max_iter=300, init="k-means++", verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True, ): """ Modified from sklearn.cluster.k_means_.k_means_single_lloyd. """ random_state = check_random_state(random_state) sample_weight = _check_sample_weight(X, sample_weight) best_labels, best_inertia, best_centers = None, None, None # init centers = _init_centroids( X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms ) if verbose: print("Initialization complete") # Allocate memory to store the distances for each sample to its # closer center for reallocation in case of ties distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype) # iterations for i in range(max_iter): centers_old = centers.copy() # labels assignment # TODO: _labels_inertia should be done with cosine distance # since ||a - b|| = 2(1 - cos(a,b)) when a,b are unit normalized # this doesn't really matter. labels, inertia = _labels_inertia( X, sample_weight, x_squared_norms, centers, precompute_distances=precompute_distances, distances=distances, ) # computation of the means if sp.issparse(X): centers = _k_means._centers_sparse( X, sample_weight, labels, n_clusters, distances ) else: centers = _k_means._centers_dense( X, sample_weight, labels, n_clusters, distances ) # l2-normalize centers (this is the main contibution here) centers = normalize(centers) if verbose: print("Iteration %2d, inertia %.3f" % (i, inertia)) if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia center_shift_total = squared_norm(centers_old - centers) if center_shift_total <= tol: if verbose: print( "Converged at iteration %d: " "center shift %e within tolerance %e" % (i, center_shift_total, tol) ) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = _labels_inertia( X, sample_weight, x_squared_norms, best_centers, precompute_distances=precompute_distances, distances=distances, ) return best_labels, best_inertia, best_centers, i + 1
python
def _spherical_kmeans_single_lloyd( X, n_clusters, sample_weight=None, max_iter=300, init="k-means++", verbose=False, x_squared_norms=None, random_state=None, tol=1e-4, precompute_distances=True, ): """ Modified from sklearn.cluster.k_means_.k_means_single_lloyd. """ random_state = check_random_state(random_state) sample_weight = _check_sample_weight(X, sample_weight) best_labels, best_inertia, best_centers = None, None, None # init centers = _init_centroids( X, n_clusters, init, random_state=random_state, x_squared_norms=x_squared_norms ) if verbose: print("Initialization complete") # Allocate memory to store the distances for each sample to its # closer center for reallocation in case of ties distances = np.zeros(shape=(X.shape[0],), dtype=X.dtype) # iterations for i in range(max_iter): centers_old = centers.copy() # labels assignment # TODO: _labels_inertia should be done with cosine distance # since ||a - b|| = 2(1 - cos(a,b)) when a,b are unit normalized # this doesn't really matter. labels, inertia = _labels_inertia( X, sample_weight, x_squared_norms, centers, precompute_distances=precompute_distances, distances=distances, ) # computation of the means if sp.issparse(X): centers = _k_means._centers_sparse( X, sample_weight, labels, n_clusters, distances ) else: centers = _k_means._centers_dense( X, sample_weight, labels, n_clusters, distances ) # l2-normalize centers (this is the main contibution here) centers = normalize(centers) if verbose: print("Iteration %2d, inertia %.3f" % (i, inertia)) if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia center_shift_total = squared_norm(centers_old - centers) if center_shift_total <= tol: if verbose: print( "Converged at iteration %d: " "center shift %e within tolerance %e" % (i, center_shift_total, tol) ) break if center_shift_total > 0: # rerun E-step in case of non-convergence so that predicted labels # match cluster centers best_labels, best_inertia = _labels_inertia( X, sample_weight, x_squared_norms, best_centers, precompute_distances=precompute_distances, distances=distances, ) return best_labels, best_inertia, best_centers, i + 1
[ "def", "_spherical_kmeans_single_lloyd", "(", "X", ",", "n_clusters", ",", "sample_weight", "=", "None", ",", "max_iter", "=", "300", ",", "init", "=", "\"k-means++\"", ",", "verbose", "=", "False", ",", "x_squared_norms", "=", "None", ",", "random_state", "=", "None", ",", "tol", "=", "1e-4", ",", "precompute_distances", "=", "True", ",", ")", ":", "random_state", "=", "check_random_state", "(", "random_state", ")", "sample_weight", "=", "_check_sample_weight", "(", "X", ",", "sample_weight", ")", "best_labels", ",", "best_inertia", ",", "best_centers", "=", "None", ",", "None", ",", "None", "# init", "centers", "=", "_init_centroids", "(", "X", ",", "n_clusters", ",", "init", ",", "random_state", "=", "random_state", ",", "x_squared_norms", "=", "x_squared_norms", ")", "if", "verbose", ":", "print", "(", "\"Initialization complete\"", ")", "# Allocate memory to store the distances for each sample to its", "# closer center for reallocation in case of ties", "distances", "=", "np", ".", "zeros", "(", "shape", "=", "(", "X", ".", "shape", "[", "0", "]", ",", ")", ",", "dtype", "=", "X", ".", "dtype", ")", "# iterations", "for", "i", "in", "range", "(", "max_iter", ")", ":", "centers_old", "=", "centers", ".", "copy", "(", ")", "# labels assignment", "# TODO: _labels_inertia should be done with cosine distance", "# since ||a - b|| = 2(1 - cos(a,b)) when a,b are unit normalized", "# this doesn't really matter.", "labels", ",", "inertia", "=", "_labels_inertia", "(", "X", ",", "sample_weight", ",", "x_squared_norms", ",", "centers", ",", "precompute_distances", "=", "precompute_distances", ",", "distances", "=", "distances", ",", ")", "# computation of the means", "if", "sp", ".", "issparse", "(", "X", ")", ":", "centers", "=", "_k_means", ".", "_centers_sparse", "(", "X", ",", "sample_weight", ",", "labels", ",", "n_clusters", ",", "distances", ")", "else", ":", "centers", "=", "_k_means", ".", "_centers_dense", "(", "X", ",", "sample_weight", ",", "labels", ",", "n_clusters", ",", "distances", ")", "# l2-normalize centers (this is the main contibution here)", "centers", "=", "normalize", "(", "centers", ")", "if", "verbose", ":", "print", "(", "\"Iteration %2d, inertia %.3f\"", "%", "(", "i", ",", "inertia", ")", ")", "if", "best_inertia", "is", "None", "or", "inertia", "<", "best_inertia", ":", "best_labels", "=", "labels", ".", "copy", "(", ")", "best_centers", "=", "centers", ".", "copy", "(", ")", "best_inertia", "=", "inertia", "center_shift_total", "=", "squared_norm", "(", "centers_old", "-", "centers", ")", "if", "center_shift_total", "<=", "tol", ":", "if", "verbose", ":", "print", "(", "\"Converged at iteration %d: \"", "\"center shift %e within tolerance %e\"", "%", "(", "i", ",", "center_shift_total", ",", "tol", ")", ")", "break", "if", "center_shift_total", ">", "0", ":", "# rerun E-step in case of non-convergence so that predicted labels", "# match cluster centers", "best_labels", ",", "best_inertia", "=", "_labels_inertia", "(", "X", ",", "sample_weight", ",", "x_squared_norms", ",", "best_centers", ",", "precompute_distances", "=", "precompute_distances", ",", "distances", "=", "distances", ",", ")", "return", "best_labels", ",", "best_inertia", ",", "best_centers", ",", "i", "+", "1" ]
Modified from sklearn.cluster.k_means_.k_means_single_lloyd.
[ "Modified", "from", "sklearn", ".", "cluster", ".", "k_means_", ".", "k_means_single_lloyd", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/spherical_kmeans.py#L22-L113
train
jasonlaska/spherecluster
spherecluster/spherical_kmeans.py
spherical_k_means
def spherical_k_means( X, n_clusters, sample_weight=None, init="k-means++", n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1, algorithm="auto", return_n_iter=False, ): """Modified from sklearn.cluster.k_means_.k_means. """ if n_init <= 0: raise ValueError( "Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init ) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError( "Number of iterations should be a positive number," " got %d instead" % max_iter ) best_inertia = np.infty # avoid forcing order when copy_x=False order = "C" if copy_x else None X = check_array( X, accept_sparse="csr", dtype=[np.float64, np.float32], order=order, copy=copy_x ) # verify that the number of samples given is larger than k if _num_samples(X) < n_clusters: raise ValueError( "n_samples=%d should be >= n_clusters=%d" % (_num_samples(X), n_clusters) ) tol = _tolerance(X, tol) if hasattr(init, "__array__"): init = check_array(init, dtype=X.dtype.type, order="C", copy=True) _validate_center_shape(X, n_clusters, init) if n_init != 1: warnings.warn( "Explicit initial center position passed: " "performing only one init in k-means instead of n_init=%d" % n_init, RuntimeWarning, stacklevel=2, ) n_init = 1 # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # run a k-means once labels, inertia, centers, n_iter_ = _spherical_kmeans_single_lloyd( X, n_clusters, sample_weight, max_iter=max_iter, init=init, verbose=verbose, tol=tol, x_squared_norms=x_squared_norms, random_state=random_state, ) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia best_n_iter = n_iter_ else: # parallelisation of k-means runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(_spherical_kmeans_single_lloyd)( X, n_clusters, sample_weight, max_iter=max_iter, init=init, verbose=verbose, tol=tol, x_squared_norms=x_squared_norms, # Change seed to ensure variety random_state=seed, ) for seed in seeds ) # Get results with the lowest inertia labels, inertia, centers, n_iters = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_n_iter = n_iters[best] if return_n_iter: return best_centers, best_labels, best_inertia, best_n_iter else: return best_centers, best_labels, best_inertia
python
def spherical_k_means( X, n_clusters, sample_weight=None, init="k-means++", n_init=10, max_iter=300, verbose=False, tol=1e-4, random_state=None, copy_x=True, n_jobs=1, algorithm="auto", return_n_iter=False, ): """Modified from sklearn.cluster.k_means_.k_means. """ if n_init <= 0: raise ValueError( "Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init ) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError( "Number of iterations should be a positive number," " got %d instead" % max_iter ) best_inertia = np.infty # avoid forcing order when copy_x=False order = "C" if copy_x else None X = check_array( X, accept_sparse="csr", dtype=[np.float64, np.float32], order=order, copy=copy_x ) # verify that the number of samples given is larger than k if _num_samples(X) < n_clusters: raise ValueError( "n_samples=%d should be >= n_clusters=%d" % (_num_samples(X), n_clusters) ) tol = _tolerance(X, tol) if hasattr(init, "__array__"): init = check_array(init, dtype=X.dtype.type, order="C", copy=True) _validate_center_shape(X, n_clusters, init) if n_init != 1: warnings.warn( "Explicit initial center position passed: " "performing only one init in k-means instead of n_init=%d" % n_init, RuntimeWarning, stacklevel=2, ) n_init = 1 # precompute squared norms of data points x_squared_norms = row_norms(X, squared=True) if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # run a k-means once labels, inertia, centers, n_iter_ = _spherical_kmeans_single_lloyd( X, n_clusters, sample_weight, max_iter=max_iter, init=init, verbose=verbose, tol=tol, x_squared_norms=x_squared_norms, random_state=random_state, ) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_labels = labels.copy() best_centers = centers.copy() best_inertia = inertia best_n_iter = n_iter_ else: # parallelisation of k-means runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(_spherical_kmeans_single_lloyd)( X, n_clusters, sample_weight, max_iter=max_iter, init=init, verbose=verbose, tol=tol, x_squared_norms=x_squared_norms, # Change seed to ensure variety random_state=seed, ) for seed in seeds ) # Get results with the lowest inertia labels, inertia, centers, n_iters = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_n_iter = n_iters[best] if return_n_iter: return best_centers, best_labels, best_inertia, best_n_iter else: return best_centers, best_labels, best_inertia
[ "def", "spherical_k_means", "(", "X", ",", "n_clusters", ",", "sample_weight", "=", "None", ",", "init", "=", "\"k-means++\"", ",", "n_init", "=", "10", ",", "max_iter", "=", "300", ",", "verbose", "=", "False", ",", "tol", "=", "1e-4", ",", "random_state", "=", "None", ",", "copy_x", "=", "True", ",", "n_jobs", "=", "1", ",", "algorithm", "=", "\"auto\"", ",", "return_n_iter", "=", "False", ",", ")", ":", "if", "n_init", "<=", "0", ":", "raise", "ValueError", "(", "\"Invalid number of initializations.\"", "\" n_init=%d must be bigger than zero.\"", "%", "n_init", ")", "random_state", "=", "check_random_state", "(", "random_state", ")", "if", "max_iter", "<=", "0", ":", "raise", "ValueError", "(", "\"Number of iterations should be a positive number,\"", "\" got %d instead\"", "%", "max_iter", ")", "best_inertia", "=", "np", ".", "infty", "# avoid forcing order when copy_x=False", "order", "=", "\"C\"", "if", "copy_x", "else", "None", "X", "=", "check_array", "(", "X", ",", "accept_sparse", "=", "\"csr\"", ",", "dtype", "=", "[", "np", ".", "float64", ",", "np", ".", "float32", "]", ",", "order", "=", "order", ",", "copy", "=", "copy_x", ")", "# verify that the number of samples given is larger than k", "if", "_num_samples", "(", "X", ")", "<", "n_clusters", ":", "raise", "ValueError", "(", "\"n_samples=%d should be >= n_clusters=%d\"", "%", "(", "_num_samples", "(", "X", ")", ",", "n_clusters", ")", ")", "tol", "=", "_tolerance", "(", "X", ",", "tol", ")", "if", "hasattr", "(", "init", ",", "\"__array__\"", ")", ":", "init", "=", "check_array", "(", "init", ",", "dtype", "=", "X", ".", "dtype", ".", "type", ",", "order", "=", "\"C\"", ",", "copy", "=", "True", ")", "_validate_center_shape", "(", "X", ",", "n_clusters", ",", "init", ")", "if", "n_init", "!=", "1", ":", "warnings", ".", "warn", "(", "\"Explicit initial center position passed: \"", "\"performing only one init in k-means instead of n_init=%d\"", "%", "n_init", ",", "RuntimeWarning", ",", "stacklevel", "=", "2", ",", ")", "n_init", "=", "1", "# precompute squared norms of data points", "x_squared_norms", "=", "row_norms", "(", "X", ",", "squared", "=", "True", ")", "if", "n_jobs", "==", "1", ":", "# For a single thread, less memory is needed if we just store one set", "# of the best results (as opposed to one set per run per thread).", "for", "it", "in", "range", "(", "n_init", ")", ":", "# run a k-means once", "labels", ",", "inertia", ",", "centers", ",", "n_iter_", "=", "_spherical_kmeans_single_lloyd", "(", "X", ",", "n_clusters", ",", "sample_weight", ",", "max_iter", "=", "max_iter", ",", "init", "=", "init", ",", "verbose", "=", "verbose", ",", "tol", "=", "tol", ",", "x_squared_norms", "=", "x_squared_norms", ",", "random_state", "=", "random_state", ",", ")", "# determine if these results are the best so far", "if", "best_inertia", "is", "None", "or", "inertia", "<", "best_inertia", ":", "best_labels", "=", "labels", ".", "copy", "(", ")", "best_centers", "=", "centers", ".", "copy", "(", ")", "best_inertia", "=", "inertia", "best_n_iter", "=", "n_iter_", "else", ":", "# parallelisation of k-means runs", "seeds", "=", "random_state", ".", "randint", "(", "np", ".", "iinfo", "(", "np", ".", "int32", ")", ".", "max", ",", "size", "=", "n_init", ")", "results", "=", "Parallel", "(", "n_jobs", "=", "n_jobs", ",", "verbose", "=", "0", ")", "(", "delayed", "(", "_spherical_kmeans_single_lloyd", ")", "(", "X", ",", "n_clusters", ",", "sample_weight", ",", "max_iter", "=", "max_iter", ",", "init", "=", "init", ",", "verbose", "=", "verbose", ",", "tol", "=", "tol", ",", "x_squared_norms", "=", "x_squared_norms", ",", "# Change seed to ensure variety", "random_state", "=", "seed", ",", ")", "for", "seed", "in", "seeds", ")", "# Get results with the lowest inertia", "labels", ",", "inertia", ",", "centers", ",", "n_iters", "=", "zip", "(", "*", "results", ")", "best", "=", "np", ".", "argmin", "(", "inertia", ")", "best_labels", "=", "labels", "[", "best", "]", "best_inertia", "=", "inertia", "[", "best", "]", "best_centers", "=", "centers", "[", "best", "]", "best_n_iter", "=", "n_iters", "[", "best", "]", "if", "return_n_iter", ":", "return", "best_centers", ",", "best_labels", ",", "best_inertia", ",", "best_n_iter", "else", ":", "return", "best_centers", ",", "best_labels", ",", "best_inertia" ]
Modified from sklearn.cluster.k_means_.k_means.
[ "Modified", "from", "sklearn", ".", "cluster", ".", "k_means_", ".", "k_means", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/spherical_kmeans.py#L116-L228
train
jasonlaska/spherecluster
spherecluster/spherical_kmeans.py
SphericalKMeans.fit
def fit(self, X, y=None, sample_weight=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) y : Ignored not used, present here for API consistency by convention. sample_weight : array-like, shape (n_samples,), optional The weights for each observation in X. If None, all observations are assigned equal weight (default: None) """ if self.normalize: X = normalize(X) random_state = check_random_state(self.random_state) # TODO: add check that all data is unit-normalized self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = spherical_k_means( X, n_clusters=self.n_clusters, sample_weight=sample_weight, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, return_n_iter=True, ) return self
python
def fit(self, X, y=None, sample_weight=None): """Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) y : Ignored not used, present here for API consistency by convention. sample_weight : array-like, shape (n_samples,), optional The weights for each observation in X. If None, all observations are assigned equal weight (default: None) """ if self.normalize: X = normalize(X) random_state = check_random_state(self.random_state) # TODO: add check that all data is unit-normalized self.cluster_centers_, self.labels_, self.inertia_, self.n_iter_ = spherical_k_means( X, n_clusters=self.n_clusters, sample_weight=sample_weight, init=self.init, n_init=self.n_init, max_iter=self.max_iter, verbose=self.verbose, tol=self.tol, random_state=random_state, copy_x=self.copy_x, n_jobs=self.n_jobs, return_n_iter=True, ) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", "=", "None", ",", "sample_weight", "=", "None", ")", ":", "if", "self", ".", "normalize", ":", "X", "=", "normalize", "(", "X", ")", "random_state", "=", "check_random_state", "(", "self", ".", "random_state", ")", "# TODO: add check that all data is unit-normalized", "self", ".", "cluster_centers_", ",", "self", ".", "labels_", ",", "self", ".", "inertia_", ",", "self", ".", "n_iter_", "=", "spherical_k_means", "(", "X", ",", "n_clusters", "=", "self", ".", "n_clusters", ",", "sample_weight", "=", "sample_weight", ",", "init", "=", "self", ".", "init", ",", "n_init", "=", "self", ".", "n_init", ",", "max_iter", "=", "self", ".", "max_iter", ",", "verbose", "=", "self", ".", "verbose", ",", "tol", "=", "self", ".", "tol", ",", "random_state", "=", "random_state", ",", "copy_x", "=", "self", ".", "copy_x", ",", "n_jobs", "=", "self", ".", "n_jobs", ",", "return_n_iter", "=", "True", ",", ")", "return", "self" ]
Compute k-means clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) y : Ignored not used, present here for API consistency by convention. sample_weight : array-like, shape (n_samples,), optional The weights for each observation in X. If None, all observations are assigned equal weight (default: None)
[ "Compute", "k", "-", "means", "clustering", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/spherical_kmeans.py#L329-L366
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_inertia_from_labels
def _inertia_from_labels(X, centers, labels): """Compute inertia with cosine distance using known labels. """ n_examples, n_features = X.shape inertia = np.zeros((n_examples,)) for ee in range(n_examples): inertia[ee] = 1 - X[ee, :].dot(centers[int(labels[ee]), :].T) return np.sum(inertia)
python
def _inertia_from_labels(X, centers, labels): """Compute inertia with cosine distance using known labels. """ n_examples, n_features = X.shape inertia = np.zeros((n_examples,)) for ee in range(n_examples): inertia[ee] = 1 - X[ee, :].dot(centers[int(labels[ee]), :].T) return np.sum(inertia)
[ "def", "_inertia_from_labels", "(", "X", ",", "centers", ",", "labels", ")", ":", "n_examples", ",", "n_features", "=", "X", ".", "shape", "inertia", "=", "np", ".", "zeros", "(", "(", "n_examples", ",", ")", ")", "for", "ee", "in", "range", "(", "n_examples", ")", ":", "inertia", "[", "ee", "]", "=", "1", "-", "X", "[", "ee", ",", ":", "]", ".", "dot", "(", "centers", "[", "int", "(", "labels", "[", "ee", "]", ")", ",", ":", "]", ".", "T", ")", "return", "np", ".", "sum", "(", "inertia", ")" ]
Compute inertia with cosine distance using known labels.
[ "Compute", "inertia", "with", "cosine", "distance", "using", "known", "labels", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L25-L33
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_labels_inertia
def _labels_inertia(X, centers): """Compute labels and inertia with cosine distance. """ n_examples, n_features = X.shape n_clusters, n_features = centers.shape labels = np.zeros((n_examples,)) inertia = np.zeros((n_examples,)) for ee in range(n_examples): dists = np.zeros((n_clusters,)) for cc in range(n_clusters): dists[cc] = 1 - X[ee, :].dot(centers[cc, :].T) labels[ee] = np.argmin(dists) inertia[ee] = dists[int(labels[ee])] return labels, np.sum(inertia)
python
def _labels_inertia(X, centers): """Compute labels and inertia with cosine distance. """ n_examples, n_features = X.shape n_clusters, n_features = centers.shape labels = np.zeros((n_examples,)) inertia = np.zeros((n_examples,)) for ee in range(n_examples): dists = np.zeros((n_clusters,)) for cc in range(n_clusters): dists[cc] = 1 - X[ee, :].dot(centers[cc, :].T) labels[ee] = np.argmin(dists) inertia[ee] = dists[int(labels[ee])] return labels, np.sum(inertia)
[ "def", "_labels_inertia", "(", "X", ",", "centers", ")", ":", "n_examples", ",", "n_features", "=", "X", ".", "shape", "n_clusters", ",", "n_features", "=", "centers", ".", "shape", "labels", "=", "np", ".", "zeros", "(", "(", "n_examples", ",", ")", ")", "inertia", "=", "np", ".", "zeros", "(", "(", "n_examples", ",", ")", ")", "for", "ee", "in", "range", "(", "n_examples", ")", ":", "dists", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", ")", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "dists", "[", "cc", "]", "=", "1", "-", "X", "[", "ee", ",", ":", "]", ".", "dot", "(", "centers", "[", "cc", ",", ":", "]", ".", "T", ")", "labels", "[", "ee", "]", "=", "np", ".", "argmin", "(", "dists", ")", "inertia", "[", "ee", "]", "=", "dists", "[", "int", "(", "labels", "[", "ee", "]", ")", "]", "return", "labels", ",", "np", ".", "sum", "(", "inertia", ")" ]
Compute labels and inertia with cosine distance.
[ "Compute", "labels", "and", "inertia", "with", "cosine", "distance", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L36-L53
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_S
def _S(kappa, alpha, beta): """Compute the antiderivative of the Amos-type bound G on the modified Bessel function ratio. Note: Handles scalar kappa, alpha, and beta only. See "S <-" in movMF.R and utility function implementation notes from https://cran.r-project.org/web/packages/movMF/index.html """ kappa = 1. * np.abs(kappa) alpha = 1. * alpha beta = 1. * np.abs(beta) a_plus_b = alpha + beta u = np.sqrt(kappa ** 2 + beta ** 2) if alpha == 0: alpha_scale = 0 else: alpha_scale = alpha * np.log((alpha + u) / a_plus_b) return u - beta - alpha_scale
python
def _S(kappa, alpha, beta): """Compute the antiderivative of the Amos-type bound G on the modified Bessel function ratio. Note: Handles scalar kappa, alpha, and beta only. See "S <-" in movMF.R and utility function implementation notes from https://cran.r-project.org/web/packages/movMF/index.html """ kappa = 1. * np.abs(kappa) alpha = 1. * alpha beta = 1. * np.abs(beta) a_plus_b = alpha + beta u = np.sqrt(kappa ** 2 + beta ** 2) if alpha == 0: alpha_scale = 0 else: alpha_scale = alpha * np.log((alpha + u) / a_plus_b) return u - beta - alpha_scale
[ "def", "_S", "(", "kappa", ",", "alpha", ",", "beta", ")", ":", "kappa", "=", "1.", "*", "np", ".", "abs", "(", "kappa", ")", "alpha", "=", "1.", "*", "alpha", "beta", "=", "1.", "*", "np", ".", "abs", "(", "beta", ")", "a_plus_b", "=", "alpha", "+", "beta", "u", "=", "np", ".", "sqrt", "(", "kappa", "**", "2", "+", "beta", "**", "2", ")", "if", "alpha", "==", "0", ":", "alpha_scale", "=", "0", "else", ":", "alpha_scale", "=", "alpha", "*", "np", ".", "log", "(", "(", "alpha", "+", "u", ")", "/", "a_plus_b", ")", "return", "u", "-", "beta", "-", "alpha_scale" ]
Compute the antiderivative of the Amos-type bound G on the modified Bessel function ratio. Note: Handles scalar kappa, alpha, and beta only. See "S <-" in movMF.R and utility function implementation notes from https://cran.r-project.org/web/packages/movMF/index.html
[ "Compute", "the", "antiderivative", "of", "the", "Amos", "-", "type", "bound", "G", "on", "the", "modified", "Bessel", "function", "ratio", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L105-L124
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_init_unit_centers
def _init_unit_centers(X, n_clusters, random_state, init): """Initializes unit norm centers. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. init: (string) one of k-means++ : uses sklearn k-means++ initialization algorithm spherical-k-means : use centroids from one pass of spherical k-means random : random unit norm vectors random-orthonormal : random orthonormal vectors If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. """ n_examples, n_features = np.shape(X) if isinstance(init, np.ndarray): n_init_clusters, n_init_features = init.shape assert n_init_clusters == n_clusters assert n_init_features == n_features # ensure unit normed centers centers = init for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers elif init == "spherical-k-means": labels, inertia, centers, iters = spherical_kmeans._spherical_kmeans_single_lloyd( X, n_clusters, x_squared_norms=np.ones((n_examples,)), init="k-means++" ) return centers elif init == "random": centers = np.random.randn(n_clusters, n_features) for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers elif init == "k-means++": centers = _init_centroids( X, n_clusters, "k-means++", random_state=random_state, x_squared_norms=np.ones((n_examples,)), ) for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers elif init == "random-orthonormal": centers = np.random.randn(n_clusters, n_features) q, r = np.linalg.qr(centers.T, mode="reduced") return q.T elif init == "random-class": centers = np.zeros((n_clusters, n_features)) for cc in range(n_clusters): while np.linalg.norm(centers[cc, :]) == 0: labels = np.random.randint(0, n_clusters, n_examples) centers[cc, :] = X[labels == cc, :].sum(axis=0) for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers
python
def _init_unit_centers(X, n_clusters, random_state, init): """Initializes unit norm centers. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. init: (string) one of k-means++ : uses sklearn k-means++ initialization algorithm spherical-k-means : use centroids from one pass of spherical k-means random : random unit norm vectors random-orthonormal : random orthonormal vectors If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. """ n_examples, n_features = np.shape(X) if isinstance(init, np.ndarray): n_init_clusters, n_init_features = init.shape assert n_init_clusters == n_clusters assert n_init_features == n_features # ensure unit normed centers centers = init for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers elif init == "spherical-k-means": labels, inertia, centers, iters = spherical_kmeans._spherical_kmeans_single_lloyd( X, n_clusters, x_squared_norms=np.ones((n_examples,)), init="k-means++" ) return centers elif init == "random": centers = np.random.randn(n_clusters, n_features) for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers elif init == "k-means++": centers = _init_centroids( X, n_clusters, "k-means++", random_state=random_state, x_squared_norms=np.ones((n_examples,)), ) for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers elif init == "random-orthonormal": centers = np.random.randn(n_clusters, n_features) q, r = np.linalg.qr(centers.T, mode="reduced") return q.T elif init == "random-class": centers = np.zeros((n_clusters, n_features)) for cc in range(n_clusters): while np.linalg.norm(centers[cc, :]) == 0: labels = np.random.randint(0, n_clusters, n_examples) centers[cc, :] = X[labels == cc, :].sum(axis=0) for cc in range(n_clusters): centers[cc, :] = centers[cc, :] / np.linalg.norm(centers[cc, :]) return centers
[ "def", "_init_unit_centers", "(", "X", ",", "n_clusters", ",", "random_state", ",", "init", ")", ":", "n_examples", ",", "n_features", "=", "np", ".", "shape", "(", "X", ")", "if", "isinstance", "(", "init", ",", "np", ".", "ndarray", ")", ":", "n_init_clusters", ",", "n_init_features", "=", "init", ".", "shape", "assert", "n_init_clusters", "==", "n_clusters", "assert", "n_init_features", "==", "n_features", "# ensure unit normed centers", "centers", "=", "init", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "centers", "[", "cc", ",", ":", "]", "=", "centers", "[", "cc", ",", ":", "]", "/", "np", ".", "linalg", ".", "norm", "(", "centers", "[", "cc", ",", ":", "]", ")", "return", "centers", "elif", "init", "==", "\"spherical-k-means\"", ":", "labels", ",", "inertia", ",", "centers", ",", "iters", "=", "spherical_kmeans", ".", "_spherical_kmeans_single_lloyd", "(", "X", ",", "n_clusters", ",", "x_squared_norms", "=", "np", ".", "ones", "(", "(", "n_examples", ",", ")", ")", ",", "init", "=", "\"k-means++\"", ")", "return", "centers", "elif", "init", "==", "\"random\"", ":", "centers", "=", "np", ".", "random", ".", "randn", "(", "n_clusters", ",", "n_features", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "centers", "[", "cc", ",", ":", "]", "=", "centers", "[", "cc", ",", ":", "]", "/", "np", ".", "linalg", ".", "norm", "(", "centers", "[", "cc", ",", ":", "]", ")", "return", "centers", "elif", "init", "==", "\"k-means++\"", ":", "centers", "=", "_init_centroids", "(", "X", ",", "n_clusters", ",", "\"k-means++\"", ",", "random_state", "=", "random_state", ",", "x_squared_norms", "=", "np", ".", "ones", "(", "(", "n_examples", ",", ")", ")", ",", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "centers", "[", "cc", ",", ":", "]", "=", "centers", "[", "cc", ",", ":", "]", "/", "np", ".", "linalg", ".", "norm", "(", "centers", "[", "cc", ",", ":", "]", ")", "return", "centers", "elif", "init", "==", "\"random-orthonormal\"", ":", "centers", "=", "np", ".", "random", ".", "randn", "(", "n_clusters", ",", "n_features", ")", "q", ",", "r", "=", "np", ".", "linalg", ".", "qr", "(", "centers", ".", "T", ",", "mode", "=", "\"reduced\"", ")", "return", "q", ".", "T", "elif", "init", "==", "\"random-class\"", ":", "centers", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", "n_features", ")", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "while", "np", ".", "linalg", ".", "norm", "(", "centers", "[", "cc", ",", ":", "]", ")", "==", "0", ":", "labels", "=", "np", ".", "random", ".", "randint", "(", "0", ",", "n_clusters", ",", "n_examples", ")", "centers", "[", "cc", ",", ":", "]", "=", "X", "[", "labels", "==", "cc", ",", ":", "]", ".", "sum", "(", "axis", "=", "0", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "centers", "[", "cc", ",", ":", "]", "=", "centers", "[", "cc", ",", ":", "]", "/", "np", ".", "linalg", ".", "norm", "(", "centers", "[", "cc", ",", ":", "]", ")", "return", "centers" ]
Initializes unit norm centers. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. init: (string) one of k-means++ : uses sklearn k-means++ initialization algorithm spherical-k-means : use centroids from one pass of spherical k-means random : random unit norm vectors random-orthonormal : random orthonormal vectors If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers.
