text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
with fp16 accumulation type) are allowed with fp16 GEMMs. torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction A "bool" that controls whether reduced precision reductions are allowed with bf16 GEMMs. torch.backends.cuda.cufft_plan_cache "cufft_plan_cache" caches the cuFFT plans size A readonly "int" that shows the number of plans currently in the cuFFT plan cache. torch.backends.cuda.max_size A "int" that controls cache capacity of cuFFT plan. torch.backends.cuda.clear() Clears the cuFFT plan cache. torch.backends.cuda.preferred_linalg_library(backend=None) Warning: This flag is experimental and subject to change. When PyTorch runs a CUDA linear algebra operation it often uses the cuSOLVER or MAGMA libraries, and if both are available it decides which to use with a heuristic. This flag (a "str") allows overriding those heuristics. If "cusolver" is set then cuSOLVER will be used wherever possible.
https://pytorch.org/docs/stable/backends.html
pytorch docs
possible. If "magma" is set then MAGMA will be used wherever possible. If "default" (the default) is set then heuristics will be used to pick between cuSOLVER and MAGMA if both are available. When no input is given, this function returns the currently preferred library. Note: When a library is preferred other libraries may still be used if the preferred library doesn't implement the operation(s) called. This flag may achieve better performance if PyTorch's heuristic library selection is incorrect for your application's inputs. Currently supported linalg operators: "torch.linalg.inv()" "torch.linalg.inv_ex()" "torch.linalg.cholesky()" "torch.linalg.cholesky_ex()" "torch.cholesky_solve()" "torch.cholesky_inverse()" "torch.linalg.lu_factor()" "torch.linalg.lu()" "torch.linalg.lu_solve()" "torch.linalg.qr()" "torch.linalg.eigh()" "torch.linalg.eighvals()" "torch.linalg.svd()"
https://pytorch.org/docs/stable/backends.html
pytorch docs
"torch.linalg.svd()" "torch.linalg.svdvals()" Return type: _LinalgBackend class torch.backends.cuda.SDPBackend(value) Enum class for the scaled dot product attention backends. Warning: This flag is experimental and subject to change.' This class needs to stay inline with the enum defined in: pytorch/aten/src/ATen/native/transformers/sdp_utils_cpp.h torch.backends.cuda.flash_sdp_enabled() Warning: This flag is experimental and subject to change. Returns whether flash sdp is enabled or not. torch.backends.cuda.enable_mem_efficient_sdp(enabled) Warning: This flag is experimental and subject to change. Enables or disables memory efficient sdp. torch.backends.cuda.mem_efficient_sdp_enabled() Warning: This flag is experimental and subject to change. Returns whether memory efficient sdp is enabled or not. torch.backends.cuda.enable_flash_sdp(enabled) Warning: This flag is experimental and subject to change.
https://pytorch.org/docs/stable/backends.html
pytorch docs
Enables or disables flash sdp. torch.backends.cuda.math_sdp_enabled() Warning: This flag is experimental and subject to change. Returns whether math sdp is enabled or not. torch.backends.cuda.enable_math_sdp(enabled) Warning: This flag is experimental and subject to change. Enables or disables math sdp. torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True) Warning: This flag is experimental and subject to change. This context manager can be used to temporarily enable or disable flash/memory efficient sdp and math sdp. Upon exiting the context manager, the previous state of the flags will be restored. torch.backends.cudnn torch.backends.cudnn.version() Returns the version of cuDNN torch.backends.cudnn.is_available() Returns a bool indicating if CUDNN is currently available. torch.backends.cudnn.enabled A "bool" that controls whether cuDNN is enabled.
https://pytorch.org/docs/stable/backends.html
pytorch docs
torch.backends.cudnn.allow_tf32 A "bool" that controls where TensorFloat-32 tensor cores may be used in cuDNN convolutions on Ampere or newer GPUs. See TensorFloat-32(TF32) on Ampere devices. torch.backends.cudnn.deterministic A "bool" that, if True, causes cuDNN to only use deterministic convolution algorithms. See also "torch.are_deterministic_algorithms_enabled()" and "torch.use_deterministic_algorithms()". torch.backends.cudnn.benchmark A "bool" that, if True, causes cuDNN to benchmark multiple convolution algorithms and select the fastest. torch.backends.cudnn.benchmark_limit A "int" that specifies the maximum number of cuDNN convolution algorithms to try when torch.backends.cudnn.benchmark is True. Set benchmark_limit to zero to try every available algorithm. Note that this setting only affects convolutions dispatched via the cuDNN v8 API. torch.backends.mps torch.backends.mps.is_available()
https://pytorch.org/docs/stable/backends.html
pytorch docs
torch.backends.mps.is_available() Returns a bool indicating if MPS is currently available. Return type: bool torch.backends.mps.is_built() Returns whether PyTorch is built with MPS support. Note that this doesn't necessarily mean MPS is available; just that if this PyTorch binary were run a machine with working MPS drivers and devices, we would be able to use it. Return type: bool torch.backends.mkl torch.backends.mkl.is_available() Returns whether PyTorch is built with MKL support. class torch.backends.mkl.verbose(enable) On-demand oneMKL verbosing functionality To make it easier to debug performance issues, oneMKL can dump verbose messages containing execution information like duration while executing the kernel. The verbosing functionality can be invoked via an environment variable named MKL_VERBOSE. However, this methodology dumps messages in all steps. Those are a large amount of verbose messages. Moreover,
https://pytorch.org/docs/stable/backends.html
pytorch docs
for investigating the performance issues, generally taking verbose messages for one single iteration is enough. This on-demand verbosing functionality makes it possible to control scope for verbose message dumping. In the following example, verbose messages will be dumped out for the second inference only. import torch model(data) with torch.backends.mkl.verbose(torch.backends.mkl.VERBOSE_ON): model(data) Parameters: level -- Verbose level - "VERBOSE_OFF": Disable verbosing - "VERBOSE_ON": Enable verbosing torch.backends.mkldnn torch.backends.mkldnn.is_available() Returns whether PyTorch is built with MKL-DNN support. class torch.backends.mkldnn.verbose(level) On-demand oneDNN (former MKL-DNN) verbosing functionality To make it easier to debug performance issues, oneDNN can dump verbose messages containing information like kernel size, input data size
https://pytorch.org/docs/stable/backends.html
pytorch docs
and execution duration while executing the kernel. The verbosing functionality can be invoked via an environment variable named DNNL_VERBOSE. However, this methodology dumps messages in all steps. Those are a large amount of verbose messages. Moreover, for investigating the performance issues, generally taking verbose messages for one single iteration is enough. This on-demand verbosing functionality makes it possible to control scope for verbose message dumping. In the following example, verbose messages will be dumped out for the second inference only. import torch model(data) with torch.backends.mkldnn.verbose(torch.backends.mkldnn.VERBOSE_ON): model(data) Parameters: level -- Verbose level - "VERBOSE_OFF": Disable verbosing - "VERBOSE_ON": Enable verbosing - "VERBOSE_ON_CREATION": Enable verbosing, including oneDNN kernel creation torch.backends.openmp torch.backends.openmp.is_available()
https://pytorch.org/docs/stable/backends.html
pytorch docs
torch.backends.openmp.is_available() Returns whether PyTorch is built with OpenMP support. torch.backends.opt_einsum torch.backends.opt_einsum.is_available() Returns a bool indicating if opt_einsum is currently available. Return type: bool torch.backends.opt_einsum.get_opt_einsum() Returns the opt_einsum package if opt_einsum is currently available, else None. Return type: Any torch.backends.opt_einsum.enabled A :class:"bool" that controls whether opt_einsum is enabled ("True" by default). If so, torch.einsum will use opt_einsum (https ://optimized-einsum.readthedocs.io/en/stable/path_finding.html) if available to calculate an optimal path of contraction for faster performance. If opt_einsum is not available, torch.einsum will fall back to the default contraction path of left to right. torch.backends.opt_einsum.strategy A :class:"str" that specifies which strategies to try when
https://pytorch.org/docs/stable/backends.html
pytorch docs
"torch.backends.opt_einsum.enabled" is "True". By default, torch.einsum will try the "auto" strategy, but the "greedy" and "optimal" strategies are also supported. Note that the "optimal" strategy is factorial on the number of inputs as it tries all possible paths. See more details in opt_einsum's docs (https ://optimized-einsum.readthedocs.io/en/stable/path_finding.html). torch.backends.xeon
https://pytorch.org/docs/stable/backends.html
pytorch docs
torch.utils.dlpack torch.utils.dlpack.from_dlpack(ext_tensor) -> Tensor Converts a tensor from an external library into a "torch.Tensor". The returned PyTorch tensor will share the memory with the input tensor (which may have come from another library). Note that in- place operations will therefore also affect the data of the input tensor. This may lead to unexpected issues (e.g., other libraries may have read-only flags or immutable data structures), so the user should only do this if they know for sure that this is fine. Parameters: ext_tensor (object with "dlpack" attribute, or a DLPack capsule) -- The tensor or DLPack capsule to convert. If "ext_tensor" is a tensor (or ndarray) object, it must support the "__dlpack__" protocol (i.e., have a "ext_tensor.__dlpack__" method). Otherwise "ext_tensor" may be a DLPack capsule, which is an opaque "PyCapsule" instance, typically produced by a
https://pytorch.org/docs/stable/dlpack.html
pytorch docs
"to_dlpack" function or method. Return type: Tensor Examples: >>> import torch.utils.dlpack >>> t = torch.arange(4) # Convert a tensor directly (supported in PyTorch >= 1.10) >>> t2 = torch.from_dlpack(t) >>> t2[:2] = -1 # show that memory is shared >>> t2 tensor([-1, -1, 2, 3]) >>> t tensor([-1, -1, 2, 3]) # The old-style DLPack usage, with an intermediate capsule object >>> capsule = torch.utils.dlpack.to_dlpack(t) >>> capsule <capsule object "dltensor" at ...> >>> t3 = torch.from_dlpack(capsule) >>> t3 tensor([-1, -1, 2, 3]) >>> t3[0] = -9 # now we're sharing memory between 3 tensors >>> t3 tensor([-9, -1, 2, 3]) >>> t2 tensor([-9, -1, 2, 3]) >>> t tensor([-9, -1, 2, 3]) torch.utils.dlpack.to_dlpack(tensor) -> PyCapsule Returns an opaque object (a "DLPack capsule") representing the tensor. Note:
https://pytorch.org/docs/stable/dlpack.html
pytorch docs
tensor. Note: "to_dlpack" is a legacy DLPack interface. The capsule it returns cannot be used for anything in Python other than use it as input to "from_dlpack". The more idiomatic use of DLPack is to call "from_dlpack" directly on the tensor object - this works when that object has a "__dlpack__" method, which PyTorch and most other libraries indeed have now. Warning: Only call "from_dlpack" once per capsule produced with "to_dlpack". Behavior when a capsule is consumed multiple times is undefined. Parameters: tensor -- a tensor to be exported The DLPack capsule shares the tensor's memory.
