dev7halo's picture
Add new SentenceTransformer model.
bba96c5 verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:600313
  - loss:MultipleNegativesRankingLoss
  - loss:CosineSimilarityLoss
base_model: klue/roberta-base
datasets: []
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: 사람은 무언가를 창조했다.
    sentences:
      -  남자가 악한 시기의 소동을 재현한다.
      -  사람이 고속도로에서 오토바이를 타고 있다
      -   마리가 있다.
  - source_sentence: 모리스는  많은 것을 얻을  있을 만큼, 표면을 관통하는 독을 찾기 위해 조금  깊이 들어갔을 만큼 레우처와 가까웠다.
    sentences:
      - 키가 크다는 뜻인가요, 짧다는 뜻인가요?
      - 모리스와 르우히터는 긴장된 관계를 맺고 있었고,   동안 이야기를 나누지 않았다.
      - 모리스는 루치터로부터  많은 정보를 얻을  있었어야 했다.
  - source_sentence: 나는 확신할  없지만 그것이 전부라고 생각한다.
    sentences:
      - 음-흠 음,  생각엔 그게 다인  같아.
      - 대사를   암송해 주십시오.
      - FDA는 1997 6 1일까지 발효일을 연장했으며   1 동안 설계 제어 요건을 규제하지 않을 것입니다.
  - source_sentence: 트램을 이용해 다른 스팟으로의 이동도 좋은 편입니다.
    sentences:
      - 알려줘. 이번 태풍 진행 방향이 어디인지.
      - 사진으로 보는  만큼이나 좋은 숙소입니다
      - 슬플 때는 빗속을 달려봐. 참는건 안돼.
  - source_sentence: >-
      한국기후·환경네트워크는 콘텐츠 기획 및 개발과 인센티브 제공 등 앱 운영을 주관하고 한국환경공단, 한국환경산업기술원은 앱 제작물
      개발과 운영예산 등을 지원한다.
    sentences:
      - >-
        한국기후환경네트워크는 콘텐츠 기획, 개발, 인센티브 등 앱 운영을 관리하고, 한국환경공단과 한국환경산업기술원은 앱 개발 및 운영
        예산을 지원합니다.
      -  수치는 2015 메르스의 30퍼센트 감소에서   이상 증가했습니다.
      -  사람이 집에 머무는  불편함이 없습니다.
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on klue/roberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.9624678457183204
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.9261175261590585
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.9524817581692175
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.9224105408224054
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.9524895420144286
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.922316316791248
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.9525268146709863
            name: Pearson Dot
          - type: spearman_dot
            value: 0.9109078605792271
            name: Spearman Dot
          - type: pearson_max
            value: 0.9624678457183204
            name: Pearson Max
          - type: spearman_max
            value: 0.9261175261590585
            name: Spearman Max

SentenceTransformer based on klue/roberta-base

This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: klue/roberta-base
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("dev7halo/Ko-sroberta-base-multitask")
# Run inference
sentences = [
    '한국기후·환경네트워크는 콘텐츠 기획 및 개발과 인센티브 제공 등 앱 운영을 주관하고 한국환경공단, 한국환경산업기술원은 앱 제작물 개발과 운영예산 등을 지원한다.',
    '한국기후환경네트워크는 콘텐츠 기획, 개발, 인센티브 등 앱 운영을 관리하고, 한국환경공단과 한국환경산업기술원은 앱 개발 및 운영 예산을 지원합니다.',
    '그 수치는 2015년 메르스의 30퍼센트 감소에서 두 배 이상 증가했습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9625
spearman_cosine 0.9261
pearson_manhattan 0.9525
spearman_manhattan 0.9224
pearson_euclidean 0.9525
spearman_euclidean 0.9223
pearson_dot 0.9525
spearman_dot 0.9109
pearson_max 0.9625
spearman_max 0.9261

Training Details

Training Datasets

Unnamed Dataset

  • Size: 588,126 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 4 tokens
    • mean: 19.08 tokens
    • max: 128 tokens
    • min: 4 tokens
    • mean: 18.94 tokens
    • max: 122 tokens
    • min: 5 tokens
    • mean: 14.88 tokens
    • max: 53 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    바에서 호박을 곁들인 음료를 준비하는 여성 바텐더 바텐더가 술을 만들고 있다. 여자가 보드카를 마시고 있다.
    두 남자가 낮에 구조물 근처를 걷고 있다. 아름다운 화창한 날 건물을 산책하는 두 남자. 남자 몇 명이 코이와 함께 연못에서 수영을 하고 있다.
    두 사람이 꽃으로 둘러싸인 야외에 있다. 한 남자와 그의 딸이 밝은 색의 노란 꽃밭에서 사진을 찍기 위해 포즈를 취하고 있다. 두 남자가 농구를 하고 있다.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Unnamed Dataset

  • Size: 12,187 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 5 tokens
    • mean: 20.56 tokens
    • max: 70 tokens
    • min: 7 tokens
    • mean: 20.1 tokens
    • max: 68 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    강원영서 지역은 언제 옵니까? 소나기. 라니냐가 일어날 때 해수면은 몇 도 정도 하강해? 0.0
    4월 ‘과학의 달’을 맞아 한 달 동안 언제 어디서나 과학기술을 즐길 수 있는 온라인 과학축제가 열린다. 4월의 "과학의 달"을 맞아, 언제 어디서나 한 달 동안 과학기술을 즐길 수 있는 온라인 과학 축제가 열릴 것입니다. 0.9199999999999999
    호스트가 아닌 리스본 컨시어지에서 관리를 하는거라 전문적으로 관리되는 숙소입니다. 이 숙소는 전문적으로 관리되며, 호스트가 아닌 리스본 컨시어지가 관리합니다. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step sts-dev_spearman_max
1.0052 193 0.9215
2.0052 386 0.9261

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.2
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}