[ "Initializes", "unit", "norm", "centers", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L171-L252
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_expectation
def _expectation(X, centers, weights, concentrations, posterior_type="soft"): """Compute the log-likelihood of each datapoint being in each cluster. Parameters ---------- centers (mu) : array, [n_centers x n_features] weights (alpha) : array, [n_centers, ] (alpha) concentrations (kappa) : array, [n_centers, ] Returns ---------- posterior : array, [n_centers, n_examples] """ n_examples, n_features = np.shape(X) n_clusters, _ = centers.shape if n_features <= 50: # works up to about 50 before numrically unstable vmf_f = _vmf_log else: vmf_f = _vmf_log_asymptotic f_log = np.zeros((n_clusters, n_examples)) for cc in range(n_clusters): f_log[cc, :] = vmf_f(X, concentrations[cc], centers[cc, :]) posterior = np.zeros((n_clusters, n_examples)) if posterior_type == "soft": weights_log = np.log(weights) posterior = np.tile(weights_log.T, (n_examples, 1)).T + f_log for ee in range(n_examples): posterior[:, ee] = np.exp(posterior[:, ee] - logsumexp(posterior[:, ee])) elif posterior_type == "hard": weights_log = np.log(weights) weighted_f_log = np.tile(weights_log.T, (n_examples, 1)).T + f_log for ee in range(n_examples): posterior[np.argmax(weighted_f_log[:, ee]), ee] = 1.0 return posterior
python
def _expectation(X, centers, weights, concentrations, posterior_type="soft"): """Compute the log-likelihood of each datapoint being in each cluster. Parameters ---------- centers (mu) : array, [n_centers x n_features] weights (alpha) : array, [n_centers, ] (alpha) concentrations (kappa) : array, [n_centers, ] Returns ---------- posterior : array, [n_centers, n_examples] """ n_examples, n_features = np.shape(X) n_clusters, _ = centers.shape if n_features <= 50: # works up to about 50 before numrically unstable vmf_f = _vmf_log else: vmf_f = _vmf_log_asymptotic f_log = np.zeros((n_clusters, n_examples)) for cc in range(n_clusters): f_log[cc, :] = vmf_f(X, concentrations[cc], centers[cc, :]) posterior = np.zeros((n_clusters, n_examples)) if posterior_type == "soft": weights_log = np.log(weights) posterior = np.tile(weights_log.T, (n_examples, 1)).T + f_log for ee in range(n_examples): posterior[:, ee] = np.exp(posterior[:, ee] - logsumexp(posterior[:, ee])) elif posterior_type == "hard": weights_log = np.log(weights) weighted_f_log = np.tile(weights_log.T, (n_examples, 1)).T + f_log for ee in range(n_examples): posterior[np.argmax(weighted_f_log[:, ee]), ee] = 1.0 return posterior
[ "def", "_expectation", "(", "X", ",", "centers", ",", "weights", ",", "concentrations", ",", "posterior_type", "=", "\"soft\"", ")", ":", "n_examples", ",", "n_features", "=", "np", ".", "shape", "(", "X", ")", "n_clusters", ",", "_", "=", "centers", ".", "shape", "if", "n_features", "<=", "50", ":", "# works up to about 50 before numrically unstable", "vmf_f", "=", "_vmf_log", "else", ":", "vmf_f", "=", "_vmf_log_asymptotic", "f_log", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", "n_examples", ")", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "f_log", "[", "cc", ",", ":", "]", "=", "vmf_f", "(", "X", ",", "concentrations", "[", "cc", "]", ",", "centers", "[", "cc", ",", ":", "]", ")", "posterior", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", "n_examples", ")", ")", "if", "posterior_type", "==", "\"soft\"", ":", "weights_log", "=", "np", ".", "log", "(", "weights", ")", "posterior", "=", "np", ".", "tile", "(", "weights_log", ".", "T", ",", "(", "n_examples", ",", "1", ")", ")", ".", "T", "+", "f_log", "for", "ee", "in", "range", "(", "n_examples", ")", ":", "posterior", "[", ":", ",", "ee", "]", "=", "np", ".", "exp", "(", "posterior", "[", ":", ",", "ee", "]", "-", "logsumexp", "(", "posterior", "[", ":", ",", "ee", "]", ")", ")", "elif", "posterior_type", "==", "\"hard\"", ":", "weights_log", "=", "np", ".", "log", "(", "weights", ")", "weighted_f_log", "=", "np", ".", "tile", "(", "weights_log", ".", "T", ",", "(", "n_examples", ",", "1", ")", ")", ".", "T", "+", "f_log", "for", "ee", "in", "range", "(", "n_examples", ")", ":", "posterior", "[", "np", ".", "argmax", "(", "weighted_f_log", "[", ":", ",", "ee", "]", ")", ",", "ee", "]", "=", "1.0", "return", "posterior" ]
Compute the log-likelihood of each datapoint being in each cluster. Parameters ---------- centers (mu) : array, [n_centers x n_features] weights (alpha) : array, [n_centers, ] (alpha) concentrations (kappa) : array, [n_centers, ] Returns ---------- posterior : array, [n_centers, n_examples]
[ "Compute", "the", "log", "-", "likelihood", "of", "each", "datapoint", "being", "in", "each", "cluster", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L255-L293
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_maximization
def _maximization(X, posterior, force_weights=None): """Estimate new centers, weights, and concentrations from Parameters ---------- posterior : array, [n_centers, n_examples] The posterior matrix from the expectation step. force_weights : None or array, [n_centers, ] If None is passed, will estimate weights. If an array is passed, will use instead of estimating. Returns ---------- centers (mu) : array, [n_centers x n_features] weights (alpha) : array, [n_centers, ] (alpha) concentrations (kappa) : array, [n_centers, ] """ n_examples, n_features = X.shape n_clusters, n_examples = posterior.shape concentrations = np.zeros((n_clusters,)) centers = np.zeros((n_clusters, n_features)) if force_weights is None: weights = np.zeros((n_clusters,)) for cc in range(n_clusters): # update weights (alpha) if force_weights is None: weights[cc] = np.mean(posterior[cc, :]) else: weights = force_weights # update centers (mu) X_scaled = X.copy() if sp.issparse(X): X_scaled.data *= posterior[cc, :].repeat(np.diff(X_scaled.indptr)) else: for ee in range(n_examples): X_scaled[ee, :] *= posterior[cc, ee] centers[cc, :] = X_scaled.sum(axis=0) # normalize centers center_norm = np.linalg.norm(centers[cc, :]) if center_norm > 1e-8: centers[cc, :] = centers[cc, :] / center_norm # update concentration (kappa) [TODO: add other kappa approximations] rbar = center_norm / (n_examples * weights[cc]) concentrations[cc] = rbar * n_features - np.power(rbar, 3.) if np.abs(rbar - 1.0) < 1e-10: concentrations[cc] = MAX_CONTENTRATION else: concentrations[cc] /= 1. - np.power(rbar, 2.) # let python know we can free this (good for large dense X) del X_scaled return centers, weights, concentrations
python
def _maximization(X, posterior, force_weights=None): """Estimate new centers, weights, and concentrations from Parameters ---------- posterior : array, [n_centers, n_examples] The posterior matrix from the expectation step. force_weights : None or array, [n_centers, ] If None is passed, will estimate weights. If an array is passed, will use instead of estimating. Returns ---------- centers (mu) : array, [n_centers x n_features] weights (alpha) : array, [n_centers, ] (alpha) concentrations (kappa) : array, [n_centers, ] """ n_examples, n_features = X.shape n_clusters, n_examples = posterior.shape concentrations = np.zeros((n_clusters,)) centers = np.zeros((n_clusters, n_features)) if force_weights is None: weights = np.zeros((n_clusters,)) for cc in range(n_clusters): # update weights (alpha) if force_weights is None: weights[cc] = np.mean(posterior[cc, :]) else: weights = force_weights # update centers (mu) X_scaled = X.copy() if sp.issparse(X): X_scaled.data *= posterior[cc, :].repeat(np.diff(X_scaled.indptr)) else: for ee in range(n_examples): X_scaled[ee, :] *= posterior[cc, ee] centers[cc, :] = X_scaled.sum(axis=0) # normalize centers center_norm = np.linalg.norm(centers[cc, :]) if center_norm > 1e-8: centers[cc, :] = centers[cc, :] / center_norm # update concentration (kappa) [TODO: add other kappa approximations] rbar = center_norm / (n_examples * weights[cc]) concentrations[cc] = rbar * n_features - np.power(rbar, 3.) if np.abs(rbar - 1.0) < 1e-10: concentrations[cc] = MAX_CONTENTRATION else: concentrations[cc] /= 1. - np.power(rbar, 2.) # let python know we can free this (good for large dense X) del X_scaled return centers, weights, concentrations
[ "def", "_maximization", "(", "X", ",", "posterior", ",", "force_weights", "=", "None", ")", ":", "n_examples", ",", "n_features", "=", "X", ".", "shape", "n_clusters", ",", "n_examples", "=", "posterior", ".", "shape", "concentrations", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", ")", ")", "centers", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", "n_features", ")", ")", "if", "force_weights", "is", "None", ":", "weights", "=", "np", ".", "zeros", "(", "(", "n_clusters", ",", ")", ")", "for", "cc", "in", "range", "(", "n_clusters", ")", ":", "# update weights (alpha)", "if", "force_weights", "is", "None", ":", "weights", "[", "cc", "]", "=", "np", ".", "mean", "(", "posterior", "[", "cc", ",", ":", "]", ")", "else", ":", "weights", "=", "force_weights", "# update centers (mu)", "X_scaled", "=", "X", ".", "copy", "(", ")", "if", "sp", ".", "issparse", "(", "X", ")", ":", "X_scaled", ".", "data", "*=", "posterior", "[", "cc", ",", ":", "]", ".", "repeat", "(", "np", ".", "diff", "(", "X_scaled", ".", "indptr", ")", ")", "else", ":", "for", "ee", "in", "range", "(", "n_examples", ")", ":", "X_scaled", "[", "ee", ",", ":", "]", "*=", "posterior", "[", "cc", ",", "ee", "]", "centers", "[", "cc", ",", ":", "]", "=", "X_scaled", ".", "sum", "(", "axis", "=", "0", ")", "# normalize centers", "center_norm", "=", "np", ".", "linalg", ".", "norm", "(", "centers", "[", "cc", ",", ":", "]", ")", "if", "center_norm", ">", "1e-8", ":", "centers", "[", "cc", ",", ":", "]", "=", "centers", "[", "cc", ",", ":", "]", "/", "center_norm", "# update concentration (kappa) [TODO: add other kappa approximations]", "rbar", "=", "center_norm", "/", "(", "n_examples", "*", "weights", "[", "cc", "]", ")", "concentrations", "[", "cc", "]", "=", "rbar", "*", "n_features", "-", "np", ".", "power", "(", "rbar", ",", "3.", ")", "if", "np", ".", "abs", "(", "rbar", "-", "1.0", ")", "<", "1e-10", ":", "concentrations", "[", "cc", "]", "=", "MAX_CONTENTRATION", "else", ":", "concentrations", "[", "cc", "]", "/=", "1.", "-", "np", ".", "power", "(", "rbar", ",", "2.", ")", "# let python know we can free this (good for large dense X)", "del", "X_scaled", "return", "centers", ",", "weights", ",", "concentrations" ]
Estimate new centers, weights, and concentrations from Parameters ---------- posterior : array, [n_centers, n_examples] The posterior matrix from the expectation step. force_weights : None or array, [n_centers, ] If None is passed, will estimate weights. If an array is passed, will use instead of estimating. Returns ---------- centers (mu) : array, [n_centers x n_features] weights (alpha) : array, [n_centers, ] (alpha) concentrations (kappa) : array, [n_centers, ]
[ "Estimate", "new", "centers", "weights", "and", "concentrations", "from" ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L296-L354
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
_movMF
def _movMF( X, n_clusters, posterior_type="soft", force_weights=None, max_iter=300, verbose=False, init="random-class", random_state=None, tol=1e-6, ): """Mixture of von Mises Fisher clustering. Implements the algorithms (i) and (ii) from "Clustering on the Unit Hypersphere using von Mises-Fisher Distributions" by Banerjee, Dhillon, Ghosh, and Sra. TODO: Currently only supports Banerjee et al 2005 approximation of kappa, however, there are numerous other approximations see _update_params. Attribution ---------- Approximation of log-vmf distribution function from movMF R-package. movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions by Kurt Hornik, Bettina Grun, 2014 Find more at: https://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf https://cran.r-project.org/web/packages/movMF/index.html Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. posterior_type: 'soft' or 'hard' Type of posterior computed in exepectation step. See note about attribute: self.posterior_ force_weights : None or array [n_clusters, ] If None, the algorithm will estimate the weights. If an array of weights, algorithm will estimate concentrations and centers with given weights. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init: (string) one of random-class [default]: random class assignment & centroid computation k-means++ : uses sklearn k-means++ initialization algorithm spherical-k-means : use centroids from one pass of spherical k-means random : random unit norm vectors random-orthonormal : random orthonormal vectors If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. tol : float, default: 1e-6 Relative tolerance with regards to inertia to declare convergence n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. verbose : int, default 0 Verbosity mode. copy_x : boolean, default True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. """ random_state = check_random_state(random_state) n_examples, n_features = np.shape(X) # init centers (mus) centers = _init_unit_centers(X, n_clusters, random_state, init) # init weights (alphas) if force_weights is None: weights = np.ones((n_clusters,)) weights = weights / np.sum(weights) else: weights = force_weights # init concentrations (kappas) concentrations = np.ones((n_clusters,)) if verbose: print("Initialization complete") for iter in range(max_iter): centers_prev = centers.copy() # expectation step posterior = _expectation( X, centers, weights, concentrations, posterior_type=posterior_type ) # maximization step centers, weights, concentrations = _maximization( X, posterior, force_weights=force_weights ) # check convergence tolcheck = squared_norm(centers_prev - centers) if tolcheck <= tol: if verbose: print( "Converged at iteration %d: " "center shift %e within tolerance %e" % (iter, tolcheck, tol) ) break # labels come for free via posterior labels = np.zeros((n_examples,)) for ee in range(n_examples): labels[ee] = np.argmax(posterior[:, ee]) inertia = _inertia_from_labels(X, centers, labels) return centers, weights, concentrations, posterior, labels, inertia
python
def _movMF( X, n_clusters, posterior_type="soft", force_weights=None, max_iter=300, verbose=False, init="random-class", random_state=None, tol=1e-6, ): """Mixture of von Mises Fisher clustering. Implements the algorithms (i) and (ii) from "Clustering on the Unit Hypersphere using von Mises-Fisher Distributions" by Banerjee, Dhillon, Ghosh, and Sra. TODO: Currently only supports Banerjee et al 2005 approximation of kappa, however, there are numerous other approximations see _update_params. Attribution ---------- Approximation of log-vmf distribution function from movMF R-package. movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions by Kurt Hornik, Bettina Grun, 2014 Find more at: https://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf https://cran.r-project.org/web/packages/movMF/index.html Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. posterior_type: 'soft' or 'hard' Type of posterior computed in exepectation step. See note about attribute: self.posterior_ force_weights : None or array [n_clusters, ] If None, the algorithm will estimate the weights. If an array of weights, algorithm will estimate concentrations and centers with given weights. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init: (string) one of random-class [default]: random class assignment & centroid computation k-means++ : uses sklearn k-means++ initialization algorithm spherical-k-means : use centroids from one pass of spherical k-means random : random unit norm vectors random-orthonormal : random orthonormal vectors If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. tol : float, default: 1e-6 Relative tolerance with regards to inertia to declare convergence n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. verbose : int, default 0 Verbosity mode. copy_x : boolean, default True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean. """ random_state = check_random_state(random_state) n_examples, n_features = np.shape(X) # init centers (mus) centers = _init_unit_centers(X, n_clusters, random_state, init) # init weights (alphas) if force_weights is None: weights = np.ones((n_clusters,)) weights = weights / np.sum(weights) else: weights = force_weights # init concentrations (kappas) concentrations = np.ones((n_clusters,)) if verbose: print("Initialization complete") for iter in range(max_iter): centers_prev = centers.copy() # expectation step posterior = _expectation( X, centers, weights, concentrations, posterior_type=posterior_type ) # maximization step centers, weights, concentrations = _maximization( X, posterior, force_weights=force_weights ) # check convergence tolcheck = squared_norm(centers_prev - centers) if tolcheck <= tol: if verbose: print( "Converged at iteration %d: " "center shift %e within tolerance %e" % (iter, tolcheck, tol) ) break # labels come for free via posterior labels = np.zeros((n_examples,)) for ee in range(n_examples): labels[ee] = np.argmax(posterior[:, ee]) inertia = _inertia_from_labels(X, centers, labels) return centers, weights, concentrations, posterior, labels, inertia
[ "def", "_movMF", "(", "X", ",", "n_clusters", ",", "posterior_type", "=", "\"soft\"", ",", "force_weights", "=", "None", ",", "max_iter", "=", "300", ",", "verbose", "=", "False", ",", "init", "=", "\"random-class\"", ",", "random_state", "=", "None", ",", "tol", "=", "1e-6", ",", ")", ":", "random_state", "=", "check_random_state", "(", "random_state", ")", "n_examples", ",", "n_features", "=", "np", ".", "shape", "(", "X", ")", "# init centers (mus)", "centers", "=", "_init_unit_centers", "(", "X", ",", "n_clusters", ",", "random_state", ",", "init", ")", "# init weights (alphas)", "if", "force_weights", "is", "None", ":", "weights", "=", "np", ".", "ones", "(", "(", "n_clusters", ",", ")", ")", "weights", "=", "weights", "/", "np", ".", "sum", "(", "weights", ")", "else", ":", "weights", "=", "force_weights", "# init concentrations (kappas)", "concentrations", "=", "np", ".", "ones", "(", "(", "n_clusters", ",", ")", ")", "if", "verbose", ":", "print", "(", "\"Initialization complete\"", ")", "for", "iter", "in", "range", "(", "max_iter", ")", ":", "centers_prev", "=", "centers", ".", "copy", "(", ")", "# expectation step", "posterior", "=", "_expectation", "(", "X", ",", "centers", ",", "weights", ",", "concentrations", ",", "posterior_type", "=", "posterior_type", ")", "# maximization step", "centers", ",", "weights", ",", "concentrations", "=", "_maximization", "(", "X", ",", "posterior", ",", "force_weights", "=", "force_weights", ")", "# check convergence", "tolcheck", "=", "squared_norm", "(", "centers_prev", "-", "centers", ")", "if", "tolcheck", "<=", "tol", ":", "if", "verbose", ":", "print", "(", "\"Converged at iteration %d: \"", "\"center shift %e within tolerance %e\"", "%", "(", "iter", ",", "tolcheck", ",", "tol", ")", ")", "break", "# labels come for free via posterior", "labels", "=", "np", ".", "zeros", "(", "(", "n_examples", ",", ")", ")", "for", "ee", "in", "range", "(", "n_examples", ")", ":", "labels", "[", "ee", "]", "=", "np", ".", "argmax", "(", "posterior", "[", ":", ",", "ee", "]", ")", "inertia", "=", "_inertia_from_labels", "(", "X", ",", "centers", ",", "labels", ")", "return", "centers", ",", "weights", ",", "concentrations", ",", "posterior", ",", "labels", ",", "inertia" ]
Mixture of von Mises Fisher clustering. Implements the algorithms (i) and (ii) from "Clustering on the Unit Hypersphere using von Mises-Fisher Distributions" by Banerjee, Dhillon, Ghosh, and Sra. TODO: Currently only supports Banerjee et al 2005 approximation of kappa, however, there are numerous other approximations see _update_params. Attribution ---------- Approximation of log-vmf distribution function from movMF R-package. movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions by Kurt Hornik, Bettina Grun, 2014 Find more at: https://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf https://cran.r-project.org/web/packages/movMF/index.html Parameters ---------- n_clusters : int, optional, default: 8 The number of clusters to form as well as the number of centroids to generate. posterior_type: 'soft' or 'hard' Type of posterior computed in exepectation step. See note about attribute: self.posterior_ force_weights : None or array [n_clusters, ] If None, the algorithm will estimate the weights. If an array of weights, algorithm will estimate concentrations and centers with given weights. max_iter : int, default: 300 Maximum number of iterations of the k-means algorithm for a single run. n_init : int, default: 10 Number of time the k-means algorithm will be run with different centroid seeds. The final results will be the best output of n_init consecutive runs in terms of inertia. init: (string) one of random-class [default]: random class assignment & centroid computation k-means++ : uses sklearn k-means++ initialization algorithm spherical-k-means : use centroids from one pass of spherical k-means random : random unit norm vectors random-orthonormal : random orthonormal vectors If an ndarray is passed, it should be of shape (n_clusters, n_features) and gives the initial centers. tol : float, default: 1e-6 Relative tolerance with regards to inertia to declare convergence n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. verbose : int, default 0 Verbosity mode. copy_x : boolean, default True When pre-computing distances it is more numerically accurate to center the data first. If copy_x is True, then the original data is not modified. If False, the original data is modified, and put back before the function returns, but small numerical differences may be introduced by subtracting and then adding the data mean.
