arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2305.05216
2023-05-09T07:24:26Z
Dataset of a parameterized U-bend flow for Deep Learning Applications
[ "Jens Decke", "Olaf Wünsch", "Bernhard Sick" ]
This dataset contains 10,000 fluid flow and heat transfer simulations in U-bend shapes. Each of them is described by 28 design parameters, which are processed with the help of Computational Fluid Dynamics methods. The dataset provides a comprehensive benchmark for investigating various problems and methods from the field of design optimization. For these investigations supervised, semi-supervised and unsupervised deep learning approaches can be employed. One unique feature of this dataset is that each shape can be represented by three distinct data types including design parameter and objective combinations, five different resolutions of 2D images from the geometry and the solution variables of the numerical simulation, as well as a representation using the cell values of the numerical mesh. This third representation enables considering the specific data structure of numerical simulations for deep learning approaches. The source code and the container used to generate the data are published as part of this work.
[ "physics.flu-dyn", "cs.LG" ]
false
2305.05239
2023-05-09T08:00:23Z
Learnable Behavior Control: Breaking Atari Human World Records via Sample-Efficient Behavior Selection
[ "Jiajun Fan", "Yuzheng Zhuang", "Yuecheng Liu", "Jianye Hao", "Bin Wang", "Jiangcheng Zhu", "Hao Wang", "Shu-Tao Xia" ]
The exploration problem is one of the main challenges in deep reinforcement learning (RL). Recent promising works tried to handle the problem with population-based methods, which collect samples with diverse behaviors derived from a population of different exploratory policies. Adaptive policy selection has been adopted for behavior control. However, the behavior selection space is largely limited by the predefined policy population, which further limits behavior diversity. In this paper, we propose a general framework called Learnable Behavioral Control (LBC) to address the limitation, which a) enables a significantly enlarged behavior selection space via formulating a hybrid behavior mapping from all policies; b) constructs a unified learnable process for behavior selection. We introduce LBC into distributed off-policy actor-critic methods and achieve behavior control via optimizing the selection of the behavior mappings with bandit-based meta-controllers. Our agents have achieved 10077.52% mean human normalized score and surpassed 24 human world records within 1B training frames in the Arcade Learning Environment, which demonstrates our significant state-of-the-art (SOTA) performance without degrading the sample efficiency.
[ "cs.LG", "cs.AI" ]
false
2305.05355
2023-05-09T11:43:31Z
Turning Privacy-preserving Mechanisms against Federated Learning
[ "Marco Arazzi", "Mauro Conti", "Antonino Nocera", "Stjepan Picek" ]
Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, experts proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration, and we design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode.
[ "cs.LG", "cs.CR" ]
false
2305.05469
2023-05-09T14:15:55Z
Graph Neural Networks for Airfoil Design
[ "Florent Bonnet" ]
The study of partial differential equations (PDE) through the framework of deep learning emerged a few years ago leading to the impressive approximations of simple dynamics. Graph neural networks (GNN) turned out to be very useful in those tasks by allowing the treatment of unstructured data often encountered in the field of numerical resolutions of PDE. However, the resolutions of harder PDE such as Navier-Stokes equations are still a challenging task and most of the work done on the latter concentrate either on simulating the flow around simple geometries or on qualitative results that looks physical for design purpose. In this study, we try to leverage the work done on deep learning for PDE and GNN by proposing an adaptation of a known architecture in order to tackle the task of approximating the solution of the two-dimensional steady-state incompressible Navier-Stokes equations over different airfoil geometries. In addition to that, we test our model not only on its performance over the volume but also on its performance to approximate surface quantities such as the wall shear stress or the isostatic pressure leading to the inference of global coefficients such as the lift and the drag of our airfoil in order to allow design exploration. This work takes place in a longer project that aims to approximate three dimensional steady-state solutions over industrial geometries.
[ "cs.LG", "physics.flu-dyn" ]
false
2305.05562
2023-05-09T15:48:34Z
SkelEx and BoundEx: Natural Visualization of ReLU Neural Networks
[ "Pawel Pukowski", "Haiping Lu" ]
Despite their limited interpretability, weights and biases are still the most popular encoding of the functions learned by ReLU Neural Networks (ReLU NNs). That is why we introduce SkelEx, an algorithm to extract a skeleton of the membership functions learned by ReLU NNs, making those functions easier to interpret and analyze. To the best of our knowledge, this is the first work that considers linear regions from the perspective of critical points. As a natural follow-up, we also introduce BoundEx, which is the first analytical method known to us to extract the decision boundary from the realization of a ReLU NN. Both of those methods introduce very natural visualization tool for ReLU NNs trained on low-dimensional data.
[ "cs.LG", "cs.AI" ]
false
2305.05642
2023-05-09T17:41:50Z
A duality framework for generalization analysis of random feature models and two-layer neural networks
[ "Hongrui Chen", "Jihao Long", "Lei Wu" ]
We consider the problem of learning functions in the $\mathcal{F}_{p,\pi}$ and Barron spaces, which are natural function spaces that arise in the high-dimensional analysis of random feature models (RFMs) and two-layer neural networks. Through a duality analysis, we reveal that the approximation and estimation of these spaces can be considered equivalent in a certain sense. This enables us to focus on the easier problem of approximation and estimation when studying the generalization of both models. The dual equivalence is established by defining an information-based complexity that can effectively control estimation errors. Additionally, we demonstrate the flexibility of our duality framework through comprehensive analyses of two concrete applications. The first application is to study learning functions in $\mathcal{F}_{p,\pi}$ with RFMs. We prove that the learning does not suffer from the curse of dimensionality as long as $p>1$, implying RFMs can work beyond the kernel regime. Our analysis extends existing results [CMM21] to the noisy case and removes the requirement of overparameterization. The second application is to investigate the learnability of reproducing kernel Hilbert space (RKHS) under the $L^\infty$ metric. We derive both lower and upper bounds of the minimax estimation error by using the spectrum of the associated kernel. We then apply these bounds to dot-product kernels and analyze how they scale with the input dimension. Our results suggest that learning with ReLU (random) features is generally intractable in terms of reaching high uniform accuracy.
[ "stat.ML", "cs.LG" ]
false
2305.05708
2023-05-09T18:35:38Z
Language models can generate molecules, materials, and protein binding sites directly in three dimensions as XYZ, CIF, and PDB files
[ "Daniel Flam-Shepherd", "Alán Aspuru-Guzik" ]
Language models are powerful tools for molecular design. Currently, the dominant paradigm is to parse molecular graphs into linear string representations that can easily be trained on. This approach has been very successful, however, it is limited to chemical structures that can be completely represented by a graph -- like organic molecules -- while materials and biomolecular structures like protein binding sites require a more complete representation that includes the relative positioning of their atoms in space. In this work, we show how language models, without any architecture modifications, trained using next-token prediction -- can generate novel and valid structures in three dimensions from various substantially different distributions of chemical structures. In particular, we demonstrate that language models trained directly on sequences derived directly from chemical file formats like XYZ files, Crystallographic Information files (CIFs), or Protein Data Bank files (PDBs) can directly generate molecules, crystals, and protein binding sites in three dimensions. Furthermore, despite being trained on chemical file sequences -- language models still achieve performance comparable to state-of-the-art models that use graph and graph-derived string representations, as well as other domain-specific 3D generative models. In doing so, we demonstrate that it is not necessary to use simplified molecular representations to train chemical language models -- that they are powerful generative models capable of directly exploring chemical space in three dimensions for very different structures.
[ "cs.LG", "q-bio.QM" ]
false
2305.05722
2023-05-09T19:14:01Z
Enhancing Clinical Predictive Modeling through Model Complexity-Driven Class Proportion Tuning for Class Imbalanced Data: An Empirical Study on Opioid Overdose Prediction
[ "Yinan Liu", "Xinyu Dong", "Weimin Lyu", "Richard N. Rosenthal", "Rachel Wong", "Tengfei Ma", "Fusheng Wang" ]
Class imbalance problems widely exist in the medical field and heavily deteriorates performance of clinical predictive models. Most techniques to alleviate the problem rebalance class proportions and they predominantly assume the rebalanced proportions should be a function of the original data and oblivious to the model one uses. This work challenges this prevailing assumption and proposes that links the optimal class proportions to the model complexity, thereby tuning the class proportions per model. Our experiments on the opioid overdose prediction problem highlight the performance gain of tuning class proportions. Rigorous regression analysis also confirms the advantages of the theoretical framework proposed and the statistically significant correlation between the hyperparameters controlling the model complexity and the optimal class proportions.
[ "cs.LG", "stat.AP" ]
false
2305.05740
2023-05-09T19:33:52Z
Message Passing Neural Networks for Traffic Forecasting
[ "Arian Prabowo", "Hao Xue", "Wei Shao", "Piotr Koniusz", "Flora D. Salim" ]
A road network, in the context of traffic forecasting, is typically modeled as a graph where the nodes are sensors that measure traffic metrics (such as speed) at that location. Traffic forecasting is interesting because it is complex as the future speed of a road is dependent on a number of different factors. Therefore, to properly forecast traffic, we need a model that is capable of capturing all these different factors. A factor that is missing from the existing works is the node interactions factor. Existing works fail to capture the inter-node interactions because none are using the message-passing flavor of GNN, which is the one best suited to capture the node interactions This paper presents a plausible scenario in road traffic where node interactions are important and argued that the most appropriate GNN flavor to capture node interactions is message-passing. Results from real-world data show the superiority of the message-passing flavor for traffic forecasting. An additional experiment using synthetic data shows that the message-passing flavor can capture inter-node interaction better than other flavors.
[ "cs.LG", "cs.SI" ]
false
2305.05778
2023-05-09T21:48:44Z
Multi-Object Self-Supervised Depth Denoising
[ "Claudius Kienle", "David Petri" ]
Depth cameras are frequently used in robotic manipulation, e.g. for visual servoing. The quality of small and compact depth cameras is though often not sufficient for depth reconstruction, which is required for precise tracking in and perception of the robot's working space. Based on the work of Shabanov et al. (2021), in this work, we present a self-supervised multi-object depth denoising pipeline, that uses depth maps of higher-quality sensors as close-to-ground-truth supervisory signals to denoise depth maps coming from a lower-quality sensor. We display a computationally efficient way to align sets of two frame pairs in space and retrieve a frame-based multi-object mask, in order to receive a clean labeled dataset to train a denoising neural network on. The implementation of our presented work can be found at https://github.com/alr-internship/self-supervised-depth-denoising.
[ "cs.LG", "cs.RO", "68T07", "I.2.10" ]
false
2305.05779
2023-05-09T21:57:15Z
Learning to Parallelize with OpenMP by Augmented Heterogeneous AST Representation
[ "Le Chen", "Quazi Ishtiaque Mahmud", "Hung Phan", "Nesreen K. Ahmed", "Ali Jannesari" ]
Detecting parallelizable code regions is a challenging task, even for experienced developers. Numerous recent studies have explored the use of machine learning for code analysis and program synthesis, including parallelization, in light of the success of machine learning in natural language processing. However, applying machine learning techniques to parallelism detection presents several challenges, such as the lack of an adequate dataset for training, an effective code representation with rich information, and a suitable machine learning model to learn the latent features of code for diverse analyses. To address these challenges, we propose a novel graph-based learning approach called Graph2Par that utilizes a heterogeneous augmented abstract syntax tree (Augmented-AST) representation for code. The proposed approach primarily focused on loop-level parallelization with OpenMP. Moreover, we create an OMP\_Serial dataset with 18598 parallelizable and 13972 non-parallelizable loops to train the machine learning models. Our results show that our proposed approach achieves the accuracy of parallelizable code region detection with 85\% accuracy and outperforms the state-of-the-art token-based machine learning approach. These results indicate that our approach is competitive with state-of-the-art tools and capable of handling loops with complex structures that other tools may overlook.
[ "cs.LG", "cs.SE" ]
false
2305.05792
2023-05-09T22:49:55Z
Testing for Overfitting
[ "James Schmidt" ]
High complexity models are notorious in machine learning for overfitting, a phenomenon in which models well represent data but fail to generalize an underlying data generating process. A typical procedure for circumventing overfitting computes empirical risk on a holdout set and halts once (or flags that/when) it begins to increase. Such practice often helps in outputting a well-generalizing model, but justification for why it works is primarily heuristic. We discuss the overfitting problem and explain why standard asymptotic and concentration results do not hold for evaluation with training data. We then proceed to introduce and argue for a hypothesis test by means of which both model performance may be evaluated using training data, and overfitting quantitatively defined and detected. We rely on said concentration bounds which guarantee that empirical means should, with high probability, approximate their true mean to conclude that they should approximate each other. We stipulate conditions under which this test is valid, describe how the test may be used for identifying overfitting, articulate a further nuance according to which distributional shift may be flagged, and highlight an alternative notion of learning which usefully captures generalization in the absence of uniform PAC guarantees.
[ "stat.ML", "cs.LG" ]
false
2305.05150
2023-05-09T03:30:06Z
Physics-informed neural network for seismic wave inversion in layered semi-infinite domain
[ "Pu Ren", "Chengping Rao", "Hao Sun", "Yang Liu" ]
Estimating the material distribution of Earth's subsurface is a challenging task in seismology and earthquake engineering. The recent development of physics-informed neural network (PINN) has shed new light on seismic inversion. In this paper, we present a PINN framework for seismic wave inversion in layered (1D) semi-infinite domain. The absorbing boundary condition is incorporated into the network as a soft regularizer for avoiding excessive computation. In specific, we design a lightweight network to learn the unknown material distribution and a deep neural network to approximate solution variables. The entire network is end-to-end and constrained by both sparse measurement data and the underlying physical laws (i.e., governing equations and initial/boundary conditions). Various experiments have been conducted to validate the effectiveness of our proposed approach for inverse modeling of seismic wave propagation in 1D semi-infinite domain.
[ "physics.geo-ph", "cs.LG", "cs.NA", "math.NA" ]
false
2305.05159
2023-05-09T04:03:40Z
Latent Interactive A2C for Improved RL in Open Many-Agent Systems
[ "Keyang He", "Prashant Doshi", "Bikramjit Banerjee" ]
There is a prevalence of multiagent reinforcement learning (MARL) methods that engage in centralized training. But, these methods involve obtaining various types of information from the other agents, which may not be feasible in competitive or adversarial settings. A recent method, the interactive advantage actor critic (IA2C), engages in decentralized training coupled with decentralized execution, aiming to predict the other agents' actions from possibly noisy observations. In this paper, we present the latent IA2C that utilizes an encoder-decoder architecture to learn a latent representation of the hidden state and other agents' actions. Our experiments in two domains -- each populated by many agents -- reveal that the latent IA2C significantly improves sample efficiency by reducing variance and converging faster. Additionally, we introduce open versions of these domains where the agent population may change over time, and evaluate on these instances as well.
