dianamihalache27's picture
End of training
da923d2 verified
metadata
base_model: vinai/bertweet-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bertweet-base_3epoch10
    results: []

bertweet-base_3epoch10

This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7005
  • Accuracy: 0.7392
  • F1: 0.4217
  • Precision: 0.5789
  • Recall: 0.3317
  • Precision Sarcastic: 0.5789
  • Recall Sarcastic: 0.3317
  • F1 Sarcastic: 0.4217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Precision Sarcastic Recall Sarcastic F1 Sarcastic
No log 1.0 174 1.3971 0.7493 0.4 0.6374 0.2915 0.6374 0.2915 0.4
No log 2.0 348 1.0371 0.7334 0.3854 0.5686 0.2915 0.5686 0.2915 0.3854
0.0617 3.0 522 1.6060 0.7147 0.4277 0.5034 0.3719 0.5034 0.3719 0.4277
0.0617 4.0 696 1.3603 0.7464 0.4172 0.6117 0.3166 0.6117 0.3166 0.4172
0.0617 5.0 870 1.5872 0.7478 0.4373 0.6071 0.3417 0.6071 0.3417 0.4373
0.032 6.0 1044 1.4206 0.7493 0.3916 0.6437 0.2814 0.6437 0.2814 0.3916
0.032 7.0 1218 1.4775 0.7507 0.4055 0.6413 0.2965 0.6413 0.2965 0.4055
0.032 8.0 1392 1.5835 0.7421 0.4389 0.5833 0.3518 0.5833 0.3518 0.4389
0.0125 9.0 1566 1.7009 0.7464 0.3846 0.6322 0.2764 0.6322 0.2764 0.3846
0.0125 10.0 1740 1.7005 0.7392 0.4217 0.5789 0.3317 0.5789 0.3317 0.4217

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1