[ "Mixture", "of", "von", "Mises", "Fisher", "clustering", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L357-L497
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
movMF
def movMF( X, n_clusters, posterior_type="soft", force_weights=None, n_init=10, n_jobs=1, max_iter=300, verbose=False, init="random-class", random_state=None, tol=1e-6, copy_x=True, ): """Wrapper for parallelization of _movMF and running n_init times. """ if n_init <= 0: raise ValueError( "Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init ) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError( "Number of iterations should be a positive number," " got %d instead" % max_iter ) best_inertia = np.infty X = as_float_array(X, copy=copy_x) tol = _tolerance(X, tol) if hasattr(init, "__array__"): init = check_array(init, dtype=X.dtype.type, copy=True) _validate_center_shape(X, n_clusters, init) if n_init != 1: warnings.warn( "Explicit initial center position passed: " "performing only one init in k-means instead of n_init=%d" % n_init, RuntimeWarning, stacklevel=2, ) n_init = 1 # defaults best_centers = None best_labels = None best_weights = None best_concentrations = None best_posterior = None best_inertia = None if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # cluster on the sphere (centers, weights, concentrations, posterior, labels, inertia) = _movMF( X, n_clusters, posterior_type=posterior_type, force_weights=force_weights, max_iter=max_iter, verbose=verbose, init=init, random_state=random_state, tol=tol, ) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_centers = centers.copy() best_labels = labels.copy() best_weights = weights.copy() best_concentrations = concentrations.copy() best_posterior = posterior.copy() best_inertia = inertia else: # parallelisation of movMF runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(_movMF)( X, n_clusters, posterior_type=posterior_type, force_weights=force_weights, max_iter=max_iter, verbose=verbose, init=init, random_state=random_state, tol=tol, ) for seed in seeds ) # Get results with the lowest inertia centers, weights, concentrations, posteriors, labels, inertia = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_concentrations = concentrations[best] best_posterior = posteriors[best] best_weights = weights[best] return ( best_centers, best_labels, best_inertia, best_weights, best_concentrations, best_posterior, )
python
def movMF( X, n_clusters, posterior_type="soft", force_weights=None, n_init=10, n_jobs=1, max_iter=300, verbose=False, init="random-class", random_state=None, tol=1e-6, copy_x=True, ): """Wrapper for parallelization of _movMF and running n_init times. """ if n_init <= 0: raise ValueError( "Invalid number of initializations." " n_init=%d must be bigger than zero." % n_init ) random_state = check_random_state(random_state) if max_iter <= 0: raise ValueError( "Number of iterations should be a positive number," " got %d instead" % max_iter ) best_inertia = np.infty X = as_float_array(X, copy=copy_x) tol = _tolerance(X, tol) if hasattr(init, "__array__"): init = check_array(init, dtype=X.dtype.type, copy=True) _validate_center_shape(X, n_clusters, init) if n_init != 1: warnings.warn( "Explicit initial center position passed: " "performing only one init in k-means instead of n_init=%d" % n_init, RuntimeWarning, stacklevel=2, ) n_init = 1 # defaults best_centers = None best_labels = None best_weights = None best_concentrations = None best_posterior = None best_inertia = None if n_jobs == 1: # For a single thread, less memory is needed if we just store one set # of the best results (as opposed to one set per run per thread). for it in range(n_init): # cluster on the sphere (centers, weights, concentrations, posterior, labels, inertia) = _movMF( X, n_clusters, posterior_type=posterior_type, force_weights=force_weights, max_iter=max_iter, verbose=verbose, init=init, random_state=random_state, tol=tol, ) # determine if these results are the best so far if best_inertia is None or inertia < best_inertia: best_centers = centers.copy() best_labels = labels.copy() best_weights = weights.copy() best_concentrations = concentrations.copy() best_posterior = posterior.copy() best_inertia = inertia else: # parallelisation of movMF runs seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=0)( delayed(_movMF)( X, n_clusters, posterior_type=posterior_type, force_weights=force_weights, max_iter=max_iter, verbose=verbose, init=init, random_state=random_state, tol=tol, ) for seed in seeds ) # Get results with the lowest inertia centers, weights, concentrations, posteriors, labels, inertia = zip(*results) best = np.argmin(inertia) best_labels = labels[best] best_inertia = inertia[best] best_centers = centers[best] best_concentrations = concentrations[best] best_posterior = posteriors[best] best_weights = weights[best] return ( best_centers, best_labels, best_inertia, best_weights, best_concentrations, best_posterior, )
[ "def", "movMF", "(", "X", ",", "n_clusters", ",", "posterior_type", "=", "\"soft\"", ",", "force_weights", "=", "None", ",", "n_init", "=", "10", ",", "n_jobs", "=", "1", ",", "max_iter", "=", "300", ",", "verbose", "=", "False", ",", "init", "=", "\"random-class\"", ",", "random_state", "=", "None", ",", "tol", "=", "1e-6", ",", "copy_x", "=", "True", ",", ")", ":", "if", "n_init", "<=", "0", ":", "raise", "ValueError", "(", "\"Invalid number of initializations.\"", "\" n_init=%d must be bigger than zero.\"", "%", "n_init", ")", "random_state", "=", "check_random_state", "(", "random_state", ")", "if", "max_iter", "<=", "0", ":", "raise", "ValueError", "(", "\"Number of iterations should be a positive number,\"", "\" got %d instead\"", "%", "max_iter", ")", "best_inertia", "=", "np", ".", "infty", "X", "=", "as_float_array", "(", "X", ",", "copy", "=", "copy_x", ")", "tol", "=", "_tolerance", "(", "X", ",", "tol", ")", "if", "hasattr", "(", "init", ",", "\"__array__\"", ")", ":", "init", "=", "check_array", "(", "init", ",", "dtype", "=", "X", ".", "dtype", ".", "type", ",", "copy", "=", "True", ")", "_validate_center_shape", "(", "X", ",", "n_clusters", ",", "init", ")", "if", "n_init", "!=", "1", ":", "warnings", ".", "warn", "(", "\"Explicit initial center position passed: \"", "\"performing only one init in k-means instead of n_init=%d\"", "%", "n_init", ",", "RuntimeWarning", ",", "stacklevel", "=", "2", ",", ")", "n_init", "=", "1", "# defaults", "best_centers", "=", "None", "best_labels", "=", "None", "best_weights", "=", "None", "best_concentrations", "=", "None", "best_posterior", "=", "None", "best_inertia", "=", "None", "if", "n_jobs", "==", "1", ":", "# For a single thread, less memory is needed if we just store one set", "# of the best results (as opposed to one set per run per thread).", "for", "it", "in", "range", "(", "n_init", ")", ":", "# cluster on the sphere", "(", "centers", ",", "weights", ",", "concentrations", ",", "posterior", ",", "labels", ",", "inertia", ")", "=", "_movMF", "(", "X", ",", "n_clusters", ",", "posterior_type", "=", "posterior_type", ",", "force_weights", "=", "force_weights", ",", "max_iter", "=", "max_iter", ",", "verbose", "=", "verbose", ",", "init", "=", "init", ",", "random_state", "=", "random_state", ",", "tol", "=", "tol", ",", ")", "# determine if these results are the best so far", "if", "best_inertia", "is", "None", "or", "inertia", "<", "best_inertia", ":", "best_centers", "=", "centers", ".", "copy", "(", ")", "best_labels", "=", "labels", ".", "copy", "(", ")", "best_weights", "=", "weights", ".", "copy", "(", ")", "best_concentrations", "=", "concentrations", ".", "copy", "(", ")", "best_posterior", "=", "posterior", ".", "copy", "(", ")", "best_inertia", "=", "inertia", "else", ":", "# parallelisation of movMF runs", "seeds", "=", "random_state", ".", "randint", "(", "np", ".", "iinfo", "(", "np", ".", "int32", ")", ".", "max", ",", "size", "=", "n_init", ")", "results", "=", "Parallel", "(", "n_jobs", "=", "n_jobs", ",", "verbose", "=", "0", ")", "(", "delayed", "(", "_movMF", ")", "(", "X", ",", "n_clusters", ",", "posterior_type", "=", "posterior_type", ",", "force_weights", "=", "force_weights", ",", "max_iter", "=", "max_iter", ",", "verbose", "=", "verbose", ",", "init", "=", "init", ",", "random_state", "=", "random_state", ",", "tol", "=", "tol", ",", ")", "for", "seed", "in", "seeds", ")", "# Get results with the lowest inertia", "centers", ",", "weights", ",", "concentrations", ",", "posteriors", ",", "labels", ",", "inertia", "=", "zip", "(", "*", "results", ")", "best", "=", "np", ".", "argmin", "(", "inertia", ")", "best_labels", "=", "labels", "[", "best", "]", "best_inertia", "=", "inertia", "[", "best", "]", "best_centers", "=", "centers", "[", "best", "]", "best_concentrations", "=", "concentrations", "[", "best", "]", "best_posterior", "=", "posteriors", "[", "best", "]", "best_weights", "=", "weights", "[", "best", "]", "return", "(", "best_centers", ",", "best_labels", ",", "best_inertia", ",", "best_weights", ",", "best_concentrations", ",", "best_posterior", ",", ")" ]
Wrapper for parallelization of _movMF and running n_init times.
[ "Wrapper", "for", "parallelization", "of", "_movMF", "and", "running", "n_init", "times", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L500-L614
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
VonMisesFisherMixture._check_fit_data
def _check_fit_data(self, X): """Verify that the number of samples given is larger than k""" X = check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if X.shape[0] < self.n_clusters: raise ValueError( "n_samples=%d should be >= n_clusters=%d" % (X.shape[0], self.n_clusters) ) for ee in range(n_samples): if sp.issparse(X): n = sp.linalg.norm(X[ee, :]) else: n = np.linalg.norm(X[ee, :]) if np.abs(n - 1.) > 1e-4: raise ValueError("Data l2-norm must be 1, found {}".format(n)) return X
python
def _check_fit_data(self, X): """Verify that the number of samples given is larger than k""" X = check_array(X, accept_sparse="csr", dtype=[np.float64, np.float32]) n_samples, n_features = X.shape if X.shape[0] < self.n_clusters: raise ValueError( "n_samples=%d should be >= n_clusters=%d" % (X.shape[0], self.n_clusters) ) for ee in range(n_samples): if sp.issparse(X): n = sp.linalg.norm(X[ee, :]) else: n = np.linalg.norm(X[ee, :]) if np.abs(n - 1.) > 1e-4: raise ValueError("Data l2-norm must be 1, found {}".format(n)) return X
[ "def", "_check_fit_data", "(", "self", ",", "X", ")", ":", "X", "=", "check_array", "(", "X", ",", "accept_sparse", "=", "\"csr\"", ",", "dtype", "=", "[", "np", ".", "float64", ",", "np", ".", "float32", "]", ")", "n_samples", ",", "n_features", "=", "X", ".", "shape", "if", "X", ".", "shape", "[", "0", "]", "<", "self", ".", "n_clusters", ":", "raise", "ValueError", "(", "\"n_samples=%d should be >= n_clusters=%d\"", "%", "(", "X", ".", "shape", "[", "0", "]", ",", "self", ".", "n_clusters", ")", ")", "for", "ee", "in", "range", "(", "n_samples", ")", ":", "if", "sp", ".", "issparse", "(", "X", ")", ":", "n", "=", "sp", ".", "linalg", ".", "norm", "(", "X", "[", "ee", ",", ":", "]", ")", "else", ":", "n", "=", "np", ".", "linalg", ".", "norm", "(", "X", "[", "ee", ",", ":", "]", ")", "if", "np", ".", "abs", "(", "n", "-", "1.", ")", ">", "1e-4", ":", "raise", "ValueError", "(", "\"Data l2-norm must be 1, found {}\"", ".", "format", "(", "n", ")", ")", "return", "X" ]
Verify that the number of samples given is larger than k
[ "Verify", "that", "the", "number", "of", "samples", "given", "is", "larger", "than", "k" ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L772-L791
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
VonMisesFisherMixture.fit
def fit(self, X, y=None): """Compute mixture of von Mises Fisher clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) """ if self.normalize: X = normalize(X) self._check_force_weights() random_state = check_random_state(self.random_state) X = self._check_fit_data(X) ( self.cluster_centers_, self.labels_, self.inertia_, self.weights_, self.concentrations_, self.posterior_, ) = movMF( X, self.n_clusters, posterior_type=self.posterior_type, force_weights=self.force_weights, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, init=self.init, random_state=random_state, tol=self.tol, copy_x=self.copy_x, ) return self
python
def fit(self, X, y=None): """Compute mixture of von Mises Fisher clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) """ if self.normalize: X = normalize(X) self._check_force_weights() random_state = check_random_state(self.random_state) X = self._check_fit_data(X) ( self.cluster_centers_, self.labels_, self.inertia_, self.weights_, self.concentrations_, self.posterior_, ) = movMF( X, self.n_clusters, posterior_type=self.posterior_type, force_weights=self.force_weights, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, init=self.init, random_state=random_state, tol=self.tol, copy_x=self.copy_x, ) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", "=", "None", ")", ":", "if", "self", ".", "normalize", ":", "X", "=", "normalize", "(", "X", ")", "self", ".", "_check_force_weights", "(", ")", "random_state", "=", "check_random_state", "(", "self", ".", "random_state", ")", "X", "=", "self", ".", "_check_fit_data", "(", "X", ")", "(", "self", ".", "cluster_centers_", ",", "self", ".", "labels_", ",", "self", ".", "inertia_", ",", "self", ".", "weights_", ",", "self", ".", "concentrations_", ",", "self", ".", "posterior_", ",", ")", "=", "movMF", "(", "X", ",", "self", ".", "n_clusters", ",", "posterior_type", "=", "self", ".", "posterior_type", ",", "force_weights", "=", "self", ".", "force_weights", ",", "n_init", "=", "self", ".", "n_init", ",", "n_jobs", "=", "self", ".", "n_jobs", ",", "max_iter", "=", "self", ".", "max_iter", ",", "verbose", "=", "self", ".", "verbose", ",", "init", "=", "self", ".", "init", ",", "random_state", "=", "random_state", ",", "tol", "=", "self", ".", "tol", ",", "copy_x", "=", "self", ".", "copy_x", ",", ")", "return", "self" ]
Compute mixture of von Mises Fisher clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features)
[ "Compute", "mixture", "of", "von", "Mises", "Fisher", "clustering", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L814-L850
train
jasonlaska/spherecluster
spherecluster/von_mises_fisher_mixture.py
VonMisesFisherMixture.transform
def transform(self, X, y=None): """Transform X to a cluster-distance space. In the new space, each dimension is the cosine distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ if self.normalize: X = normalize(X) check_is_fitted(self, "cluster_centers_") X = self._check_test_data(X) return self._transform(X)
python
def transform(self, X, y=None): """Transform X to a cluster-distance space. In the new space, each dimension is the cosine distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space. """ if self.normalize: X = normalize(X) check_is_fitted(self, "cluster_centers_") X = self._check_test_data(X) return self._transform(X)
[ "def", "transform", "(", "self", ",", "X", ",", "y", "=", "None", ")", ":", "if", "self", ".", "normalize", ":", "X", "=", "normalize", "(", "X", ")", "check_is_fitted", "(", "self", ",", "\"cluster_centers_\"", ")", "X", "=", "self", ".", "_check_test_data", "(", "X", ")", "return", "self", ".", "_transform", "(", "X", ")" ]
Transform X to a cluster-distance space. In the new space, each dimension is the cosine distance to the cluster centers. Note that even if X is sparse, the array returned by `transform` will typically be dense. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] New data to transform. Returns ------- X_new : array, shape [n_samples, k] X transformed in the new space.
[ "Transform", "X", "to", "a", "cluster", "-", "distance", "space", ".", "In", "the", "new", "space", "each", "dimension", "is", "the", "cosine", "distance", "to", "the", "cluster", "centers", ".", "Note", "that", "even", "if", "X", "is", "sparse", "the", "array", "returned", "by", "transform", "will", "typically", "be", "dense", "." ]
701b0b1909088a56e353b363b2672580d4fe9d93
https://github.com/jasonlaska/spherecluster/blob/701b0b1909088a56e353b363b2672580d4fe9d93/spherecluster/von_mises_fisher_mixture.py#L869-L890
train
skggm/skggm
inverse_covariance/metrics.py
log_likelihood
def log_likelihood(covariance, precision): """Computes the log-likelihood between the covariance and precision estimate. Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- log-likelihood """ assert covariance.shape == precision.shape dim, _ = precision.shape log_likelihood_ = ( -np.sum(covariance * precision) + fast_logdet(precision) - dim * np.log(2 * np.pi) ) log_likelihood_ /= 2. return log_likelihood_
python
def log_likelihood(covariance, precision): """Computes the log-likelihood between the covariance and precision estimate. Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- log-likelihood """ assert covariance.shape == precision.shape dim, _ = precision.shape log_likelihood_ = ( -np.sum(covariance * precision) + fast_logdet(precision) - dim * np.log(2 * np.pi) ) log_likelihood_ /= 2. return log_likelihood_
[ "def", "log_likelihood", "(", "covariance", ",", "precision", ")", ":", "assert", "covariance", ".", "shape", "==", "precision", ".", "shape", "dim", ",", "_", "=", "precision", ".", "shape", "log_likelihood_", "=", "(", "-", "np", ".", "sum", "(", "covariance", "*", "precision", ")", "+", "fast_logdet", "(", "precision", ")", "-", "dim", "*", "np", ".", "log", "(", "2", "*", "np", ".", "pi", ")", ")", "log_likelihood_", "/=", "2.", "return", "log_likelihood_" ]
Computes the log-likelihood between the covariance and precision estimate. Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- log-likelihood
[ "Computes", "the", "log", "-", "likelihood", "between", "the", "covariance", "and", "precision", "estimate", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/metrics.py#L6-L30
train
skggm/skggm
inverse_covariance/metrics.py
kl_loss
def kl_loss(covariance, precision): """Computes the KL divergence between precision estimate and reference covariance. The loss is computed as: Trace(Theta_1 * Sigma_0) - log(Theta_0 * Sigma_1) - dim(Sigma) Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- KL-divergence """ assert covariance.shape == precision.shape dim, _ = precision.shape logdet_p_dot_c = fast_logdet(np.dot(precision, covariance)) return 0.5 * (np.sum(precision * covariance) - logdet_p_dot_c - dim)
python
def kl_loss(covariance, precision): """Computes the KL divergence between precision estimate and reference covariance. The loss is computed as: Trace(Theta_1 * Sigma_0) - log(Theta_0 * Sigma_1) - dim(Sigma) Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- KL-divergence """ assert covariance.shape == precision.shape dim, _ = precision.shape logdet_p_dot_c = fast_logdet(np.dot(precision, covariance)) return 0.5 * (np.sum(precision * covariance) - logdet_p_dot_c - dim)
[ "def", "kl_loss", "(", "covariance", ",", "precision", ")", ":", "assert", "covariance", ".", "shape", "==", "precision", ".", "shape", "dim", ",", "_", "=", "precision", ".", "shape", "logdet_p_dot_c", "=", "fast_logdet", "(", "np", ".", "dot", "(", "precision", ",", "covariance", ")", ")", "return", "0.5", "*", "(", "np", ".", "sum", "(", "precision", "*", "covariance", ")", "-", "logdet_p_dot_c", "-", "dim", ")" ]
Computes the KL divergence between precision estimate and reference covariance. The loss is computed as: Trace(Theta_1 * Sigma_0) - log(Theta_0 * Sigma_1) - dim(Sigma) Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- KL-divergence
[ "Computes", "the", "KL", "divergence", "between", "precision", "estimate", "and", "reference", "covariance", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/metrics.py#L33-L56
train
skggm/skggm
inverse_covariance/metrics.py
ebic
def ebic(covariance, precision, n_samples, n_features, gamma=0): """ Extended Bayesian Information Criteria for model selection. When using path mode, use this as an alternative to cross-validation for finding lambda. See: "Extended Bayesian Information Criteria for Gaussian Graphical Models" R. Foygel and M. Drton, NIPS 2010 Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance (sample covariance) precision : 2D ndarray (n_features, n_features) The precision matrix of the model to be tested n_samples : int Number of examples. n_features : int Dimension of an example. lam: (float) Threshold value for precision matrix. This should be lambda scaling used to obtain this estimate. gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- ebic score (float). Caller should minimized this score. """ l_theta = -np.sum(covariance * precision) + fast_logdet(precision) l_theta *= n_features / 2. # is something goes wrong with fast_logdet, return large value if np.isinf(l_theta) or np.isnan(l_theta): return 1e10 mask = np.abs(precision.flat) > np.finfo(precision.dtype).eps precision_nnz = (np.sum(mask) - n_features) / 2.0 # lower off diagonal tri return ( -2.0 * l_theta + precision_nnz * np.log(n_samples) + 4.0 * precision_nnz * np.log(n_features) * gamma )
python
def ebic(covariance, precision, n_samples, n_features, gamma=0): """ Extended Bayesian Information Criteria for model selection. When using path mode, use this as an alternative to cross-validation for finding lambda. See: "Extended Bayesian Information Criteria for Gaussian Graphical Models" R. Foygel and M. Drton, NIPS 2010 Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance (sample covariance) precision : 2D ndarray (n_features, n_features) The precision matrix of the model to be tested n_samples : int Number of examples. n_features : int Dimension of an example. lam: (float) Threshold value for precision matrix. This should be lambda scaling used to obtain this estimate. gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- ebic score (float). Caller should minimized this score. """ l_theta = -np.sum(covariance * precision) + fast_logdet(precision) l_theta *= n_features / 2. # is something goes wrong with fast_logdet, return large value if np.isinf(l_theta) or np.isnan(l_theta): return 1e10 mask = np.abs(precision.flat) > np.finfo(precision.dtype).eps precision_nnz = (np.sum(mask) - n_features) / 2.0 # lower off diagonal tri return ( -2.0 * l_theta + precision_nnz * np.log(n_samples) + 4.0 * precision_nnz * np.log(n_features) * gamma )
[ "def", "ebic", "(", "covariance", ",", "precision", ",", "n_samples", ",", "n_features", ",", "gamma", "=", "0", ")", ":", "l_theta", "=", "-", "np", ".", "sum", "(", "covariance", "*", "precision", ")", "+", "fast_logdet", "(", "precision", ")", "l_theta", "*=", "n_features", "/", "2.", "# is something goes wrong with fast_logdet, return large value", "if", "np", ".", "isinf", "(", "l_theta", ")", "or", "np", ".", "isnan", "(", "l_theta", ")", ":", "return", "1e10", "mask", "=", "np", ".", "abs", "(", "precision", ".", "flat", ")", ">", "np", ".", "finfo", "(", "precision", ".", "dtype", ")", ".", "eps", "precision_nnz", "=", "(", "np", ".", "sum", "(", "mask", ")", "-", "n_features", ")", "/", "2.0", "# lower off diagonal tri", "return", "(", "-", "2.0", "*", "l_theta", "+", "precision_nnz", "*", "np", ".", "log", "(", "n_samples", ")", "+", "4.0", "*", "precision_nnz", "*", "np", ".", "log", "(", "n_features", ")", "*", "gamma", ")" ]
Extended Bayesian Information Criteria for model selection. When using path mode, use this as an alternative to cross-validation for finding lambda. See: "Extended Bayesian Information Criteria for Gaussian Graphical Models" R. Foygel and M. Drton, NIPS 2010 Parameters ---------- covariance : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance (sample covariance) precision : 2D ndarray (n_features, n_features) The precision matrix of the model to be tested n_samples : int Number of examples. n_features : int Dimension of an example. lam: (float) Threshold value for precision matrix. This should be lambda scaling used to obtain this estimate. gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- ebic score (float). Caller should minimized this score.
[ "Extended", "Bayesian", "Information", "Criteria", "for", "model", "selection", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/metrics.py#L79-L130
train
skggm/skggm
inverse_covariance/profiling/graphs.py
lattice
def lattice(prng, n_features, alpha, random_sign=False, low=0.3, high=0.7): """Returns the adjacency matrix for a lattice network. The resulting network is a Toeplitz matrix with random values summing between -1 and 1 and zeros along the diagonal. The range of the values can be controlled via the parameters low and high. If random_sign is false, all entries will be negative, otherwise their sign will be modulated at random with probability 1/2. Each row has maximum edges of np.ceil(alpha * n_features). Parameters ----------- n_features : int alpha : float (0, 1) The complexity / sparsity factor. random sign : bool (default=False) Randomly modulate each entry by 1 or -1 with probability of 1/2. low : float (0, 1) (default=0.3) Lower bound for np.random.RandomState.uniform before normalization. high : float (0, 1) > low (default=0.7) Upper bound for np.random.RandomState.uniform before normalization. """ degree = int(1 + np.round(alpha * n_features / 2.)) if random_sign: sign_row = -1.0 * np.ones(degree) + 2 * ( prng.uniform(low=0, high=1, size=degree) > .5 ) else: sign_row = -1.0 * np.ones(degree) # in the *very unlikely* event that we draw a bad row that sums to zero # (which is only possible when random_sign=True), we try again up to # MAX_ATTEMPTS=5 times. If we are still unable to draw a good set of # values something is probably wrong and we raise. MAX_ATTEMPTS = 5 attempt = 0 row = np.zeros((n_features,)) while np.sum(row) == 0 and attempt < MAX_ATTEMPTS: row = np.zeros((n_features,)) row[1 : 1 + degree] = sign_row * prng.uniform(low=low, high=high, size=degree) attempt += 1 if np.sum(row) == 0: raise Exception("InvalidLattice", "Rows sum to 0.") return # sum-normalize and keep signs row /= np.abs(np.sum(row)) return sp.linalg.toeplitz(c=row, r=row)
python
def lattice(prng, n_features, alpha, random_sign=False, low=0.3, high=0.7): """Returns the adjacency matrix for a lattice network. The resulting network is a Toeplitz matrix with random values summing between -1 and 1 and zeros along the diagonal. The range of the values can be controlled via the parameters low and high. If random_sign is false, all entries will be negative, otherwise their sign will be modulated at random with probability 1/2. Each row has maximum edges of np.ceil(alpha * n_features). Parameters ----------- n_features : int alpha : float (0, 1) The complexity / sparsity factor. random sign : bool (default=False) Randomly modulate each entry by 1 or -1 with probability of 1/2. low : float (0, 1) (default=0.3) Lower bound for np.random.RandomState.uniform before normalization. high : float (0, 1) > low (default=0.7) Upper bound for np.random.RandomState.uniform before normalization. """ degree = int(1 + np.round(alpha * n_features / 2.)) if random_sign: sign_row = -1.0 * np.ones(degree) + 2 * ( prng.uniform(low=0, high=1, size=degree) > .5 ) else: sign_row = -1.0 * np.ones(degree) # in the *very unlikely* event that we draw a bad row that sums to zero # (which is only possible when random_sign=True), we try again up to # MAX_ATTEMPTS=5 times. If we are still unable to draw a good set of # values something is probably wrong and we raise. MAX_ATTEMPTS = 5 attempt = 0 row = np.zeros((n_features,)) while np.sum(row) == 0 and attempt < MAX_ATTEMPTS: row = np.zeros((n_features,)) row[1 : 1 + degree] = sign_row * prng.uniform(low=low, high=high, size=degree) attempt += 1 if np.sum(row) == 0: raise Exception("InvalidLattice", "Rows sum to 0.") return # sum-normalize and keep signs row /= np.abs(np.sum(row)) return sp.linalg.toeplitz(c=row, r=row)
[ "def", "lattice", "(", "prng", ",", "n_features", ",", "alpha", ",", "random_sign", "=", "False", ",", "low", "=", "0.3", ",", "high", "=", "0.7", ")", ":", "degree", "=", "int", "(", "1", "+", "np", ".", "round", "(", "alpha", "*", "n_features", "/", "2.", ")", ")", "if", "random_sign", ":", "sign_row", "=", "-", "1.0", "*", "np", ".", "ones", "(", "degree", ")", "+", "2", "*", "(", "prng", ".", "uniform", "(", "low", "=", "0", ",", "high", "=", "1", ",", "size", "=", "degree", ")", ">", ".5", ")", "else", ":", "sign_row", "=", "-", "1.0", "*", "np", ".", "ones", "(", "degree", ")", "# in the *very unlikely* event that we draw a bad row that sums to zero", "# (which is only possible when random_sign=True), we try again up to", "# MAX_ATTEMPTS=5 times. If we are still unable to draw a good set of", "# values something is probably wrong and we raise.", "MAX_ATTEMPTS", "=", "5", "attempt", "=", "0", "row", "=", "np", ".", "zeros", "(", "(", "n_features", ",", ")", ")", "while", "np", ".", "sum", "(", "row", ")", "==", "0", "and", "attempt", "<", "MAX_ATTEMPTS", ":", "row", "=", "np", ".", "zeros", "(", "(", "n_features", ",", ")", ")", "row", "[", "1", ":", "1", "+", "degree", "]", "=", "sign_row", "*", "prng", ".", "uniform", "(", "low", "=", "low", ",", "high", "=", "high", ",", "size", "=", "degree", ")", "attempt", "+=", "1", "if", "np", ".", "sum", "(", "row", ")", "==", "0", ":", "raise", "Exception", "(", "\"InvalidLattice\"", ",", "\"Rows sum to 0.\"", ")", "return", "# sum-normalize and keep signs", "row", "/=", "np", ".", "abs", "(", "np", ".", "sum", "(", "row", ")", ")", "return", "sp", ".", "linalg", ".", "toeplitz", "(", "c", "=", "row", ",", "r", "=", "row", ")" ]
Returns the adjacency matrix for a lattice network. The resulting network is a Toeplitz matrix with random values summing between -1 and 1 and zeros along the diagonal. The range of the values can be controlled via the parameters low and high. If random_sign is false, all entries will be negative, otherwise their sign will be modulated at random with probability 1/2. Each row has maximum edges of np.ceil(alpha * n_features). Parameters ----------- n_features : int alpha : float (0, 1) The complexity / sparsity factor. random sign : bool (default=False) Randomly modulate each entry by 1 or -1 with probability of 1/2. low : float (0, 1) (default=0.3) Lower bound for np.random.RandomState.uniform before normalization. high : float (0, 1) > low (default=0.7) Upper bound for np.random.RandomState.uniform before normalization.
[ "Returns", "the", "adjacency", "matrix", "for", "a", "lattice", "network", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/graphs.py#L5-L61
train
skggm/skggm
inverse_covariance/profiling/graphs.py
_to_diagonally_dominant
def _to_diagonally_dominant(mat): """Make matrix unweighted diagonally dominant using the Laplacian.""" mat += np.diag(np.sum(mat != 0, axis=1) + 0.01) return mat
python
def _to_diagonally_dominant(mat): """Make matrix unweighted diagonally dominant using the Laplacian.""" mat += np.diag(np.sum(mat != 0, axis=1) + 0.01) return mat
[ "def", "_to_diagonally_dominant", "(", "mat", ")", ":", "mat", "+=", "np", ".", "diag", "(", "np", ".", "sum", "(", "mat", "!=", "0", ",", "axis", "=", "1", ")", "+", "0.01", ")", "return", "mat" ]
Make matrix unweighted diagonally dominant using the Laplacian.