[ "cs.LG", "cs.AI", "cs.MA" ]
false
2305.05163
2023-05-09T04:19:10Z
Cooperating Graph Neural Networks with Deep Reinforcement Learning for Vaccine Prioritization
[ "Lu Ling", "Washim Uddin Mondal", "Satish V", "Ukkusuri" ]
This study explores the vaccine prioritization strategy to reduce the overall burden of the pandemic when the supply is limited. Existing methods conduct macro-level or simplified micro-level vaccine distribution by assuming the homogeneous behavior within subgroup populations and lacking mobility dynamics integration. Directly applying these models for micro-level vaccine allocation leads to sub-optimal solutions due to the lack of behavioral-related details. To address the issue, we first incorporate the mobility heterogeneity in disease dynamics modeling and mimic the disease evolution process using a Trans-vaccine-SEIR model. Then we develop a novel deep reinforcement learning to seek the optimal vaccine allocation strategy for the high-degree spatial-temporal disease evolution system. The graph neural network is used to effectively capture the structural properties of the mobility contact network and extract the dynamic disease features. In our evaluation, the proposed framework reduces 7% - 10% of infections and deaths than the baseline strategies. Extensive evaluation shows that the proposed framework is robust to seek the optimal vaccine allocation with diverse mobility patterns in the micro-level disease evolution system. In particular, we find the optimal vaccine allocation strategy in the transit usage restriction scenario is significantly more effective than restricting cross-zone mobility for the top 10% age-based and income-based zones. These results provide valuable insights for areas with limited vaccines and low logistic efficacy.
[ "q-bio.PE", "cs.AI", "cs.LG" ]
false
2305.05172
2023-05-09T04:53:57Z
Logic for Explainable AI
[ "Adnan Darwiche" ]
A central quest in explainable AI relates to understanding the decisions made by (learned) classifiers. There are three dimensions of this understanding that have been receiving significant attention in recent years. The first dimension relates to characterizing conditions on instances that are necessary and sufficient for decisions, therefore providing abstractions of instances that can be viewed as the "reasons behind decisions." The next dimension relates to characterizing minimal conditions that are sufficient for a decision, therefore identifying maximal aspects of the instance that are irrelevant to the decision. The last dimension relates to characterizing minimal conditions that are necessary for a decision, therefore identifying minimal perturbations to the instance that yield alternate decisions. We discuss in this tutorial a comprehensive, semantical and computational theory of explainability along these dimensions which is based on some recent developments in symbolic logic. The tutorial will also discuss how this theory is particularly applicable to non-symbolic classifiers such as those based on Bayesian networks, decision trees, random forests and some types of neural networks.
[ "cs.AI", "cs.LG", "cs.LO" ]
false
2305.05238
2023-05-09T08:00:10Z
Architectural Vision for Quantum Computing in the Edge-Cloud Continuum
[ "Alireza Furutanpey", "Johanna Barzen", "Marvin Bechtold", "Schahram Dustdar", "Frank Leymann", "Philipp Raith", "Felix Truger" ]
Quantum processing units (QPUs) are currently exclusively available from cloud vendors. However, with recent advancements, hosting QPUs is soon possible everywhere. Existing work has yet to draw from research in edge computing to explore systems exploiting mobile QPUs, or how hybrid applications can benefit from distributed heterogeneous resources. Hence, this work presents an architecture for Quantum Computing in the edge-cloud continuum. We discuss the necessity, challenges, and solution approaches for extending existing work on classical edge computing to integrate QPUs. We describe how warm-starting allows defining workflows that exploit the hierarchical resources spread across the continuum. Then, we introduce a distributed inference engine with hybrid classical-quantum neural networks (QNNs) to aid system designers in accommodating applications with complex requirements that incur the highest degree of heterogeneity. We propose solutions focusing on classical layer partitioning and quantum circuit cutting to demonstrate the potential of utilizing classical and quantum computation across the continuum. To evaluate the importance and feasibility of our vision, we provide a proof of concept that exemplifies how extending a classical partition method to integrate quantum circuits can improve the solution quality. Specifically, we implement a split neural network with optional hybrid QNN predictors. Our results show that extending classical methods with QNNs is viable and promising for future work.
[ "quant-ph", "cs.DC", "cs.LG" ]
false
2305.05247
2023-05-09T08:12:44Z
Leveraging Generative AI Models for Synthetic Data Generation in Healthcare: Balancing Research and Privacy
[ "Aryan Jadon", "Shashank Kumar" ]
The widespread adoption of electronic health records and digital healthcare data has created a demand for data-driven insights to enhance patient outcomes, diagnostics, and treatments. However, using real patient data presents privacy and regulatory challenges, including compliance with HIPAA and GDPR. Synthetic data generation, using generative AI models like GANs and VAEs offers a promising solution to balance valuable data access and patient privacy protection. In this paper, we examine generative AI models for creating realistic, anonymized patient data for research and training, explore synthetic data applications in healthcare, and discuss its benefits, challenges, and future research directions. Synthetic data has the potential to revolutionize healthcare by providing anonymized patient data while preserving privacy and enabling versatile applications.
[ "cs.LG", "cs.AI", "cs.CR" ]
false
2305.05566
2023-05-09T15:55:19Z
SMAClite: A Lightweight Environment for Multi-Agent Reinforcement Learning
[ "Adam Michalski", "Filippos Christianos", "Stefano V. Albrecht" ]
There is a lack of standard benchmarks for Multi-Agent Reinforcement Learning (MARL) algorithms. The Starcraft Multi-Agent Challenge (SMAC) has been widely used in MARL research, but is built on top of a heavy, closed-source computer game, StarCraft II. Thus, SMAC is computationally expensive and requires knowledge and the use of proprietary tools specific to the game for any meaningful alteration or contribution to the environment. We introduce SMAClite -- a challenge based on SMAC that is both decoupled from Starcraft II and open-source, along with a framework which makes it possible to create new content for SMAClite without any special knowledge. We conduct experiments to show that SMAClite is equivalent to SMAC, by training MARL algorithms on SMAClite and reproducing SMAC results. We then show that SMAClite outperforms SMAC in both runtime speed and memory.
[ "cs.LG", "cs.AI", "cs.MA" ]
false
2305.05601
2023-05-09T16:50:36Z
Deep Learning and Geometric Deep Learning: an introduction for mathematicians and physicists
[ "R. Fioresi", "F. Zanchetta" ]
In this expository paper we want to give a brief introduction, with few key references for further reading, to the inner functioning of the new and successfull algorithms of Deep Learning and Geometric Deep Learning with a focus on Graph Neural Networks. We go over the key ingredients for these algorithms: the score and loss function and we explain the main steps for the training of a model. We do not aim to give a complete and exhaustive treatment, but we isolate few concepts to give a fast introduction to the subject. We provide some appendices to complement our treatment discussing Kullback-Leibler divergence, regression, Multi-layer Perceptrons and the Universal Approximation Theorem.
[ "cs.LG", "math-ph", "math.MP" ]
false
2305.05611
2023-05-09T17:04:50Z
Metric Space Magnitude and Generalisation in Neural Networks
[ "Rayna Andreeva", "Katharina Limbeck", "Bastian Rieck", "Rik Sarkar" ]
Deep learning models have seen significant successes in numerous applications, but their inner workings remain elusive. The purpose of this work is to quantify the learning process of deep neural networks through the lens of a novel topological invariant called magnitude. Magnitude is an isometry invariant; its properties are an active area of research as it encodes many known invariants of a metric space. We use magnitude to study the internal representations of neural networks and propose a new method for determining their generalisation capabilities. Moreover, we theoretically connect magnitude dimension and the generalisation error, and demonstrate experimentally that the proposed framework can be a good indicator of the latter.
[ "cs.LG", "math.GT", "stat.ML" ]
false
2305.05675
2023-05-09T13:07:03Z
UAdam: Unified Adam-Type Algorithmic Framework for Non-Convex Stochastic Optimization
[ "Yiming Jiang", "Jinlan Liu", "Dongpo Xu", "Danilo P. Mandic" ]
Adam-type algorithms have become a preferred choice for optimisation in the deep learning setting, however, despite success, their convergence is still not well understood. To this end, we introduce a unified framework for Adam-type algorithms (called UAdam). This is equipped with a general form of the second-order moment, which makes it possible to include Adam and its variants as special cases, such as NAdam, AMSGrad, AdaBound, AdaFom, and Adan. This is supported by a rigorous convergence analysis of UAdam in the non-convex stochastic setting, showing that UAdam converges to the neighborhood of stationary points with the rate of $\mathcal{O}(1/T)$. Furthermore, the size of neighborhood decreases as $\beta$ increases. Importantly, our analysis only requires the first-order momentum factor to be close enough to 1, without any restrictions on the second-order momentum factor. Theoretical results also show that vanilla Adam can converge by selecting appropriate hyperparameters, which provides a theoretical guarantee for the analysis, applications, and further developments of the whole class of Adam-type algorithms.
[ "cs.LG", "cs.NA", "math.NA", "math.OC" ]
false
2305.05750
2023-05-09T20:08:30Z
A Systematic Literature Review on Hardware Reliability Assessment Methods for Deep Neural Networks
[ "Mohammad Hasan Ahmadilivani", "Mahdi Taheri", "Jaan Raik", "Masoud Daneshtalab", "Maksim Jenihhin" ]
Artificial Intelligence (AI) and, in particular, Machine Learning (ML) have emerged to be utilized in various applications due to their capability to learn how to solve complex problems. Over the last decade, rapid advances in ML have presented Deep Neural Networks (DNNs) consisting of a large number of neurons and layers. DNN Hardware Accelerators (DHAs) are leveraged to deploy DNNs in the target applications. Safety-critical applications, where hardware faults/errors would result in catastrophic consequences, also benefit from DHAs. Therefore, the reliability of DNNs is an essential subject of research. In recent years, several studies have been published accordingly to assess the reliability of DNNs. In this regard, various reliability assessment methods have been proposed on a variety of platforms and applications. Hence, there is a need to summarize the state of the art to identify the gaps in the study of the reliability of DNNs. In this work, we conduct a Systematic Literature Review (SLR) on the reliability assessment methods of DNNs to collect relevant research works as much as possible, present a categorization of them, and address the open challenges. Through this SLR, three kinds of methods for reliability assessment of DNNs are identified including Fault Injection (FI), Analytical, and Hybrid methods. Since the majority of works assess the DNN reliability by FI, we characterize different approaches and platforms of the FI method comprehensively. Moreover, Analytical and Hybrid methods are propounded. Thus, different reliability assessment methods for DNNs have been elaborated on their conducted DNN platforms and reliability evaluation metrics. Finally, we highlight the advantages and disadvantages of the identified methods and address the open challenges in the research area.
[ "cs.LG", "cs.AI", "cs.AR" ]
false
2305.05780
2023-05-09T21:58:54Z
Enhancing Gappy Speech Audio Signals with Generative Adversarial Networks
[ "Deniss Strods", "Alan F. Smeaton" ]
Gaps, dropouts and short clips of corrupted audio are a common problem and particularly annoying when they occur in speech. This paper uses machine learning to regenerate gaps of up to 320ms in an audio speech signal. Audio regeneration is translated into image regeneration by transforming audio into a Mel-spectrogram and using image in-painting to regenerate the gaps. The full Mel-spectrogram is then transferred back to audio using the Parallel-WaveGAN vocoder and integrated into the audio stream. Using a sample of 1300 spoken audio clips of between 1 and 10 seconds taken from the publicly-available LJSpeech dataset our results show regeneration of audio gaps in close to real time using GANs with a GPU equipped system. As expected, the smaller the gap in the audio, the better the quality of the filled gaps. On a gap of 240ms the average mean opinion score (MOS) for the best performing models was 3.737, on a scale of 1 (worst) to 5 (best) which is sufficient for a human to perceive as close to uninterrupted human speech.
[ "cs.SD", "cs.LG", "eess.AS" ]
false
2305.06158
2023-05-09T09:14:28Z
EdgeNet : Encoder-decoder generative Network for Auction Design in E-commerce Online Advertising
[ "Guangyuan Shen", "Shengjie Sun", "Dehong Gao", "Libin Yang", "Yongping Shi", "Wei Ning" ]
We present a new encoder-decoder generative network dubbed EdgeNet, which introduces a novel encoder-decoder framework for data-driven auction design in online e-commerce advertising. We break the neural auction paradigm of Generalized-Second-Price(GSP), and improve the utilization efficiency of data while ensuring the economic characteristics of the auction mechanism. Specifically, EdgeNet introduces a transformer-based encoder to better capture the mutual influence among different candidate advertisements. In contrast to GSP based neural auction model, we design an autoregressive decoder to better utilize the rich context information in online advertising auctions. EdgeNet is conceptually simple and easy to extend to the existing end-to-end neural auction framework. We validate the efficiency of EdgeNet on a wide range of e-commercial advertising auction, demonstrating its potential in improving user experience and platform revenue.
[ "cs.IR", "cs.AI", "cs.LG" ]
false
2305.08740
2023-05-09T11:17:46Z
Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction
[ "Sheng Xiang", "Dawei Cheng", "Chencheng Shang", "Ying Zhang", "Yuqi Liang" ]
The price movement prediction of stock market has been a classical yet challenging problem, with the attention of both economists and computer scientists. In recent years, graph neural network has significantly improved the prediction performance by employing deep learning on company relations. However, existing relation graphs are usually constructed by handcraft human labeling or nature language processing, which are suffering from heavy resource requirement and low accuracy. Besides, they cannot effectively response to the dynamic changes in relation graphs. Therefore, in this paper, we propose a temporal and heterogeneous graph neural network-based (THGNN) approach to learn the dynamic relations among price movements in financial time series. In particular, we first generate the company relation graph for each trading day according to their historic price. Then we leverage a transformer encoder to encode the price movement information into temporal representations. Afterward, we propose a heterogeneous graph attention network to jointly optimize the embeddings of the financial time series data by transformer encoder and infer the probability of target movements. Finally, we conduct extensive experiments on the stock market in the United States and China. The results demonstrate the effectiveness and superior performance of our proposed methods compared with state-of-the-art baselines. Moreover, we also deploy the proposed THGNN in a real-world quantitative algorithm trading system, the accumulated portfolio return obtained by our method significantly outperforms other baselines.
