max_stars_repo_path
stringlengths
4
245
max_stars_repo_name
stringlengths
7
115
max_stars_count
int64
101
368k
id
stringlengths
2
8
content
stringlengths
6
1.03M
tests/test_edgeql_enums.py
sfermigier/edgedb
7,302
12791331
<gh_stars>1000+ # # This source file is part of the EdgeDB open source project. # # Copyright 2019-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os.path import edgedb from edb.testbase import server as tb class TestEdgeQLEnums(tb.QueryTestCase): SCHEMA = os.path.join(os.path.dirname(__file__), 'schemas', 'enums.esdl') async def test_edgeql_enums_cast_01(self): await self.assert_query_result( r''' SELECT <color_enum_t>{'RED', 'GREEN', 'BLUE'}; ''', {'RED', 'GREEN', 'BLUE'}, ) async def test_edgeql_enums_cast_02(self): with self.assertRaisesRegex( edgedb.InvalidValueError, r'invalid input value for enum .+color_enum_t.+YELLOW'): await self.con.execute(r''' SELECT <color_enum_t>'YELLOW'; ''') async def test_edgeql_enums_cast_03(self): with self.assertRaisesRegex( edgedb.InvalidValueError, r'invalid input value for enum .+color_enum_t.+red'): await self.con.execute(r''' SELECT <color_enum_t>'red'; ''') async def test_edgeql_enums_cast_04(self): with self.assertRaisesRegex( edgedb.QueryError, r"operator '\+\+' cannot be applied to operands of type " r"'std::str' and 'default::color_enum_t'"): await self.con.execute(r''' INSERT Foo { color := 'BLUE' }; SELECT 'The test color is: ' ++ Foo.color; ''') async def test_edgeql_enums_cast_05(self): await self.con.execute( r''' INSERT Foo { color := 'BLUE' }; ''') await self.assert_query_result( r''' SELECT 'The test color is: ' ++ <str>Foo.color; ''', ['The test color is: BLUE'], ) async def test_edgeql_enums_pathsyntax_01(self): with self.assertRaisesRegex( edgedb.QueryError, "enum path expression lacks an enum member name"): async with self._run_and_rollback(): await self.con.execute('SELECT color_enum_t') with self.assertRaisesRegex( edgedb.QueryError, "enum path expression lacks an enum member name"): async with self._run_and_rollback(): await self.con.execute( 'WITH e := color_enum_t SELECT e.RED' ) with self.assertRaisesRegex( edgedb.QueryError, "unexpected reference to link property 'RED'"): async with self._run_and_rollback(): await self.con.execute( 'SELECT color_enum_t@RED' ) with self.assertRaisesRegex( edgedb.QueryError, "enum types do not support backlink"): async with self._run_and_rollback(): await self.con.execute( 'SELECT color_enum_t.<RED' ) with self.assertRaisesRegex( edgedb.QueryError, "an enum member name must follow enum type name in the path"): async with self._run_and_rollback(): await self.con.execute( 'SELECT color_enum_t[IS color_enum_t].RED' ) with self.assertRaisesRegex( edgedb.QueryError, "invalid property reference on a primitive type expression"): async with self._run_and_rollback(): await self.con.execute( 'SELECT color_enum_t.RED.GREEN' ) with self.assertRaisesRegex( edgedb.QueryError, "invalid property reference on a primitive type expression"): async with self._run_and_rollback(): await self.con.execute( 'WITH x := color_enum_t.RED SELECT x.GREEN' ) with self.assertRaisesRegex( edgedb.QueryError, "enum has no member called 'RAD'", _hint="did you mean 'RED'?"): async with self._run_and_rollback(): await self.con.execute( 'SELECT color_enum_t.RAD' ) async def test_edgeql_enums_pathsyntax_02(self): await self.assert_query_result( r''' SELECT color_enum_t.GREEN; ''', {'GREEN'}, ) await self.assert_query_result( r''' SELECT default::color_enum_t.BLUE; ''', {'BLUE'}, ) await self.assert_query_result( r''' WITH x := default::color_enum_t.RED SELECT x; ''', {'RED'}, ) async def test_edgeql_enums_assignment_01(self): # testing the INSERT assignment cast await self.con.execute( r''' INSERT Foo { color := 'RED' }; ''') await self.assert_query_result( r''' SELECT Foo { color }; ''', [{ 'color': 'RED', }], ) async def test_edgeql_enums_assignment_02(self): await self.con.execute( r''' INSERT Foo { color := 'RED' }; ''') # testing the UPDATE assignment cast await self.con.execute( r''' UPDATE Foo SET { color := 'GREEN' }; ''') await self.assert_query_result( r''' SELECT Foo { color }; ''', [{ 'color': 'GREEN', }], ) async def test_edgeql_enums_assignment_03(self): # testing the INSERT assignment cast await self.con.execute( r''' INSERT Bar; ''') await self.assert_query_result( r''' SELECT Bar { color }; ''', [{ 'color': 'RED', }], ) async def test_edgeql_enums_assignment_04(self): await self.con.execute( r''' INSERT Bar; ''') # testing the UPDATE assignment cast await self.con.execute( r''' UPDATE Bar SET { color := 'GREEN' }; ''') await self.assert_query_result( r''' SELECT Bar { color }; ''', [{ 'color': 'GREEN', }], ) async def test_edgeql_enums_json_cast_01(self): self.assertEqual( await self.con.query( "SELECT <json><color_enum_t>'RED'" ), ['"RED"']) await self.assert_query_result( "SELECT <color_enum_t><json>'RED'", ['RED']) await self.assert_query_result( "SELECT <color_enum_t>'RED'", ['RED']) async def test_edgeql_enums_json_cast_02(self): with self.assertRaisesRegex( edgedb.InvalidValueError, r'invalid input value for enum .+color_enum_t.+: "BANANA"'): await self.con.execute("SELECT <color_enum_t><json>'BANANA'") async def test_edgeql_enums_json_cast_03(self): with self.assertRaisesRegex( edgedb.InvalidValueError, r'expected json string or null; got json number'): await self.con.execute("SELECT <color_enum_t><json>12")
tests/integration/test_configinventory.py
vincentbernat/lldpd
312
12791347
<filename>tests/integration/test_configinventory.py import os import pytest import platform import time import shlex @pytest.mark.skipif("'LLDP-MED' not in config.lldpd.features", reason="LLDP-MED not supported") class TestConfigInventory(object): def test_configinventory(self, lldpd1, lldpd, lldpcli, namespaces, replace_file): with namespaces(2): if os.path.isdir("/sys/class/dmi/id"): # /sys/class/dmi/id/* for what, value in dict(product_version="1.14", bios_version="1.10", product_serial="45872512", sys_vendor="Spectacular", product_name="Workstation", chassis_asset_tag="487122").items(): replace_file("/sys/class/dmi/id/{}".format(what), value) lldpd("-M", "1") def test_default_inventory(namespaces, lldpcli): with namespaces(1): if os.path.isdir("/sys/class/dmi/id"): out = lldpcli("-f", "keyvalue", "show", "neighbors", "details") assert out['lldp.eth0.chassis.name'] == 'ns-2.example.com' assert out['lldp.eth0.lldp-med.inventory.hardware'] == '1.14' assert out['lldp.eth0.lldp-med.inventory.firmware'] == '1.10' assert out['lldp.eth0.lldp-med.inventory.serial'] == '45872512' assert out['lldp.eth0.lldp-med.inventory.manufacturer'] == \ 'Spectacular' assert out['lldp.eth0.lldp-med.inventory.model'] == 'Workstation' assert out['lldp.eth0.lldp-med.inventory.asset'] == '487122' assert out['lldp.eth0.lldp-med.inventory.software'] == \ platform.release() else: assert 'lldp.eth0.lldp-med.inventory.hardware' not in out.items() assert 'lldp.eth0.lldp-med.inventory.firmware' not in out.items() assert 'lldp.eth0.lldp-med.inventory.serial' not in out.items() assert 'lldp.eth0.lldp-med.inventory.manufacturer' not in out.items() assert 'lldp.eth0.lldp-med.inventory.model' not in out.items() assert 'lldp.eth0.lldp-med.inventory.asset' not in out.items() assert 'lldp.eth0.lldp-med.inventory.software' not in out.items() test_default_inventory(namespaces, lldpcli) custom_values = [ ('hardware-revision', 'hardware', 'SQRT2_1.41421356237309504880'), ('software-revision', 'software', 'E_2.7182818284590452354'), ('firmware-revision', 'firmware', 'PI_3.14159265358979323846'), ('serial', 'serial', 'FIBO_112358'), ('manufacturer', 'manufacturer', 'Cybertron'), ('model', 'model', 'OptimusPrime'), ('asset', 'asset', 'SQRT3_1.732050807568877') ] with namespaces(2): for what, pfx, value in custom_values: result = lldpcli( *shlex.split("configure inventory {} {}".format(what, value))) assert result.returncode == 0 result = lldpcli("resume") assert result.returncode == 0 result = lldpcli("update") assert result.returncode == 0 time.sleep(3) with namespaces(1): out = lldpcli("-f", "keyvalue", "show", "neighbors", "details") for what, pfx, value in custom_values: key_to_find = "lldp.eth0.lldp-med.inventory.{}".format(pfx) assert out[key_to_find] == value with namespaces(2): for what, pfx, value in custom_values: result = lldpcli( *shlex.split("unconfigure inventory {}".format(what))) assert result.returncode == 0 result = lldpcli("resume") assert result.returncode == 0 result = lldpcli("update") assert result.returncode == 0 test_default_inventory(namespaces, lldpcli)
webservice/server/server/summ_eval/server/cli/__init__.py
mymusise/emnlp19-moverscore
141
12791390
def main(): from summ_eval.server import EvalServer from summ_eval.server.helper import get_run_args args = get_run_args() server = EvalServer(args) server.start() server.join()
stats/constants.py
mpope9/nba-sql
113
12791395
<gh_stars>100-1000 """ Constants used in the application. """ """ List of seasons. """ season_list = [ '1996-97', '1997-98', '1998-99', '1999-00', '2000-01', '2001-02', '2002-03', '2003-04', '2004-05', '2005-06', '2006-07', '2007-08', '2008-09', '2009-10', '2010-11', '2011-12', '2012-13', '2013-14', '2014-15', '2015-16', '2016-17', '2017-18', '2018-19', '2019-20', '2020-21', '2021-22' ] """ Headers. """ headers = { 'Connection': 'keep-alive', 'Accept': 'application/json, text/plain, */*', 'x-nba-stats-token': 'true', 'User-Agent': ( #'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) ' #'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.130' #'Safari/537.36' 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36' ), 'x-nba-stats-origin': 'stats', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-Mode': 'cors', 'Referer': 'https://stats.nba.com/', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.9', } """ Team IDs. (Thank you nba-api). """ team_ids = [ 1610612737, # 'ATL' 1610612738, # 'BOS' 1610612739, # 'CLE' 1610612740, # 'NOP' 1610612741, # 'CHI' 1610612742, # 'DAL' 1610612743, # 'DEN' 1610612744, # 'GSW' 1610612745, # 'HOU' 1610612746, # 'LAC' 1610612747, # 'LAL' 1610612748, # 'MIA' 1610612749, # 'MIL' 1610612750, # 'MIN' 1610612751, # 'BKN' 1610612752, # 'NYK' 1610612753, # 'ORL' 1610612754, # 'IND' 1610612755, # 'PHI' 1610612756, # 'PHX' 1610612757, # 'POR' 1610612758, # 'SAC' 1610612759, # 'SAS' 1610612760, # 'OKC' 1610612761, # 'TOR' 1610612762, # 'UTA' 1610612763, # 'MEM' 1610612764, # 'WAS' 1610612765, # 'DET' 1610612766, # 'CHA' ] """ Mapping from team abbrev to id. """ team_abbrev_mapping = { 'ATL': 1610612737, 'BOS': 1610612738, 'CLE': 1610612739, 'NOP': 1610612740, 'NOK': 1610612740, # Old name. 'NOH': 1610612740, # Old name. 'CHI': 1610612741, 'DAL': 1610612742, 'DEN': 1610612743, 'GSW': 1610612744, 'HOU': 1610612745, 'LAC': 1610612746, 'LAL': 1610612747, 'MIA': 1610612748, 'MIL': 1610612749, 'MIN': 1610612750, 'BKN': 1610612751, 'NJN': 1610612751, # Old name. 'NYK': 1610612752, 'ORL': 1610612753, 'IND': 1610612754, 'PHI': 1610612755, 'PHX': 1610612756, 'POR': 1610612757, 'SAC': 1610612758, 'SAS': 1610612759, 'OKC': 1610612760, 'SEA': 1610612760, 'TOR': 1610612761, 'UTA': 1610612762, 'VAN': 1610612763, # Old name. 'MEM': 1610612763, 'WAS': 1610612764, 'DET': 1610612765, 'CHA': 1610612766, 'CHH': 1610612766, # Old name. } """ Play-by-play data has an EventMsgType field. This is an enum. There is also the EventMsgActionField, which is a complex enum of (EventMsgType, SubType). We're going to make a lookup table of enum to value, then a lookup table for the (EventMsgType, EventMsgActionType) pair. """ event_message_types = [ {'id': 1, 'string': 'FIELD_GOAL_MADE'}, {'id': 2, 'string': 'FIELD_GOAL_MISSED'}, {'id': 3, 'string': 'FREE_THROW'}, {'id': 4, 'string': 'REBOUND'}, {'id': 5, 'string': 'TURNOVER'}, {'id': 6, 'string': 'FOUL'}, {'id': 7, 'string': 'VIOLATION'}, {'id': 8, 'string': 'SUBSTITUTION'}, {'id': 9, 'string': 'TIMEOUT'}, {'id': 10, 'string': 'JUMP_BALL'}, {'id': 11, 'string': 'EJECTION'}, {'id': 12, 'string': 'PERIOD_BEGIN'}, {'id': 13, 'string': 'PERIOD_END'}, {'id': 18, 'string': 'UNKNOWN'} ]
descarteslabs/common/graft/interpreter/__init__.py
descarteslabs/descarteslabs-python
167
12791407
<gh_stars>100-1000 from .interpreter import interpret from . import exceptions from .scopedchainmap import ScopedChainMap __all__ = ["interpret", "exceptions", "ScopedChainMap"]
skyline/functions/database/queries/related_to_metric_groups.py
datastreaming/skyline-1
396
12791408
<reponame>datastreaming/skyline-1 """ Get anomalies for a metric id """ import logging import traceback from ast import literal_eval from sqlalchemy.sql import select from database import get_engine, engine_disposal, metric_group_table_meta from functions.metrics.get_base_name_from_metric_id import get_base_name_from_metric_id def related_to_metric_groups(current_skyline_app, base_name, metric_id): """ Returns a dict of all the metric_groups that a metric is part of. """ current_skyline_app_logger = current_skyline_app + 'Log' current_logger = logging.getLogger(current_skyline_app_logger) related_to_metric_groups_dict = {} related_to_metric_groups_dict['metric'] = base_name related_to_metric_groups_dict['metric_id'] = metric_id related_to_metric_groups_dict['related_to_metrics'] = {} try: engine, fail_msg, trace = get_engine(current_skyline_app) if fail_msg != 'got MySQL engine': current_logger.error('error :: related_to_metric_groups :: could not get a MySQL engine fail_msg - %s' % str(fail_msg)) if trace != 'none': current_logger.error('error :: related_to_metric_groups :: could not get a MySQL engine trace - %s' % str(trace)) except Exception as err: current_logger.error(traceback.format_exc()) current_logger.error('error :: related_to_metric_groups :: could not get a MySQL engine - %s' % str(err)) if engine: try: metric_group_table, fail_msg, trace = metric_group_table_meta(current_skyline_app, engine) if fail_msg != 'metric_group meta reflected OK': current_logger.error('error :: related_to_metric_groups :: could not get metric_group_table_meta fail_msg - %s' % str(fail_msg)) if trace != 'none': current_logger.error('error :: related_to_metric_groups :: could not get metric_group_table_meta trace - %s' % str(trace)) except Exception as err: current_logger.error(traceback.format_exc()) current_logger.error('error :: related_to_metric_groups :: metric_group_table_meta - %s' % str(err)) try: connection = engine.connect() if metric_id: stmt = select([metric_group_table]).where(metric_group_table.c.related_metric_id == metric_id).order_by(metric_group_table.c.avg_coefficient.desc()) else: stmt = select([metric_group_table]) results = connection.execute(stmt) for row in results: group_metric_id = row['metric_id'] group_base_name = None try: group_base_name = get_base_name_from_metric_id(current_skyline_app, group_metric_id) except Exception as err: current_logger.error('error :: related_to_metric_groups :: base_name_from_metric_id failed to determine base_name from metric_id: %s - %s' % ( str(group_metric_id), str(err))) if group_base_name: related_to_metric_groups_dict['related_to_metrics'][group_base_name] = dict(row) connection.close() except Exception as err: current_logger.error(traceback.format_exc()) current_logger.error('error :: related_to_metric_groups :: failed to build metric_groups dict - %s' % str(err)) if engine: engine_disposal(current_skyline_app, engine) for related_metric in list(related_to_metric_groups_dict['related_to_metrics'].keys()): for key in list(related_to_metric_groups_dict['related_to_metrics'][related_metric].keys()): if 'decimal.Decimal' in str(type(related_to_metric_groups_dict['related_to_metrics'][related_metric][key])): related_to_metric_groups_dict['related_to_metrics'][related_metric][key] = float(related_to_metric_groups_dict['related_to_metrics'][related_metric][key]) if 'datetime.datetime' in str(type(related_to_metric_groups_dict['related_to_metrics'][related_metric][key])): related_to_metric_groups_dict['related_to_metrics'][related_metric][key] = str(related_to_metric_groups_dict['related_to_metrics'][related_metric][key]) if key == 'shifted_counts': try: shifted_counts_str = related_to_metric_groups_dict['related_to_metrics'][related_metric][key].decode('utf-8') shifted_counts = literal_eval(shifted_counts_str) except AttributeError: shifted_counts = related_to_metric_groups_dict['related_to_metrics'][related_metric][key] related_to_metric_groups_dict['related_to_metrics'][related_metric][key] = shifted_counts # Remap the metric_id and related_metric_id for clarity related_to_metric_groups_dict['related_to_metrics'][related_metric]['related_to_metric_id'] = related_to_metric_groups_dict['related_to_metrics'][related_metric]['metric_id'] related_to_metric_groups_dict['related_to_metrics'][related_metric]['metric_id'] = metric_id del related_to_metric_groups_dict['related_to_metrics'][related_metric]['related_metric_id'] return related_to_metric_groups_dict
html_parsing/get_game_genres/parsers/squarefaction_ru.py
DazEB2/SimplePyScripts
117
12791421
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from typing import List from bs4 import BeautifulSoup from base_parser import BaseParser class SquarefactionRu_Parser(BaseParser): def _parse(self) -> List[str]: url = f'http://squarefaction.ru/main/search/games?q={self.game_name}' rs = self.send_get(url) root = BeautifulSoup(rs.content, 'html.parser') # http://squarefaction.ru/main/search/games?q=dead+space if '/main/search/games' in rs.url: self.log_info(f'Parsing of game list') for game_block in root.select('#games > .entry'): title = self.get_norm_text(game_block.select_one('.name')) if not self.is_found_game(title): continue # <div class="infos">TPS,Survival Horror,Action</div> genres = self.get_norm_text(game_block.select_one('.infos')).split(',') # Сойдет первый, совпадающий по имени, вариант return genres # http://squarefaction.ru/game/dead-space else: self.log_info(f'Parsing of game page') game_block = root.select_one('#page-info') if game_block: title = self.get_norm_text(game_block.select_one('#title')) if not self.is_found_game(title): self.log_warn(f'Not match game title {title!r}') # <td class="nowraps-links"> # <a href="/games?genre=tps">TPS</a>, # <a href="/games?genre=survival-horror">Survival Horror</a>, # <a href="/games?genre=action">Action</a> # </td> genres = [ self.get_norm_text(a) for a in game_block.select('a') if '?genre=' in a['href'] ] # Сойдет первый, совпадающий по имени, вариант return genres self.log_info(f'Not found game {self.game_name!r}') return [] def get_game_genres(game_name: str, *args, **kwargs) -> List[str]: return SquarefactionRu_Parser(*args, **kwargs).get_game_genres(game_name) if __name__ == '__main__': from common import _common_test _common_test(get_game_genres) # Search 'Hellgate: London'... # Genres: ['Action RPG'] # # Search 'The Incredible Adventures of Van Helsing'... # Genres: ['Action RPG'] # # Search 'Dark Souls: Prepare to Die Edition'... # Genres: [] # # Search 'Twin Sector'... # Genres: [] # # Search 'Call of Cthulhu: Dark Corners of the Earth'... # Genres: ['Survival Horror']
test/test_algos/test_opt_algorithm/test_racos/test_racos.py
IcarusWizard/ZOOpt
403
12791427
<filename>test/test_algos/test_opt_algorithm/test_racos/test_racos.py from zoopt.algos.opt_algorithms.racos.racos_common import RacosCommon from zoopt.algos.opt_algorithms.racos.sracos import SRacos from zoopt import Solution, Objective, Dimension, Parameter, Opt, ExpOpt, ValueType, Dimension2 import numpy as np def ackley(solution): """ Ackley function for continuous optimization """ x = solution.get_x() bias = 0.2 ave_seq = sum([(i - bias) * (i - bias) for i in x]) / len(x) ave_cos = sum([np.cos(2.0 * np.pi * (i - bias)) for i in x]) / len(x) value = -20 * np.exp(-0.2 * np.sqrt(ave_seq)) - np.exp(ave_cos) + 20.0 + np.e return value def sphere_discrete_order(solution): """ Sphere function for integer continuous optimization """ x = solution.get_x() value = sum([(i-2)*(i-2) for i in x]) return value class SetCover: """ set cover problem for discrete optimization this problem has some extra initialization tasks, thus we define this problem as a class """ def __init__(self): self.__weight = [0.8356, 0.5495, 0.4444, 0.7269, 0.9960, 0.6633, 0.5062, 0.8429, 0.1293, 0.7355, 0.7979, 0.2814, 0.7962, 0.1754, 0.0267, 0.9862, 0.1786, 0.5884, 0.6289, 0.3008] self.__subset = [] self.__subset.append([0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0]) self.__subset.append([0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0]) self.__subset.append([1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0]) self.__subset.append([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]) self.__subset.append([1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1]) self.__subset.append([0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]) self.__subset.append([0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0]) self.__subset.append([0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0]) self.__subset.append([0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0]) self.__subset.append([0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1]) self.__subset.append([0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0]) self.__subset.append([0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1]) self.__subset.append([1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1]) self.__subset.append([1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1]) self.__subset.append([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1]) self.__subset.append([1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0]) self.__subset.append([1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1]) self.__subset.append([0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1]) self.__subset.append([0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0]) self.__subset.append([0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1]) def fx(self, solution): """ Objective function. :param solution: a Solution object :return: the value of f(x) """ x = solution.get_x() allweight = 0 countw = 0 for i in range(len(self.__weight)): allweight += self.__weight[i] dims = [] for i in range(len(self.__subset[0])): dims.append(False) for i in range(len(self.__subset)): if x[i] == 1: countw += self.__weight[i] for j in range(len(self.__subset[i])): if self.__subset[i][j] == 1: dims[j] = True full = True for i in range(len(dims)): if dims[i] is False: full = False if full is False: countw += allweight return countw @property def dim(self): """ Dimension of set cover problem. :return: Dimension instance """ dim_size = 20 dim_regs = [[0, 1]] * dim_size dim_tys = [False] * dim_size return Dimension(dim_size, dim_regs, dim_tys) class TestRacos(object): def test_racos_common_extend(self): a = [1, 2, 3] b = [2, 3, 4] assert RacosCommon.extend(a, b) == [1, 2, 3, 2, 3, 4] def test_racos_common_is_distinct(self): a = Solution(x=[1, 2, 3]) b = Solution(x=[2, 3, 4]) c = Solution(x=[3, 4, 5]) seti = [a, b] assert RacosCommon.is_distinct(seti, a) is False and RacosCommon.is_distinct(seti, c) is True def test_sracos_distance(self): a = [2, 4] b = [5, 8] assert SRacos.distance(a, b) == 5 def test_sracos_binary_search(self): s0 = Solution(value=0) s1 = Solution(value=1) s2 = Solution(value=2) s3 = Solution(value=3) s4 = Solution(value=4) # 1 3 0 2 4 test_s1 = Solution(value=2.1) test_s2 = Solution(value=4.5) test_s3 = Solution(value=-1) test_s4 = Solution(value=2) set = [s0, s1, s2, s3, s4] sracos = SRacos() assert sracos.binary_search(set, test_s1, 0, 4) == 3 assert sracos.binary_search(set, test_s1, 0, 2) == 3 assert sracos.binary_search(set, test_s2, 0, 4) == 5 assert sracos.binary_search(set, test_s3, 0, 4) == 0 assert sracos.binary_search(set, test_s4, 0, 4) == 3 def test_sracos_strategy_wr(self): s0 = Solution(value=0) s1 = Solution(value=1) s2 = Solution(value=2) s3 = Solution(value=3) s4 = Solution(value=4) iset = [s0, s1, s2, s3, s4] sracos = SRacos() test_s1 = Solution(value=2.1) sracos.strategy_wr(iset, test_s1, 'pos') assert len(iset) == 5 and iset[0].get_value() == 0 and iset[1].get_value() == 1 and iset[2].get_value() == 2 \ and iset[3].get_value() == 2.1 and iset[4].get_value() == 3 iset2 = [s1, s3, s0, s2, s4] sracos.strategy_wr(iset2, test_s1, 'neg') assert len(iset2) == 5 and iset2[4].get_value() == 2.1 def test_sracos_strategy_rr(self): s0 = Solution(value=0) s1 = Solution(value=1) s2 = Solution(value=2) iset = [s0, s1, s2] sracos = SRacos() test_s1 = Solution(value=2.1) sracos.strategy_rr(iset, test_s1) assert len(iset) == 3 and (iset[0].get_value() == 2.1 or iset[1].get_value() == 2.1 or iset[2].get_value() == 2.1) def test_sracos_strategy_lm(self): s0 = Solution(x=[1, 1, 1], value=0) s1 = Solution(x=[2.2, 2.2, 2.2], value=1) s2 = Solution(x=[3, 3, 3], value=2) iset = [s0, s1, s2] sracos = SRacos() test_s1 = Solution(x=[2.1, 2.1, 2.1], value=2.1) sracos.strategy_lm(iset, s0, test_s1) assert iset[2].get_value() == 2.1 def test_sracos_replace(self): s0 = Solution(x=[0, 0, 0], value=0.5) s1 = Solution(x=[1, 1, 1], value=1) s2 = Solution(x=[2, 2, 2], value=2) s3 = Solution(x=[3, 3, 3], value=3) s4 = Solution(x=[4, 4, 4], value=4) pos_set = [s0, s1, s2, s3, s4] neg_set = [s2, s3, s1, s4, s0] x = Solution(x=[2.1, 2.1, 2.1], value=0.1) sracos = SRacos() sracos.replace(pos_set, x, 'pos', 'WR') assert pos_set[4].get_value() == 3 and pos_set[0].get_value() == 0.1 sracos.replace(neg_set, x, 'neg', 'LM') assert neg_set[3].get_value() == 0.1 def test_racos_performance(self): # continuous dim = 100 # dimension objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=100 * dim, sequential=False, seed=1) solution = ExpOpt.min(objective, parameter)[0] assert solution.get_value() < 0.2 dim = 500 objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=10000, sequential=False, seed=1) sol = Opt.min(objective, parameter) sol.print_solution() assert solution.get_value() < 2 # discrete # setcover problem = SetCover() dim = problem.dim # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, sequential=False, seed=777) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions dim_regs = [[-10, 10]] * dim_size # dimension range dim_tys = [False] * dim_size # dimension type : integer dim_order = [True] * dim_size dim = Dimension(dim_size, dim_regs, dim_tys, order=dim_order) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000, sequential=False, seed=77) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 200 def test_racos_performance2(self): # continuous dim = 100 # dimension one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6) dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) # setup objective parameter = Parameter(budget=100 * dim, sequential=False, seed=1) solution = ExpOpt.min(objective, parameter)[0] assert solution.get_value() < 0.2 dim = 500 dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) # setup objective parameter = Parameter(budget=10000, sequential=False, seed=1) sol = Opt.min(objective, parameter) sol.print_solution() assert solution.get_value() < 2 # discrete # setcover problem = SetCover() dim_size = 20 one_dim = (ValueType.DISCRETE, [0, 1], False) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, sequential=False, seed=777) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions one_dim = (ValueType.DISCRETE, [-10, 10], True) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000, sequential=False, seed=77) sol = Opt.min(objective, parameter) sol.print_solution() assert sol.get_value() < 200 def test_sracos_performance(self): # continuous dim = 100 # dimension objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=100 * dim, seed=77) solution = Opt.min(objective, parameter) assert solution.get_value() < 0.2 dim = 500 objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=10000, seed=777) solution = Opt.min(objective, parameter) assert solution.get_value() < 1.5 # discrete # setcover problem = SetCover() dim = problem.dim # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, seed=777) sol = Opt.min(objective, parameter) assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions dim_regs = [[-10, 10]] * dim_size # dimension range dim_tys = [False] * dim_size # dimension type : integer dim_order = [True] * dim_size dim = Dimension(dim_size, dim_regs, dim_tys, order=dim_order) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000) sol = Opt.min(objective, parameter) assert sol.get_value() < 200 def test_sracos_performance2(self): # continuous dim = 100 # dimension one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6) dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) parameter = Parameter(budget=100 * dim, seed=77) solution = Opt.min(objective, parameter) assert solution.get_value() < 0.2 dim = 500 one_dim = (ValueType.CONTINUOUS, [-1, 1], 1e-6) dim_list = [(one_dim)] * dim objective = Objective(ackley, Dimension2(dim_list)) # setup objective parameter = Parameter(budget=10000, seed=777) solution = Opt.min(objective, parameter) assert solution.get_value() < 1.5 # discrete # setcover problem = SetCover() dim_size = 20 one_dim = (ValueType.DISCRETE, [0, 1], False) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, seed=777) sol = Opt.min(objective, parameter) assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions one_dim = (ValueType.DISCRETE, [-10, 10], True) dim_list = [(one_dim)] * dim_size dim = Dimension2(dim_list) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000) sol = Opt.min(objective, parameter) assert sol.get_value() < 200 def test_asracos_performance(self): # continuous dim = 100 # dimension objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim)) # setup objective parameter = Parameter(budget=100 * dim, parallel=True, server_num=2, seed=2) # parameter = Parameter(budget=100 * dim, init_samples=[Solution([0] * 100)]) # init with init_samples solution_list = ExpOpt.min(objective, parameter, repeat=1) for solution in solution_list: value = solution.get_value() assert value < 0.2 # discrete # setcover problem = SetCover() dim = problem.dim # the dim is prepared by the class objective = Objective(problem.fx, dim) # form up the objective function budget = 100 * dim.get_size() # number of calls to the objective function parameter = Parameter(budget=budget, parallel=True, server_num=2, seed=777) sol = ExpOpt.min(objective, parameter, repeat=1)[0] assert sol.get_value() < 2 # sphere dim_size = 100 # dimensions dim_regs = [[-10, 10]] * dim_size # dimension range dim_tys = [False] * dim_size # dimension type : integer dim_order = [True] * dim_size dim = Dimension(dim_size, dim_regs, dim_tys, order=dim_order) # form up the dimension object objective = Objective(sphere_discrete_order, dim) # form up the objective function parameter = Parameter(budget=10000, parallel=True, server_num=2, uncertain_bits=1, seed=1) sol = ExpOpt.min(objective, parameter)[0] assert sol.get_value() < 10
Testing/test_2D_frames.py
geosharma/PyNite
199
12791433
<filename>Testing/test_2D_frames.py # -*- coding: utf-8 -*- """ MIT License Copyright (c) 2020 <NAME>, SE; tamalone1 """ import unittest from PyNite import FEModel3D import math import sys from io import StringIO class Test_2D_Frame(unittest.TestCase): ''' Tests of analyzing 2D frames. ''' def setUp(self): # Suppress printed output temporarily sys.stdout = StringIO() def tearDown(self): # Reset the print function to normal sys.stdout = sys.__stdout__ def test_XY_gravity_load(self): # A First Course in the Finite Element Method, 4th Edition # <NAME> # Problem 5.30 # Units for this model are kips and inches frame = FEModel3D() # Define the nodes frame.add_node('N1', 0, 0, 0) frame.add_node('N2', 0, 30*12, 0) frame.add_node('N3', 15*12, 40*12, 0) frame.add_node('N4', 35*12, 40*12, 0) frame.add_node('N5', 50*12, 30*12, 0) frame.add_node('N6', 50*12, 0, 0) # Define the supports frame.def_support('N1', True, True, True, True, True, True) frame.def_support('N6', True, True, True, True, True, True) # Create members (all members will have the same properties in this example) J = 250 Iy = 250 Iz = 200 E = 30000 G = 250 A = 12 frame.add_member('M1', 'N1', 'N2', E, G, Iy, Iz, J, A) frame.add_member('M2', 'N2', 'N3', E, G, Iy, Iz, J, A) frame.add_member('M3', 'N3', 'N4', E, G, Iy, Iz, J, A) frame.add_member('M4', 'N4', 'N5', E, G, Iy, Iz, J, A) frame.add_member('M5', 'N5', 'N6', E, G, Iy, Iz, J, A) # Add nodal loads frame.add_node_load('N3', 'FY', -30) frame.add_node_load('N4', 'FY', -30) # Analyze the model frame.analyze() # subTest context manager prints which portion fails, if any correct_values = [('N1', {'RxnFX': 11.6877, 'RxnFY': 30, 'RxnMZ': -1810.0745}), ('N6', {'RxnFX': -11.6877, 'RxnFY': 30, 'RxnMZ': 1810.0745})] for name, values in correct_values: with self.subTest(node=name): node = frame.Nodes[name] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(node.RxnFX['Combo 1']/values['RxnFX'], 1.0, 2) self.assertAlmostEqual(node.RxnFY['Combo 1']/values['RxnFY'], 1.0, 2) self.assertAlmostEqual(node.RxnMZ['Combo 1']/values['RxnMZ'], 1.0, 2) def test_XY_member_ptload(self): frame = FEModel3D() # Add nodes frame.add_node('N1', 0, 0, 0) # ft frame.add_node('N2', 0, 7.667, 0) # ft frame.add_node('N3', 7.75, 7.667, 0) # ft frame.add_node('N4', 7.75, 0, 0) # ft # Add supports frame.def_support('N1', True, True, True, True, True, False) frame.def_support('N4', True, True, True, True, True, False) # Define material and section properties for a W8x24 E = 29000*12**2 # ksf G = 1111200*12**2 # ksf Iy = 18.3/12**4 # ft^4 Iz = 82.7/12**4 # ft^4 J = 0.346/12**4 # ft^4 A = 5.26/12**2 # in^2 # Define members frame.add_member('M1', 'N1', 'N2', E, G, Iy, Iz, J, A) frame.add_member('M2', 'N2', 'N3', E, G, Iy, Iz, J, A) frame.add_member('M3', 'N4', 'N3', E, G, Iy, Iz, J, A) # Add loads to the frame frame.add_member_pt_load('M2', 'Fy', -5, 7.75/2) # 5 kips @ midspan frame.add_member_dist_load('M2', 'Fy', -0.024, -0.024) # W8x24 self-weight # Analyze the frame frame.analyze() calculated_RZ = frame.Nodes['N1'].RZ['Combo 1'] # Update the expected value to an appropriate precision expected_RZ = 0.00022794540510395617 self.assertAlmostEqual(calculated_RZ/expected_RZ, 1.0, 2) def test_YZ_gravity_load(self): # A First Course in the Finite Element Method, 4th Edition # Daryl <NAME> # Problem 5.30 # Units for this model are kips and inches frame = FEModel3D() # Define the nodes frame.add_node('N1', 0, 0, 0) frame.add_node('N2', 0, 30*12, 0) frame.add_node('N3', 0, 40*12, 15*12) frame.add_node('N4', 0, 40*12, 35*12) frame.add_node('N5', 0, 30*12, 50*12) frame.add_node('N6', 0, 0, 50*12) # Define the supports frame.def_support('N1', True, True, True, True, True, True) frame.def_support('N6', True, True, True, True, True, True) # Create members (all members will have the same properties in this example) J = 250 Iy = 250 Iz = 200 E = 30000 G = 250 A = 12 frame.add_member('M1', 'N1', 'N2', E, G, Iz, Iy, J, A) frame.add_member('M2', 'N2', 'N3', E, G, Iy, Iz, J, A) frame.add_member('M3', 'N3', 'N4', E, G, Iy, Iz, J, A) frame.add_member('M4', 'N4', 'N5', E, G, Iy, Iz, J, A) frame.add_member('M5', 'N5', 'N6', E, G, Iz, Iy, J, A) # Add nodal loads frame.add_node_load('N3', 'FY', -30) frame.add_node_load('N4', 'FY', -30) # Analyze the model frame.analyze() # subTest context manager prints which portion fails, if any # Check reactions at N1 and N6 correct_reactions = [('N1', {'RxnFZ': 11.6877, 'RxnFY': 30, 'RxnMX': 1810.0745}), ('N6', {'RxnFZ': -11.6877, 'RxnFY': 30, 'RxnMX': -1810.0745})] for name, values in correct_reactions: with self.subTest(node=name): node = frame.Nodes[name] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(node.RxnFZ['Combo 1']/values['RxnFZ'], 1.0, 2) self.assertAlmostEqual(node.RxnFY['Combo 1']/values['RxnFY'], 1.0, 2) self.assertAlmostEqual(node.RxnMX['Combo 1']/values['RxnMX'], 1.0, 2) # Check displacements at N3 and N4 correct_displacements = [('N3', {'DY': -6.666757, 'RX': 0.032}), ('N4', {'DY': -6.666757, 'RX': -0.032})] for name, values in correct_displacements: with self.subTest(node=name): node = frame.Nodes[name] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(node.DY['Combo 1']/values['DY'], 1.0, 2) self.assertAlmostEqual(node.RX['Combo 1']/values['RX'], 1.0, 2) def test_XZ_ptload(self): # A simply supported beam with a point load. # Units used in this example are inches, and kips SimpleBeam = FEModel3D() # Add nodes (14 ft = 168 in apart) SimpleBeam.add_node("N1", 0, 0, 0) SimpleBeam.add_node("N2", 0, 0, 168) # Add a beam with the following properties: A = 20 E = 29000 G = 11400 Iy = 100 Iz = 150 J = 250 SimpleBeam.add_member("M1", "N1", "N2", E, G, Iy, Iz, J, A) # Provide simple supports SimpleBeam.def_support("N1", True, True, True, False, False, True) SimpleBeam.def_support("N2", True, True, True, False, False, False) # Add a point load of 5 kips at the midspan of the beam SimpleBeam.add_member_pt_load("M1", "Fy", 5, 7 * 12) # Analyze the beam SimpleBeam.analyze(False) # Print reactions at each end of the beam correct_reactions = [('N1', -2.5), ('N2', -2.5)] for node_name, rxn in correct_reactions: with self.subTest(node=node_name): calculated_reaction = SimpleBeam.Nodes[node_name].RxnFY['Combo 1'] # Two decimal place accuracy requires +/-0.5% accuracy # one decimal place requires +/-5% self.assertAlmostEqual(calculated_reaction/rxn, 1.0, 2) def test_Kassimali_3_35(self): """ Tests against Kassimali example 3.35. This example was selected because it allows us to check the following features: 1. Member loads aligned in global directions. 2. A member internal hinge. 3. A point load at the end of a member. The example will be run in the XZ plane to change things up a bit. """ frame = FEModel3D() frame.add_node('A', 0, 0, 0) frame.add_node('B', 0, 0, 24) frame.add_node('C', 12, 0, 0) frame.add_node('D', 12, 0, 24) frame.add_node('E', 24, 0, 12) E = 29000*12**2 G = 11200*12**2 Iy = 17.3/12**4 Iz = 204/12**4 J = 0.3/12**4 A = 7.65/12**2 frame.add_member('AC', 'A', 'C', E, G, Iy, Iz, J, A) frame.add_member('BD', 'B', 'D', E, G, Iy, Iz, J, A) frame.add_member('CE', 'C', 'E', E, G, Iy, Iz, J, A) frame.add_member('ED', 'E', 'D', E, G, Iy, Iz, J, A) frame.def_support('A', support_DX=True, support_DY=True, support_DZ=True) frame.def_support('B', support_DX=True, support_DY=True, support_DZ=True) frame.def_support('E', support_DY=True) frame.def_releases('CE', Rzj=True) frame.add_member_pt_load('AC', 'FZ', 20, 12) frame.add_member_dist_load('CE', 'FX', -1.5, -1.5) frame.add_member_dist_load('ED', 'FX', -1.5, -1.5) # from PyNite.Visualization import render_model # render_model(frame, text_height=0.5, case='Case 1') frame.analyze() AZ = -8.63 AX = 15.46 BZ = -11.37 BX = 35.45 # The reactions were compared manually to Kassimali's solution and the shears were within # 10% and 7% respectively. That seems like it's a little big to be a rounding error alone. # Likely the finite element method is a little more accurate than the simplified method # Kassimali uses. self.assertLess(abs(frame.Nodes['A'].RxnFZ['Combo 1']/AZ - 1), 0.1) self.assertLess(abs(frame.Nodes['A'].RxnFX['Combo 1']/AX - 1), 0.05) self.assertLess(abs(frame.Nodes['B'].RxnFZ['Combo 1']/BZ - 1), 0.7) self.assertLess(abs(frame.Nodes['B'].RxnFX['Combo 1']/BX - 1), 0.05)
test/test_fakeservertest.py
yimuniao/collectd-cloudwatch
220
12791454
import unittest import requests from helpers.fake_http_server import FakeServer class FakeServerTest(unittest.TestCase): SERVER = None @classmethod def setUpClass(cls): cls.SERVER = FakeServer() cls.SERVER.start_server() cls.SERVER.serve_forever() def setUp(self): self.server = FakeServerTest.SERVER def test_is_server_alive(self): self.assertTrue(self.server.is_alive()) self.assertTrue(self.server.is_ready_to_process()) def test_server_process_forever(self): self.assertTrue(self.server.is_ready_to_process()) send_and_check_request(self.server.get_url(), "request1") self.assertTrue(self.server.is_ready_to_process()) send_and_check_request(self.server.get_url(), "request2") self.assertTrue(self.server.is_ready_to_process()) def test_server_overlapped_listeners(self): self.assertTrue(self.server.is_ready_to_process()) self.assertRaises(FakeServer.ServerStateException, self.server.serve_once) self.assertRaises(FakeServer.ServerStateException, self.server.serve_forever) def test_server_start_overlapped_instances(self): self.assertRaises(FakeServer.ServerStateException, self.server.start_server) def test_timeout_triggers_only_once_per_call(self): timeout = 0.3 self.server.set_timeout_delay(timeout) with self.assertRaises(requests.exceptions.ReadTimeout): requests.get(self.server.get_url(), timeout=timeout) requests.get(self.server.get_url(), timeout=timeout) def test_server_stop_multiple_times(self): self.server.stop_server() self.assertRaises(FakeServer.ServerStateException, self.server.stop_server) self.server.start_server() self.server.serve_forever() def test_set_custom_response(self): expected_response = "Expected Response" expected_response_code = 404 self.server.set_expected_response(expected_response, expected_response_code) response = requests.get(self.server.get_url() + "request") self.assertEquals(expected_response, response.text) self.assertEquals(expected_response_code, response.status_code) @classmethod def tearDownClass(cls): try: cls.SERVER.stop_server() except: pass def send_and_check_request(url, request): url = url + request response = requests.get(url) received_request = open(FakeServer.REQUEST_FILE).read() assert request in received_request[1:] # skip first character which always is '/' assert response.status_code == FakeServer.DEFAULT_RESPONSE_CODE assert response.text == FakeServer.DEFAULT_RESPONSE
src/ralph/supports/migrations/0006_auto_20160615_0805.py
DoNnMyTh/ralph
1,668
12791475
<filename>src/ralph/supports/migrations/0006_auto_20160615_0805.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import ralph.lib.mixins.fields class Migration(migrations.Migration): dependencies = [ ('supports', '0005_auto_20160105_1222'), ] operations = [ migrations.AlterModelOptions( name='baseobjectssupport', options={}, ), migrations.AlterModelTable( name='baseobjectssupport', table=None, ), migrations.SeparateDatabaseAndState( state_operations=[ migrations.AddField( model_name='baseobjectssupport', name='baseobject', field=ralph.lib.mixins.fields.BaseObjectForeignKey(default=0, verbose_name='Asset', to='assets.BaseObject', related_name='supports'), preserve_default=False, ), migrations.AddField( model_name='baseobjectssupport', name='support', field=models.ForeignKey(default=0, to='supports.Support'), preserve_default=False, ), ], database_operations=[] ), ]
tools/gen_doc_files.py
joshddunn/crsfml
248
12791476
<filename>tools/gen_doc_files.py import os import textwrap import mkdocs_gen_files root = mkdocs_gen_files.config["plugins"]["mkdocstrings"].get_handler("crystal").collector.root nav = mkdocs_gen_files.open(f"api/index.md", "w") for module in ["System", "Window", "Graphics", "Audio", "Network", ""]: if module: print(f"* [{module} module]({module.lower()}.md)", file=nav) with mkdocs_gen_files.open(f"api/{module.lower()}.md", "w") as f: f.write(textwrap.dedent(f""" # ::: SF selection: file_filters: - '/{module.lower()}/' """)) for typ in root.lookup("SF").walk_types(): [cur_module] = {os.path.dirname(os.path.relpath(loc.filename, "src")) for loc in typ.locations} if module.lower() == cur_module: name = typ.name full_name = typ.abs_id path = full_name.replace("::", "/") indent = bool(module) + full_name.count("::") - 1 print(" " * indent + f"* [{name}]({path}.md)", file=nav) filename = f"api/{path}.md" with mkdocs_gen_files.open(filename, "w") as f: f.write(textwrap.dedent(f"""\ # ::: {full_name} """)) if typ.locations: mkdocs_gen_files.set_edit_path(filename, typ.locations[0].url)
startup_scripts/240_virtualization_interfaces.py
systempal/netbox-docker
691
12791478
import sys from startup_script_utils import load_yaml, pop_custom_fields, set_custom_fields_values from virtualization.models import VirtualMachine, VMInterface interfaces = load_yaml("/opt/netbox/initializers/virtualization_interfaces.yml") if interfaces is None: sys.exit() required_assocs = {"virtual_machine": (VirtualMachine, "name")} for params in interfaces: custom_field_data = pop_custom_fields(params) for assoc, details in required_assocs.items(): model, field = details query = {field: params.pop(assoc)} params[assoc] = model.objects.get(**query) interface, created = VMInterface.objects.get_or_create(**params) if created: set_custom_fields_values(interface, custom_field_data) print("🧷 Created interface", interface.name, interface.virtual_machine.name)
tests/util_test.py
nickgaya/bravado-core
122
12791481
<reponame>nickgaya/bravado-core # -*- coding: utf-8 -*- from inspect import getcallargs import mock import pytest from bravado_core.util import AliasKeyDict from bravado_core.util import cached_property from bravado_core.util import determine_object_type from bravado_core.util import lazy_class_attribute from bravado_core.util import memoize_by_id from bravado_core.util import ObjectType from bravado_core.util import RecursiveCallException from bravado_core.util import sanitize_name from bravado_core.util import strip_xscope def test_cached_property(): class Class(object): def __init__(self): self.calls = 0 @cached_property def property_1(self): self.calls += 1 return self.calls assert isinstance(Class.property_1, cached_property) class_instance = Class() assert class_instance.calls == 0 assert class_instance.property_1 == 1 assert class_instance.calls == 1 # If property is called twice no calls are received from the method assert class_instance.property_1 == 1 assert class_instance.calls == 1 # If property is deleted then the method is called again del class_instance.property_1 assert class_instance.property_1 == 2 assert class_instance.calls == 2 def test_class_cached_property(): class Class(object): calls = 0 @lazy_class_attribute def prop(cls): cls.calls += 1 return cls.calls class_instance_1 = Class() assert class_instance_1.calls == 0 assert class_instance_1.prop == 1 assert class_instance_1.calls == 1 class_instance_2 = Class() assert class_instance_2.calls == 1 assert class_instance_2.prop == 1 assert class_instance_2.calls == 1 def test_memoize_by_id_decorator_recursive_call(): calls = [] @memoize_by_id def function(a): calls.append(a) return function(a) with pytest.raises(RecursiveCallException): function(mock.sentinel.A) assert calls == [mock.sentinel.A] def test_memoize_by_id_decorator(): calls = [] def function(a, b=None): calls.append([a, b]) return id(a) + id(b) decorated_function = memoize_by_id(function) assert decorated_function(1) == id(1) + id(None) assert decorated_function.cache == { (('a', id(1)), ('b', id(None))): id(1) + id(None), } assert calls == [[1, None]] assert decorated_function(2, 3) == id(2) + id(3) assert decorated_function.cache == { (('a', id(1)), ('b', id(None))): id(1) + id(None), (('a', id(2)), ('b', id(3))): id(2) + id(3), } assert calls == [[1, None], [2, 3]] # Calling the decorated method with known arguments will not call the inner method assert decorated_function(1) == id(1) + id(None) assert decorated_function.cache == { (('a', id(1)), ('b', id(None))): id(1) + id(None), (('a', id(2)), ('b', id(3))): id(2) + id(3), } assert calls == [[1, None], [2, 3]] decorated_function.cache.clear() assert decorated_function(1) == id(1) + id(None) assert decorated_function.cache == { (('a', id(1)), ('b', id(None))): id(1) + id(None), } assert calls == [[1, None], [2, 3], [1, None]] @mock.patch('bravado_core.util.inspect.getcallargs', wraps=getcallargs) def test_memoize_by_id_do_not_use_inspect_if_only_kwargs_are_provided(mock_getcallargs): calls = [] def function(a, b=None): calls.append([a, b]) return id(a) + id(b) decorated_function = memoize_by_id(function) assert decorated_function(1) == id(1) + id(None) mock_getcallargs.assert_called_once_with(function, 1) assert calls == [[1, None]] assert decorated_function.cache == { (('a', id(1)), ('b', id(None))): id(1) + id(None), } mock_getcallargs.reset_mock() assert decorated_function(a=1) == id(1) + id(None) assert not mock_getcallargs.called assert decorated_function.cache == { (('a', id(1)), ('b', id(None))): id(1) + id(None), } @pytest.mark.parametrize( ('input', 'expected'), [ ('pet.getBy Id', 'pet_getBy_Id'), # simple case ('_getPetById_', 'getPetById'), # leading/trailing underscore ('get__Pet_By__Id', 'get_Pet_By_Id'), # double underscores ('^&#@!$foo%+++:;"<>?/', 'foo'), # bunch of illegal chars ('__foo__', 'foo'), # make sure we strip multiple underscores ('100percent', 'percent'), # make sure we remove all digits ('100.0', '_100_0'), # a name consisting mostly of digits should keep them ], ) def test_sanitize_name(input, expected): assert sanitize_name(input) == expected def test_AliasKeyDict(): alias_dict = AliasKeyDict({'a': 'b', 'c': 'd'}) alias_dict.add_alias('alias_a', 'a') assert len(alias_dict) == 2 assert set(alias_dict.items()) == set([('a', 'b'), ('c', 'd')]) assert 'alias_a' in alias_dict assert alias_dict['alias_a'] is alias_dict['a'] assert alias_dict.get('alias_a') is alias_dict.get('a') assert alias_dict.get('f', 'not there') == 'not there' assert alias_dict.pop('alias_a') == 'b' assert len(alias_dict) == 1 assert 'a' not in alias_dict assert 'alias_a' not in alias_dict def test_AliasKeyDict_copy(): alias_dict = AliasKeyDict([('foo', 'bar')]) alias_dict.add_alias('baz', 'foo') dict_copy = alias_dict.copy() assert set(dict_copy.items()) == set(alias_dict.items()) assert dict_copy.alias_to_key == alias_dict.alias_to_key def test_AliasKeyDict_del(): alias_dict = AliasKeyDict([('foo', 'bar')]) alias_dict.add_alias('baz', 'foo') del alias_dict['baz'] assert len(alias_dict) == 0 assert 'baz' not in alias_dict assert 'foo' not in alias_dict @pytest.mark.parametrize( 'default_type_to_object, object_dict, expected_object_type', ( [True, 'anything that is not a dictionary', ObjectType.UNKNOWN], [True, {'in': 'body', 'name': 'body', 'required': True, 'schema': {'type': 'object'}}, ObjectType.PARAMETER], [True, {'get': {'responses': {'200': {'description': 'response description'}}}}, ObjectType.PATH_ITEM], [True, {'description': 'response description', 'schema': {'type': 'object'}}, ObjectType.RESPONSE], [True, {'description': 'response description', 'parameters': {'param': {'type': 'object'}}}, ObjectType.SCHEMA], [False, {'description': 'response description', 'parameters': {'param': {'type': 'object'}}}, ObjectType.UNKNOWN], # noqa ), ) def test_determine_object_type(default_type_to_object, object_dict, expected_object_type): assert determine_object_type(object_dict, default_type_to_object) == expected_object_type def test_empty(): assert {} == strip_xscope({}) def test_contained_in_dict(): fragment = { 'MON': { '$ref': '#/definitions/DayHours', 'x-scope': [ 'file:///happyhour/api_docs/swagger.json', 'file:///happyhour/api_docs/swagger.json#/definitions/WeekHours', ], }, } expected = { 'MON': { '$ref': '#/definitions/DayHours', }, } assert expected == strip_xscope(fragment) assert 'x-scope' in fragment['MON'] def test_contained_in_list(): fragment = [ { '$ref': '#/definitions/DayHours', 'x-scope': [ 'file:///happyhour/api_docs/swagger.json', 'file:///happyhour/api_docs/swagger.json#/definitions/WeekHours', ], }, ] expected = [ { '$ref': '#/definitions/DayHours', }, ] assert expected == strip_xscope(fragment) assert 'x-scope' in fragment[0] def test_no_op(): fragment = { 'MON': { '$ref': '#/definitions/DayHours', }, } expected = { 'MON': { '$ref': '#/definitions/DayHours', }, } assert expected == strip_xscope(fragment) def test_petstore_spec(petstore_spec): assert petstore_spec.client_spec_dict == strip_xscope(petstore_spec.spec_dict)
pytest_use_postgresql.py
admariner/django-sql-dashboard
293
12791491
import os import pytest from dj_database_url import parse from django.conf import settings from testing.postgresql import Postgresql postgres = os.environ.get("POSTGRESQL_PATH") initdb = os.environ.get("INITDB_PATH") _POSTGRESQL = Postgresql(postgres=postgres, initdb=initdb) @pytest.hookimpl(tryfirst=True) def pytest_load_initial_conftests(early_config, parser, args): os.environ["DJANGO_SETTINGS_MODULE"] = early_config.getini("DJANGO_SETTINGS_MODULE") settings.DATABASES["default"] = parse(_POSTGRESQL.url()) settings.DATABASES["dashboard"] = parse(_POSTGRESQL.url()) def pytest_unconfigure(config): _POSTGRESQL.stop()
tableauserverclient/models/target.py
zuarbase/server-client-python
470
12791513
<filename>tableauserverclient/models/target.py """Target class meant to abstract mappings to other objects""" class Target: def __init__(self, id_, target_type): self.id = id_ self.type = target_type def __repr__(self): return "<Target#{id}, {type}>".format(**self.__dict__)
tools/builder.py
dp92987/nginx-amplify-agent
308
12791532
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys from builders import deb, rpm, amazon from builders.util import shell_call __author__ = "<NAME>" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __license__ = "" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" if __name__ == '__main__': package = 'nginx-amplify-agent' if len(sys.argv) == 1 else sys.argv[1] if os.path.isfile('/etc/debian_version'): deb.build(package=package) elif os.path.isfile('/etc/redhat-release'): rpm.build(package=package) else: os_release = shell_call('cat /etc/os-release', important=False) if 'amazon linux' in os_release.lower(): amazon.build(package=package) else: print("sorry, it will be done later\n")