[ "Make", "matrix", "unweighted", "diagonally", "dominant", "using", "the", "Laplacian", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/graphs.py#L103-L106
train
skggm/skggm
inverse_covariance/profiling/graphs.py
_to_diagonally_dominant_weighted
def _to_diagonally_dominant_weighted(mat): """Make matrix weighted diagonally dominant using the Laplacian.""" mat += np.diag(np.sum(np.abs(mat), axis=1) + 0.01) return mat
python
def _to_diagonally_dominant_weighted(mat): """Make matrix weighted diagonally dominant using the Laplacian.""" mat += np.diag(np.sum(np.abs(mat), axis=1) + 0.01) return mat
[ "def", "_to_diagonally_dominant_weighted", "(", "mat", ")", ":", "mat", "+=", "np", ".", "diag", "(", "np", ".", "sum", "(", "np", ".", "abs", "(", "mat", ")", ",", "axis", "=", "1", ")", "+", "0.01", ")", "return", "mat" ]
Make matrix weighted diagonally dominant using the Laplacian.
[ "Make", "matrix", "weighted", "diagonally", "dominant", "using", "the", "Laplacian", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/graphs.py#L109-L112
train
skggm/skggm
inverse_covariance/profiling/graphs.py
_rescale_to_unit_diagonals
def _rescale_to_unit_diagonals(mat): """Rescale matrix to have unit diagonals. Note: Call only after diagonal dominance is ensured. """ d = np.sqrt(np.diag(mat)) mat /= d mat /= d[:, np.newaxis] return mat
python
def _rescale_to_unit_diagonals(mat): """Rescale matrix to have unit diagonals. Note: Call only after diagonal dominance is ensured. """ d = np.sqrt(np.diag(mat)) mat /= d mat /= d[:, np.newaxis] return mat
[ "def", "_rescale_to_unit_diagonals", "(", "mat", ")", ":", "d", "=", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "mat", ")", ")", "mat", "/=", "d", "mat", "/=", "d", "[", ":", ",", "np", ".", "newaxis", "]", "return", "mat" ]
Rescale matrix to have unit diagonals. Note: Call only after diagonal dominance is ensured.
[ "Rescale", "matrix", "to", "have", "unit", "diagonals", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/graphs.py#L115-L123
train
skggm/skggm
inverse_covariance/profiling/graphs.py
Graph.create
def create(self, n_features, alpha): """Build a new graph with block structure. Parameters ----------- n_features : int alpha : float (0,1) The complexity / sparsity factor for each graph type. Returns ----------- (n_features, n_features) matrices: covariance, precision, adjacency """ n_block_features = int(np.floor(1. * n_features / self.n_blocks)) if n_block_features * self.n_blocks != n_features: raise ValueError( ( "Error: n_features {} not divisible by n_blocks {}." "Use n_features = n_blocks * int" ).format(n_features, self.n_blocks) ) return block_adj = self.prototype_adjacency(n_block_features, alpha) adjacency = blocks( self.prng, block_adj, n_blocks=self.n_blocks, chain_blocks=self.chain_blocks ) precision = self.to_precision(adjacency) covariance = self.to_covariance(precision) return covariance, precision, adjacency
python
def create(self, n_features, alpha): """Build a new graph with block structure. Parameters ----------- n_features : int alpha : float (0,1) The complexity / sparsity factor for each graph type. Returns ----------- (n_features, n_features) matrices: covariance, precision, adjacency """ n_block_features = int(np.floor(1. * n_features / self.n_blocks)) if n_block_features * self.n_blocks != n_features: raise ValueError( ( "Error: n_features {} not divisible by n_blocks {}." "Use n_features = n_blocks * int" ).format(n_features, self.n_blocks) ) return block_adj = self.prototype_adjacency(n_block_features, alpha) adjacency = blocks( self.prng, block_adj, n_blocks=self.n_blocks, chain_blocks=self.chain_blocks ) precision = self.to_precision(adjacency) covariance = self.to_covariance(precision) return covariance, precision, adjacency
[ "def", "create", "(", "self", ",", "n_features", ",", "alpha", ")", ":", "n_block_features", "=", "int", "(", "np", ".", "floor", "(", "1.", "*", "n_features", "/", "self", ".", "n_blocks", ")", ")", "if", "n_block_features", "*", "self", ".", "n_blocks", "!=", "n_features", ":", "raise", "ValueError", "(", "(", "\"Error: n_features {} not divisible by n_blocks {}.\"", "\"Use n_features = n_blocks * int\"", ")", ".", "format", "(", "n_features", ",", "self", ".", "n_blocks", ")", ")", "return", "block_adj", "=", "self", ".", "prototype_adjacency", "(", "n_block_features", ",", "alpha", ")", "adjacency", "=", "blocks", "(", "self", ".", "prng", ",", "block_adj", ",", "n_blocks", "=", "self", ".", "n_blocks", ",", "chain_blocks", "=", "self", ".", "chain_blocks", ")", "precision", "=", "self", ".", "to_precision", "(", "adjacency", ")", "covariance", "=", "self", ".", "to_covariance", "(", "precision", ")", "return", "covariance", ",", "precision", ",", "adjacency" ]
Build a new graph with block structure. Parameters ----------- n_features : int alpha : float (0,1) The complexity / sparsity factor for each graph type. Returns ----------- (n_features, n_features) matrices: covariance, precision, adjacency
[ "Build", "a", "new", "graph", "with", "block", "structure", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/graphs.py#L176-L207
train
skggm/skggm
inverse_covariance/profiling/monte_carlo_profile.py
_sample_mvn
def _sample_mvn(n_samples, cov, prng): """Draw a multivariate normal sample from the graph defined by cov. Parameters ----------- n_samples : int cov : matrix of shape (n_features, n_features) Covariance matrix of the graph. prng : np.random.RandomState instance. """ n_features, _ = cov.shape return prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
python
def _sample_mvn(n_samples, cov, prng): """Draw a multivariate normal sample from the graph defined by cov. Parameters ----------- n_samples : int cov : matrix of shape (n_features, n_features) Covariance matrix of the graph. prng : np.random.RandomState instance. """ n_features, _ = cov.shape return prng.multivariate_normal(np.zeros(n_features), cov, size=n_samples)
[ "def", "_sample_mvn", "(", "n_samples", ",", "cov", ",", "prng", ")", ":", "n_features", ",", "_", "=", "cov", ".", "shape", "return", "prng", ".", "multivariate_normal", "(", "np", ".", "zeros", "(", "n_features", ")", ",", "cov", ",", "size", "=", "n_samples", ")" ]
Draw a multivariate normal sample from the graph defined by cov. Parameters ----------- n_samples : int cov : matrix of shape (n_features, n_features) Covariance matrix of the graph. prng : np.random.RandomState instance.
[ "Draw", "a", "multivariate", "normal", "sample", "from", "the", "graph", "defined", "by", "cov", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/monte_carlo_profile.py#L13-L26
train
skggm/skggm
inverse_covariance/model_average.py
_fully_random_weights
def _fully_random_weights(n_features, lam_scale, prng): """Generate a symmetric random matrix with zeros along the diagonal.""" weights = np.zeros((n_features, n_features)) n_off_diag = int((n_features ** 2 - n_features) / 2) weights[np.triu_indices(n_features, k=1)] = 0.1 * lam_scale * prng.randn( n_off_diag ) + (0.25 * lam_scale) weights[weights < 0] = 0 weights = weights + weights.T return weights
python
def _fully_random_weights(n_features, lam_scale, prng): """Generate a symmetric random matrix with zeros along the diagonal.""" weights = np.zeros((n_features, n_features)) n_off_diag = int((n_features ** 2 - n_features) / 2) weights[np.triu_indices(n_features, k=1)] = 0.1 * lam_scale * prng.randn( n_off_diag ) + (0.25 * lam_scale) weights[weights < 0] = 0 weights = weights + weights.T return weights
[ "def", "_fully_random_weights", "(", "n_features", ",", "lam_scale", ",", "prng", ")", ":", "weights", "=", "np", ".", "zeros", "(", "(", "n_features", ",", "n_features", ")", ")", "n_off_diag", "=", "int", "(", "(", "n_features", "**", "2", "-", "n_features", ")", "/", "2", ")", "weights", "[", "np", ".", "triu_indices", "(", "n_features", ",", "k", "=", "1", ")", "]", "=", "0.1", "*", "lam_scale", "*", "prng", ".", "randn", "(", "n_off_diag", ")", "+", "(", "0.25", "*", "lam_scale", ")", "weights", "[", "weights", "<", "0", "]", "=", "0", "weights", "=", "weights", "+", "weights", ".", "T", "return", "weights" ]
Generate a symmetric random matrix with zeros along the diagonal.
[ "Generate", "a", "symmetric", "random", "matrix", "with", "zeros", "along", "the", "diagonal", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/model_average.py#L17-L26
train
skggm/skggm
inverse_covariance/model_average.py
_fix_weights
def _fix_weights(weight_fun, *args): """Ensure random weight matrix is valid. TODO: The diagonally dominant tuning currently doesn't make sense. Our weight matrix has zeros along the diagonal, so multiplying by a diagonal matrix results in a zero-matrix. """ weights = weight_fun(*args) # TODO: fix this # disable checks for now return weights # if positive semidefinite, then we're good as is if _check_psd(weights): return weights # make diagonally dominant off_diag_sums = np.sum(weights, axis=1) # NOTE: assumes diag is zero mod_mat = np.linalg.inv(np.sqrt(np.diag(off_diag_sums))) return np.dot(mod_mat, weights, mod_mat)
python
def _fix_weights(weight_fun, *args): """Ensure random weight matrix is valid. TODO: The diagonally dominant tuning currently doesn't make sense. Our weight matrix has zeros along the diagonal, so multiplying by a diagonal matrix results in a zero-matrix. """ weights = weight_fun(*args) # TODO: fix this # disable checks for now return weights # if positive semidefinite, then we're good as is if _check_psd(weights): return weights # make diagonally dominant off_diag_sums = np.sum(weights, axis=1) # NOTE: assumes diag is zero mod_mat = np.linalg.inv(np.sqrt(np.diag(off_diag_sums))) return np.dot(mod_mat, weights, mod_mat)
[ "def", "_fix_weights", "(", "weight_fun", ",", "*", "args", ")", ":", "weights", "=", "weight_fun", "(", "*", "args", ")", "# TODO: fix this", "# disable checks for now", "return", "weights", "# if positive semidefinite, then we're good as is", "if", "_check_psd", "(", "weights", ")", ":", "return", "weights", "# make diagonally dominant", "off_diag_sums", "=", "np", ".", "sum", "(", "weights", ",", "axis", "=", "1", ")", "# NOTE: assumes diag is zero", "mod_mat", "=", "np", ".", "linalg", ".", "inv", "(", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "off_diag_sums", ")", ")", ")", "return", "np", ".", "dot", "(", "mod_mat", ",", "weights", ",", "mod_mat", ")" ]
Ensure random weight matrix is valid. TODO: The diagonally dominant tuning currently doesn't make sense. Our weight matrix has zeros along the diagonal, so multiplying by a diagonal matrix results in a zero-matrix.
[ "Ensure", "random", "weight", "matrix", "is", "valid", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/model_average.py#L46-L66
train
skggm/skggm
inverse_covariance/model_average.py
_fit
def _fit( indexed_params, penalization, lam, lam_perturb, lam_scale_, estimator, penalty_name, subsample, bootstrap, prng, X=None, ): """Wrapper function outside of instance for fitting a single model average trial. If X is None, then we assume we are using a broadcast spark object. Else, we expect X to get passed into this function. """ index = indexed_params if isinstance(X, np.ndarray): local_X = X else: local_X = X.value n_samples, n_features = local_X.shape prec_is_real = False while not prec_is_real: boot_lam = None if penalization == "subsampling": pass elif penalization == "random": boot_lam = _fix_weights(_random_weights, n_features, lam, lam_perturb, prng) elif penalization == "fully-random": boot_lam = _fix_weights(_fully_random_weights, n_features, lam_scale_, prng) else: raise NotImplementedError( ( "Only penalization = 'subsampling', " "'random', and 'fully-random' have " "been implemented. Found {}.".format(penalization) ) ) # new instance of estimator new_estimator = clone(estimator) if boot_lam is not None: new_estimator.set_params(**{penalty_name: boot_lam}) # fit estimator num_subsamples = int(subsample * n_samples) rp = bootstrap(n_samples, num_subsamples, prng) new_estimator.fit(local_X[rp, :]) # check that new_estimator.precision_ is real # if not, skip this boot_lam and try again if isinstance(new_estimator.precision_, list): prec_real_bools = [] for prec in new_estimator.precision_: prec_real_bools.append(np.all(np.isreal(prec))) prec_is_real = np.all(np.array(prec_real_bools) is True) elif isinstance(new_estimator.precision_, np.ndarray): prec_is_real = np.all(np.isreal(new_estimator.precision_)) else: raise ValueError("Estimator returned invalid precision_.") return index, (boot_lam, rp, new_estimator)
python
def _fit( indexed_params, penalization, lam, lam_perturb, lam_scale_, estimator, penalty_name, subsample, bootstrap, prng, X=None, ): """Wrapper function outside of instance for fitting a single model average trial. If X is None, then we assume we are using a broadcast spark object. Else, we expect X to get passed into this function. """ index = indexed_params if isinstance(X, np.ndarray): local_X = X else: local_X = X.value n_samples, n_features = local_X.shape prec_is_real = False while not prec_is_real: boot_lam = None if penalization == "subsampling": pass elif penalization == "random": boot_lam = _fix_weights(_random_weights, n_features, lam, lam_perturb, prng) elif penalization == "fully-random": boot_lam = _fix_weights(_fully_random_weights, n_features, lam_scale_, prng) else: raise NotImplementedError( ( "Only penalization = 'subsampling', " "'random', and 'fully-random' have " "been implemented. Found {}.".format(penalization) ) ) # new instance of estimator new_estimator = clone(estimator) if boot_lam is not None: new_estimator.set_params(**{penalty_name: boot_lam}) # fit estimator num_subsamples = int(subsample * n_samples) rp = bootstrap(n_samples, num_subsamples, prng) new_estimator.fit(local_X[rp, :]) # check that new_estimator.precision_ is real # if not, skip this boot_lam and try again if isinstance(new_estimator.precision_, list): prec_real_bools = [] for prec in new_estimator.precision_: prec_real_bools.append(np.all(np.isreal(prec))) prec_is_real = np.all(np.array(prec_real_bools) is True) elif isinstance(new_estimator.precision_, np.ndarray): prec_is_real = np.all(np.isreal(new_estimator.precision_)) else: raise ValueError("Estimator returned invalid precision_.") return index, (boot_lam, rp, new_estimator)
[ "def", "_fit", "(", "indexed_params", ",", "penalization", ",", "lam", ",", "lam_perturb", ",", "lam_scale_", ",", "estimator", ",", "penalty_name", ",", "subsample", ",", "bootstrap", ",", "prng", ",", "X", "=", "None", ",", ")", ":", "index", "=", "indexed_params", "if", "isinstance", "(", "X", ",", "np", ".", "ndarray", ")", ":", "local_X", "=", "X", "else", ":", "local_X", "=", "X", ".", "value", "n_samples", ",", "n_features", "=", "local_X", ".", "shape", "prec_is_real", "=", "False", "while", "not", "prec_is_real", ":", "boot_lam", "=", "None", "if", "penalization", "==", "\"subsampling\"", ":", "pass", "elif", "penalization", "==", "\"random\"", ":", "boot_lam", "=", "_fix_weights", "(", "_random_weights", ",", "n_features", ",", "lam", ",", "lam_perturb", ",", "prng", ")", "elif", "penalization", "==", "\"fully-random\"", ":", "boot_lam", "=", "_fix_weights", "(", "_fully_random_weights", ",", "n_features", ",", "lam_scale_", ",", "prng", ")", "else", ":", "raise", "NotImplementedError", "(", "(", "\"Only penalization = 'subsampling', \"", "\"'random', and 'fully-random' have \"", "\"been implemented. Found {}.\"", ".", "format", "(", "penalization", ")", ")", ")", "# new instance of estimator", "new_estimator", "=", "clone", "(", "estimator", ")", "if", "boot_lam", "is", "not", "None", ":", "new_estimator", ".", "set_params", "(", "*", "*", "{", "penalty_name", ":", "boot_lam", "}", ")", "# fit estimator", "num_subsamples", "=", "int", "(", "subsample", "*", "n_samples", ")", "rp", "=", "bootstrap", "(", "n_samples", ",", "num_subsamples", ",", "prng", ")", "new_estimator", ".", "fit", "(", "local_X", "[", "rp", ",", ":", "]", ")", "# check that new_estimator.precision_ is real", "# if not, skip this boot_lam and try again", "if", "isinstance", "(", "new_estimator", ".", "precision_", ",", "list", ")", ":", "prec_real_bools", "=", "[", "]", "for", "prec", "in", "new_estimator", ".", "precision_", ":", "prec_real_bools", ".", "append", "(", "np", ".", "all", "(", "np", ".", "isreal", "(", "prec", ")", ")", ")", "prec_is_real", "=", "np", ".", "all", "(", "np", ".", "array", "(", "prec_real_bools", ")", "is", "True", ")", "elif", "isinstance", "(", "new_estimator", ".", "precision_", ",", "np", ".", "ndarray", ")", ":", "prec_is_real", "=", "np", ".", "all", "(", "np", ".", "isreal", "(", "new_estimator", ".", "precision_", ")", ")", "else", ":", "raise", "ValueError", "(", "\"Estimator returned invalid precision_.\"", ")", "return", "index", ",", "(", "boot_lam", ",", "rp", ",", "new_estimator", ")" ]
Wrapper function outside of instance for fitting a single model average trial. If X is None, then we assume we are using a broadcast spark object. Else, we expect X to get passed into this function.
[ "Wrapper", "function", "outside", "of", "instance", "for", "fitting", "a", "single", "model", "average", "trial", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/model_average.py#L74-L145
train
skggm/skggm
inverse_covariance/model_average.py
_spark_map
def _spark_map(fun, indexed_param_grid, sc, seed, X_bc): """We cannot pass a RandomState instance to each spark worker since it will behave identically across partitions. Instead, we explictly handle the partitions with a newly seeded instance. The seed for each partition will be the "seed" (MonteCarloProfile.seed) + "split_index" which is the partition index. Following this trick: https://wegetsignal.wordpress.com/2015/05/08/ generating-random-numbers-for-rdd-in-spark/ """ def _wrap_random_state(split_index, partition): prng = np.random.RandomState(seed + split_index) yield map(partial(fun, prng=prng, X=X_bc), partition) par_param_grid = sc.parallelize(indexed_param_grid) indexed_results = par_param_grid.mapPartitionsWithIndex( _wrap_random_state ).collect() return [item for sublist in indexed_results for item in sublist]
python
def _spark_map(fun, indexed_param_grid, sc, seed, X_bc): """We cannot pass a RandomState instance to each spark worker since it will behave identically across partitions. Instead, we explictly handle the partitions with a newly seeded instance. The seed for each partition will be the "seed" (MonteCarloProfile.seed) + "split_index" which is the partition index. Following this trick: https://wegetsignal.wordpress.com/2015/05/08/ generating-random-numbers-for-rdd-in-spark/ """ def _wrap_random_state(split_index, partition): prng = np.random.RandomState(seed + split_index) yield map(partial(fun, prng=prng, X=X_bc), partition) par_param_grid = sc.parallelize(indexed_param_grid) indexed_results = par_param_grid.mapPartitionsWithIndex( _wrap_random_state ).collect() return [item for sublist in indexed_results for item in sublist]
[ "def", "_spark_map", "(", "fun", ",", "indexed_param_grid", ",", "sc", ",", "seed", ",", "X_bc", ")", ":", "def", "_wrap_random_state", "(", "split_index", ",", "partition", ")", ":", "prng", "=", "np", ".", "random", ".", "RandomState", "(", "seed", "+", "split_index", ")", "yield", "map", "(", "partial", "(", "fun", ",", "prng", "=", "prng", ",", "X", "=", "X_bc", ")", ",", "partition", ")", "par_param_grid", "=", "sc", ".", "parallelize", "(", "indexed_param_grid", ")", "indexed_results", "=", "par_param_grid", ".", "mapPartitionsWithIndex", "(", "_wrap_random_state", ")", ".", "collect", "(", ")", "return", "[", "item", "for", "sublist", "in", "indexed_results", "for", "item", "in", "sublist", "]" ]
We cannot pass a RandomState instance to each spark worker since it will behave identically across partitions. Instead, we explictly handle the partitions with a newly seeded instance. The seed for each partition will be the "seed" (MonteCarloProfile.seed) + "split_index" which is the partition index. Following this trick: https://wegetsignal.wordpress.com/2015/05/08/ generating-random-numbers-for-rdd-in-spark/
[ "We", "cannot", "pass", "a", "RandomState", "instance", "to", "each", "spark", "worker", "since", "it", "will", "behave", "identically", "across", "partitions", ".", "Instead", "we", "explictly", "handle", "the", "partitions", "with", "a", "newly", "seeded", "instance", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/model_average.py#L156-L177
train
skggm/skggm
examples/estimator_suite_spark.py
quic_graph_lasso_ebic_manual
def quic_graph_lasso_ebic_manual(X, gamma=0): """Run QuicGraphicalLasso with mode='path' and gamma; use EBIC criteria for model selection. The EBIC criteria is built into InverseCovarianceEstimator base class so we demonstrate those utilities here. """ print("QuicGraphicalLasso (manual EBIC) with:") print(" mode: path") print(" gamma: {}".format(gamma)) model = QuicGraphicalLasso( lam=1.0, mode="path", init_method="cov", path=np.logspace(np.log10(0.01), np.log10(1.0), num=100, endpoint=True), ) model.fit(X) ebic_index = model.ebic_select(gamma=gamma) covariance_ = model.covariance_[ebic_index] precision_ = model.precision_[ebic_index] lam_ = model.lam_at_index(ebic_index) print(" len(path lams): {}".format(len(model.path_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(lam_)) print(" ebic_index: {}".format(ebic_index)) return covariance_, precision_, lam_
python
def quic_graph_lasso_ebic_manual(X, gamma=0): """Run QuicGraphicalLasso with mode='path' and gamma; use EBIC criteria for model selection. The EBIC criteria is built into InverseCovarianceEstimator base class so we demonstrate those utilities here. """ print("QuicGraphicalLasso (manual EBIC) with:") print(" mode: path") print(" gamma: {}".format(gamma)) model = QuicGraphicalLasso( lam=1.0, mode="path", init_method="cov", path=np.logspace(np.log10(0.01), np.log10(1.0), num=100, endpoint=True), ) model.fit(X) ebic_index = model.ebic_select(gamma=gamma) covariance_ = model.covariance_[ebic_index] precision_ = model.precision_[ebic_index] lam_ = model.lam_at_index(ebic_index) print(" len(path lams): {}".format(len(model.path_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(lam_)) print(" ebic_index: {}".format(ebic_index)) return covariance_, precision_, lam_
[ "def", "quic_graph_lasso_ebic_manual", "(", "X", ",", "gamma", "=", "0", ")", ":", "print", "(", "\"QuicGraphicalLasso (manual EBIC) with:\"", ")", "print", "(", "\" mode: path\"", ")", "print", "(", "\" gamma: {}\"", ".", "format", "(", "gamma", ")", ")", "model", "=", "QuicGraphicalLasso", "(", "lam", "=", "1.0", ",", "mode", "=", "\"path\"", ",", "init_method", "=", "\"cov\"", ",", "path", "=", "np", ".", "logspace", "(", "np", ".", "log10", "(", "0.01", ")", ",", "np", ".", "log10", "(", "1.0", ")", ",", "num", "=", "100", ",", "endpoint", "=", "True", ")", ",", ")", "model", ".", "fit", "(", "X", ")", "ebic_index", "=", "model", ".", "ebic_select", "(", "gamma", "=", "gamma", ")", "covariance_", "=", "model", ".", "covariance_", "[", "ebic_index", "]", "precision_", "=", "model", ".", "precision_", "[", "ebic_index", "]", "lam_", "=", "model", ".", "lam_at_index", "(", "ebic_index", ")", "print", "(", "\" len(path lams): {}\"", ".", "format", "(", "len", "(", "model", ".", "path_", ")", ")", ")", "print", "(", "\" lam_scale_: {}\"", ".", "format", "(", "model", ".", "lam_scale_", ")", ")", "print", "(", "\" lam_: {}\"", ".", "format", "(", "lam_", ")", ")", "print", "(", "\" ebic_index: {}\"", ".", "format", "(", "ebic_index", ")", ")", "return", "covariance_", ",", "precision_", ",", "lam_" ]
Run QuicGraphicalLasso with mode='path' and gamma; use EBIC criteria for model selection. The EBIC criteria is built into InverseCovarianceEstimator base class so we demonstrate those utilities here.
[ "Run", "QuicGraphicalLasso", "with", "mode", "=", "path", "and", "gamma", ";", "use", "EBIC", "criteria", "for", "model", "selection", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite_spark.py#L110-L135
train
skggm/skggm
examples/estimator_suite_spark.py
quic_graph_lasso_ebic
def quic_graph_lasso_ebic(X, gamma=0): """Run QuicGraphicalLassoEBIC with gamma. QuicGraphicalLassoEBIC is a convenience class. Results should be identical to those obtained via quic_graph_lasso_ebic_manual. """ print("QuicGraphicalLassoEBIC with:") print(" mode: path") print(" gamma: {}".format(gamma)) model = QuicGraphicalLassoEBIC(lam=1.0, init_method="cov", gamma=gamma) model.fit(X) print(" len(path lams): {}".format(len(model.path_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(model.lam_)) return model.covariance_, model.precision_, model.lam_
python
def quic_graph_lasso_ebic(X, gamma=0): """Run QuicGraphicalLassoEBIC with gamma. QuicGraphicalLassoEBIC is a convenience class. Results should be identical to those obtained via quic_graph_lasso_ebic_manual. """ print("QuicGraphicalLassoEBIC with:") print(" mode: path") print(" gamma: {}".format(gamma)) model = QuicGraphicalLassoEBIC(lam=1.0, init_method="cov", gamma=gamma) model.fit(X) print(" len(path lams): {}".format(len(model.path_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(model.lam_)) return model.covariance_, model.precision_, model.lam_
[ "def", "quic_graph_lasso_ebic", "(", "X", ",", "gamma", "=", "0", ")", ":", "print", "(", "\"QuicGraphicalLassoEBIC with:\"", ")", "print", "(", "\" mode: path\"", ")", "print", "(", "\" gamma: {}\"", ".", "format", "(", "gamma", ")", ")", "model", "=", "QuicGraphicalLassoEBIC", "(", "lam", "=", "1.0", ",", "init_method", "=", "\"cov\"", ",", "gamma", "=", "gamma", ")", "model", ".", "fit", "(", "X", ")", "print", "(", "\" len(path lams): {}\"", ".", "format", "(", "len", "(", "model", ".", "path_", ")", ")", ")", "print", "(", "\" lam_scale_: {}\"", ".", "format", "(", "model", ".", "lam_scale_", ")", ")", "print", "(", "\" lam_: {}\"", ".", "format", "(", "model", ".", "lam_", ")", ")", "return", "model", ".", "covariance_", ",", "model", ".", "precision_", ",", "model", ".", "lam_" ]
Run QuicGraphicalLassoEBIC with gamma. QuicGraphicalLassoEBIC is a convenience class. Results should be identical to those obtained via quic_graph_lasso_ebic_manual.
