dvijay's picture
Update README.md
e9734e4
|
raw
history blame
2.37 kB
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: qlora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# mistral-alpaca-qlora
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3095
## Model description
Standard mistral 7B fine tuned with alpaca format.
## Intended uses & limitations
More information needed
## Training and evaluation data
mhenrichsen/alpaca_2k_test
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.5317 | 0.07 | 1 | 5.2182 |
| 5.438 | 0.2 | 3 | 4.7897 |
| 4.1476 | 0.4 | 6 | 3.4313 |
| 3.2037 | 0.6 | 9 | 2.8663 |
| 2.7895 | 0.8 | 12 | 2.5112 |
| 2.3139 | 1.0 | 15 | 2.1467 |
| 2.1672 | 1.2 | 18 | 1.8620 |
| 1.9095 | 1.4 | 21 | 1.6519 |
| 1.5397 | 1.6 | 24 | 1.5429 |
| 1.6327 | 1.8 | 27 | 1.4518 |
| 1.3676 | 2.0 | 30 | 1.3892 |
| 1.3906 | 2.2 | 33 | 1.3531 |
| 1.4096 | 2.4 | 36 | 1.3314 |
| 1.3278 | 2.6 | 39 | 1.3165 |
| 1.3007 | 2.8 | 42 | 1.3107 |
| 1.2848 | 3.0 | 45 | 1.3095 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0