[ "q-fin.ST", "cs.LG", "q-fin.PM" ]
false
2305.08778
2023-05-09T08:19:08Z
Copula Variational LSTM for High-dimensional Cross-market Multivariate Dependence Modeling
[ "Jia Xu", "Longbing Cao" ]
We address an important yet challenging problem - modeling high-dimensional dependencies across multivariates such as financial indicators in heterogeneous markets. In reality, a market couples and influences others over time, and the financial variables of a market are also coupled. We make the first attempt to integrate variational sequential neural learning with copula-based dependence modeling to characterize both temporal observable and latent variable-based dependence degrees and structures across non-normal multivariates. Our variational neural network WPVC-VLSTM models variational sequential dependence degrees and structures across multivariate time series by variational long short-term memory networks and regular vine copula. The regular vine copula models nonnormal and long-range distributional couplings across multiple dynamic variables. WPVC-VLSTM is verified in terms of both technical significance and portfolio forecasting performance. It outperforms benchmarks including linear models, stochastic volatility models, deep neural networks, and variational recurrent networks in cross-market portfolio forecasting.
[ "q-fin.ST", "cs.AI", "cs.LG" ]
false
2305.06879
2023-05-09T16:11:17Z
Convex Quaternion Optimization for Signal Processing: Theory and Applications
[ "Shuning Sun", "Qiankun Diao", "Dongpo Xu", "Pauline Bourigault", "Danilo P. Mandic" ]
Convex optimization methods have been extensively used in the fields of communications and signal processing. However, the theory of quaternion optimization is currently not as fully developed and systematic as that of complex and real optimization. To this end, we establish an essential theory of convex quaternion optimization for signal processing based on the generalized Hamilton-real (GHR) calculus. This is achieved in a way which conforms with traditional complex and real optimization theory. For rigorous, We present five discriminant theorems for convex quaternion functions, and four discriminant criteria for strongly convex quaternion functions. Furthermore, we provide a fundamental theorem for the optimality of convex quaternion optimization problems, and demonstrate its utility through three applications in quaternion signal processing. These results provide a solid theoretical foundation for convex quaternion optimization and open avenues for further developments in signal processing applications.
[ "math.OC", "cs.LG", "cs.NA", "eess.SP", "math.NA" ]
false
2305.05808
2023-05-09T23:45:16Z
On the Information Capacity of Nearest Neighbor Representations
[ "Kordag Mehmet Kilic", "Jin Sima", "Jehoshua Bruck" ]
The $\textit{von Neumann Computer Architecture}$ has a distinction between computation and memory. In contrast, the brain has an integrated architecture where computation and memory are indistinguishable. Motivated by the architecture of the brain, we propose a model of $\textit{associative computation}$ where memory is defined by a set of vectors in $\mathbb{R}^n$ (that we call $\textit{anchors}$), computation is performed by convergence from an input vector to a nearest neighbor anchor, and the output is a label associated with an anchor. Specifically, in this paper, we study the representation of Boolean functions in the associative computation model, where the inputs are binary vectors and the corresponding outputs are the labels ($0$ or $1$) of the nearest neighbor anchors. The information capacity of a Boolean function in this model is associated with two quantities: $\textit{(i)}$ the number of anchors (called $\textit{Nearest Neighbor (NN) Complexity}$) and $\textit{(ii)}$ the maximal number of bits representing entries of anchors (called $\textit{Resolution}$). We study symmetric Boolean functions and present constructions that have optimal NN complexity and resolution.
[ "cs.CC", "cs.DM", "cs.IT", "cs.LG", "cs.NE", "math.IT" ]
false
2305.05839
2023-05-10T02:08:22Z
Low-Light Image Enhancement via Structure Modeling and Guidance
[ "Xiaogang Xu", "Ruixing Wang", "Jiangbo Lu" ]
This paper proposes a new framework for low-light image enhancement by simultaneously conducting the appearance as well as structure modeling. It employs the structural feature to guide the appearance enhancement, leading to sharp and realistic results. The structure modeling in our framework is implemented as the edge detection in low-light images. It is achieved with a modified generative model via designing a structure-aware feature extractor and generator. The detected edge maps can accurately emphasize the essential structural information, and the edge prediction is robust towards the noises in dark areas. Moreover, to improve the appearance modeling, which is implemented with a simple U-Net, a novel structure-guided enhancement module is proposed with structure-guided feature synthesis layers. The appearance modeling, edge detector, and enhancement module can be trained end-to-end. The experiments are conducted on representative datasets (sRGB and RAW domains), showing that our model consistently achieves SOTA performance on all datasets with the same architecture.
[ "cs.CV" ]
false
2305.05841
2023-05-10T02:16:12Z
A Self-Training Framework Based on Multi-Scale Attention Fusion for Weakly Supervised Semantic Segmentation
[ "Guoqing Yang", "Chuang Zhu", "Yu Zhang" ]
Weakly supervised semantic segmentation (WSSS) based on image-level labels is challenging since it is hard to obtain complete semantic regions. To address this issue, we propose a self-training method that utilizes fused multi-scale class-aware attention maps. Our observation is that attention maps of different scales contain rich complementary information, especially for large and small objects. Therefore, we collect information from attention maps of different scales and obtain multi-scale attention maps. We then apply denoising and reactivation strategies to enhance the potential regions and reduce noisy areas. Finally, we use the refined attention maps to retrain the network. Experiments showthat our method enables the model to extract rich semantic information from multi-scale images and achieves 72.4% mIou scores on both the PASCAL VOC 2012 validation and test sets. The code is available at https://bupt-ai-cz.github.io/SMAF.
[ "cs.CV" ]
false
2305.05842
2023-05-10T02:19:00Z
D-Net: Learning for Distinctive Point Clouds by Self-Attentive Point Searching and Learnable Feature Fusion
[ "Xinhai Liu", "Zhizhong Han", "Sanghuk Lee", "Yan-Pei Cao", "Yu-Shen Liu" ]
Learning and selecting important points on a point cloud is crucial for point cloud understanding in various applications. Most of early methods selected the important points on 3D shapes by analyzing the intrinsic geometric properties of every single shape, which fails to capture the importance of points that distinguishes a shape from objects of other classes, i.e., the distinction of points. To address this problem, we propose D-Net (Distinctive Network) to learn for distinctive point clouds based on a self-attentive point searching and a learnable feature fusion. Specifically, in the self-attentive point searching, we first learn the distinction score for each point to reveal the distinction distribution of the point cloud. After ranking the learned distinction scores, we group a point cloud into a high distinctive point set and a low distinctive one to enrich the fine-grained point cloud structure. To generate a compact feature representation for each distinctive point set, a stacked self-gated convolution is proposed to extract the distinctive features. Finally, we further introduce a learnable feature fusion mechanism to aggregate multiple distinctive features into a global point cloud representation in a channel-wise aggregation manner. The results also show that the learned distinction distribution of a point cloud is highly consistent with objects of the same class and different from objects of other classes. Extensive experiments on public datasets, including ModelNet and ShapeNet part dataset, demonstrate the ability to learn for distinctive point clouds, which helps to achieve the state-of-the-art performance in some shape understanding applications.
[ "cs.CV" ]
false
2305.05871
2023-05-10T03:39:24Z
Medical supervised masked autoencoders: Crafting a better masking strategy and efficient fine-tuning schedule for medical image classification
[ "Jiawei Mao", "Shujian Guo", "Yuanqi Chang", "Xuesong Yin", "Binling Nie" ]
Masked autoencoders (MAEs) have displayed significant potential in the classification and semantic segmentation of medical images in the last year. Due to the high similarity of human tissues, even slight changes in medical images may represent diseased tissues, necessitating fine-grained inspection to pinpoint diseased tissues. The random masking strategy of MAEs is likely to result in areas of lesions being overlooked by the model. At the same time, inconsistencies between the pre-training and fine-tuning phases impede the performance and efficiency of MAE in medical image classification. To address these issues, we propose a medical supervised masked autoencoder (MSMAE) in this paper. In the pre-training phase, MSMAE precisely masks medical images via the attention maps obtained from supervised training, contributing to the representation learning of human tissue in the lesion area. During the fine-tuning phase, MSMAE is also driven by attention to the accurate masking of medical images. This improves the computational efficiency of the MSMAE while increasing the difficulty of fine-tuning, which indirectly improves the quality of MSMAE medical diagnosis. Extensive experiments demonstrate that MSMAE achieves state-of-the-art performance in case with three official medical datasets for various diseases. Meanwhile, transfer learning for MSMAE also demonstrates the great potential of our approach for medical semantic segmentation tasks. Moreover, the MSMAE accelerates the inference time in the fine-tuning phase by 11.2% and reduces the number of floating-point operations (FLOPs) by 74.08% compared to a traditional MAE.
[ "cs.CV" ]
false
2305.05873
2023-05-10T03:40:25Z
SHS-Net: Learning Signed Hyper Surfaces for Oriented Normal Estimation of Point Clouds
[ "Qing Li", "Huifang Feng", "Kanle Shi", "Yue Gao", "Yi Fang", "Yu-Shen Liu", "Zhizhong Han" ]
We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces, which can accurately predict normals with global consistent orientation from various point clouds. Almost all existing methods estimate oriented normals through a two-stage pipeline, i.e., unoriented normal estimation and normal orientation, and each step is implemented by a separate algorithm. However, previous methods are sensitive to parameter settings, resulting in poor results from point clouds with noise, density variations and complex geometries. In this work, we introduce signed hyper surfaces (SHS), which are parameterized by multi-layer perceptron (MLP) layers, to learn to estimate oriented normals from point clouds in an end-to-end manner. The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated. Specifically, we introduce a patch encoding module and a shape encoding module to encode a 3D point cloud into a local latent code and a global latent code, respectively. Then, an attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals. Experimental results show that our SHS-Net outperforms the state-of-the-art methods in both unoriented and oriented normal estimation on the widely used benchmarks. The code, data and pretrained models are publicly available.
[ "cs.CV" ]
false
2305.05883
2023-05-10T04:03:59Z
Level-line Guided Edge Drawing for Robust Line Segment Detection
[ "Xinyu Lin", "Yingjie Zhou", "Yipeng Liu", "Ce Zhu" ]
Line segment detection plays a cornerstone role in computer vision tasks. Among numerous detection methods that have been recently proposed, the ones based on edge drawing attract increasing attention owing to their excellent detection efficiency. However, the existing methods are not robust enough due to the inadequate usage of image gradients for edge drawing and line segment fitting. Based on the observation that the line segments should locate on the edge points with both consistent coordinates and level-line information, i.e., the unit vector perpendicular to the gradient orientation, this paper proposes a level-line guided edge drawing for robust line segment detection (GEDRLSD). The level-line information provides potential directions for edge tracking, which could be served as a guideline for accurate edge drawing. Additionally, the level-line information is fused in line segment fitting to improve the robustness. Numerical experiments show the superiority of the proposed GEDRLSD algorithm compared with state-of-the-art methods.
[ "cs.CV" ]
false
2305.05887
2023-05-10T04:18:45Z
Weakly-supervised ROI extraction method based on contrastive learning for remote sensing images
[ "Lingfeng He", "Mengze Xu", "Jie Ma" ]
ROI extraction is an active but challenging task in remote sensing because of the complicated landform, the complex boundaries and the requirement of annotations. Weakly supervised learning (WSL) aims at learning a mapping from input image to pixel-wise prediction under image-wise labels, which can dramatically decrease the labor cost. However, due to the imprecision of labels, the accuracy and time consumption of WSL methods are relatively unsatisfactory. In this paper, we propose a two-step ROI extraction based on contractive learning. Firstly, we present to integrate multiscale Grad-CAM to obtain pseudo pixelwise annotations with well boundaries. Then, to reduce the compact of misjudgments in pseudo annotations, we construct a contrastive learning strategy to encourage the features inside ROI as close as possible and separate background features from foreground features. Comprehensive experiments demonstrate the superiority of our proposal. Code is available at https://github.com/HE-Lingfeng/ROI-Extraction
[ "cs.CV" ]
false
2305.05902
2023-05-10T05:10:00Z
Multi-stage Progressive Reasoning for Dunhuang Murals Inpainting
[ "Wenjie Liu", "Baokai Liu", "Shiqiang Du", "Yuqing Shi", "Jiacheng Li", "Jianhua Wang" ]
Dunhuang murals suffer from fading, breakage, surface brittleness and extensive peeling affected by prolonged environmental erosion. Image inpainting techniques are widely used in the field of digital mural inpainting. Generally speaking, for mural inpainting tasks with large area damage, it is challenging for any image inpainting method. In this paper, we design a multi-stage progressive reasoning network (MPR-Net) containing global to local receptive fields for murals inpainting. This network is capable of recursively inferring the damage boundary and progressively tightening the regional texture constraints. Moreover, to adaptively fuse plentiful information at various scales of murals, a multi-scale feature aggregation module (MFA) is designed to empower the capability to select the significant features. The execution of the model is similar to the process of a mural restorer (i.e., inpainting the structure of the damaged mural globally first and then adding the local texture details further). Our method has been evaluated through both qualitative and quantitative experiments, and the results demonstrate that it outperforms state-of-the-art image inpainting methods.
[ "cs.CV" ]
false
2305.05947
2023-05-10T07:39:14Z
iEdit: Localised Text-guided Image Editing with Weak Supervision
[ "Rumeysa Bodur", "Erhan Gundogdu", "Binod Bhattarai", "Tae-Kyun Kim", "Michael Donoser", "Loris Bazzani" ]
Diffusion models (DMs) can generate realistic images with text guidance using large-scale datasets. However, they demonstrate limited controllability in the output space of the generated images. We propose a novel learning method for text-guided image editing, namely \texttt{iEdit}, that generates images conditioned on a source image and a textual edit prompt. As a fully-annotated dataset with target images does not exist, previous approaches perform subject-specific fine-tuning at test time or adopt contrastive learning without a target image, leading to issues on preserving the fidelity of the source image. We propose to automatically construct a dataset derived from LAION-5B, containing pseudo-target images with their descriptive edit prompts given input image-caption pairs. This dataset gives us the flexibility of introducing a weakly-supervised loss function to generate the pseudo-target image from the latent noise of the source image conditioned on the edit prompt. To encourage localised editing and preserve or modify spatial structures in the image, we propose a loss function that uses segmentation masks to guide the editing during training and optionally at inference. Our model is trained on the constructed dataset with 200K samples and constrained GPU resources. It shows favourable results against its counterparts in terms of image fidelity, CLIP alignment score and qualitatively for editing both generated and real images.