[ "Run", "QuicGraphicalLassoEBIC", "with", "gamma", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite_spark.py#L138-L152
train
skggm/skggm
examples/estimator_suite_spark.py
empirical
def empirical(X): """Compute empirical covariance as baseline estimator. """ print("Empirical") cov = np.dot(X.T, X) / n_samples return cov, np.linalg.inv(cov)
python
def empirical(X): """Compute empirical covariance as baseline estimator. """ print("Empirical") cov = np.dot(X.T, X) / n_samples return cov, np.linalg.inv(cov)
[ "def", "empirical", "(", "X", ")", ":", "print", "(", "\"Empirical\"", ")", "cov", "=", "np", ".", "dot", "(", "X", ".", "T", ",", "X", ")", "/", "n_samples", "return", "cov", ",", "np", ".", "linalg", ".", "inv", "(", "cov", ")" ]
Compute empirical covariance as baseline estimator.
[ "Compute", "empirical", "covariance", "as", "baseline", "estimator", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite_spark.py#L232-L237
train
skggm/skggm
examples/estimator_suite_spark.py
sk_ledoit_wolf
def sk_ledoit_wolf(X): """Estimate inverse covariance via scikit-learn ledoit_wolf function. """ print("Ledoit-Wolf (sklearn)") lw_cov_, _ = ledoit_wolf(X) lw_prec_ = np.linalg.inv(lw_cov_) return lw_cov_, lw_prec_
python
def sk_ledoit_wolf(X): """Estimate inverse covariance via scikit-learn ledoit_wolf function. """ print("Ledoit-Wolf (sklearn)") lw_cov_, _ = ledoit_wolf(X) lw_prec_ = np.linalg.inv(lw_cov_) return lw_cov_, lw_prec_
[ "def", "sk_ledoit_wolf", "(", "X", ")", ":", "print", "(", "\"Ledoit-Wolf (sklearn)\"", ")", "lw_cov_", ",", "_", "=", "ledoit_wolf", "(", "X", ")", "lw_prec_", "=", "np", ".", "linalg", ".", "inv", "(", "lw_cov_", ")", "return", "lw_cov_", ",", "lw_prec_" ]
Estimate inverse covariance via scikit-learn ledoit_wolf function.
[ "Estimate", "inverse", "covariance", "via", "scikit", "-", "learn", "ledoit_wolf", "function", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite_spark.py#L240-L246
train
skggm/skggm
inverse_covariance/profiling/metrics.py
_nonzero_intersection
def _nonzero_intersection(m, m_hat): """Count the number of nonzeros in and between m and m_hat. Returns ---------- m_nnz : number of nonzeros in m (w/o diagonal) m_hat_nnz : number of nonzeros in m_hat (w/o diagonal) intersection_nnz : number of nonzeros in intersection of m/m_hat (w/o diagonal) """ n_features, _ = m.shape m_no_diag = m.copy() m_no_diag[np.diag_indices(n_features)] = 0 m_hat_no_diag = m_hat.copy() m_hat_no_diag[np.diag_indices(n_features)] = 0 m_hat_nnz = len(np.nonzero(m_hat_no_diag.flat)[0]) m_nnz = len(np.nonzero(m_no_diag.flat)[0]) intersection_nnz = len( np.intersect1d(np.nonzero(m_no_diag.flat)[0], np.nonzero(m_hat_no_diag.flat)[0]) ) return m_nnz, m_hat_nnz, intersection_nnz
python
def _nonzero_intersection(m, m_hat): """Count the number of nonzeros in and between m and m_hat. Returns ---------- m_nnz : number of nonzeros in m (w/o diagonal) m_hat_nnz : number of nonzeros in m_hat (w/o diagonal) intersection_nnz : number of nonzeros in intersection of m/m_hat (w/o diagonal) """ n_features, _ = m.shape m_no_diag = m.copy() m_no_diag[np.diag_indices(n_features)] = 0 m_hat_no_diag = m_hat.copy() m_hat_no_diag[np.diag_indices(n_features)] = 0 m_hat_nnz = len(np.nonzero(m_hat_no_diag.flat)[0]) m_nnz = len(np.nonzero(m_no_diag.flat)[0]) intersection_nnz = len( np.intersect1d(np.nonzero(m_no_diag.flat)[0], np.nonzero(m_hat_no_diag.flat)[0]) ) return m_nnz, m_hat_nnz, intersection_nnz
[ "def", "_nonzero_intersection", "(", "m", ",", "m_hat", ")", ":", "n_features", ",", "_", "=", "m", ".", "shape", "m_no_diag", "=", "m", ".", "copy", "(", ")", "m_no_diag", "[", "np", ".", "diag_indices", "(", "n_features", ")", "]", "=", "0", "m_hat_no_diag", "=", "m_hat", ".", "copy", "(", ")", "m_hat_no_diag", "[", "np", ".", "diag_indices", "(", "n_features", ")", "]", "=", "0", "m_hat_nnz", "=", "len", "(", "np", ".", "nonzero", "(", "m_hat_no_diag", ".", "flat", ")", "[", "0", "]", ")", "m_nnz", "=", "len", "(", "np", ".", "nonzero", "(", "m_no_diag", ".", "flat", ")", "[", "0", "]", ")", "intersection_nnz", "=", "len", "(", "np", ".", "intersect1d", "(", "np", ".", "nonzero", "(", "m_no_diag", ".", "flat", ")", "[", "0", "]", ",", "np", ".", "nonzero", "(", "m_hat_no_diag", ".", "flat", ")", "[", "0", "]", ")", ")", "return", "m_nnz", ",", "m_hat_nnz", ",", "intersection_nnz" ]
Count the number of nonzeros in and between m and m_hat. Returns ---------- m_nnz : number of nonzeros in m (w/o diagonal) m_hat_nnz : number of nonzeros in m_hat (w/o diagonal) intersection_nnz : number of nonzeros in intersection of m/m_hat (w/o diagonal)
[ "Count", "the", "number", "of", "nonzeros", "in", "and", "between", "m", "and", "m_hat", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/metrics.py#L4-L30
train
skggm/skggm
inverse_covariance/profiling/metrics.py
support_false_positive_count
def support_false_positive_count(m, m_hat): """Count the number of false positive support elements in m_hat in one triangle, not including the diagonal. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_hat_nnz - intersection_nnz) / 2.0)
python
def support_false_positive_count(m, m_hat): """Count the number of false positive support elements in m_hat in one triangle, not including the diagonal. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_hat_nnz - intersection_nnz) / 2.0)
[ "def", "support_false_positive_count", "(", "m", ",", "m_hat", ")", ":", "m_nnz", ",", "m_hat_nnz", ",", "intersection_nnz", "=", "_nonzero_intersection", "(", "m", ",", "m_hat", ")", "return", "int", "(", "(", "m_hat_nnz", "-", "intersection_nnz", ")", "/", "2.0", ")" ]
Count the number of false positive support elements in m_hat in one triangle, not including the diagonal.
[ "Count", "the", "number", "of", "false", "positive", "support", "elements", "in", "m_hat", "in", "one", "triangle", "not", "including", "the", "diagonal", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/metrics.py#L33-L38
train
skggm/skggm
inverse_covariance/profiling/metrics.py
support_false_negative_count
def support_false_negative_count(m, m_hat): """Count the number of false negative support elements in m_hat in one triangle, not including the diagonal. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_nnz - intersection_nnz) / 2.0)
python
def support_false_negative_count(m, m_hat): """Count the number of false negative support elements in m_hat in one triangle, not including the diagonal. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_nnz - intersection_nnz) / 2.0)
[ "def", "support_false_negative_count", "(", "m", ",", "m_hat", ")", ":", "m_nnz", ",", "m_hat_nnz", ",", "intersection_nnz", "=", "_nonzero_intersection", "(", "m", ",", "m_hat", ")", "return", "int", "(", "(", "m_nnz", "-", "intersection_nnz", ")", "/", "2.0", ")" ]
Count the number of false negative support elements in m_hat in one triangle, not including the diagonal.
[ "Count", "the", "number", "of", "false", "negative", "support", "elements", "in", "m_hat", "in", "one", "triangle", "not", "including", "the", "diagonal", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/metrics.py#L41-L46
train
skggm/skggm
inverse_covariance/profiling/metrics.py
support_difference_count
def support_difference_count(m, m_hat): """Count the number of different elements in the support in one triangle, not including the diagonal. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_nnz + m_hat_nnz - (2 * intersection_nnz)) / 2.0)
python
def support_difference_count(m, m_hat): """Count the number of different elements in the support in one triangle, not including the diagonal. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_nnz + m_hat_nnz - (2 * intersection_nnz)) / 2.0)
[ "def", "support_difference_count", "(", "m", ",", "m_hat", ")", ":", "m_nnz", ",", "m_hat_nnz", ",", "intersection_nnz", "=", "_nonzero_intersection", "(", "m", ",", "m_hat", ")", "return", "int", "(", "(", "m_nnz", "+", "m_hat_nnz", "-", "(", "2", "*", "intersection_nnz", ")", ")", "/", "2.0", ")" ]
Count the number of different elements in the support in one triangle, not including the diagonal.
[ "Count", "the", "number", "of", "different", "elements", "in", "the", "support", "in", "one", "triangle", "not", "including", "the", "diagonal", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/metrics.py#L49-L54
train
skggm/skggm
inverse_covariance/profiling/metrics.py
has_exact_support
def has_exact_support(m, m_hat): """Returns 1 if support_difference_count is zero, 0 else. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_nnz + m_hat_nnz - (2 * intersection_nnz)) == 0)
python
def has_exact_support(m, m_hat): """Returns 1 if support_difference_count is zero, 0 else. """ m_nnz, m_hat_nnz, intersection_nnz = _nonzero_intersection(m, m_hat) return int((m_nnz + m_hat_nnz - (2 * intersection_nnz)) == 0)
[ "def", "has_exact_support", "(", "m", ",", "m_hat", ")", ":", "m_nnz", ",", "m_hat_nnz", ",", "intersection_nnz", "=", "_nonzero_intersection", "(", "m", ",", "m_hat", ")", "return", "int", "(", "(", "m_nnz", "+", "m_hat_nnz", "-", "(", "2", "*", "intersection_nnz", ")", ")", "==", "0", ")" ]
Returns 1 if support_difference_count is zero, 0 else.
[ "Returns", "1", "if", "support_difference_count", "is", "zero", "0", "else", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/metrics.py#L57-L61
train
skggm/skggm
inverse_covariance/profiling/metrics.py
has_approx_support
def has_approx_support(m, m_hat, prob=0.01): """Returns 1 if model selection error is less than or equal to prob rate, 0 else. NOTE: why does np.nonzero/np.flatnonzero create so much problems? """ m_nz = np.flatnonzero(np.triu(m, 1)) m_hat_nz = np.flatnonzero(np.triu(m_hat, 1)) upper_diagonal_mask = np.flatnonzero(np.triu(np.ones(m.shape), 1)) not_m_nz = np.setdiff1d(upper_diagonal_mask, m_nz) intersection = np.in1d(m_hat_nz, m_nz) # true positives not_intersection = np.in1d(m_hat_nz, not_m_nz) # false positives true_positive_rate = 0.0 if len(m_nz): true_positive_rate = 1. * np.sum(intersection) / len(m_nz) true_negative_rate = 1. - true_positive_rate false_positive_rate = 0.0 if len(not_m_nz): false_positive_rate = 1. * np.sum(not_intersection) / len(not_m_nz) return int(np.less_equal(true_negative_rate + false_positive_rate, prob))
python
def has_approx_support(m, m_hat, prob=0.01): """Returns 1 if model selection error is less than or equal to prob rate, 0 else. NOTE: why does np.nonzero/np.flatnonzero create so much problems? """ m_nz = np.flatnonzero(np.triu(m, 1)) m_hat_nz = np.flatnonzero(np.triu(m_hat, 1)) upper_diagonal_mask = np.flatnonzero(np.triu(np.ones(m.shape), 1)) not_m_nz = np.setdiff1d(upper_diagonal_mask, m_nz) intersection = np.in1d(m_hat_nz, m_nz) # true positives not_intersection = np.in1d(m_hat_nz, not_m_nz) # false positives true_positive_rate = 0.0 if len(m_nz): true_positive_rate = 1. * np.sum(intersection) / len(m_nz) true_negative_rate = 1. - true_positive_rate false_positive_rate = 0.0 if len(not_m_nz): false_positive_rate = 1. * np.sum(not_intersection) / len(not_m_nz) return int(np.less_equal(true_negative_rate + false_positive_rate, prob))
[ "def", "has_approx_support", "(", "m", ",", "m_hat", ",", "prob", "=", "0.01", ")", ":", "m_nz", "=", "np", ".", "flatnonzero", "(", "np", ".", "triu", "(", "m", ",", "1", ")", ")", "m_hat_nz", "=", "np", ".", "flatnonzero", "(", "np", ".", "triu", "(", "m_hat", ",", "1", ")", ")", "upper_diagonal_mask", "=", "np", ".", "flatnonzero", "(", "np", ".", "triu", "(", "np", ".", "ones", "(", "m", ".", "shape", ")", ",", "1", ")", ")", "not_m_nz", "=", "np", ".", "setdiff1d", "(", "upper_diagonal_mask", ",", "m_nz", ")", "intersection", "=", "np", ".", "in1d", "(", "m_hat_nz", ",", "m_nz", ")", "# true positives", "not_intersection", "=", "np", ".", "in1d", "(", "m_hat_nz", ",", "not_m_nz", ")", "# false positives", "true_positive_rate", "=", "0.0", "if", "len", "(", "m_nz", ")", ":", "true_positive_rate", "=", "1.", "*", "np", ".", "sum", "(", "intersection", ")", "/", "len", "(", "m_nz", ")", "true_negative_rate", "=", "1.", "-", "true_positive_rate", "false_positive_rate", "=", "0.0", "if", "len", "(", "not_m_nz", ")", ":", "false_positive_rate", "=", "1.", "*", "np", ".", "sum", "(", "not_intersection", ")", "/", "len", "(", "not_m_nz", ")", "return", "int", "(", "np", ".", "less_equal", "(", "true_negative_rate", "+", "false_positive_rate", ",", "prob", ")", ")" ]
Returns 1 if model selection error is less than or equal to prob rate, 0 else. NOTE: why does np.nonzero/np.flatnonzero create so much problems?
[ "Returns", "1", "if", "model", "selection", "error", "is", "less", "than", "or", "equal", "to", "prob", "rate", "0", "else", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/profiling/metrics.py#L64-L88
train
skggm/skggm
inverse_covariance/inverse_covariance.py
_validate_path
def _validate_path(path): """Sorts path values from largest to smallest. Will warn if path parameter was not already sorted. """ if path is None: return None new_path = np.array(sorted(set(path), reverse=True)) if new_path[0] != path[0]: print("Warning: Path must be sorted largest to smallest.") return new_path
python
def _validate_path(path): """Sorts path values from largest to smallest. Will warn if path parameter was not already sorted. """ if path is None: return None new_path = np.array(sorted(set(path), reverse=True)) if new_path[0] != path[0]: print("Warning: Path must be sorted largest to smallest.") return new_path
[ "def", "_validate_path", "(", "path", ")", ":", "if", "path", "is", "None", ":", "return", "None", "new_path", "=", "np", ".", "array", "(", "sorted", "(", "set", "(", "path", ")", ",", "reverse", "=", "True", ")", ")", "if", "new_path", "[", "0", "]", "!=", "path", "[", "0", "]", ":", "print", "(", "\"Warning: Path must be sorted largest to smallest.\"", ")", "return", "new_path" ]
Sorts path values from largest to smallest. Will warn if path parameter was not already sorted.
[ "Sorts", "path", "values", "from", "largest", "to", "smallest", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/inverse_covariance.py#L77-L89
train
skggm/skggm
inverse_covariance/inverse_covariance.py
InverseCovarianceEstimator.ebic
def ebic(self, gamma=0): """Compute EBIC scores for each model. If model is not "path" then returns a scalar score value. May require self.path_ See: Extended Bayesian Information Criteria for Gaussian Graphical Models R. Foygel and M. Drton NIPS 2010 Parameters ---------- gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- Scalar ebic score or list of ebic scores. """ if not self.is_fitted_: return if not isinstance(self.precision_, list): return metrics.ebic( self.sample_covariance_, self.precision_, self.n_samples_, self.n_features_, gamma=gamma, ) ebic_scores = [] for lidx, lam in enumerate(self.path_): ebic_scores.append( metrics.ebic( self.sample_covariance_, self.precision_[lidx], self.n_samples_, self.n_features_, gamma=gamma, ) ) return np.array(ebic_scores)
python
def ebic(self, gamma=0): """Compute EBIC scores for each model. If model is not "path" then returns a scalar score value. May require self.path_ See: Extended Bayesian Information Criteria for Gaussian Graphical Models R. Foygel and M. Drton NIPS 2010 Parameters ---------- gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- Scalar ebic score or list of ebic scores. """ if not self.is_fitted_: return if not isinstance(self.precision_, list): return metrics.ebic( self.sample_covariance_, self.precision_, self.n_samples_, self.n_features_, gamma=gamma, ) ebic_scores = [] for lidx, lam in enumerate(self.path_): ebic_scores.append( metrics.ebic( self.sample_covariance_, self.precision_[lidx], self.n_samples_, self.n_features_, gamma=gamma, ) ) return np.array(ebic_scores)
[ "def", "ebic", "(", "self", ",", "gamma", "=", "0", ")", ":", "if", "not", "self", ".", "is_fitted_", ":", "return", "if", "not", "isinstance", "(", "self", ".", "precision_", ",", "list", ")", ":", "return", "metrics", ".", "ebic", "(", "self", ".", "sample_covariance_", ",", "self", ".", "precision_", ",", "self", ".", "n_samples_", ",", "self", ".", "n_features_", ",", "gamma", "=", "gamma", ",", ")", "ebic_scores", "=", "[", "]", "for", "lidx", ",", "lam", "in", "enumerate", "(", "self", ".", "path_", ")", ":", "ebic_scores", ".", "append", "(", "metrics", ".", "ebic", "(", "self", ".", "sample_covariance_", ",", "self", ".", "precision_", "[", "lidx", "]", ",", "self", ".", "n_samples_", ",", "self", ".", "n_features_", ",", "gamma", "=", "gamma", ",", ")", ")", "return", "np", ".", "array", "(", "ebic_scores", ")" ]
Compute EBIC scores for each model. If model is not "path" then returns a scalar score value. May require self.path_ See: Extended Bayesian Information Criteria for Gaussian Graphical Models R. Foygel and M. Drton NIPS 2010 Parameters ---------- gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- Scalar ebic score or list of ebic scores.
[ "Compute", "EBIC", "scores", "for", "each", "model", ".", "If", "model", "is", "not", "path", "then", "returns", "a", "scalar", "score", "value", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/inverse_covariance.py#L268-L313
train
skggm/skggm
inverse_covariance/inverse_covariance.py
InverseCovarianceEstimator.ebic_select
def ebic_select(self, gamma=0): """Uses Extended Bayesian Information Criteria for model selection. Can only be used in path mode (doesn't really make sense otherwise). See: Extended Bayesian Information Criteria for Gaussian Graphical Models R. Foygel and M. Drton NIPS 2010 Parameters ---------- gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- Lambda index with best ebic score. When multiple ebic scores are the same, returns the smallest lambda (largest index) with minimum score. """ if not isinstance(self.precision_, list): raise ValueError("EBIC requires multiple models to select from.") return if not self.is_fitted_: return ebic_scores = self.ebic(gamma=gamma) min_indices = np.where(np.abs(ebic_scores - ebic_scores.min()) < 1e-10) return np.max(min_indices)
python
def ebic_select(self, gamma=0): """Uses Extended Bayesian Information Criteria for model selection. Can only be used in path mode (doesn't really make sense otherwise). See: Extended Bayesian Information Criteria for Gaussian Graphical Models R. Foygel and M. Drton NIPS 2010 Parameters ---------- gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- Lambda index with best ebic score. When multiple ebic scores are the same, returns the smallest lambda (largest index) with minimum score. """ if not isinstance(self.precision_, list): raise ValueError("EBIC requires multiple models to select from.") return if not self.is_fitted_: return ebic_scores = self.ebic(gamma=gamma) min_indices = np.where(np.abs(ebic_scores - ebic_scores.min()) < 1e-10) return np.max(min_indices)
[ "def", "ebic_select", "(", "self", ",", "gamma", "=", "0", ")", ":", "if", "not", "isinstance", "(", "self", ".", "precision_", ",", "list", ")", ":", "raise", "ValueError", "(", "\"EBIC requires multiple models to select from.\"", ")", "return", "if", "not", "self", ".", "is_fitted_", ":", "return", "ebic_scores", "=", "self", ".", "ebic", "(", "gamma", "=", "gamma", ")", "min_indices", "=", "np", ".", "where", "(", "np", ".", "abs", "(", "ebic_scores", "-", "ebic_scores", ".", "min", "(", ")", ")", "<", "1e-10", ")", "return", "np", ".", "max", "(", "min_indices", ")" ]
Uses Extended Bayesian Information Criteria for model selection. Can only be used in path mode (doesn't really make sense otherwise). See: Extended Bayesian Information Criteria for Gaussian Graphical Models R. Foygel and M. Drton NIPS 2010 Parameters ---------- gamma : (float) \in (0, 1) Choice of gamma=0 leads to classical BIC Positive gamma leads to stronger penalization of large graphs. Returns ------- Lambda index with best ebic score. When multiple ebic scores are the same, returns the smallest lambda (largest index) with minimum score.
[ "Uses", "Extended", "Bayesian", "Information", "Criteria", "for", "model", "selection", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/inverse_covariance.py#L315-L345
train
skggm/skggm
examples/estimator_suite.py
quic_graph_lasso
def quic_graph_lasso(X, num_folds, metric): """Run QuicGraphicalLasso with mode='default' and use standard scikit GridSearchCV to find the best lambda. Primarily demonstrates compatibility with existing scikit tooling. """ print("QuicGraphicalLasso + GridSearchCV with:") print(" metric: {}".format(metric)) search_grid = { "lam": np.logspace(np.log10(0.01), np.log10(1.0), num=100, endpoint=True), "init_method": ["cov"], "score_metric": [metric], } model = GridSearchCV(QuicGraphicalLasso(), search_grid, cv=num_folds, refit=True) model.fit(X) bmodel = model.best_estimator_ print(" len(cv_lams): {}".format(len(search_grid["lam"]))) print(" cv-lam: {}".format(model.best_params_["lam"])) print(" lam_scale_: {}".format(bmodel.lam_scale_)) print(" lam_: {}".format(bmodel.lam_)) return bmodel.covariance_, bmodel.precision_, bmodel.lam_
python
def quic_graph_lasso(X, num_folds, metric): """Run QuicGraphicalLasso with mode='default' and use standard scikit GridSearchCV to find the best lambda. Primarily demonstrates compatibility with existing scikit tooling. """ print("QuicGraphicalLasso + GridSearchCV with:") print(" metric: {}".format(metric)) search_grid = { "lam": np.logspace(np.log10(0.01), np.log10(1.0), num=100, endpoint=True), "init_method": ["cov"], "score_metric": [metric], } model = GridSearchCV(QuicGraphicalLasso(), search_grid, cv=num_folds, refit=True) model.fit(X) bmodel = model.best_estimator_ print(" len(cv_lams): {}".format(len(search_grid["lam"]))) print(" cv-lam: {}".format(model.best_params_["lam"])) print(" lam_scale_: {}".format(bmodel.lam_scale_)) print(" lam_: {}".format(bmodel.lam_)) return bmodel.covariance_, bmodel.precision_, bmodel.lam_
[ "def", "quic_graph_lasso", "(", "X", ",", "num_folds", ",", "metric", ")", ":", "print", "(", "\"QuicGraphicalLasso + GridSearchCV with:\"", ")", "print", "(", "\" metric: {}\"", ".", "format", "(", "metric", ")", ")", "search_grid", "=", "{", "\"lam\"", ":", "np", ".", "logspace", "(", "np", ".", "log10", "(", "0.01", ")", ",", "np", ".", "log10", "(", "1.0", ")", ",", "num", "=", "100", ",", "endpoint", "=", "True", ")", ",", "\"init_method\"", ":", "[", "\"cov\"", "]", ",", "\"score_metric\"", ":", "[", "metric", "]", ",", "}", "model", "=", "GridSearchCV", "(", "QuicGraphicalLasso", "(", ")", ",", "search_grid", ",", "cv", "=", "num_folds", ",", "refit", "=", "True", ")", "model", ".", "fit", "(", "X", ")", "bmodel", "=", "model", ".", "best_estimator_", "print", "(", "\" len(cv_lams): {}\"", ".", "format", "(", "len", "(", "search_grid", "[", "\"lam\"", "]", ")", ")", ")", "print", "(", "\" cv-lam: {}\"", ".", "format", "(", "model", ".", "best_params_", "[", "\"lam\"", "]", ")", ")", "print", "(", "\" lam_scale_: {}\"", ".", "format", "(", "bmodel", ".", "lam_scale_", ")", ")", "print", "(", "\" lam_: {}\"", ".", "format", "(", "bmodel", ".", "lam_", ")", ")", "return", "bmodel", ".", "covariance_", ",", "bmodel", ".", "precision_", ",", "bmodel", ".", "lam_" ]
Run QuicGraphicalLasso with mode='default' and use standard scikit GridSearchCV to find the best lambda. Primarily demonstrates compatibility with existing scikit tooling.
[ "Run", "QuicGraphicalLasso", "with", "mode", "=", "default", "and", "use", "standard", "scikit", "GridSearchCV", "to", "find", "the", "best", "lambda", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite.py#L97-L117
train
skggm/skggm
examples/estimator_suite.py
quic_graph_lasso_cv
def quic_graph_lasso_cv(X, metric): """Run QuicGraphicalLassoCV on data with metric of choice. Compare results with GridSearchCV + quic_graph_lasso. The number of lambdas tested should be much lower with similar final lam_ selected. """ print("QuicGraphicalLassoCV with:") print(" metric: {}".format(metric)) model = QuicGraphicalLassoCV( cv=2, # cant deal w more folds at small size n_refinements=6, n_jobs=1, init_method="cov", score_metric=metric, ) model.fit(X) print(" len(cv_lams): {}".format(len(model.cv_lams_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(model.lam_)) return model.covariance_, model.precision_, model.lam_
python
def quic_graph_lasso_cv(X, metric): """Run QuicGraphicalLassoCV on data with metric of choice. Compare results with GridSearchCV + quic_graph_lasso. The number of lambdas tested should be much lower with similar final lam_ selected. """ print("QuicGraphicalLassoCV with:") print(" metric: {}".format(metric)) model = QuicGraphicalLassoCV( cv=2, # cant deal w more folds at small size n_refinements=6, n_jobs=1, init_method="cov", score_metric=metric, ) model.fit(X) print(" len(cv_lams): {}".format(len(model.cv_lams_))) print(" lam_scale_: {}".format(model.lam_scale_)) print(" lam_: {}".format(model.lam_)) return model.covariance_, model.precision_, model.lam_
[ "def", "quic_graph_lasso_cv", "(", "X", ",", "metric", ")", ":", "print", "(", "\"QuicGraphicalLassoCV with:\"", ")", "print", "(", "\" metric: {}\"", ".", "format", "(", "metric", ")", ")", "model", "=", "QuicGraphicalLassoCV", "(", "cv", "=", "2", ",", "# cant deal w more folds at small size", "n_refinements", "=", "6", ",", "n_jobs", "=", "1", ",", "init_method", "=", "\"cov\"", ",", "score_metric", "=", "metric", ",", ")", "model", ".", "fit", "(", "X", ")", "print", "(", "\" len(cv_lams): {}\"", ".", "format", "(", "len", "(", "model", ".", "cv_lams_", ")", ")", ")", "print", "(", "\" lam_scale_: {}\"", ".", "format", "(", "model", ".", "lam_scale_", ")", ")", "print", "(", "\" lam_: {}\"", ".", "format", "(", "model", ".", "lam_", ")", ")", "return", "model", ".", "covariance_", ",", "model", ".", "precision_", ",", "model", ".", "lam_" ]
Run QuicGraphicalLassoCV on data with metric of choice. Compare results with GridSearchCV + quic_graph_lasso. The number of lambdas tested should be much lower with similar final lam_ selected.
