hw-midm-7B-nsmc / README.md
euneeei's picture
Update README.md
f529713
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
euneeei/hw-midm-7B-nsmc
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
- ν•œκ΅­μ–΄λ‘œ 된 넀이버 μ˜ν™” 리뷰 λ°μ΄ν„°μ…‹μž…λ‹ˆλ‹€.
- ## train dataset : 3000개
- ## test dataset : 1000개
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
learning_rate : 1e-4-> 2e-4
max_steps=500 μ„€μ •
warmup_steps=100 μ„€μ •
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
| | precision | recall | f1-score | support|
|----|----|----|-------|------|
negative| 0.87 | 0.95 | 091 | 492
positive | 0.94 | 0.87 | 0.90 | 508
accuracy | | | 0.91 | 1000
macro avg | 0.91 | 0.91 | 0.91 | 1000
weighted avg | 0.91 | 0.91 | 0.91 | 1000
- ### confusion metrics
### [[ 466, 26 ]
### [68, 440]]
[More Information Needed]
### Results
- ## **정확도 0.51 -> 0.91둜 λ†’μ•„μ‘ŒμŠ΅λ‹ˆλ‹€**
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0