metadata
language:
- el
license: apache-2.0
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium El Greco
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: el
split: test
args: el
metrics:
- name: Wer
type: wer
value: 10.74479940564636
Whisper Medium El Greco
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4245
- Wer: 10.7448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 7000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0039 | 2.49 | 1000 | 0.3787 | 12.4443 |
0.0017 | 4.98 | 2000 | 0.4010 | 12.2864 |
0.0006 | 7.46 | 3000 | 0.4108 | 11.6921 |
0.0004 | 9.95 | 4000 | 0.4221 | 11.5806 |
0.0005 | 12.44 | 5000 | 0.4222 | 11.4134 |
0.0006 | 4.03 | 6000 | 0.4230 | 10.9212 |
0.0006 | 9.03 | 7000 | 0.4245 | 10.7448 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2