ros/dataset_to_rosbag.py
sn0wflake/gta
4,498
12791549
#!/usr/bin/env python from itertools import izip import numpy as np import h5py from progress.bar import Bar import sys import rospy import rosbag from sensor_msgs.msg import Imu, Image def main(): if len(sys.argv) < 2: print("Usage: {} dataset_name".format(sys.argv[0])) exit(1) file_name = sys.argv[1] log_file = h5py.File('../dataset/log/{}.h5'.format(file_name)) camera_file = h5py.File('../dataset/camera/{}.h5'.format(file_name)) zipped_log = izip( log_file['times'], log_file['fiber_accel'], log_file['fiber_gyro']) with rosbag.Bag('{}.bag'.format(file_name), 'w') as bag: bar = Bar('Camera', max=len(camera_file['X'])) for i, img_data in enumerate(camera_file['X']): m_img = Image() m_img.header.stamp = rospy.Time.from_sec(0.01 * i) m_img.height = img_data.shape[1] m_img.width = img_data.shape[2] m_img.step = 3 * img_data.shape[2] m_img.encoding = 'rgb8' m_img.data = np.transpose(img_data, (1, 2, 0)).flatten().tolist() bag.write('/camera/image_raw', m_img, m_img.header.stamp) bar.next() bar.finish() bar = Bar('IMU', max=len(log_file['times'])) for time, v_accel, v_gyro in zipped_log: m_imu = Imu() m_imu.header.stamp = rospy.Time.from_sec(time) [setattr(m_imu.linear_acceleration, c, v_accel[i]) for i, c in enumerate('xyz')] [setattr(m_imu.angular_velocity, c, v_gyro[i]) for i, c in enumerate('xyz')] bag.write('/fiber_imu', m_imu, m_imu.header.stamp) bar.next() bar.finish() if __name__ == "__main__": main()
tests/test_py33_exceptions.py
haypo/trollius
175
12791553
# -*- coding: utf-8 -*- """ Tests for py33_exceptions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from trollius import py33_exceptions class TestWrapErrors(unittest.TestCase): def test_ebadf_wrapped_to_OSError(self): # https://github.com/jamadden/trollius/issues/17 import socket import os import errno s = socket.socket() os.close(s.fileno()) with self.assertRaises(socket.error) as exc: s.send(b'abc') self.assertEqual(exc.exception.errno, errno.EBADF) with self.assertRaises(OSError) as exc: py33_exceptions.wrap_error(s.send, b'abc') self.assertEqual(exc.exception.errno, errno.EBADF) if __name__ == '__main__': unittest.main()
tests/RunTests/PythonTests/test2011_011.py
maurizioabba/rose
488
12791565
<gh_stars>100-1000 # tests for dictionary displays a = {} b = {1: 2} c = {3: 4, 5: 6} d = {7: "seven", 8: "eight", 9: "nine", 10: "one" + "zero"} print a print b print c print d
speech_mixer.py
ZhihaoDU/speech_feature_extractor
111
12791645
<reponame>ZhihaoDU/speech_feature_extractor # coding = utf-8 import numpy as np from read_sphere_wav import read_sphere_wav from scipy.io import wavfile from feature_extractor import * from matplotlib import pyplot as plt def SNR(x1, x2): from numpy.linalg import norm return 20 * np.log10(norm(x1) / norm(x2)) def mix_by_db(x1, x2, snr, handle_method): x1 = x1.astype(np.int32) x2 = x2.astype(np.int32) l1 = x1.shape[0] l2 = x2.shape[0] if l1 != l2: if handle_method == 'cut': ll = min(l1, l2) x1 = x1[:ll] x2 = x2[:ll] elif handle_method == 'append': ll = max(l1, l2) if l1 < ll: x1 = np.append(x1, x1[:ll-l1]) if l2 < ll: x2 = np.append(x2, x2[:ll-l1]) from numpy.linalg import norm x2 = x2 / norm(x2) * norm(x1) / (10.0 ** (0.05 * snr)) mix = x1 + x2 return mix if __name__ == '__main__': speech_data, wav_header = read_sphere_wav(u"/media/neo/000C6F0F00042510/Doctor/dataset/TIMIT/train/dr1/fcjf0/sa1.wav") fs, noise_data = wavfile.read('/media/neo/000C6F0F00042510/Doctor/dataset/DEMAND/PCAFETER/ch01.wav') plt.figure() spect = log_power_spectrum_extractor(speech_data, 320, 160, 'hanning', True) plt.subplot(311) plt.imshow(spect) noisy_speech = mix_by_db(speech_data, noise_data, 5, 'cut') spect = log_power_spectrum_extractor(noisy_speech, 320, 160, 'hanning', True) plt.subplot(312) plt.imshow(spect) noisy_speech = mix_by_db(speech_data, noise_data, 0, 'cut') spect = log_power_spectrum_extractor(noisy_speech, 320, 160, 'hanning', True) plt.subplot(313) plt.imshow(spect) plt.figure() noisy_speech = mix_by_db(speech_data, noise_data, -5, 'cut') spect = log_power_spectrum_extractor(noisy_speech, 320, 160, 'hanning', True) plt.subplot(211) plt.imshow(spect) noisy_speech = mix_by_db(speech_data, noise_data, -10, 'cut') spect = log_power_spectrum_extractor(noisy_speech, 320, 160, 'hanning', True) plt.subplot(212) plt.imshow(spect) plt.show() #sd.play(noisy_speech.astype(np.int32), fs, blocking=True)
miniboss/__init__.py
afroisalreadyinu/miniboss
633
12791659
from .main import cli from .services import Service from .context import Context from .types import set_group_name as group_name
homeassistant/components/hardkernel/const.py
liangleslie/core
30,023
12791666
<filename>homeassistant/components/hardkernel/const.py """Constants for the Hardkernel integration.""" DOMAIN = "hardkernel"
tests/UnitTests/Morphology/Disambiguator/disambiguator_prefix_rule1_test.py
ZenaNugraha/PySastrawi
282
12791668
import unittest from Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1 import DisambiguatorPrefixRule1a, DisambiguatorPrefixRule1b class Test_DisambiguatorPrefixRule1Test(unittest.TestCase): def setUp(self): self.subject1a = DisambiguatorPrefixRule1a() self.subject1b = DisambiguatorPrefixRule1b() return super(Test_DisambiguatorPrefixRule1Test, self).setUp() def test_disambiguate1a(self): self.assertEquals('ia-ia', self.subject1a.disambiguate('beria-ia')) self.assertIsNone(self.subject1a.disambiguate('berlari')) def test_disambiguate1b(self): self.assertEquals('rakit', self.subject1b.disambiguate('berakit')) self.assertIsNone(self.subject1b.disambiguate('bertabur')) if __name__ == '__main__': unittest.main()
app/admin/__init__.py
sunshineinwater/flask-Purchase_and_sale
122
12791690
<filename>app/admin/__init__.py #-*- coding:utf-8 -*- # author:Agam # datetime:2018-11-05 from flask import Blueprint admin=Blueprint('admin',__name__) import app.admin.views
janitor/functions/groupby_agg.py
thatlittleboy/pyjanitor
225
12791693
from typing import Callable, List, Union import pandas_flavor as pf import pandas as pd from janitor.utils import deprecated_alias @pf.register_dataframe_method @deprecated_alias(new_column="new_column_name", agg_column="agg_column_name") def groupby_agg( df: pd.DataFrame, by: Union[List, Callable, str], new_column_name: str, agg_column_name: str, agg: Union[Callable, str], dropna: bool = True, ) -> pd.DataFrame: """Shortcut for assigning a groupby-transform to a new column. This method does not mutate the original DataFrame. Intended to be the method-chaining equivalent of: ```python df = df.assign(...=df.groupby(...)[...].transform(...)) ``` Example: Basic usage. >>> import pandas as pd >>> import janitor >>> df = pd.DataFrame({ ... "item": ["shoe", "shoe", "bag", "shoe", "bag"], ... "quantity": [100, 120, 75, 200, 25], ... }) >>> df.groupby_agg( ... by="item", ... agg="mean", ... agg_column_name="quantity", ... new_column_name="avg_quantity", ... ) item quantity avg_quantity 0 shoe 100 140.0 1 shoe 120 140.0 2 bag 75 50.0 3 shoe 200 140.0 4 bag 25 50.0 Example: Set `dropna=False` to compute the aggregation, treating the null values in the `by` column as an isolated "group". >>> import pandas as pd >>> import janitor >>> df = pd.DataFrame({ ... "x": ["a", "a", None, "b"], "y": [9, 9, 9, 9], ... }) >>> df.groupby_agg( ... by="x", ... agg="count", ... agg_column_name="y", ... new_column_name="y_count", ... dropna=False, ... ) x y y_count 0 a 9 2 1 a 9 2 2 None 9 1 3 b 9 1 :param df: A pandas DataFrame. :param by: Column(s) to groupby on, will be passed into `DataFrame.groupby`. :param new_column_name: Name of the aggregation output column. :param agg_column_name: Name of the column to aggregate over. :param agg: How to aggregate. :param dropna: Whether or not to include null values, if present in the `by` column(s). Default is True (null values in `by` are assigned NaN in the new column). :returns: A pandas DataFrame. """ # noqa: E501 return df.assign( **{ new_column_name: df.groupby(by, dropna=dropna)[ agg_column_name ].transform(agg), } )
PyFlow/Packages/PyFlowBase/Nodes/forLoopBegin.py
luzpaz/PyFlow
1,463
12791725
## Copyright 2015-2019 <NAME>, <NAME> ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## http://www.apache.org/licenses/LICENSE-2.0 ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. from PyFlow.Core import NodeBase from PyFlow.Core.PathsRegistry import PathsRegistry from PyFlow.Core.NodeBase import NodePinsSuggestionsHelper from PyFlow.Core.Common import * from PyFlow.Packages.PyFlowBase.Nodes import FLOW_CONTROL_ORANGE import threading class forLoopBegin(NodeBase): def __init__(self, name): super(forLoopBegin, self).__init__(name) self._working = False self.currentIndex = 0 self.prevIndex = -1 self.inExec = self.createInputPin('inExec', 'ExecPin', None, self.compute) self.firstIndex = self.createInputPin('Start', 'IntPin') self.lastIndex = self.createInputPin('Stop', 'IntPin') self.loopEndNode = self.createInputPin('Paired block', 'StringPin') self.loopEndNode.setInputWidgetVariant("ObjectPathWIdget") self.loopBody = self.createOutputPin('LoopBody', 'ExecPin') self.index = self.createOutputPin('Index', 'IntPin') self.headerColor = FLOW_CONTROL_ORANGE self.setExperimental() @staticmethod def pinTypeHints(): helper = NodePinsSuggestionsHelper() helper.addInputDataType('ExecPin') helper.addInputDataType('IntPin') helper.addOutputDataType('ExecPin') helper.addOutputDataType('IntPin') helper.addInputStruct(StructureType.Single) helper.addOutputStruct(StructureType.Single) return helper @staticmethod def category(): return 'FlowControl' @staticmethod def keywords(): return ['iter'] @staticmethod def description(): return 'For loop begin block' def reset(self): self.currentIndex = 0 self.prevIndex = -1 #self._working = False def isDone(self): indexTo = self.lastIndex.getData() if self.currentIndex >= indexTo: self.reset() #loopEndNode = PathsRegistry().getEntity(self.loopEndNode.getData()) #loopEndNode.completed.call() self._working = False return True return False def onNext(self, *args, **kwargs): while not self.isDone(): if self.currentIndex > self.prevIndex: self.index.setData(self.currentIndex) self.prevIndex = self.currentIndex self.loopBody.call() def compute(self, *args, **kwargs): self.reset() endNodePath = self.loopEndNode.getData() loopEndNode = PathsRegistry().getEntity(endNodePath) if loopEndNode is not None: if loopEndNode.loopBeginNode.getData() != self.path(): self.setError("Invalid pair") return if self.graph() is not loopEndNode.graph(): err = "block ends in different graphs" self.setError(err) loopEndNode.setError(err) return else: self.setError("{} not found".format(endNodePath)) if not self._working: self.thread = threading.Thread(target=self.onNext,args=(self, args, kwargs)) self.thread.start() self._working = True #self.onNext(*args, **kwargs)
src/vimpdb/proxy.py
dtrckd/vimpdb
110
12791748
import os import socket import subprocess from vimpdb import config from vimpdb import errors def get_eggs_paths(): import vim_bridge vimpdb_path = config.get_package_path(errors.ReturnCodeError()) vim_bridge_path = config.get_package_path(vim_bridge.bridged) return ( os.path.dirname(vimpdb_path), os.path.dirname(vim_bridge_path), ) class Communicator(object): def __init__(self, script, server_name): self.script = script self.server_name = server_name def prepare_subprocess(self, *args): parts = self.script.split() parts.extend(args) return parts def _remote_expr(self, expr): parts = self.prepare_subprocess('--servername', self.server_name, "--remote-expr", expr) p = subprocess.Popen(parts, stdout=subprocess.PIPE) return_code = p.wait() if return_code: raise errors.RemoteUnavailable() child_stdout = p.stdout output = child_stdout.read() return output.strip() def _send(self, command): # add ':<BS>' to hide last keys sent in VIM command-line command = ''.join((command, ':<BS>')) parts = self.prepare_subprocess('--servername', self.server_name, "--remote-send", command) return_code = subprocess.call(parts) if return_code: raise errors.RemoteUnavailable() class ProxyToVim(object): """ use subprocess to launch Vim instance that use clientserver mode to communicate with Vim instance used for debugging. """ def __init__(self, communicator): self.communicator = communicator def _send(self, command): self.communicator._send(command) config.logger.debug("sent: %s" % command) def _remote_expr(self, expr): return self.communicator._remote_expr(expr) def setupRemote(self): if not self.isRemoteSetup(): # source vimpdb.vim proxy_package_path = config.get_package_path(self) filename = os.path.join(proxy_package_path, "vimpdb.vim") command = "<C-\><C-N>:source %s<CR>" % filename self._send(command) for egg_path in get_eggs_paths(): self._send(':call PDB_setup_egg(%s)<CR>' % repr(egg_path)) self._send(':call PDB_init_controller()') def isRemoteSetup(self): status = self._expr("exists('*PDB_setup_egg')") return status == '1' def showFeedback(self, feedback): if not feedback: return feedback_list = feedback.splitlines() self.setupRemote() self._send(':call PDB_show_feedback(%s)<CR>' % repr(feedback_list)) def displayLocals(self, feedback): if not feedback: return feedback_list = feedback.splitlines() self.setupRemote() self._send(':call PDB_reset_watch()<CR>') for line in feedback_list: self._send(':call PDB_append_watch([%s])<CR>' % repr(line)) def showFileAtLine(self, filename, lineno): if os.path.exists(filename): self._showFileAtLine(filename, lineno) def _showFileAtLine(self, filename, lineno): # Windows compatibility: # Windows command-line does not play well with backslash in filename. # So turn backslash to slash; Vim knows how to translate them back. filename = filename.replace('\\', '/') self.setupRemote() self._send(':call PDB_show_file_at_line("%s", "%d")<CR>' % (filename, lineno)) def _expr(self, expr): config.logger.debug("expr: %s" % expr) result = self._remote_expr(expr) config.logger.debug("result: %s" % result) return result # code leftover from hacking # def getText(self, prompt): # self.setupRemote() # command = self._expr('PDB_get_command("%s")' % prompt) # return command class ProxyFromVim(object): BUFLEN = 512 socket_factory = socket.socket def __init__(self, port): self.socket_inactive = True self.port = port def bindSocket(self): if self.socket_inactive: self.socket = self.socket_factory( socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(('', self.port)) self.socket_inactive = False def closeSocket(self): if not self.socket_inactive: self.socket.close() self.socket_inactive = True def waitFor(self, pdb): self.bindSocket() (message, address) = self.socket.recvfrom(self.BUFLEN) config.logger.debug("command: %s" % message) return message # code leftover from hacking # def eat_stdin(self): # sys.stdout.write('-- Type Ctrl-D to continue --\n') # sys.stdout.flush() # sys.stdin.readlines()
recognition/predict.py
w-garcia/insightface
108
12791780
<reponame>w-garcia/insightface from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import sys import tensorflow as tf import yaml from recognition.backbones.resnet_v1 import ResNet_v1_50 from recognition.models.models import MyModel tf.enable_eager_execution() def get_embeddings(model, images): prelogits, _, _ = model(images, training=False) embeddings = tf.nn.l2_normalize(prelogits, axis=-1) return embeddings def parse_args(argv): parser = argparse.ArgumentParser(description='Train face network') parser.add_argument('--config_path', type=str, help='path to config path', default='configs/config.yaml') args = parser.parse_args(argv) return args def main(): args = parse_args(sys.argv[1:]) # logger.info(args) from recognition.data.generate_data import GenerateData with open(args.config_path) as cfg: config = yaml.load(cfg, Loader=yaml.FullLoader) gd = GenerateData(config) train_data, _ = gd.get_train_data() model = MyModel(ResNet_v1_50, embedding_size=config['embedding_size']) ckpt_dir = os.path.expanduser(config['ckpt_dir']) ckpt = tf.train.Checkpoint(backbone=model.backbone) ckpt.restore(tf.train.latest_checkpoint(ckpt_dir)).expect_partial() print("Restored from {}".format(tf.train.latest_checkpoint(ckpt_dir))) # for layer in tf.train.list_variables(tf.train.latest_checkpoint(ckpt_dir)): # print(layer) for img, _ in train_data.take(1): embs = get_embeddings(model, img) for i in range(embs.shape[0]): for j in range(embs.shape[0]): val = 0 for k in range(512): val += embs[i][k] * embs[j][k] print(i, j, val) if __name__ == '__main__': # logger.info("hello, insightface/recognition") main()
Lib/test/test_compiler/testcorpus/04_assign.py
diogommartins/cinder
1,886
12791781
a = 1 b = "foo" c = (d, e) di = {f: 1, g: 2}
setup.py
Mumbleskates/jsane
131
12791792
<filename>setup.py #!/usr/bin/env python import sys from jsane import __version__ assert sys.version >= '2.7', ("Requires Python v2.7 or above, get with the " "times, grandpa.") from setuptools import setup classifiers = [ "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Topic :: Software Development :: Libraries :: Python Modules", ] install_requires = [] setup_requires = ['pytest-runner'] tests_require = ['pep8', 'pytest'] + install_requires setup( name="jsane", version=__version__, author="<NAME>", author_email="<EMAIL>", url="https://github.com/skorokithakis/jsane/", description="A saner way to parse JSON.", long_description=open("README.rst").read(), license="MIT", classifiers=classifiers, packages=["jsane"], setup_requires=setup_requires, tests_require=tests_require, install_requires=install_requires, test_suite='jsane.tests', )
packages/testcases/input/nameprep/extract-tests.py
taarushv/ethers.js
4,494
12791847
import json import re output = "" for line in file("test-vectors-00.txt"): line = line.strip() if line == "" or line[0:1] == "#": continue if line.startswith("Josefsson") or line.startswith("Internet-Draft"): continue output += line.replace("\n", "") Tests = [ ] def get_byte(v): if len(v) == 1: return ord(v) return int(v[2:4], 16) def get_string(value): value = value.strip() if value[0] == '"' and value[-1] == '"': return map(get_byte, re.findall("(\\\\x[0-9a-fA-F]{2}|.)", value[1:-1].replace('""', ''))) if value.lower() == "null": return None raise Exception("unhandled") Tests = [ ] matches = re.findall("({(?:.|\n)*?})", output) for m in matches: comps = m[1:-1].split(",") test = dict( comment = comps[0].strip()[1:-1], input = get_string(comps[1]), output = get_string(comps[2]) ) if len(comps) >= 4: test["profile"] = get_string(comps[3]) if len(comps) >= 5: test["flags"] = comps[4].strip() if len(comps) >= 6: test["rc"] = comps[5].strip() Tests.append(test) print json.dumps(Tests)
lightreid/models/architectures/build.py
nataliamiccini/light-reid
296
12791903
<gh_stars>100-1000 from lightreid.utils import Registry ARCHs_REGISTRY = Registry('arch')
gh_build.py
sonvt1710/manga-py
337
12791914
#!/usr/bin/python3 # -*- coding: utf-8 -*- from helpers.gh_pages import main main()
tests/unit/test_lists.py
scherroman/mugen
119
12791918
import pytest from mugen import lists from mugen.lists import MugenList class Dummy(object): foo = 1 @pytest.fixture def mugen_list() -> MugenList: return MugenList([Dummy(), Dummy(), Dummy(), Dummy(), Dummy(), Dummy()]) @pytest.mark.parametrize("l, expected_foo", [ (mugen_list(), [1, 1, 1, 1, 1, 1]) ]) def test_lget(l, expected_foo): assert l.lget('foo') == expected_foo @pytest.mark.parametrize("l, expected_l", [ ([1, [2, 3], [[4, 5], [6, 7]]], [1, 2, 3, 4, 5, 6, 7]) ]) def test_flatten(l, expected_l): assert lists.flatten(l) == expected_l def test_mugen_list__operations_yield_mugen_list(): assert type(MugenList() + MugenList()) == MugenList assert type(MugenList()[1:2]) == MugenList
crabageprediction/venv/Lib/site-packages/fontTools/ttLib/tables/_c_i_d_g.py
13rianlucero/CrabAgePrediction
2,705
12791927
# coding: utf-8 from .otBase import BaseTTXConverter class table__c_i_d_g(BaseTTXConverter): """The AAT ``cidg`` table has almost the same structure as ``gidc``, just mapping CIDs to GlyphIDs instead of the reverse direction. It is useful for fonts that may be used by a PDF renderer in lieu of a font reference with a known glyph collection but no subsetted glyphs. For instance, a PDF can say “please use a font conforming to Adobe-Japan-1”; the ``cidg`` mapping is necessary if the font is, say, a TrueType font. ``gidc`` is lossy for this purpose and is obsoleted by ``cidg``. For example, the first font in ``/System/Library/Fonts/PingFang.ttc`` (which Apple ships pre-installed on MacOS 10.12.6) has a ``cidg`` table. """ pass
services/workers/settings/base.py
paulowe/aws-boilerplate
711
12791949
import json import boto3 from environs import Env env = Env() AWS_ENDPOINT_URL = env('AWS_ENDPOINT_URL', None) SMTP_HOST = env('SMTP_HOST', None) EMAIL_ENABLED = env.bool('EMAIL_ENABLED', default=True) secrets_manager_client = boto3.client('secretsmanager', endpoint_url=AWS_ENDPOINT_URL) def fetch_db_secret(db_secret_arn): if db_secret_arn is None: return None response = secrets_manager_client.get_secret_value(SecretId=db_secret_arn) return json.loads(response['SecretString']) LAMBDA_TASK_ROOT = env('LAMBDA_TASK_ROOT', '') DB_CONNECTION = env('DB_CONNECTION', None) if DB_CONNECTION: DB_CONNECTION = json.loads(DB_CONNECTION) else: DB_CONNECTION = fetch_db_secret(env('DB_SECRET_ARN', None)) FROM_EMAIL = env('FROM_EMAIL', None)
WebMirror/management/rss_parser_funcs/feed_parse_extractKendalblackBlogspotCom.py
fake-name/ReadableWebProxy
193
12791996
def extractKendalblackBlogspotCom(item): ''' DISABLED Parser for 'kendalblack.blogspot.com' ''' return None
dephell/__main__.py
OliverHofkens/dephell
1,880
12792035
# app from .cli import entrypoint entrypoint()
docs/examples/use_cases/tensorflow/efficientdet/dataset/create_tfrecord_indexes.py
cyyever/DALI
3,967
12792087
<gh_stars>1000+ # Copyright 2021 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Generate TFRecord index files necessary when using DALI preprocessing. Example usage: python create_tfrecord_indexes.py --tfrecord2idx_script=~/DALI/tools/tfrecord2idx \ --tfrecord_file_pattern=tfrecord/pascal*.tfrecord """ from absl import app from absl import flags from absl import logging from glob import glob from subprocess import call import os.path flags.DEFINE_string("tfrecord_file_pattern", None, "Glob for tfrecord files.") flags.DEFINE_string( "tfrecord2idx_script", None, "Absolute path to tfrecord2idx script." ) FLAGS = flags.FLAGS def main(_): if FLAGS.tfrecord_file_pattern is None: raise RuntimeError("Must specify --tfrecord_file_pattern.") if FLAGS.tfrecord2idx_script is None: raise RuntimeError("Must specify --tfrecord2idx_script") tfrecord_files = glob(FLAGS.tfrecord_file_pattern) tfrecord_idxs = [filename + "_idx" for filename in tfrecord_files] if not os.path.isfile(FLAGS.tfrecord2idx_script): raise ValueError( "{FLAGS.tfrecord2idx_script} does not lead to valid tfrecord2idx script." ) for tfrecord, tfrecord_idx in zip(tfrecord_files, tfrecord_idxs): logging.info(f"Generating index file for {tfrecord}") call([FLAGS.tfrecord2idx_script, tfrecord, tfrecord_idx]) if __name__ == "__main__": app.run(main)
Hackerrank/World Cup 2016/World Cup/Problem F/gen.py
VastoLorde95/Competitive-Programming
170
12792121
from math import * from fractions import * from random import * n = 1000000000 q = 200000 print n, q for _ in xrange(q): t = randrange(1,4) l,r,c = randrange(1,n+1), randrange(1,n+1), 1000000000 if t < 3: print t,l,r,c else: print t,l,r #print 3, 1, 1000000000
core/views.py
HortenciaArliane/speakerfight
369
12792124
from django.contrib.auth.models import User from django.utils.translation import ugettext as _ from django.http import Http404, HttpResponseRedirect from django.contrib import messages from django.shortcuts import get_object_or_404 from django.utils import translation from vanilla import TemplateView, DetailView, UpdateView from deck.models import Event, Proposal from core.models import Profile from core.forms import ProfileForm, ProfilePictureForm, ProfileChangeLanguageForm from core.mixins import LoginRequiredMixin, FormValidRedirectMixing class IndexView(TemplateView): template_name = 'index.html' def get_context_data(self, **kwargs): context = super(IndexView, self).get_context_data(**kwargs) context.update( events=Event.objects.count(), proposals=Proposal.objects.count(), users=User.objects.count() ) return context class AboutView(TemplateView): template_name = 'about.html' class ProfileView(DetailView): template_name = 'account/profile.html' model = Profile lookup_field = 'user__username' def get_object(self, **kwargs): queryset = self.get_queryset() username = self.kwargs.get('user__username') if not username and self.request.user.is_authenticated(): return self.request.user.profile else: return get_object_or_404(queryset, user__username=username) def get_context_data(self, **kwargs): context = super(ProfileView, self).get_context_data(**kwargs) self.object = self.get_object() context.update( profile_form=ProfileForm(instance=self.object), language_form=ProfileChangeLanguageForm(instance=self.object), events=self.object.get_profile_events(), proposals=self.object.get_profile_proposals(), ) return context class ProfileUpdateView(LoginRequiredMixin, FormValidRedirectMixing, UpdateView): template_name = 'account/profile.html' model = Profile form_class = ProfileForm lookup_field = 'user__username' def get_object(self, **kwargs): queryset = self.get_queryset() username = self.kwargs.get('user__username') if not username and self.request.user.is_authenticated(): return self.request.user.profile elif (username == self.request.user.username or self.request.user.is_superuser): return get_object_or_404(queryset, user__username=username) else: raise Http404 def form_valid(self, form): self.object = form.save() return self.success_redirect(_(u'Profile updated.')) def get(self, *args, **kwargs): self.object = self.get_object() return HttpResponseRedirect( self.object.get_absolute_url() ) def form_invalid(self, form): for error in form.errors.itervalues(): messages.error(self.request, error.as_data()[0].message) return self.get() class ProfileUpdatePictureView(ProfileUpdateView): form_class = ProfilePictureForm def form_valid(self, form): self.object = form.save() return self.success_redirect(_(u'Photo changed.')) class ProfileChangeLanguageView(ProfileUpdateView): form_class = ProfileChangeLanguageForm def form_valid(self, form): self.object = form.save() translation.activate(self.object.language) self.request.session[ translation.LANGUAGE_SESSION_KEY ] = self.object.language return self.success_redirect(_(u'Language changed.'))
