File size: 4,731 Bytes
c343a0d cdfe677 fecd6ed cdfe677 773ce60 cdfe677 fecd6ed eb1d6d1 773ce60 fecd6ed c343a0d 824375b 80db471 824375b 773ce60 824375b 80db471 824375b 773ce60 824375b 773ce60 824375b 773ce60 824375b eb1d6d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
---
license: cc-by-sa-4.0
dataset_info:
- config_name: original
features:
- name: utterance_id
dtype: string
- name: speaker_id
dtype: string
- name: utterance
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: num_frames
dtype: int32
splits:
- name: train
num_bytes: 40925646
num_examples: 157905
download_size: 9340083067
dataset_size: 40925646
- config_name: cleaned
features:
- name: utterance_id
dtype: string
- name: speaker_id
dtype: string
- name: utterance
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: num_frames
dtype: int32
splits:
- name: train
num_bytes: 40925646
num_examples: 157905
download_size: 5978669282
dataset_size: 40925646
---
# Dataset Card for OpenSLR Nepali Large ASR Cleaned
## Table of Contents
- [Dataset Card for OpenSLR Nepali Large ASR Cleaned](#dataset-card-for-openslr-nepali-large-asr-cleaned)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [How to use?](#how-to-use)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
## Dataset Description
- **Homepage:** [Original OpenSLR Large Nepali ASR Dataset link](https://www.openslr.org/54/)
- **Repository:** [Needs More Information]
- **Paper:** [Needs More Information]
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [Sagar Sapkota](mailto:spkt.sagar@gmail.com)
### Dataset Summary
This data set contains transcribed audio data for Nepali. The data set consists of flac files, and a TSV file. The file utt_spk_text.tsv contains a FileID, anonymized UserID and the transcription of audio in the file.
The data set has been manually quality-checked, but there might still be errors.
The audio files are sampled at a rate of 16KHz, and leading and trailing silences are trimmed using torchaudio's voice activity detection.
For your reference, following was the function applied on each of the original openslr utterances.
```python
import torchaudio
SAMPLING_RATE = 16000
def process_audio_file(orig_path, new_path):
"""Read and process file in `orig_path` and save it to `new_path`"""
waveform, sampling_rate = torchaudio.load(orig_path)
if sampling_rate != SAMPLING_RATE:
waveform = torchaudio.functional.resample(waveform, sampling_rate, SAMPLING_RATE)
# trim end silences with Voice Activity Detection
waveform = torchaudio.functional.vad(waveform, sample_rate=SAMPLING_RATE)
torchaudio.save(new_path, waveform, sample_rate=SAMPLING_RATE)
```
### How to use?
There are two configurations for the data: one to download the original data and the other to download the preprocessed data as described above.
1. First, to download the original dataset with HuggingFace's [Dataset](https://huggingface.co/docs/datasets/) API:
```python
from datasets import load_dataset
dataset = load_dataset("spktsagar/openslr-nepali-asr-cleaned", name="original", split='train')
```
2. To download the preprocessed dataset:
```python
from datasets import load_dataset
dataset = load_dataset("spktsagar/openslr-nepali-asr-cleaned", name="cleaned", split='train')
```
### Supported Tasks and Leaderboards
- `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition.
### Languages
Nepali
## Dataset Structure
### Data Instances
```js
{
'utterance_id': 'e1c4d414df',
'speaker_id': '09da0',
'utterance': {
'path': '/root/.cache/huggingface/datasets/downloads/extracted/e3cf9a618900289ecfd4a65356633d7438317f71c500cbed122960ab908e1e8a/cleaned/asr_nepali/data/e1/e1c4d414df.flac',
'array': array([-0.00192261, -0.00204468, -0.00158691, ..., 0.00323486, 0.00256348, 0.00262451], dtype=float32),
'sampling_rate': 16000
},
'transcription': '२००५ मा बिते',
'num_frames': 42300
}
```
### Data Fields
- utterance_id: a string identifying the utterances
- speaker_id: obfuscated unique id of the speaker whose utterances is in the current instance
- utterance:
- path: path to the utterance .flac file
- array: numpy array of the utterance
- sampling_rate: sample rate of the utterance
- transcription: Nepali text which spoken in the utterance
- num_frames: length of waveform array
### Data Splits
The dataset is not split. The consumer should split it as per their requirements. |