https://pytorch.org/docs/stable/dlpack.html
pytorch docs
PyTorch Governance | Build + CI How to Add a New Maintainer For the person to be a maintainer, a person needs to: Land at least six commits to the related part of the PyTorch repository At least one of these commits must be submitted in the last six months To add a qualified person to the maintainers' list, please create a PR that adds a person to the persons of interests page and merge_rules files. Current maintainers will cast their votes of support. Decision criteria for approving the PR: * Not earlier than two business days passed before merging (ensure the majority of the contributors have seen it) * PR has the correct label (module: ci) * There are no objections from the current maintainers * There are at least three net thumbs up from current maintainers (or all maintainers vote thumbs up when the module has less than 3 maintainers).
https://pytorch.org/docs/stable/community/build_ci_governance.html
pytorch docs
Probability distributions - torch.distributions The "distributions" package contains parameterizable probability distributions and sampling functions. This allows the construction of stochastic computation graphs and stochastic gradient estimators for optimization. This package generally follows the design of the TensorFlow Distributions package. It is not possible to directly backpropagate through random samples. However, there are two main methods for creating surrogate functions that can be backpropagated through. These are the score function estimator/likelihood ratio estimator/REINFORCE and the pathwise derivative estimator. REINFORCE is commonly seen as the basis for policy gradient methods in reinforcement learning, and the pathwise derivative estimator is commonly seen in the reparameterization trick in variational autoencoders. Whilst the score function only requires the value of samples f(x), the pathwise derivative requires the
https://pytorch.org/docs/stable/distributions.html
pytorch docs
derivative f'(x). The next sections discuss these two in a reinforcement learning example. For more details see Gradient Estimation Using Stochastic Computation Graphs . Score function When the probability density function is differentiable with respect to its parameters, we only need "sample()" and "log_prob()" to implement REINFORCE: \Delta\theta = \alpha r \frac{\partial\log p(a|\pi^\theta(s))}{\partial\theta} where \theta are the parameters, \alpha is the learning rate, r is the reward and p(a|\pi^\theta(s)) is the probability of taking action a in state s given policy \pi^\theta. In practice we would sample an action from the output of a network, apply this action in an environment, and then use "log_prob" to construct an equivalent loss function. Note that we use a negative because optimizers use gradient descent, whilst the rule above assumes gradient ascent. With a categorical policy, the code for implementing REINFORCE would be as follows: probs = policy_network(state)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
probs = policy_network(state) # Note that this is equivalent to what used to be called multinomial m = Categorical(probs) action = m.sample() next_state, reward = env.step(action) loss = -m.log_prob(action) * reward loss.backward() Pathwise derivative The other way to implement these stochastic/policy gradients would be to use the reparameterization trick from the "rsample()" method, where the parameterized random variable can be constructed via a parameterized deterministic function of a parameter-free random variable. The reparameterized sample therefore becomes differentiable. The code for implementing the pathwise derivative would be as follows: params = policy_network(state) m = Normal(*params) # Any distribution with .has_rsample == True could work based on the application action = m.rsample() next_state, reward = env.step(action) # Assuming that reward is differentiable loss = -reward loss.backward() Distribution
https://pytorch.org/docs/stable/distributions.html
pytorch docs
loss.backward() Distribution class torch.distributions.distribution.Distribution(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None) Bases: "object" Distribution is the abstract base class for probability distributions. property arg_constraints: Dict[str, Constraint] Returns a dictionary from argument names to "Constraint" objects that should be satisfied by each argument of this distribution. Args that are not tensors need not appear in this dict. property batch_shape: Size Returns the shape over which parameters are batched. cdf(value) Returns the cumulative density/mass function evaluated at *value*. Parameters: **value** (*Tensor*) -- Return type: *Tensor* entropy() Returns entropy of distribution, batched over batch_shape. Returns: Tensor of shape batch_shape. Return type: *Tensor* enumerate_support(expand=True)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
enumerate_support(expand=True) Returns tensor containing all values supported by a discrete distribution. The result will enumerate over dimension 0, so the shape of the result will be *(cardinality,) + batch_shape + event_shape* (where *event_shape = ()* for univariate distributions). Note that this enumerates over all batched tensors in lock-step *[[0, 0], [1, 1], ...]*. With *expand=False*, enumeration happens along dim 0, but with the remaining batch dimensions being singleton dimensions, *[[0], [1], ..*. To iterate over the full Cartesian product use *itertools.product(m.enumerate_support())*. Parameters: **expand** (*bool*) -- whether to expand the support over the batch dims to match the distribution's *batch_shape*. Returns: Tensor iterating over dimension 0. Return type: *Tensor* property event_shape: Size Returns the shape of a single sample (without batching).
https://pytorch.org/docs/stable/distributions.html
pytorch docs
expand(batch_shape, _instance=None) Returns a new distribution instance (or populates an existing instance provided by a derived class) with batch dimensions expanded to *batch_shape*. This method calls "expand" on the distribution's parameters. As such, this does not allocate new memory for the expanded distribution instance. Additionally, this does not repeat any args checking or parameter broadcasting in *__init__.py*, when an instance is first created. Parameters: * **batch_shape** (*torch.Size*) -- the desired expanded size. * **_instance** -- new instance provided by subclasses that need to override *.expand*. Returns: New distribution instance with batch dimensions expanded to *batch_size*. icdf(value) Returns the inverse cumulative density/mass function evaluated at *value*. Parameters: **value** (*Tensor*) -- Return type: *Tensor*
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Return type: Tensor log_prob(value) Returns the log of the probability density/mass function evaluated at *value*. Parameters: **value** (*Tensor*) -- Return type: *Tensor* property mean: Tensor Returns the mean of the distribution. property mode: Tensor Returns the mode of the distribution. perplexity() Returns perplexity of distribution, batched over batch_shape. Returns: Tensor of shape batch_shape. Return type: *Tensor* rsample(sample_shape=torch.Size([])) Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. Return type: *Tensor* sample(sample_shape=torch.Size([])) Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. Return type:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Return type: Tensor sample_n(n) Generates n samples or n batches of samples if the distribution parameters are batched. Return type: *Tensor* static set_default_validate_args(value) Sets whether validation is enabled or disabled. The default behavior mimics Python's "assert" statement: validation is on by default, but is disabled if Python is run in optimized mode (via "python -O"). Validation may be expensive, so you may want to disable it once a model is working. Parameters: **value** (*bool*) -- Whether to enable validation. property stddev: Tensor Returns the standard deviation of the distribution. property support: Optional[Any] Returns a "Constraint" object representing this distribution's support. property variance: Tensor Returns the variance of the distribution. ExponentialFamily
https://pytorch.org/docs/stable/distributions.html
pytorch docs
ExponentialFamily class torch.distributions.exp_family.ExponentialFamily(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None) Bases: "Distribution" ExponentialFamily is the abstract base class for probability distributions belonging to an exponential family, whose probability mass/density function has the form is defined below p_{F}(x; \theta) = \exp(\langle t(x), \theta\rangle - F(\theta) + k(x)) where \theta denotes the natural parameters, t(x) denotes the sufficient statistic, F(\theta) is the log normalizer function for a given family and k(x) is the carrier measure. Note: This class is an intermediary between the *Distribution* class and distributions which belong to an exponential family mainly to check the correctness of the *.entropy()* and analytic KL divergence methods. We use this class to compute the entropy and KL divergence using the AD framework and Bregman divergences
https://pytorch.org/docs/stable/distributions.html
pytorch docs
(courtesy of: Frank Nielsen and Richard Nock, Entropies and Cross-entropies of Exponential Families). entropy() Method to compute the entropy using Bregman divergence of the log normalizer. Bernoulli class torch.distributions.bernoulli.Bernoulli(probs=None, logits=None, validate_args=None) Bases: "ExponentialFamily" Creates a Bernoulli distribution parameterized by "probs" or "logits" (but not both). Samples are binary (0 or 1). They take the value 1 with probability p and 0 with probability 1 - p. Example: >>> m = Bernoulli(torch.tensor([0.3])) >>> m.sample() # 30% chance 1; 70% chance 0 tensor([ 0.]) Parameters: * probs (Number, Tensor) -- the probability of sampling 1 * **logits** (*Number**, **Tensor*) -- the log-odds of sampling *1* arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)} entropy()
https://pytorch.org/docs/stable/distributions.html
pytorch docs
entropy() enumerate_support(expand=True) expand(batch_shape, _instance=None) has_enumerate_support = True log_prob(value) property logits property mean property mode property param_shape property probs sample(sample_shape=torch.Size([])) support = Boolean() property variance Beta class torch.distributions.beta.Beta(concentration1, concentration0, validate_args=None) Bases: "ExponentialFamily" Beta distribution parameterized by "concentration1" and "concentration0". Example: >>> m = Beta(torch.tensor([0.5]), torch.tensor([0.5])) >>> m.sample() # Beta distributed with concentration concentration1 and concentration0 tensor([ 0.1046]) Parameters: * concentration1 (float or Tensor) -- 1st concentration parameter of the distribution (often referred to as alpha) * **concentration0** (*float** or **Tensor*) -- 2nd
https://pytorch.org/docs/stable/distributions.html
pytorch docs
concentration parameter of the distribution (often referred to as beta) arg_constraints = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)} property concentration0 property concentration1 entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode rsample(sample_shape=()) support = Interval(lower_bound=0.0, upper_bound=1.0) property variance Binomial class torch.distributions.binomial.Binomial(total_count=1, probs=None, logits=None, validate_args=None) Bases: "Distribution" Creates a Binomial distribution parameterized by "total_count" and either "probs" or "logits" (but not both). "total_count" must be broadcastable with "probs"/"logits". Example: >>> m = Binomial(100, torch.tensor([0 , .2, .8, 1])) >>> x = m.sample() tensor([ 0., 22., 71., 100.])