[ "Run", "QuicGraphicalLassoCV", "on", "data", "with", "metric", "of", "choice", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite.py#L120-L139
train
skggm/skggm
examples/estimator_suite.py
graph_lasso
def graph_lasso(X, num_folds): """Estimate inverse covariance via scikit-learn GraphLassoCV class. """ print("GraphLasso (sklearn)") model = GraphLassoCV(cv=num_folds) model.fit(X) print(" lam_: {}".format(model.alpha_)) return model.covariance_, model.precision_, model.alpha_
python
def graph_lasso(X, num_folds): """Estimate inverse covariance via scikit-learn GraphLassoCV class. """ print("GraphLasso (sklearn)") model = GraphLassoCV(cv=num_folds) model.fit(X) print(" lam_: {}".format(model.alpha_)) return model.covariance_, model.precision_, model.alpha_
[ "def", "graph_lasso", "(", "X", ",", "num_folds", ")", ":", "print", "(", "\"GraphLasso (sklearn)\"", ")", "model", "=", "GraphLassoCV", "(", "cv", "=", "num_folds", ")", "model", ".", "fit", "(", "X", ")", "print", "(", "\" lam_: {}\"", ".", "format", "(", "model", ".", "alpha_", ")", ")", "return", "model", ".", "covariance_", ",", "model", ".", "precision_", ",", "model", ".", "alpha_" ]
Estimate inverse covariance via scikit-learn GraphLassoCV class.
[ "Estimate", "inverse", "covariance", "via", "scikit", "-", "learn", "GraphLassoCV", "class", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/examples/estimator_suite.py#L295-L302
train
skggm/skggm
inverse_covariance/quic_graph_lasso.py
_quic_path
def _quic_path( X, path, X_test=None, lam=0.5, tol=1e-6, max_iter=1000, Theta0=None, Sigma0=None, method="quic", verbose=0, score_metric="log_likelihood", init_method="corrcoef", ): """Wrapper to compute path for example X. """ S, lam_scale_ = _init_coefs(X, method=init_method) path = path.copy(order="C") if method == "quic": (precisions_, covariances_, opt_, cputime_, iters_, duality_gap_) = quic( S, lam, mode="path", tol=tol, max_iter=max_iter, Theta0=Theta0, Sigma0=Sigma0, path=path, msg=verbose, ) else: raise NotImplementedError("Only method='quic' has been implemented.") if X_test is not None: S_test, lam_scale_test = _init_coefs(X_test, method=init_method) path_errors = [] for lidx, lam in enumerate(path): path_errors.append( _compute_error( S_test, covariances_[lidx], precisions_[lidx], score_metric=score_metric, ) ) scores_ = [-e for e in path_errors] return covariances_, precisions_, scores_ return covariances_, precisions_
python
def _quic_path( X, path, X_test=None, lam=0.5, tol=1e-6, max_iter=1000, Theta0=None, Sigma0=None, method="quic", verbose=0, score_metric="log_likelihood", init_method="corrcoef", ): """Wrapper to compute path for example X. """ S, lam_scale_ = _init_coefs(X, method=init_method) path = path.copy(order="C") if method == "quic": (precisions_, covariances_, opt_, cputime_, iters_, duality_gap_) = quic( S, lam, mode="path", tol=tol, max_iter=max_iter, Theta0=Theta0, Sigma0=Sigma0, path=path, msg=verbose, ) else: raise NotImplementedError("Only method='quic' has been implemented.") if X_test is not None: S_test, lam_scale_test = _init_coefs(X_test, method=init_method) path_errors = [] for lidx, lam in enumerate(path): path_errors.append( _compute_error( S_test, covariances_[lidx], precisions_[lidx], score_metric=score_metric, ) ) scores_ = [-e for e in path_errors] return covariances_, precisions_, scores_ return covariances_, precisions_
[ "def", "_quic_path", "(", "X", ",", "path", ",", "X_test", "=", "None", ",", "lam", "=", "0.5", ",", "tol", "=", "1e-6", ",", "max_iter", "=", "1000", ",", "Theta0", "=", "None", ",", "Sigma0", "=", "None", ",", "method", "=", "\"quic\"", ",", "verbose", "=", "0", ",", "score_metric", "=", "\"log_likelihood\"", ",", "init_method", "=", "\"corrcoef\"", ",", ")", ":", "S", ",", "lam_scale_", "=", "_init_coefs", "(", "X", ",", "method", "=", "init_method", ")", "path", "=", "path", ".", "copy", "(", "order", "=", "\"C\"", ")", "if", "method", "==", "\"quic\"", ":", "(", "precisions_", ",", "covariances_", ",", "opt_", ",", "cputime_", ",", "iters_", ",", "duality_gap_", ")", "=", "quic", "(", "S", ",", "lam", ",", "mode", "=", "\"path\"", ",", "tol", "=", "tol", ",", "max_iter", "=", "max_iter", ",", "Theta0", "=", "Theta0", ",", "Sigma0", "=", "Sigma0", ",", "path", "=", "path", ",", "msg", "=", "verbose", ",", ")", "else", ":", "raise", "NotImplementedError", "(", "\"Only method='quic' has been implemented.\"", ")", "if", "X_test", "is", "not", "None", ":", "S_test", ",", "lam_scale_test", "=", "_init_coefs", "(", "X_test", ",", "method", "=", "init_method", ")", "path_errors", "=", "[", "]", "for", "lidx", ",", "lam", "in", "enumerate", "(", "path", ")", ":", "path_errors", ".", "append", "(", "_compute_error", "(", "S_test", ",", "covariances_", "[", "lidx", "]", ",", "precisions_", "[", "lidx", "]", ",", "score_metric", "=", "score_metric", ",", ")", ")", "scores_", "=", "[", "-", "e", "for", "e", "in", "path_errors", "]", "return", "covariances_", ",", "precisions_", ",", "scores_", "return", "covariances_", ",", "precisions_" ]
Wrapper to compute path for example X.
[ "Wrapper", "to", "compute", "path", "for", "example", "X", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/quic_graph_lasso.py#L383-L435
train
skggm/skggm
inverse_covariance/quic_graph_lasso.py
QuicGraphicalLasso.lam_at_index
def lam_at_index(self, lidx): """Compute the scaled lambda used at index lidx. """ if self.path_ is None: return self.lam * self.lam_scale_ return self.lam * self.lam_scale_ * self.path_[lidx]
python
def lam_at_index(self, lidx): """Compute the scaled lambda used at index lidx. """ if self.path_ is None: return self.lam * self.lam_scale_ return self.lam * self.lam_scale_ * self.path_[lidx]
[ "def", "lam_at_index", "(", "self", ",", "lidx", ")", ":", "if", "self", ".", "path_", "is", "None", ":", "return", "self", ".", "lam", "*", "self", ".", "lam_scale_", "return", "self", ".", "lam", "*", "self", ".", "lam_scale_", "*", "self", ".", "path_", "[", "lidx", "]" ]
Compute the scaled lambda used at index lidx.
[ "Compute", "the", "scaled", "lambda", "used", "at", "index", "lidx", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/quic_graph_lasso.py#L361-L367
train
skggm/skggm
inverse_covariance/rank_correlation.py
_compute_ranks
def _compute_ranks(X, winsorize=False, truncation=None, verbose=True): """ Transform each column into ranked data. Tied ranks are averaged. Ranks can optionally be winsorized as described in Liu 2009 otherwise this returns Tsukahara's scaled rank based Z-estimator. Parameters ---------- X : array-like, shape = (n_samples, n_features) The data matrix where each column is a feature. Row observations for each column will be replaced by correponding rank. winsorize: bool Choose whether ranks should be winsorized (trimmed) or not. If True, then ranks will be winsorized using the truncation parameter. truncation: (float) The default value is given by 1/(4 n^(1/4) * sqrt(pi log n)), where n is the number of samples. Returns ------- Xrank References ---------- Liu, Han, John Lafferty, and Larry Wasserman. "The nonparanormal: Semiparametric estimation of high dimensional undirected graphs." Journal of Machine Learning Research 10.Oct (2009): 2295-2328. """ n_samples, n_features = X.shape Xrank = np.zeros(shape=X.shape) if winsorize: if truncation is None: truncation = 1 / ( 4 * np.power(n_samples, 0.25) * np.sqrt(np.pi * np.log(n_samples)) ) elif truncation > 1: truncation = np.min(1.0, truncation) for col in np.arange(n_features): Xrank[:, col] = rankdata(X[:, col], method="average") Xrank[:, col] /= n_samples if winsorize: if n_samples > 100 * n_features: Xrank[:, col] = n_samples * Xrank[:, col] / (n_samples + 1) else: lower_truncate = Xrank[:, col] <= truncation upper_truncate = Xrank[:, col] > 1 - truncation Xrank[lower_truncate, col] = truncation Xrank[upper_truncate, col] = 1 - truncation return Xrank
python
def _compute_ranks(X, winsorize=False, truncation=None, verbose=True): """ Transform each column into ranked data. Tied ranks are averaged. Ranks can optionally be winsorized as described in Liu 2009 otherwise this returns Tsukahara's scaled rank based Z-estimator. Parameters ---------- X : array-like, shape = (n_samples, n_features) The data matrix where each column is a feature. Row observations for each column will be replaced by correponding rank. winsorize: bool Choose whether ranks should be winsorized (trimmed) or not. If True, then ranks will be winsorized using the truncation parameter. truncation: (float) The default value is given by 1/(4 n^(1/4) * sqrt(pi log n)), where n is the number of samples. Returns ------- Xrank References ---------- Liu, Han, John Lafferty, and Larry Wasserman. "The nonparanormal: Semiparametric estimation of high dimensional undirected graphs." Journal of Machine Learning Research 10.Oct (2009): 2295-2328. """ n_samples, n_features = X.shape Xrank = np.zeros(shape=X.shape) if winsorize: if truncation is None: truncation = 1 / ( 4 * np.power(n_samples, 0.25) * np.sqrt(np.pi * np.log(n_samples)) ) elif truncation > 1: truncation = np.min(1.0, truncation) for col in np.arange(n_features): Xrank[:, col] = rankdata(X[:, col], method="average") Xrank[:, col] /= n_samples if winsorize: if n_samples > 100 * n_features: Xrank[:, col] = n_samples * Xrank[:, col] / (n_samples + 1) else: lower_truncate = Xrank[:, col] <= truncation upper_truncate = Xrank[:, col] > 1 - truncation Xrank[lower_truncate, col] = truncation Xrank[upper_truncate, col] = 1 - truncation return Xrank
[ "def", "_compute_ranks", "(", "X", ",", "winsorize", "=", "False", ",", "truncation", "=", "None", ",", "verbose", "=", "True", ")", ":", "n_samples", ",", "n_features", "=", "X", ".", "shape", "Xrank", "=", "np", ".", "zeros", "(", "shape", "=", "X", ".", "shape", ")", "if", "winsorize", ":", "if", "truncation", "is", "None", ":", "truncation", "=", "1", "/", "(", "4", "*", "np", ".", "power", "(", "n_samples", ",", "0.25", ")", "*", "np", ".", "sqrt", "(", "np", ".", "pi", "*", "np", ".", "log", "(", "n_samples", ")", ")", ")", "elif", "truncation", ">", "1", ":", "truncation", "=", "np", ".", "min", "(", "1.0", ",", "truncation", ")", "for", "col", "in", "np", ".", "arange", "(", "n_features", ")", ":", "Xrank", "[", ":", ",", "col", "]", "=", "rankdata", "(", "X", "[", ":", ",", "col", "]", ",", "method", "=", "\"average\"", ")", "Xrank", "[", ":", ",", "col", "]", "/=", "n_samples", "if", "winsorize", ":", "if", "n_samples", ">", "100", "*", "n_features", ":", "Xrank", "[", ":", ",", "col", "]", "=", "n_samples", "*", "Xrank", "[", ":", ",", "col", "]", "/", "(", "n_samples", "+", "1", ")", "else", ":", "lower_truncate", "=", "Xrank", "[", ":", ",", "col", "]", "<=", "truncation", "upper_truncate", "=", "Xrank", "[", ":", ",", "col", "]", ">", "1", "-", "truncation", "Xrank", "[", "lower_truncate", ",", "col", "]", "=", "truncation", "Xrank", "[", "upper_truncate", ",", "col", "]", "=", "1", "-", "truncation", "return", "Xrank" ]
Transform each column into ranked data. Tied ranks are averaged. Ranks can optionally be winsorized as described in Liu 2009 otherwise this returns Tsukahara's scaled rank based Z-estimator. Parameters ---------- X : array-like, shape = (n_samples, n_features) The data matrix where each column is a feature. Row observations for each column will be replaced by correponding rank. winsorize: bool Choose whether ranks should be winsorized (trimmed) or not. If True, then ranks will be winsorized using the truncation parameter. truncation: (float) The default value is given by 1/(4 n^(1/4) * sqrt(pi log n)), where n is the number of samples. Returns ------- Xrank References ---------- Liu, Han, John Lafferty, and Larry Wasserman. "The nonparanormal: Semiparametric estimation of high dimensional undirected graphs." Journal of Machine Learning Research 10.Oct (2009): 2295-2328.
[ "Transform", "each", "column", "into", "ranked", "data", ".", "Tied", "ranks", "are", "averaged", ".", "Ranks", "can", "optionally", "be", "winsorized", "as", "described", "in", "Liu", "2009", "otherwise", "this", "returns", "Tsukahara", "s", "scaled", "rank", "based", "Z", "-", "estimator", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/rank_correlation.py#L9-L66
train
skggm/skggm
inverse_covariance/rank_correlation.py
spearman_correlation
def spearman_correlation(X, rowvar=False): """ Computes the spearman correlation estimate. This is effectively a bias corrected pearson correlation between rank transformed columns of X. Parameters ---------- X: array-like, shape = [n_samples, n_features] Data matrix using which we compute the empirical correlation Returns ------- rank_correlation References ---------- Xue, Lingzhou; Zou, Hui. "Regularized rank-based estimation of high-dimensional nonparanormal graphical models." Ann. Statist. 40 (2012), no. 5, 2541--2571. doi:10.1214/12-AOS1041. Liu, Han, Fang; Yuan, Ming; Lafferty, John; Wasserman, Larry. "High-dimensional semiparametric Gaussian copula graphical models." Ann. Statist. 40.4 (2012): 2293-2326. doi:10.1214/12-AOS1037 """ Xrank = _compute_ranks(X) rank_correlation = np.corrcoef(Xrank, rowvar=rowvar) return 2 * np.sin(rank_correlation * np.pi / 6)
python
def spearman_correlation(X, rowvar=False): """ Computes the spearman correlation estimate. This is effectively a bias corrected pearson correlation between rank transformed columns of X. Parameters ---------- X: array-like, shape = [n_samples, n_features] Data matrix using which we compute the empirical correlation Returns ------- rank_correlation References ---------- Xue, Lingzhou; Zou, Hui. "Regularized rank-based estimation of high-dimensional nonparanormal graphical models." Ann. Statist. 40 (2012), no. 5, 2541--2571. doi:10.1214/12-AOS1041. Liu, Han, Fang; Yuan, Ming; Lafferty, John; Wasserman, Larry. "High-dimensional semiparametric Gaussian copula graphical models." Ann. Statist. 40.4 (2012): 2293-2326. doi:10.1214/12-AOS1037 """ Xrank = _compute_ranks(X) rank_correlation = np.corrcoef(Xrank, rowvar=rowvar) return 2 * np.sin(rank_correlation * np.pi / 6)
[ "def", "spearman_correlation", "(", "X", ",", "rowvar", "=", "False", ")", ":", "Xrank", "=", "_compute_ranks", "(", "X", ")", "rank_correlation", "=", "np", ".", "corrcoef", "(", "Xrank", ",", "rowvar", "=", "rowvar", ")", "return", "2", "*", "np", ".", "sin", "(", "rank_correlation", "*", "np", ".", "pi", "/", "6", ")" ]
Computes the spearman correlation estimate. This is effectively a bias corrected pearson correlation between rank transformed columns of X. Parameters ---------- X: array-like, shape = [n_samples, n_features] Data matrix using which we compute the empirical correlation Returns ------- rank_correlation References ---------- Xue, Lingzhou; Zou, Hui. "Regularized rank-based estimation of high-dimensional nonparanormal graphical models." Ann. Statist. 40 (2012), no. 5, 2541--2571. doi:10.1214/12-AOS1041. Liu, Han, Fang; Yuan, Ming; Lafferty, John; Wasserman, Larry. "High-dimensional semiparametric Gaussian copula graphical models." Ann. Statist. 40.4 (2012): 2293-2326. doi:10.1214/12-AOS1037
[ "Computes", "the", "spearman", "correlation", "estimate", ".", "This", "is", "effectively", "a", "bias", "corrected", "pearson", "correlation", "between", "rank", "transformed", "columns", "of", "X", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/rank_correlation.py#L69-L101
train
skggm/skggm
inverse_covariance/rank_correlation.py
kendalltau_correlation
def kendalltau_correlation(X, rowvar=False, weighted=False): """ Computes kendall's tau correlation estimate. The option to use scipy.stats.weightedtau is not recommended as the implementation does not appear to handle ties correctly. Parameters ---------- X: array-like, shape = [n_samples, n_features] Data matrix using which we compute the empirical correlation Returns ------- rank_correlation References ---------- Liu, Han, Fang; Yuan, Ming; Lafferty, John; Wasserman, Larry. "High-dimensional semiparametric Gaussian copula graphical models." Ann. Statist. 40.4 (2012): 2293-2326. doi:10.1214/12-AOS1037 Barber, Rina Foygel; Kolar, Mladen. "ROCKET: Robust Confidence Intervals via Kendall's Tau for Transelliptical Graphical Models." arXiv:1502.07641 """ if rowvar: X = X.T _, n_features = X.shape rank_correlation = np.eye(n_features) for row in np.arange(n_features): for col in np.arange(1 + row, n_features): if weighted: rank_correlation[row, col], _ = weightedtau( X[:, row], X[:, col], rank=False ) else: rank_correlation[row, col], _ = kendalltau(X[:, row], X[:, col]) rank_correlation = np.triu(rank_correlation, 1) + rank_correlation.T return np.sin(rank_correlation * np.pi / 2)
python
def kendalltau_correlation(X, rowvar=False, weighted=False): """ Computes kendall's tau correlation estimate. The option to use scipy.stats.weightedtau is not recommended as the implementation does not appear to handle ties correctly. Parameters ---------- X: array-like, shape = [n_samples, n_features] Data matrix using which we compute the empirical correlation Returns ------- rank_correlation References ---------- Liu, Han, Fang; Yuan, Ming; Lafferty, John; Wasserman, Larry. "High-dimensional semiparametric Gaussian copula graphical models." Ann. Statist. 40.4 (2012): 2293-2326. doi:10.1214/12-AOS1037 Barber, Rina Foygel; Kolar, Mladen. "ROCKET: Robust Confidence Intervals via Kendall's Tau for Transelliptical Graphical Models." arXiv:1502.07641 """ if rowvar: X = X.T _, n_features = X.shape rank_correlation = np.eye(n_features) for row in np.arange(n_features): for col in np.arange(1 + row, n_features): if weighted: rank_correlation[row, col], _ = weightedtau( X[:, row], X[:, col], rank=False ) else: rank_correlation[row, col], _ = kendalltau(X[:, row], X[:, col]) rank_correlation = np.triu(rank_correlation, 1) + rank_correlation.T return np.sin(rank_correlation * np.pi / 2)
[ "def", "kendalltau_correlation", "(", "X", ",", "rowvar", "=", "False", ",", "weighted", "=", "False", ")", ":", "if", "rowvar", ":", "X", "=", "X", ".", "T", "_", ",", "n_features", "=", "X", ".", "shape", "rank_correlation", "=", "np", ".", "eye", "(", "n_features", ")", "for", "row", "in", "np", ".", "arange", "(", "n_features", ")", ":", "for", "col", "in", "np", ".", "arange", "(", "1", "+", "row", ",", "n_features", ")", ":", "if", "weighted", ":", "rank_correlation", "[", "row", ",", "col", "]", ",", "_", "=", "weightedtau", "(", "X", "[", ":", ",", "row", "]", ",", "X", "[", ":", ",", "col", "]", ",", "rank", "=", "False", ")", "else", ":", "rank_correlation", "[", "row", ",", "col", "]", ",", "_", "=", "kendalltau", "(", "X", "[", ":", ",", "row", "]", ",", "X", "[", ":", ",", "col", "]", ")", "rank_correlation", "=", "np", ".", "triu", "(", "rank_correlation", ",", "1", ")", "+", "rank_correlation", ".", "T", "return", "np", ".", "sin", "(", "rank_correlation", "*", "np", ".", "pi", "/", "2", ")" ]
Computes kendall's tau correlation estimate. The option to use scipy.stats.weightedtau is not recommended as the implementation does not appear to handle ties correctly. Parameters ---------- X: array-like, shape = [n_samples, n_features] Data matrix using which we compute the empirical correlation Returns ------- rank_correlation References ---------- Liu, Han, Fang; Yuan, Ming; Lafferty, John; Wasserman, Larry. "High-dimensional semiparametric Gaussian copula graphical models." Ann. Statist. 40.4 (2012): 2293-2326. doi:10.1214/12-AOS1037 Barber, Rina Foygel; Kolar, Mladen. "ROCKET: Robust Confidence Intervals via Kendall's Tau for Transelliptical Graphical Models." arXiv:1502.07641
[ "Computes", "kendall", "s", "tau", "correlation", "estimate", ".", "The", "option", "to", "use", "scipy", ".", "stats", ".", "weightedtau", "is", "not", "recommended", "as", "the", "implementation", "does", "not", "appear", "to", "handle", "ties", "correctly", "." ]
a0ed406586c4364ea3297a658f415e13b5cbdaf8
https://github.com/skggm/skggm/blob/a0ed406586c4364ea3297a658f415e13b5cbdaf8/inverse_covariance/rank_correlation.py#L104-L148
train
fabiobatalha/crossrefapi
crossref/restful.py
Endpoint.version
def version(self): """ This attribute retrieve the API version. >>> Works().version '1.0.0' """ request_params = dict(self.request_params) request_url = str(self.request_url) result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ).json() return result['message-version']
python
def version(self): """ This attribute retrieve the API version. >>> Works().version '1.0.0' """ request_params = dict(self.request_params) request_url = str(self.request_url) result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ).json() return result['message-version']
[ "def", "version", "(", "self", ")", ":", "request_params", "=", "dict", "(", "self", ".", "request_params", ")", "request_url", "=", "str", "(", "self", ".", "request_url", ")", "result", "=", "self", ".", "do_http_request", "(", "'get'", ",", "request_url", ",", "data", "=", "request_params", ",", "custom_header", "=", "str", "(", "self", ".", "etiquette", ")", ")", ".", "json", "(", ")", "return", "result", "[", "'message-version'", "]" ]
This attribute retrieve the API version. >>> Works().version '1.0.0'
[ "This", "attribute", "retrieve", "the", "API", "version", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L157-L174
train
fabiobatalha/crossrefapi
crossref/restful.py
Endpoint.count
def count(self): """ This method retrieve the total of records resulting from a given query. This attribute can be used compounded with query, filter, sort, order and facet methods. Examples: >>> from crossref.restful import Works >>> Works().query('zika').count() 3597 >>> Works().query('zika').filter(prefix='10.1590').count() 61 >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').count() 14 >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').query(author='Marli').count() 1 """ request_params = dict(self.request_params) request_url = str(self.request_url) request_params['rows'] = 0 result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ).json() return int(result['message']['total-results'])
python
def count(self): """ This method retrieve the total of records resulting from a given query. This attribute can be used compounded with query, filter, sort, order and facet methods. Examples: >>> from crossref.restful import Works >>> Works().query('zika').count() 3597 >>> Works().query('zika').filter(prefix='10.1590').count() 61 >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').count() 14 >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').query(author='Marli').count() 1 """ request_params = dict(self.request_params) request_url = str(self.request_url) request_params['rows'] = 0 result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ).json() return int(result['message']['total-results'])
[ "def", "count", "(", "self", ")", ":", "request_params", "=", "dict", "(", "self", ".", "request_params", ")", "request_url", "=", "str", "(", "self", ".", "request_url", ")", "request_params", "[", "'rows'", "]", "=", "0", "result", "=", "self", ".", "do_http_request", "(", "'get'", ",", "request_url", ",", "data", "=", "request_params", ",", "custom_header", "=", "str", "(", "self", ".", "etiquette", ")", ")", ".", "json", "(", ")", "return", "int", "(", "result", "[", "'message'", "]", "[", "'total-results'", "]", ")" ]
This method retrieve the total of records resulting from a given query. This attribute can be used compounded with query, filter, sort, order and facet methods. Examples: >>> from crossref.restful import Works >>> Works().query('zika').count() 3597 >>> Works().query('zika').filter(prefix='10.1590').count() 61 >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').count() 14 >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').query(author='Marli').count() 1
[ "This", "method", "retrieve", "the", "total", "of", "records", "resulting", "from", "a", "given", "query", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L186-L215
train
fabiobatalha/crossrefapi
crossref/restful.py
Endpoint.url
def url(self): """ This attribute retrieve the url that will be used as a HTTP request to the Crossref API. This attribute can be used compounded with query, filter, sort, order and facet methods. Examples: >>> from crossref.restful import Works >>> Works().query('zika').url 'https://api.crossref.org/works?query=zika' >>> Works().query('zika').filter(prefix='10.1590').url 'https://api.crossref.org/works?query=zika&filter=prefix%3A10.1590' >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').url 'https://api.crossref.org/works?sort=published&order=desc&query=zika&filter=prefix%3A10.1590' >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').query(author='Marli').url 'https://api.crossref.org/works?sort=published&filter=prefix%3A10.1590%2Chas-abstract%3Atrue&query=zika&order=desc&query.author=Marli' """ request_params = self._escaped_pagging() sorted_request_params = sorted([(k, v) for k, v in request_params.items()]) req = requests.Request( 'get', self.request_url, params=sorted_request_params).prepare() return req.url
python
def url(self): """ This attribute retrieve the url that will be used as a HTTP request to the Crossref API. This attribute can be used compounded with query, filter, sort, order and facet methods. Examples: >>> from crossref.restful import Works >>> Works().query('zika').url 'https://api.crossref.org/works?query=zika' >>> Works().query('zika').filter(prefix='10.1590').url 'https://api.crossref.org/works?query=zika&filter=prefix%3A10.1590' >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').url 'https://api.crossref.org/works?sort=published&order=desc&query=zika&filter=prefix%3A10.1590' >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').query(author='Marli').url 'https://api.crossref.org/works?sort=published&filter=prefix%3A10.1590%2Chas-abstract%3Atrue&query=zika&order=desc&query.author=Marli' """ request_params = self._escaped_pagging() sorted_request_params = sorted([(k, v) for k, v in request_params.items()]) req = requests.Request( 'get', self.request_url, params=sorted_request_params).prepare() return req.url
[ "def", "url", "(", "self", ")", ":", "request_params", "=", "self", ".", "_escaped_pagging", "(", ")", "sorted_request_params", "=", "sorted", "(", "[", "(", "k", ",", "v", ")", "for", "k", ",", "v", "in", "request_params", ".", "items", "(", ")", "]", ")", "req", "=", "requests", ".", "Request", "(", "'get'", ",", "self", ".", "request_url", ",", "params", "=", "sorted_request_params", ")", ".", "prepare", "(", ")", "return", "req", ".", "url" ]
