Llama-3-8B-Adapters / README.md
dhanishetty's picture
dhanishetty/llama_adapters
a35a022 verified
---
base_model: meta-llama/Meta-Llama-3-8B
library_name: peft
license: llama3
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama-qLoRA
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/dhanishetty-personaluse/huggingface/runs/cdhku7u3)
# llama-qLoRA
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9713
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9835 | 0.3350 | 500 | 2.0047 |
| 1.97 | 0.6700 | 1000 | 1.9901 |
| 1.9764 | 1.0050 | 1500 | 1.9838 |
| 1.9714 | 1.3400 | 2000 | 1.9799 |
| 1.9547 | 1.6750 | 2500 | 1.9770 |
| 1.981 | 2.0101 | 3000 | 1.9747 |
| 1.9841 | 2.3451 | 3500 | 1.9729 |
| 1.9469 | 2.6801 | 4000 | 1.9713 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1