https://pytorch.org/docs/stable/distributions.html
pytorch docs
tensor([ 0., 22., 71., 100.]) >>> m = Binomial(torch.tensor([[5.], [10.]]), torch.tensor([0.5, 0.8])) >>> x = m.sample() tensor([[ 4., 5.], [ 7., 6.]]) Parameters: * total_count (int or Tensor) -- number of Bernoulli trials * **probs** (*Tensor*) -- Event probabilities * **logits** (*Tensor*) -- Event log-odds arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0), 'total_count': IntegerGreaterThan(lower_bound=0)} entropy() enumerate_support(expand=True) expand(batch_shape, _instance=None) has_enumerate_support = True log_prob(value) property logits property mean property mode property param_shape property probs sample(sample_shape=torch.Size([])) property support property variance Categorical class torch.distributions.categorical.Categorical(probs=None, logits=None, validate_args=None) Bases: "Distribution"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Bases: "Distribution" Creates a categorical distribution parameterized by either "probs" or "logits" (but not both). Note: It is equivalent to the distribution that "torch.multinomial()" samples from. Samples are integers from {0, \ldots, K-1} where K is "probs.size(-1)". If probs is 1-dimensional with length-K, each element is the relative probability of sampling the class at that index. If probs is N-dimensional, the first N-1 dimensions are treated as a batch of relative probability vectors. Note: The *probs* argument must be non-negative, finite and have a non- zero sum, and it will be normalized to sum to 1 along the last dimension. "probs" will return this normalized value. The *logits* argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to
https://pytorch.org/docs/stable/distributions.html
pytorch docs
1 along the last dimension. "logits" will return this normalized value. See also: "torch.multinomial()" Example: >>> m = Categorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) >>> m.sample() # equal probability of 0, 1, 2, 3 tensor(3) Parameters: * probs (Tensor) -- event probabilities * **logits** (*Tensor*) -- event log probabilities (unnormalized) arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()} entropy() enumerate_support(expand=True) expand(batch_shape, _instance=None) has_enumerate_support = True log_prob(value) property logits property mean property mode property param_shape property probs sample(sample_shape=torch.Size([])) property support property variance Cauchy class torch.distributions.cauchy.Cauchy(loc, scale, validate_args=None) Bases: "Distribution" Samples from a Cauchy (Lorentz) distribution. The distribution of
https://pytorch.org/docs/stable/distributions.html
pytorch docs
the ratio of independent normally distributed random variables with means 0 follows a Cauchy distribution. Example: >>> m = Cauchy(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Cauchy distribution with loc=0 and scale=1 tensor([ 2.3214]) Parameters: * loc (float or Tensor) -- mode or median of the distribution. * **scale** (*float** or **Tensor*) -- half width at half maximum. arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(value) log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) support = Real() property variance Chi2 class torch.distributions.chi2.Chi2(df, validate_args=None) Bases: "Gamma" Creates a Chi-squared distribution parameterized by shape parameter
https://pytorch.org/docs/stable/distributions.html
pytorch docs
"df". This is exactly equivalent to "Gamma(alpha=0.5*df, beta=0.5)" Example: >>> m = Chi2(torch.tensor([1.0])) >>> m.sample() # Chi2 distributed with shape df=1 tensor([ 0.1046]) Parameters: df (float or Tensor) -- shape parameter of the distribution arg_constraints = {'df': GreaterThan(lower_bound=0.0)} property df expand(batch_shape, _instance=None) ContinuousBernoulli class torch.distributions.continuous_bernoulli.ContinuousBernoulli(probs=None, logits=None, lims=(0.499, 0.501), validate_args=None) Bases: "ExponentialFamily" Creates a continuous Bernoulli distribution parameterized by "probs" or "logits" (but not both). The distribution is supported in [0, 1] and parameterized by 'probs' (in (0,1)) or 'logits' (real-valued). Note that, unlike the Bernoulli, 'probs' does not correspond to a probability and 'logits' does not correspond to log-odds, but the same names are
https://pytorch.org/docs/stable/distributions.html
pytorch docs
used due to the similarity with the Bernoulli. See [1] for more details. Example: >>> m = ContinuousBernoulli(torch.tensor([0.3])) >>> m.sample() tensor([ 0.2538]) Parameters: * probs (Number, Tensor) -- (0,1) valued parameters * **logits** (*Number**, **Tensor*) -- real valued parameters whose sigmoid matches 'probs' [1] The continuous Bernoulli: fixing a pervasive error in variational autoencoders, Loaiza-Ganem G and Cunningham JP, NeurIPS 2019. https://arxiv.org/abs/1907.06845 arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(value) log_prob(value) property logits property mean property param_shape property probs rsample(sample_shape=torch.Size([])) sample(sample_shape=torch.Size([])) property stddev support = Interval(lower_bound=0.0, upper_bound=1.0)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
property variance Dirichlet class torch.distributions.dirichlet.Dirichlet(concentration, validate_args=None) Bases: "ExponentialFamily" Creates a Dirichlet distribution parameterized by concentration "concentration". Example: >>> m = Dirichlet(torch.tensor([0.5, 0.5])) >>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5] tensor([ 0.1046, 0.8954]) Parameters: concentration (Tensor) -- concentration parameter of the distribution (often referred to as alpha) arg_constraints = {'concentration': IndependentConstraint(GreaterThan(lower_bound=0.0), 1)} entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode rsample(sample_shape=()) support = Simplex() property variance Exponential class torch.distributions.exponential.Exponential(rate, validate_args=None) Bases: "ExponentialFamily"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Bases: "ExponentialFamily" Creates a Exponential distribution parameterized by "rate". Example: >>> m = Exponential(torch.tensor([1.0])) >>> m.sample() # Exponential distributed with rate=1 tensor([ 0.1046]) Parameters: rate (float or Tensor) -- rate = 1 / scale of the distribution arg_constraints = {'rate': GreaterThan(lower_bound=0.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(value) log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) property stddev support = GreaterThanEq(lower_bound=0.0) property variance FisherSnedecor class torch.distributions.fishersnedecor.FisherSnedecor(df1, df2, validate_args=None) Bases: "Distribution" Creates a Fisher-Snedecor distribution parameterized by "df1" and "df2". Example: >>> m = FisherSnedecor(torch.tensor([1.0]), torch.tensor([2.0]))
https://pytorch.org/docs/stable/distributions.html
pytorch docs
m.sample() # Fisher-Snedecor-distributed with df1=1 and df2=2 tensor([ 0.2453]) Parameters: * df1 (float or Tensor) -- degrees of freedom parameter 1 * **df2** (*float** or **Tensor*) -- degrees of freedom parameter 2 arg_constraints = {'df1': GreaterThan(lower_bound=0.0), 'df2': GreaterThan(lower_bound=0.0)} expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) support = GreaterThan(lower_bound=0.0) property variance Gamma class torch.distributions.gamma.Gamma(concentration, rate, validate_args=None) Bases: "ExponentialFamily" Creates a Gamma distribution parameterized by shape "concentration" and "rate". Example: >>> m = Gamma(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # Gamma distributed with concentration=1 and rate=1 tensor([ 0.1046]) Parameters:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
tensor([ 0.1046]) Parameters: * concentration (float or Tensor) -- shape parameter of the distribution (often referred to as alpha) * **rate** (*float** or **Tensor*) -- rate = 1 / scale of the distribution (often referred to as beta) arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) support = GreaterThanEq(lower_bound=0.0) property variance Geometric class torch.distributions.geometric.Geometric(probs=None, logits=None, validate_args=None) Bases: "Distribution" Creates a Geometric distribution parameterized by "probs", where "probs" is the probability of success of Bernoulli trials. It represents the probability that in k + 1 Bernoulli trials, the
https://pytorch.org/docs/stable/distributions.html
pytorch docs
first k trials failed, before seeing a success. Samples are non-negative integers [0, \inf). Example: >>> m = Geometric(torch.tensor([0.3])) >>> m.sample() # underlying Bernoulli has 30% chance 1; 70% chance 0 tensor([ 2.]) Parameters: * probs (Number, Tensor) -- the probability of sampling 1. Must be in range (0, 1] * **logits** (*Number**, **Tensor*) -- the log-odds of sampling *1*. arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)} entropy() expand(batch_shape, _instance=None) log_prob(value) property logits property mean property mode property probs sample(sample_shape=torch.Size([])) support = IntegerGreaterThan(lower_bound=0) property variance Gumbel class torch.distributions.gumbel.Gumbel(loc, scale, validate_args=None) Bases: "TransformedDistribution" Samples from a Gumbel Distribution. Examples:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Examples: >>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) >>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 tensor([ 1.0124]) Parameters: * loc (float or Tensor) -- Location parameter of the distribution * **scale** (*float** or **Tensor*) -- Scale parameter of the distribution arg_constraints: Dict[str, constraints.Constraint] = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)} entropy() expand(batch_shape, _instance=None) log_prob(value) property mean property mode property stddev support = Real() property variance HalfCauchy class torch.distributions.half_cauchy.HalfCauchy(scale, validate_args=None) Bases: "TransformedDistribution" Creates a half-Cauchy distribution parameterized by scale where: X ~ Cauchy(0, scale) Y = |X| ~ HalfCauchy(scale) Example: >>> m = HalfCauchy(torch.tensor([1.0]))
https://pytorch.org/docs/stable/distributions.html
pytorch docs
m = HalfCauchy(torch.tensor([1.0])) >>> m.sample() # half-cauchy distributed with scale=1 tensor([ 2.3214]) Parameters: scale (float or Tensor) -- scale of the full Cauchy distribution arg_constraints: Dict[str, constraints.Constraint] = {'scale': GreaterThan(lower_bound=0.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(prob) log_prob(value) property mean property mode property scale support = GreaterThanEq(lower_bound=0.0) property variance HalfNormal class torch.distributions.half_normal.HalfNormal(scale, validate_args=None) Bases: "TransformedDistribution" Creates a half-normal distribution parameterized by scale where: X ~ Normal(0, scale) Y = |X| ~ HalfNormal(scale) Example: >>> m = HalfNormal(torch.tensor([1.0])) >>> m.sample() # half-normal distributed with scale=1 tensor([ 0.1046]) Parameters:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
tensor([ 0.1046]) Parameters: scale (float or Tensor) -- scale of the full Normal distribution arg_constraints: Dict[str, constraints.Constraint] = {'scale': GreaterThan(lower_bound=0.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(prob) log_prob(value) property mean property mode property scale support = GreaterThanEq(lower_bound=0.0) property variance Independent class torch.distributions.independent.Independent(base_distribution, reinterpreted_batch_ndims, validate_args=None) Bases: "Distribution" Reinterprets some of the batch dims of a distribution as event dims. This is mainly useful for changing the shape of the result of "log_prob()". For example to create a diagonal Normal distribution with the same shape as a Multivariate Normal distribution (so they are interchangeable), you can:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
