dianamihalache27's picture
End of training
f8a6f8f verified
|
raw
history blame
2.43 kB
metadata
base_model: cardiffnlp/twitter-roberta-base-irony
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: twitter-roberta-base_3epoch5
    results: []

twitter-roberta-base_3epoch5

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-irony on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7195
  • Accuracy: 0.7738
  • F1: 0.5341
  • Precision: 0.6522
  • Recall: 0.4523
  • Precision Sarcastic: 0.6522
  • Recall Sarcastic: 0.4523
  • F1 Sarcastic: 0.5341

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Precision Sarcastic Recall Sarcastic F1 Sarcastic
No log 1.0 174 1.9750 0.7695 0.4702 0.6893 0.3568 0.6893 0.3568 0.4702
No log 2.0 348 1.8774 0.7695 0.5062 0.656 0.4121 0.656 0.4121 0.5062
0.027 3.0 522 2.0072 0.7738 0.5016 0.6810 0.3970 0.6810 0.3970 0.5016
0.027 4.0 696 1.6484 0.7622 0.5299 0.6118 0.4673 0.6118 0.4673 0.5299
0.027 5.0 870 1.7195 0.7738 0.5341 0.6522 0.4523 0.6522 0.4523 0.5341

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1