This attribute retrieve the url that will be used as a HTTP request to the Crossref API. This attribute can be used compounded with query, filter, sort, order and facet methods. Examples: >>> from crossref.restful import Works >>> Works().query('zika').url 'https://api.crossref.org/works?query=zika' >>> Works().query('zika').filter(prefix='10.1590').url 'https://api.crossref.org/works?query=zika&filter=prefix%3A10.1590' >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').url 'https://api.crossref.org/works?sort=published&order=desc&query=zika&filter=prefix%3A10.1590' >>> Works().query('zika').filter(prefix='10.1590').sort('published').order('desc').filter(has_abstract='true').query(author='Marli').url 'https://api.crossref.org/works?sort=published&filter=prefix%3A10.1590%2Chas-abstract%3Atrue&query=zika&order=desc&query.author=Marli'
[ "This", "attribute", "retrieve", "the", "url", "that", "will", "be", "used", "as", "a", "HTTP", "request", "to", "the", "Crossref", "API", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L218-L243
train
fabiobatalha/crossrefapi
crossref/restful.py
Works.doi
def doi(self, doi, only_message=True): """ This method retrieve the DOI metadata related to a given DOI number. args: Crossref DOI id (String) return: JSON Example: >>> from crossref.restful import Works >>> works = Works() >>> works.doi('10.1590/S0004-28032013005000001') {'is-referenced-by-count': 6, 'reference-count': 216, 'DOI': '10.1590/s0004-28032013005000001', 'subtitle': [], 'issued': {'date-parts': [[2013, 4, 19]]}, 'source': 'Crossref', 'short-container-title': ['Arq. Gastroenterol.'], 'references-count': 216, 'short-title': [], 'deposited': {'timestamp': 1495911725000, 'date-time': '2017-05-27T19:02:05Z', 'date-parts': [[2017, 5, 27]]}, 'ISSN': ['0004-2803'], 'type': 'journal-article', 'URL': 'http://dx.doi.org/10.1590/s0004-28032013005000001', 'indexed': {'timestamp': 1496034748592, 'date-time': '2017-05-29T05:12:28Z', 'date-parts': [[2017, 5, 29]]}, 'content-domain': {'crossmark-restriction': False, 'domain': []}, 'created': {'timestamp': 1374613284000, 'date-time': '2013-07-23T21:01:24Z', 'date-parts': [[2013, 7, 23]]}, 'issn-type': [{'value': '0004-2803', 'type': 'electronic'}], 'page': '81-96', 'volume': '50', 'original-title': [], 'subject': ['Gastroenterology'], 'relation': {}, 'container-title': ['Arquivos de Gastroenterologia'], 'member': '530', 'prefix': '10.1590', 'published-print': {'date-parts': [[2013, 4, 19]]}, 'title': ['3rd BRAZILIAN CONSENSUS ON Helicobacter pylori'], 'publisher': 'FapUNIFESP (SciELO)', 'alternative-id': ['S0004-28032013000200081'], 'abstract': '<jats:p>Significant abstract data..... .</jats:p>', 'author': [{'affiliation': [{'name': 'Universidade Federal de Minas Gerais, BRAZIL'}], 'family': 'Coelho', 'given': 'Luiz Gonzaga'}, {'affiliation': [ {'name': 'Universidade Federal do Rio Grande do Sul, Brazil'}], 'family': 'Maguinilk', 'given': 'Ismael'}, {'affiliation': [ {'name': 'Presidente de Honra do Núcleo Brasileiro para Estudo do Helicobacter, Brazil'}], 'family': 'Zaterka', 'given': 'Schlioma'}, {'affiliation': [ {'name': 'Universidade Federal do Piauí, Brasil'}], 'family': 'Parente', 'given': 'José Miguel'}, {'affiliation': [{'name': 'Universidade Federal de Minas Gerais, BRAZIL'}], 'family': 'Passos', 'given': 'Maria do Carmo Friche'}, {'affiliation': [ {'name': 'Universidade de São Paulo, Brasil'}], 'family': 'Moraes-Filho', 'given': 'Joaquim Prado P.'}], 'score': 1.0, 'issue': '2'} """ request_url = build_url_endpoint( '/'.join([self.ENDPOINT, doi]) ) request_params = {} result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ) if result.status_code == 404: return result = result.json() return result['message'] if only_message is True else result
python
def doi(self, doi, only_message=True): """ This method retrieve the DOI metadata related to a given DOI number. args: Crossref DOI id (String) return: JSON Example: >>> from crossref.restful import Works >>> works = Works() >>> works.doi('10.1590/S0004-28032013005000001') {'is-referenced-by-count': 6, 'reference-count': 216, 'DOI': '10.1590/s0004-28032013005000001', 'subtitle': [], 'issued': {'date-parts': [[2013, 4, 19]]}, 'source': 'Crossref', 'short-container-title': ['Arq. Gastroenterol.'], 'references-count': 216, 'short-title': [], 'deposited': {'timestamp': 1495911725000, 'date-time': '2017-05-27T19:02:05Z', 'date-parts': [[2017, 5, 27]]}, 'ISSN': ['0004-2803'], 'type': 'journal-article', 'URL': 'http://dx.doi.org/10.1590/s0004-28032013005000001', 'indexed': {'timestamp': 1496034748592, 'date-time': '2017-05-29T05:12:28Z', 'date-parts': [[2017, 5, 29]]}, 'content-domain': {'crossmark-restriction': False, 'domain': []}, 'created': {'timestamp': 1374613284000, 'date-time': '2013-07-23T21:01:24Z', 'date-parts': [[2013, 7, 23]]}, 'issn-type': [{'value': '0004-2803', 'type': 'electronic'}], 'page': '81-96', 'volume': '50', 'original-title': [], 'subject': ['Gastroenterology'], 'relation': {}, 'container-title': ['Arquivos de Gastroenterologia'], 'member': '530', 'prefix': '10.1590', 'published-print': {'date-parts': [[2013, 4, 19]]}, 'title': ['3rd BRAZILIAN CONSENSUS ON Helicobacter pylori'], 'publisher': 'FapUNIFESP (SciELO)', 'alternative-id': ['S0004-28032013000200081'], 'abstract': '<jats:p>Significant abstract data..... .</jats:p>', 'author': [{'affiliation': [{'name': 'Universidade Federal de Minas Gerais, BRAZIL'}], 'family': 'Coelho', 'given': 'Luiz Gonzaga'}, {'affiliation': [ {'name': 'Universidade Federal do Rio Grande do Sul, Brazil'}], 'family': 'Maguinilk', 'given': 'Ismael'}, {'affiliation': [ {'name': 'Presidente de Honra do Núcleo Brasileiro para Estudo do Helicobacter, Brazil'}], 'family': 'Zaterka', 'given': 'Schlioma'}, {'affiliation': [ {'name': 'Universidade Federal do Piauí, Brasil'}], 'family': 'Parente', 'given': 'José Miguel'}, {'affiliation': [{'name': 'Universidade Federal de Minas Gerais, BRAZIL'}], 'family': 'Passos', 'given': 'Maria do Carmo Friche'}, {'affiliation': [ {'name': 'Universidade de São Paulo, Brasil'}], 'family': 'Moraes-Filho', 'given': 'Joaquim Prado P.'}], 'score': 1.0, 'issue': '2'} """ request_url = build_url_endpoint( '/'.join([self.ENDPOINT, doi]) ) request_params = {} result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ) if result.status_code == 404: return result = result.json() return result['message'] if only_message is True else result
[ "def", "doi", "(", "self", ",", "doi", ",", "only_message", "=", "True", ")", ":", "request_url", "=", "build_url_endpoint", "(", "'/'", ".", "join", "(", "[", "self", ".", "ENDPOINT", ",", "doi", "]", ")", ")", "request_params", "=", "{", "}", "result", "=", "self", ".", "do_http_request", "(", "'get'", ",", "request_url", ",", "data", "=", "request_params", ",", "custom_header", "=", "str", "(", "self", ".", "etiquette", ")", ")", "if", "result", ".", "status_code", "==", "404", ":", "return", "result", "=", "result", ".", "json", "(", ")", "return", "result", "[", "'message'", "]", "if", "only_message", "is", "True", "else", "result" ]
This method retrieve the DOI metadata related to a given DOI number. args: Crossref DOI id (String) return: JSON Example: >>> from crossref.restful import Works >>> works = Works() >>> works.doi('10.1590/S0004-28032013005000001') {'is-referenced-by-count': 6, 'reference-count': 216, 'DOI': '10.1590/s0004-28032013005000001', 'subtitle': [], 'issued': {'date-parts': [[2013, 4, 19]]}, 'source': 'Crossref', 'short-container-title': ['Arq. Gastroenterol.'], 'references-count': 216, 'short-title': [], 'deposited': {'timestamp': 1495911725000, 'date-time': '2017-05-27T19:02:05Z', 'date-parts': [[2017, 5, 27]]}, 'ISSN': ['0004-2803'], 'type': 'journal-article', 'URL': 'http://dx.doi.org/10.1590/s0004-28032013005000001', 'indexed': {'timestamp': 1496034748592, 'date-time': '2017-05-29T05:12:28Z', 'date-parts': [[2017, 5, 29]]}, 'content-domain': {'crossmark-restriction': False, 'domain': []}, 'created': {'timestamp': 1374613284000, 'date-time': '2013-07-23T21:01:24Z', 'date-parts': [[2013, 7, 23]]}, 'issn-type': [{'value': '0004-2803', 'type': 'electronic'}], 'page': '81-96', 'volume': '50', 'original-title': [], 'subject': ['Gastroenterology'], 'relation': {}, 'container-title': ['Arquivos de Gastroenterologia'], 'member': '530', 'prefix': '10.1590', 'published-print': {'date-parts': [[2013, 4, 19]]}, 'title': ['3rd BRAZILIAN CONSENSUS ON Helicobacter pylori'], 'publisher': 'FapUNIFESP (SciELO)', 'alternative-id': ['S0004-28032013000200081'], 'abstract': '<jats:p>Significant abstract data..... .</jats:p>', 'author': [{'affiliation': [{'name': 'Universidade Federal de Minas Gerais, BRAZIL'}], 'family': 'Coelho', 'given': 'Luiz Gonzaga'}, {'affiliation': [ {'name': 'Universidade Federal do Rio Grande do Sul, Brazil'}], 'family': 'Maguinilk', 'given': 'Ismael'}, {'affiliation': [ {'name': 'Presidente de Honra do Núcleo Brasileiro para Estudo do Helicobacter, Brazil'}], 'family': 'Zaterka', 'given': 'Schlioma'}, {'affiliation': [ {'name': 'Universidade Federal do Piauí, Brasil'}], 'family': 'Parente', 'given': 'José Miguel'}, {'affiliation': [{'name': 'Universidade Federal de Minas Gerais, BRAZIL'}], 'family': 'Passos', 'given': 'Maria do Carmo Friche'}, {'affiliation': [ {'name': 'Universidade de São Paulo, Brasil'}], 'family': 'Moraes-Filho', 'given': 'Joaquim Prado P.'}], 'score': 1.0, 'issue': '2'}
[ "This", "method", "retrieve", "the", "DOI", "metadata", "related", "to", "a", "given", "DOI", "number", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L901-L959
train
fabiobatalha/crossrefapi
crossref/restful.py
Works.doi_exists
def doi_exists(self, doi): """ This method retrieve a boolean according to the existence of a crossref DOI number. It returns False if the API results a 404 status code. args: Crossref DOI id (String) return: Boolean Example 1: >>> from crossref.restful import Works >>> works = Works() >>> works.doi_exists('10.1590/S0004-28032013005000001') True Example 2: >>> from crossref.restful import Works >>> works = Works() >>> works.doi_exists('10.1590/S0004-28032013005000001_invalid_doi') False """ request_url = build_url_endpoint( '/'.join([self.ENDPOINT, doi]) ) request_params = {} result = self.do_http_request( 'get', request_url, data=request_params, only_headers=True, custom_header=str(self.etiquette) ) if result.status_code == 404: return False return True
python
def doi_exists(self, doi): """ This method retrieve a boolean according to the existence of a crossref DOI number. It returns False if the API results a 404 status code. args: Crossref DOI id (String) return: Boolean Example 1: >>> from crossref.restful import Works >>> works = Works() >>> works.doi_exists('10.1590/S0004-28032013005000001') True Example 2: >>> from crossref.restful import Works >>> works = Works() >>> works.doi_exists('10.1590/S0004-28032013005000001_invalid_doi') False """ request_url = build_url_endpoint( '/'.join([self.ENDPOINT, doi]) ) request_params = {} result = self.do_http_request( 'get', request_url, data=request_params, only_headers=True, custom_header=str(self.etiquette) ) if result.status_code == 404: return False return True
[ "def", "doi_exists", "(", "self", ",", "doi", ")", ":", "request_url", "=", "build_url_endpoint", "(", "'/'", ".", "join", "(", "[", "self", ".", "ENDPOINT", ",", "doi", "]", ")", ")", "request_params", "=", "{", "}", "result", "=", "self", ".", "do_http_request", "(", "'get'", ",", "request_url", ",", "data", "=", "request_params", ",", "only_headers", "=", "True", ",", "custom_header", "=", "str", "(", "self", ".", "etiquette", ")", ")", "if", "result", ".", "status_code", "==", "404", ":", "return", "False", "return", "True" ]
This method retrieve a boolean according to the existence of a crossref DOI number. It returns False if the API results a 404 status code. args: Crossref DOI id (String) return: Boolean Example 1: >>> from crossref.restful import Works >>> works = Works() >>> works.doi_exists('10.1590/S0004-28032013005000001') True Example 2: >>> from crossref.restful import Works >>> works = Works() >>> works.doi_exists('10.1590/S0004-28032013005000001_invalid_doi') False
[ "This", "method", "retrieve", "a", "boolean", "according", "to", "the", "existence", "of", "a", "crossref", "DOI", "number", ".", "It", "returns", "False", "if", "the", "API", "results", "a", "404", "status", "code", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L995-L1032
train
fabiobatalha/crossrefapi
crossref/restful.py
Funders.works
def works(self, funder_id): """ This method retrieve a iterable of Works of the given funder. args: Crossref allowed document Types (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(funder_id)) return Works(context=context)
python
def works(self, funder_id): """ This method retrieve a iterable of Works of the given funder. args: Crossref allowed document Types (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(funder_id)) return Works(context=context)
[ "def", "works", "(", "self", ",", "funder_id", ")", ":", "context", "=", "'%s/%s'", "%", "(", "self", ".", "ENDPOINT", ",", "str", "(", "funder_id", ")", ")", "return", "Works", "(", "context", "=", "context", ")" ]
This method retrieve a iterable of Works of the given funder. args: Crossref allowed document Types (String) return: Works()
[ "This", "method", "retrieve", "a", "iterable", "of", "Works", "of", "the", "given", "funder", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1199-L1208
train
fabiobatalha/crossrefapi
crossref/restful.py
Members.works
def works(self, member_id): """ This method retrieve a iterable of Works of the given member. args: Member ID (Integer) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(member_id)) return Works(context=context)
python
def works(self, member_id): """ This method retrieve a iterable of Works of the given member. args: Member ID (Integer) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(member_id)) return Works(context=context)
[ "def", "works", "(", "self", ",", "member_id", ")", ":", "context", "=", "'%s/%s'", "%", "(", "self", ".", "ENDPOINT", ",", "str", "(", "member_id", ")", ")", "return", "Works", "(", "context", "=", "context", ")" ]
This method retrieve a iterable of Works of the given member. args: Member ID (Integer) return: Works()
[ "This", "method", "retrieve", "a", "iterable", "of", "Works", "of", "the", "given", "member", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1418-L1427
train
fabiobatalha/crossrefapi
crossref/restful.py
Types.all
def all(self): """ This method retrieve an iterator with all the available types. return: iterator of crossref document types Example: >>> from crossref.restful import Types >>> types = Types() >>> [i for i in types.all()] [{'label': 'Book Section', 'id': 'book-section'}, {'label': 'Monograph', 'id': 'monograph'}, {'label': 'Report', 'id': 'report'}, {'label': 'Book Track', 'id': 'book-track'}, {'label': 'Journal Article', 'id': 'journal-article'}, {'label': 'Part', 'id': 'book-part'}, ... }] """ request_url = build_url_endpoint(self.ENDPOINT, self.context) request_params = dict(self.request_params) result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ) if result.status_code == 404: raise StopIteration() result = result.json() for item in result['message']['items']: yield item
python
def all(self): """ This method retrieve an iterator with all the available types. return: iterator of crossref document types Example: >>> from crossref.restful import Types >>> types = Types() >>> [i for i in types.all()] [{'label': 'Book Section', 'id': 'book-section'}, {'label': 'Monograph', 'id': 'monograph'}, {'label': 'Report', 'id': 'report'}, {'label': 'Book Track', 'id': 'book-track'}, {'label': 'Journal Article', 'id': 'journal-article'}, {'label': 'Part', 'id': 'book-part'}, ... }] """ request_url = build_url_endpoint(self.ENDPOINT, self.context) request_params = dict(self.request_params) result = self.do_http_request( 'get', request_url, data=request_params, custom_header=str(self.etiquette) ) if result.status_code == 404: raise StopIteration() result = result.json() for item in result['message']['items']: yield item
[ "def", "all", "(", "self", ")", ":", "request_url", "=", "build_url_endpoint", "(", "self", ".", "ENDPOINT", ",", "self", ".", "context", ")", "request_params", "=", "dict", "(", "self", ".", "request_params", ")", "result", "=", "self", ".", "do_http_request", "(", "'get'", ",", "request_url", ",", "data", "=", "request_params", ",", "custom_header", "=", "str", "(", "self", ".", "etiquette", ")", ")", "if", "result", ".", "status_code", "==", "404", ":", "raise", "StopIteration", "(", ")", "result", "=", "result", ".", "json", "(", ")", "for", "item", "in", "result", "[", "'message'", "]", "[", "'items'", "]", ":", "yield", "item" ]
This method retrieve an iterator with all the available types. return: iterator of crossref document types Example: >>> from crossref.restful import Types >>> types = Types() >>> [i for i in types.all()] [{'label': 'Book Section', 'id': 'book-section'}, {'label': 'Monograph', 'id': 'monograph'}, {'label': 'Report', 'id': 'report'}, {'label': 'Book Track', 'id': 'book-track'}, {'label': 'Journal Article', 'id': 'journal-article'}, {'label': 'Part', 'id': 'book-part'}, ... }]
[ "This", "method", "retrieve", "an", "iterator", "with", "all", "the", "available", "types", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1466-L1501
train
fabiobatalha/crossrefapi
crossref/restful.py
Types.works
def works(self, type_id): """ This method retrieve a iterable of Works of the given type. args: Crossref allowed document Types (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(type_id)) return Works(context=context)
python
def works(self, type_id): """ This method retrieve a iterable of Works of the given type. args: Crossref allowed document Types (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(type_id)) return Works(context=context)
[ "def", "works", "(", "self", ",", "type_id", ")", ":", "context", "=", "'%s/%s'", "%", "(", "self", ".", "ENDPOINT", ",", "str", "(", "type_id", ")", ")", "return", "Works", "(", "context", "=", "context", ")" ]
This method retrieve a iterable of Works of the given type. args: Crossref allowed document Types (String) return: Works()
[ "This", "method", "retrieve", "a", "iterable", "of", "Works", "of", "the", "given", "type", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1542-L1551
train
fabiobatalha/crossrefapi
crossref/restful.py
Prefixes.works
def works(self, prefix_id): """ This method retrieve a iterable of Works of the given prefix. args: Crossref Prefix (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(prefix_id)) return Works(context=context)
python
def works(self, prefix_id): """ This method retrieve a iterable of Works of the given prefix. args: Crossref Prefix (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(prefix_id)) return Works(context=context)
[ "def", "works", "(", "self", ",", "prefix_id", ")", ":", "context", "=", "'%s/%s'", "%", "(", "self", ".", "ENDPOINT", ",", "str", "(", "prefix_id", ")", ")", "return", "Works", "(", "context", "=", "context", ")" ]
This method retrieve a iterable of Works of the given prefix. args: Crossref Prefix (String) return: Works()
[ "This", "method", "retrieve", "a", "iterable", "of", "Works", "of", "the", "given", "prefix", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1594-L1603
train
fabiobatalha/crossrefapi
crossref/restful.py
Journals.works
def works(self, issn): """ This method retrieve a iterable of Works of the given journal. args: Journal ISSN (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(issn)) return Works(context=context)
python
def works(self, issn): """ This method retrieve a iterable of Works of the given journal. args: Journal ISSN (String) return: Works() """ context = '%s/%s' % (self.ENDPOINT, str(issn)) return Works(context=context)
[ "def", "works", "(", "self", ",", "issn", ")", ":", "context", "=", "'%s/%s'", "%", "(", "self", ".", "ENDPOINT", ",", "str", "(", "issn", ")", ")", "return", "Works", "(", "context", "=", "context", ")" ]
This method retrieve a iterable of Works of the given journal. args: Journal ISSN (String) return: Works()
[ "This", "method", "retrieve", "a", "iterable", "of", "Works", "of", "the", "given", "journal", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1718-L1728
train
fabiobatalha/crossrefapi
crossref/restful.py
Depositor.register_doi
def register_doi(self, submission_id, request_xml): """ This method registry a new DOI number in Crossref or update some DOI metadata. submission_id: Will be used as the submission file name. The file name could be used in future requests to retrieve the submission status. request_xml: The XML with the document metadata. It must be under compliance with the Crossref Submission Schema. """ endpoint = self.get_endpoint('deposit') files = { 'mdFile': ('%s.xml' % submission_id, request_xml) } params = { 'operation': 'doMDUpload', 'login_id': self.api_user, 'login_passwd': self.api_key } result = self.do_http_request( 'post', endpoint, data=params, files=files, timeout=10, custom_header=str(self.etiquette) ) return result
python
def register_doi(self, submission_id, request_xml): """ This method registry a new DOI number in Crossref or update some DOI metadata. submission_id: Will be used as the submission file name. The file name could be used in future requests to retrieve the submission status. request_xml: The XML with the document metadata. It must be under compliance with the Crossref Submission Schema. """ endpoint = self.get_endpoint('deposit') files = { 'mdFile': ('%s.xml' % submission_id, request_xml) } params = { 'operation': 'doMDUpload', 'login_id': self.api_user, 'login_passwd': self.api_key } result = self.do_http_request( 'post', endpoint, data=params, files=files, timeout=10, custom_header=str(self.etiquette) ) return result
[ "def", "register_doi", "(", "self", ",", "submission_id", ",", "request_xml", ")", ":", "endpoint", "=", "self", ".", "get_endpoint", "(", "'deposit'", ")", "files", "=", "{", "'mdFile'", ":", "(", "'%s.xml'", "%", "submission_id", ",", "request_xml", ")", "}", "params", "=", "{", "'operation'", ":", "'doMDUpload'", ",", "'login_id'", ":", "self", ".", "api_user", ",", "'login_passwd'", ":", "self", ".", "api_key", "}", "result", "=", "self", ".", "do_http_request", "(", "'post'", ",", "endpoint", ",", "data", "=", "params", ",", "files", "=", "files", ",", "timeout", "=", "10", ",", "custom_header", "=", "str", "(", "self", ".", "etiquette", ")", ")", "return", "result" ]
This method registry a new DOI number in Crossref or update some DOI metadata. submission_id: Will be used as the submission file name. The file name could be used in future requests to retrieve the submission status. request_xml: The XML with the document metadata. It must be under compliance with the Crossref Submission Schema.
[ "This", "method", "registry", "a", "new", "DOI", "number", "in", "Crossref", "or", "update", "some", "DOI", "metadata", "." ]
53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7
https://github.com/fabiobatalha/crossrefapi/blob/53f84ee0d8a8fc6ad9b2493f51c5151e66d2faf7/crossref/restful.py#L1746-L1779
train
buildinspace/peru
peru/plugin.py
_find_plugin_dir
def _find_plugin_dir(module_type): '''Find the directory containing the plugin definition for the given type. Do this by searching all the paths where plugins can live for a dir that matches the type name.''' for install_dir in _get_plugin_install_dirs(): candidate = os.path.join(install_dir, module_type) if os.path.isdir(candidate): return candidate else: raise PluginCandidateError( 'No plugin found for `{}` module in paths:\n{}'.format( module_type, '\n'.join(_get_plugin_install_dirs())))
python
def _find_plugin_dir(module_type): '''Find the directory containing the plugin definition for the given type. Do this by searching all the paths where plugins can live for a dir that matches the type name.''' for install_dir in _get_plugin_install_dirs(): candidate = os.path.join(install_dir, module_type) if os.path.isdir(candidate): return candidate else: raise PluginCandidateError( 'No plugin found for `{}` module in paths:\n{}'.format( module_type, '\n'.join(_get_plugin_install_dirs())))
[ "def", "_find_plugin_dir", "(", "module_type", ")", ":", "for", "install_dir", "in", "_get_plugin_install_dirs", "(", ")", ":", "candidate", "=", "os", ".", "path", ".", "join", "(", "install_dir", ",", "module_type", ")", "if", "os", ".", "path", ".", "isdir", "(", "candidate", ")", ":", "return", "candidate", "else", ":", "raise", "PluginCandidateError", "(", "'No plugin found for `{}` module in paths:\\n{}'", ".", "format", "(", "module_type", ",", "'\\n'", ".", "join", "(", "_get_plugin_install_dirs", "(", ")", ")", ")", ")" ]
Find the directory containing the plugin definition for the given type. Do this by searching all the paths where plugins can live for a dir that matches the type name.
[ "Find", "the", "directory", "containing", "the", "plugin", "definition", "for", "the", "given", "type", ".", "Do", "this", "by", "searching", "all", "the", "paths", "where", "plugins", "can", "live", "for", "a", "dir", "that", "matches", "the", "type", "name", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/plugin.py#L264-L276
train
buildinspace/peru
peru/main.py
merged_args_dicts
def merged_args_dicts(global_args, subcommand_args): '''We deal with docopt args from the toplevel peru parse and the subcommand parse. We don't want False values for a flag in the subcommand to override True values if that flag was given at the top level. This function specifically handles that case.''' merged = global_args.copy() for key, val in subcommand_args.items(): if key not in merged: merged[key] = val elif type(merged[key]) is type(val) is bool: merged[key] = merged[key] or val else: raise RuntimeError("Unmergable args.") return merged
python
def merged_args_dicts(global_args, subcommand_args): '''We deal with docopt args from the toplevel peru parse and the subcommand parse. We don't want False values for a flag in the subcommand to override True values if that flag was given at the top level. This function specifically handles that case.''' merged = global_args.copy() for key, val in subcommand_args.items(): if key not in merged: merged[key] = val elif type(merged[key]) is type(val) is bool: merged[key] = merged[key] or val else: raise RuntimeError("Unmergable args.") return merged
[ "def", "merged_args_dicts", "(", "global_args", ",", "subcommand_args", ")", ":", "merged", "=", "global_args", ".", "copy", "(", ")", "for", "key", ",", "val", "in", "subcommand_args", ".", "items", "(", ")", ":", "if", "key", "not", "in", "merged", ":", "merged", "[", "key", "]", "=", "val", "elif", "type", "(", "merged", "[", "key", "]", ")", "is", "type", "(", "val", ")", "is", "bool", ":", "merged", "[", "key", "]", "=", "merged", "[", "key", "]", "or", "val", "else", ":", "raise", "RuntimeError", "(", "\"Unmergable args.\"", ")", "return", "merged" ]
We deal with docopt args from the toplevel peru parse and the subcommand parse. We don't want False values for a flag in the subcommand to override True values if that flag was given at the top level. This function specifically handles that case.