are interchangeable), you can: >>> from torch.distributions.multivariate_normal import MultivariateNormal >>> from torch.distributions.normal import Normal >>> loc = torch.zeros(3) >>> scale = torch.ones(3) >>> mvn = MultivariateNormal(loc, scale_tril=torch.diag(scale)) >>> [mvn.batch_shape, mvn.event_shape] [torch.Size([]), torch.Size([3])] >>> normal = Normal(loc, scale) >>> [normal.batch_shape, normal.event_shape] [torch.Size([3]), torch.Size([])] >>> diagn = Independent(normal, 1) >>> [diagn.batch_shape, diagn.event_shape] [torch.Size([]), torch.Size([3])] Parameters: * base_distribution (torch.distributions.distribution.Distribution) -- a base distribution * **reinterpreted_batch_ndims** (*int*) -- the number of batch dims to reinterpret as event dims arg_constraints: Dict[str, Constraint] = {} entropy() enumerate_support(expand=True)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
entropy() enumerate_support(expand=True) expand(batch_shape, _instance=None) property has_enumerate_support property has_rsample log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) sample(sample_shape=torch.Size([])) property support property variance Kumaraswamy class torch.distributions.kumaraswamy.Kumaraswamy(concentration1, concentration0, validate_args=None) Bases: "TransformedDistribution" Samples from a Kumaraswamy distribution. Example: >>> m = Kumaraswamy(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Kumaraswamy distribution with concentration alpha=1 and beta=1 tensor([ 0.1729]) Parameters: * concentration1 (float or Tensor) -- 1st concentration parameter of the distribution (often referred to as alpha) * **concentration0** (*float** or **Tensor*) -- 2nd
https://pytorch.org/docs/stable/distributions.html
pytorch docs
concentration parameter of the distribution (often referred to as beta) arg_constraints: Dict[str, constraints.Constraint] = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1': GreaterThan(lower_bound=0.0)} entropy() expand(batch_shape, _instance=None) has_rsample = True property mean property mode support = Interval(lower_bound=0.0, upper_bound=1.0) property variance LKJCholesky class torch.distributions.lkj_cholesky.LKJCholesky(dim, concentration=1.0, validate_args=None) Bases: "Distribution" LKJ distribution for lower Cholesky factor of correlation matrices. The distribution is controlled by "concentration" parameter \eta to make the probability of the correlation matrix M generated from a Cholesky factor proportional to \det(M)^{\eta - 1}. Because of that, when "concentration == 1", we have a uniform distribution over Cholesky factors of correlation matrices: L ~ LKJCholesky(dim, concentration)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
L ~ LKJCholesky(dim, concentration) X = L @ L' ~ LKJCorr(dim, concentration) Note that this distribution samples the Cholesky factor of correlation matrices and not the correlation matrices themselves and thereby differs slightly from the derivations in [1] for the LKJCorr distribution. For sampling, this uses the Onion method from [1] Section 3. Example: >>> l = LKJCholesky(3, 0.5) >>> l.sample() # l @ l.T is a sample of a correlation 3x3 matrix tensor([[ 1.0000, 0.0000, 0.0000], [ 0.3516, 0.9361, 0.0000], [-0.1899, 0.4748, 0.8593]]) Parameters: * dimension (dim) -- dimension of the matrices * **concentration** (*float** or **Tensor*) -- concentration/shape parameter of the distribution (often referred to as eta) References [1] Generating random correlation matrices based on vines and extended onion method (2009), Daniel Lewandowski, Dorota
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Kurowicka, Harry Joe. Journal of Multivariate Analysis. 100. 10.1016/j.jmva.2009.04.008 arg_constraints = {'concentration': GreaterThan(lower_bound=0.0)} expand(batch_shape, _instance=None) log_prob(value) sample(sample_shape=torch.Size([])) support = CorrCholesky() Laplace class torch.distributions.laplace.Laplace(loc, scale, validate_args=None) Bases: "Distribution" Creates a Laplace distribution parameterized by "loc" and "scale". Example: >>> m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # Laplace distributed with loc=0, scale=1 tensor([ 0.1046]) Parameters: * loc (float or Tensor) -- mean of the distribution * **scale** (*float** or **Tensor*) -- scale of the distribution arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(value) log_prob(value)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
icdf(value) log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) property stddev support = Real() property variance LogNormal class torch.distributions.log_normal.LogNormal(loc, scale, validate_args=None) Bases: "TransformedDistribution" Creates a log-normal distribution parameterized by "loc" and "scale" where: X ~ Normal(loc, scale) Y = exp(X) ~ LogNormal(loc, scale) Example: >>> m = LogNormal(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # log-normal distributed with mean=0 and stddev=1 tensor([ 0.1046]) Parameters: * loc (float or Tensor) -- mean of log of distribution * **scale** (*float** or **Tensor*) -- standard deviation of log of the distribution arg_constraints: Dict[str, constraints.Constraint] = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)} entropy() expand(batch_shape, _instance=None) has_rsample = True
https://pytorch.org/docs/stable/distributions.html
pytorch docs
has_rsample = True property loc property mean property mode property scale support = GreaterThan(lower_bound=0.0) property variance LowRankMultivariateNormal class torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal(loc, cov_factor, cov_diag, validate_args=None) Bases: "Distribution" Creates a multivariate normal distribution with covariance matrix having a low-rank form parameterized by "cov_factor" and "cov_diag": covariance_matrix = cov_factor @ cov_factor.T + cov_diag -[ Example ]- m = LowRankMultivariateNormal(torch.zeros(2), torch.tensor([[1.], [0.]]), torch.ones(2)) m.sample() # normally distributed with mean=[0,0], cov_factor=[[1],[0]], cov_diag=[1,1] tensor([-0.2102, -0.5429]) Parameters: * loc (Tensor) -- mean of the distribution with shape batch_shape + event_shape * **cov_factor** (*Tensor*) -- factor part of low-rank form of
https://pytorch.org/docs/stable/distributions.html
pytorch docs
covariance matrix with shape batch_shape + event_shape + (rank,) * **cov_diag** (*Tensor*) -- diagonal part of low-rank form of covariance matrix with shape *batch_shape + event_shape* Note: The computation for determinant and inverse of covariance matrix is avoided when *cov_factor.shape[1] << cov_factor.shape[0]* thanks to Woodbury matrix identity and matrix determinant lemma. Thanks to these formulas, we just need to compute the determinant and inverse of the small size "capacitance" matrix: capacitance = I + cov_factor.T @ inv(cov_diag) @ cov_factor arg_constraints = {'cov_diag': IndependentConstraint(GreaterThan(lower_bound=0.0), 1), 'cov_factor': IndependentConstraint(Real(), 2), 'loc': IndependentConstraint(Real(), 1)} property covariance_matrix entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode property precision_matrix
https://pytorch.org/docs/stable/distributions.html
pytorch docs
property mode property precision_matrix rsample(sample_shape=torch.Size([])) property scale_tril support = IndependentConstraint(Real(), 1) property variance MixtureSameFamily class torch.distributions.mixture_same_family.MixtureSameFamily(mixture_distribution, component_distribution, validate_args=None) Bases: "Distribution" The MixtureSameFamily distribution implements a (batch of) mixture distribution where all component are from different parameterizations of the same distribution type. It is parameterized by a Categorical "selecting distribution" (over k component) and a component distribution, i.e., a Distribution with a rightmost batch shape (equal to [k]) which indexes each (batch of) component. Examples: >>> # Construct Gaussian Mixture Model in 1D consisting of 5 equally >>> # weighted normal distributions >>> mix = D.Categorical(torch.ones(5,))
https://pytorch.org/docs/stable/distributions.html
pytorch docs
mix = D.Categorical(torch.ones(5,)) >>> comp = D.Normal(torch.randn(5,), torch.rand(5,)) >>> gmm = MixtureSameFamily(mix, comp) >>> # Construct Gaussian Mixture Modle in 2D consisting of 5 equally >>> # weighted bivariate normal distributions >>> mix = D.Categorical(torch.ones(5,)) >>> comp = D.Independent(D.Normal( ... torch.randn(5,2), torch.rand(5,2)), 1) >>> gmm = MixtureSameFamily(mix, comp) >>> # Construct a batch of 3 Gaussian Mixture Models in 2D each >>> # consisting of 5 random weighted bivariate normal distributions >>> mix = D.Categorical(torch.rand(3,5)) >>> comp = D.Independent(D.Normal( ... torch.randn(3,5,2), torch.rand(3,5,2)), 1) >>> gmm = MixtureSameFamily(mix, comp) Parameters: * mixture_distribution -- torch.distributions.Categorical-like instance. Manages the probability of selecting component. The number of categories
https://pytorch.org/docs/stable/distributions.html
pytorch docs
must match the rightmost batch dimension of the component_distribution. Must have either scalar batch_shape or batch_shape matching component_distribution.batch_shape[:-1] * **component_distribution** -- *torch.distributions.Distribution*-like instance. Right-most batch dimension indexes component. arg_constraints: Dict[str, Constraint] = {} cdf(x) property component_distribution expand(batch_shape, _instance=None) has_rsample = False log_prob(x) property mean property mixture_distribution sample(sample_shape=torch.Size([])) property support property variance Multinomial class torch.distributions.multinomial.Multinomial(total_count=1, probs=None, logits=None, validate_args=None) Bases: "Distribution" Creates a Multinomial distribution parameterized by "total_count" and either "probs" or "logits" (but not both). The innermost
https://pytorch.org/docs/stable/distributions.html
pytorch docs
dimension of "probs" indexes over categories. All other dimensions index over batches. Note that "total_count" need not be specified if only "log_prob()" is called (see example below) Note: The *probs* argument must be non-negative, finite and have a non- zero sum, and it will be normalized to sum to 1 along the last dimension. "probs" will return this normalized value. The *logits* argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. "logits" will return this normalized value. "sample()" requires a single shared total_count for all parameters and samples. "log_prob()" allows different total_count for each parameter and sample. Example: >>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.])) >>> x = m.sample() # equal probability of 0, 1, 2, 3
https://pytorch.org/docs/stable/distributions.html
pytorch docs
tensor([ 21., 24., 30., 25.]) >>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x) tensor([-4.1338]) Parameters: * total_count (int) -- number of trials * **probs** (*Tensor*) -- event probabilities * **logits** (*Tensor*) -- event log probabilities (unnormalized) arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()} entropy() expand(batch_shape, _instance=None) log_prob(value) property logits property mean property param_shape property probs sample(sample_shape=torch.Size([])) property support total_count: int property variance MultivariateNormal class torch.distributions.multivariate_normal.MultivariateNormal(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None) Bases: "Distribution" Creates a multivariate normal (also called Gaussian) distribution
