emaeon's picture
Model save
dcf9762
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-gecko
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.988479262672811

vit-base-patch16-224-in21k-finetuned-gecko

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1890
  • Accuracy: 0.9885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.97 21 3.2699 0.6210
No log 1.98 43 2.0011 0.8468
3.1155 2.99 65 1.2851 0.8641
3.1155 4.0 87 0.7751 0.9389
1.1003 4.97 108 0.6060 0.9274
1.1003 5.98 130 0.4584 0.9378
0.5229 6.99 152 0.3417 0.9585
0.5229 8.0 174 0.2415 0.9816
0.5229 8.97 195 0.2014 0.9873
0.3249 9.66 210 0.1890 0.9885

Framework versions

  • Transformers 4.34.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.6
  • Tokenizers 0.14.1