dev7halo's picture
Add new SentenceTransformer model.
bba96c5 verified
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:600313
- loss:MultipleNegativesRankingLoss
- loss:CosineSimilarityLoss
base_model: klue/roberta-base
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 사람은 무언가를 창조했다.
sentences:
- 남자가 악한 시기의 소동을 재현한다.
- 사람이 고속도로에서 오토바이를 타고 있다
- 마리가 있다.
- source_sentence: 모리스는 많은 것을 얻을 있을 만큼, 표면을 관통하는 독을 찾기 위해 조금 깊이 들어갔을 만큼 레우처와
가까웠다.
sentences:
- 키가 크다는 뜻인가요, 짧다는 뜻인가요?
- 모리스와 르우히터는 긴장된 관계를 맺고 있었고, 동안 이야기를 나누지 않았다.
- 모리스는 루치터로부터 많은 정보를 얻을 있었어야 했다.
- source_sentence: 나는 확신할 없지만 그것이 전부라고 생각한다.
sentences:
- 음-흠 음, 생각엔 그게 다인 같아.
- 대사를 암송해 주십시오.
- FDA는 1997 6 1일까지 발효일을 연장했으며 1 동안 설계 제어 요건을 규제하지 않을 것입니다.
- source_sentence: 트램을 이용해 다른 스팟으로의 이동도 좋은 편입니다.
sentences:
- 알려줘. 이번 태풍 진행 방향이 어디인지.
- 사진으로 보는 만큼이나 좋은 숙소입니다
- 슬플 때는 빗속을 달려봐. 참는건 안돼.
- source_sentence: 한국기후·환경네트워크는 콘텐츠 기획 개발과 인센티브 제공 운영을 주관하고 한국환경공단, 한국환경산업기술원은
제작물 개발과 운영예산 등을 지원한다.
sentences:
- 한국기후환경네트워크는 콘텐츠 기획, 개발, 인센티브 운영을 관리하고, 한국환경공단과 한국환경산업기술원은 개발 운영 예산을 지원합니다.
- 수치는 2015 메르스의 30퍼센트 감소에서 이상 증가했습니다.
- 사람이 집에 머무는 불편함이 없습니다.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9624678457183204
name: Pearson Cosine
- type: spearman_cosine
value: 0.9261175261590585
name: Spearman Cosine
- type: pearson_manhattan
value: 0.9524817581692175
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9224105408224054
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9524895420144286
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.922316316791248
name: Spearman Euclidean
- type: pearson_dot
value: 0.9525268146709863
name: Pearson Dot
- type: spearman_dot
value: 0.9109078605792271
name: Spearman Dot
- type: pearson_max
value: 0.9624678457183204
name: Pearson Max
- type: spearman_max
value: 0.9261175261590585
name: Spearman Max
---
# SentenceTransformer based on klue/roberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dev7halo/Ko-sroberta-base-multitask")
# Run inference
sentences = [
'한국기후·환경네트워크는 콘텐츠 기획 및 개발과 인센티브 제공 등 앱 운영을 주관하고 한국환경공단, 한국환경산업기술원은 앱 제작물 개발과 운영예산 등을 지원한다.',
'한국기후환경네트워크는 콘텐츠 기획, 개발, 인센티브 등 앱 운영을 관리하고, 한국환경공단과 한국환경산업기술원은 앱 개발 및 운영 예산을 지원합니다.',
'그 수치는 2015년 메르스의 30퍼센트 감소에서 두 배 이상 증가했습니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.9625 |
| spearman_cosine | 0.9261 |
| pearson_manhattan | 0.9525 |
| spearman_manhattan | 0.9224 |
| pearson_euclidean | 0.9525 |
| spearman_euclidean | 0.9223 |
| pearson_dot | 0.9525 |
| spearman_dot | 0.9109 |
| pearson_max | 0.9625 |
| **spearman_max** | **0.9261** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### Unnamed Dataset
* Size: 588,126 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 19.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 18.94 tokens</li><li>max: 122 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.88 tokens</li><li>max: 53 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 |
|:-----------------------------------------|:-------------------------------------------------------------|:--------------------------------------------|
| <code>바에서 호박을 곁들인 음료를 준비하는 여성 바텐더</code> | <code>바텐더가 술을 만들고 있다.</code> | <code>여자가 보드카를 마시고 있다.</code> |
| <code>두 남자가 낮에 구조물 근처를 걷고 있다.</code> | <code>아름다운 화창한 날 건물을 산책하는 두 남자.</code> | <code>남자 몇 명이 코이와 함께 연못에서 수영을 하고 있다.</code> |
| <code>두 사람이 꽃으로 둘러싸인 야외에 있다.</code> | <code>한 남자와 그의 딸이 밝은 색의 노란 꽃밭에서 사진을 찍기 위해 포즈를 취하고 있다.</code> | <code>두 남자가 농구를 하고 있다.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### Unnamed Dataset
* Size: 12,187 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 20.56 tokens</li><li>max: 70 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.1 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------|
| <code>강원영서 지역은 언제 옵니까? 소나기.</code> | <code>라니냐가 일어날 때 해수면은 몇 도 정도 하강해?</code> | <code>0.0</code> |
| <code>4월 ‘과학의 달’을 맞아 한 달 동안 언제 어디서나 과학기술을 즐길 수 있는 온라인 과학축제가 열린다.</code> | <code>4월의 "과학의 달"을 맞아, 언제 어디서나 한 달 동안 과학기술을 즐길 수 있는 온라인 과학 축제가 열릴 것입니다.</code> | <code>0.9199999999999999</code> |
| <code>호스트가 아닌 리스본 컨시어지에서 관리를 하는거라 전문적으로 관리되는 숙소입니다.</code> | <code>이 숙소는 전문적으로 관리되며, 호스트가 아닌 리스본 컨시어지가 관리합니다.</code> | <code>0.76</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | sts-dev_spearman_max |
|:------:|:----:|:--------------------:|
| 1.0052 | 193 | 0.9215 |
| 2.0052 | 386 | 0.9261 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->