https://pytorch.org/docs/stable/distributions.html
pytorch docs
parameterized by a mean vector and a covariance matrix. The multivariate normal distribution can be parameterized either in terms of a positive definite covariance matrix \mathbf{\Sigma} or a positive definite precision matrix \mathbf{\Sigma}^{-1} or a lower- triangular matrix \mathbf{L} with positive-valued diagonal entries, such that \mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top. This triangular matrix can be obtained via e.g. Cholesky decomposition of the covariance. -[ Example ]- m = MultivariateNormal(torch.zeros(2), torch.eye(2)) m.sample() # normally distributed with mean=[0,0] and covariance_matrix=I tensor([-0.2102, -0.5429]) Parameters: * loc (Tensor) -- mean of the distribution * **covariance_matrix** (*Tensor*) -- positive-definite covariance matrix * **precision_matrix** (*Tensor*) -- positive-definite precision matrix * **scale_tril** (*Tensor*) -- lower-triangular factor of
https://pytorch.org/docs/stable/distributions.html
pytorch docs
covariance, with positive-valued diagonal Note: Only one of "covariance_matrix" or "precision_matrix" or "scale_tril" can be specified.Using "scale_tril" will be more efficient: all computations internally are based on "scale_tril". If "covariance_matrix" or "precision_matrix" is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition. arg_constraints = {'covariance_matrix': PositiveDefinite(), 'loc': IndependentConstraint(Real(), 1), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()} property covariance_matrix entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode property precision_matrix rsample(sample_shape=torch.Size([])) property scale_tril support = IndependentConstraint(Real(), 1) property variance NegativeBinomial
https://pytorch.org/docs/stable/distributions.html
pytorch docs
NegativeBinomial class torch.distributions.negative_binomial.NegativeBinomial(total_count, probs=None, logits=None, validate_args=None) Bases: "Distribution" Creates a Negative Binomial distribution, i.e. distribution of the number of successful independent and identical Bernoulli trials before "total_count" failures are achieved. The probability of success of each Bernoulli trial is "probs". Parameters: * total_count (float or Tensor) -- non-negative number of negative Bernoulli trials to stop, although the distribution is still valid for real valued count * **probs** (*Tensor*) -- Event probabilities of success in the half open interval [0, 1) * **logits** (*Tensor*) -- Event log-odds for probabilities of success arg_constraints = {'logits': Real(), 'probs': HalfOpenInterval(lower_bound=0.0, upper_bound=1.0), 'total_count': GreaterThanEq(lower_bound=0)} expand(batch_shape, _instance=None)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
expand(batch_shape, _instance=None) log_prob(value) property logits property mean property mode property param_shape property probs sample(sample_shape=torch.Size([])) support = IntegerGreaterThan(lower_bound=0) property variance Normal class torch.distributions.normal.Normal(loc, scale, validate_args=None) Bases: "ExponentialFamily" Creates a normal (also called Gaussian) distribution parameterized by "loc" and "scale". Example: >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # normally distributed with loc=0 and scale=1 tensor([ 0.1046]) Parameters: * loc (float or Tensor) -- mean of the distribution (often referred to as mu) * **scale** (*float** or **Tensor*) -- standard deviation of the distribution (often referred to as sigma) arg_constraints = {'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)} cdf(value) entropy()
https://pytorch.org/docs/stable/distributions.html
pytorch docs
cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(value) log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) sample(sample_shape=torch.Size([])) property stddev support = Real() property variance OneHotCategorical class torch.distributions.one_hot_categorical.OneHotCategorical(probs=None, logits=None, validate_args=None) Bases: "Distribution" Creates a one-hot categorical distribution parameterized by "probs" or "logits". Samples are one-hot coded vectors of size "probs.size(-1)". Note: The *probs* argument must be non-negative, finite and have a non- zero sum, and it will be normalized to sum to 1 along the last dimension. "probs" will return this normalized value. The *logits* argument will be interpreted as unnormalized log probabilities and can therefore be any real number. It will
https://pytorch.org/docs/stable/distributions.html
pytorch docs
likewise be normalized so that the resulting probabilities sum to 1 along the last dimension. "logits" will return this normalized value. See also: "torch.distributions.Categorical()" for specifications of "probs" and "logits". Example: >>> m = OneHotCategorical(torch.tensor([ 0.25, 0.25, 0.25, 0.25 ])) >>> m.sample() # equal probability of 0, 1, 2, 3 tensor([ 0., 0., 0., 1.]) Parameters: * probs (Tensor) -- event probabilities * **logits** (*Tensor*) -- event log probabilities (unnormalized) arg_constraints = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()} entropy() enumerate_support(expand=True) expand(batch_shape, _instance=None) has_enumerate_support = True log_prob(value) property logits property mean property mode property param_shape property probs sample(sample_shape=torch.Size([])) support = OneHot() property variance Pareto
https://pytorch.org/docs/stable/distributions.html
pytorch docs
property variance Pareto class torch.distributions.pareto.Pareto(scale, alpha, validate_args=None) Bases: "TransformedDistribution" Samples from a Pareto Type 1 distribution. Example: >>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1 tensor([ 1.5623]) Parameters: * scale (float or Tensor) -- Scale parameter of the distribution * **alpha** (*float** or **Tensor*) -- Shape parameter of the distribution arg_constraints: Dict[str, constraints.Constraint] = {'alpha': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)} entropy() expand(batch_shape, _instance=None) property mean property mode property support property variance Poisson class torch.distributions.poisson.Poisson(rate, validate_args=None) Bases: "ExponentialFamily"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Bases: "ExponentialFamily" Creates a Poisson distribution parameterized by "rate", the rate parameter. Samples are nonnegative integers, with a pmf given by \mathrm{rate}^k \frac{e^{-\mathrm{rate}}}{k!} Example: >>> m = Poisson(torch.tensor([4])) >>> m.sample() tensor([ 3.]) Parameters: rate (Number, Tensor) -- the rate parameter arg_constraints = {'rate': GreaterThanEq(lower_bound=0.0)} expand(batch_shape, _instance=None) log_prob(value) property mean property mode sample(sample_shape=torch.Size([])) support = IntegerGreaterThan(lower_bound=0) property variance RelaxedBernoulli class torch.distributions.relaxed_bernoulli.RelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None) Bases: "TransformedDistribution" Creates a RelaxedBernoulli distribution, parametrized by "temperature", and either "probs" or "logits" (but not both). This
https://pytorch.org/docs/stable/distributions.html
pytorch docs
is a relaxed version of the Bernoulli distribution, so the values are in (0, 1), and has reparametrizable samples. Example: >>> m = RelaxedBernoulli(torch.tensor([2.2]), ... torch.tensor([0.1, 0.2, 0.3, 0.99])) >>> m.sample() tensor([ 0.2951, 0.3442, 0.8918, 0.9021]) Parameters: * temperature (Tensor) -- relaxation temperature * **probs** (*Number**, **Tensor*) -- the probability of sampling *1* * **logits** (*Number**, **Tensor*) -- the log-odds of sampling *1* arg_constraints: Dict[str, constraints.Constraint] = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)} expand(batch_shape, _instance=None) has_rsample = True property logits property probs support = Interval(lower_bound=0.0, upper_bound=1.0) property temperature LogitRelaxedBernoulli
https://pytorch.org/docs/stable/distributions.html
pytorch docs
LogitRelaxedBernoulli class torch.distributions.relaxed_bernoulli.LogitRelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None) Bases: "Distribution" Creates a LogitRelaxedBernoulli distribution parameterized by "probs" or "logits" (but not both), which is the logit of a RelaxedBernoulli distribution. Samples are logits of values in (0, 1). See [1] for more details. Parameters: * temperature (Tensor) -- relaxation temperature * **probs** (*Number**, **Tensor*) -- the probability of sampling *1* * **logits** (*Number**, **Tensor*) -- the log-odds of sampling *1* [1] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables (Maddison et al, 2017) [2] Categorical Reparametrization with Gumbel-Softmax (Jang et al, 2017) arg_constraints = {'logits': Real(), 'probs': Interval(lower_bound=0.0, upper_bound=1.0)} expand(batch_shape, _instance=None) log_prob(value)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
log_prob(value) property logits property param_shape property probs rsample(sample_shape=torch.Size([])) support = Real() RelaxedOneHotCategorical class torch.distributions.relaxed_categorical.RelaxedOneHotCategorical(temperature, probs=None, logits=None, validate_args=None) Bases: "TransformedDistribution" Creates a RelaxedOneHotCategorical distribution parametrized by "temperature", and either "probs" or "logits". This is a relaxed version of the "OneHotCategorical" distribution, so its samples are on simplex, and are reparametrizable. Example: >>> m = RelaxedOneHotCategorical(torch.tensor([2.2]), ... torch.tensor([0.1, 0.2, 0.3, 0.4])) >>> m.sample() tensor([ 0.1294, 0.2324, 0.3859, 0.2523]) Parameters: * temperature (Tensor) -- relaxation temperature * **probs** (*Tensor*) -- event probabilities
https://pytorch.org/docs/stable/distributions.html
pytorch docs
logits (Tensor) -- unnormalized log probability for each event arg_constraints: Dict[str, constraints.Constraint] = {'logits': IndependentConstraint(Real(), 1), 'probs': Simplex()} expand(batch_shape, _instance=None) has_rsample = True property logits property probs support = Simplex() property temperature StudentT class torch.distributions.studentT.StudentT(df, loc=0.0, scale=1.0, validate_args=None) Bases: "Distribution" Creates a Student's t-distribution parameterized by degree of freedom "df", mean "loc" and scale "scale". Example: >>> m = StudentT(torch.tensor([2.0])) >>> m.sample() # Student's t-distributed with degrees of freedom=2 tensor([ 0.1046]) Parameters: * df (float or Tensor) -- degrees of freedom * **loc** (*float** or **Tensor*) -- mean of the distribution * **scale** (*float** or **Tensor*) -- scale of the distribution
https://pytorch.org/docs/stable/distributions.html
pytorch docs
arg_constraints = {'df': GreaterThan(lower_bound=0.0), 'loc': Real(), 'scale': GreaterThan(lower_bound=0.0)} entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) support = Real() property variance TransformedDistribution class torch.distributions.transformed_distribution.TransformedDistribution(base_distribution, transforms, validate_args=None) Bases: "Distribution" Extension of the Distribution class, which applies a sequence of Transforms to a base distribution. Let f be the composition of transforms applied: X ~ BaseDistribution Y = f(X) ~ TransformedDistribution(BaseDistribution, f) log p(Y) = log p(X) + log |det (dX/dY)| Note that the ".event_shape" of a "TransformedDistribution" is the maximum shape of its base distribution and its transforms, since transforms can introduce correlations among events.