[ "cs.CV" ]
false
2305.05992
2023-05-10T09:00:04Z
MMoT: Mixture-of-Modality-Tokens Transformer for Composed Multimodal Conditional Image Synthesis
[ "Jianbin Zheng", "Daqing Liu", "Chaoyue Wang", "Minghui Hu", "Zuopeng Yang", "Changxing Ding", "Dacheng Tao" ]
Existing multimodal conditional image synthesis (MCIS) methods generate images conditioned on any combinations of various modalities that require all of them must be exactly conformed, hindering the synthesis controllability and leaving the potential of cross-modality under-exploited. To this end, we propose to generate images conditioned on the compositions of multimodal control signals, where modalities are imperfectly complementary, i.e., composed multimodal conditional image synthesis (CMCIS). Specifically, we observe two challenging issues of the proposed CMCIS task, i.e., the modality coordination problem and the modality imbalance problem. To tackle these issues, we introduce a Mixture-of-Modality-Tokens Transformer (MMoT) that adaptively fuses fine-grained multimodal control signals, a multimodal balanced training loss to stabilize the optimization of each modality, and a multimodal sampling guidance to balance the strength of each modality control signal. Comprehensive experimental results demonstrate that MMoT achieves superior performance on both unimodal conditional image synthesis (UCIS) and MCIS tasks with high-quality and faithful image synthesis on complex multimodal conditions. The project website is available at https://jabir-zheng.github.io/MMoT.
[ "cs.CV" ]
false
2305.06002
2023-05-10T09:22:44Z
InfoMetIC: An Informative Metric for Reference-free Image Caption Evaluation
[ "Anwen Hu", "Shizhe Chen", "Liang Zhang", "Qin Jin" ]
Automatic image captioning evaluation is critical for benchmarking and promoting advances in image captioning research. Existing metrics only provide a single score to measure caption qualities, which are less explainable and informative. Instead, we humans can easily identify the problems of captions in details, e.g., which words are inaccurate and which salient objects are not described, and then rate the caption quality. To support such informative feedback, we propose an Informative Metric for Reference-free Image Caption evaluation (InfoMetIC). Given an image and a caption, InfoMetIC is able to report incorrect words and unmentioned image regions at fine-grained level, and also provide a text precision score, a vision recall score and an overall quality score at coarse-grained level. The coarse-grained score of InfoMetIC achieves significantly better correlation with human judgements than existing metrics on multiple benchmarks. We also construct a token-level evaluation dataset and demonstrate the effectiveness of InfoMetIC in fine-grained evaluation. Our code and datasets are publicly available at https://github.com/HAWLYQ/InfoMetIC.
[ "cs.CV" ]
false
2305.06036
2023-05-10T10:38:38Z
FusionDepth: Complement Self-Supervised Monocular Depth Estimation with Cost Volume
[ "Zhuofei Huang", "Jianlin Liu", "Shang Xu", "Ying Chen", "Yong Liu" ]
Multi-view stereo depth estimation based on cost volume usually works better than self-supervised monocular depth estimation except for moving objects and low-textured surfaces. So in this paper, we propose a multi-frame depth estimation framework which monocular depth can be refined continuously by multi-frame sequential constraints, leveraging a Bayesian fusion layer within several iterations. Both monocular and multi-view networks can be trained with no depth supervision. Our method also enhances the interpretability when combining monocular estimation with multi-view cost volume. Detailed experiments show that our method surpasses state-of-the-art unsupervised methods utilizing single or multiple frames at test time on KITTI benchmark.
[ "cs.CV" ]
false
2305.06043
2023-05-10T10:52:11Z
Autonomous Stabilization of Retinal Videos for Streamlining Assessment of Spontaneous Venous Pulsations
[ "Hongwei Sheng", "Xin Yu", "Feiyu Wang", "MD Wahiduzzaman Khan", "Hexuan Weng", "Sahar Shariflou", "S. Mojtaba Golzan" ]
Spontaneous retinal Venous Pulsations (SVP) are rhythmic changes in the caliber of the central retinal vein and are observed in the optic disc region (ODR) of the retina. Its absence is a critical indicator of various ocular or neurological abnormalities. Recent advances in imaging technology have enabled the development of portable smartphone-based devices for observing the retina and assessment of SVPs. However, the quality of smartphone-based retinal videos is often poor due to noise and image jitting, which in return, can severely obstruct the observation of SVPs. In this work, we developed a fully automated retinal video stabilization method that enables the examination of SVPs captured by various mobile devices. Specifically, we first propose an ODR Spatio-Temporal Localization (ODR-STL) module to localize visible ODR and remove noisy and jittering frames. Then, we introduce a Noise-Aware Template Matching (NATM) module to stabilize high-quality video segments at a fixed position in the field of view. After the processing, the SVPs can be easily observed in the stabilized videos, significantly facilitating user observations. Furthermore, our method is cost-effective and has been tested in both subjective and objective evaluations. Both of the evaluations support its effectiveness in facilitating the observation of SVPs. This can improve the timely diagnosis and treatment of associated diseases, making it a valuable tool for eye health professionals.
[ "cs.CV" ]
false
2305.06052
2023-05-10T11:10:09Z
Post-training Model Quantization Using GANs for Synthetic Data Generation
[ "Athanasios Masouris", "Mansi Sharma", "Adrian Boguszewski", "Alexander Kozlov", "Zhuo Wu", "Raymond Lo" ]
Quantization is a widely adopted technique for deep neural networks to reduce the memory and computational resources required. However, when quantized, most models would need a suitable calibration process to keep their performance intact, which requires data from the target domain, such as a fraction of the dataset used in model training and model validation (i.e. calibration dataset). In this study, we investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method. We propose a data generation method based on Generative Adversarial Networks that are trained prior to the model quantization step. We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images. Overall, the results of our experiments demonstrate the potential of leveraging synthetic data for calibration during the quantization process. In our experiments, the percentage of accuracy degradation of the selected models was less than 0.6%, with our best performance achieved on MobileNetV2 (0.05%). The code is available at: https://github.com/ThanosM97/gsoc2022-openvino
[ "cs.CV" ]
false
2305.06115
2023-05-10T13:07:46Z
VTPNet for 3D deep learning on point cloud
[ "Wei Zhou", "Weiwei Jin", "Qian Wang", "Yifan Wang", "Dekui Wang", "Xingxing Hao", "Yongxiang Yu" ]
Recently, Transformer-based methods for point cloud learning have achieved good results on various point cloud learning benchmarks. However, since the attention mechanism needs to generate three feature vectors of query, key, and value to calculate attention features, most of the existing Transformer-based point cloud learning methods usually consume a large amount of computational time and memory resources when calculating global attention. To address this problem, we propose a Voxel-Transformer-Point (VTP) Block for extracting local and global features of point clouds. VTP combines the advantages of voxel-based, point-based and Transformer-based methods, which consists of Voxel-Based Branch (V branch), Point-Based Transformer Branch (PT branch) and Point-Based Branch (P branch). The V branch extracts the coarse-grained features of the point cloud through low voxel resolution; the PT branch obtains the fine-grained features of the point cloud by calculating the self-attention in the local neighborhood and the inter-neighborhood cross-attention; the P branch uses a simplified MLP network to generate the global location information of the point cloud. In addition, to enrich the local features of point clouds at different scales, we set the voxel scale in the V branch and the neighborhood sphere scale in the PT branch to one large and one small (large voxel scale \& small neighborhood sphere scale or small voxel scale \& large neighborhood sphere scale). Finally, we use VTP as the feature extraction network to construct a VTPNet for point cloud learning, and performs shape classification, part segmentation, and semantic segmentation tasks on the ModelNet40, ShapeNet Part, and S3DIS datasets. The experimental results indicate that VTPNet has good performance in 3D point cloud learning.
[ "cs.CV" ]
false
2305.06133
2023-05-10T13:29:51Z
When ChatGPT for Computer Vision Will Come? From 2D to 3D
[ "Chenghao Li", "Chaoning Zhang" ]
ChatGPT and its improved variant GPT4 have revolutionized the NLP field with a single model solving almost all text related tasks. However, such a model for computer vision does not exist, especially for 3D vision. This article first provides a brief view on the progress of deep learning in text, image and 3D fields from the model perspective. Moreover, this work further discusses how AIGC evolves from the data perspective. On top of that, this work presents an outlook on the development of AIGC in 3D from the data perspective.
[ "cs.CV" ]
false
2305.06145
2023-05-10T13:48:24Z
Clothes-Invariant Feature Learning by Causal Intervention for Clothes-Changing Person Re-identification
[ "Xulin Li", "Yan Lu", "Bin Liu", "Yuenan Hou", "Yating Liu", "Qi Chu", "Wanli Ouyang", "Nenghai Yu" ]
Clothes-invariant feature extraction is critical to the clothes-changing person re-identification (CC-ReID). It can provide discriminative identity features and eliminate the negative effects caused by the confounder--clothing changes. But we argue that there exists a strong spurious correlation between clothes and human identity, that restricts the common likelihood-based ReID method P(Y|X) to extract clothes-irrelevant features. In this paper, we propose a new Causal Clothes-Invariant Learning (CCIL) method to achieve clothes-invariant feature learning by modeling causal intervention P(Y|do(X)). This new causality-based model is inherently invariant to the confounder in the causal view, which can achieve the clothes-invariant features and avoid the barrier faced by the likelihood-based methods. Extensive experiments on three CC-ReID benchmarks, including PRCC, LTCC, and VC-Clothes, demonstrate the effectiveness of our approach, which achieves a new state of the art.
[ "cs.CV" ]
false
2305.06242
2023-05-10T15:22:02Z
Think Twice before Driving: Towards Scalable Decoders for End-to-End Autonomous Driving
[ "Xiaosong Jia", "Penghao Wu", "Li Chen", "Jiangwei Xie", "Conghui He", "Junchi Yan", "Hongyang Li" ]
End-to-end autonomous driving has made impressive progress in recent years. Existing methods usually adopt the decoupled encoder-decoder paradigm, where the encoder extracts hidden features from raw sensor data, and the decoder outputs the ego-vehicle's future trajectories or actions. Under such a paradigm, the encoder does not have access to the intended behavior of the ego agent, leaving the burden of finding out safety-critical regions from the massive receptive field and inferring about future situations to the decoder. Even worse, the decoder is usually composed of several simple multi-layer perceptrons (MLP) or GRUs while the encoder is delicately designed (e.g., a combination of heavy ResNets or Transformer). Such an imbalanced resource-task division hampers the learning process. In this work, we aim to alleviate the aforementioned problem by two principles: (1) fully utilizing the capacity of the encoder; (2) increasing the capacity of the decoder. Concretely, we first predict a coarse-grained future position and action based on the encoder features. Then, conditioned on the position and action, the future scene is imagined to check the ramification if we drive accordingly. We also retrieve the encoder features around the predicted coordinate to obtain fine-grained information about the safety-critical region. Finally, based on the predicted future and the retrieved salient feature, we refine the coarse-grained position and action by predicting its offset from ground-truth. The above refinement module could be stacked in a cascaded fashion, which extends the capacity of the decoder with spatial-temporal prior knowledge about the conditioned future. We conduct experiments on the CARLA simulator and achieve state-of-the-art performance in closed-loop benchmarks. Extensive ablation studies demonstrate the effectiveness of each proposed module.
[ "cs.CV" ]
false
2305.06278
2023-05-10T16:15:16Z
A Multi-modal Garden Dataset and Hybrid 3D Dense Reconstruction Framework Based on Panoramic Stereo Images for a Trimming Robot
[ "Can Pu", "Chuanyu Yang", "Jinnian Pu", "Radim Tylecek", "Robert B. Fisher" ]
Recovering an outdoor environment's surface mesh is vital for an agricultural robot during task planning and remote visualization. Our proposed solution is based on a newly-designed panoramic stereo camera along with a hybrid novel software framework that consists of three fusion modules. The panoramic stereo camera with a pentagon shape consists of 5 stereo vision camera pairs to stream synchronized panoramic stereo images for the following three fusion modules. In the disparity fusion module, rectified stereo images produce the initial disparity maps using multiple stereo vision algorithms. Then, these initial disparity maps, along with the intensity images, are input into a disparity fusion network to produce refined disparity maps. Next, the refined disparity maps are converted into full-view point clouds or single-view point clouds for the pose fusion module. The pose fusion module adopts a two-stage global-coarse-to-local-fine strategy. In the first stage, each pair of full-view point clouds is registered by a global point cloud matching algorithm to estimate the transformation for a global pose graph's edge, which effectively implements loop closure. In the second stage, a local point cloud matching algorithm is used to match single-view point clouds in different nodes. Next, we locally refine the poses of all corresponding edges in the global pose graph using three proposed rules, thus constructing a refined pose graph. The refined pose graph is optimized to produce a global pose trajectory for volumetric fusion. In the volumetric fusion module, the global poses of all the nodes are used to integrate the single-view point clouds into the volume to produce the mesh of the whole garden. The proposed framework and its three fusion modules are tested on a real outdoor garden dataset to show the superiority of the performance.
[ "cs.CV" ]
false
2305.06307
2023-05-10T16:52:43Z
Analysis of Adversarial Image Manipulations
[ "Ahsi Lo", "Gabriella Pangelinan", "Michael C. King" ]
As virtual and physical identity grow increasingly intertwined, the importance of privacy and security in the online sphere becomes paramount. In recent years, multiple news stories have emerged of private companies scraping web content and doing research with or selling the data. Images uploaded online can be scraped without users' consent or knowledge. Users of social media platforms whose images are scraped may be at risk of being identified in other uploaded images or in real-world identification situations. This paper investigates how simple, accessible image manipulation techniques affect the accuracy of facial recognition software in identifying an individual's various face images based on one unique image.
[ "cs.CV" ]
false
2305.06402
2023-05-10T18:22:31Z
Analyzing Bias in Diffusion-based Face Generation Models
[ "Malsha V. Perera", "Vishal M. Patel" ]
Diffusion models are becoming increasingly popular in synthetic data generation and image editing applications. However, these models can amplify existing biases and propagate them to downstream applications. Therefore, it is crucial to understand the sources of bias in their outputs. In this paper, we investigate the presence of bias in diffusion-based face generation models with respect to attributes such as gender, race, and age. Moreover, we examine how dataset size affects the attribute composition and perceptual quality of both diffusion and Generative Adversarial Network (GAN) based face generation models across various attribute classes. Our findings suggest that diffusion models tend to worsen distribution bias in the training data for various attributes, which is heavily influenced by the size of the dataset. Conversely, GAN models trained on balanced datasets with a larger number of samples show less bias across different attributes.
