|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.2159 |
|
- Rouge1: 17.3504 |
|
- Rouge2: 8.219 |
|
- Rougel: 16.7598 |
|
- Rougelsum: 16.9027 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 5.8554 | 1.0 | 1541 | 3.4109 | 14.0843 | 7.0483 | 13.7876 | 13.7424 | |
|
| 3.5936 | 2.0 | 3082 | 3.3110 | 16.9351 | 8.9452 | 16.1951 | 16.2707 | |
|
| 3.2943 | 3.0 | 4623 | 3.2440 | 18.9749 | 10.2572 | 18.3207 | 18.3447 | |
|
| 3.1378 | 4.0 | 6164 | 3.2157 | 17.5435 | 9.5501 | 16.976 | 16.9846 | |
|
| 3.0374 | 5.0 | 7705 | 3.2017 | 17.2499 | 8.6003 | 16.8574 | 16.8485 | |
|
| 2.9644 | 6.0 | 9246 | 3.1948 | 16.7856 | 7.7093 | 16.3617 | 16.4731 | |
|
| 2.921 | 7.0 | 10787 | 3.2160 | 18.1708 | 8.8001 | 17.4812 | 17.5949 | |
|
| 2.8907 | 8.0 | 12328 | 3.2159 | 17.3504 | 8.219 | 16.7598 | 16.9027 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|