OpenAttack/data/test.py
e-tornike/OpenAttack
444
12792136
NAME = "test" DOWNLOAD = "/TAADToolbox/test.pkl"
tests/test_context_manager.py
timgates42/tasktiger
1,143
12792144
<reponame>timgates42/tasktiger """Child context manager tests.""" import redis from tasktiger import Worker from .tasks import exception_task, simple_task from .test_base import BaseTestCase from .config import TEST_DB, REDIS_HOST class ContextManagerTester(object): """ Dummy context manager class. Uses Redis to track number of enter/exit calls """ def __init__(self, name): self.name = name self.conn = redis.Redis( host=REDIS_HOST, db=TEST_DB, decode_responses=True ) self.conn.set('cm:{}:enter'.format(self.name), 0) self.conn.set('cm:{}:exit'.format(self.name), 0) self.conn.set('cm:{}:exit_with_error'.format(self.name), 0) def __enter__(self): self.conn.incr('cm:{}:enter'.format(self.name)) def __exit__(self, exc_type, exc_val, exc_tb): self.conn.incr('cm:{}:exit'.format(self.name)) if exc_type is not None: self.conn.incr('cm:{}:exit_with_error'.format(self.name)) self.conn.close() class TestChildContextManagers(BaseTestCase): """Child context manager tests.""" def _get_context_managers(self, number): return [ContextManagerTester('cm' + str(i)) for i in range(number)] def _test_context_managers(self, num, task, should_fail=False): cms = self._get_context_managers(num) self.tiger.config['CHILD_CONTEXT_MANAGERS'] = cms self.tiger.delay(task) Worker(self.tiger).run(once=True) for i in range(num): assert self.conn.get('cm:{}:enter'.format(cms[i].name)) == '1' assert self.conn.get('cm:{}:exit'.format(cms[i].name)) == '1' if should_fail: assert ( self.conn.get('cm:{}:exit_with_error'.format(cms[i].name)) == '1' ) else: assert ( self.conn.get('cm:{}:exit_with_error'.format(cms[i].name)) == '0' ) def test_fixture(self): cms = self._get_context_managers(1).pop() with cms: pass assert self.conn.get('cm:{}:enter'.format(cms.name)) == '1' assert self.conn.get('cm:{}:exit'.format(cms.name)) == '1' def test_single_context_manager(self): self._test_context_managers(1, simple_task) self._test_context_managers(1, exception_task, should_fail=True) def test_multiple_context_managers(self): self._test_context_managers(10, simple_task) self._test_context_managers(10, exception_task, should_fail=True)
docs/examples/save_geotiff.py
carderne/descarteslabs-python
167
12792145
""" ================================================== Save image to GeoTIFF ================================================== This example demonstrates how to save an image to your local machine in GeoTiff format. """ import descarteslabs as dl # Create an aoi feature to clip imagery to box = { "type": "Polygon", "coordinates": [ [ [-108.64292971398066, 33.58051349561343], [-108.27082685426221, 33.58051349561343], [-108.27082685426221, 33.83925599538719], [-108.64292971398066, 33.83925599538719], [-108.64292971398066, 33.58051349561343], ] ], } # Two predefined image IDs for mosaic and download. These can be obtained through a Metadata or Scenes API search images = [ "landsat:LC08:01:RT:TOAR:meta_LC08_L1TP_035037_20180602_20180602_01_RT_v1", "landsat:LC08:01:RT:TOAR:meta_LC08_L1TP_035036_20180602_20180602_01_RT_v1", ] # The Raster API call to download an image mosaic. Other parameters are available # The file is written in to the same directory as the script. raster_client = dl.Raster() raster_client.raster( inputs=images, bands=["red", "green", "blue", "alpha"], scales=[[0, 5500], [0, 5500], [0, 5500], None], data_type="Byte", cutline=box, save=True, outfile_basename="save_local", resolution=60, )
core/migrations/remove_provider_dns_server_ip_model.py
simpsonw/atmosphere
197
12792165
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-09-07 21:53 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', 'remove_atmosphereuser_selected_identity'), ] operations = [ migrations.AlterUniqueTogether( name='providerdnsserverip', unique_together=set([]), ), migrations.RemoveField( model_name='providerdnsserverip', name='provider', ), migrations.DeleteModel(name='ProviderDNSServerIP', ), ]
custom/inddex/food.py
dimagilg/commcare-hq
471
12792192
""" This file contains the logic to generate the master dataset for the INDDEX reports Overview -------- Beneficiaries are asked about their diet in a "recall" session. This results in a "foodrecall" case. Every food they mention results in the creation of a "food" case that's a child of this foodrecall. This dataset has a row for every food, with metadata about the recall session, calculated nutritional information, and auditing columns reporting on what data is or isn't available. Some of these foods are recipes, and their ingredients appear as separate rows in the report. Standard recipes have their ingredients enumerated in the "recipes" lookup table. This dataset has additional rows inserted for each ingredient. These rows are associated with the recipe case, but don't have a case of their own. Nonstandard recipes are defined by the user and beneficiary during a recall session. The ingredients of the recipe are entered as additional food cases and linked to the recipe by `recipe_case_id`. Beneficiaries may report eating a nonstandard recipe more than once, in which case subsequent references point to the recipe definition with already_reported_recipe_case_id and don't enumerate the ingredients again. We need to insert duplicates of the previously reported ingredients into the report for them. Components ---------- FoodData :: This is the interface to this dataset, it glues together all the component pieces and presents the result as a unified dataset. FoodRow :: Class responsible for row-wise calculations and indicator definitions. """ import operator import uuid from collections import defaultdict from functools import reduce from memoized import memoized from corehq.apps.es import users as user_es from corehq.apps.reports.filters.case_list import CaseListFilter as EMWF from corehq.apps.reports.standard.cases.utils import get_case_owners from custom.inddex.ucr_data import FoodCaseData from .const import ( AGE_RANGES, FOOD_ITEM, NON_STANDARD_RECIPE, STANDARD_RECIPE, ConvFactorGaps, FctGaps, ) from .fixtures import FixtureAccessor IN_UCR = 'in_ucr' IN_FOOD_FIXTURE = 'in_food_fixture' IS_RECALL_META = 'is_recall_meta' CALCULATED_LATER = 'calculated_later' class I: def __init__(self, slug, *tags): self.slug = slug tags = set(tags) self.in_ucr = IN_UCR in tags self.in_food_fixture = IN_FOOD_FIXTURE in tags self.is_recall_meta = IS_RECALL_META in tags self.is_calculated_later = CALCULATED_LATER in tags # Indicator descriptions can be found here: # https://docs.google.com/spreadsheets/d/1znPjfQSFEUFP_R_G8VYE-Bd5dg72k5sP-hZPuy-3RZo/edit INDICATORS = [ I('unique_respondent_id', IN_UCR, IS_RECALL_META), I('location_id', IN_UCR, IS_RECALL_META), I('respondent_id', IN_UCR, IS_RECALL_META), I('recall_case_id', IN_UCR, IS_RECALL_META), I('opened_by_username', IN_UCR, IS_RECALL_META), I('owner_name', IN_UCR, IS_RECALL_META), I('visit_date', IN_UCR, IS_RECALL_META), I('opened_on', IN_UCR, IS_RECALL_META), I('recall_status', IN_UCR, IS_RECALL_META), I('gender', IN_UCR, IS_RECALL_META), I('age_years_calculated', IN_UCR, IS_RECALL_META), I('age_months_calculated', IN_UCR, IS_RECALL_META), I('age_range', IS_RECALL_META), I('pregnant', IN_UCR, IS_RECALL_META), I('breastfeeding', IN_UCR, IS_RECALL_META), I('urban_rural', IN_UCR, IS_RECALL_META), I('supplements', IN_UCR, IS_RECALL_META), I('food_code', IN_UCR), I('food_name', IN_UCR, IN_FOOD_FIXTURE), I('recipe_name', IN_UCR, CALCULATED_LATER), I('caseid'), I('food_type', IN_UCR, IN_FOOD_FIXTURE), I('food_status', IN_UCR, IS_RECALL_META), I('reference_food_code'), I('base_term_food_code', IN_UCR), I('include_in_analysis'), I('fao_who_gift_food_group_code'), I('fao_who_gift_food_group_description'), I('user_food_group'), I('eating_time', IN_UCR, IS_RECALL_META), I('time_block', IN_UCR, IS_RECALL_META), I('already_reported_food', IN_UCR), I('already_reported_food_case_id', IN_UCR), I('already_reported_recipe', IN_UCR), I('already_reported_recipe_case_id', IN_UCR), I('already_reported_recipe_name', IN_UCR), I('is_ingredient', IN_UCR), I('ingredient_type', CALCULATED_LATER), I('recipe_case_id', IN_UCR), I('ingr_recipe_code'), I('ingr_fraction'), I('ingr_recipe_total_grams_consumed', CALCULATED_LATER), I('short_name', IN_UCR), I('food_base_term', IN_UCR, IN_FOOD_FIXTURE), I('tag_1', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_1', IN_UCR), I('tag_2', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_2', IN_UCR), I('tag_3', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_3', IN_UCR), I('tag_4', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_4', IN_UCR), I('tag_5', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_5', IN_UCR), I('tag_6', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_6', IN_UCR), I('tag_7', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_7', IN_UCR), I('tag_8', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_8', IN_UCR), I('tag_9', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_9', IN_UCR), I('tag_10', IN_UCR, IN_FOOD_FIXTURE), I('other_tag_10', IN_UCR), I('conv_method_code', IN_UCR), I('conv_method_desc', IN_UCR), I('conv_option_code', IN_UCR), I('conv_option_desc', IN_UCR), I('measurement_amount', IN_UCR), I('conv_units', IN_UCR), I('portions', IN_UCR), I('nsr_conv_method_code_post_cooking', IN_UCR), I('nsr_conv_method_desc_post_cooking', IN_UCR), I('nsr_conv_option_code_post_cooking', IN_UCR), I('nsr_conv_option_desc_post_cooking', IN_UCR), I('nsr_measurement_amount_post_cooking', IN_UCR), I('nsr_consumed_cooked_fraction', IN_UCR), I('recipe_num_ingredients', CALCULATED_LATER), I('conv_factor_food_code'), I('conv_factor_base_term_food_code'), I('conv_factor_used'), I('conv_factor'), I('fct_food_code_exists'), I('fct_base_term_food_code_exists'), I('fct_reference_food_code_exists'), I('fct_data_used'), I('fct_code'), I('total_grams', CALCULATED_LATER), I('conv_factor_gap_code'), I('conv_factor_gap_desc'), I('fct_gap_code', CALCULATED_LATER), I('fct_gap_desc', CALCULATED_LATER), ] _INDICATORS_BY_SLUG = {i.slug: i for i in INDICATORS} NSR_COLS_TO_COPY = [ 'nsr_conv_method_code_post_cooking', 'nsr_conv_method_desc_post_cooking', 'nsr_conv_option_code_post_cooking', 'nsr_conv_option_desc_post_cooking', 'nsr_measurement_amount_post_cooking', 'nsr_consumed_cooked_fraction', ] class FoodRow: def __init__(self, ucr_row, fixtures, ingredient=None): self.uuid = uuid.uuid4() self.ucr_row = ucr_row self.fixtures = fixtures self._is_std_recipe_ingredient = bool(ingredient) if self._is_std_recipe_ingredient: self.food_code = ingredient.ingr_code self._set_ingredient_fields(ingredient) else: self.caseid = ucr_row['doc_id'] self.food_code = ucr_row['food_code'] if not self.food_code and self.food_name in self.fixtures.foods_by_name: self.food_code = self.fixtures.foods_by_name[self.food_name].food_code if not self.base_term_food_code and self.food_base_term in self.fixtures.foods_by_name: self.base_term_food_code = self.fixtures.foods_by_name[self.food_base_term].food_code self._set_composition() self._set_conversion_factors() self.is_recipe = self.food_type in (STANDARD_RECIPE, NON_STANDARD_RECIPE) self.include_in_analysis = not self.is_recipe self.measurement_amount = _maybe_float(self.measurement_amount) self.portions = _maybe_float(self.portions) self.nsr_consumed_cooked_fraction = _maybe_float(self.nsr_consumed_cooked_fraction) self.enrichment_complete = False def _set_ingredient_fields(self, ingredient): if self._is_std_recipe_ingredient: self.is_ingredient = 'yes' self.ingr_recipe_code = ingredient.recipe_code self.ingr_fraction = ingredient.ingr_fraction def _set_composition(self): # Get the food composition corresponding to food_code, fall back to base_term_food_code fct = self.fixtures.food_compositions self.fct_food_code_exists = bool(self.food_code and self.food_code in fct) self.fct_base_term_food_code_exists = bool(self.base_term_food_code and self.base_term_food_code in fct) self.fct_code = None if self.fct_food_code_exists: self.fct_code = self.food_code self.fct_data_used = 'food_code' elif self.fct_base_term_food_code_exists: self.fct_code = self.base_term_food_code self.fct_data_used = 'base_term_food_code' if self.fct_code: self.composition = fct[self.fct_code] self.fao_who_gift_food_group_code = self.composition.fao_who_gift_food_group_code self.fao_who_gift_food_group_description = self.composition.fao_who_gift_food_group_description self.user_food_group = self.composition.user_defined_food_group self.reference_food_code = self.composition.reference_food_code_for_food_composition if self.fct_data_used == 'food_code' and self.reference_food_code: self.fct_data_used = 'reference_food_code' self.fct_reference_food_code_exists = bool(self.reference_food_code) def set_fct_gap(self, ingredients=None): if ingredients: for row in ingredients: row.set_fct_gap() self.fct_gap_code = FctGaps.NOT_AVAILABLE if self.food_type == FOOD_ITEM and self.fct_code: self.fct_gap_code = { 'food_code': FctGaps.AVAILABLE, 'base_term_food_code': FctGaps.BASE_TERM, 'reference_food_code': FctGaps.REFERENCE, }[self.fct_data_used] if self.is_recipe and ingredients: if all(i.fct_gap_code == FctGaps.AVAILABLE for i in ingredients): self.fct_gap_code = FctGaps.AVAILABLE else: self.fct_gap_code = FctGaps.INGREDIENT_GAPS self.fct_gap_desc = FctGaps.DESCRIPTIONS[self.fct_gap_code] def _set_conversion_factors(self): self.conv_factor_gap_code = ConvFactorGaps.NOT_AVAILABLE if (self.food_type == FOOD_ITEM and self._is_std_recipe_ingredient or self.food_type == NON_STANDARD_RECIPE): self.conv_factor_gap_code = ConvFactorGaps.NOT_APPLICABLE elif self.food_type in (FOOD_ITEM, STANDARD_RECIPE) and self.conv_method_code: self.conv_factor_food_code = self.fixtures.conversion_factors.get( (self.food_code, self.conv_method_code, self.conv_option_code)) self.conv_factor_base_term_food_code = self.fixtures.conversion_factors.get( (self.base_term_food_code, self.conv_method_code, self.conv_option_code)) if self.conv_factor_food_code: self.conv_factor_used = 'food_code' self.conv_factor = self.conv_factor_food_code self.conv_factor_gap_code = ConvFactorGaps.AVAILABLE elif self.conv_factor_base_term_food_code: self.conv_factor_used = 'base_term_food_code' self.conv_factor = self.conv_factor_base_term_food_code self.conv_factor_gap_code = ConvFactorGaps.BASE_TERM self.conv_factor_gap_desc = ConvFactorGaps.DESCRIPTIONS[self.conv_factor_gap_code] @property def age_range(self): if not self.age_months_calculated: return None for age_range in AGE_RANGES: if age_range.lower_bound <= getattr(self, age_range.column) < age_range.upper_bound: return age_range.name def get_nutrient_per_100g(self, nutrient_name): if self.fct_code: return self.composition.nutrients.get(nutrient_name) def get_nutrient_amt(self, nutrient_name): return _multiply(self.get_nutrient_per_100g(nutrient_name), self.total_grams, 0.01) def __getattr__(self, name): if name in _INDICATORS_BY_SLUG: indicator = _INDICATORS_BY_SLUG[name] if indicator.is_calculated_later: if not self.enrichment_complete: raise AttributeError(f"{name} hasn't yet been set. It will be " "calculated outside the scope of FoodRow.") return None if self._is_std_recipe_ingredient: # If it's an indicator that hasn't been explicitly set, check if it can # be pulled from the food fixture or from the parent food case's UCR if indicator.in_food_fixture: return getattr(self.fixtures.foods[self.food_code], indicator.slug) if indicator.is_recall_meta: return self.ucr_row[indicator.slug] return None else: # If it's an indicator in the UCR that hasn't been explicitly set, return that val return self.ucr_row[indicator.slug] if indicator.in_ucr else None raise AttributeError(f"FoodRow has no definition for {name}") class FoodData: """Generates the primary dataset for INDDEX reports. See file docstring for more.""" IN_MEMORY_FILTERS = ['gap_type', 'fao_who_gift_food_group_code', 'food_type'] FILTERABLE_COLUMNS = IN_MEMORY_FILTERS + FoodCaseData.FILTERABLE_COLUMNS def __init__(self, domain, *, datespan, filter_selections): for slug in filter_selections: if slug not in self.FILTERABLE_COLUMNS: raise AssertionError(f"{slug} is not a valid filter slug") self.fixtures = FixtureAccessor(domain) self._in_memory_filter_selections = { slug: filter_selections[slug] for slug in self.IN_MEMORY_FILTERS if slug in filter_selections } self._ucr = FoodCaseData({ 'domain': domain, 'startdate': str(datespan.startdate), 'enddate': str(datespan.enddate), **{k: v for k, v in filter_selections.items() if k in FoodCaseData.FILTERABLE_COLUMNS} }) @classmethod def from_request(cls, domain, request): return cls( domain, datespan=request.datespan, filter_selections={'owner_id': cls._get_owner_ids(domain, request), **{k: [v for v in request.GET.getlist(k) if v] for k in cls.FILTERABLE_COLUMNS if k != 'owner_id'}} ) @staticmethod def _get_owner_ids(domain, request): slugs = request.GET.getlist(EMWF.slug) if EMWF.no_filters_selected(slugs) or EMWF.show_all_data(slugs) or EMWF.show_project_data(slugs): return [] # don't filter by owner if EMWF.show_deactivated_data(slugs): return (user_es.UserES() .show_only_inactive() .domain(domain) .get_ids()) return get_case_owners(request, domain, slugs) def _matches_in_memory_filters(self, row): # If a gap type is specified, show only rows with gaps of that type gap_type = self._in_memory_filter_selections.get('gap_type') if gap_type == ConvFactorGaps.slug and row.conv_factor_gap_code == ConvFactorGaps.AVAILABLE: return False if gap_type == FctGaps.slug and row.fct_gap_code == FctGaps.AVAILABLE: return False food_types = self._in_memory_filter_selections.get('food_type') if food_types and row.food_type not in food_types: return False food_groups = self._in_memory_filter_selections.get('fao_who_gift_food_group_code') if food_groups and row.fao_who_gift_food_group_code not in food_groups: return False return True def _get_grouped_rows(self): """Return raw case rows grouped by recipe""" rows = defaultdict(lambda: { 'recipe': None, 'references': [], 'ingredients': [], }) for row in self._ucr.get_data(): if row['food_type'] in (STANDARD_RECIPE, NON_STANDARD_RECIPE): if row['already_reported_recipe_case_id']: rows[row['already_reported_recipe_case_id']]['references'].append(row) else: rows[row['doc_id']]['recipe'] = row elif row['recipe_case_id']: rows[row['recipe_case_id']]['ingredients'].append(row) else: # this isn't part of a recipe rows[row['doc_id']]['ingredients'].append(row) return rows.values() def _get_all_rows(self): for group in self._get_grouped_rows(): master_recipe = group['recipe'] references = group['references'] ingredients = group['ingredients'] if not master_recipe: yield from self._non_recipe_rows(references + ingredients) else: yield from self._recipe_rows(master_recipe, ingredients) for recipe in references: recipe = _insert_nsr_cols(recipe, master_recipe) yield from self._recipe_rows(recipe, ingredients) @property @memoized def rows(self): rows = [] for row in self._get_all_rows(): if self._matches_in_memory_filters(row): rows.append(row) return rows def _non_recipe_rows(self, rows): """These rows aren't part of a recipe, or it wasn't found""" for raw_row in rows: row = FoodRow(raw_row, self.fixtures) row.total_grams = _multiply(row.measurement_amount, row.conv_factor, row.portions) row.set_fct_gap() row.enrichment_complete = True yield row def _recipe_rows(self, raw_recipe, raw_ingredients): recipe = FoodRow(raw_recipe, self.fixtures) if recipe.food_type == STANDARD_RECIPE: # std recipe ingredients come from the DB, NOT ingredient cases ingredients = [FoodRow(raw_recipe, self.fixtures, ingredient_data) for ingredient_data in self.fixtures.recipes[recipe.food_code]] else: # NON_STANDARD_RECIPE ingredients = [FoodRow(raw, self.fixtures) for raw in raw_ingredients] total_grams = _calculate_total_grams(recipe, ingredients) recipe.set_fct_gap(ingredients) recipe.recipe_name = recipe.ucr_row['recipe_name'] for row in [recipe] + ingredients: row.total_grams = total_grams[row.uuid] row.recipe_num_ingredients = len(ingredients) row.recipe_case_id = recipe.caseid if row.is_ingredient == 'yes': row.recipe_name = recipe.recipe_name if recipe.food_type == STANDARD_RECIPE: row.ingredient_type = 'std_recipe_ingredient' row.ingr_recipe_total_grams_consumed = total_grams[recipe.uuid] else: row.ingredient_type = 'non_std_recipe_ingredient' for col in NSR_COLS_TO_COPY: # Copy these values from the recipe case setattr(row, col, getattr(recipe, col)) row.enrichment_complete = True yield row def _insert_nsr_cols(raw_recipe, master_recipe): # nsr references are missing some values, insert them from the master recipe nsr_cols = {col: master_recipe[col] for col in NSR_COLS_TO_COPY} amount = _maybe_float(raw_recipe['measurement_amount']) portions = _maybe_float(raw_recipe['portions']) amount_post_cooking = _maybe_float(master_recipe['nsr_measurement_amount_post_cooking']) if all(val is not None for val in [amount, portions, amount_post_cooking]): nsr_cols['nsr_consumed_cooked_fraction'] = amount * portions / amount_post_cooking else: nsr_cols['nsr_consumed_cooked_fraction'] = None return {**raw_recipe, **nsr_cols} def _calculate_total_grams(recipe, ingredients): if recipe.food_type == STANDARD_RECIPE: res = {} recipe_total = _multiply(recipe.measurement_amount, recipe.conv_factor, recipe.portions) res[recipe.uuid] = recipe_total for row in ingredients: res[row.uuid] = _multiply(recipe_total, row.ingr_fraction) return res else: # NON_STANDARD_RECIPE res = {} for row in ingredients: res[row.uuid] = _multiply(row.measurement_amount, row.conv_factor, row.portions, recipe.nsr_consumed_cooked_fraction) try: res[recipe.uuid] = sum(res.values()) if res else None except TypeError: res[recipe.uuid] = None return res def _multiply(*args): try: return reduce(operator.mul, args) except TypeError: return None def _maybe_float(val): return float(val) if val not in (None, '') else None
testbook/reference.py
loichuder/testbook
291
12792220
<reponame>loichuder/testbook from .exceptions import ( TestbookExecuteResultNotFoundError, TestbookAttributeError, TestbookSerializeError, TestbookRuntimeError ) from .utils import random_varname from .translators import PythonTranslator class TestbookObjectReference: def __init__(self, tb, name): self.tb = tb self.name: str = name @property def _type(self): return self.tb.value(f"type({self.name}).__name__") def __repr__(self): return repr(self.tb.value(f"repr({self.name})")) def __getattr__(self, name): if self.tb.value(f"hasattr({self.name}, '{name}')"): return TestbookObjectReference(self.tb, f"{self.name}.{name}") raise TestbookAttributeError(f"'{self._type}' object has no attribute {name}") def __eq__(self, rhs): return self.tb.value( "{lhs} == {rhs}".format(lhs=self.name, rhs=PythonTranslator.translate(rhs)) ) def __len__(self): return self.tb.value(f"len({self.name})") def __iter__(self): iterobjectname = f"___iter_object_{random_varname()}" self.tb.inject(f""" {iterobjectname} = iter({self.name}) """) return TestbookObjectReference(self.tb, iterobjectname) def __next__(self): try: return self.tb.value(f"next({self.name})") except TestbookRuntimeError as e: if e.eclass is StopIteration: raise StopIteration else: raise def __getitem__(self, key): try: return self.tb.value(f"{self.name}.__getitem__({PythonTranslator.translate(key)})") except TestbookRuntimeError as e: if e.eclass is TypeError: raise TypeError(e.evalue) elif e.eclass is IndexError: raise IndexError(e.evalue) else: raise def __setitem__(self, key, value): try: return self.tb.inject("{name}[{key}] = {value}".format( name=self.name, key=PythonTranslator.translate(key), value=PythonTranslator.translate(value) ), pop=True) except TestbookRuntimeError as e: if e.eclass is TypeError: raise TypeError(e.evalue) elif e.eclass is IndexError: raise IndexError(e.evalue) else: raise def __contains__(self, item): return self.tb.value(f"{self.name}.__contains__({PythonTranslator.translate(item)})") def __call__(self, *args, **kwargs): code = self.tb._construct_call_code(self.name, args, kwargs) try: return self.tb.value(code) except TestbookExecuteResultNotFoundError: # No return value from function call pass except TestbookSerializeError as e: return TestbookObjectReference(self.tb, e.save_varname) def resolve(self): return self.tb.value(self.name)
k8s_snapshots/logconf.py
gmarkey/k8s-snapshots
326
12792239
<filename>k8s_snapshots/logconf.py<gh_stars>100-1000 import logging import logging.config from collections import OrderedDict from typing import Optional, List, Any, Dict import structlog import sys from k8s_snapshots import serialize class ProcessStructuredErrors: def __init__(self): pass def __call__(self, logger, method_name, event_dict): exc_info = event_dict.pop('exc_info', None) if exc_info is None: return event_dict exc_type, exc, exc_tb = structlog.processors._figure_out_exc_info( exc_info) __structlog__ = getattr(exc, '__structlog__', None) if not callable(__structlog__): event_dict['exc_info'] = exc_info return event_dict structured_error = __structlog__() event_dict['structured_error'] = structured_error return event_dict def add_message(logger, method_name, event_dict): """ Creates a ``message`` value based on the ``hint`` and ``key_hint`` keys. ``key_hint`` : ``Optional[str]`` a '.'-separated path of dictionary keys. ``hint`` : ``Optional[str]`` will be formatted using ``.format(**event_dict)``. """ def from_hint(ed): hint = event_dict.pop('hint', None) if hint is None: return try: return hint.format(**event_dict) except Exception as exc: return f'! error formatting message: {exc!r}' def path_value(dict_: Dict[str, Any], key_path: str) -> Optional[Any]: value = dict_ for key in key_path.split('.'): if value is None: return __structlog__ = getattr(value, '__structlog__', None) if __structlog__ is not None: value = __structlog__() value = value.get(key) return value def from_key_hint(ed) -> Optional[str]: key_hint = ed.pop('key_hint', None) if key_hint is None: return value = path_value(ed, key_hint) return format_kv(key_hint, value) def from_key_hints(ed) -> List[str]: key_hints = ed.pop('key_hints', None) if key_hints is None: return [] return [ format_kv(key_hint, path_value(ed, key_hint)) for key_hint in key_hints ] def format_kv(key: str, value: Any) -> str: return f'{key}={serialize.process(value)}' hints = [ from_hint(event_dict), from_key_hint(event_dict) ] hints += from_key_hints(event_dict) if all(hint is None for hint in hints): if event_dict.get('message') is None: event_dict['message'] = event_dict.get('event') return event_dict prefix = event_dict['event'] hint = ', '.join(hint for hint in hints if hint is not None) message = event_dict.get('message') if message is not None: message = f'{prefix}: {message}, {hint}' else: message = f'{prefix}: {hint}' event_dict['message'] = message return event_dict def configure_from_config(config): configure_logging( level_name=config['log_level'], for_humans=not config['json_log'], json_indent=config['structlog_json_indent'] or None, ) def configure_logging( level_name: str='INFO', for_humans: bool=False, json_indent: Optional[int]=None, ): configure_structlog( for_humans=for_humans, json_indent=json_indent, level_name=level_name, ) def configure_structlog( for_humans: bool=False, json_indent: Optional[int]=None, level_name: str='INFO' ): key_order = ['message', 'event', 'level'] timestamper = structlog.processors.TimeStamper(fmt='ISO') processors = [ event_enum_to_str, ProcessStructuredErrors(), structlog.stdlib.add_logger_name, structlog.stdlib.add_log_level, rename_level_to_severity, timestamper, structlog.processors.StackInfoRenderer(), structlog.processors.format_exc_info, add_func_name, add_message, order_keys(key_order), structlog.stdlib.ProcessorFormatter.wrap_for_formatter, ] if for_humans: renderer = structlog.dev.ConsoleRenderer() # <=== else: # Make it so that 0 ⇒ None indent = json_indent or None renderer = structlog.processors.JSONRenderer( indent=indent, serializer=serialize.dumps ) foreign_pre_chain = [ # Add the log level and a timestamp to the event_dict if the log entry # is not from structlog. structlog.processors.StackInfoRenderer(), structlog.processors.format_exc_info, structlog.stdlib.add_log_level, structlog.stdlib.add_logger_name, foreign_event_to_message, rename_level_to_severity, timestamper, ] if level_name == 'DEBUG': root_logger_level = 'DEBUG' else: root_logger_level = 'ERROR' logging_config = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'structlog': { '()': structlog.stdlib.ProcessorFormatter, 'processor': renderer, 'foreign_pre_chain': foreign_pre_chain, }, }, 'handlers': { 'default': { 'level': level_name, 'class': 'logging.StreamHandler', 'stream': sys.stdout, 'formatter': 'structlog', }, }, 'loggers': { '': { 'handlers': ['default'], 'level': root_logger_level, 'propagate': True, }, 'k8s_snapshots': { 'level': 'DEBUG', } } } logging.config.dictConfig(logging_config) structlog.configure( processors=processors, context_class=OrderedDict, logger_factory=structlog.stdlib.LoggerFactory(), wrapper_class=structlog.stdlib.BoundLogger, cache_logger_on_first_use=True, ) def foreign_event_to_message(logger, method_name, event_dict): event = event_dict.get('event') if event is not None and 'message' not in event_dict: event_dict['message'] = event event_dict['event'] = 'foreign' return event_dict def rename_level_to_severity(logger, method_name, event_dict): level = event_dict.pop('level', None) event_dict['severity'] = level.upper() return event_dict def add_func_name(logger, method_rame, event_dict): record = event_dict.get('_record') if record is None: return event_dict event_dict['function'] = record.funcName return event_dict def order_keys(order): """ Order keys for JSON readability when not using json_log=True """ def processor(logger, method_name, event_dict): if not isinstance(event_dict, OrderedDict): return event_dict for key in reversed(order): if key in event_dict: event_dict.move_to_end(key, last=False) return event_dict return processor def event_enum_to_str(logger, method_name, event_dict): from k8s_snapshots import events event = event_dict.get('event') if event is None: return event_dict if isinstance(event, events.EventEnum): event_dict['event'] = event.value return event_dict