[ "cs.CV" ]
false
2305.06483
2023-05-10T22:21:57Z
Towards L-System Captioning for Tree Reconstruction
[ "Jannes S. Magnusson", "Anna Hilsmann", "Peter Eisert" ]
This work proposes a novel concept for tree and plant reconstruction by directly inferring a Lindenmayer-System (L-System) word representation from image data in an image captioning approach. We train a model end-to-end which is able to translate given images into L-System words as a description of the displayed tree. To prove this concept, we demonstrate the applicability on 2D tree topologies. Transferred to real image data, this novel idea could lead to more efficient, accurate and semantically meaningful tree and plant reconstruction without using error-prone point cloud extraction, and other processes usually utilized in tree reconstruction. Furthermore, this approach bypasses the need for a predefined L-System grammar and enables species-specific L-System inference without biological knowledge.
[ "cs.CV", "I.4.5" ]
false
2305.06492
2023-05-10T23:18:47Z
Treasure What You Have: Exploiting Similarity in Deep Neural Networks for Efficient Video Processing
[ "Hadjer Benmeziane", "Halima Bouzidi", "Hamza Ouarnoughi", "Ozcan Ozturk", "Smail Niar" ]
Deep learning has enabled various Internet of Things (IoT) applications. Still, designing models with high accuracy and computational efficiency remains a significant challenge, especially in real-time video processing applications. Such applications exhibit high inter- and intra-frame redundancy, allowing further improvement. This paper proposes a similarity-aware training methodology that exploits data redundancy in video frames for efficient processing. Our approach introduces a per-layer regularization that enhances computation reuse by increasing the similarity of weights during training. We validate our methodology on two critical real-time applications, lane detection and scene parsing. We observe an average compression ratio of approximately 50% and a speedup of \sim 1.5x for different models while maintaining the same accuracy.
[ "cs.CV" ]
false
2305.05838
2023-05-10T02:02:20Z
Generative Steganographic Flow
[ "Ping Wei", "Ge Luo", "Qi Song", "Xinpeng Zhang", "Zhenxing Qian", "Sheng Li" ]
Generative steganography (GS) is a new data hiding manner, featuring direct generation of stego media from secret data. Existing GS methods are generally criticized for their poor performances. In this paper, we propose a novel flow based GS approach -- Generative Steganographic Flow (GSF), which provides direct generation of stego images without cover image. We take the stego image generation and secret data recovery process as an invertible transformation, and build a reversible bijective mapping between input secret data and generated stego images. In the forward mapping, secret data is hidden in the input latent of Glow model to generate stego images. By reversing the mapping, hidden data can be extracted exactly from generated stego images. Furthermore, we propose a novel latent optimization strategy to improve the fidelity of stego images. Experimental results show our proposed GSF has far better performances than SOTA works.
[ "cs.CV", "cs.MM" ]
false
2305.05845
2023-05-10T02:33:25Z
Sketching the Future (STF): Applying Conditional Control Techniques to Text-to-Video Models
[ "Rohan Dhesikan", "Vignesh Rajmohan" ]
The proliferation of video content demands efficient and flexible neural network based approaches for generating new video content. In this paper, we propose a novel approach that combines zero-shot text-to-video generation with ControlNet to improve the output of these models. Our method takes multiple sketched frames as input and generates video output that matches the flow of these frames, building upon the Text-to-Video Zero architecture and incorporating ControlNet to enable additional input conditions. By first interpolating frames between the inputted sketches and then running Text-to-Video Zero using the new interpolated frames video as the control technique, we leverage the benefits of both zero-shot text-to-video generation and the robust control provided by ControlNet. Experiments demonstrate that our method excels at producing high-quality and remarkably consistent video content that more accurately aligns with the user's intended motion for the subject within the video. We provide a comprehensive resource package, including a demo video, project website, open-source GitHub repository, and a Colab playground to foster further research and application of our proposed method.
[ "cs.CV", "cs.AI" ]
true
2305.05869
2023-05-10T03:25:23Z
Finding Meaningful Distributions of ML Black-boxes under Forensic Investigation
[ "Jiyi Zhang", "Han Fang", "Hwee Kuan Lee", "Ee-Chien Chang" ]
Given a poorly documented neural network model, we take the perspective of a forensic investigator who wants to find out the model's data domain (e.g. whether on face images or traffic signs). Although existing methods such as membership inference and model inversion can be used to uncover some information about an unknown model, they still require knowledge of the data domain to start with. In this paper, we propose solving this problem by leveraging on comprehensive corpus such as ImageNet to select a meaningful distribution that is close to the original training distribution and leads to high performance in follow-up investigations. The corpus comprises two components, a large dataset of samples and meta information such as hierarchical structure and textual information on the samples. Our goal is to select a set of samples from the corpus for the given model. The core of our method is an objective function that considers two criteria on the selected samples: the model functional properties (derived from the dataset), and semantics (derived from the metadata). We also give an algorithm to efficiently search the large space of all possible subsets w.r.t. the objective function. Experimentation results show that the proposed method is effective. For example, cloning a given model (originally trained with CIFAR-10) by using Caltech 101 can achieve 45.5% accuracy. By using datasets selected by our method, the accuracy is improved to 72.0%.
[ "cs.LG", "cs.CV" ]
false
2305.05886
2023-05-10T04:17:33Z
Computational Optics for Mobile Terminals in Mass Production
[ "Shiqi Chen", "Ting Lin", "Huajun Feng", "Zhihai Xu", "Qi Li", "Yueting Chen" ]
Correcting the optical aberrations and the manufacturing deviations of cameras is a challenging task. Due to the limitation on volume and the demand for mass production, existing mobile terminals cannot rectify optical degradation. In this work, we systematically construct the perturbed lens system model to illustrate the relationship between the deviated system parameters and the spatial frequency response measured from photographs. To further address this issue, an optimization framework is proposed based on this model to build proxy cameras from the machining samples' SFRs. Engaging with the proxy cameras, we synthetic data pairs, which encode the optical aberrations and the random manufacturing biases, for training the learning-based algorithms. In correcting aberration, although promising results have been shown recently with convolutional neural networks, they are hard to generalize to stochastic machining biases. Therefore, we propose a dilated Omni-dimensional dynamic convolution and implement it in post-processing to account for the manufacturing degradation. Extensive experiments which evaluate multiple samples of two representative devices demonstrate that the proposed optimization framework accurately constructs the proxy camera. And the dynamic processing model is well-adapted to manufacturing deviations of different cameras, realizing perfect computational photography. The evaluation shows that the proposed method bridges the gap between optical design, system machining, and post-processing pipeline, shedding light on the joint of image signal reception (lens and sensor) and image signal processing.
[ "cs.CV", "cs.MM" ]
false
2305.05901
2023-05-10T05:09:05Z
Text-guided High-definition Consistency Texture Model
[ "Zhibin Tang", "Tiantong He" ]
With the advent of depth-to-image diffusion models, text-guided generation, editing, and transfer of realistic textures are no longer difficult. However, due to the limitations of pre-trained diffusion models, they can only create low-resolution, inconsistent textures. To address this issue, we present the High-definition Consistency Texture Model (HCTM), a novel method that can generate high-definition and consistent textures for 3D meshes according to the text prompts. We achieve this by leveraging a pre-trained depth-to-image diffusion model to generate single viewpoint results based on the text prompt and a depth map. We fine-tune the diffusion model with Parameter-Efficient Fine-Tuning to quickly learn the style of the generated result, and apply the multi-diffusion strategy to produce high-resolution and consistent results from different viewpoints. Furthermore, we propose a strategy that prevents the appearance of noise on the textures caused by backpropagation. Our proposed approach has demonstrated promising results in generating high-definition and consistent textures for 3D meshes, as demonstrated through a series of experiments.
[ "cs.CV", "cs.AI" ]
false
2305.05912
2023-05-10T05:48:22Z
A Hybrid of Generative and Discriminative Models Based on the Gaussian-coupled Softmax Layer
[ "Hideaki Hayashi" ]
Generative models have advantageous characteristics for classification tasks such as the availability of unsupervised data and calibrated confidence, whereas discriminative models have advantages in terms of the simplicity of their model structures and learning algorithms and their ability to outperform their generative counterparts. In this paper, we propose a method to train a hybrid of discriminative and generative models in a single neural network (NN), which exhibits the characteristics of both models. The key idea is the Gaussian-coupled softmax layer, which is a fully connected layer with a softmax activation function coupled with Gaussian distributions. This layer can be embedded into an NN-based classifier and allows the classifier to estimate both the class posterior distribution and the class-conditional data distribution. We demonstrate that the proposed hybrid model can be applied to semi-supervised learning and confidence calibration.
[ "cs.LG", "cs.CV" ]
false
2305.05938
2023-05-10T07:20:51Z
V2X-Seq: A Large-Scale Sequential Dataset for Vehicle-Infrastructure Cooperative Perception and Forecasting
[ "Haibao Yu", "Wenxian Yang", "Hongzhi Ruan", "Zhenwei Yang", "Yingjuan Tang", "Xu Gao", "Xin Hao", "Yifeng Shi", "Yifeng Pan", "Ning Sun", "Juan Song", "Jirui Yuan", "Ping Luo", "Zaiqing Nie" ]
Utilizing infrastructure and vehicle-side information to track and forecast the behaviors of surrounding traffic participants can significantly improve decision-making and safety in autonomous driving. However, the lack of real-world sequential datasets limits research in this area. To address this issue, we introduce V2X-Seq, the first large-scale sequential V2X dataset, which includes data frames, trajectories, vector maps, and traffic lights captured from natural scenery. V2X-Seq comprises two parts: the sequential perception dataset, which includes more than 15,000 frames captured from 95 scenarios, and the trajectory forecasting dataset, which contains about 80,000 infrastructure-view scenarios, 80,000 vehicle-view scenarios, and 50,000 cooperative-view scenarios captured from 28 intersections' areas, covering 672 hours of data. Based on V2X-Seq, we introduce three new tasks for vehicle-infrastructure cooperative (VIC) autonomous driving: VIC3D Tracking, Online-VIC Forecasting, and Offline-VIC Forecasting. We also provide benchmarks for the introduced tasks. Find data, code, and more up-to-date information at \href{https://github.com/AIR-THU/DAIR-V2X-Seq}{https://github.com/AIR-THU/DAIR-V2X-Seq}.
[ "cs.CV", "cs.AI" ]
false
2305.05984
2023-05-10T08:50:04Z
Uncertainty-Aware Semi-Supervised Learning for Prostate MRI Zonal Segmentation
[ "Matin Hosseinzadeh", "Anindo Saha", "Joeran Bosma", "Henkjan Huisman" ]
Quality of deep convolutional neural network predictions strongly depends on the size of the training dataset and the quality of the annotations. Creating annotations, especially for 3D medical image segmentation, is time-consuming and requires expert knowledge. We propose a novel semi-supervised learning (SSL) approach that requires only a relatively small number of annotations while being able to use the remaining unlabeled data to improve model performance. Our method uses a pseudo-labeling technique that employs recent deep learning uncertainty estimation models. By using the estimated uncertainty, we were able to rank pseudo-labels and automatically select the best pseudo-annotations generated by the supervised model. We applied this to prostate zonal segmentation in T2-weighted MRI scans. Our proposed model outperformed the semi-supervised model in experiments with the ProstateX dataset and an external test set, by leveraging only a subset of unlabeled data rather than the full collection of 4953 cases, our proposed model demonstrated improved performance. The segmentation dice similarity coefficient in the transition zone and peripheral zone increased from 0.835 and 0.727 to 0.852 and 0.751, respectively, for fully supervised model and the uncertainty-aware semi-supervised learning model (USSL). Our USSL model demonstrates the potential to allow deep learning models to be trained on large datasets without requiring full annotation. Our code is available at https://github.com/DIAGNijmegen/prostateMR-USSL.
[ "eess.IV", "cs.CV" ]
false
2305.05991
2023-05-10T08:58:54Z
DMNR: Unsupervised De-noising of Point Clouds Corrupted by Airborne Particles
[ "Chu Chen", "Yanqi Ma", "Bingcheng Dong", "Junjie Cao" ]
LiDAR sensors are critical for autonomous driving and robotics applications due to their ability to provide accurate range measurements and their robustness to lighting conditions. However, airborne particles, such as fog, rain, snow, and dust, will degrade its performance and it is inevitable to encounter these inclement environmental conditions outdoors. It would be a straightforward approach to remove them by supervised semantic segmentation. But annotating these particles point wisely is too laborious. To address this problem and enhance the perception under inclement conditions, we develop two dynamic filtering methods called Dynamic Multi-threshold Noise Removal (DMNR) and DMNR-H by accurate analysis of the position distribution and intensity characteristics of noisy points and clean points on publicly available WADS and DENSE datasets. Both DMNR and DMNR-H outperform state-of-the-art unsupervised methods by a significant margin on the two datasets and are slightly better than supervised deep learning-based methods. Furthermore, our methods are more robust to different LiDAR sensors and airborne particles, such as snow and fog.
[ "cs.CV", "eess.IV" ]
false
2305.06025
2023-05-10T10:21:14Z
Brain Tumor Detection using Swin Transformers
[ "Prateek A. Meshram", "Suraj Joshi", "Devarshi Mahajan" ]
The first MRI scan was done in the year 1978 by researchers at EML Laboratories. As per an estimate, approximately 251,329 people died due to primary cancerous brain and CNS (Central Nervous System) Tumors in the year 2020. It has been recommended by various medical professionals that brain tumor detection at an early stage would help in saving many lives. Whenever radiologists deal with a brain MRI they try to diagnose it with the histological subtype which is quite subjective and here comes the major issue. Upon that, in developing countries like India, where there is 1 doctor for every 1151 people, the need for efficient diagnosis to help radiologists and doctors come into picture. In our approach, we aim to solve the problem using swin transformers and deep learning to detect, classify, locate and provide the size of the tumor in the particular MRI scan which would assist the doctors and radiologists in increasing their efficiency. At the end, the medics would be able to download the predictions and measures in a PDF (Portable Document Format). Keywords: brain tumor, transformers, classification, medical, deep learning, detection
[ "eess.IV", "cs.CV" ]
false
2305.06080
2023-05-10T12:01:11Z
Towards Effective Visual Representations for Partial-Label Learning
[ "Shiyu Xia", "Jiaqi Lv", "Ning Xu", "Gang Niu", "Xin Geng" ]
Under partial-label learning (PLL) where, for each training instance, only a set of ambiguous candidate labels containing the unknown true label is accessible, contrastive learning has recently boosted the performance of PLL on vision tasks, attributed to representations learned by contrasting the same/different classes of entities. Without access to true labels, positive points are predicted using pseudo-labels that are inherently noisy, and negative points often require large batches or momentum encoders, resulting in unreliable similarity information and a high computational overhead. In this paper, we rethink a state-of-the-art contrastive PLL method PiCO[24], inspiring the design of a simple framework termed PaPi (Partial-label learning with a guided Prototypical classifier), which demonstrates significant scope for improvement in representation learning, thus contributing to label disambiguation. PaPi guides the optimization of a prototypical classifier by a linear classifier with which they share the same feature encoder, thus explicitly encouraging the representation to reflect visual similarity between categories. It is also technically appealing, as PaPi requires only a few components in PiCO with the opposite direction of guidance, and directly eliminates the contrastive learning module that would introduce noise and consume computational resources. We empirically demonstrate that PaPi significantly outperforms other PLL methods on various image classification tasks.
