metadata
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600313
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 사람은 무언가를 창조했다.
sentences:
- 한 남자가 악한 시기의 소동을 재현한다.
- 한 사람이 고속도로에서 오토바이를 타고 있다
- 개 두 마리가 있다.
- source_sentence: 모리스는 더 많은 것을 얻을 수 있을 만큼, 표면을 관통하는 독을 찾기 위해 조금 더 깊이 들어갔을 만큼 레우처와 가까웠다.
sentences:
- 키가 크다는 뜻인가요, 짧다는 뜻인가요?
- 모리스와 르우히터는 긴장된 관계를 맺고 있었고, 몇 년 동안 이야기를 나누지 않았다.
- 모리스는 루치터로부터 더 많은 정보를 얻을 수 있었어야 했다.
- source_sentence: 나는 확신할 수 없지만 그것이 전부라고 생각한다.
sentences:
- 음-흠 음, 내 생각엔 그게 다인 것 같아.
- 대사를 좀 더 암송해 주십시오.
- FDA는 1997년 6월 1일까지 발효일을 연장했으며 그 후 1년 동안 설계 제어 요건을 규제하지 않을 것입니다.
- source_sentence: 트램을 이용해 다른 스팟으로의 이동도 좋은 편입니다.
sentences:
- 알려줘. 이번 태풍 진행 방향이 어디인지.
- 사진으로 보는 것 만큼이나 좋은 숙소입니다
- 슬플 때는 빗속을 달려봐. 참는건 안돼.
- source_sentence: >-
한국기후·환경네트워크는 콘텐츠 기획 및 개발과 인센티브 제공 등 앱 운영을 주관하고 한국환경공단, 한국환경산업기술원은 앱 제작물
개발과 운영예산 등을 지원한다.
sentences:
- >-
한국기후환경네트워크는 콘텐츠 기획, 개발, 인센티브 등 앱 운영을 관리하고, 한국환경공단과 한국환경산업기술원은 앱 개발 및 운영
예산을 지원합니다.
- 그 수치는 2015년 메르스의 30퍼센트 감소에서 두 배 이상 증가했습니다.
- 두 사람이 집에 머무는 데 불편함이 없습니다.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9624678457183204
name: Pearson Cosine
- type: spearman_cosine
value: 0.9261175261590585
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9524817581692175
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9224105408224054
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9524895420144286
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.922316316791248
name: Spearman Euclidean
- type: pearson_dot
value: 0.9525268146709863
name: Pearson Dot
- type: spearman_dot
value: 0.9109078605792271
name: Spearman Dot
- type: pearson_max
value: 0.9624678457183204
name: Pearson Max
- type: spearman_max
value: 0.9261175261590585
name: Spearman Max
SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dev7halo/Ko-sroberta-base-multitask")
# Run inference
sentences = [
'한국기후·환경네트워크는 콘텐츠 기획 및 개발과 인센티브 제공 등 앱 운영을 주관하고 한국환경공단, 한국환경산업기술원은 앱 제작물 개발과 운영예산 등을 지원한다.',
'한국기후환경네트워크는 콘텐츠 기획, 개발, 인센티브 등 앱 운영을 관리하고, 한국환경공단과 한국환경산업기술원은 앱 개발 및 운영 예산을 지원합니다.',
'그 수치는 2015년 메르스의 30퍼센트 감소에서 두 배 이상 증가했습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9625 |
spearman_cosine | 0.9261 |
pearson_manhattan | 0.9525 |
spearman_manhattan | 0.9224 |
pearson_euclidean | 0.9525 |
spearman_euclidean | 0.9223 |
pearson_dot | 0.9525 |
spearman_dot | 0.9109 |
pearson_max | 0.9625 |
spearman_max | 0.9261 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 588,126 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 19.08 tokens
- max: 128 tokens
- min: 4 tokens
- mean: 18.94 tokens
- max: 122 tokens
- min: 5 tokens
- mean: 14.88 tokens
- max: 53 tokens
- Samples:
sentence_0 sentence_1 sentence_2 바에서 호박을 곁들인 음료를 준비하는 여성 바텐더
바텐더가 술을 만들고 있다.
여자가 보드카를 마시고 있다.
두 남자가 낮에 구조물 근처를 걷고 있다.
아름다운 화창한 날 건물을 산책하는 두 남자.
남자 몇 명이 코이와 함께 연못에서 수영을 하고 있다.
두 사람이 꽃으로 둘러싸인 야외에 있다.
한 남자와 그의 딸이 밝은 색의 노란 꽃밭에서 사진을 찍기 위해 포즈를 취하고 있다.
두 남자가 농구를 하고 있다.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 12,187 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 20.56 tokens
- max: 70 tokens
- min: 7 tokens
- mean: 20.1 tokens
- max: 68 tokens
- min: 0.0
- mean: 0.45
- max: 1.0
- Samples:
sentence_0 sentence_1 label 강원영서 지역은 언제 옵니까? 소나기.
라니냐가 일어날 때 해수면은 몇 도 정도 하강해?
0.0
4월 ‘과학의 달’을 맞아 한 달 동안 언제 어디서나 과학기술을 즐길 수 있는 온라인 과학축제가 열린다.
4월의 "과학의 달"을 맞아, 언제 어디서나 한 달 동안 과학기술을 즐길 수 있는 온라인 과학 축제가 열릴 것입니다.
0.9199999999999999
호스트가 아닌 리스본 컨시어지에서 관리를 하는거라 전문적으로 관리되는 숙소입니다.
이 숙소는 전문적으로 관리되며, 호스트가 아닌 리스본 컨시어지가 관리합니다.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | sts-dev_spearman_max |
---|---|---|
1.0052 | 193 | 0.9215 |
2.0052 | 386 | 0.9261 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}