setup.py
samir-joshi/tmtoolkit
167
12792250
<filename>setup.py<gh_stars>100-1000 """ tmtoolkit setuptools based setup module """ import os from codecs import open from setuptools import setup, find_packages __title__ = 'tmtoolkit' __version__ = '0.10.0' __author__ = '<NAME>' __license__ = 'Apache License 2.0' GITHUB_URL = 'https://github.com/WZBSocialScienceCenter/tmtoolkit' DEPS_BASE = ['numpy>=1.19.0,<2', 'scipy>=1.5.0,<1.6', 'pandas>=1.1.0,<1.2', 'xlrd>=1.2.0', 'globre>=0.1.5,<0.2', 'matplotlib>=3.3.0,<3.4', 'spacy>=2.3.0,<2.4'] DEPS_EXTRA = { 'datatable': ['datatable>=0.10.0,<0.11'], 'nltk': ['nltk>=3.5.0,<3.6'], 'excel_export': ['openpyxl>=3.0.0'], 'wordclouds': ['wordcloud>=1.7.0,<1.8', 'Pillow>=7.2.0,<7.3'], 'lda': ['ldafork>=1.2.0,<1.3'], 'sklearn': ['scikit-learn>=0.23,<0.24'], 'gensim': ['gensim>=3.8.0,<3.9'], 'topic_modeling_eval_extra': ['gmpy2>=2.0.0,<3'], 'test': ['pytest>=6.0.0,<7', 'hypothesis>=5.23.0<5.24', 'decorator>=4.4.0,<4.5'], 'doc': ['Sphinx>=3.1.0', 'sphinx-rtd-theme>=0.5.0', 'nbsphinx>=0.7.0'], 'dev': ['coverage>=5.2', 'coverage-badge>=1.0.0', 'pytest-cov>=2.10.0', 'twine>=3.2.0', 'ipython>=7.16.0', 'jupyter>=1.0.0', 'notebook>=6.0.0', 'tox>=3.18.0'], } DEPS_EXTRA['recommended'] = DEPS_EXTRA['excel_export'] + DEPS_EXTRA['wordclouds'] DEPS_EXTRA['all'] = [] for k, deps in DEPS_EXTRA.items(): if k not in {'recommended', 'all'}: DEPS_EXTRA['all'].extend(deps) here = os.path.abspath(os.path.dirname(__file__)) # Get the long description from the README file with open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name=__title__, version=__version__, description='Text Mining and Topic Modeling Toolkit', long_description=long_description, long_description_content_type='text/x-rst', url=GITHUB_URL, project_urls={ 'Bug Reports': GITHUB_URL + '/issues', 'Source': GITHUB_URL, }, author=__author__, author_email='<EMAIL>', license=__license__, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Utilities', ], keywords='textmining textanalysis text mining analysis preprocessing topicmodeling topic modeling evaluation', packages=find_packages(exclude=['tests', 'examples']), include_package_data=True, python_requires='>=3.6', install_requires=DEPS_BASE, extras_require=DEPS_EXTRA )
src/genie/libs/parser/junos/tests/ShowServicesAccountingErrors/cli/equal/golden_output_1_expected.py
balmasea/genieparser
204
12792251
expected_output = { "services-accounting-information": { "v9-error-information": [ { "interface-name": "ms-9/0/0", "service-set-dropped": "0", "active-timeout-failures": "0", "export-packet-failures": "0", "flow-creation-failures": "0", "memory-overload": "No", } ] } }
open/core/betterself/views/activity_log_views.py
lawrendran/open
105
12792291
from open.core.betterself.models.activity_log import ActivityLog from open.core.betterself.serializers.activity_log_serializers import ( ActivityLogReadSerializer, ActivityLogCreateUpdateSerializer, ) from open.core.betterself.views.mixins import ( BaseGetUpdateDeleteView, BaseCreateListView, ) class ActivityLogCreateListView(BaseCreateListView): model_class = ActivityLog read_serializer_class = ActivityLogReadSerializer create_serializer_class = ActivityLogCreateUpdateSerializer class ActivityLogGetUpdateView(BaseGetUpdateDeleteView): model_class = ActivityLog read_serializer_class = ActivityLogReadSerializer update_serializer_class = ActivityLogCreateUpdateSerializer
src/scripts/apply_json_metadata.py
charlottestanton/covid-19-open-data
430
12792361
<filename>src/scripts/apply_json_metadata.py # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from google.cloud import storage import sys def apply_json_metadata(bucket_name, prefix_name): """ Applies Content-Type and gzip Content-Encoding to json files in a bucket prefix In order to allow for decompressive transcoding and serving of gzipped assets to clients who can decompress themselves, both the content type and content encoding meta data need to be set on JSON objects. Most methods of transferring objects into a bucket do not correctly set this meta data, so we have this utility to correct for this after the fact. See also: https://cloud.google.com/storage/docs/transcoding """ storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) for blob in bucket.list_blobs(prefix=prefix_name): if(blob.name.endswith("json")): print(blob.name) if(blob.content_type != "application/json" or blob.content_encoding != "gzip" or blob.content_disposition != "inline"): blob.content_type = "application/json" blob.content_encoding = "gzip" blob.content_disposition = "inline" blob.patch() if __name__ == "__main__": if(len(sys.argv) != 3): print("Usage: apply_json_meta [bucket_name] [prefix_name]") else: apply_json_metadata(sys.argv[1],sys.argv[2])
attributes/continuous_integration/__init__.py
Lufedi/reaper
106
12792425
<reponame>Lufedi/reaper class CiService(object): @staticmethod def is_enabled(path): raise NotImplementedError()
nemo/collections/nlp/models/glue_benchmark/metrics_for_glue.py
vinayphadnis/NeMo
4,145
12792435
# Copyright 2018 The Google AI Language Team Authors and # The HuggingFace Inc. team. # Copyright (c) 2020, <NAME>. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef __all__ = ['compute_metrics'] def accuracy(preds: List[int], labels: List[int]): return {"acc": (preds == labels).mean()} def acc_and_f1(preds: List[int], labels: List[int]): accuracy = (preds == labels).mean() f1 = f1_score(y_true=labels, y_pred=preds) return {"acc": accuracy, "f1": f1} def mcc(preds: List[int], labels: List[int]): return {"mcc": matthews_corrcoef(labels, preds)} def pearson_and_spearman(preds: List[int], labels: List[int]): pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return {"pearson": pearson_corr, "spearmanr": spearman_corr, "pear+spear av": (pearson_corr + spearman_corr) / 2} def compute_metrics(task_name: str, preds: List[int], labels: List[int]) -> Dict[str, float]: """ Computes metrics for GLUE tasks Args: task_name: GLUE task name preds: model predictions labels: golden labels Returns: metrics """ if len(preds) != len(labels): raise ValueError("Predictions and labels must have the same length") metric_fn = accuracy if task_name == 'cola': metric_fn = mcc elif task_name in ['mrpc', 'qqp']: metric_fn = acc_and_f1 elif task_name == 'sts-b': metric_fn = pearson_and_spearman return metric_fn(preds, labels)
opentapioca/tagger.py
heathersherry/opentapioca
191
12792438
<reponame>heathersherry/opentapioca<filename>opentapioca/tagger.py import json import requests import logging import re from math import log from .languagemodel import BOWLanguageModel from .wikidatagraph import WikidataGraph from .tag import Tag from .mention import Mention # solr_collection = 'wd_multilingual' logger = logging.getLogger(__name__) class Tagger(object): """ The tagger indexes a Wikidata dump in Solr and uses it to detect efficiently mentions of Wikidata items in text. """ def __init__(self, solr_collection, bow, graph): """ Creates a tagger from: - a solr collection name, which has been adequately initialized with a compatible index and filled with documents - a bag of words language model, adequately trained, which will be used to evaluate the likelihood of phrases - a wikidata graph, adequately loaded, which will be used to compute the page rank and the edges between items """ self.bow = bow self.graph = graph self.solr_endpoint = 'http://localhost:8983/solr/{}/tag'.format(solr_collection) self.prune_re = re.compile(r'^(\w\w?|[\d ]{,4})$') self.max_length = 10000 def tag_and_rank(self, phrase, prune=True): """ Given some text, use the solr index to retrieve candidate items mentioned in the text. :param prune: if True, ignores lowercase mentions shorter than 3 characters """ # Tag phrase = phrase[:self.max_length] logger.debug('Tagging text with solr (length {})'.format(len(phrase))) r = requests.post(self.solr_endpoint, params={'overlaps':'NO_SUB', 'tagsLimit':500, 'fl':'id,label,aliases,extra_aliases,desc,nb_statements,nb_sitelinks,edges,types', 'wt':'json', 'indent':'off', }, headers ={'Content-Type':'text/plain'}, data=phrase.encode('utf-8')) r.raise_for_status() logger.debug('Tagging succeeded') resp = r.json() # Enhance mentions with page rank and edge similarity mentions_json = [ self._dictify(mention) for mention in resp.get('tags', []) ] docs = { doc['id']:doc for doc in resp.get('response', {}).get('docs', []) } mentions = [ self._create_mention(phrase, mention, docs, mentions_json) for mention in mentions_json ] pruned_mentions = [ mention for mention in mentions if not self.prune_phrase(mention.phrase) ] return pruned_mentions def prune_phrase(self, phrase): """ Should this phrase be pruned? It happens when it is shorter than 3 characters and appears in lowercase in the text, or only consists of digits. This is mostly introduced to remove matches of Wikidata items about characters, or to prevent short words such as "of" or "in" to match with initials "OF", "IN", as well as sport scores, postcodes, and so on. """ return self.prune_re.match(phrase) is not None and phrase.lower() == phrase def _create_mention(self, phrase, mention, docs, mentions): """ Adds more info to the mentions returned from Solr, to prepare them for ranking by the classifier. :param phrase: the original document :param mention: the JSON mention to enhance with scores :param docs: dictionary from qid to item :param mentions: the list of all mentions in the document :returns: the enhanced mention, as a Mention object """ start = mention['startOffset'] end = mention['endOffset'] surface = phrase[start:end] surface_score = self.bow.log_likelihood(surface) ranked_tags = [] for qid in mention['ids']: item = dict(docs[qid].items()) item['rank'] = 23. + log(self.graph.get_pagerank(qid)) ranked_tags.append(Tag(**item)) return Mention( phrase=surface, start=start, end=end, log_likelihood=-surface_score, tags=sorted(ranked_tags, key=lambda tag: -tag.rank)[:10], ) def _dictify(self, lst): """ Converts a list of [key1,val1,key2,val2,...] to a dict """ return { lst[2*k]: lst[2*k+1] for k in range(len(lst)//2) } if __name__ == '__main__': import sys fname = sys.argv[1] print('Loading '+fname) bow = BOWLanguageModel() bow.load(fname) print('Loading '+sys.argv[2]) graph = WikidataGraph() graph.load_pagerank(sys.argv[2]) tagger = Tagger(bow, graph) while True: phrase = input('>>> ') tags = tagger.tag_and_rank(phrase) for mention in tags: for tag in mention.get('tags', []): if 'edges' in tag: del tag['edges'] if 'aliases' in tag: del tag['aliases'] print(json.dumps(tags, indent=2, sort_keys=True))
tests/x-custom_tests.py
ivoupton/sheet2dict
208
12792463
import sys from pathlib import Path sys.path.append(str(Path(".").absolute().parent)) from sheet2dict import Worksheet from io import BytesIO ws = Worksheet() ws.xlsx_to_dict(path="inventory.xlsx") print(">>", ws.header) print("ALL:", ws.sheet_items) print("SANITIZED:", ws.sanitize_sheet_items) path = "inventory.xlsx" xlsx_file = open(path, "rb") xlsx_file = BytesIO(xlsx_file.read()) ws = Worksheet() ws.xlsx_to_dict(path=xlsx_file) print(">>", ws.header) ws = Worksheet() path = "inventory.csv" csv_file = open(path, "r", encoding="utf-8-sig") ws.csv_to_dict(csv_file=csv_file, delimiter=";") print("ALL:", ws.sheet_items) print("SANITIZED:", ws.sanitize_sheet_items)
new_venv/Lib/site-packages/cardio/core/utils.py
Shlyankin/cardio
250
12792478
"""Miscellaneous ECG Batch utils.""" import functools import pint import numpy as np from sklearn.preprocessing import LabelBinarizer as LB UNIT_REGISTRY = pint.UnitRegistry() def get_units_conversion_factor(old_units, new_units): """Return a multiplicative factor to convert a measured quantity from old to new units. Parameters ---------- old_units : str Current units in SI format. new_units : str Target units in SI format. Returns ------- factor : float A factor to convert quantities between units. """ try: # pint exceptions are wrapped with ValueError exceptions because they don't implement __repr__ method factor = UNIT_REGISTRY(old_units).to(new_units).magnitude except Exception as error: raise ValueError(error.__class__.__name__ + ": " + str(error)) return factor def partialmethod(func, *frozen_args, **frozen_kwargs): """Wrap a method with partial application of given positional and keyword arguments. Parameters ---------- func : callable A method to wrap. frozen_args : misc Fixed positional arguments. frozen_kwargs : misc Fixed keyword arguments. Returns ------- method : callable Wrapped method. """ @functools.wraps(func) def method(self, *args, **kwargs): """Wrapped method.""" return func(self, *frozen_args, *args, **frozen_kwargs, **kwargs) return method class LabelBinarizer(LB): """Encode categorical features using a one-hot scheme. Unlike ``sklearn.preprocessing.LabelBinarizer``, each label will be encoded using ``n_classes`` numbers even for binary problems. """ # pylint: disable=invalid-name def transform(self, y): """Transform ``y`` using one-hot encoding. Parameters ---------- y : 1-D ndarray of shape ``[n_samples,]`` Class labels. Returns ------- Y : 2-D ndarray of shape ``[n_samples, n_classes]`` One-hot encoded labels. """ Y = super().transform(y) if len(self.classes_) == 1: Y = 1 - Y if len(self.classes_) == 2: Y = np.hstack((1 - Y, Y)) return Y def inverse_transform(self, Y, threshold=None): """Transform one-hot encoded labels back to class labels. Parameters ---------- Y : 2-D ndarray of shape ``[n_samples, n_classes]`` One-hot encoded labels. threshold : float, optional The threshold used in the binary and multi-label cases. If ``None``, it is assumed to be half way between ``neg_label`` and ``pos_label``. Returns ------- y : 1-D ndarray of shape ``[n_samples,]`` Class labels. """ if len(self.classes_) == 1: y = super().inverse_transform(1 - Y, threshold) elif len(self.classes_) == 2: y = super().inverse_transform(Y[:, 1], threshold) else: y = super().inverse_transform(Y, threshold) return y
flake8_pytest_style/visitors/fail.py
kianmeng/flake8-pytest-style
125
12792504
<reponame>kianmeng/flake8-pytest-style<gh_stars>100-1000 import ast from flake8_plugin_utils import Visitor from flake8_pytest_style.config import Config from flake8_pytest_style.errors import AssertAlwaysFalse, FailWithoutMessage from flake8_pytest_style.utils import ( get_simple_call_args, is_empty_string, is_fail_call, is_falsy_constant, ) class FailVisitor(Visitor[Config]): def _check_fail_call(self, node: ast.Call) -> None: """Checks for PT016.""" args = get_simple_call_args(node) msg_argument = args.get_argument('msg', 0) if not msg_argument or is_empty_string(msg_argument): self.error_from_node(FailWithoutMessage, node) def visit_Assert(self, node: ast.Assert) -> None: """Checks for PT015.""" if is_falsy_constant(node.test): self.error_from_node(AssertAlwaysFalse, node) def visit_Call(self, node: ast.Call) -> None: if is_fail_call(node): self._check_fail_call(node)
RecoHI/HiEgammaAlgos/python/HiIsolationCommonParameters_cff.py
ckamtsikis/cmssw
852
12792509
import FWCore.ParameterSet.Config as cms isolationInputParameters = cms.PSet( barrelBasicCluster = cms.InputTag("islandBasicClusters","islandBarrelBasicClusters"), endcapBasicCluster = cms.InputTag("islandBasicClusters","islandEndcapBasicClusters"), horeco = cms.InputTag("horeco"), hfreco = cms.InputTag("hfreco"), hbhereco = cms.InputTag("hbhereco"), track = cms.InputTag("hiGeneralTracks"), photons = cms.InputTag("cleanPhotons") )
examples/scheduling.py
arnimarj/crochet
152
12792569
<filename>examples/scheduling.py #!/usr/bin/python """ An example of scheduling time-based events in the background. Download the latest EUR/USD exchange rate from Yahoo every 30 seconds in the background; the rendered Flask web page can use the latest value without having to do the request itself. Note this is example is for demonstration purposes only, and is not actually used in the real world. You should not do this in a real application without reading Yahoo's terms-of-service and following them. """ from __future__ import print_function from flask import Flask from twisted.internet.task import LoopingCall from twisted.web.client import getPage from twisted.python import log from crochet import wait_for, run_in_reactor, setup setup() # Twisted code: class _ExchangeRate(object): """Download an exchange rate from Yahoo Finance using Twisted.""" def __init__(self, name): self._value = None self._name = name # External API: def latest_value(self): """Return the latest exchange rate value. May be None if no value is available. """ return self._value def start(self): """Start the background process.""" self._lc = LoopingCall(self._download) # Run immediately, and then every 30 seconds: self._lc.start(30, now=True) def _download(self): """Download the page.""" print("Downloading!") def parse(result): print("Got %r back from Yahoo." % (result,)) values = result.strip().split(",") self._value = float(values[1]) d = getPage( "http://download.finance.yahoo.com/d/quotes.csv?e=.csv&f=c4l1&s=%s=X" % (self._name,)) d.addCallback(parse) d.addErrback(log.err) return d # Blocking wrapper: class ExchangeRate(object): """Blocking API for downloading exchange rate.""" def __init__(self, name): self._exchange = _ExchangeRate(name) @run_in_reactor def start(self): self._exchange.start() @wait_for(timeout=1) def latest_value(self): """Return the latest exchange rate value. May be None if no value is available. """ return self._exchange.latest_value() EURUSD = ExchangeRate("EURUSD") app = Flask(__name__) @app.route('/') def index(): rate = EURUSD.latest_value() if rate is None: rate = "unavailable, please refresh the page" return "Current EUR/USD exchange rate is %s." % (rate,) if __name__ == '__main__': import sys, logging logging.basicConfig(stream=sys.stderr, level=logging.DEBUG) EURUSD.start() app.run()
update-attempt-ids.py
inducer/courseflow
284
12792584
<filename>update-attempt-ids.py # -*- coding: utf-8 -*- from __future__ import unicode_literals import django django.setup() from course.models import GradeChange for gchange in GradeChange.objects.all(): if gchange.flow_session is not None: gchange.attempt_id = "flow-session-%d" % gchange.flow_session.id gchange.save()
backend/auth/security.py
restato/bunnybook
131
12792593
from typing import Optional, Dict import jwt import sentry_sdk from fastapi import HTTPException from starlette import status from starlette.requests import Request from auth.models import Role from auth.models import User from config import cfg def get_user(request: Request) -> User: """ Protect route from anonymous access, requiring and returning current authenticated user. :param request: web request :return: current user, otherwise raise an HTTPException (status=401) """ return _check_and_extract_user(request) def get_admin(request: Request) -> User: """ Allow access only to an 'admin' account, returning current authenticated admin account data. :param request: web request :return: current admin user, otherwise raise an HTTPException (status=401) """ user = _check_and_extract_user(request) if user.role != Role.ADMIN: raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED) return user def get_optional_user(request: Request) -> Optional[User]: """ Return authenticated user or None if session is anonymous. :param request: web request :return: current user or None for anonymous sessions """ try: return _check_and_extract_user(request) except HTTPException: if request.headers.get("Authorization"): raise def extract_user_from_token(access_token: str, verify_exp: bool = True) -> User: """ Extract User object from jwt token, with optional expiration check. :param access_token: encoded access token string :param verify_exp: whether to perform verification or not :return: User object stored inside the jwt """ return User(**jwt.decode( access_token, key=cfg.jwt_secret, algorithms=[cfg.jwt_algorithm], options={"verify_exp": verify_exp})["user"]) def decode_jwt_refresh_token( encoded_refresh_token: str, verify_exp: bool = True) -> Dict: """ Decode an encoded refresh token, with optional expiration check. :param encoded_refresh_token: encoded refresh token string :param verify_exp: whether to perform verification or not :return: decoded jwt refresh token as dictionary """ return jwt.decode( encoded_refresh_token, key=cfg.jwt_secret, algorithms=[cfg.jwt_algorithm], options={"verify_exp": verify_exp}) def _check_and_extract_user(request: Request) -> User: authorization_header = request.headers.get("Authorization") if not authorization_header: raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED) try: access_token = authorization_header.replace("Bearer ", "") user = extract_user_from_token(access_token, ) if cfg.sentry_dsn: sentry_sdk.set_user({ "id": user.id, "username": user.username, "email": user.email, "ip_address": request.client.host }) return user except jwt.exceptions.ExpiredSignatureError: raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED)
src/commands/get_ast.py
PranjalPansuriya/JavaScriptEnhancements
690
12792595
import sublime, sublime_plugin import os from ..libs import util from ..libs import NodeJS from ..libs import javaScriptEnhancements from ..libs.global_vars import * class JavascriptEnhancementsGetAstCommand(sublime_plugin.TextCommand): def run(self, edit, **args): view = self.view flow_cli = "flow" is_from_bin = True chdir = "" use_node = True bin_path = "" node = NodeJS(check_local=True) result = node.execute_check_output( flow_cli, [ 'ast', '--from', 'sublime_text', '--pretty' ], is_from_bin=is_from_bin, use_fp_temp=True, fp_temp_contents=view.substr(sublime.Region(0, view.size())), is_output_json=False, chdir=chdir, bin_path=bin_path, use_node=use_node ) print(result[1]) def is_enabled(self, **args) : view = self.view if not util.selection_in_js_scope(view) or not DEVELOPER_MODE : return False return True def is_visible(self, **args) : view = self.view if not util.selection_in_js_scope(view) or not DEVELOPER_MODE : return False return True
tests/test-cases/basic/ssa_case-5.py
SMAT-Lab/Scalpel
102
12792624
# Imports import os import random from collections import Counter, defaultdict import random from nltk.tag import StanfordNERTagger from nltk.tokenize import word_tokenize from nltk import pos_tag from nltk.chunk import conlltags2tree from nltk.tree import Tree import pandas as pd from htrc_features import FeatureReader import geocoder import folium from pprint import pprint from tqdm import tqdm # Set environment variable # Geonames requires a username to access the API but we do not want to expose personal info in code # # Run this locally by adding USERNAME to environment variables, e.g. to .env, as follows: # > export USERNAME=<insert username here> USERNAME = os.getenv('USERNAME') # Setup Stanford NER Tagger # Ignore deprecation warning for now; we'll deal with it when the time comes! st = StanfordNERTagger('/usr/local/share/stanford-ner/classifiers/english.all.3class.distsim.crf.ser.gz', '/usr/local/share/stanford-ner/stanford-ner.jar', encoding='utf-8') # Functions for putting together with inside-outside-beginning (IOB) logic # Cf. https://stackoverflow.com/a/30666949 # # For more information on IOB tagging, see https://en.wikipedia.org/wiki/Inside–outside–beginning_(tagging) # Sample HathiTrust ID # This is the HTID for... # "Ancient Corinth: A guide to the excavations," <NAME>, <NAME>, and <NAME> htid = "wu.89079728994" # Get HTEF data for this ID; specifically tokenlist fr = FeatureReader(ids=[htid]) for vol in fr: tokens = vol.tokenlist() # Create pandas dataframe with relevant data temp = tokens.index.values.tolist() counts = pd.DataFrame.from_records(temp, columns=['page', 'section', 'token', 'pos']) counts['count'] = tokens['count'].tolist() counts[:10] # Reconstruct text using tokens and counts text_data = list(zip(counts['token'].tolist(), counts['count'].tolist())) # Loop through and multiply words by counts text_list = [] for w, c in text_data: for i in range(0, c): text_list.append(w) random.shuffle(text_list) # Necessary? text_reconstruction = " ".join(text_list) #page_words_extended = page_words+page_ner tokens = word_tokenize(text_reconstruction) tagged_tokens = st.tag(tokens) tagged_tokens = [item for item in tagged_tokens if item[0] != ''] ne_tree = stanfordNE2tree(tagged_tokens) ne_in_sent = [] for subtree in ne_tree: if type(subtree) == Tree: # If subtree is a noun chunk, i.e. NE != "O" ne_label = subtree.label() ne_string = " ".join([token for token, pos in subtree.leaves()]) ne_in_sent.append((ne_string, ne_label)) locations = [tag[0].title() for tag in ne_in_sent if tag[1] == 'LOCATION'] print(locations) most_common_locations = Counter(locations).most_common(10) pprint(most_common_locations) # Organize some data for map info places_list = [name for name, _ in most_common_locations][:3] # Limit to top three most_common_locations = dict(most_common_locations) # Turn mcl into dictionary # Retrieve json from geonames API (for fun this time using geocoder) geocoder_results = [] for place in places_list: results = geocoder.geonames(place, maxRows=5, key=USERNAME) jsons = [] for result in results: jsons.append(result.json) geocoder_results.append(jsons) # Create a list of 'country' from the geonames json results countries = [] for results in geocoder_results: for item in results: if 'country' in item.keys(): countries.append(item['country']) # Determine which country appears most often top_country = sorted(Counter(countries))[0] print(top_country) # Iterate over geocoder_results and keep the first lat/long that matches the top country coordinates = [] for i, results in enumerate(geocoder_results): for item in results: if item['country'] == top_country: coordinates.append((float(item['lat']), float(item['lng']))) break # Only get the first item for now print(places_list) print(coordinates) # Set up Folium and populate with weighted coordinates basemap = folium.Map(location=[37.97945, 23.71622], zoom_start=8, tiles='cartodbpositron', width=960, height=512) for i, c in enumerate(coordinates): folium.CircleMarker([c[0], c[1]], radius=most_common_locations[places_list[i]]*.25, color='#3186cc', fill=True, fill_opacity=0.5, fill_color='#3186cc', popup='{} ({}, {}) appears {} times in book.'.format(places_list[i], c[0], c[1], most_common_locations[places_list[i]])).add_to(basemap) print('Map of relevant locations in Broneer et al.\'s "Ancient Corinth: A guide to the excavations," weighted by frequency.') basemap page = 87 test = counts[counts['page'] == page]['token'].tolist() print(test) print(len(test)) from nltk.corpus import stopwords stops = set(stopwords.words('english')) pns_list = [] for i in range(1, max(counts['page'])+1): tokens = counts[counts['page'] == i]['token'].tolist() tokens = [token for token in tokens if token.lower() not in stops and len(token) > 2] pns = [token for token in tokens if token[0].isupper()] combs = [f'{x} {y}' for x, y in combinations(pns, 2)] pns_list.extend(combs)
implementation-contributed/v8/wasm-js/testcfg.py
katemihalikova/test262
1,849
12792628