[ "cs.CV", "cs.LG" ]
false
2305.06203
2023-05-10T14:35:07Z
Multiclass MRI Brain Tumor Segmentation using 3D Attention-based U-Net
[ "Maryann M. Gitonga" ]
This paper proposes a 3D attention-based U-Net architecture for multi-region segmentation of brain tumors using a single stacked multi-modal volume created by combining three non-native MRI volumes. The attention mechanism added to the decoder side of the U-Net helps to improve segmentation accuracy by de-emphasizing healthy tissues and accentuating malignant tissues, resulting in better generalization power and reduced computational resources. The method is trained and evaluated on the BraTS 2021 Task 1 dataset, and demonstrates improvement of accuracy over other approaches. My findings suggest that the proposed approach has potential to enhance brain tumor segmentation using multi-modal MRI data, contributing to better understanding and diagnosis of brain diseases. This work highlights the importance of combining multiple imaging modalities and incorporating attention mechanisms for improved accuracy in brain tumor segmentation.
[ "eess.IV", "cs.CV", "I.4.6" ]
false
2305.06236
2023-05-10T15:15:09Z
Radious: Unveiling the Enigma of Dental Radiology with BEIT Adaptor and Mask2Former in Semantic Segmentation
[ "Mohammad Mashayekhi", "Sara Ahmadi Majd", "Arian Amiramjadi", "Babak Mashayekhi" ]
X-ray images are the first steps for diagnosing and further treating dental problems. So, early diagnosis prevents the development and increase of oral and dental diseases. In this paper, we developed a semantic segmentation algorithm based on BEIT adaptor and Mask2Former to detect and identify teeth, roots, and multiple dental diseases and abnormalities such as pulp chamber, restoration, endodontics, crown, decay, pin, composite, bridge, pulpitis, orthodontics, radicular cyst, periapical cyst, cyst, implant, and bone graft material in panoramic, periapical, and bitewing X-ray images. We compared the result of our algorithm to two state-of-the-art algorithms in image segmentation named: Deeplabv3 and Segformer on our own data set. We discovered that Radious outperformed those algorithms by increasing the mIoU scores by 9% and 33% in Deeplabv3+ and Segformer, respectively.
[ "cs.CV", "cs.AI" ]
false
2305.06244
2023-05-10T15:25:05Z
Explainable Knowledge Distillation for On-device Chest X-Ray Classification
[ "Chakkrit Termritthikun", "Ayaz Umer", "Suwichaya Suwanwimolkul", "Feng Xia", "Ivan Lee" ]
Automated multi-label chest X-rays (CXR) image classification has achieved substantial progress in clinical diagnosis via utilizing sophisticated deep learning approaches. However, most deep models have high computational demands, which makes them less feasible for compact devices with low computational requirements. To overcome this problem, we propose a knowledge distillation (KD) strategy to create the compact deep learning model for the real-time multi-label CXR image classification. We study different alternatives of CNNs and Transforms as the teacher to distill the knowledge to a smaller student. Then, we employed explainable artificial intelligence (XAI) to provide the visual explanation for the model decision improved by the KD. Our results on three benchmark CXR datasets show that our KD strategy provides the improved performance on the compact student model, thus being the feasible choice for many limited hardware platforms. For instance, when using DenseNet161 as the teacher network, EEEA-Net-C2 achieved an AUC of 83.7%, 87.1%, and 88.7% on the ChestX-ray14, CheXpert, and PadChest datasets, respectively, with fewer parameters of 4.7 million and computational cost of 0.3 billion FLOPS.
[ "cs.CV", "cs.LG" ]
false
2305.06351
2023-05-10T17:56:21Z
Reconstructing Animatable Categories from Videos
[ "Gengshan Yang", "Chaoyang Wang", "N Dinesh Reddy", "Deva Ramanan" ]
Building animatable 3D models is challenging due to the need for 3D scans, laborious registration, and manual rigging, which are difficult to scale to arbitrary categories. Recently, differentiable rendering provides a pathway to obtain high-quality 3D models from monocular videos, but these are limited to rigid categories or single instances. We present RAC that builds category 3D models from monocular videos while disentangling variations over instances and motion over time. Three key ideas are introduced to solve this problem: (1) specializing a skeleton to instances via optimization, (2) a method for latent space regularization that encourages shared structure across a category while maintaining instance details, and (3) using 3D background models to disentangle objects from the background. We show that 3D models of humans, cats, and dogs can be learned from 50-100 internet videos.
[ "cs.CV", "cs.GR" ]
true
2305.06394
2023-05-10T18:08:04Z
Local Region-to-Region Mapping-based Approach to Classify Articulated Objects
[ "Ayush Aggarwal", "Rustam Stolkin", "Naresh Marturi" ]
Autonomous robots operating in real-world environments encounter a variety of objects that can be both rigid and articulated in nature. Having knowledge of these specific object properties not only helps in designing appropriate manipulation strategies but also aids in developing reliable tracking and pose estimation techniques for many robotic and vision applications. In this context, this paper presents a registration-based local region-to-region mapping approach to classify an object as either articulated or rigid. Using the point clouds of the intended object, the proposed method performs classification by estimating unique local transformations between point clouds over the observed sequence of movements of the object. The significant advantage of the proposed method is that it is a constraint-free approach that can classify any articulated object and is not limited to a specific type of articulation. Additionally, it is a model-free approach with no learning components, which means it can classify whether an object is articulated without requiring any object models or labelled data. We analyze the performance of the proposed method on two publicly available benchmark datasets with a combination of articulated and rigid objects. It is observed that the proposed method can classify articulated and rigid objects with good accuracy.
[ "cs.CV", "cs.RO" ]
false
2305.06407
2023-05-10T18:32:32Z
Combo of Thinking and Observing for Outside-Knowledge VQA
[ "Qingyi Si", "Yuchen Mo", "Zheng Lin", "Huishan Ji", "Weiping Wang" ]
Outside-knowledge visual question answering is a challenging task that requires both the acquisition and the use of open-ended real-world knowledge. Some existing solutions draw external knowledge into the cross-modality space which overlooks the much vaster textual knowledge in natural-language space, while others transform the image into a text that further fuses with the textual knowledge into the natural-language space and completely abandons the use of visual features. In this paper, we are inspired to constrain the cross-modality space into the same space of natural-language space which makes the visual features preserved directly, and the model still benefits from the vast knowledge in natural-language space. To this end, we propose a novel framework consisting of a multimodal encoder, a textual encoder and an answer decoder. Such structure allows us to introduce more types of knowledge including explicit and implicit multimodal and textual knowledge. Extensive experiments validate the superiority of the proposed method which outperforms the state-of-the-art by 6.17% accuracy. We also conduct comprehensive ablations of each component, and systematically study the roles of varying types of knowledge. Codes and knowledge data can be found at https://github.com/PhoebusSi/Thinking-while-Observing.
[ "cs.CV", "cs.AI" ]
false
2305.06437
2023-05-10T20:06:17Z
Self-Supervised Video Representation Learning via Latent Time Navigation
[ "Di Yang", "Yaohui Wang", "Quan Kong", "Antitza Dantcheva", "Lorenzo Garattoni", "Gianpiero Francesca", "Francois Bremond" ]
Self-supervised video representation learning aimed at maximizing similarity between different temporal segments of one video, in order to enforce feature persistence over time. This leads to loss of pertinent information related to temporal relationships, rendering actions such as `enter' and `leave' to be indistinguishable. To mitigate this limitation, we propose Latent Time Navigation (LTN), a time-parameterized contrastive learning strategy that is streamlined to capture fine-grained motions. Specifically, we maximize the representation similarity between different video segments from one video, while maintaining their representations time-aware along a subspace of the latent representation code including an orthogonal basis to represent temporal changes. Our extensive experimental analysis suggests that learning video representations by LTN consistently improves performance of action classification in fine-grained and human-oriented tasks (e.g., on Toyota Smarthome dataset). In addition, we demonstrate that our proposed model, when pre-trained on Kinetics-400, generalizes well onto the unseen real world video benchmark datasets UCF101 and HMDB51, achieving state-of-the-art performance in action recognition.
[ "cs.CV", "cs.AI" ]
false
2305.06448
2023-05-10T20:35:38Z
Continual Facial Expression Recognition: A Benchmark
[ "Nikhil Churamani", "Tolga Dimlioglu", "German I. Parisi", "Hatice Gunes" ]
Understanding human affective behaviour, especially in the dynamics of real-world settings, requires Facial Expression Recognition (FER) models to continuously adapt to individual differences in user expression, contextual attributions, and the environment. Current (deep) Machine Learning (ML)-based FER approaches pre-trained in isolation on benchmark datasets fail to capture the nuances of real-world interactions where data is available only incrementally, acquired by the agent or robot during interactions. New learning comes at the cost of previous knowledge, resulting in catastrophic forgetting. Lifelong or Continual Learning (CL), on the other hand, enables adaptability in agents by being sensitive to changing data distributions, integrating new information without interfering with previously learnt knowledge. Positing CL as an effective learning paradigm for FER, this work presents the Continual Facial Expression Recognition (ConFER) benchmark that evaluates popular CL techniques on FER tasks. It presents a comparative analysis of several CL-based approaches on popular FER datasets such as CK+, RAF-DB, and AffectNet and present strategies for a successful implementation of ConFER for Affective Computing (AC) research. CL techniques, under different learning settings, are shown to achieve state-of-the-art (SOTA) performance across several datasets, thus motivating a discussion on the benefits of applying CL principles towards human behaviour understanding, particularly from facial expressions, as well the challenges entailed.
[ "cs.CV", "cs.LG" ]
false
2305.05835
2023-05-10T01:48:01Z
Reference-based OCT Angiogram Super-resolution with Learnable Texture Generation
[ "Yuyan Ruan", "Dawei Yang", "Ziqi Tang", "An Ran Ran", "Carol Y. Cheung", "Hao Chen" ]
Optical coherence tomography angiography (OCTA) is a new imaging modality to visualize retinal microvasculature and has been readily adopted in clinics. High-resolution OCT angiograms are important to qualitatively and quantitatively identify potential biomarkers for different retinal diseases accurately. However, one significant problem of OCTA is the inevitable decrease in resolution when increasing the field-of-view given a fixed acquisition time. To address this issue, we propose a novel reference-based super-resolution (RefSR) framework to preserve the resolution of the OCT angiograms while increasing the scanning area. Specifically, textures from the normal RefSR pipeline are used to train a learnable texture generator (LTG), which is designed to generate textures according to the input. The key difference between the proposed method and traditional RefSR models is that the textures used during inference are generated by the LTG instead of being searched from a single reference image. Since the LTG is optimized throughout the whole training process, the available texture space is significantly enlarged and no longer limited to a single reference image, but extends to all textures contained in the training samples. Moreover, our proposed LTGNet does not require a reference image at the inference phase, thereby becoming invulnerable to the selection of the reference image. Both experimental and visual results show that LTGNet has superior performance and robustness over state-of-the-art methods, indicating good reliability and promise in real-life deployment. The source code will be made available upon acceptance.
[ "eess.IV", "cs.CV", "cs.LG", "68T07", "I.2; I.4" ]
false
2305.05867
2023-05-10T03:20:39Z
Optical Aberration Correction in Postprocessing using Imaging Simulation
[ "Shiqi Chen", "Huajun Feng", "Dexin Pan", "Zhihai Xu", "Qi Li", "Yueting Chen" ]
As the popularity of mobile photography continues to grow, considerable effort is being invested in the reconstruction of degraded images. Due to the spatial variation in optical aberrations, which cannot be avoided during the lens design process, recent commercial cameras have shifted some of these correction tasks from optical design to postprocessing systems. However, without engaging with the optical parameters, these systems only achieve limited correction for aberrations.In this work, we propose a practical method for recovering the degradation caused by optical aberrations. Specifically, we establish an imaging simulation system based on our proposed optical point spread function model. Given the optical parameters of the camera, it generates the imaging results of these specific devices. To perform the restoration, we design a spatial-adaptive network model on synthetic data pairs generated by the imaging simulation system, eliminating the overhead of capturing training data by a large amount of shooting and registration. Moreover, we comprehensively evaluate the proposed method in simulations and experimentally with a customized digital-single-lens-reflex (DSLR) camera lens and HUAWEI HONOR 20, respectively. The experiments demonstrate that our solution successfully removes spatially variant blur and color dispersion. When compared with the state-of-the-art deblur methods, the proposed approach achieves better results with a lower computational overhead. Moreover, the reconstruction technique does not introduce artificial texture and is convenient to transfer to current commercial cameras. Project Page: \url{https://github.com/TanGeeGo/ImagingSimulation}.
[ "cs.CV", "cs.GR", "cs.MM", "eess.IV" ]
false
2305.05899
2023-05-10T05:05:58Z
Mobile Image Restoration via Prior Quantization
[ "Shiqi Chen", "Jinwen Zhou", "Menghao Li", "Yueting Chen", "Tingting Jiang" ]
In digital images, the performance of optical aberration is a multivariate degradation, where the spectral of the scene, the lens imperfections, and the field of view together contribute to the results. Besides eliminating it at the hardware level, the post-processing system, which utilizes various prior information, is significant for correction. However, due to the content differences among priors, the pipeline that aligns these factors shows limited efficiency and unoptimized restoration. Here, we propose a prior quantization model to correct the optical aberrations in image processing systems. To integrate these messages, we encode various priors into a latent space and quantify them by the learnable codebooks. After quantization, the prior codes are fused with the image restoration branch to realize targeted optical aberration correction. Comprehensive experiments demonstrate the flexibility of the proposed method and validate its potential to accomplish targeted restoration for a specific camera. Furthermore, our model promises to analyze the correlation between the various priors and the optical aberration of devices, which is helpful for joint soft-hardware design.