https://pytorch.org/docs/stable/distributions.html
pytorch docs
An example for the usage of "TransformedDistribution" would be: # Building a Logistic Distribution # X ~ Uniform(0, 1) # f = a + b * logit(X) # Y ~ f(X) ~ Logistic(a, b) base_distribution = Uniform(0, 1) transforms = [SigmoidTransform().inv, AffineTransform(loc=a, scale=b)] logistic = TransformedDistribution(base_distribution, transforms) For more examples, please look at the implementations of "Gumbel", "HalfCauchy", "HalfNormal", "LogNormal", "Pareto", "Weibull", "RelaxedBernoulli" and "RelaxedOneHotCategorical" arg_constraints: Dict[str, Constraint] = {} cdf(value) Computes the cumulative distribution function by inverting the transform(s) and computing the score of the base distribution. expand(batch_shape, _instance=None) property has_rsample icdf(value) Computes the inverse cumulative distribution function using transform(s) and computing the score of the base distribution. log_prob(value)
https://pytorch.org/docs/stable/distributions.html
pytorch docs
log_prob(value) Scores the sample by inverting the transform(s) and computing the score using the score of the base distribution and the log abs det jacobian. rsample(sample_shape=torch.Size([])) Generates a sample_shape shaped reparameterized sample or sample_shape shaped batch of reparameterized samples if the distribution parameters are batched. Samples first from base distribution and applies *transform()* for every transform in the list. sample(sample_shape=torch.Size([])) Generates a sample_shape shaped sample or sample_shape shaped batch of samples if the distribution parameters are batched. Samples first from base distribution and applies *transform()* for every transform in the list. property support Uniform class torch.distributions.uniform.Uniform(low, high, validate_args=None) Bases: "Distribution" Generates uniformly distributed random samples from the half-open interval "[low, high)".
https://pytorch.org/docs/stable/distributions.html
pytorch docs
interval "[low, high)". Example: >>> m = Uniform(torch.tensor([0.0]), torch.tensor([5.0])) >>> m.sample() # uniformly distributed in the range [0.0, 5.0) tensor([ 2.3418]) Parameters: * low (float or Tensor) -- lower range (inclusive). * **high** (*float** or **Tensor*) -- upper range (exclusive). arg_constraints = {'high': Dependent(), 'low': Dependent()} cdf(value) entropy() expand(batch_shape, _instance=None) has_rsample = True icdf(value) log_prob(value) property mean property mode rsample(sample_shape=torch.Size([])) property stddev property support property variance VonMises class torch.distributions.von_mises.VonMises(loc, concentration, validate_args=None) Bases: "Distribution" A circular von Mises distribution. This implementation uses polar coordinates. The "loc" and "value" args can be any real number (to facilitate unconstrained
https://pytorch.org/docs/stable/distributions.html
pytorch docs
optimization), but are interpreted as angles modulo 2 pi. Example:: >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0])) >>> m.sample() # von Mises distributed with loc=1 and concentration=1 tensor([1.9777]) Parameters: * loc (torch.Tensor) -- an angle in radians. * **concentration** (*torch.Tensor*) -- concentration parameter arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'loc': Real()} expand(batch_shape) has_rsample = False log_prob(value) property mean The provided mean is the circular one. property mode sample(sample_shape=torch.Size([])) The sampling algorithm for the von Mises distribution is based on the following paper: Best, D. J., and Nicholas I. Fisher. "Efficient simulation of the von Mises distribution." Applied Statistics (1979): 152-157. support = Real() property variance The provided variance is the circular one. Weibull
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Weibull class torch.distributions.weibull.Weibull(scale, concentration, validate_args=None) Bases: "TransformedDistribution" Samples from a two-parameter Weibull distribution. -[ Example ]- m = Weibull(torch.tensor([1.0]), torch.tensor([1.0])) m.sample() # sample from a Weibull distribution with scale=1, concentration=1 tensor([ 0.4784]) Parameters: * scale (float or Tensor) -- Scale parameter of distribution (lambda). * **concentration** (*float** or **Tensor*) -- Concentration parameter of distribution (k/shape). arg_constraints: Dict[str, constraints.Constraint] = {'concentration': GreaterThan(lower_bound=0.0), 'scale': GreaterThan(lower_bound=0.0)} entropy() expand(batch_shape, _instance=None) property mean property mode support = GreaterThan(lower_bound=0.0) property variance Wishart
https://pytorch.org/docs/stable/distributions.html
pytorch docs
property variance Wishart class torch.distributions.wishart.Wishart(df, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None) Bases: "ExponentialFamily" Creates a Wishart distribution parameterized by a symmetric positive definite matrix \Sigma, or its Cholesky decomposition \mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top -[ Example ]- m = Wishart(torch.eye(2), torch.Tensor([2])) m.sample() # Wishart distributed with mean=df * I and # variance(x_ij)=df for i != j and variance(x_ij)=2 * df for i == j Parameters: * covariance_matrix (Tensor) -- positive-definite covariance matrix * **precision_matrix** (*Tensor*) -- positive-definite precision matrix * **scale_tril** (*Tensor*) -- lower-triangular factor of covariance, with positive-valued diagonal * **df** (*float** or **Tensor*) -- real-valued parameter larger
https://pytorch.org/docs/stable/distributions.html
pytorch docs
than the (dimension of Square matrix) - 1 Note: Only one of "covariance_matrix" or "precision_matrix" or "scale_tril" can be specified. Using "scale_tril" will be more efficient: all computations internally are based on "scale_tril". If "covariance_matrix" or "precision_matrix" is passed instead, it is only used to compute the corresponding lower triangular matrices using a Cholesky decomposition. 'torch.distributions.LKJCholesky' is a restricted Wishart distribution.[1] References [1] Wang, Z., Wu, Y. and Chu, H., 2018. On equivalence of the LKJ distribution and the restricted Wishart distribution. [2] Sawyer, S., 2007. Wishart Distributions and Inverse-Wishart Sampling. [3] Anderson, T. W., 2003. An Introduction to Multivariate Statistical Analysis (3rd ed.). [4] Odell, P. L. & Feiveson, A. H., 1966. A Numerical Procedure to Generate a SampleCovariance Matrix. JASA,
https://pytorch.org/docs/stable/distributions.html
pytorch docs
61(313):199-203. [5] Ku, Y.-C. & Bloomfield, P., 2010. Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX. arg_constraints = {'covariance_matrix': PositiveDefinite(), 'df': GreaterThan(lower_bound=0), 'precision_matrix': PositiveDefinite(), 'scale_tril': LowerCholesky()} property covariance_matrix entropy() expand(batch_shape, _instance=None) has_rsample = True log_prob(value) property mean property mode property precision_matrix rsample(sample_shape=torch.Size([]), max_try_correction=None) Warning: In some cases, sampling algorithm based on Bartlett decomposition may return singular matrix samples. Several tries to correct singular samples are performed by default, but it may end up returning singular matrix samples. Singular samples may return *-inf* values in *.log_prob()*. In those cases, the user should validate the samples and either fix the
https://pytorch.org/docs/stable/distributions.html
pytorch docs
value of df or adjust max_try_correction value for argument in .rsample accordingly. property scale_tril support = PositiveDefinite() property variance KL Divergence torch.distributions.kl.kl_divergence(p, q) Compute Kullback-Leibler divergence KL(p | q) between two distributions. KL(p \| q) = \int p(x) \log\frac {p(x)} {q(x)} \,dx Parameters: * p (Distribution) -- A "Distribution" object. * **q** (*Distribution*) -- A "Distribution" object. Returns: A batch of KL divergences of shape batch_shape. Return type: Tensor Raises: NotImplementedError -- If the distribution types have not been registered via "register_kl()". KL divergence is currently implemented for the following distribution pairs: * "Bernoulli" and "Bernoulli" * "Bernoulli" and "Poisson" * "Beta" and "Beta" * "Beta" and "ContinuousBernoulli" * "Beta" and "Exponential"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