<reponame>katemihalikova/test262<gh_stars>1000+ # Copyright 2018 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import re from testrunner.local import testsuite from testrunner.objects import testcase ANY_JS = ".any.js" WPT_ROOT = "/wasm/jsapi/" META_SCRIPT_REGEXP = re.compile(r"META:\s*script=(.*)") class TestSuite(testsuite.TestSuite): def __init__(self, *args, **kwargs): super(TestSuite, self).__init__(*args, **kwargs) self.testroot = os.path.join(self.root, "data", "test", "js-api") self.mjsunit_js = os.path.join(os.path.dirname(self.root), "mjsunit", "mjsunit.js") def ListTests(self): tests = [] for dirname, dirs, files in os.walk(self.testroot): for dotted in [x for x in dirs if x.startswith(".")]: dirs.remove(dotted) dirs.sort() files.sort() for filename in files: if (filename.endswith(ANY_JS)): fullpath = os.path.join(dirname, filename) relpath = fullpath[len(self.testroot) + 1 : -len(ANY_JS)] testname = relpath.replace(os.path.sep, "/") test = self._create_test(testname) tests.append(test) return tests def _test_class(self): return TestCase class TestCase(testcase.D8TestCase): def _get_files_params(self): files = [os.path.join(self.suite.mjsunit_js), os.path.join(self.suite.root, "testharness.js")] source = self.get_source() for script in META_SCRIPT_REGEXP.findall(source): if script.startswith(WPT_ROOT): # Matched an absolute path, strip the root and replace it with our # local root. script = os.path.join(self.suite.testroot, script[len(WPT_ROOT):]) elif not script.startswith("/"): # Matched a relative path, prepend this test's directory. thisdir = os.path.dirname(self._get_source_path()) script = os.path.join(thisdir, script) else: raise Exception("Unexpected absolute path for script: \"%s\"" % script); files.append(script) files.extend([ self._get_source_path(), os.path.join(self.suite.root, "testharness-after.js") ]) return files def _get_source_path(self): # All tests are named `path/name.any.js` return os.path.join(self.suite.testroot, self.path + ANY_JS) def GetSuite(*args, **kwargs): return TestSuite(*args, **kwargs)
tests/st/ops/gpu/test_relu_op.py
GuoSuiming/mindspore
3,200
12792700
<reponame>GuoSuiming/mindspore<filename>tests/st/ops/gpu/test_relu_op.py # Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class NetRelu(nn.Cell): def __init__(self): super(NetRelu, self).__init__() self.relu = P.ReLU() def construct(self, x): return self.relu(x) class NetReluDynamic(nn.Cell): def __init__(self): super(NetReluDynamic, self).__init__() self.conv = inner.GpuConvertToDynamicShape() self.relu = P.ReLU() def construct(self, x): x_conv = self.conv(x) return self.relu(x_conv) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_float32(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.float32)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.float32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int8(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int8)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int8) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int32(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int32)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int32) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int64(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int64)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int64) context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") relu = NetRelu() output = relu(x) print(output.asnumpy(), expect) assert (output.asnumpy() == expect).all() context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu = NetRelu() output = relu(x) assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_relu_int64_dynamic_shape(): x = Tensor(np.array([[[[-1, 1, 10], [1, -1, 1], [10, 1, -1]]]]).astype(np.int64)) expect = np.array([[[[0, 1, 10,], [1, 0, 1,], [10, 1, 0.]]]]).astype(np.int64) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") relu_dynamic = NetReluDynamic() output = relu_dynamic(x) assert (output.asnumpy() == expect).all()
wagtailmenus/migrations/0010_auto_20160201_1558.py
pierremanceaux/wagtailmenus
329
12792720
<reponame>pierremanceaux/wagtailmenus # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wagtailmenus', '0009_auto_20160201_0859'), ] operations = [ migrations.RenameField( model_name='mainmenuitem', old_name='add_subnav', new_name='allow_subnav', ), ]
src/zapv2/users.py
tnir/zap-api-python
146
12792723
# Zed Attack Proxy (ZAP) and its related class files. # # ZAP is an HTTP/HTTPS proxy for assessing web application security. # # Copyright 2017 the ZAP development team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This file was automatically generated. """ import six class users(object): def __init__(self, zap): self.zap = zap def users_list(self, contextid=None): """ Gets a list of users that belong to the context with the given ID, or all users if none provided. """ params = {} if contextid is not None: params['contextId'] = contextid return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/view/usersList/', params))) def get_user_by_id(self, contextid, userid): """ Gets the data of the user with the given ID that belongs to the context with the given ID. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/view/getUserById/', {'contextId': contextid, 'userId': userid}))) def get_authentication_credentials_config_params(self, contextid): """ Gets the configuration parameters for the credentials of the context with the given ID. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/view/getAuthenticationCredentialsConfigParams/', {'contextId': contextid}))) def get_authentication_credentials(self, contextid, userid): """ Gets the authentication credentials of the user with given ID that belongs to the context with the given ID. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/view/getAuthenticationCredentials/', {'contextId': contextid, 'userId': userid}))) def get_authentication_state(self, contextid, userid): """ Gets the authentication state information for the user identified by the Context and User Ids. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/view/getAuthenticationState/', {'contextId': contextid, 'userId': userid}))) def get_authentication_session(self, contextid, userid): """ Gets the authentication session information for the user identified by the Context and User Ids, e.g. cookies and realm credentials. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/view/getAuthenticationSession/', {'contextId': contextid, 'userId': userid}))) def new_user(self, contextid, name, apikey=''): """ Creates a new user with the given name for the context with the given ID. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/newUser/', {'contextId': contextid, 'name': name, 'apikey': apikey}))) def remove_user(self, contextid, userid, apikey=''): """ Removes the user with the given ID that belongs to the context with the given ID. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/removeUser/', {'contextId': contextid, 'userId': userid, 'apikey': apikey}))) def set_user_enabled(self, contextid, userid, enabled, apikey=''): """ Sets whether or not the user, with the given ID that belongs to the context with the given ID, should be enabled. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/setUserEnabled/', {'contextId': contextid, 'userId': userid, 'enabled': enabled, 'apikey': apikey}))) def set_user_name(self, contextid, userid, name, apikey=''): """ Renames the user with the given ID that belongs to the context with the given ID. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/setUserName/', {'contextId': contextid, 'userId': userid, 'name': name, 'apikey': apikey}))) def set_authentication_credentials(self, contextid, userid, authcredentialsconfigparams=None, apikey=''): """ Sets the authentication credentials for the user with the given ID that belongs to the context with the given ID. """ params = {'contextId': contextid, 'userId': userid, 'apikey': apikey} if authcredentialsconfigparams is not None: params['authCredentialsConfigParams'] = authcredentialsconfigparams return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/setAuthenticationCredentials/', params))) def authenticate_as_user(self, contextid, userid, apikey=''): """ Tries to authenticate as the identified user, returning the authentication request and whether it appears to have succeeded. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/authenticateAsUser/', {'contextId': contextid, 'userId': userid, 'apikey': apikey}))) def poll_as_user(self, contextid, userid, apikey=''): """ Tries to poll as the identified user, returning the authentication request and whether it appears to have succeeded. This will only work if the polling verification strategy has been configured. """ return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/pollAsUser/', {'contextId': contextid, 'userId': userid, 'apikey': apikey}))) def set_authentication_state(self, contextid, userid, lastpollresult=None, lastpolltimeinms=None, requestssincelastpoll=None, apikey=''): """ Sets fields in the authentication state for the user identified by the Context and User Ids. """ params = {'contextId': contextid, 'userId': userid, 'apikey': apikey} if lastpollresult is not None: params['lastPollResult'] = lastpollresult if lastpolltimeinms is not None: params['lastPollTimeInMs'] = lastpolltimeinms if requestssincelastpoll is not None: params['requestsSinceLastPoll'] = requestssincelastpoll return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/setAuthenticationState/', params))) def set_cookie(self, contextid, userid, domain, name, value, path=None, secure=None, apikey=''): """ Sets the specified cookie for the user identified by the Context and User Ids. """ params = {'contextId': contextid, 'userId': userid, 'domain': domain, 'name': name, 'value': value, 'apikey': apikey} if path is not None: params['path'] = path if secure is not None: params['secure'] = secure return six.next(six.itervalues(self.zap._request(self.zap.base + 'users/action/setCookie/', params)))
test/inserted_test.py
screamingskulls/sofi
402
12792727
from sofi.ui import Inserted def test_basic(): assert(str(Inserted()) == "<ins></ins>") def test_text(): assert(str(Inserted("text")) == "<ins>text</ins>") def test_custom_class_ident_style_and_attrs(): assert(str(Inserted("text", cl='abclass', ident='123', style="font-size:0.9em;", attrs={"data-test": 'abc'})) == "<ins id=\"123\" class=\"abclass\" style=\"font-size:0.9em;\" data-test=\"abc\">text</ins>")
insights/components/openstack.py
lhuett/insights-core
121
12792736
""" IsOpenStackCompute ================== The ``IsOpenStackCompute`` component uses ``PsAuxcww`` parser to determine OpenStack Compute node. It checks if 'nova-compute' process exist, if not raises ``SkipComponent`` so that the dependent component will not fire. Can be added as a dependency of a parser so that the parser only fires if the ``IsIsOpenStackCompute`` dependency is met. """ from insights.core.plugins import component from insights.parsers.ps import PsAuxcww from insights.core.dr import SkipComponent @component(PsAuxcww) class IsOpenStackCompute(object): """The ``IsOpenStackCompute`` component uses ``PsAuxcww`` parser to determine OpenStack Compute node. It checks if ``nova-compute`` process exist, if not raises ``SkipComponent``. Raises: SkipComponent: When ``nova-compute`` process does not exist. """ def __init__(self, ps): if 'nova-compute' not in ps.running: raise SkipComponent('Not OpenStack Compute node')
codigo/Live29/exemplo_6.py
cassiasamp/live-de-python
572
12792753
<reponame>cassiasamp/live-de-python class Pessoa: def __init__(self, n, s): self.n = n self.s = s def __hash__(self): return hash((self.n,self.s)) ll = Pessoa('Lugão','Ricardo') lulu = Pessoa('Lugão','Ricardinho') print(hash(ll)) # True print(hash(lulu)) # True
cd4ml/feature_set.py
camila-contreras/CD4ML-Scenarios
113
12792775
<reponame>camila-contreras/CD4ML-Scenarios<gh_stars>100-1000 import logging def _exclude(fields, excluded): return [field for field in fields if field not in excluded] def _combine_dicts(*args): results = {} for arg in args: results.update(arg) return results class FeatureSetBase: """ Generic interface for feature sets """ def __init__(self, identifier_field, target_field): # fields to be filled out in derived class self.logger = logging.getLogger(__name__) self.params = None self.info = None self.identifier_field = identifier_field self.target_field = target_field def fields_excluded_from_features(self): id_target = [self.identifier_field, self.target_field] return id_target + self.params['extra_information_fields'] def _exclude_non_features(self, fields): return _exclude(fields, self.fields_excluded_from_features()) def base_feature_fields_numerical(self): fields = self.params['base_fields_numerical'] return self._exclude_non_features(fields) def base_feature_fields_categorical(self): fields = sorted(self.params['base_categorical_n_levels_dict'].keys()) return self._exclude_non_features(fields) def base_feature_fields(self): return self.base_feature_fields_numerical() + self.base_feature_fields_categorical() def derived_feature_fields_numerical(self): return self.params['derived_fields_numerical'] def derived_feature_fields_categorical(self): return sorted(self.params['derived_categorical_n_levels_dict'].keys()) def derived_feature_fields(self): return self.derived_feature_fields_numerical() + self.derived_feature_fields_categorical() def available_feature_fields_numerical(self): return self.base_feature_fields_numerical() + self.derived_feature_fields_numerical() def available_feature_fields_categorical(self): return self.base_feature_fields_categorical() + self.derived_feature_fields_categorical() def encoded_feature_fields_numerical(self): return _exclude(self.available_feature_fields_numerical(), self.params['encoder_excluded_fields']) def encoded_feature_fields_categorical(self): return _exclude(self.available_feature_fields_categorical(), self.params['encoder_excluded_fields']) def encoded_feature_fields(self): return self.encoded_feature_fields_numerical() + self.encoded_feature_fields_categorical() def omitted_feature_fields_for_input(self): encoded = self.encoded_feature_fields() return [field for field in encoded if field not in self.base_feature_fields()] # feature transformations def base_features_numerical(self, processed_row): return {k: processed_row[k] for k in self.base_feature_fields_numerical()} def base_features_categorical(self, processed_row): return {k: processed_row[k] for k in self.base_feature_fields_categorical()} def base_features(self, processed_row): return {k: processed_row[k] for k in self.base_feature_fields()} def derived_features_categorical(self, processed_row): # TODO: override assert isinstance(processed_row, dict) return {} def derived_features_numerical(self, processed_row): # TODO: override assert isinstance(processed_row, dict) return {} def derived_features(self, processed_row): num = self.derived_features_numerical(processed_row) cat = self.derived_features_categorical(processed_row) return _combine_dicts(num, cat) def features(self, processed_row): base = self.base_features(processed_row) derv = self.derived_features(processed_row) return _combine_dicts(base, derv) def ml_fields(self): categorical_n_levels_dict = self.params['base_categorical_n_levels_dict'].copy() categorical_n_levels_dict.update(self.params['derived_categorical_n_levels_dict']) cat_encoded = {k: v for k, v in categorical_n_levels_dict.items() if k in self.encoded_feature_fields_categorical()} numeric_fields = self.encoded_feature_fields_numerical() intersection = set(cat_encoded.keys()).intersection(numeric_fields) if intersection: self.logger.info('categorical') self.logger.info(cat_encoded) self.logger.info('numerical') self.logger.info(numeric_fields) self.logger.info('intersection') self.logger.info(intersection) raise ValueError('categorical and numeric overlap') return {'categorical': cat_encoded, 'numerical': numeric_fields, 'target_name': self.target_field}
src/aiofiles/__init__.py
q0w/aiofiles
1,947
12792812
<gh_stars>1000+ """Utilities for asyncio-friendly file handling.""" from .threadpool import open from . import tempfile __all__ = ["open", "tempfile"]
tests/test_wificontrol.py
TopperBG/pywificontrol
115
12792862
<filename>tests/test_wificontrol.py # Written by <NAME> and <NAME> <<EMAIL>> # # Copyright (c) 2016, Emlid Limited # All rights reserved. # # Redistribution and use in source and binary forms, # with or without modification, # are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND # FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import pytest import mock from wificontrol import WiFiControl @pytest.fixture def ssid(): network = { 'ssid': 'Test' } return network class FakeWiFiControl(WiFiControl): def __init__(self): self.wifi = mock.MagicMock() self.wpasupplicant = mock.MagicMock() self.hotspot = mock.MagicMock() class TestWiFiControl: def setup_method(self): self.manager = FakeWiFiControl() def test_host_mode(self): self.manager.hotspot.started = mock.Mock(return_value=False) self.manager.start_host_mode() assert self.manager.wpasupplicant.stop.call_count == 1 assert self.manager.hotspot.started.call_count == 1 assert self.manager.hotspot.start.call_count == 1 def test_client_mode(self): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.start_client_mode() assert self.manager.hotspot.stop.call_count == 1 assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 1 def test_wifi_turn_on(self): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.hotspot.started = mock.Mock(return_value=False) self.manager.turn_on_wifi() assert self.manager.wifi.unblock.call_count == 1 assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 1 self.manager.wpasupplicant.started.return_value = True assert self.manager.get_wifi_turned_on() is True def test_wifi_turn_off(self): self.manager.wpasupplicant.started = mock.Mock(return_value=True) self.manager.hotspot.started = mock.Mock(return_value=False) self.manager.turn_off_wifi() assert self.manager.wifi.block.call_count == 1 assert self.manager.hotspot.stop.call_count == 1 assert self.manager.wpasupplicant.stop.call_count == 1 self.manager.wpasupplicant.started.return_value = False assert self.manager.get_wifi_turned_on() is False def test_wifi_turn_on_if_wifi_is_on(self): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.hotspot.started = mock.Mock(return_value=True) self.manager.turn_on_wifi() assert self.manager.wifi.unblock.call_count == 0 assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.hotspot.started.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 0 assert self.manager.hotspot.start.call_count == 0 def test_network_add(self, ssid): self.manager.add_network(ssid) assert self.manager.wpasupplicant.add_network.is_called_once_with(ssid) def test_network_remove(self, ssid): self.manager.remove_network(ssid) assert self.manager.wpasupplicant.remove_network.is_called_once_with(ssid) def test_status_get(self, ssid): self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.hotspot.started = mock.Mock(return_value=True) state, status = self.manager.get_status() assert state == self.manager.HOST_STATE assert status is None self.manager.wpasupplicant.started.return_value = True self.manager.hotspot.started.return_value = False self.manager.wpasupplicant.get_status = mock.Mock(return_value=ssid) state, status = self.manager.get_status() assert state == self.manager.WPA_STATE assert status == ssid def test_start_connection(self, ssid): def start_connecting(*args): self.manager.hotspot.started.return_value = False self.manager.revert_on_connect_failure(result=None) self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.wpasupplicant.start_connecting.side_effect = start_connecting self.manager.hotspot.started = mock.Mock(return_value=True) self.manager.start_connecting(ssid) assert self.manager.wpasupplicant.started.call_count == 1 assert self.manager.hotspot.stop.call_count == 1 assert self.manager.wpasupplicant.start.call_count == 1 args = (ssid, self.manager.revert_on_connect_failure, None, 10) assert self.manager.wpasupplicant.start_connecting.is_called_once_with(args) assert self.manager.hotspot.started.call_count == 1 assert self.manager.wpasupplicant.stop.call_count == 1 assert self.manager.hotspot.start.call_count == 1 def test_reconnection(self, ssid): def start_connecting(result, callback, args, timeout): self.manager.hotspot.started.return_value = False if args: callback({}, *args) else: callback(result) self.manager.wpasupplicant.started = mock.Mock(return_value=False) self.manager.wpasupplicant.start_connecting.side_effect = start_connecting self.manager.hotspot.started = mock.Mock(return_value=True) self.manager.start_connecting(ssid, callback=self.manager.reconnect, args=(ssid,)) assert self.manager.wpasupplicant.start_connecting.call_count == 2 def test_supplicant_functions(self): self.manager.scan() assert self.manager.wpasupplicant.scan.call_count == 1 self.manager.get_scan_results() assert self.manager.wpasupplicant.get_scan_results.call_count == 1 self.manager.get_added_networks() assert self.manager.wpasupplicant.get_added_networks.call_count == 1 self.manager.get_ip() assert self.manager.wifi.get_device_ip.call_count == 1 self.manager.stop_connecting() assert self.manager.wpasupplicant.stop_connecting.call_count == 1 self.manager.disconnect() assert self.manager.wpasupplicant.disconnect.call_count == 1 self.manager.get_device_name() assert self.manager.hotspot.get_host_name.call_count == 1 self.manager.get_hostap_name() assert self.manager.hotspot.get_hostap_name.call_count == 1 name = 'test' self.manager.set_device_names(name) assert self.manager.wpasupplicant.set_p2p_name.call_count == 1 assert self.manager.wpasupplicant.set_p2p_name.is_called_once_with(name) assert self.manager.hotspot.set_hostap_name.call_count == 1 assert self.manager.hotspot.set_hostap_name.is_called_once_with(name) assert self.manager.hotspot.set_host_name.call_count == 1 assert self.manager.hotspot.set_host_name.is_called_once_with(name) assert self.manager.wifi.restart_dns.call_count == 1 self.manager.set_hostap_password(name) assert self.manager.hotspot.set_hostap_password.is_called_once_with(name) def test_verify_names(self): name = 'test' mac_addr = '11:22:33:44:55:66' self.manager.hotspot.get_host_name.return_value = name self.manager.wpasupplicant.get_p2p_name.return_value = name self.manager.hotspot.get_hostap_name.return_value = "{}{}".format(name, mac_addr[-6:]) self.manager.hotspot.get_device_mac.return_value = mac_addr[-6:] assert self.manager.verify_hostap_name(name) assert self.manager.verify_device_names(name) assert self.manager.hotspot.get_host_name.call_count == 1 assert self.manager.wpasupplicant.get_p2p_name.call_count == 1
vision/visualization.py
yihui-he2020/epipolar-transformers
360
12792888
import os.path, sys, re, cv2, glob, numpy as np import os.path as osp from tqdm import tqdm from IPython import embed import scipy import matplotlib.pyplot as plt from skimage.transform import resize from mpl_toolkits.mplot3d import Axes3D from sklearn.metrics import auc from matplotlib.patches import Circle import torch # from .ipv_vis import * from vision.triangulation import triangulate from vision.multiview import pix2coord, coord2pix from core import cfg from vision.multiview import de_normalize from vision.visualizer_human import draw_2d_pose from vision.visualizer_hand import plot_hand_3d class Cursor(object): def __init__(self, sample_ax, draw_ax): self.sample_ax = sample_ax self.draw_ax = draw_ax self.lx = sample_ax.axhline(color='k') # the horiz line self.ly = sample_ax.axvline(color='k') # the vert line # text location in axes coords self.txt = sample_ax.text(0, 0, '', va="bottom", ha="left") def mouse_down(self, event): if not event.inaxes: return x, y = event.xdata, event.ydata # update the line positions self.lx.set_ydata(y) self.ly.set_xdata(x) self.txt.set_text('x=%1.1f, y=%1.1f' % (x, y)) self.sample_ax.figure.canvas.draw() for i in self.draw_ax: i.clear() i.figure.canvas.draw() self.sample_ax.imshow(ref_img) a, b, heatmap = heatmapat(x, y, weights[0]) im1= self.draw_ax[1].imshow(heatmap, cmap=cmap.hot) self.draw_ax[1].set_title("%f~%f" % (a, b)) a, b, heatmap = heatmapat(x, y, weights[1]) im2= self.draw_ax[2].imshow(heatmap, cmap=cmap.hot) self.draw_ax[2].set_title("%f~%f" % (a, b)) a, b, heatmap = heatmapat(x, y, weights[2]) im3= self.draw_ax[3].imshow(heatmap, cmap=cmap.hot) self.draw_ax[3].set_title("%f~%f" % (a, b)) # fig.colorbar(im2, ax=axs[0, 1]) circ = Circle((x, y),2,color='r') axs[0, 0].add_patch(circ) plt.show() class Cursor_for_epipolar_line(object): def __init__(self, sample_ax, draw_ax, sample_locs, H, W, axs, img2, outs): self.sample_ax = sample_ax self.draw_ax = draw_ax self.lx = sample_ax.axhline(color='k') # the horiz line self.ly = sample_ax.axvline(color='k') # the vert line # text location in axes coords self.txt = sample_ax.text(0, 0, '', va="bottom", ha="left") self.sample_locs = sample_locs self.H = H self.W = W self.axs = axs self.img2 = img2 self.outs = outs def mouse_down(self, event): if not event.inaxes: return x, y = event.xdata, event.ydata self.lx.set_ydata(y) self.ly.set_xdata(x) # pr_cost_volume = self.depth[:, int(y), int(x)] # cost_volume_xs = np.arange(0, pr_cost_volume.shape[0]) # xx, yy = self.corr_pos_pred[int(y)][int(x)] self.txt.set_text('x=%1.1f, y=%1.1f' % (x, y)) self.sample_ax.figure.canvas.draw() for i in self.draw_ax: i.clear() i.figure.canvas.draw() self.axs[1, 0].clear() self.axs[1, 0].imshow(self.img2) inty, intx = int(y+0.5), int(x+0.5) print(self.sample_locs[:, inty, intx]) _, _, _, debugsample_locs, intersections, mask, valid_intersections, start, vec = self.outs print(intx, inty) print('debugsample_locs', debugsample_locs[:, 0, inty, intx]) print('intersections', intersections.view(-1, 64, 64, 4, 2)[0, inty, intx]) print('mask', mask.view(-1, 64, 64, 4)[0, inty, intx]) print('valid_intersections', valid_intersections.view(-1, 64, 64, 2, 2)[0, inty, intx]) print('start', start.view(-1, 64, 64, 2)[0, inty, intx]) print('vec', vec.view(-1, 64, 64, 2)[0, inty, intx]) for i in range(64): # pos = self.sample_locs[i][int(y+0.5)][int(x+0.5)] pos = debugsample_locs[i, 0, inty, intx].cpu().numpy().copy() depos = de_normalize(pos, self.H, self.W) # circ = Circle((int(depos[0]), int(depos[1])),1,color='b', alpha=0.5) circ = Circle((depos[0], depos[1]), 1 , color='b', alpha=0.5) self.axs[1, 0].add_patch(circ) # circ = Circle((xx, yy),2,color='r') self.axs[1, 0].add_patch(circ) plt.show() class Cursor_for_corrspondence(object): def __init__(self, sample_ax, draw_ax, depth, corr_pos_pred, sample_locs, H, W): self.sample_ax = sample_ax self.draw_ax = draw_ax self.lx = sample_ax.axhline(color='k') # the horiz line self.ly = sample_ax.axvline(color='k') # the vert line # text location in axes coords self.txt = sample_ax.text(0, 0, '', va="bottom", ha="left") self.depth = depth self.corr_pos_pred = corr_pos_pred self.sample_locs = sample_locs self.H = H self.W = W def mouse_down(self, event): if not event.inaxes: return x, y = event.xdata, event.ydata self.lx.set_ydata(y) self.ly.set_xdata(x) pr_cost_volume = self.depth[:, int(y), int(x)] cost_volume_xs = np.arange(0, pr_cost_volume.shape[0]) xx, yy = self.corr_pos_pred[int(y)][int(x)] self.txt.set_text('x=%1.1f, y=%1.1f depth=%.5f\nCorr xx=%d, yy=%d' % (x, y, np.max(pr_cost_volume), xx, yy)) self.sample_ax.figure.canvas.draw() for i in self.draw_ax: i.clear() i.figure.canvas.draw() axs[1, 0].clear() axs[1, 0].imshow(img2) for i in range(64): pos = sample_locs[i][int(y)][int(x)] depos = de_normalize(pos, H, W) circ = Circle((int(depos[0]), int(depos[1])),1,color='b', alpha=0.5) axs[1, 0].add_patch(circ) circ = Circle((xx, yy),2,color='r') axs[1, 0].add_patch(circ) plt.show() def toimg(x): return x.squeeze().numpy().transpose([1,2,0]) def de_transform(img): img[..., 0, :, :] = img[..., 0, :, :] * 0.229 + 0.485 img[..., 1, :, :] = img[..., 1, :, :] * 0.224 + 0.456 img[..., 2, :, :] = img[..., 2, :, :] * 0.225 + 0.406 return img def draw_auc(predictions, pck, auc_path): max_threshold = 20 thresholds = np.linspace(0, max_threshold, num=20) pck = np.sum(pck, axis=0) auc_value = auc(thresholds, pck) / max_threshold print('AUC: ', auc_value) plt.plot(thresholds, pck, 'r') plt.axis([0, 20, 0, 1]) plt.savefig(auc_path) plt.show() def get_point_cloud(img1, img2, KRT1, KRT2, RT1, RT2, corr_pos, score): """ KRT: corr_pos: feat_h x feat_w x 2 score: sample_size x feat_h x feat_w """ y = np.arange(0, img1.shape[0]) # 128 x = np.arange(0, img1.shape[1]) # 84 grid_x, grid_y = np.meshgrid(x, y) grid_y = pix2coord(grid_y, cfg.BACKBONE.DOWNSAMPLE) grid_y = grid_y * cfg.DATASETS.IMAGE_RESIZE * cfg.DATASETS.PREDICT_RESIZE grid_x = pix2coord(grid_x, cfg.BACKBONE.DOWNSAMPLE) grid_x = grid_x * cfg.DATASETS.IMAGE_RESIZE * cfg.DATASETS.PREDICT_RESIZE # 2668 * 4076 grid_corr = pix2coord(corr_pos, cfg.BACKBONE.DOWNSAMPLE) grid_corr = grid_corr * cfg.DATASETS.IMAGE_RESIZE * cfg.DATASETS.PREDICT_RESIZE grid = np.stack((grid_x, grid_y)) grid = grid.reshape(2, -1) grid_corr = grid_corr.reshape(-1, 2).transpose() from scipy.misc import imresize sample_size, fh, fw = score.shape resized_img2 = imresize(img2, (fh, fw)) max_score = np.max(score.reshape(sample_size, -1), axis=0).reshape(fh, fw) select_pos1 = max_score > 0.02 print('->', np.sum(select_pos1)) select_pos2 = np.sum(resized_img2, axis=2) > 20 print('->',np.sum(select_pos2)) select_pos3 = np.sum(corr_pos, axis=2) > -50 print('->',np.sum(select_pos2)) select_pos = np.logical_and(select_pos3, select_pos2).reshape(-1) # select_pos = select_pos3 print('-->',np.sum(select_pos)) select_pos = select_pos.reshape(-1) select_img_point = resized_img2.reshape(fh*fw, 3)[select_pos, :] print(select_pos.shape) print('total pos', sum(select_pos)) p3D = cv2.triangulatePoints(KRT2, KRT1, grid_corr[:,select_pos], grid[:,select_pos]) # p3D = cv2.triangulatePoints(KRT2, KRT1, grid_corr, grid) # depth = np.ones((fh, fw)) * np.min((KRT1@p3D)[2, :]) depth = np.ones((fh, fw)) * np.max((KRT1@p3D)[2, :]) cnt = 0 for i in range(fh): for j in range(fw): if not select_pos[i*fw+j]: continue p_homo = (KRT1 @ p3D[:, cnt]) p = p_homo / p_homo[2] depth[int(coord2pix(p[1], 32)), int(coord2pix(p[0], 32))] = p_homo[2] cnt += 1 p3D /= p3D[3] p3D = p3D[:3].squeeze() depth = (depth - depth.min()) / (depth.max() - depth.min()) + 1 depth = np.log(depth) depth = (depth - depth.min()) / (depth.max() - depth.min()) #######vis fig = plt.figure(1) ax1_1 = fig.add_subplot(331) ax1_1.imshow(img1) ax1_2 = fig.add_subplot(332) ax1_2.imshow(img2) w = corr_pos[:, :, 0] w = (w - w.min()) / (w.max() - w.min()) ax1_1 = fig.add_subplot(334) ax1_1.imshow(w) w = corr_pos[:, :, 1] w = (w - w.min()) / (w.max() - w.min()) ax1_1 = fig.add_subplot(335) ax1_1.imshow(w) # w1 = corr_pos[:, :, 0] # w1 = (w1 - w1.min()) / (w1.max() - w1.min()) # w2 = corr_pos[:, :, 1] # w2 = (w2 - w2.min()) / (w2.max() - w2.min()) # W = np.stack([w1, w2, np.ones(w2.shape)], axis=0) # ax2_1 = fig.add_subplot(336) # ax2_1.imshow(W.transpose(1,2,0)) ax1_1 = fig.add_subplot(336) ax1_1.imshow(depth) w = select_pos1.reshape(fh,fw) # w = (w - w.min()) / (w.max() - w.min()) ax2_1 = fig.add_subplot(337) ax2_1.imshow(w) w = select_pos2.reshape(fh,fw) # w = (w - w.min()) / (w.max() - w.min()) ax2_1 = fig.add_subplot(338) ax2_1.imshow(w) w = select_pos.reshape(fh,fw) # w = (w - w.min()) / (w.max() - w.min()) ax2_1 = fig.add_subplot(339) ax2_1.imshow(w) ####### end vis # w = select_img_point[:, :10000].reshape(-1, 100, 100).transpose(1,2,0) # w = (w - w.min()) / (w.max() - w.min()) # ax2_1 = fig.add_subplot(326) # ax2_1.imshow(w) plt.show() return p3D, select_img_point def visualization(cfg): if cfg.VIS.POINTCLOUD and 'h36m' not in cfg.OUTPUT_DIR: output_dir = cfg.OUTPUT_DIR dataset_names = cfg.DATASETS.TEST predictions = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions.pth")) print(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions.pth")) cnt = 0 # for inputs, pred in predictions: while True: inputs, pred = predictions[cnt] heatmap = inputs.get('heatmap') points2d = inputs.get('points-2d') KRT = inputs.get('KRT')[0] RT = inputs.get('RT')[0] image_path = inputs.get('img-path') print('image path:', image_path) img = resize(plt.imread(image_path), (128, 84, 3)) other_KRT = inputs.get('other_KRT')[0] other_RT = inputs.get('other_RT')[0] other_image_path = inputs.get('other_img_path')[0] print('other image path', other_image_path) other_img = resize(plt.imread(other_image_path), (128, 84, 3)) heatmap_pred = pred.get('heatmap_pred') score_pred = pred.get('score_pred') corr_pos_pred = pred.get('corr_pos') sim = pred.get('depth') import pdb; pdb.set_trace() # p3D, img_pt = get_point_cloud(img, other_img, KRT, other_KRT, RT, other_RT, corr_pos_pred, sim) output = { # 'p3D': p3D, # 'img_pt': img_pt, 'img1': img, 'img2' : other_img, 'img1_path': image_path, 'img2_path': other_image_path, 'RT' : RT, 'other_RT': other_RT, 'corr_pos_pred': corr_pos_pred, 'depth': sim, } if 'sample_locs' in pred: sample_locs = pred.get('sample_locs') output['sample_locs'] = sample_locs else: print('No sample_locs!!!!!') import pickle with open('baseline_' + "output_{:d}.pkl".format(cnt),"wb") as f: pickle.dump(output, f) print('saved! to ', 'baseline_' + "output_{:d}.pkl".format(cnt)) cnt += 1 # break # ipv_prepare(ipv) # ipv_draw_point_cloud(ipv, p3D, colors=img_pt, pt_size=1) # ipv.xyzlim(500) # ipv.show() if cfg.VIS.POINTCLOUD and 'h36m' in cfg.OUTPUT_DIR: output_dir = cfg.OUTPUT_DIR dataset_names = cfg.DATASETS.TEST baseline = "baseline" in cfg.VIS.SAVE_PRED_NAME name = "_baseline" if baseline else "" predictions = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions"+name+".pth")) print(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions"+name+".pth")) cnt = 0 # for inputs, pred in predictions: while True: inputs, pred = predictions[cnt] print('input keys:') print(inputs.keys()) print('pred keys:') print(pred.keys()) heatmap = inputs.get('heatmap') other_heatmap = inputs.get('other_heatmap') points2d = inputs.get('points-2d') KRT = inputs.get('KRT')[0] camera = inputs.get('camera') other_camera = inputs.get('other_camera') image_path = inputs.get('img-path')[0] print(image_path) # image_path = 'images.zip@' image_file = osp.join("datasets", 'h36m', 'images.zip@', 'images', image_path) # from utils import zipreader # data_numpy = zipreader.imread( # image_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) # img = data_numpy[:1000] # assert img.shape == (1000, 1000, 3), img.shape img = inputs.get('img') other_KRT = inputs.get('other_KRT')[0] # other_RT = inputs.get('other_RT')[0] other_image_path = inputs.get('other_img-path')[0] print('other image path', other_image_path) other_image_file = osp.join("datasets", 'h36m', 'images.zip@', 'images', other_image_path) other_img = inputs.get('other_img') heatmap_pred = pred.get('heatmap_pred') score_pred = pred.get('score_pred') corr_pos_pred = pred.get('corr_pos') sim = pred.get('depth') batch_locs = pred.get('batch_locs') # p3D, img_pt = get_point_cloud(img, other_img, KRT, other_KRT, RT, other_RT, corr_pos_pred, sim) output = { # 'p3D': p3D, # 'img_pt': img_pt, 'img1': img, 'img2' : other_img, 'img1_path': image_file, 'img2_path': other_image_file, # 'RT' : RT, # 'other_RT': other_RT, 'heatmap': heatmap, 'other_heatmap': other_heatmap, 'points-2d': points2d, 'corr_pos_pred': corr_pos_pred, 'depth': sim, 'heatmap_pred': heatmap_pred, 'batch_locs': batch_locs, 'camera': camera, 'other_camera': other_camera, } if 'sample_locs' in pred: sample_locs = pred.get('sample_locs') output['sample_locs'] = sample_locs else: print('No sample_locs!!!!!') import pickle with open(cfg.OUTPUT_DIR + "/visualizations/h36m/output{}_{:d}.pkl".format(name, cnt),"wb") as f: pickle.dump(output,f) print('saved!') cnt += 1 # depth = output['depth'] # corr_pos_pred = output['corr_pos_pred'] # sample_locs = output['sample_locs'] if cfg.EPIPOLAR.VIS: if 'h36m' in cfg.OUTPUT_DIR: from data.build import make_data_loader if cfg.VIS.MULTIVIEWH36M: data_loader = make_data_loader(cfg, is_train=True, force_shuffle=True) elif cfg.VIS.H36M: from data.datasets.joints_dataset import JointsDataset from data.datasets.multiview_h36m import MultiViewH36M data_loader = MultiViewH36M('datasets', 'validation', True) print(len(data_loader)) for i in tqdm(range(len(data_loader))): data_loader.__getitem__(i) data_loader = make_data_loader(cfg, is_train=False)[0] # data_loader = make_data_loader(cfg, is_train=True, force_shuffle=True) # data_loader = make_data_loader(cfg, is_train=False, force_shuffle=True)[0] # for idx, batchdata in enumerate(tqdm(data_loader)): if not cfg.VIS.MULTIVIEWH36M and not cfg.VIS.H36M: cpu = lambda x: x.cpu().numpy() if isinstance(x, torch.Tensor) else x from modeling.layers.epipolar import Epipolar imgmodel = Epipolar() debugmodel = Epipolar(debug=True) KRT0 = batchdata['KRT'].squeeze()[None, 0] KRT1 = batchdata['other_KRT'].squeeze()[None, 0] # batchdata['img']: 1 x 4 x 3 x 256 x 256 input_img = batchdata['img'].squeeze()[None, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4] input_other_img = batchdata['other_img'].squeeze()[None, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4] outs = debugmodel(input_img, input_other_img, KRT0, KRT1) H, W = input_img.shape[-2:] print(H, W) orig_img = de_transform(cpu(batchdata['img'].squeeze()[None, ...])[0][0]) orig_other_img = de_transform(cpu(batchdata['other_img'].squeeze()[None, ...])[0][0]) # outs = imgmodel(batchdata['heatmap'][:, 0], batchdata['heatmap'][:, 1], batchdata['KRT'][:, 0], batchdata['other_KRT'][:, 1]) out, sample_locs = imgmodel.imgforward_withdepth(input_img, input_other_img, KRT0, KRT1, outs[2][0]) if not cfg.VIS.CURSOR: # show_img = de_transform(cpu(batchdata['img'][:, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4])[0][0]) # show_other_img = de_transform(cpu(batchdata['other_img'][:, 0, :, fd00:c2b6:b24b:be67:2827:688d:e6a1:6a3b, ::4])[0][0]) fig = plt.figure(1) ax1 = fig.add_subplot(231) ax2 = fig.add_subplot(232) ax3 = fig.add_subplot(233) ax4 = fig.add_subplot(234) ax5 = fig.add_subplot(235) ax1.imshow(orig_img[::-1].transpose((1,2,0))) ax2.imshow(orig_other_img[::-1].transpose((1,2,0))) ax3.imshow(cpu(batchdata['heatmap'])[0][0].sum(0)) ax4.imshow(cpu(batchdata['other_heatmap'])[0][0].sum(0)) # ax5.imshow(cpu(outs[0])[0].sum(0)) print(out.shape) out_img = de_transform(cpu(out)[0, ::-1].transpose((1,2,0))) ax5.imshow(out_img) plt.show() else: print(sample_locs.shape) # 64 x 1 x H x W x 2 sample_locs = sample_locs[:, 0, :, :, :] # import pdb; pdb.set_trace() fig, axs = plt.subplots(2, 2) cus = Cursor_for_epipolar_line(axs[0,0], [axs[0,1], axs[1,0], axs[1,1]], sample_locs, H, W, axs, \ cpu(input_other_img)[0, :, :, :][::-1].transpose((1,2,0)), outs) axs[0, 0].imshow(cpu(input_img)[0, :, :, :][::-1].transpose((1,2,0))) # prob_im = axs[1, 1].imshow(max_score) fig.canvas.mpl_connect('button_press_event', cus.mouse_down) plt.show() return output_dir = cfg.OUTPUT_DIR dataset_names = cfg.DATASETS.TEST predictions = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "predictions.pth")) pck = torch.load(os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "pck.pth")) if cfg.VIS.AUC: auc_path = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_names[0], "auc.png") draw_auc(predictions, pck, auc_path) total = 0 for inputs, pred in predictions: heatmap = inputs.get('heatmap') points2d = inputs.get('points-2d') hand_side = inputs.get('hand-side') img = inputs.get('img') can_3dpoints = inputs.get('can-points-3d') normed_3d = inputs.get('normed-points-3d') target_global = inputs.get('points-3d') rot_mat = inputs.get('rotation') R_global = inputs.get('R') keypoint_scale = inputs.get('scale') visibility = inputs.get('visibility') unit = inputs.get('unit') image_path = inputs.get('img-path') can_pred = pred.get('can_pred') normed_pred = pred.get('normed_pred') heatmap_pred = pred.get('heatmap_pred') im = plt.imread(image_path) image = np.array(im, dtype=np.int) if cfg.DATASETS.TASK == 'keypoint': fig = plt.figure(1) ax1 = fig.add_subplot(331) ax2 = fig.add_subplot(332) ax3 = fig.add_subplot(333) #ax1.imshow(image) print(heatmap.min(), heatmap.max()) print(heatmap_pred.min(), heatmap_pred.max()) ax2.imshow(heatmap.sum(0).T) ax3.imshow(heatmap_pred.sum(0).T) else: total += 1 visibility = visibility.squeeze()[..., None] can_3dpoints = can_3dpoints * visibility can_pred = can_pred * visibility normed_3d = normed_3d * visibility normed_pred = normed_pred * visibility delta = normed_pred - normed_3d print(delta) print('L1 err = ', np.abs(delta).sum()) print('L2 err = ', ((delta**2).sum(-1)**0.5).mean()) fig = plt.figure(1) ax1_1 = fig.add_subplot(331) ax1_2 = fig.add_subplot(332) #ax1_3 = fig.add_subplot(333) #ax2 = fig.add_subplot(222) ax2_1 = fig.add_subplot(334, projection='3d') ax2_2 = fig.add_subplot(335, projection='3d') ax2_3 = fig.add_subplot(336, projection='3d') ax3_1 = fig.add_subplot(337, projection='3d') ax3_2 = fig.add_subplot(338, projection='3d') ax3_3 = fig.add_subplot(333, projection='3d') ax1_1.imshow(image) ax1_2.imshow(image) #ax1_3.imshow(image) #ax2.imshow(image) plot_hand_3d(can_3dpoints, visibility, ax2_1) ax2_1.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(can_pred, visibility, ax2_2) ax2_2.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(can_3dpoints, visibility, ax2_3) plot_hand_3d(can_pred, visibility, ax2_3) ax2_3.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view # ax3.set_xlim([-3, 3]) # ax3.set_ylim([-3, 3]) # ax3.set_zlim([-3, 3]) plot_hand_3d(normed_3d, visibility, ax3_1) ax3_1.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(normed_pred, visibility, ax3_2) ax3_2.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view plot_hand_3d(normed_3d, visibility, ax3_3) plot_hand_3d(normed_pred, visibility, ax3_3) ax3_3.view_init(azim=-90.0, elev=-90.0) # aligns the 3d coord with the camera view # ax3.set_xlim([-3, 3]) # ax3.set_ylim([-3, 3]) # ax3.set_zlim([-3, 3]) plt.show() print("show")
examples/poll_card.py
smaeda-ks/twitter-python-ads-sdk
162
12792897
from twitter_ads.campaign import Tweet from twitter_ads.client import Client from twitter_ads.creative import MediaLibrary, PollCard from twitter_ads.enum import MEDIA_TYPE CONSUMER_KEY = '' CONSUMER_SECRET = '' ACCESS_TOKEN = '' ACCESS_TOKEN_SECRET = '' ACCOUNT_ID = '' # initialize the client client = Client(CONSUMER_KEY, CONSUMER_SECRET, ACCESS_TOKEN, ACCESS_TOKEN_SECRET) # load the advertiser account instance account = client.accounts(ACCOUNT_ID) # most recent Media Library video ml = MediaLibrary(account).all(account, media_type=MEDIA_TYPE.VIDEO) media_key = ml.first.media_key # create Poll Card with video pc = PollCard(account) pc.duration_in_minutes = 10080 # one week pc.first_choice = 'Northern' pc.second_choice = 'Southern' pc.name = ml.first.name + ' poll card from SDK' pc.media_key = media_key pc.save() # create Tweet Tweet.create(account, text='Which hemisphere do you prefer?', card_uri=pc.card_uri) # https://twitter.com/apimctestface/status/973002610033610753
kibitzr/cli.py
paulmassen/kibitzr
478
12792900
import sys import logging import click import entrypoints LOG_LEVEL_CODES = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, } def merge_extensions(click_group): """ Each extension is called with click group for ultimate agility while preserving cli context. """ for extension in load_extensions(): extension(click_group) return click_group def load_extensions(): """Return list of Kibitzr CLI extensions""" return [ point.load() for point in entrypoints.get_group_all("kibitzr.cli") ] @click.group() @click.option("-l", "--log-level", default="info", type=click.Choice(LOG_LEVEL_CODES.keys()), help="Logging level") @click.pass_context def cli(ctx, log_level): """Run kibitzr COMMAND --help for detailed descriptions""" ctx.obj = {'log_level': LOG_LEVEL_CODES[log_level.lower()]} @cli.command() def version(): """Print version""" from kibitzr import __version__ as kibitzr_version print(kibitzr_version) @cli.command() def firefox(): """Launch Firefox with persistent profile""" from kibitzr.app import Application Application().run_firefox() @cli.command() @click.argument('name', nargs=-1) @click.pass_context def once(ctx, name): """Run kibitzr checks once and exit""" from kibitzr.app import Application app = Application() sys.exit(app.run(once=True, log_level=ctx.obj['log_level'], names=name)) @cli.command() @click.argument('name', nargs=-1) @click.pass_context def run(ctx, name): """Run kibitzr in the foreground mode""" from kibitzr.app import Application app = Application() sys.exit(app.run(once=False, log_level=ctx.obj['log_level'], names=name)) @cli.command() def init(): """Create boilerplate configuration files""" from kibitzr.app import Application Application.bootstrap() @cli.command() def telegram_chat(): """Return chat id for the last message sent to Telegram Bot""" # rename import to escape name clashing: from kibitzr.app import Application app = Application() app.telegram_chat() @cli.command() def clean(): """Clean change history""" from kibitzr.storage import PageHistory PageHistory.clean() @cli.command() def stash(): """Print stash contents""" from kibitzr.stash import Stash Stash.print_content() extended_cli = merge_extensions(cli) if __name__ == "__main__": extended_cli()
examples/pybullet/gym/pybullet_envs/minitaur/agents/trajectory_generator/tg_inplace.py
felipeek/bullet3
9,136
12792908
"""Trajectory Generator for in-place stepping motion for quadruped robot.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np TWO_PI = 2 * math.pi def _get_actions_asymmetric_sine(phase, tg_params): """Returns the leg extension given current phase of TG and parameters. Args: phase: a number in [0, 2pi) representing current leg phase tg_params: a dictionary of tg parameters: stance_lift_cutoff -- switches the TG between stance (phase < cutoff) and lift (phase > cutoff) phase amplitude_swing -- amplitude in swing phase amplitude_lift -- amplitude in lift phase center_extension -- center of leg extension """ stance_lift_cutoff = tg_params['stance_lift_cutoff'] a_prime = np.where(phase < stance_lift_cutoff, tg_params['amplitude_stance'], tg_params['amplitude_lift']) scaled_phase = np.where( phase > stance_lift_cutoff, np.pi + (phase - stance_lift_cutoff) / (TWO_PI - stance_lift_cutoff) * np.pi, phase / stance_lift_cutoff * np.pi) return tg_params['center_extension'] + a_prime * np.sin(scaled_phase) def step(current_phases, leg_frequencies, dt, tg_params): """Steps forward the in-place trajectory generator. Args: current_phases: phases of each leg. leg_frequencies: the frequency to proceed the phase of each leg. dt: amount of time (sec) between consecutive time steps. tg_params: a set of parameters for trajectory generator, see the docstring of "_get_actions_asymmetric_sine" for details. Returns: actions: leg swing/extensions as output by the trajectory generator. new_state: new swing/extension. """ new_phases = np.fmod(current_phases + TWO_PI * leg_frequencies * dt, TWO_PI) extensions = [] for leg_id in range(4): extensions.append( _get_actions_asymmetric_sine(new_phases[..., leg_id], tg_params)) return new_phases, extensions def reset(): return np.array([0, np.pi * 0.5, np.pi, np.pi * 1.5])
src/semver/__init__.py
b0uh/python-semver
159
12792929
<gh_stars>100-1000 """ semver package major release 3. A Python module for semantic versioning. Simplifies comparing versions. """ from ._deprecated import ( bump_build, bump_major, bump_minor, bump_patch, bump_prerelease, compare, finalize_version, format_version, match, max_ver, min_ver, parse, parse_version_info, replace, cmd_bump, cmd_compare, cmd_nextver, cmd_check, createparser, process, main, ) from .version import Version, VersionInfo from .__about__ import ( __version__, __author__, __maintainer__, __author_email__, __description__, __maintainer_email__, SEMVER_SPEC_VERSION, )
mergify_engine/tests/functional/actions/test_update.py
truthiswill/mergify-engine
266
12792971
# -*- encoding: utf-8 -*- # # Copyright © 2018–2021 Mergify SAS # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import yaml from mergify_engine import config from mergify_engine import context from mergify_engine.tests.functional import base class TestUpdateAction(base.FunctionalTestBase): async def test_update_action(self): rules = { "pull_request_rules": [ { "name": "update", "conditions": [f"base={self.main_branch_name}"], "actions": {"update": {}}, }, { "name": "merge", "conditions": [f"base={self.main_branch_name}", "label=merge"], "actions": {"merge": {}}, }, ] } await self.setup_repo(yaml.dump(rules)) p1, _ = await self.create_pr() p2, _ = await self.create_pr() commits = await self.get_commits(p2["number"]) assert len(commits) == 1 await self.add_label(p1["number"], "merge") await self.run_engine() await self.wait_for("pull_request", {"action": "closed"}) p1 = await self.get_pull(p1["number"]) assert p1["merged"] await self.wait_for("push", {"ref": f"refs/heads/{self.main_branch_name}"}) await self.run_engine() commits = await self.get_commits(p2["number"]) assert len(commits) == 2 assert commits[-1]["commit"]["author"]["name"] == config.BOT_USER_LOGIN assert commits[-1]["commit"]["message"].startswith("Merge branch") async def test_update_action_on_closed_pr_deleted_branch(self): rules = { "pull_request_rules": [ { "name": "update", "conditions": [f"base={self.main_branch_name}"], "actions": {"update": {}}, }, { "name": "merge", "conditions": [f"base={self.main_branch_name}", "label=merge"], "actions": {"merge": {}, "delete_head_branch": {}}, }, ] } await self.setup_repo(yaml.dump(rules)) p1, _ = await self.create_pr() p2, _ = await self.create_pr() commits = await self.get_commits(p2["number"]) assert len(commits) == 1 await self.add_label(p1["number"], "merge") await self.run_engine() p1 = await self.get_pull(p1["number"]) assert p1["merged"] await self.wait_for("push", {"ref": f"refs/heads/{self.main_branch_name}"}) await self.run_engine() commits = await self.get_commits(p2["number"]) assert len(commits) == 2 assert commits[-1]["commit"]["author"]["name"] == config.BOT_USER_LOGIN assert commits[-1]["commit"]["message"].startswith("Merge branch") # Now merge p2 so p1 is not up to date await self.add_label(p2["number"], "merge") await self.run_engine() ctxt = await context.Context.create(self.repository_ctxt, p1, []) checks = await ctxt.pull_engine_check_runs for check in checks: assert check["conclusion"] == "success", check
exchangelib/services/get_attachment.py
RossK1/exchangelib
1,006
12793002
from itertools import chain from .common import EWSAccountService, create_attachment_ids_element from ..util import create_element, add_xml_child, set_xml_value, DummyResponse, StreamingBase64Parser,\ StreamingContentHandler, ElementNotFound, MNS # https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/bodytype BODY_TYPE_CHOICES = ('Best', 'HTML', 'Text') class GetAttachment(EWSAccountService): """MSDN: https://docs.microsoft.com/en-us/exchange/client-developer/web-service-reference/getattachment-operation""" SERVICE_NAME = 'GetAttachment' element_container_name = '{%s}Attachments' % MNS def call(self, items, include_mime_content, body_type, filter_html_content, additional_fields): if body_type and body_type not in BODY_TYPE_CHOICES: raise ValueError("'body_type' %s must be one of %s" % (body_type, BODY_TYPE_CHOICES)) return self._elems_to_objs(self._chunked_get_elements( self.get_payload, items=items, include_mime_content=include_mime_content, body_type=body_type, filter_html_content=filter_html_content, additional_fields=additional_fields, )) def _elems_to_objs(self, elems): from ..attachments import FileAttachment, ItemAttachment cls_map = {cls.response_tag(): cls for cls in (FileAttachment, ItemAttachment)} for elem in elems: if isinstance(elem, Exception): yield elem continue yield cls_map[elem.tag].from_xml(elem=elem, account=self.account) def get_payload(self, items, include_mime_content, body_type, filter_html_content, additional_fields): payload = create_element('m:%s' % self.SERVICE_NAME) shape_elem = create_element('m:AttachmentShape') if include_mime_content: add_xml_child(shape_elem, 't:IncludeMimeContent', 'true') if body_type: add_xml_child(shape_elem, 't:BodyType', body_type) if filter_html_content is not None: add_xml_child(shape_elem, 't:FilterHtmlContent', 'true' if filter_html_content else 'false') if additional_fields: additional_properties = create_element('t:AdditionalProperties') expanded_fields = chain(*(f.expand(version=self.account.version) for f in additional_fields)) set_xml_value(additional_properties, sorted( expanded_fields, key=lambda f: (getattr(f.field, 'field_uri', ''), f.path) ), version=self.account.version) shape_elem.append(additional_properties) if len(shape_elem): payload.append(shape_elem) attachment_ids = create_attachment_ids_element(items=items, version=self.account.version) payload.append(attachment_ids) return payload def _update_api_version(self, api_version, header, **parse_opts): if not parse_opts.get('stream_file_content', False): super()._update_api_version(api_version, header, **parse_opts) # TODO: We're skipping this part in streaming mode because StreamingBase64Parser cannot parse the SOAP header @classmethod def _get_soap_parts(cls, response, **parse_opts): if not parse_opts.get('stream_file_content', False): return super()._get_soap_parts(response, **parse_opts) # Pass the response unaltered. We want to use our custom streaming parser return None, response def _get_soap_messages(self, body, **parse_opts): if not parse_opts.get('stream_file_content', False): return super()._get_soap_messages(body, **parse_opts) from ..attachments import FileAttachment # 'body' is actually the raw response passed on by '_get_soap_parts' r = body parser = StreamingBase64Parser() field = FileAttachment.get_field_by_fieldname('_content') handler = StreamingContentHandler(parser=parser, ns=field.namespace, element_name=field.field_uri) parser.setContentHandler(handler) return parser.parse(r) def stream_file_content(self, attachment_id): # The streaming XML parser can only stream content of one attachment payload = self.get_payload( items=[attachment_id], include_mime_content=False, body_type=None, filter_html_content=None, additional_fields=None, ) self.streaming = True try: yield from self._get_response_xml(payload=payload, stream_file_content=True) except ElementNotFound as enf: # When the returned XML does not contain a Content element, ElementNotFound is thrown by parser.parse(). # Let the non-streaming SOAP parser parse the response and hook into the normal exception handling. # Wrap in DummyResponse because _get_soap_parts() expects an iter_content() method. response = DummyResponse(url=None, headers=None, request_headers=None, content=enf.data) _, body = super()._get_soap_parts(response=response) res = super()._get_soap_messages(body=body) for e in self._get_elements_in_response(response=res): if isinstance(e, Exception): raise e # The returned content did not contain any EWS exceptions. Give up and re-raise the original exception. raise enf finally: self.streaming = False self.stop_streaming()
src/0059.spiral-matrix-ii/spiral-matrix-ii.py
lyphui/Just-Code
782
12793047
<reponame>lyphui/Just-Code class Solution: def generateMatrix(self, n: int) -> List[List[int]]: if not n: return [] A, lo = [[n*n]], n*n while lo > 1: lo, hi = lo - len(A), lo A = [[ i for i in range(lo, hi)]] + [list(j) for j in zip(*A[::-1])] return A
python/pyarmnn/test/test_deserializer.py
Project-Xtended/external_armnn
856
12793056
<gh_stars>100-1000 # Copyright © 2020 Arm Ltd and Contributors. All rights reserved. # SPDX-License-Identifier: MIT import os import pytest import pyarmnn as ann import numpy as np @pytest.fixture() def parser(shared_data_folder): """ Parse and setup the test network to be used for the tests below """ parser = ann.IDeserializer() parser.CreateNetworkFromBinary(os.path.join(shared_data_folder, 'mock_model.armnn')) yield parser def test_deserializer_swig_destroy(): assert ann.IDeserializer.__swig_destroy__, "There is a swig python destructor defined" assert ann.IDeserializer.__swig_destroy__.__name__ == "delete_IDeserializer" def test_check_deserializer_swig_ownership(parser): # Check to see that SWIG has ownership for parser. This instructs SWIG to take # ownership of the return value. This allows the value to be automatically # garbage-collected when it is no longer in use assert parser.thisown def test_deserializer_get_network_input_binding_info(parser): # use 0 as a dummy value for layer_id, which is unused in the actual implementation layer_id = 0 input_name = 'input_1' input_binding_info = parser.GetNetworkInputBindingInfo(layer_id, input_name) tensor = input_binding_info[1] assert tensor.GetDataType() == 2 assert tensor.GetNumDimensions() == 4 assert tensor.GetNumElements() == 784 assert tensor.GetQuantizationOffset() == 128 assert tensor.GetQuantizationScale() == 0.007843137718737125 def test_deserializer_get_network_output_binding_info(parser): # use 0 as a dummy value for layer_id, which is unused in the actual implementation layer_id = 0 output_name = "dense/Softmax" output_binding_info1 = parser.GetNetworkOutputBindingInfo(layer_id, output_name) # Check the tensor info retrieved from GetNetworkOutputBindingInfo tensor1 = output_binding_info1[1] assert tensor1.GetDataType() == 2 assert tensor1.GetNumDimensions() == 2 assert tensor1.GetNumElements() == 10 assert tensor1.GetQuantizationOffset() == 0 assert tensor1.GetQuantizationScale() == 0.00390625 def test_deserializer_filenotfound_exception(shared_data_folder): parser = ann.IDeserializer() with pytest.raises(RuntimeError) as err: parser.CreateNetworkFromBinary(os.path.join(shared_data_folder, 'some_unknown_network.armnn')) # Only check for part of the exception since the exception returns # absolute path which will change on different machines. assert 'Cannot read the file' in str(err.value) def test_deserializer_end_to_end(shared_data_folder): parser = ann.IDeserializer() network = parser.CreateNetworkFromBinary(os.path.join(shared_data_folder, "mock_model.armnn")) # use 0 as a dummy value for layer_id, which is unused in the actual implementation layer_id = 0 input_name = 'input_1' output_name = 'dense/Softmax' input_binding_info = parser.GetNetworkInputBindingInfo(layer_id, input_name) preferred_backends = [ann.BackendId('CpuAcc'), ann.BackendId('CpuRef')] options = ann.CreationOptions() runtime = ann.IRuntime(options) opt_network, messages = ann.Optimize(network, preferred_backends, runtime.GetDeviceSpec(), ann.OptimizerOptions()) assert 0 == len(messages) net_id, messages = runtime.LoadNetwork(opt_network) assert "" == messages # Load test image data stored in input_lite.npy input_tensor_data = np.load(os.path.join(shared_data_folder, 'deserializer/input_lite.npy')) input_tensors = ann.make_input_tensors([input_binding_info], [input_tensor_data]) output_tensors = [] out_bind_info = parser.GetNetworkOutputBindingInfo(layer_id, output_name) out_tensor_info = out_bind_info[1] out_tensor_id = out_bind_info[0] output_tensors.append((out_tensor_id, ann.Tensor(out_tensor_info))) runtime.EnqueueWorkload(net_id, input_tensors, output_tensors) output_vectors = [] for index, out_tensor in enumerate(output_tensors): output_vectors.append(out_tensor[1].get_memory_area()) # Load golden output file for result comparison. expected_outputs = np.load(os.path.join(shared_data_folder, 'deserializer/golden_output_lite.npy')) # Check that output matches golden output assert (expected_outputs == output_vectors[0]).all()