[ "cs.CV", "cs.MM", "eess.IV" ]
false
2305.06114
2023-05-10T13:05:43Z
Few-shot Action Recognition via Intra- and Inter-Video Information Maximization
[ "Huabin Liu", "Weiyao Lin", "Tieyuan Chen", "Yuxi Li", "Shuyuan Li", "John See" ]
Current few-shot action recognition involves two primary sources of information for classification:(1) intra-video information, determined by frame content within a single video clip, and (2) inter-video information, measured by relationships (e.g., feature similarity) among videos. However, existing methods inadequately exploit these two information sources. In terms of intra-video information, current sampling operations for input videos may omit critical action information, reducing the utilization efficiency of video data. For the inter-video information, the action misalignment among videos makes it challenging to calculate precise relationships. Moreover, how to jointly consider both inter- and intra-video information remains under-explored for few-shot action recognition. To this end, we propose a novel framework, Video Information Maximization (VIM), for few-shot video action recognition. VIM is equipped with an adaptive spatial-temporal video sampler and a spatiotemporal action alignment model to maximize intra- and inter-video information, respectively. The video sampler adaptively selects important frames and amplifies critical spatial regions for each input video based on the task at hand. This preserves and emphasizes informative parts of video clips while eliminating interference at the data level. The alignment model performs temporal and spatial action alignment sequentially at the feature level, leading to more precise measurements of inter-video similarity. Finally, These goals are facilitated by incorporating additional loss terms based on mutual information measurement. Consequently, VIM acts to maximize the distinctiveness of video information from limited video data. Extensive experimental results on public datasets for few-shot action recognition demonstrate the effectiveness and benefits of our framework.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.06289
2023-05-10T16:25:42Z
Learning Video-Conditioned Policies for Unseen Manipulation Tasks
[ "Elliot Chane-Sane", "Cordelia Schmid", "Ivan Laptev" ]
The ability to specify robot commands by a non-expert user is critical for building generalist agents capable of solving a large variety of tasks. One convenient way to specify the intended robot goal is by a video of a person demonstrating the target task. While prior work typically aims to imitate human demonstrations performed in robot environments, here we focus on a more realistic and challenging setup with demonstrations recorded in natural and diverse human environments. We propose Video-conditioned Policy learning (ViP), a data-driven approach that maps human demonstrations of previously unseen tasks to robot manipulation skills. To this end, we learn our policy to generate appropriate actions given current scene observations and a video of the target task. To encourage generalization to new tasks, we avoid particular tasks during training and learn our policy from unlabelled robot trajectories and corresponding robot videos. Both robot and human videos in our framework are represented by video embeddings pre-trained for human action recognition. At test time we first translate human videos to robot videos in the common video embedding space, and then use resulting embeddings to condition our policies. Notably, our approach enables robot control by human demonstrations in a zero-shot manner, i.e., without using robot trajectories paired with human instructions during training. We validate our approach on a set of challenging multi-task robot manipulation environments and outperform state of the art. Our method also demonstrates excellent performance in a new challenging zero-shot setup where no paired data is used during training.
[ "cs.RO", "cs.CV", "cs.LG" ]
false
2305.06305
2023-05-10T16:51:36Z
Self-Supervised Instance Segmentation by Grasping
[ "YuXuan Liu", "Xi Chen", "Pieter Abbeel" ]
Instance segmentation is a fundamental skill for many robotic applications. We propose a self-supervised method that uses grasp interactions to collect segmentation supervision for an instance segmentation model. When a robot grasps an item, the mask of that grasped item can be inferred from the images of the scene before and after the grasp. Leveraging this insight, we learn a grasp segmentation model to segment the grasped object from before and after grasp images. Such a model can segment grasped objects from thousands of grasp interactions without costly human annotation. Using the segmented grasped objects, we can "cut" objects from their original scenes and "paste" them into new scenes to generate instance supervision. We show that our grasp segmentation model provides a 5x error reduction when segmenting grasped objects compared with traditional image subtraction approaches. Combined with our "cut-and-paste" generation method, instance segmentation models trained with our method achieve better performance than a model trained with 10x the amount of labeled data. On a real robotic grasping system, our instance segmentation model reduces the rate of grasp errors by over 3x compared to an image subtraction baseline.
[ "cs.CV", "cs.AI", "cs.RO" ]
false
2305.06314
2023-05-10T17:01:18Z
Scan2LoD3: Reconstructing semantic 3D building models at LoD3 using ray casting and Bayesian networks
[ "Olaf Wysocki", "Yan Xia", "Magdalena Wysocki", "Eleonora Grilli", "Ludwig Hoegner", "Daniel Cremers", "Uwe Stilla" ]
Reconstructing semantic 3D building models at the level of detail (LoD) 3 is a long-standing challenge. Unlike mesh-based models, they require watertight geometry and object-wise semantics at the fa\c{c}ade level. The principal challenge of such demanding semantic 3D reconstruction is reliable fa\c{c}ade-level semantic segmentation of 3D input data. We present a novel method, called Scan2LoD3, that accurately reconstructs semantic LoD3 building models by improving fa\c{c}ade-level semantic 3D segmentation. To this end, we leverage laser physics and 3D building model priors to probabilistically identify model conflicts. These probabilistic physical conflicts propose locations of model openings: Their final semantics and shapes are inferred in a Bayesian network fusing multimodal probabilistic maps of conflicts, 3D point clouds, and 2D images. To fulfill demanding LoD3 requirements, we use the estimated shapes to cut openings in 3D building priors and fit semantic 3D objects from a library of fa\c{c}ade objects. Extensive experiments on the TUM city campus datasets demonstrate the superior performance of the proposed Scan2LoD3 over the state-of-the-art methods in fa\c{c}ade-level detection, semantic segmentation, and LoD3 building model reconstruction. We believe our method can foster the development of probability-driven semantic 3D reconstruction at LoD3 since not only the high-definition reconstruction but also reconstruction confidence becomes pivotal for various applications such as autonomous driving and urban simulations.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.06386
2023-05-10T18:01:06Z
Text-To-Concept (and Back) via Cross-Model Alignment
[ "Mazda Moayeri", "Keivan Rezaei", "Maziar Sanjabi", "Soheil Feizi" ]
We observe that the mapping between an image's representation in one model to its representation in another can be learned surprisingly well with just a linear layer, even across diverse models. Building on this observation, we propose $\textit{text-to-concept}$, where features from a fixed pretrained model are aligned linearly to the CLIP space, so that text embeddings from CLIP's text encoder become directly comparable to the aligned features. With text-to-concept, we convert fixed off-the-shelf vision encoders to surprisingly strong zero-shot classifiers for free, with accuracy at times even surpassing that of CLIP, despite being much smaller models and trained on a small fraction of the data compared to CLIP. We show other immediate use-cases of text-to-concept, like building concept bottleneck models with no concept supervision, diagnosing distribution shifts in terms of human concepts, and retrieving images satisfying a set of text-based constraints. Lastly, we demonstrate the feasibility of $\textit{concept-to-text}$, where vectors in a model's feature space are decoded by first aligning to the CLIP before being fed to a GPT-based generative model. Our work suggests existing deep models, with presumably diverse architectures and training, represent input samples relatively similarly, and a two-way communication across model representation spaces and to humans (through language) is viable.
[ "cs.CV", "cs.AI", "cs.HC", "cs.LG" ]
false
2305.05858
2023-05-10T03:07:17Z
Vārta: A Large-Scale Headline-Generation Dataset for Indic Languages
[ "Rahul Aralikatte", "Ziling Cheng", "Sumanth Doddapaneni", "Jackie Chi Kit Cheung" ]
We present V\=arta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes 41.8 million news articles in 14 different Indic languages (and English), which come from a variety of high-quality sources. To the best of our knowledge, this is the largest collection of curated articles for Indic languages currently available. We use the data collected in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pretrain strong language models that outperform competitive baselines in both NLU and NLG benchmarks.
[ "cs.CL" ]
false
2305.05874
2023-05-10T03:45:22Z
Address Matching Based On Hierarchical Information
[ "Chengxian Zhang", "Jintao Tang", "Ting Wang", "Shasha Li" ]
There is evidence that address matching plays a crucial role in many areas such as express delivery, online shopping and so on. Address has a hierarchical structure, in contrast to unstructured texts, which can contribute valuable information for address matching. Based on this idea, this paper proposes a novel method to leverage the hierarchical information in deep learning method that not only improves the ability of existing methods to handle irregular address, but also can pay closer attention to the special part of address. Experimental findings demonstrate that the proposed method improves the current approach by 3.2% points.
[ "cs.CL" ]
false
2305.05936
2023-05-10T07:13:47Z
Multi-hop Commonsense Knowledge Injection Framework for Zero-Shot Commonsense Question Answering
[ "Xin Guan", "Biwei Cao", "Qingqing Gao", "Zheng Yin", "Bo Liu", "Jiuxin Cao" ]
Commonsense question answering (QA) research requires machines to answer questions based on commonsense knowledge. However, this research requires expensive labor costs to annotate data as the basis of research, and models that rely on fine-tuning paradigms only apply to specific tasks, rather than learn a general commonsense reasoning ability. As a more robust method, zero-shot commonsense question answering shows a good prospect. The current zero-shot framework tries to convert triples in commonsense knowledge graphs (KGs) into QA-form samples as the pre-trained data source to incorporate commonsense knowledge into the model. However, this method ignores the multi-hop relationship in the KG, which is also an important central problem in commonsense reasoning. In this paper, we propose a novel multi-hop commonsense knowledge injection framework. Specifically, it explores multi-hop reasoning paradigm in KGs that conform to linguistic logic, and we further propose two multi-hop QA generation methods based on KGs. Then, we utilize contrastive learning to pre-train the model with the synthetic QA dataset to inject multi-hop commonsense knowledge. Extensive experiments on five commonsense question answering benchmarks demonstrate that our framework achieves state-of-art performance.
[ "cs.CL" ]
false
2305.05945
2023-05-10T07:33:36Z
Adapter-TST: A Parameter Efficient Method for Multiple-Attribute Text Style Transfer
[ "Zhiqiang Hu", "Roy Ka-Wei Lee", "Nancy F. Chen" ]
Adapting a large language model for multiple-attribute text style transfer via fine-tuning can be challenging due to the significant amount of computational resources and labeled data required for the specific task. In this paper, we address this challenge by introducing AdapterTST, a framework that freezes the pre-trained model's original parameters and enables the development of a multiple-attribute text style transfer model. Using BART as the backbone model, Adapter-TST utilizes different neural adapters to capture different attribute information, like a plug-in connected to BART. Our method allows control over multiple attributes, like sentiment, tense, voice, etc., and configures the adapters' architecture to generate multiple outputs respected to attributes or compositional editing on the same sentence. We evaluate the proposed model on both traditional sentiment transfer and multiple-attribute transfer tasks. The experiment results demonstrate that Adapter-TST outperforms all the state-of-the-art baselines with significantly lesser computational resources. We have also empirically shown that each adapter is able to capture specific stylistic attributes effectively and can be configured to perform compositional editing.
[ "cs.CL" ]
false
2305.05968
2023-05-10T08:27:59Z
Investigating Forgetting in Pre-Trained Representations Through Continual Learning
[ "Yun Luo", "Zhen Yang", "Xuefeng Bai", "Fandong Meng", "Jie Zhou", "Yue Zhang" ]
Representation forgetting refers to the drift of contextualized representations during continual training. Intuitively, the representation forgetting can influence the general knowledge stored in pre-trained language models (LMs), but the concrete effect is still unclear. In this paper, we study the effect of representation forgetting on the generality of pre-trained language models, i.e. the potential capability for tackling future downstream tasks. Specifically, we design three metrics, including overall generality destruction (GD), syntactic knowledge forgetting (SynF), and semantic knowledge forgetting (SemF), to measure the evolution of general knowledge in continual learning. With extensive experiments, we find that the generality is destructed in various pre-trained LMs, and syntactic and semantic knowledge is forgotten through continual learning. Based on our experiments and analysis, we further get two insights into alleviating general knowledge forgetting: 1) training on general linguistic tasks at first can mitigate general knowledge forgetting; 2) the hybrid continual learning method can mitigate the generality destruction and maintain more general knowledge compared with those only considering rehearsal or regularization.
[ "cs.CL" ]
false
2305.06274
2023-05-10T16:06:36Z
Context-Aware Document Simplification
[ "Liam Cripwell", "Joël Legrand", "Claire Gardent" ]
To date, most work on text simplification has focused on sentence-level inputs. Early attempts at document simplification merely applied these approaches iteratively over the sentences of a document. However, this fails to coherently preserve the discourse structure, leading to suboptimal output quality. Recently, strategies from controllable simplification have been leveraged to achieve state-of-the-art results on document simplification by first generating a document-level plan (a sequence of sentence-level simplification operations) and using this plan to guide sentence-level simplification downstream. However, this is still limited in that the simplification model has no direct access to the local inter-sentence document context, likely having a negative impact on surface realisation. We explore various systems that use document context within the simplification process itself, either by iterating over larger text units or by extending the system architecture to attend over a high-level representation of document context. In doing so, we achieve state-of-the-art performance on the document simplification task, even when not relying on plan-guidance. Further, we investigate the performance and efficiency tradeoffs of system variants and make suggestions of when each should be preferred.
[ "cs.CL" ]
false
2305.06330
2023-05-10T17:34:52Z
Korean Named Entity Recognition Based on Language-Specific Features
[ "Yige Chen", "KyungTae Lim", "Jungyeul Park" ]
In the paper, we propose a novel way of improving named entity recognition in the Korean language using its language-specific features. While the field of named entity recognition has been studied extensively in recent years, the mechanism of efficiently recognizing named entities in Korean has hardly been explored. This is because the Korean language has distinct linguistic properties that prevent models from achieving their best performances. Therefore, an annotation scheme for {Korean corpora} by adopting the CoNLL-U format, which decomposes Korean words into morphemes and reduces the ambiguity of named entities in the original segmentation that may contain functional morphemes such as postpositions and particles, is proposed herein. We investigate how the named entity tags are best represented in this morpheme-based scheme and implement an algorithm to convert word-based {and syllable-based Korean corpora} with named entities into the proposed morpheme-based format. Analyses of the results of {statistical and neural} models reveal that the proposed morpheme-based format is feasible, and the {varied} performances of the models under the influence of various additional language-specific features are demonstrated. Extrinsic conditions were also considered to observe the variance of the performances of the proposed models, given different types of data, including the original segmentation and different types of tagging formats.
[ "cs.CL" ]
false
2305.11064
2023-05-10T09:02:34Z
Bits of Grass: Does GPT already know how to write like Whitman?
[ "Piotr Sawicki", "Marek Grzes", "Fabricio Goes", "Dan Brown", "Max Peeperkorn", "Aisha Khatun" ]
This study examines the ability of GPT-3.5, GPT-3.5-turbo (ChatGPT) and GPT-4 models to generate poems in the style of specific authors using zero-shot and many-shot prompts (which use the maximum context length of 8192 tokens). We assess the performance of models that are not fine-tuned for generating poetry in the style of specific authors, via automated evaluation. Our findings indicate that without fine-tuning, even when provided with the maximum number of 17 poem examples (8192 tokens) in the prompt, these models do not generate poetry in the desired style.
