|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: distilbert-base-uncased_fold_3_ternary_v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-uncased_fold_3_ternary_v1 |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8908 |
|
- F1: 0.7879 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 289 | 0.5873 | 0.7636 | |
|
| 0.5479 | 2.0 | 578 | 0.5788 | 0.7697 | |
|
| 0.5479 | 3.0 | 867 | 0.6286 | 0.7770 | |
|
| 0.2412 | 4.0 | 1156 | 0.8845 | 0.7661 | |
|
| 0.2412 | 5.0 | 1445 | 0.9894 | 0.7818 | |
|
| 0.1191 | 6.0 | 1734 | 1.0856 | 0.7842 | |
|
| 0.0543 | 7.0 | 2023 | 1.2852 | 0.7830 | |
|
| 0.0543 | 8.0 | 2312 | 1.4295 | 0.7673 | |
|
| 0.0223 | 9.0 | 2601 | 1.4716 | 0.7806 | |
|
| 0.0223 | 10.0 | 2890 | 1.6007 | 0.7636 | |
|
| 0.0122 | 11.0 | 3179 | 1.6744 | 0.7673 | |
|
| 0.0122 | 12.0 | 3468 | 1.6954 | 0.7685 | |
|
| 0.0129 | 13.0 | 3757 | 1.7273 | 0.7733 | |
|
| 0.0057 | 14.0 | 4046 | 1.7114 | 0.7758 | |
|
| 0.0057 | 15.0 | 4335 | 1.7480 | 0.7733 | |
|
| 0.0045 | 16.0 | 4624 | 1.8322 | 0.7830 | |
|
| 0.0045 | 17.0 | 4913 | 1.7448 | 0.7830 | |
|
| 0.0047 | 18.0 | 5202 | 1.8126 | 0.7782 | |
|
| 0.0047 | 19.0 | 5491 | 1.9021 | 0.7673 | |
|
| 0.0018 | 20.0 | 5780 | 1.9011 | 0.7830 | |
|
| 0.0026 | 21.0 | 6069 | 1.8771 | 0.7806 | |
|
| 0.0026 | 22.0 | 6358 | 1.8634 | 0.7806 | |
|
| 0.0012 | 23.0 | 6647 | 1.8926 | 0.7830 | |
|
| 0.0012 | 24.0 | 6936 | 1.8922 | 0.7855 | |
|
| 0.0005 | 25.0 | 7225 | 1.8908 | 0.7879 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.0 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|