cloudbio/deploy/plugins/galaxy.py
glebkuznetsov/cloudbiolinux
122
12793068
from cloudbio.galaxy.tools import _install_application def install_tool(options): version = options.get("galaxy_tool_version") name = options.get("galaxy_tool_name") install_dir = options.get("galaxy_tool_dir", None) _install_application(name, version, tool_install_dir=install_dir) configure_actions = { "install_galaxy_tool": install_tool, }
fnss/adapters/__init__.py
brucespang/fnss
114
12793093
"""Tools for exporting and importing FNSS data structures (topologies, event schedules and traffic matrices) to/from other simulators or emulators """ from fnss.adapters.autonetkit import * from fnss.adapters.mn import * from fnss.adapters.ns2 import * from fnss.adapters.omnetpp import * from fnss.adapters.jfed import *
news/api.py
nicbou/markdown-notes
121
12793118
<reponame>nicbou/markdown-notes from django.conf.urls import url from django.http import HttpResponse from tastypie.authentication import ApiKeyAuthentication from tastypie.authorization import Authorization from tastypie.http import HttpForbidden from tastypie.resources import ModelResource from news.models import News class NewsResource(ModelResource): """ Get and update user profile, also serves as login route for retrieving the ApiKey. This resource doesn't have any listing route, the root route /user/ is redirected to retrieving the authenticated user's data. """ class Meta: authentication = ApiKeyAuthentication() authorization = Authorization() list_allowed_methods = ['get'] detail_allowed_methods = ['patch'] always_return_data = True include_resource_uri = False queryset = News.objects.all() fields = ['id', 'title', 'content', 'news_date'] def prepend_urls(self): return [ url(r"^(?P<resource_name>%s)/(?P<pk>.*?)/read/$" % self._meta.resource_name, self.wrap_view('mark_news_read'), name="api_mark_news_read"), ] def get_object_list(self, request): return super(NewsResource, self).get_object_list(request).exclude(user=request.user) def mark_news_read(self, request, **kwargs): """ Special view which enables to override the root route /user/ for accessing the data of currently authenticated user and not the listing of all users. :param request: :param kwargs: :return: """ self.method_check(request, allowed=['patch']) self.is_authenticated(request) user = getattr(request, 'user', None) if not user or user.is_anonymous(): return HttpForbidden() News.objects.get(pk=int(kwargs['pk'])).user.add(user) return HttpResponse(status=200)
tests/r/test_sparrows.py
hajime9652/observations
199
12793120
from __future__ import absolute_import from __future__ import division from __future__ import print_function import shutil import sys import tempfile from observations.r.sparrows import sparrows def test_sparrows(): """Test module sparrows.py by downloading sparrows.csv and testing shape of extracted data has 116 rows and 3 columns """ test_path = tempfile.mkdtemp() x_train, metadata = sparrows(test_path) try: assert x_train.shape == (116, 3) except: shutil.rmtree(test_path) raise()
CodeIA/venv/Lib/site-packages/coremltools/converters/mil/mil/ops/defs/random.py
Finasty-lab/IA-Python
11,356
12793137
# Copyright (c) 2020, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause from coremltools.converters.mil.mil.types.symbolic import any_symbolic from coremltools.converters.mil.mil import get_new_symbol, get_new_variadic_symbol from ._op_reqs import * """ Random Op Superclass """ class RandomDistribution(Operation): input_spec = InputSpec(shape=IntTensorInputType(),) def __init__(self, **kwargs): super(RandomDistribution, self).__init__(**kwargs) def type_inference(self): if any_symbolic(self.shape.shape): # We can't infer any shape if shape has variable length. return types.tensor(types.fp32, (get_new_variadic_symbol(),)) # shape has fixed length here. if self.shape.sym_val is None: shape = tuple([get_new_symbol() for _ in range(self.shape.shape[0])]) return types.tensor(types.fp32, shape) return types.tensor(types.fp32, tuple(self.shape.sym_val.tolist())) """ Random Op Implementation(s) """ @register_op( doc_str=r""" Returns a tensor with specified shape with random values from a Bernoulli distribution. .. math:: f(k) = \begin{cases}1-p &\text{if } k = 0\\ p &\text{if } k = 1\end{cases} for :math:`k` in :math:`\{0, 1\}`. Parameters ---------- shape: <K, i32>, required Target output tensor shape. K is the rank of the output tensor. shape[k] > 0 for k = 0,..., K-1. prob: const<f32>, optional The probability of sampling 1. Defaults to 0.5. seed: const<i32>, optional Seed to create a reproducible sequence of values across multiple invokes. Returns ------- <*, T>, a tensor of given target output shape filled with random values. See Also -------- random_categorical, random_normal, random_uniform """ ) class random_bernoulli(RandomDistribution): input_spec = ( InputSpec( shape=IntTensorInputType(), prob=FloatInputType(const=True, default=0.5), seed=IntInputType(const=True, default=-1), ) + RandomDistribution.input_spec ) def __init__(self, **kwargs): super(random_bernoulli, self).__init__(**kwargs) @register_op( doc_str=r""" Returns random values from a categorical distribution. Parameters ---------- shape: <*D_in, T> N-dimensional tensor, one of logits (event log-probabilities) or probs (event probabilities). The first N - 1 dimensions specifies distributions, the last dimension represents a vector of probabilities. mode: const<str>, optional One of ['logits', 'probs']. Defaults to 'logits'. size: const<i32>, optional Number of samples to draw. Defaults to 1. seed: const<i32>, optional Seed to create a reproducible sequence of values across multiple invokes. Returns ------- <*D_in[:-1] + [size], T>, a tensor of given target output shape filled with random values. See Also -------- random_bernoulli, random_normal, random_uniform """ ) class random_categorical(Operation): input_spec = InputSpec( x=TensorInputType(), mode=StringInputType(const=True, default="logits"), size=IntInputType(const=True, default=1), seed=IntInputType(const=True, default=-1), ) def __init__(self, **kwargs): super(random_categorical, self).__init__(**kwargs) def type_inference(self): output_shape = self.x.shape[:-1] + (self.size.val,) return types.tensor(types.fp32, output_shape) @register_op( doc_str=r""" Returns a tensor with specified shape with random values from a normal distribution. .. math:: f(x) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}} for a real number :math:`x`. Parameters ---------- shape: <K, i32>, required Target output tensor shape. K is the rank of the output tensor. shape[k] > 0 for k = 0,..., K-1. mean: const<f32>, optional The mean (center) of the normal distribution. Defaults to 0.0. stddev: const<f32>, optional The standard deviation (width) of the normal distribution. Defaults to 1.0. seed: const<i32>, optional Seed to create a reproducible sequence of values across multiple invokes. Returns ------- <*, T>, a tensor of given target output shape filled with random values. See Also -------- random_categorical, random_bernoulli, random_uniform """ ) class random_normal(RandomDistribution): input_spec = ( InputSpec( shape=IntTensorInputType(), mean=FloatInputType(const=True, default=0.0), stddev=FloatInputType(const=True, default=1.0), seed=IntInputType(const=True, default=-1), ) + RandomDistribution.input_spec ) def __init__(self, **kwargs): super(random_normal, self).__init__(**kwargs) @register_op( doc_str=r""" Returns a tensor with specified shape with random values from a normal distribution. .. math:: p(x) = \frac{1}{high - low} for a real number :math:`x`. Parameters ---------- shape: <K, i32>, required Target output tensor shape. K is the rank of the output tensor. shape[k] > 0 for k = 0,..., K-1. low: const<f32>, optional Lower boundary of the output interval (inclusive). Defaults to 0.0. high: const<f32>, optional Upper boundary of the output interval (exclusive). Defaults to 1.0. seed: const<i32>, optional Seed to create a reproducible sequence of values across multiple invokes. Returns ------- <*, T>, a tensor of given target output shape filled with random values. See Also -------- random_categorical, random_bernoulli, random_normal """ ) class random_uniform(RandomDistribution): input_spec = ( InputSpec( shape=IntTensorInputType(), low=FloatInputType(const=True, default=0.0), high=FloatInputType(const=True, default=1.0), seed=IntInputType(const=True, default=-1), ) + RandomDistribution.input_spec ) def __init__(self, **kwargs): super(random_uniform, self).__init__(**kwargs)
ch08/myproject_virtualenv/src/django-myproject/myproject/apps/ideas1/forms.py
PacktPublishing/Django-3-Web-Development-Cookbook
159
12793150
<reponame>PacktPublishing/Django-3-Web-Development-Cookbook from django import forms from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ from django.contrib.auth import get_user_model from crispy_forms import bootstrap, helper, layout from mptt.forms import TreeNodeChoiceField from myproject.apps.categories1.models import Category from .models import Idea, RATING_CHOICES from ..core.form_fields import MultipleChoiceTreeField User = get_user_model() class IdeaForm(forms.ModelForm): categories = MultipleChoiceTreeField( label=_("Categories"), required=False, queryset=Category.objects.all(), ) class Meta: model = Idea exclude = ["author"] def __init__(self, request, *args, **kwargs): self.request = request super().__init__(*args, **kwargs) title_field = layout.Field("title") content_field = layout.Field("content", rows="3") main_fieldset = layout.Fieldset(_("Main data"), title_field, content_field) picture_field = layout.Field("picture") format_html = layout.HTML( """{% include "ideas1/includes/picture_guidelines.html" %}""" ) picture_fieldset = layout.Fieldset( _("Picture"), picture_field, format_html, title=_("Image upload"), css_id="picture_fieldset", ) categories_field = layout.Field( "categories", template="core/includes/checkboxselectmultiple_tree.html" ) categories_fieldset = layout.Fieldset( _("Categories"), categories_field, css_id="categories_fieldset" ) submit_button = layout.Submit("save", _("Save")) actions = bootstrap.FormActions(submit_button, css_class="my-4") self.helper = helper.FormHelper() self.helper.form_action = self.request.path self.helper.form_method = "POST" self.helper.layout = layout.Layout( main_fieldset, picture_fieldset, categories_fieldset, actions, ) def save(self, commit=True): instance = super().save(commit=False) instance.author = self.request.user if commit: instance.save() self.save_m2m() return instance class IdeaFilterForm(forms.Form): author = forms.ModelChoiceField( label=_("Author"), required=False, queryset=User.objects.all(), ) category = TreeNodeChoiceField( label=_("Category"), required=False, queryset=Category.objects.all(), level_indicator=mark_safe("&nbsp;&nbsp;&nbsp;&nbsp;") ) rating = forms.ChoiceField( label=_("Rating"), required=False, choices=RATING_CHOICES ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) author_field = layout.Field("author") category_field = layout.Field("category") rating_field = layout.Field("rating") submit_button = layout.Submit("filter", _("Filter")) actions = bootstrap.FormActions(submit_button) main_fieldset = layout.Fieldset( _("Filter"), author_field, category_field, rating_field, actions, ) self.helper = helper.FormHelper() self.helper.form_method = "GET" self.helper.layout = layout.Layout(main_fieldset)
pypykatz/kerberos/functiondefs/asn1structs.py
wisdark/pypykatz
1,861
12793152
from asn1crypto import core from minikerberos.protocol.asn1_structs import krb5int32, APOptions, Ticket, EncryptedData, AP_REQ UNIVERSAL = 0 APPLICATION = 1 CONTEXT = 2 TAG = 'explicit' class MechType(core.ObjectIdentifier): _map = { #'': 'SNMPv2-SMI::enterprises.311.2.2.30', '1.3.6.1.4.1.311.2.2.10': 'NTLMSSP - Microsoft NTLM Security Support Provider', '1.2.840.48018.1.2.2' : 'MS KRB5 - Microsoft Kerberos 5', '1.2.840.113554.1.2.2' : 'KRB5 - Kerberos 5', '1.2.840.113554.1.2.2.3': 'KRB5 - Kerberos 5 - User to User', '1.3.6.1.4.1.311.2.2.30': 'NEGOEX - SPNEGO Extended Negotiation Security Mechanism', } class InitialContextToken(core.Sequence): class_ = 1 tag = 0 _fields = [ ('thisMech', MechType, {'optional': False}), ('unk_bool', core.Boolean, {'optional': False}), ('innerContextToken', core.Any, {'optional': False}), ] _oid_pair = ('thisMech', 'innerContextToken') _oid_specs = { 'KRB5 - Kerberos 5': AP_REQ, }
cli/src/klio_cli/commands/job/stop.py
gaybro8777/klio
705
12793186
# Copyright 2019-2020 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import datetime import logging import time import emoji from googleapiclient import discovery JOB_STATE_MAP = {"cancel": "JOB_STATE_CANCELLED", "drain": "JOB_STATE_DRAINED"} class StopJob(object): def __init__(self, api_version=None): self._set_dataflow_client(api_version) def _set_dataflow_client(self, api_version): if not api_version: api_version = "v1b3" self._client = discovery.build("dataflow", api_version) def _check_job_running(self, job_name, project, region): request = ( self._client.projects() .locations() .jobs() .list(projectId=project, location=region, filter="ACTIVE",) ) try: response = request.execute() except Exception as e: logging.warning( "Could not find running job '{}' in project '{}': {}".format( job_name, project, e ) ) logging.warning( "Continuing to attempt deploying '{}'".format(job_name) ) return job_results = response.get("jobs", []) if job_results: for result in job_results: if result["name"] == job_name: return result def _update_job_state(self, job, req_state=None, retries=None): if retries is None: retries = 0 _req_state = JOB_STATE_MAP.get(req_state, JOB_STATE_MAP["cancel"]) if job.get("requestedState") is not _req_state: job["requestedState"] = _req_state request = ( self._client.projects() .locations() .jobs() .update( jobId=job["id"], projectId=job["projectId"], location=job["location"], body=job, ) ) try: request.execute() except Exception as e: # generic catch if 4xx error - probably shouldn't retry if getattr(e, "resp", None): if e.resp.status < 500: msg = "Failed to {} job '{}': {}".format( req_state, job["name"], e ) logging.error(msg) raise SystemExit(1) if retries > 2: msg = "Max retries reached: could not {} job '{}': {}".format( req_state, job["name"], e ) logging.error(msg) raise SystemExit(1) logging.info( "Failed to {} job '{}'. Trying again after 30s...".format( req_state, job["name"] ) ) retries += 1 time.sleep(30) self._update_job_state(job, req_state, retries) def _watch_job_state(self, job, timeout=600): timeout = datetime.datetime.now() + datetime.timedelta(seconds=timeout) request = ( self._client.projects() .locations() .jobs() .get( jobId=job["id"], projectId=job["projectId"], location=job["location"], ) ) while datetime.datetime.now() < timeout: try: resp = request.execute() except Exception as e: msg = ( "Failed to get current status for job '{}'. Error: {}.\n" "Trying again after 5s...".format(job["name"], e) ) logging.info(msg) time.sleep(5) continue if resp["currentState"] in JOB_STATE_MAP.values(): return else: msg = "Waiting for job '{}' to reach terminal state...".format( job["name"] ) logging.info(msg) time.sleep(5) msg = "Job '{}' did not reach terminal state after '{}' secs.".format( job["name"], timeout ) logging.error(msg) raise SystemExit(1) def stop(self, job_name, project, region, strategy, api_version=None): self._set_dataflow_client(api_version) current_running_job = self._check_job_running( job_name, project, region ) if not current_running_job: return self._update_job_state(current_running_job, req_state=strategy) self._watch_job_state(current_running_job) verb = "cancelled" if strategy == "cancel" else "drained" msg = "Successfully {} job '{}' :smile_cat:".format(verb, job_name) logging.info(emoji.emojize(msg, use_aliases=True))
cv2/select-pixels-by-RGB/main.py
whitmans-max/python-examples
140
12793190
<gh_stars>100-1000 #!/usr/bin/env python3 # date: 2019.09.24 # https://stackoverflow.com/questions/58085439/opencv-extract-pixels-with-rbg/ # replaca pixel when `R > G > B` import cv2 import numpy as np img = cv2.imread('/home/furas/Obrazy/images/image.png') # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img[ (img[:,:,2] > img[:,:,1]) & (img[:,:,1] > img[:,:,0]) ] = 0 cv2.imshow('image', img) cv2.waitKey(0)
transistor/persistence/__init__.py
awesome-archive/transistor
232
12793224
# -*- coding: utf-8 -*- """ transistor.persistence ~~~~~~~~~~~~ This module implements classes and methods to aid persistence, including database, spreadsheet export, write to file. :copyright: Copyright (C) 2018 by BOM Quote Limited :license: The MIT License, see LICENSE for more details. ~~~~~~~~~~~~ """ from .exporters import (PprintItemExporter, PickleItemExporter, PythonItemExporter, CsvItemExporter, MarshalItemExporter, BaseItemExporter) from .containers import SplashScraperItems from .item import Item, Field from .newt_db.newt_crud import get_job_results, delete_job __all__ = ['delete_job', 'Field', 'get_job_results', 'Item', 'PprintItemExporter', 'PickleItemExporter', 'PythonItemExporter', 'CsvItemExporter', 'MarshalItemExporter', 'BaseItemExporter', 'SplashScraperItems']
plugins/nmap.py
hack654a/w12scan-client
159
12793246
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2019/1/21 10:05 PM # @Author : w8ay # @File : nmap.py import nmap from lib.data import logger def nmapscan(host, ports): # 接受从masscan上扫描出来的结果 # 为了可以多线程使用,此函数支持多线程调用 nm = nmap.PortScanner() argument = "-sV -sS -Pn --host-timeout 1m -p{}".format(','.join(ports)) try: ret = nm.scan(host, arguments=argument) except nmap.PortScannerError: logger.debug("Nmap PortScannerError host:{}".format(host)) return None except: return None # debug elapsed = ret["nmap"]["scanstats"]["elapsed"] command_line = ret["nmap"]["command_line"] logger.debug("[nmap] successed,elapsed:%s command_line:%s" % (elapsed, command_line)) if host in ret["scan"]: try: result = ret["scan"][host]["tcp"] except KeyError: return None return result return None
src/poliastro/frames/enums.py
sundeshgupta/poliastro
634
12793288
"""Coordinate frames definitions. """ from enum import Enum class Planes(Enum): EARTH_EQUATOR = "Earth mean Equator and Equinox of epoch (J2000.0)" EARTH_ECLIPTIC = "Earth mean Ecliptic and Equinox of epoch (J2000.0)" BODY_FIXED = "Rotating body mean Equator and node of date"
distributed_dp/dme_run.py
garyxcheng/federated
330
12793318
<filename>distributed_dp/dme_run.py # Copyright 2021, Google LLC. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Run script for distributed mean estimation.""" import os import pprint from absl import app from absl import flags import matplotlib.pyplot as plt import numpy as np import scipy.stats import tensorflow as tf import tensorflow_privacy as tfp from distributed_dp import accounting_utils from distributed_dp import ddpquery_utils from distributed_dp import dme_utils flags.DEFINE_boolean('show_plot', False, 'Whether to plot the results.') flags.DEFINE_boolean('print_output', False, 'Whether to print the outputs.') flags.DEFINE_integer( 'run_id', 1, 'ID of the run, useful for identifying ' 'the run when parallelizing this script.') flags.DEFINE_integer('repeat', 5, 'Number of times to repeat (sequentially).') flags.DEFINE_string('output_dir', '/tmp/ddp_dme_outputs', 'Output directory.') flags.DEFINE_string('tag', '', 'Extra subfolder for the output result files.') flags.DEFINE_enum('mechanism', 'ddgauss', ['ddgauss'], 'DDP mechanism to use.') flags.DEFINE_float('norm', 10.0, 'Norm of the randomly generated vectors.') flags.DEFINE_integer( 'k_stddevs', 2, 'Number of standard deviations of the ' 'noised, quantized, aggregated siginal to bound.') flags.DEFINE_boolean( 'sqrtn_norm_growth', False, 'Whether to assume the bound ' 'norm(sum_i x_i) <= sqrt(n) * c.') FLAGS = flags.FLAGS def experiment(bits, clip, beta, client_data, epsilons, delta, mechanism, k_stddevs=2, sqrtn_norm_growth=False): """Run a distributed mean estimation experiment. Args: bits: A list of compression bits to use. clip: The initial L2 norm clip. beta: A hyperparameter controlling the concentration inequality for the probabilistic norm bound after randomized rounding. client_data: A Python list of `n` np.array vectors, each with shape (d,). epsilons: A list of target epsilon values for comparison (serve as x-axis). delta: The delta for approximate DP. mechanism: A string specifying the mechanism to compare against Gaussian. k_stddevs: The number of standard deviations to keep for modular clipping. Defaults to 2. sqrtn_norm_growth: Whether to assume the norm of the sum of the vectors grow at a rate of `sqrt(n)` (i.e. norm(sum_i x_i) <= sqrt(n) * c). If `False`, we use the upper bound `norm(sum_i x_i) <= n * c`. Returns: Experiment results as lists of MSE. """ def mse(a, b): assert a.shape == b.shape return np.square(a - b).mean() # Initial fixed params. num_clients = len(client_data) d = len(client_data[0]) padded_dim = np.math.pow(2, np.ceil(np.log2(d))) client_template = tf.zeros_like(client_data[0]) # `client_data` has shape (n, d). true_avg_vector = np.mean(client_data, axis=0) # 1. Baseline: central continuous Gaussian. gauss_mse_list = [] for eps in epsilons: # Analytic Gaussian. gauss_stddev = accounting_utils.analytic_gauss_stddev(eps, delta, clip) gauss_query = tfp.GaussianSumQuery(l2_norm_clip=clip, stddev=gauss_stddev) gauss_avg_vector = dme_utils.compute_dp_average( client_data, gauss_query, is_compressed=False, bits=None) gauss_mse_list.append(mse(gauss_avg_vector, true_avg_vector)) # 2. Distributed DP: try each `b` separately. ddp_mse_list_per_bit = [] for bit in bits: discrete_mse_list = [] for eps in epsilons: if mechanism == 'ddgauss': gamma, local_stddev = accounting_utils.ddgauss_params( q=1, epsilon=eps, l2_clip_norm=clip, bits=bit, num_clients=num_clients, dim=padded_dim, delta=delta, beta=beta, steps=1, k=k_stddevs, sqrtn_norm_growth=sqrtn_norm_growth) scale = 1.0 / gamma else: raise ValueError(f'Unsupported mechanism: {mechanism}') ddp_query = ddpquery_utils.build_ddp_query( mechanism, local_stddev, l2_norm_bound=clip, beta=beta, padded_dim=padded_dim, scale=scale, client_template=client_template) distributed_avg_vector = dme_utils.compute_dp_average( client_data, ddp_query, is_compressed=True, bits=bit) discrete_mse_list.append(mse(distributed_avg_vector, true_avg_vector)) ddp_mse_list_per_bit.append(discrete_mse_list) # Convert to np arrays and do some checks gauss_mse_list = np.array(gauss_mse_list) ddp_mse_list_per_bit = np.array(ddp_mse_list_per_bit) assert gauss_mse_list.shape == (len(epsilons),) assert ddp_mse_list_per_bit.shape == (len(bits), len(epsilons)) return gauss_mse_list, ddp_mse_list_per_bit def experiment_repeated(bits, clip, beta, client_data_list, repeat, epsilons, delta, mechanism, k_stddevs=2, sqrtn_norm_growth=False): """Sequentially repeat the experiment (see `experiment()` for parameters).""" assert len(client_data_list) == repeat n, d = len(client_data_list[0]), len(client_data_list[0][0]) print(f'Sequentially repeating the experiment {len(client_data_list)} times ' f'for n={n}, d={d}, mechanism={mechanism}, c={clip}, bits={bits}, beta=' f'{beta:.3f}, eps={epsilons}, k={k_stddevs}, sng={sqrtn_norm_growth}') repeat_results = [] for client_data in client_data_list: repeat_results.append( experiment( bits=bits, clip=clip, beta=beta, client_data=client_data, epsilons=epsilons, delta=delta, mechanism=mechanism, k_stddevs=k_stddevs, sqrtn_norm_growth=sqrtn_norm_growth)) repeat_gauss_mse_list, repeat_ddp_mse_list_per_bit = zip(*repeat_results) repeat_gauss_mse_list = np.array(repeat_gauss_mse_list) repeat_ddp_mse_list_per_bit = np.array(repeat_ddp_mse_list_per_bit) assert len(repeat_results) == repeat assert repeat_gauss_mse_list.shape == (repeat, len(epsilons)) assert (repeat_ddp_mse_list_per_bit.shape == (repeat, len(bits), len(epsilons))) return repeat_gauss_mse_list, repeat_ddp_mse_list_per_bit def mean_confidence_interval(data, confidence=0.95): # `data` should have shape (repeat, len(x-axis)). n = len(data) m, se = np.mean(data, axis=0), scipy.stats.sem(data, axis=0) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1) return m, m - h, m + h def plot_curve(subplot, epsilons, data, label): assert len(data.shape) == 2, 'data should be (repeat, len(x-axis))' means, lower, upper = mean_confidence_interval(data) subplot.plot(epsilons, means, label=label) subplot.fill_between(epsilons, lower, upper, alpha=0.2, edgecolor='face') def main(_): """Run distributed mean estimation experiments.""" clip = FLAGS.norm delta = 1e-5 use_log = True # Whether to use log-scale for y-axis. k_stddevs = FLAGS.k_stddevs sqrtn_norm_growth = FLAGS.sqrtn_norm_growth repeat = FLAGS.repeat # Parallel subplots for different n=num_clients and d=dimension. nd_zip = [(100, 250), (1000, 250)] # nd_zip = [(10000, 2000)] # Curves within a subplot. bits = [10, 12, 14, 16] # bits = [14, 16, 18, 20] # X-axis: epsilons. epsilons = [0.75] + list(np.arange(1, 6.5, 0.5)) _, ax = plt.subplots(1, max(2, len(nd_zip)), figsize=(20, 5)) results = [] for j, (n, d) in enumerate(nd_zip): client_data_list = [ dme_utils.generate_client_data(d, n, l2_norm=clip) for _ in range(repeat) ] beta = np.exp(-0.5) # Run experiment with repetition. rep_gauss_mse_list, rep_ddp_mse_list_per_bit = experiment_repeated( bits, clip, beta, client_data_list, repeat, epsilons, delta, mechanism=FLAGS.mechanism, k_stddevs=k_stddevs, sqrtn_norm_growth=sqrtn_norm_growth) # Generate some basic plots here. Use the saved results to generate plots # with custom style if needed. if FLAGS.show_plot: subplot = ax[j] # Continuous Gaussian. plot_curve( subplot, epsilons, rep_gauss_mse_list, label='Continuous Gaussian') # Distributed DP. for index, bit in enumerate(bits): plot_curve( subplot, epsilons, rep_ddp_mse_list_per_bit[:, index], label=f'{FLAGS.mechanism} (B = {bit})') subplot.set(xlabel='Epsilon', ylabel='MSE') subplot.set_title(f'(n={n}, d={d}, k={k_stddevs})') subplot.set_yscale('log' if use_log else 'linear') subplot.legend() result_dic = { 'n': n, 'd': d, 'rep': repeat, 'c': clip, 'bits': bits, 'k_stddevs': k_stddevs, 'epsilons': epsilons, 'mechanism': FLAGS.mechanism, 'sqrtn_norm_growth': sqrtn_norm_growth, 'gauss': rep_gauss_mse_list, FLAGS.mechanism: rep_ddp_mse_list_per_bit, } results.append(result_dic) if FLAGS.print_output: print(f'n={n}, d={d}:') pprint.pprint(result_dic) # Save to file. fname = f'rp={repeat},rid={FLAGS.run_id}.txt' fname = fname.replace(' ', '') result_str = pprint.pformat(results) dirname = os.path.join(FLAGS.output_dir, FLAGS.tag) if not os.path.exists(dirname): os.makedirs(dirname) out_path = os.path.join(dirname, fname) with open(out_path, 'w') as f: f.write(result_str) print('Results saved to', out_path) if FLAGS.print_output: print('*' * 80) print(fname) print('*' * 10 + 'Results (copy and `eval()` in Python):') print(result_str) print('*' * 80) print('Copy the above results and `eval()` them as a string in Python.') if FLAGS.show_plot: plt.show() print(f'Run {FLAGS.run_id} done.') if __name__ == '__main__': app.run(main)
LeetCode/1365_How_Many_Numbers_Are_Smaller_Than_the_Current_Number.py
Achyut-sudo/PythonAlgorithms
144
12793355
<filename>LeetCode/1365_How_Many_Numbers_Are_Smaller_Than_the_Current_Number.py<gh_stars>100-1000 class Solution: def smallerNumbersThanCurrent(self, nums: List[int]) -> List[int]: ans = [] for i in range(0, len(nums)): soln = 0 for j in range(0, len(nums)): if(nums[j] < nums[i] and j != i): soln += 1 ans. append(soln) return ans
xs/utils/data/dataset.py
eLeVeNnN/xshinnosuke
290
12793408
<filename>xs/utils/data/dataset.py class DataSet: def __init__(self, *datas): self.datas = list(datas) def __len__(self): return len(self.datas[0]) def __getitem__(self, item): ret_list = [] for data in self.datas: ret_list.append(data[item]) return ret_list
mmdet/core/utils/__init__.py
JustWeZero/mmdetection
314
12793418
# Copyright (c) OpenMMLab. All rights reserved. from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads, reduce_mean) from .misc import (center_of_mass, flip_tensor, generate_coordinate, mask2ndarray, multi_apply, unmap) __all__ = [ 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply', 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict', 'center_of_mass', 'generate_coordinate' ]