[ "cs.CL" ]
false
2305.16324
2023-05-10T12:24:03Z
Talking with Machines: A Comprehensive Survey of Emergent Dialogue Systems
[ "William Tholke" ]
From the earliest experiments in the 20th century to the utilization of large language models and transformers, dialogue systems research has continued to evolve, playing crucial roles in numerous fields. This paper offers a comprehensive review of these systems, tracing their historical development and examining their fundamental operations. We analyze popular and emerging datasets for training and survey key contributions in dialogue systems research, including traditional systems and advanced machine learning methods. Finally, we consider conventional and transformer-based evaluation metrics, followed by a short discussion of prevailing challenges and future prospects in the field.
[ "cs.CL" ]
false
2305.05821
2023-05-10T00:33:08Z
Context-dependent communication under environmental constraints
[ "Krzysztof Główka", "Julian Zubek", "Joanna Rączaszek-Leonardi" ]
There is significant evidence that real-world communication cannot be reduced to sending signals with context-independent meaning. In this work, based on a variant of the classical Lewis (1969) signaling model, we explore the conditions for the emergence of context-dependent communication in a situated scenario. In particular, we demonstrate that pressure to minimise the vocabulary size is sufficient for such emergence. At the same time, we study the environmental conditions and cognitive capabilities that enable contextual disambiguation of symbol meanings. We show that environmental constraints on the receiver's referent choice can be unilaterally exploited by the sender, without disambiguation capabilities on the receiver's end. Consistent with common assumptions, the sender's awareness of the context appears to be required for contextual communication. We suggest that context-dependent communication is a situated multilayered phenomenon, crucially influenced by environment properties such as distribution of contexts. The model developed in this work is a demonstration of how signals may be ambiguous out of context, but still allow for near-perfect communication accuracy.
[ "cs.AI", "cs.CL" ]
false
2305.05834
2023-05-10T01:46:17Z
Unsupervised Dense Retrieval Training with Web Anchors
[ "Yiqing Xie", "Xiao Liu", "Chenyan Xiong" ]
In this work, we present an unsupervised retrieval method with contrastive learning on web anchors. The anchor text describes the content that is referenced from the linked page. This shows similarities to search queries that aim to retrieve pertinent information from relevant documents. Based on their commonalities, we train an unsupervised dense retriever, Anchor-DR, with a contrastive learning task that matches the anchor text and the linked document. To filter out uninformative anchors (such as ``homepage'' or other functional anchors), we present a novel filtering technique to only select anchors that contain similar types of information as search queries. Experiments show that Anchor-DR outperforms state-of-the-art methods on unsupervised dense retrieval by a large margin (e.g., by 5.3% NDCG@10 on MSMARCO). The gain of our method is especially significant for search and question answering tasks. Our analysis further reveals that the pattern of anchor-document pairs is similar to that of search query-document pairs. Code available at https://github.com/Veronicium/AnchorDR.
[ "cs.IR", "cs.CL" ]
false
2305.05948
2023-05-10T07:39:57Z
Multi-Path Transformer is Better: A Case Study on Neural Machine Translation
[ "Ye Lin", "Shuhan Zhou", "Yanyang Li", "Anxiang Ma", "Tong Xiao", "Jingbo Zhu" ]
For years the model performance in machine learning obeyed a power-law relationship with the model size. For the consideration of parameter efficiency, recent studies focus on increasing model depth rather than width to achieve better performance. In this paper, we study how model width affects the Transformer model through a parameter-efficient multi-path structure. To better fuse features extracted from different paths, we add three additional operations to each sublayer: a normalization at the end of each path, a cheap operation to produce more features, and a learnable weighted mechanism to fuse all features flexibly. Extensive experiments on 12 WMT machine translation tasks show that, with the same number of parameters, the shallower multi-path model can achieve similar or even better performance than the deeper model. It reveals that we should pay more attention to the multi-path structure, and there should be a balance between the model depth and width to train a better large-scale Transformer.
[ "cs.CL", "cs.AI" ]
false
2305.05994
2023-05-10T09:03:01Z
ANALOGYKB: Unlocking Analogical Reasoning of Language Models with A Million-scale Knowledge Base
[ "Siyu Yuan", "Jiangjie Chen", "Changzhi Sun", "Jiaqing Liang", "Yanghua Xiao", "Deqing Yang" ]
Analogical reasoning is a fundamental cognitive ability of humans. However, current language models (LMs) still struggle to achieve human-like performance in analogical reasoning tasks due to a lack of resources for model training. In this work, we address this gap by proposing ANALOGYKB, a million-scale analogy knowledge base (KB) derived from existing knowledge graphs (KGs). ANALOGYKB identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large LMs (InstructGPT), followed by minor human efforts for data quality control. Evaluations on a series of datasets of two analogical reasoning tasks (analogy recognition and generation) demonstrate that ANALOGYKB successfully enables LMs to achieve much better results than previous state-of-the-art methods.
[ "cs.CL", "cs.AI" ]
false
2305.06074
2023-05-10T11:55:17Z
iLab at SemEval-2023 Task 11 Le-Wi-Di: Modelling Disagreement or Modelling Perspectives?
[ "Nikolas Vitsakis", "Amit Parekh", "Tanvi Dinkar", "Gavin Abercrombie", "Ioannis Konstas", "Verena Rieser" ]
There are two competing approaches for modelling annotator disagreement: distributional soft-labelling approaches (which aim to capture the level of disagreement) or modelling perspectives of individual annotators or groups thereof. We adapt a multi-task architecture -- which has previously shown success in modelling perspectives -- to evaluate its performance on the SEMEVAL Task 11. We do so by combining both approaches, i.e. predicting individual annotator perspectives as an interim step towards predicting annotator disagreement. Despite its previous success, we found that a multi-task approach performed poorly on datasets which contained distinct annotator opinions, suggesting that this approach may not always be suitable when modelling perspectives. Furthermore, our results explain that while strongly perspectivist approaches might not achieve state-of-the-art performance according to evaluation metrics used by distributional approaches, our approach allows for a more nuanced understanding of individual perspectives present in the data. We argue that perspectivist approaches are preferable because they enable decision makers to amplify minority views, and that it is important to re-evaluate metrics to reflect this goal.
[ "cs.CL", "cs.LG" ]
false
2305.06099
2023-05-10T12:40:48Z
PAI at SemEval-2023 Task 2: A Universal System for Named Entity Recognition with External Entity Information
[ "Long Ma", "Kai Lu", "Tianbo Che", "Hailong Huang", "Weiguo Gao", "Xuan Li" ]
The MultiCoNER II task aims to detect complex, ambiguous, and fine-grained named entities in low-context situations and noisy scenarios like the presence of spelling mistakes and typos for multiple languages. The task poses significant challenges due to the scarcity of contextual information, the high granularity of the entities(up to 33 classes), and the interference of noisy data. To address these issues, our team {\bf PAI} proposes a universal Named Entity Recognition (NER) system that integrates external entity information to improve performance. Specifically, our system retrieves entities with properties from the knowledge base (i.e. Wikipedia) for a given text, then concatenates entity information with the input sentence and feeds it into Transformer-based models. Finally, our system wins 2 first places, 4 second places, and 1 third place out of 13 tracks. The code is publicly available at \url{https://github.com/diqiuzhuanzhuan/semeval-2023}.
[ "cs.CL", "cs.AI" ]
false
2305.06212
2023-05-10T14:41:51Z
Privacy-Preserving Prompt Tuning for Large Language Model Services
[ "Yansong Li", "Zhixing Tan", "Yang Liu" ]
Prompt tuning provides an efficient way for users to customize Large Language Models (LLMs) with their private data in the emerging LLM service scenario. However, the sensitive nature of private data brings the need for privacy preservation in LLM service customization. Based on prompt tuning, we propose Privacy-Preserving Prompt Tuning (RAPT), a framework that provides privacy guarantees for LLM services. \textsc{rapt} adopts a local privacy setting, allowing users to privatize their data locally with local differential privacy. As prompt tuning performs poorly when directly trained on privatized data, we introduce a novel privatized token reconstruction task that is trained jointly with the downstream task, allowing LLMs to learn better task-dependent representations. Despite the simplicity of our framework, experiments show that RAPT achieves competitive performance across tasks while providing privacy guarantees against adversaries.
[ "cs.CL", "cs.CR" ]
false
2305.06404
2023-05-10T18:26:42Z
LACoS-BLOOM: Low-rank Adaptation with Contrastive objective on 8 bits Siamese-BLOOM
[ "Wen-Yu Hua", "Brian Williams", "Davood Shamsi" ]
Text embeddings are useful features for several NLP applications, such as sentence similarity, text clustering, and semantic search. In this paper, we present a Low-rank Adaptation with a Contrastive objective on top of 8-bit Siamese-BLOOM, a multilingual large language model optimized to produce semantically meaningful word embeddings. The innovation is threefold. First, we cast BLOOM weights to 8-bit values. Second, we fine-tune BLOOM with a scalable adapter (LoRA) and 8-bit Adam optimizer for sentence similarity classification. Third, we apply a Siamese architecture on BLOOM model with a contrastive objective to ease the multi-lingual labeled data scarcity. The experiment results show the quality of learned embeddings from LACoS-BLOOM is proportional to the number of model parameters and the amount of unlabeled training data. With the parameter efficient fine-tuning design, we are able to run BLOOM 7.1 billion parameters end-to-end on a single GPU machine with 32GB memory. Compared to previous solution Sentence-BERT, we achieve significant improvement on both English and multi-lingual STS tasks.
[ "cs.CL", "cs.AI" ]
true
2305.06416
2023-05-10T18:53:51Z
A Method to Automate the Discharge Summary Hospital Course for Neurology Patients
[ "Vince C. Hartman", "Sanika S. Bapat", "Mark G. Weiner", "Babak B. Navi", "Evan T. Sholle", "Thomas R. Campion, Jr" ]
Generation of automated clinical notes have been posited as a strategy to mitigate physician burnout. In particular, an automated narrative summary of a patient's hospital stay could supplement the hospital course section of the discharge summary that inpatient physicians document in electronic health record (EHR) systems. In the current study, we developed and evaluated an automated method for summarizing the hospital course section using encoder-decoder sequence-to-sequence transformer models. We fine tuned BERT and BART models and optimized for factuality through constraining beam search, which we trained and tested using EHR data from patients admitted to the neurology unit of an academic medical center. The approach demonstrated good ROUGE scores with an R-2 of 13.76. In a blind evaluation, two board-certified physicians rated 62% of the automated summaries as meeting the standard of care, which suggests the method may be useful clinically. To our knowledge, this study is among the first to demonstrate an automated method for generating a discharge summary hospital course that approaches a quality level of what a physician would write.
[ "cs.CL", "cs.LG" ]
false
2305.06434
2023-05-10T19:56:55Z
Word Grounded Graph Convolutional Network
[ "Zhibin Lu", "Qianqian Xie", "Benyou Wang", "Jian-yun Nie" ]
Graph Convolutional Networks (GCNs) have shown strong performance in learning text representations for various tasks such as text classification, due to its expressive power in modeling graph structure data (e.g., a literature citation network). Most existing GCNs are limited to deal with documents included in a pre-defined graph, i.e., it cannot be generalized to out-of-graph documents. To address this issue, we propose to transform the document graph into a word graph, to decouple data samples (i.e., documents in training and test sets) and a GCN model by using a document-independent graph. Such word-level GCN could therefore naturally inference out-of-graph documents in an inductive way. The proposed Word-level Graph (WGraph) can not only implicitly learning word presentation with commonly-used word co-occurrences in corpora, but also incorporate extra global semantic dependency derived from inter-document relationships (e.g., literature citations). An inductive Word-grounded Graph Convolutional Network (WGCN) is proposed to learn word and document representations based on WGraph in a supervised manner. Experiments on text classification with and without citation networks evidence that the proposed WGCN model outperforms existing methods in terms of effectiveness and efficiency.
[ "cs.CL", "cs.LG" ]
false
2305.11068
2023-05-10T13:19:18Z
ORKG-Leaderboards: A Systematic Workflow for Mining Leaderboards as a Knowledge Graph
[ "Salomon Kabongo", "Jennifer D'Souza", "Sören Auer" ]
The purpose of this work is to describe the Orkg-Leaderboard software designed to extract leaderboards defined as Task-Dataset-Metric tuples automatically from large collections of empirical research papers in Artificial Intelligence (AI). The software can support both the main workflows of scholarly publishing, viz. as LaTeX files or as PDF files. Furthermore, the system is integrated with the Open Research Knowledge Graph (ORKG) platform, which fosters the machine-actionable publishing of scholarly findings. Thus the system output, when integrated within the ORKG's supported Semantic Web infrastructure of representing machine-actionable 'resources' on the Web, enables: 1) broadly, the integration of empirical results of researchers across the world, thus enabling transparency in empirical research with the potential to also being complete contingent on the underlying data source(s) of publications; and 2) specifically, enables researchers to track the progress in AI with an overview of the state-of-the-art (SOTA) across the most common AI tasks and their corresponding datasets via dynamic ORKG frontend views leveraging tables and visualization charts over the machine-actionable data. Our best model achieves performances above 90% F1 on the \textit{leaderboard} extraction task, thus proving Orkg-Leaderboards a practically viable tool for real-world usage. Going forward, in a sense, Orkg-Leaderboards transforms the leaderboard extraction task to an automated digitalization task, which has been, for a long time in the community, a crowdsourced endeavor.
[ "cs.CL", "cs.AI" ]
false
2306.01741
2023-05-10T10:14:16Z
GPT Models Meet Robotic Applications: Co-Speech Gesturing Chat System
[ "Naoki Wake", "Atsushi Kanehira", "Kazuhiro Sasabuchi", "Jun Takamatsu", "Katsushi Ikeuchi" ]
This technical paper introduces a chatting robot system that utilizes recent advancements in large-scale language models (LLMs) such as GPT-3 and ChatGPT. The system is integrated with a co-speech gesture generation system, which selects appropriate gestures based on the conceptual meaning of speech. Our motivation is to explore ways of utilizing the recent progress in LLMs for practical robotic applications, which benefits the development of both chatbots and LLMs. Specifically, it enables the development of highly responsive chatbot systems by leveraging LLMs and adds visual effects to the user interface of LLMs as an additional value. The source code for the system is available on GitHub for our in-house robot (https://github.com/microsoft/LabanotationSuite/tree/master/MSRAbotChatSimulation) and GitHub for Toyota HSR (https://github.com/microsoft/GPT-Enabled-HSR-CoSpeechGestures).
[ "cs.RO", "cs.CL" ]
true