metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: Google_bert-base-uncased
results: []
Google_bert-base-uncased
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0596
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2234 | 0.024 | 30 | 0.9557 |
0.4601 | 0.048 | 60 | 0.4359 |
0.3149 | 0.072 | 90 | 0.2795 |
0.2403 | 0.096 | 120 | 0.2142 |
0.1876 | 0.12 | 150 | 0.1714 |
0.1691 | 0.144 | 180 | 0.1488 |
0.1394 | 0.168 | 210 | 0.1273 |
0.1264 | 0.192 | 240 | 0.1160 |
0.1113 | 0.216 | 270 | 0.1079 |
0.1148 | 0.24 | 300 | 0.0992 |
0.0995 | 0.264 | 330 | 0.0940 |
0.096 | 0.288 | 360 | 0.0941 |
0.0954 | 0.312 | 390 | 0.0854 |
0.089 | 0.336 | 420 | 0.0899 |
0.0826 | 0.36 | 450 | 0.0841 |
0.0872 | 0.384 | 480 | 0.0811 |
0.0794 | 0.408 | 510 | 0.0759 |
0.0756 | 0.432 | 540 | 0.0766 |
0.0826 | 0.456 | 570 | 0.0729 |
0.0841 | 0.48 | 600 | 0.0715 |
0.076 | 0.504 | 630 | 0.0737 |
0.0746 | 0.528 | 660 | 0.0691 |
0.0719 | 0.552 | 690 | 0.0697 |
0.0722 | 0.576 | 720 | 0.0673 |
0.0713 | 0.6 | 750 | 0.0656 |
0.0671 | 0.624 | 780 | 0.0652 |
0.0741 | 0.648 | 810 | 0.0675 |
0.0723 | 0.672 | 840 | 0.0663 |
0.0687 | 0.696 | 870 | 0.0649 |
0.067 | 0.72 | 900 | 0.0637 |
0.0623 | 0.744 | 930 | 0.0643 |
0.0599 | 0.768 | 960 | 0.0643 |
0.0686 | 0.792 | 990 | 0.0624 |
0.0638 | 0.816 | 1020 | 0.0623 |
0.0565 | 0.84 | 1050 | 0.0626 |
0.0614 | 0.864 | 1080 | 0.0615 |
0.063 | 0.888 | 1110 | 0.0592 |
0.0592 | 0.912 | 1140 | 0.0618 |
0.0687 | 0.936 | 1170 | 0.0618 |
0.0577 | 0.96 | 1200 | 0.0600 |
0.0629 | 0.984 | 1230 | 0.0596 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu118
- Datasets 2.20.0
- Tokenizers 0.19.1