"Beta" and "Exponential" "Beta" and "Gamma" "Beta" and "Normal" "Beta" and "Pareto" "Beta" and "Uniform" "Binomial" and "Binomial" "Categorical" and "Categorical" "Cauchy" and "Cauchy" "ContinuousBernoulli" and "ContinuousBernoulli" "ContinuousBernoulli" and "Exponential" "ContinuousBernoulli" and "Normal" "ContinuousBernoulli" and "Pareto" "ContinuousBernoulli" and "Uniform" "Dirichlet" and "Dirichlet" "Exponential" and "Beta" "Exponential" and "ContinuousBernoulli" "Exponential" and "Exponential" "Exponential" and "Gamma" "Exponential" and "Gumbel" "Exponential" and "Normal" "Exponential" and "Pareto" "Exponential" and "Uniform" "ExponentialFamily" and "ExponentialFamily" "Gamma" and "Beta" "Gamma" and "ContinuousBernoulli" "Gamma" and "Exponential" "Gamma" and "Gamma"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
"Gamma" and "Gamma" "Gamma" and "Gumbel" "Gamma" and "Normal" "Gamma" and "Pareto" "Gamma" and "Uniform" "Geometric" and "Geometric" "Gumbel" and "Beta" "Gumbel" and "ContinuousBernoulli" "Gumbel" and "Exponential" "Gumbel" and "Gamma" "Gumbel" and "Gumbel" "Gumbel" and "Normal" "Gumbel" and "Pareto" "Gumbel" and "Uniform" "HalfNormal" and "HalfNormal" "Independent" and "Independent" "Laplace" and "Beta" "Laplace" and "ContinuousBernoulli" "Laplace" and "Exponential" "Laplace" and "Gamma" "Laplace" and "Laplace" "Laplace" and "Normal" "Laplace" and "Pareto" "Laplace" and "Uniform" "LowRankMultivariateNormal" and "LowRankMultivariateNormal" "LowRankMultivariateNormal" and "MultivariateNormal" "MultivariateNormal" and "LowRankMultivariateNormal"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
"MultivariateNormal" and "MultivariateNormal" "Normal" and "Beta" "Normal" and "ContinuousBernoulli" "Normal" and "Exponential" "Normal" and "Gamma" "Normal" and "Gumbel" "Normal" and "Laplace" "Normal" and "Normal" "Normal" and "Pareto" "Normal" and "Uniform" "OneHotCategorical" and "OneHotCategorical" "Pareto" and "Beta" "Pareto" and "ContinuousBernoulli" "Pareto" and "Exponential" "Pareto" and "Gamma" "Pareto" and "Normal" "Pareto" and "Pareto" "Pareto" and "Uniform" "Poisson" and "Bernoulli" "Poisson" and "Binomial" "Poisson" and "Poisson" "TransformedDistribution" and "TransformedDistribution" "Uniform" and "Beta" "Uniform" and "ContinuousBernoulli" "Uniform" and "Exponential" "Uniform" and "Gamma" "Uniform" and "Gumbel" "Uniform" and "Normal"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
"Uniform" and "Normal" "Uniform" and "Pareto" "Uniform" and "Uniform" torch.distributions.kl.register_kl(type_p, type_q) Decorator to register a pairwise function with "kl_divergence()". Usage: @register_kl(Normal, Normal) def kl_normal_normal(p, q): # insert implementation here Lookup returns the most specific (type,type) match ordered by subclass. If the match is ambiguous, a RuntimeWarning is raised. For example to resolve the ambiguous situation: @register_kl(BaseP, DerivedQ) def kl_version1(p, q): ... @register_kl(DerivedP, BaseQ) def kl_version2(p, q): ... you should register a third most-specific implementation, e.g.: register_kl(DerivedP, DerivedQ)(kl_version1) # Break the tie. Parameters: * type_p (type) -- A subclass of "Distribution". * **type_q** (*type*) -- A subclass of "Distribution". Transforms
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Transforms class torch.distributions.transforms.AbsTransform(cache_size=0) Transform via the mapping y = |x|. class torch.distributions.transforms.AffineTransform(loc, scale, event_dim=0, cache_size=0) Transform via the pointwise affine mapping y = \text{loc} + \text{scale} \times x. Parameters: * loc (Tensor or float) -- Location parameter. * **scale** (*Tensor** or **float*) -- Scale parameter. * **event_dim** (*int*) -- Optional size of *event_shape*. This should be zero for univariate random variables, 1 for distributions over vectors, 2 for distributions over matrices, etc. class torch.distributions.transforms.CatTransform(tseq, dim=0, lengths=None, cache_size=0) Transform functor that applies a sequence of transforms tseq component-wise to each submatrix at dim, of length lengths[dim], in a way compatible with "torch.cat()". Example:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Example: x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0) x = torch.cat([x0, x0], dim=0) t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10]) t = CatTransform([t0, t0], dim=0, lengths=[20, 20]) y = t(x) class torch.distributions.transforms.ComposeTransform(parts, cache_size=0) Composes multiple transforms in a chain. The transforms being composed are responsible for caching. Parameters: * parts (list of "Transform") -- A list of transforms to compose. * **cache_size** (*int*) -- Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported. class torch.distributions.transforms.CorrCholeskyTransform(cache_size=0) Transforms an uncontrained real vector x with length D*(D-1)/2 into the Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower triangular matrix with positive
https://pytorch.org/docs/stable/distributions.html
pytorch docs
diagonals and unit Euclidean norm for each row. The transform is processed as follows: 1. First we convert x into a lower triangular matrix in row order. 2. For each row X_i of the lower triangular part, we apply a *signed* version of class "StickBreakingTransform" to transform X_i into a unit Euclidean length vector using the following steps: - Scales into the interval (-1, 1) domain: r_i = \tanh(X_i). - Transforms into an unsigned domain: z_i = r_i^2. - Applies s_i = StickBreakingTransform(z_i). - Transforms back into signed domain: y_i = sign(r_i) * \sqrt{s_i}. class torch.distributions.transforms.CumulativeDistributionTransform(distribution, cache_size=0) Transform via the cumulative distribution function of a probability distribution. Parameters: distribution (Distribution) -- Distribution whose cumulative distribution function to use for the transformation. Example:
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Example: # Construct a Gaussian copula from a multivariate normal. base_dist = MultivariateNormal( loc=torch.zeros(2), scale_tril=LKJCholesky(2).sample(), ) transform = CumulativeDistributionTransform(Normal(0, 1)) copula = TransformedDistribution(base_dist, [transform]) class torch.distributions.transforms.ExpTransform(cache_size=0) Transform via the mapping y = \exp(x). class torch.distributions.transforms.IndependentTransform(base_transform, reinterpreted_batch_ndims, cache_size=0) Wrapper around another transform to treat "reinterpreted_batch_ndims"-many extra of the right most dimensions as dependent. This has no effect on the forward or backward transforms, but does sum out "reinterpreted_batch_ndims"-many of the rightmost dimensions in "log_abs_det_jacobian()". Parameters: * base_transform ("Transform") -- A base transform. * **reinterpreted_batch_ndims** (*int*) -- The number of extra
https://pytorch.org/docs/stable/distributions.html
pytorch docs
rightmost dimensions to treat as dependent. class torch.distributions.transforms.LowerCholeskyTransform(cache_size=0) Transform from unconstrained matrices to lower-triangular matrices with nonnegative diagonal entries. This is useful for parameterizing positive definite matrices in terms of their Cholesky factorization. class torch.distributions.transforms.PositiveDefiniteTransform(cache_size=0) Transform from unconstrained matrices to positive-definite matrices. class torch.distributions.transforms.PowerTransform(exponent, cache_size=0) Transform via the mapping y = x^{\text{exponent}}. class torch.distributions.transforms.ReshapeTransform(in_shape, out_shape, cache_size=0) Unit Jacobian transform to reshape the rightmost part of a tensor. Note that "in_shape" and "out_shape" must have the same number of elements, just as for "torch.Tensor.reshape()". Parameters: * in_shape (torch.Size) -- The input event shape.
https://pytorch.org/docs/stable/distributions.html
pytorch docs
out_shape (torch.Size) -- The output event shape. class torch.distributions.transforms.SigmoidTransform(cache_size=0) Transform via the mapping y = \frac{1}{1 + \exp(-x)} and x = \text{logit}(y). class torch.distributions.transforms.SoftplusTransform(cache_size=0) Transform via the mapping \text{Softplus}(x) = \log(1 + \exp(x)). The implementation reverts to the linear function when x > 20. class torch.distributions.transforms.TanhTransform(cache_size=0) Transform via the mapping y = \tanh(x). It is equivalent to "ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)])" However this might not be numerically stable, thus it is recommended to use TanhTransform instead. Note that one should use cache_size=1 when it comes to NaN/Inf values. class torch.distributions.transforms.SoftmaxTransform(cache_size=0) Transform from unconstrained space to the simplex via y = \exp(x) then normalizing.