[ "We", "deal", "with", "docopt", "args", "from", "the", "toplevel", "peru", "parse", "and", "the", "subcommand", "parse", ".", "We", "don", "t", "want", "False", "values", "for", "a", "flag", "in", "the", "subcommand", "to", "override", "True", "values", "if", "that", "flag", "was", "given", "at", "the", "top", "level", ".", "This", "function", "specifically", "handles", "that", "case", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/main.py#L299-L312
train
buildinspace/peru
peru/main.py
force_utf8_in_ascii_mode_hack
def force_utf8_in_ascii_mode_hack(): '''In systems without a UTF8 locale configured, Python will default to ASCII mode for stdout and stderr. This causes our fancy display to fail with encoding errors. In particular, you run into this if you try to run peru inside of Docker. This is a hack to force emitting UTF8 in that case. Hopefully it doesn't break anything important.''' if sys.stdout.encoding == 'ANSI_X3.4-1968': sys.stdout = open( sys.stdout.fileno(), mode='w', encoding='utf8', buffering=1) sys.stderr = open( sys.stderr.fileno(), mode='w', encoding='utf8', buffering=1)
python
def force_utf8_in_ascii_mode_hack(): '''In systems without a UTF8 locale configured, Python will default to ASCII mode for stdout and stderr. This causes our fancy display to fail with encoding errors. In particular, you run into this if you try to run peru inside of Docker. This is a hack to force emitting UTF8 in that case. Hopefully it doesn't break anything important.''' if sys.stdout.encoding == 'ANSI_X3.4-1968': sys.stdout = open( sys.stdout.fileno(), mode='w', encoding='utf8', buffering=1) sys.stderr = open( sys.stderr.fileno(), mode='w', encoding='utf8', buffering=1)
[ "def", "force_utf8_in_ascii_mode_hack", "(", ")", ":", "if", "sys", ".", "stdout", ".", "encoding", "==", "'ANSI_X3.4-1968'", ":", "sys", ".", "stdout", "=", "open", "(", "sys", ".", "stdout", ".", "fileno", "(", ")", ",", "mode", "=", "'w'", ",", "encoding", "=", "'utf8'", ",", "buffering", "=", "1", ")", "sys", ".", "stderr", "=", "open", "(", "sys", ".", "stderr", ".", "fileno", "(", ")", ",", "mode", "=", "'w'", ",", "encoding", "=", "'utf8'", ",", "buffering", "=", "1", ")" ]
In systems without a UTF8 locale configured, Python will default to ASCII mode for stdout and stderr. This causes our fancy display to fail with encoding errors. In particular, you run into this if you try to run peru inside of Docker. This is a hack to force emitting UTF8 in that case. Hopefully it doesn't break anything important.
[ "In", "systems", "without", "a", "UTF8", "locale", "configured", "Python", "will", "default", "to", "ASCII", "mode", "for", "stdout", "and", "stderr", ".", "This", "causes", "our", "fancy", "display", "to", "fail", "with", "encoding", "errors", ".", "In", "particular", "you", "run", "into", "this", "if", "you", "try", "to", "run", "peru", "inside", "of", "Docker", ".", "This", "is", "a", "hack", "to", "force", "emitting", "UTF8", "in", "that", "case", ".", "Hopefully", "it", "doesn", "t", "break", "anything", "important", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/main.py#L334-L344
train
buildinspace/peru
peru/scope.py
Scope.parse_target
async def parse_target(self, runtime, target_str): '''A target is a pipeline of a module into zero or more rules, and each module and rule can itself be scoped with zero or more module names.''' pipeline_parts = target_str.split(RULE_SEPARATOR) module = await self.resolve_module(runtime, pipeline_parts[0], target_str) rules = [] for part in pipeline_parts[1:]: rule = await self.resolve_rule(runtime, part) rules.append(rule) return module, tuple(rules)
python
async def parse_target(self, runtime, target_str): '''A target is a pipeline of a module into zero or more rules, and each module and rule can itself be scoped with zero or more module names.''' pipeline_parts = target_str.split(RULE_SEPARATOR) module = await self.resolve_module(runtime, pipeline_parts[0], target_str) rules = [] for part in pipeline_parts[1:]: rule = await self.resolve_rule(runtime, part) rules.append(rule) return module, tuple(rules)
[ "async", "def", "parse_target", "(", "self", ",", "runtime", ",", "target_str", ")", ":", "pipeline_parts", "=", "target_str", ".", "split", "(", "RULE_SEPARATOR", ")", "module", "=", "await", "self", ".", "resolve_module", "(", "runtime", ",", "pipeline_parts", "[", "0", "]", ",", "target_str", ")", "rules", "=", "[", "]", "for", "part", "in", "pipeline_parts", "[", "1", ":", "]", ":", "rule", "=", "await", "self", ".", "resolve_rule", "(", "runtime", ",", "part", ")", "rules", ".", "append", "(", "rule", ")", "return", "module", ",", "tuple", "(", "rules", ")" ]
A target is a pipeline of a module into zero or more rules, and each module and rule can itself be scoped with zero or more module names.
[ "A", "target", "is", "a", "pipeline", "of", "a", "module", "into", "zero", "or", "more", "rules", "and", "each", "module", "and", "rule", "can", "itself", "be", "scoped", "with", "zero", "or", "more", "module", "names", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/scope.py#L17-L27
train
buildinspace/peru
peru/edit_yaml.py
_maybe_quote
def _maybe_quote(val): '''All of our values should be strings. Usually those can be passed in as bare words, but if they're parseable as an int or float we need to quote them.''' assert isinstance(val, str), 'We should never set non-string values.' needs_quoting = False try: int(val) needs_quoting = True except Exception: pass try: float(val) needs_quoting = True except Exception: pass if needs_quoting: return '"{}"'.format(val) else: return val
python
def _maybe_quote(val): '''All of our values should be strings. Usually those can be passed in as bare words, but if they're parseable as an int or float we need to quote them.''' assert isinstance(val, str), 'We should never set non-string values.' needs_quoting = False try: int(val) needs_quoting = True except Exception: pass try: float(val) needs_quoting = True except Exception: pass if needs_quoting: return '"{}"'.format(val) else: return val
[ "def", "_maybe_quote", "(", "val", ")", ":", "assert", "isinstance", "(", "val", ",", "str", ")", ",", "'We should never set non-string values.'", "needs_quoting", "=", "False", "try", ":", "int", "(", "val", ")", "needs_quoting", "=", "True", "except", "Exception", ":", "pass", "try", ":", "float", "(", "val", ")", "needs_quoting", "=", "True", "except", "Exception", ":", "pass", "if", "needs_quoting", ":", "return", "'\"{}\"'", ".", "format", "(", "val", ")", "else", ":", "return", "val" ]
All of our values should be strings. Usually those can be passed in as bare words, but if they're parseable as an int or float we need to quote them.
[ "All", "of", "our", "values", "should", "be", "strings", ".", "Usually", "those", "can", "be", "passed", "in", "as", "bare", "words", "but", "if", "they", "re", "parseable", "as", "an", "int", "or", "float", "we", "need", "to", "quote", "them", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/edit_yaml.py#L26-L45
train
buildinspace/peru
peru/async_helpers.py
gather_coalescing_exceptions
async def gather_coalescing_exceptions(coros, display, *, verbose): '''The tricky thing about running multiple coroutines in parallel is what we're supposed to do when one of them raises an exception. The approach we're using here is to catch exceptions and keep waiting for other tasks to finish. At the end, we reraise a GatheredExceptions error, if any exceptions were caught. Another minor detail: We also want to make sure to start coroutines in the order given, so that they end up appearing to the user alphabetically in the fancy display. Note that asyncio.gather() puts coroutines in a set internally, so we schedule coroutines *before* we give them to gather(). ''' exceptions = [] reprs = [] async def catching_wrapper(coro): try: return (await coro) except Exception as e: exceptions.append(e) if isinstance(e, PrintableError) and not verbose: reprs.append(e.message) else: reprs.append(traceback.format_exc()) return None # Suppress a deprecation warning in Python 3.5, while continuing to support # 3.3 and early 3.4 releases. if hasattr(asyncio, 'ensure_future'): schedule = getattr(asyncio, 'ensure_future') else: schedule = getattr(asyncio, 'async') futures = [schedule(catching_wrapper(coro)) for coro in coros] results = await asyncio.gather(*futures) if exceptions: raise GatheredExceptions(exceptions, reprs) else: return results
python
async def gather_coalescing_exceptions(coros, display, *, verbose): '''The tricky thing about running multiple coroutines in parallel is what we're supposed to do when one of them raises an exception. The approach we're using here is to catch exceptions and keep waiting for other tasks to finish. At the end, we reraise a GatheredExceptions error, if any exceptions were caught. Another minor detail: We also want to make sure to start coroutines in the order given, so that they end up appearing to the user alphabetically in the fancy display. Note that asyncio.gather() puts coroutines in a set internally, so we schedule coroutines *before* we give them to gather(). ''' exceptions = [] reprs = [] async def catching_wrapper(coro): try: return (await coro) except Exception as e: exceptions.append(e) if isinstance(e, PrintableError) and not verbose: reprs.append(e.message) else: reprs.append(traceback.format_exc()) return None # Suppress a deprecation warning in Python 3.5, while continuing to support # 3.3 and early 3.4 releases. if hasattr(asyncio, 'ensure_future'): schedule = getattr(asyncio, 'ensure_future') else: schedule = getattr(asyncio, 'async') futures = [schedule(catching_wrapper(coro)) for coro in coros] results = await asyncio.gather(*futures) if exceptions: raise GatheredExceptions(exceptions, reprs) else: return results
[ "async", "def", "gather_coalescing_exceptions", "(", "coros", ",", "display", ",", "*", ",", "verbose", ")", ":", "exceptions", "=", "[", "]", "reprs", "=", "[", "]", "async", "def", "catching_wrapper", "(", "coro", ")", ":", "try", ":", "return", "(", "await", "coro", ")", "except", "Exception", "as", "e", ":", "exceptions", ".", "append", "(", "e", ")", "if", "isinstance", "(", "e", ",", "PrintableError", ")", "and", "not", "verbose", ":", "reprs", ".", "append", "(", "e", ".", "message", ")", "else", ":", "reprs", ".", "append", "(", "traceback", ".", "format_exc", "(", ")", ")", "return", "None", "# Suppress a deprecation warning in Python 3.5, while continuing to support", "# 3.3 and early 3.4 releases.", "if", "hasattr", "(", "asyncio", ",", "'ensure_future'", ")", ":", "schedule", "=", "getattr", "(", "asyncio", ",", "'ensure_future'", ")", "else", ":", "schedule", "=", "getattr", "(", "asyncio", ",", "'async'", ")", "futures", "=", "[", "schedule", "(", "catching_wrapper", "(", "coro", ")", ")", "for", "coro", "in", "coros", "]", "results", "=", "await", "asyncio", ".", "gather", "(", "*", "futures", ")", "if", "exceptions", ":", "raise", "GatheredExceptions", "(", "exceptions", ",", "reprs", ")", "else", ":", "return", "results" ]
The tricky thing about running multiple coroutines in parallel is what we're supposed to do when one of them raises an exception. The approach we're using here is to catch exceptions and keep waiting for other tasks to finish. At the end, we reraise a GatheredExceptions error, if any exceptions were caught. Another minor detail: We also want to make sure to start coroutines in the order given, so that they end up appearing to the user alphabetically in the fancy display. Note that asyncio.gather() puts coroutines in a set internally, so we schedule coroutines *before* we give them to gather().
[ "The", "tricky", "thing", "about", "running", "multiple", "coroutines", "in", "parallel", "is", "what", "we", "re", "supposed", "to", "do", "when", "one", "of", "them", "raises", "an", "exception", ".", "The", "approach", "we", "re", "using", "here", "is", "to", "catch", "exceptions", "and", "keep", "waiting", "for", "other", "tasks", "to", "finish", ".", "At", "the", "end", "we", "reraise", "a", "GatheredExceptions", "error", "if", "any", "exceptions", "were", "caught", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/async_helpers.py#L53-L94
train
buildinspace/peru
peru/async_helpers.py
create_subprocess_with_handle
async def create_subprocess_with_handle(command, display_handle, *, shell=False, cwd, **kwargs): '''Writes subprocess output to a display handle as it comes in, and also returns a copy of it as a string. Throws if the subprocess returns an error. Note that cwd is a required keyword-only argument, on theory that peru should never start child processes "wherever I happen to be running right now."''' # We're going to get chunks of bytes from the subprocess, and it's possible # that one of those chunks ends in the middle of a unicode character. An # incremental decoder keeps those dangling bytes around until the next # chunk arrives, so that split characters get decoded properly. Use # stdout's encoding, but provide a default for the case where stdout has # been redirected to a StringIO. (This happens in tests.) encoding = sys.stdout.encoding or 'utf8' decoder_factory = codecs.getincrementaldecoder(encoding) decoder = decoder_factory(errors='replace') output_copy = io.StringIO() # Display handles are context managers. Entering and exiting the display # handle lets the display know when the job starts and stops. with display_handle: stdin = asyncio.subprocess.DEVNULL stdout = asyncio.subprocess.PIPE stderr = asyncio.subprocess.STDOUT if shell: proc = await asyncio.create_subprocess_shell( command, stdin=stdin, stdout=stdout, stderr=stderr, cwd=cwd, **kwargs) else: proc = await asyncio.create_subprocess_exec( *command, stdin=stdin, stdout=stdout, stderr=stderr, cwd=cwd, **kwargs) # Read all the output from the subprocess as its comes in. while True: outputbytes = await proc.stdout.read(4096) if not outputbytes: break outputstr = decoder.decode(outputbytes) outputstr_unified = _unify_newlines(outputstr) display_handle.write(outputstr_unified) output_copy.write(outputstr_unified) returncode = await proc.wait() if returncode != 0: raise subprocess.CalledProcessError(returncode, command, output_copy.getvalue()) if hasattr(decoder, 'buffer'): # The utf8 decoder has this attribute, but some others don't. assert not decoder.buffer, 'decoder nonempty: ' + repr(decoder.buffer) return output_copy.getvalue()
python
async def create_subprocess_with_handle(command, display_handle, *, shell=False, cwd, **kwargs): '''Writes subprocess output to a display handle as it comes in, and also returns a copy of it as a string. Throws if the subprocess returns an error. Note that cwd is a required keyword-only argument, on theory that peru should never start child processes "wherever I happen to be running right now."''' # We're going to get chunks of bytes from the subprocess, and it's possible # that one of those chunks ends in the middle of a unicode character. An # incremental decoder keeps those dangling bytes around until the next # chunk arrives, so that split characters get decoded properly. Use # stdout's encoding, but provide a default for the case where stdout has # been redirected to a StringIO. (This happens in tests.) encoding = sys.stdout.encoding or 'utf8' decoder_factory = codecs.getincrementaldecoder(encoding) decoder = decoder_factory(errors='replace') output_copy = io.StringIO() # Display handles are context managers. Entering and exiting the display # handle lets the display know when the job starts and stops. with display_handle: stdin = asyncio.subprocess.DEVNULL stdout = asyncio.subprocess.PIPE stderr = asyncio.subprocess.STDOUT if shell: proc = await asyncio.create_subprocess_shell( command, stdin=stdin, stdout=stdout, stderr=stderr, cwd=cwd, **kwargs) else: proc = await asyncio.create_subprocess_exec( *command, stdin=stdin, stdout=stdout, stderr=stderr, cwd=cwd, **kwargs) # Read all the output from the subprocess as its comes in. while True: outputbytes = await proc.stdout.read(4096) if not outputbytes: break outputstr = decoder.decode(outputbytes) outputstr_unified = _unify_newlines(outputstr) display_handle.write(outputstr_unified) output_copy.write(outputstr_unified) returncode = await proc.wait() if returncode != 0: raise subprocess.CalledProcessError(returncode, command, output_copy.getvalue()) if hasattr(decoder, 'buffer'): # The utf8 decoder has this attribute, but some others don't. assert not decoder.buffer, 'decoder nonempty: ' + repr(decoder.buffer) return output_copy.getvalue()
[ "async", "def", "create_subprocess_with_handle", "(", "command", ",", "display_handle", ",", "*", ",", "shell", "=", "False", ",", "cwd", ",", "*", "*", "kwargs", ")", ":", "# We're going to get chunks of bytes from the subprocess, and it's possible", "# that one of those chunks ends in the middle of a unicode character. An", "# incremental decoder keeps those dangling bytes around until the next", "# chunk arrives, so that split characters get decoded properly. Use", "# stdout's encoding, but provide a default for the case where stdout has", "# been redirected to a StringIO. (This happens in tests.)", "encoding", "=", "sys", ".", "stdout", ".", "encoding", "or", "'utf8'", "decoder_factory", "=", "codecs", ".", "getincrementaldecoder", "(", "encoding", ")", "decoder", "=", "decoder_factory", "(", "errors", "=", "'replace'", ")", "output_copy", "=", "io", ".", "StringIO", "(", ")", "# Display handles are context managers. Entering and exiting the display", "# handle lets the display know when the job starts and stops.", "with", "display_handle", ":", "stdin", "=", "asyncio", ".", "subprocess", ".", "DEVNULL", "stdout", "=", "asyncio", ".", "subprocess", ".", "PIPE", "stderr", "=", "asyncio", ".", "subprocess", ".", "STDOUT", "if", "shell", ":", "proc", "=", "await", "asyncio", ".", "create_subprocess_shell", "(", "command", ",", "stdin", "=", "stdin", ",", "stdout", "=", "stdout", ",", "stderr", "=", "stderr", ",", "cwd", "=", "cwd", ",", "*", "*", "kwargs", ")", "else", ":", "proc", "=", "await", "asyncio", ".", "create_subprocess_exec", "(", "*", "command", ",", "stdin", "=", "stdin", ",", "stdout", "=", "stdout", ",", "stderr", "=", "stderr", ",", "cwd", "=", "cwd", ",", "*", "*", "kwargs", ")", "# Read all the output from the subprocess as its comes in.", "while", "True", ":", "outputbytes", "=", "await", "proc", ".", "stdout", ".", "read", "(", "4096", ")", "if", "not", "outputbytes", ":", "break", "outputstr", "=", "decoder", ".", "decode", "(", "outputbytes", ")", "outputstr_unified", "=", "_unify_newlines", "(", "outputstr", ")", "display_handle", ".", "write", "(", "outputstr_unified", ")", "output_copy", ".", "write", "(", "outputstr_unified", ")", "returncode", "=", "await", "proc", ".", "wait", "(", ")", "if", "returncode", "!=", "0", ":", "raise", "subprocess", ".", "CalledProcessError", "(", "returncode", ",", "command", ",", "output_copy", ".", "getvalue", "(", ")", ")", "if", "hasattr", "(", "decoder", ",", "'buffer'", ")", ":", "# The utf8 decoder has this attribute, but some others don't.", "assert", "not", "decoder", ".", "buffer", ",", "'decoder nonempty: '", "+", "repr", "(", "decoder", ".", "buffer", ")", "return", "output_copy", ".", "getvalue", "(", ")" ]
Writes subprocess output to a display handle as it comes in, and also returns a copy of it as a string. Throws if the subprocess returns an error. Note that cwd is a required keyword-only argument, on theory that peru should never start child processes "wherever I happen to be running right now."
[ "Writes", "subprocess", "output", "to", "a", "display", "handle", "as", "it", "comes", "in", "and", "also", "returns", "a", "copy", "of", "it", "as", "a", "string", ".", "Throws", "if", "the", "subprocess", "returns", "an", "error", ".", "Note", "that", "cwd", "is", "a", "required", "keyword", "-", "only", "argument", "on", "theory", "that", "peru", "should", "never", "start", "child", "processes", "wherever", "I", "happen", "to", "be", "running", "right", "now", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/async_helpers.py#L97-L164
train
buildinspace/peru
peru/async_helpers.py
raises_gathered
def raises_gathered(error_type): '''For use in tests. Many tests expect a single error to be thrown, and want it to be of a specific type. This is a helper method for when that type is inside a gathered exception.''' container = RaisesGatheredContainer() try: yield container except GatheredExceptions as e: # Make sure there is exactly one exception. if len(e.exceptions) != 1: raise inner = e.exceptions[0] # Make sure the exception is the right type. if not isinstance(inner, error_type): raise # Success. container.exception = inner
python
def raises_gathered(error_type): '''For use in tests. Many tests expect a single error to be thrown, and want it to be of a specific type. This is a helper method for when that type is inside a gathered exception.''' container = RaisesGatheredContainer() try: yield container except GatheredExceptions as e: # Make sure there is exactly one exception. if len(e.exceptions) != 1: raise inner = e.exceptions[0] # Make sure the exception is the right type. if not isinstance(inner, error_type): raise # Success. container.exception = inner
[ "def", "raises_gathered", "(", "error_type", ")", ":", "container", "=", "RaisesGatheredContainer", "(", ")", "try", ":", "yield", "container", "except", "GatheredExceptions", "as", "e", ":", "# Make sure there is exactly one exception.", "if", "len", "(", "e", ".", "exceptions", ")", "!=", "1", ":", "raise", "inner", "=", "e", ".", "exceptions", "[", "0", "]", "# Make sure the exception is the right type.", "if", "not", "isinstance", "(", "inner", ",", "error_type", ")", ":", "raise", "# Success.", "container", ".", "exception", "=", "inner" ]
For use in tests. Many tests expect a single error to be thrown, and want it to be of a specific type. This is a helper method for when that type is inside a gathered exception.
[ "For", "use", "in", "tests", ".", "Many", "tests", "expect", "a", "single", "error", "to", "be", "thrown", "and", "want", "it", "to", "be", "of", "a", "specific", "type", ".", "This", "is", "a", "helper", "method", "for", "when", "that", "type", "is", "inside", "a", "gathered", "exception", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/async_helpers.py#L201-L217
train
buildinspace/peru
peru/resources/plugins/curl/curl_plugin.py
get_request_filename
def get_request_filename(request): '''Figure out the filename for an HTTP download.''' # Check to see if a filename is specified in the HTTP headers. if 'Content-Disposition' in request.info(): disposition = request.info()['Content-Disposition'] pieces = re.split(r'\s*;\s*', disposition) for piece in pieces: if piece.startswith('filename='): filename = piece[len('filename='):] # Strip exactly one " from each end. if filename.startswith('"'): filename = filename[1:] if filename.endswith('"'): filename = filename[:-1] # Interpret backslashed quotes. filename = filename.replace('\\"', '"') return filename # If no filename was specified, pick a reasonable default. return os.path.basename(urlsplit(request.url).path) or 'index.html'
python
def get_request_filename(request): '''Figure out the filename for an HTTP download.''' # Check to see if a filename is specified in the HTTP headers. if 'Content-Disposition' in request.info(): disposition = request.info()['Content-Disposition'] pieces = re.split(r'\s*;\s*', disposition) for piece in pieces: if piece.startswith('filename='): filename = piece[len('filename='):] # Strip exactly one " from each end. if filename.startswith('"'): filename = filename[1:] if filename.endswith('"'): filename = filename[:-1] # Interpret backslashed quotes. filename = filename.replace('\\"', '"') return filename # If no filename was specified, pick a reasonable default. return os.path.basename(urlsplit(request.url).path) or 'index.html'
[ "def", "get_request_filename", "(", "request", ")", ":", "# Check to see if a filename is specified in the HTTP headers.", "if", "'Content-Disposition'", "in", "request", ".", "info", "(", ")", ":", "disposition", "=", "request", ".", "info", "(", ")", "[", "'Content-Disposition'", "]", "pieces", "=", "re", ".", "split", "(", "r'\\s*;\\s*'", ",", "disposition", ")", "for", "piece", "in", "pieces", ":", "if", "piece", ".", "startswith", "(", "'filename='", ")", ":", "filename", "=", "piece", "[", "len", "(", "'filename='", ")", ":", "]", "# Strip exactly one \" from each end.", "if", "filename", ".", "startswith", "(", "'\"'", ")", ":", "filename", "=", "filename", "[", "1", ":", "]", "if", "filename", ".", "endswith", "(", "'\"'", ")", ":", "filename", "=", "filename", "[", ":", "-", "1", "]", "# Interpret backslashed quotes.", "filename", "=", "filename", ".", "replace", "(", "'\\\\\"'", ",", "'\"'", ")", "return", "filename", "# If no filename was specified, pick a reasonable default.", "return", "os", ".", "path", ".", "basename", "(", "urlsplit", "(", "request", ".", "url", ")", ".", "path", ")", "or", "'index.html'" ]
Figure out the filename for an HTTP download.
[ "Figure", "out", "the", "filename", "for", "an", "HTTP", "download", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/resources/plugins/curl/curl_plugin.py#L16-L34
train
buildinspace/peru
peru/parser.py
_extract_optional_list_field
def _extract_optional_list_field(blob, name): '''Handle optional fields that can be either a string or a list of strings.''' value = _optional_list(typesafe_pop(blob, name, [])) if value is None: raise ParserError( '"{}" field must be a string or a list.'.format(name)) return value
python
def _extract_optional_list_field(blob, name): '''Handle optional fields that can be either a string or a list of strings.''' value = _optional_list(typesafe_pop(blob, name, [])) if value is None: raise ParserError( '"{}" field must be a string or a list.'.format(name)) return value
[ "def", "_extract_optional_list_field", "(", "blob", ",", "name", ")", ":", "value", "=", "_optional_list", "(", "typesafe_pop", "(", "blob", ",", "name", ",", "[", "]", ")", ")", "if", "value", "is", "None", ":", "raise", "ParserError", "(", "'\"{}\" field must be a string or a list.'", ".", "format", "(", "name", ")", ")", "return", "value" ]
Handle optional fields that can be either a string or a list of strings.
[ "Handle", "optional", "fields", "that", "can", "be", "either", "a", "string", "or", "a", "list", "of", "strings", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/parser.py#L135-L142
train
buildinspace/peru
peru/async_exit_stack.py
AsyncExitStack.pop_all
def pop_all(self): """Preserve the context stack by transferring it to a new instance.""" new_stack = type(self)() new_stack._exit_callbacks = self._exit_callbacks self._exit_callbacks = deque() return new_stack
python
def pop_all(self): """Preserve the context stack by transferring it to a new instance.""" new_stack = type(self)() new_stack._exit_callbacks = self._exit_callbacks self._exit_callbacks = deque() return new_stack
[ "def", "pop_all", "(", "self", ")", ":", "new_stack", "=", "type", "(", "self", ")", "(", ")", "new_stack", ".", "_exit_callbacks", "=", "self", ".", "_exit_callbacks", "self", ".", "_exit_callbacks", "=", "deque", "(", ")", "return", "new_stack" ]
Preserve the context stack by transferring it to a new instance.
[ "Preserve", "the", "context", "stack", "by", "transferring", "it", "to", "a", "new", "instance", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/async_exit_stack.py#L55-L60
train
buildinspace/peru
peru/async_exit_stack.py
AsyncExitStack.callback
def callback(self, callback, *args, **kwds): """Registers an arbitrary callback and arguments. Cannot suppress exceptions. """ _exit_wrapper = self._create_cb_wrapper(callback, *args, **kwds) # We changed the signature, so using @wraps is not appropriate, but # setting __wrapped__ may still help with introspection. _exit_wrapper.__wrapped__ = callback self._push_exit_callback(_exit_wrapper) return callback
python
def callback(self, callback, *args, **kwds): """Registers an arbitrary callback and arguments. Cannot suppress exceptions. """ _exit_wrapper = self._create_cb_wrapper(callback, *args, **kwds) # We changed the signature, so using @wraps is not appropriate, but # setting __wrapped__ may still help with introspection. _exit_wrapper.__wrapped__ = callback self._push_exit_callback(_exit_wrapper) return callback
[ "def", "callback", "(", "self", ",", "callback", ",", "*", "args", ",", "*", "*", "kwds", ")", ":", "_exit_wrapper", "=", "self", ".", "_create_cb_wrapper", "(", "callback", ",", "*", "args", ",", "*", "*", "kwds", ")", "# We changed the signature, so using @wraps is not appropriate, but", "# setting __wrapped__ may still help with introspection.", "_exit_wrapper", ".", "__wrapped__", "=", "callback", "self", ".", "_push_exit_callback", "(", "_exit_wrapper", ")", "return", "callback" ]
Registers an arbitrary callback and arguments. Cannot suppress exceptions.
[ "Registers", "an", "arbitrary", "callback", "and", "arguments", ".", "Cannot", "suppress", "exceptions", "." ]
76e4012c6c34e85fb53a4c6d85f4ac3633d93f77
https://github.com/buildinspace/peru/blob/76e4012c6c34e85fb53a4c6d85f4ac3633d93f77/peru/async_exit_stack.py#L94-L104
train