https://pytorch.org/docs/stable/distributions.html
pytorch docs
then normalizing. This is not bijective and cannot be used for HMC. However this acts mostly coordinate-wise (except for the final normalization), and thus is appropriate for coordinate-wise optimization algorithms. class torch.distributions.transforms.StackTransform(tseq, dim=0, cache_size=0) Transform functor that applies a sequence of transforms tseq component-wise to each submatrix at dim in a way compatible with "torch.stack()". Example: x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1) t = StackTransform([ExpTransform(), identity_transform], dim=1) y = t(x) class torch.distributions.transforms.StickBreakingTransform(cache_size=0) Transform from unconstrained space to the simplex of one additional dimension via a stick-breaking process. This transform arises as an iterated sigmoid transform in a stick- breaking construction of the Dirichlet distribution: the first
https://pytorch.org/docs/stable/distributions.html
pytorch docs
logit is transformed via sigmoid to the first probability and the probability of everything else, and then the process recurses. This is bijective and appropriate for use in HMC; however it mixes coordinates together and is less appropriate for optimization. class torch.distributions.transforms.Transform(cache_size=0) Abstract class for invertable transformations with computable log det jacobians. They are primarily used in "torch.distributions.TransformedDistribution". Caching is useful for transforms whose inverses are either expensive or numerically unstable. Note that care must be taken with memoized values since the autograd graph may be reversed. For example while the following works with or without caching: y = t(x) t.log_abs_det_jacobian(x, y).backward() # x will receive gradients. However the following will error when caching due to dependency reversal: y = t(x) z = t.inv(y) grad(z.sum(), [y]) # error because z is x
https://pytorch.org/docs/stable/distributions.html
pytorch docs
grad(z.sum(), [y]) # error because z is x Derived classes should implement one or both of "_call()" or "_inverse()". Derived classes that set bijective=True should also implement "log_abs_det_jacobian()". Parameters: cache_size (int) -- Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported. Variables: * domain ("Constraint") -- The constraint representing valid inputs to this transform. * **codomain** ("Constraint") -- The constraint representing valid outputs to this transform which are inputs to the inverse transform. * **bijective** (*bool*) -- Whether this transform is bijective. A transform "t" is bijective iff "t.inv(t(x)) == x" and "t(t.inv(y)) == y" for every "x" in the domain and "y" in the codomain. Transforms that are not bijective should at least maintain the weaker pseudoinverse properties "t(t.inv(t(x)) ==
https://pytorch.org/docs/stable/distributions.html
pytorch docs
t(x)" and "t.inv(t(t.inv(y))) == t.inv(y)". * **sign** (*int** or **Tensor*) -- For bijective univariate transforms, this should be +1 or -1 depending on whether transform is monotone increasing or decreasing. property inv Returns the inverse "Transform" of this transform. This should satisfy "t.inv.inv is t". property sign Returns the sign of the determinant of the Jacobian, if applicable. In general this only makes sense for bijective transforms. log_abs_det_jacobian(x, y) Computes the log det jacobian *log |dy/dx|* given input and output. forward_shape(shape) Infers the shape of the forward computation, given the input shape. Defaults to preserving shape. inverse_shape(shape) Infers the shapes of the inverse computation, given the output shape. Defaults to preserving shape. Constraints The following constraints are implemented: "constraints.boolean"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
"constraints.boolean" "constraints.cat" "constraints.corr_cholesky" "constraints.dependent" "constraints.greater_than(lower_bound)" "constraints.greater_than_eq(lower_bound)" "constraints.independent(constraint, reinterpreted_batch_ndims)" "constraints.integer_interval(lower_bound, upper_bound)" "constraints.interval(lower_bound, upper_bound)" "constraints.less_than(upper_bound)" "constraints.lower_cholesky" "constraints.lower_triangular" "constraints.multinomial" "constraints.nonnegative_integer" "constraints.one_hot" "constraints.positive_integer" "constraints.positive" "constraints.positive_semidefinite" "constraints.positive_definite" "constraints.real_vector" "constraints.real" "constraints.simplex" "constraints.symmetric" "constraints.stack" "constraints.square" "constraints.symmetric" "constraints.unit_interval" class torch.distributions.constraints.Constraint Abstract base class for constraints.
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Abstract base class for constraints. A constraint object represents a region over which a variable is valid, e.g. within which a variable can be optimized. Variables: * is_discrete (bool) -- Whether constrained space is discrete. Defaults to False. * **event_dim** (*int*) -- Number of rightmost dimensions that together define an event. The "check()" method will remove this many dimensions when computing validity. check(value) Returns a byte tensor of "sample_shape + batch_shape" indicating whether each event in value satisfies this constraint. torch.distributions.constraints.cat alias of "_Cat" torch.distributions.constraints.dependent_property alias of "_DependentProperty" torch.distributions.constraints.greater_than alias of "_GreaterThan" torch.distributions.constraints.greater_than_eq alias of "_GreaterThanEq" torch.distributions.constraints.independent alias of "_IndependentConstraint"
https://pytorch.org/docs/stable/distributions.html
pytorch docs
alias of "_IndependentConstraint" torch.distributions.constraints.integer_interval alias of "_IntegerInterval" torch.distributions.constraints.interval alias of "_Interval" torch.distributions.constraints.half_open_interval alias of "_HalfOpenInterval" torch.distributions.constraints.less_than alias of "_LessThan" torch.distributions.constraints.multinomial alias of "_Multinomial" torch.distributions.constraints.stack alias of "_Stack" Constraint Registry PyTorch provides two global "ConstraintRegistry" objects that link "Constraint" objects to "Transform" objects. These objects both input constraints and return transforms, but they have different guarantees on bijectivity. "biject_to(constraint)" looks up a bijective "Transform" from "constraints.real" to the given "constraint". The returned transform is guaranteed to have ".bijective = True" and should implement ".log_abs_det_jacobian()".
https://pytorch.org/docs/stable/distributions.html
pytorch docs
implement ".log_abs_det_jacobian()". "transform_to(constraint)" looks up a not-necessarily bijective "Transform" from "constraints.real" to the given "constraint". The returned transform is not guaranteed to implement ".log_abs_det_jacobian()". The "transform_to()" registry is useful for performing unconstrained optimization on constrained parameters of probability distributions, which are indicated by each distribution's ".arg_constraints" dict. These transforms often overparameterize a space in order to avoid rotation; they are thus more suitable for coordinate-wise optimization algorithms like Adam: loc = torch.zeros(100, requires_grad=True) unconstrained = torch.zeros(100, requires_grad=True) scale = transform_to(Normal.arg_constraints['scale'])(unconstrained) loss = -Normal(loc, scale).log_prob(data).sum() The "biject_to()" registry is useful for Hamiltonian Monte Carlo, where samples from a probability distribution with constrained
https://pytorch.org/docs/stable/distributions.html
pytorch docs
".support" are propagated in an unconstrained space, and algorithms are typically rotation invariant.: dist = Exponential(rate) unconstrained = torch.zeros(100, requires_grad=True) sample = biject_to(dist.support)(unconstrained) potential_energy = -dist.log_prob(sample).sum() Note: An example where "transform_to" and "biject_to" differ is "constraints.simplex": "transform_to(constraints.simplex)" returns a "SoftmaxTransform" that simply exponentiates and normalizes its inputs; this is a cheap and mostly coordinate-wise operation appropriate for algorithms like SVI. In contrast, "biject_to(constraints.simplex)" returns a "StickBreakingTransform" that bijects its input down to a one-fewer-dimensional space; this a more expensive less numerically stable transform but is needed for algorithms like HMC. The "biject_to" and "transform_to" objects can be extended by user- defined constraints and transforms using their ".register()" method
https://pytorch.org/docs/stable/distributions.html
pytorch docs
either as a function on singleton constraints: transform_to.register(my_constraint, my_transform) or as a decorator on parameterized constraints: @transform_to.register(MyConstraintClass) def my_factory(constraint): assert isinstance(constraint, MyConstraintClass) return MyTransform(constraint.param1, constraint.param2) You can create your own registry by creating a new "ConstraintRegistry" object. class torch.distributions.constraint_registry.ConstraintRegistry Registry to link constraints to transforms. register(constraint, factory=None) Registers a "Constraint" subclass in this registry. Usage: @my_registry.register(MyConstraintClass) def construct_transform(constraint): assert isinstance(constraint, MyConstraint) return MyTransform(constraint.arg_constraints) Parameters: * **constraint** (subclass of "Constraint") -- A subclass of "Constraint", or a singleton object of the desired class.
https://pytorch.org/docs/stable/distributions.html
pytorch docs
factory (Callable) -- A callable that inputs a constraint object and returns a "Transform" object.
https://pytorch.org/docs/stable/distributions.html
pytorch docs
Named Tensors operator coverage Please read Named Tensors first for an introduction to named tensors. This document is a reference for name inference, a process that defines how named tensors: use names to provide additional automatic runtime correctness checks propagate names from input tensors to output tensors Below is a list of all operations that are supported with named tensors and their associated name inference rules. If you don't see an operation listed here, but it would help your use case, please search if an issue has already been filed and if not, file one. Warning: The named tensor API is experimental and subject to change. Supported Operations ^^^^^^^^^^^^^^^^^^^^ +----------------------+----------------------+ | API | Name inference rule | |======================|======================| | "Tensor.abs()", | Keeps input names | | "torch.abs()" | |
https://pytorch.org/docs/stable/name_inference.html
pytorch docs
| "torch.abs()" | | +----------------------+----------------------+ | "Tensor.abs_()" | Keeps input names | +----------------------+----------------------+ | "Tensor.acos()", | Keeps input names | | "torch.acos()" | | +----------------------+----------------------+ | "Tensor.acos_()" | Keeps input names | +----------------------+----------------------+ | "Tensor.add()", | Unifies names from | | "torch.add()" | inputs | +----------------------+----------------------+ | "Tensor.add_()" | Unifies names from | | | inputs | +----------------------+----------------------+ | "Tensor.addmm()", | Contracts away dims | | "torch.addmm()" | | +----------------------+----------------------+ | "Tensor.addmm_()" | Contracts away dims | +----------------------+----------------------+ | "Tensor.addmv()", | Contracts away dims |
https://pytorch.org/docs/stable/name_inference.html
pytorch docs
| "Tensor.addmv()", | Contracts away dims | | "torch.addmv()" | | +----------------------+----------------------+ | "Tensor.addmv_()" | Contracts away dims | +----------------------+----------------------+ | "Tensor.align_as()" | See documentation | +----------------------+----------------------+ | "Tensor.align_to()" | See documentation | +----------------------+----------------------+ | "Tensor.all()", | None | | "torch.all()" | | +----------------------+----------------------+ | "Tensor.any()", | None | | "torch.any()" | | +----------------------+----------------------+ | "Tensor.asin()", | Keeps input names | | "torch.asin()" | | +----------------------+----------------------+ | "Tensor.asin_()" | Keeps input names | +----------------------+----------------------+ | "Tensor.atan()", | Keeps input names |
https://pytorch.org/docs/stable/name_inference.html
pytorch docs
| "Tensor.atan()", | Keeps input names | | "torch.atan()" | | +----------------------+----------------------+ | "Tensor.atan2()", | Unifies names from | | "torch.atan2()" | inputs | +----------------------+----------------------+ | "Tensor.atan2_()" | Unifies names from | | | inputs | +----------------------+----------------------+ | "Tensor.atan_()" | Keeps input names | +----------------------+----------------------+ | "Tensor.bernoulli() | Keeps input names | | ", | | | "torch.bernoulli()" | | +----------------------+----------------------+ | "Tensor.bernoulli_( | None | | )" | | +----------------------+----------------------+ | "Tensor.bfloat16()" | Keeps input names | +----------------------+----------------------+ | "Tensor.bitwise_not | Keeps input names |
https://pytorch.org/docs/stable/name_inference.html
pytorch docs